Sample records for potential future deployment

  1. Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Lantz, Eric; Ho, Jonathan

    Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less

  2. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu T; Lantz, Eric J; Mowers, Matthew

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less

  3. Envisioning a Low-Cost Solar Future: Exploring the Potential Impact of Achieving the SunShot 2030 Targets for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Frew, Bethany A; Gagnon, Pieter J

    In the context of recent dramatic solar energy cost reductions, the U.S. Department of Energy set new levelized cost of energy goals for photovoltaics (PV) to achieve by 2030 to enable significantly greater PV adoption: $0.03/kWh for utility-scale, $0.04/kWh for commercial, and $0.05/kWh for residential PV systems. We analyze the potential impacts of achieving these 'SunShot 2030' cost targets for the contiguous United States using the Regional Energy Deployment System (ReEDS) and Distributed Generation (dGen) capacity expansion models. We consider the impacts under a wide range of future conditions. We find that PV could provide 13%-18% of U.S. electricity demandmore » in 2030 and 28%-64% of demand if the SunShot 2030 goals are achieved, with PV deployment increasing in every state. The availability of low-cost storage has the largest impact on projected deployment, followed by natural gas prices and electricity demand. For comparison, PV deployed under a business-as-usual scenario could provide only 5% of generation in 2030 and 17% in 2050. We find that the high levels of PV deployment explored here lead to lower electricity prices and system costs, lower carbon dioxide emissions, lower water consumption, increased renewable energy curtailment, and increased storage deployment compared with the business-as-usual scenario.« less

  4. The Future Potential of Wave Power in the US

    NASA Astrophysics Data System (ADS)

    Previsic, M.; Epler, J.; Hand, M.; Heimiller, D.; Short, W.; Eurek, K.

    2012-12-01

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the US, is located in close proximity of coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As renewable electricity generation technologies, ocean wave energy offers a low air pollutant option for diversifying the US electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses: (1) The energy extraction potential from the US wave energy resource, (2) The present cost of wave technology in /kW, (3) The estimated cost of energy in /kWh, and (4) Cost levels at which the technology should see significant deployment. RE Vision Consulting in collaboration with NREL engaged in various analyses to establish present-day and future cost profiles for MHK technologies, compiled existing resource assessments and wave energy supply curves, and developed cost and deployment scenarios using the ReEDS analysis model to estimate the present-day technology cost reductions necessary to facilitate significant technology deployment in the US.

  5. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  6. Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts in Oregon Coastal Counties from Two Future Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Keyser, David; Tegen, Suzanne

    This analysis examines the employment and potential economic impacts of large-scale deployment of offshore wind technology off the coast of Oregon. This analysis examines impacts within the seven Oregon coastal counties: Clatsop, Tillamook, Lincoln, Lane, Douglas, Coos, and Curry. The impacts highlighted here can be used in county, state, and regional planning discussions and can be scaled to get a general sense of the economic development opportunities associated with other deployment scenarios.

  7. Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts from Two Future Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Keyser, David; Tegen, Suzanne

    Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical,more » large-scale deployment scenarios for Oregon: 5,500 megawatts (MW) of offshore wind deployment in Oregon by 2050 (Scenario A), and 2,900 MW of offshore wind by 2050 (Scenario B). These levels of deployment could power approximately 1,600,000 homes (Scenario A) or 870,000 homes (Scenario B). Offshore wind would contribute to economic development in Oregon in the near future, and more substantially in the long term, especially if equipment and labor are sourced from within the state. According to the analysis, over the 2020-2050 period, Oregon floating offshore wind facilities could support 65,000-97,000 job-years and add $6.8 billion-$9.9 billion to the state GDP (Scenario A).« less

  8. The consequences of modern military deployment on calcium status and bone health.

    PubMed

    McCarthy, Mary S; Loan, Lori A; Azuero, Andres; Hobbs, Curtis

    2010-06-01

    This article highlights the potential negative effect of the current combat environment on bone health of young military men and women who may be at risk for stress fractures and future bone disease because of alterations primarily in diet and physical activity level during deployment. A combination of physiologic biomarkers, including bone turnover and bone mineral density, and nutrition and exercise surveys can provide meaningful data on potential health risks related to deployment. Soldiers participating in an investigation into bone health before and after deployment did not have decreased bone density but the study did raise awareness about an issue that might otherwise go unnoticed because preventive care is typically focused on older adults. Several risk factors may be modifiable and nurses have the necessary skills for counseling and monitoring behaviors that can minimize disabling musculoskeletal injuries that affect quality of life for the individual and unit readiness for the commander. Published by Elsevier Inc.

  9. Australian Red Dune Sand: A Potential Martian Regolith Analog

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.

    2001-01-01

    To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.

  10. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  11. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  12. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE PAGES

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...

    2017-11-01

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  13. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE PAGES

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...

    2017-09-07

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  14. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Frew, Bethany A.; Gagnon, Pieter J.

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen modelsmore » project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.« less

  15. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  16. Psychological screening program overview.

    PubMed

    Wright, Kathleen M; Huffman, Ann H; Adler, Amy B; Castro, Carl A

    2002-10-01

    This article reviews the literature on health surveillance conducted during military deployments, focusing on models for assessing the impact of operational deployments on peacekeepers. A discussion of the stressors and potential mental health consequences of peacekeeping operations follows with relevant examples of findings from U.S. and international military forces. Psychological screening in different peacekeeping operations conducted in U.S. Army-Europe is reviewed. The review begins with the redeployment screening of military personnel deployed to Bosnia mandated under the Joint Medical Surveillance Program, and continues through the present screening of units deployed to Kosovo. The detailed description of the screening program includes a discussion of procedures and measures and demonstrates the evolution of the program. A summary of key findings from the screening program and a discussion of future research directions are provided.

  17. The Kuwait Oil Fire Health Risk Assessment Biological Surveillance Initiative.

    PubMed

    Deeter, David P

    2011-07-01

    An important environmental concern during the first Gulf War (Operation Desert Storm) was assessing exposures and potential health effects in U.S. forces exposed to the Kuwait oil fires. With only 3 weeks for planning, a Biological Surveillance Initiative (BSI) was developed and implemented for a U.S. Army unit. The BSI included blood and urine collections, questionnaire administration, and other elements during the predeployment, deployment, and post-deployment phases. Many BSI objectives were accomplished. Difficulties encountered included planning failures, loss of data and information, and difficulty in interpreting laboratory results. In order for biological surveillance initiatives to provide useful information for future deployments where environmental exposures may be a concern, meaningful, detailed, and realistic planning and preparation must occur long before the deployment is initiated.

  18. High-performance, flexible, deployable array development for space applications

    NASA Technical Reports Server (NTRS)

    Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.

  19. Post-deployment Mental Health in Reserve and National Guard Service Members: Deploying With or Without One's Unit and Deployment Preparedness.

    PubMed

    Ursano, Robert J; Wang, Jing; Fullerton, Carol S; Ramsawh, Holly; Gifford, Robert K; Russell, Dale; Cohen, Gregory H; Sampson, Laura; Galea, Sandro

    2018-01-01

    Given the greater prevalence of post-deployment mental health concerns among reservists, the higher likelihood of deploying without their regular unit, and potentially lower rates of deployment preparedness, we examined associations between deploying with or without one's regular unit (individual augmentee status, IAS), deployment preparedness, and mental health problems including post-traumatic stress disorder (PTSD), depression (MDD), and binge drinking in a nationally representative sample of Reserve Component (RC) Army and Marine-enlisted males (n = 705). A series of multivariate regressions examined the association of mental health with IAS and deployment preparedness, adjusting for demographics. To examine whether deployment preparedness varied by IAS, an IAS × deployment preparedness interaction was included. In an adjusted model, being an individual augmentee and low deployment preparedness were associated with any mental health problem (screening positive for PTSD, MDD, binge drinking, or any combination of the three). There was a significant IAS × deployment preparedness interaction. Mental health problems did not vary by preparedness among individual augmentees. Participants deploying with regular units with low-medium preparedness had greater risk for mental health problems (odds ratio [OR] = 3.69, 95% confidence interval [CI] = 1.78-7.62 and OR = 2.29, 95% CI = 1.12-4.71), than those with high preparedness. RC-enlisted male personnel who deployed without their regular unit were five times more likely to have a mental health problem, and were 61% more likely to report binge drinking. Additionally, those with lower levels of deployment preparedness were up to three times more likely to have a mental health problem and up to six times more likely to report PTSD. The current investigation found that both IAS and deployment preparedness were associated with negative mental health outcomes in a large representative sample of previously deployed RC-enlisted male personnel. In particular, low deployment preparedness was associated with an increased likelihood of PTSD, and deploying without one's regular unit was associated with increased rates of binge drinking. There were also significant main and interaction effects of IAS and deployment preparedness on having a mental health problem. It is possible that limiting the number of RC personnel deploying without their regular unit may help to decrease alcohol misuse among U.S. Armed Services reservists during and after future conflicts. Also, to the extent that deployment preparedness is a modifiable risk factor, future studies should examine whether increasing deployment preparedness could mitigate some of the correlates of deployment-related trauma exposure. Finally, future investigation is needed to explain why those who deploy without their regular unit, but who report high deployment preparedness, remain at elevated risk for mental health problems. It is possible that individual augmentees can benefit from a specific preparation for deployment. Those deploying without their regular unit had higher rates of mental health problems regardless of preparedness. These findings have implications for deployment preparedness training for those deploying without their regular unit. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Floating Offshore Wind in Hawaii: Potential for Jobs and Economic Impacts from Three Future Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Keyser, David; Tegen, Suzanne

    Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to be anchored to the deeper seafloor if deployed in Hawaiian waters. To analyze the employment and economic potential for floating offshore wind off Hawaii's coasts, the Bureau of Ocean Energy Management commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical deployment scenarios for Hawaii:more » 400 MW of offshore wind by 2050 and 800 MW of offshore wind by 2050. The results of this analysis can be used to better understand the general scale of economic opportunities that could result from offshore wind development.« less

  1. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGES

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  2. A safety roadmap for future plastics and composites intensive vehicles

    DOT National Transportation Integrated Search

    2007-11-01

    This report summarizes the approach, activities, and results of a study to evaluate the potential safety benefits of Plastics and Composites Intensive Vehicles (PCIVs) to enable their deployment by 2020. The main goals were to review and assess the s...

  3. Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?

    NASA Astrophysics Data System (ADS)

    Castellanos, Sergio; Sunter, Deborah A.; Kammen, Daniel M.

    2017-12-01

    Distributed photovoltaics (PV) have played a critical role in the deployment of solar energy, currently making up roughly half of the global PV installed capacity. However, there remains significant unused economically beneficial potential. Estimates of the total technical potential for rooftop PV systems in the United States calculate a generation comparable to approximately 40% of the 2016 total national electric-sector sales. To best take advantage of the rooftop PV potential, effective analytic tools that support deployment strategies and aggressive local, state, and national policies to reduce the soft cost of solar energy are vital. A key step is the low-cost automation of data analysis and business case presentation for structure-integrated solar energy. In this paper, the scalability and resolution of various methods to assess the urban rooftop PV potential are compared, concluding with suggestions for future work in bridging methodologies to better assist policy makers.

  4. Energy Options for the Future

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Obenschain, Stephen; Conover, David; Bajura, Rita; Greene, David; Brown, Marilyn; Boes, Eldon; McCarthy, Kathyrn; Christian, David; Dean, Stephen; Kulcinski, Gerald; Denholm, P. L.

    2004-06-01

    This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geothermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion.

  5. A joint strategy for European rail research 2020 : towards a single European railway system

    DOT National Transportation Integrated Search

    2001-09-01

    Innovating and harmonising products and technologies are a necessity for the rail market to deploy all its potential, and for its stakeholders to deliver cost-effective services for intermediate and final clients. Rail transport in Europe is a future...

  6. Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK

    PubMed Central

    Gove, Benedict; Williams, Leah J.; Beresford, Alison E.; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H. W.; Bradbury, Richard B.

    2016-01-01

    Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential. PMID:27224050

  7. Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK.

    PubMed

    Gove, Benedict; Williams, Leah J; Beresford, Alison E; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H W; Bradbury, Richard B

    2016-01-01

    Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies, to enable realisation of their full potential.

  8. Pre-deployment Year Mental Health Diagnoses and Treatment in Deployed Army Women

    PubMed Central

    Adams, Rachel Sayko; Mohr, Beth A.; Jeffery, Diana D.; Funk, Wendy; Williams, Thomas V.; Larson, Mary Jo

    2016-01-01

    We estimated the prevalence of select mental health diagnoses (MHDX) and mental health treatment (MHT), and identified characteristics associated with MHT during the pre-deployment year (365 days before deployment) in active duty Army women (N = 14,633) who returned from Iraq or Afghanistan deployments in FY2010. Pre-deployment year prevalence estimates were: 26.2 % for any select MHDX and 18.1 % for any MHT. Army women who had physical injuries since FY2002 or any behavioral health treatment between FY2002 and the pre-deployment year had increased odds of pre-deployment year MHT. During the pre-deployment year, a substantial percentage of Army women had MHDX and at least one MHT encounter or stay. Future research should determine if pre-deployment MHDX among Army women reflect vulnerability to future MHDX, or if pre-deployment MHT results in protection from chronic symptoms. PMID:27368233

  9. Pre-deployment Year Mental Health Diagnoses and Treatment in Deployed Army Women.

    PubMed

    Wooten, Nikki R; Adams, Rachel Sayko; Mohr, Beth A; Jeffery, Diana D; Funk, Wendy; Williams, Thomas V; Larson, Mary Jo

    2017-07-01

    We estimated the prevalence of select mental health diagnoses (MHDX) and mental health treatment (MHT), and identified characteristics associated with MHT during the pre-deployment year (365 days before deployment) in active duty Army women (N = 14,633) who returned from Iraq or Afghanistan deployments in FY2010. Pre-deployment year prevalence estimates were: 26.2 % for any select MHDX and 18.1 % for any MHT. Army women who had physical injuries since FY2002 or any behavioral health treatment between FY2002 and the pre-deployment year had increased odds of pre-deployment year MHT. During the pre-deployment year, a substantial percentage of Army women had MHDX and at least one MHT encounter or stay. Future research should determine if pre-deployment MHDX among Army women reflect vulnerability to future MHDX, or if pre-deployment MHT results in protection from chronic symptoms.

  10. ROSA deploy

    NASA Image and Video Library

    2017-06-18

    iss052e002857 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.

  11. ROSA deploy

    NASA Image and Video Library

    2017-06-18

    iss052e004379 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.

  12. ROSA deploy

    NASA Image and Video Library

    2017-06-18

    iss052e002871 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.

  13. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deploymentmore » of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but the individual technologies used to create the system deployed during this exercise required further development.« less

  14. Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Leigh, Larry M., Jr.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Detailed investigation of the construction, packaging/deployment, foam rigidization, and structural characterization of polyimide film inflatable booms is described. These structures have considerable potential for use in space with solar concentrators, solar sails, space power systems including solar arrays, and other future missions. Numerous thin-film booms or struts were successfully constructed, inflated, injected with foam, and rigidized. Both solid-section and annular test articles were fabricated, using Kapton polyimide film, various adhesives, Styrofoam end plugs, and polyurethane pressurized foam. Numerous inflation/deployment experiments were conducted and compared to computer simulations using the MSC/DYTRAN code. Finite element models were developed for several foam-rigidized struts and compared to model test results. Several problems encountered in the construction, deployment, and foam injection/rigidization process are described. Areas of difficulty included inadequate adhesive strength, cracking of the film arid leakage, excessive bending of the structure during deployment, problems with foam distribution and curing properties, and control of foam leakage following injection into the structure. Many of these problems were overcome in the course of the research.

  15. Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity

    NASA Astrophysics Data System (ADS)

    Séférian, Roland; Rocher, Matthias; Guivarch, Céline; Colin, Jeanne

    2018-05-01

    To limit global warming to well below 2 ° most of the IPCC-WGIII future stringent mitigation pathways feature a massive global-scale deployment of negative emissions technologies (NETs) before the end of the century. The global-scale deployment of NETs like Biomass Energy with Carbon Capture and Storage (BECCS) can be hampered by climate constraints that are not taken into account by Integrated assessment models (IAMs) used to produce those pathways. Among the various climate constraints, water scarcity appears as a potential bottleneck for future land-based mitigation strategies and remains largely unexplored. Here, we assess climate constraints relative to water scarcity in response to the global deployment of BECCS. To this end, we confront results from an Earth system model (ESM) and an IAM under an array of 25 stringent mitigation pathways. These pathways are compatible with the Paris Agreement long-term temperature goal and with cumulative carbon emissions ranging from 230 Pg C and 300 Pg C from January 1st onwards. We show that all stylized mitigation pathways studied in this work limit warming below 2 °C or even 1.5 °C by 2100 but all exhibit a temperature overshoot exceeding 2 °C after 2050. According to the IAM, a subset of 17 emission pathways are feasible when evaluated in terms of socio-economic and technological constraints. The ESM however shows that water scarcity would limit the deployment of BECCS in all the mitigation pathways assessed in this work. Our findings suggest that the evolution of the water resources under climate change can exert a significant constraint on BECCS deployment before 2050. In 2100, the BECCS water needs could represent more than 30% of the total precipitation in several regions like Europe or Asia.

  16. Connected Vehicle Pilot Deployment Program phase I : comprehensive Pilot Deployment Plan : Tampa Hillsborough Expressway Authority (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...

  17. Rendezvous, proximity operations and capture quality function deployment report

    NASA Technical Reports Server (NTRS)

    Lamkin, Stephen L. (Editor)

    1991-01-01

    Rendezvous, Proximity Operations, and Capture (RPOC) is a missions operations area which is extremely important to present and future space initiatives and must be well planned and coordinated. To support this, a study team was formed to identify a specific plan of action using the Quality Function Deployment (QFD) process. This team was composed of members from a wide spectrum of engineering and operations organizations which are involved in the RPOC technology area. The key to this study's success is an understanding of the needs of potential programmatic customers and the technology base available for system implementation. To this end, the study team conducted interviews with a variety of near term and future programmatic customers and technology development sponsors. The QFD activity led to a thorough understanding of the needs of these customers in the RPOC area, as well as the relative importance of these needs.

  18. Emergency deployment of genetically engineered veterinary vaccines in Europe.

    PubMed

    Ramezanpour, Bahar; de Foucauld, Jean; Kortekaas, Jeroen

    2016-06-24

    On the 9th of November 2015, preceding the World Veterinary Vaccine Congress, a workshop was held to discuss how veterinary vaccines can be deployed more rapidly to appropriately respond to future epizootics in Europe. Considering their potential and unprecedented suitability for surge production, the workshop focussed on vaccines based on genetically engineered viruses and replicon particles. The workshop was attended by academics and representatives from leading pharmaceutical companies, regulatory experts, the European Medicines Agency and the European Commission. We here outline the present regulatory pathways for genetically engineered vaccines in Europe and describe the incentive for the organization of the pre-congress workshop. The participants agreed that existing European regulations on the deliberate release of genetically engineered vaccines into the environment should be updated to facilitate quick deployment of these vaccines in emergency situations. Copyright © 2016.

  19. Neuropsychological issues in military deployments: lessons observed in the DoD Gulf War Illnesses Research Program.

    PubMed

    Friedl, Karl E; Grate, Stephen J; Proctor, Susan P

    2009-04-01

    The U.S. Department of Defense invested $150 M to investigate undiagnosed Gulf War Illnesses (GWI) and twice that amount in post hoc clinical management. No new disease syndrome was identified, but the research produced new understanding and awareness of important psychosocial and neurotoxicological interactions that represented a difficult and relatively untapped frontier in biomedical research, especially concerning chronic multisymptom illnesses. Some specific Gulf War issues such as effects of depleted uranium, Leishmania diagnosis and treatment, and pesticide and prophylactic drug interactions have been intensively investigated; remaining priorities for further investigation include: markers of neurologic change (e.g., neuroimaging, neuropsychological testing), interactions between psychological resilience and neurotoxicity, structure-function relationships of neurotoxins with neurodegenerative disease potential, and predictors of individual susceptibility. The primary conclusions from the program are that no specific neurotoxic chemical has been identified that explains the chronic multisymptom illness observed but wellness of service members in future deployments may be better sustained based on continuing research on preexposure health baselining, fitness and health-damaging behaviors, and stress resilience. The many scientific discoveries and accomplishments of the GWI research effort have advanced military medical science, provided a solid basis on which to build future protections against health and performance risks to the warfighter, and improved the ability to respond to future deployment health issues.

  20. Uses of tethered atmospheric research probes

    NASA Technical Reports Server (NTRS)

    Deloach, Richard

    1991-01-01

    In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.

  1. Fast-Forwarding Genetic Gain.

    PubMed

    Li, Huihui; Rasheed, Awais; Hickey, Lee T; He, Zhonghu

    2018-03-01

    'Speed breeding' enables scientists to exploit gene bank accessions and mutant collections for an unparalleled rapid gene discovery and gene deployment. Combining speed breeding and other leading-edge plant breeding technologies with strategic global partnerships, has the potential to achieve the genetic gain targets required to deliver our future crops. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Operational Group Sandy technical progress report

    USGS Publications Warehouse

    ,

    2013-01-01

    This report documents results from the March 2013 deployment of the OGS. It includes background information on Hurricane Sandy and the federal response; the OGS methodology; scenarios for Hurricane Sandy’s impact on coastal communities and urban ecosystems; potential interventions to improve regional resilience to future major storms; a discussion of scenario results; and lessons learned about the OGS process.

  3. Quantifying and Understanding Effects from Wildlife, Radar, and Public Engagement on Future Wind Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    This presentation provides an overview of findings from a report published in 2016 by researchers at the National Renewable Energy Laboratory, An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment. The presentation covers the background for research, the Energy Department's Wind Vision, research methods, siting considerations, the wind project deployment process, and costs associated with siting considerations.

  4. How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong

    Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less

  5. How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model

    DOE PAGES

    Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong; ...

    2016-12-08

    Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less

  6. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Wiser, R.; Sandor, D.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  7. Return to contingency: developing a coherent strategy for future R2E/R3 land medical capabilities.

    PubMed

    Ingram, Mike; Mahan, J

    2015-03-01

    Key to deploying forces in the future will be the provision of a rapidly deployable Deployed Hospital Capability. Developing this capability has been the focus of 34 Field Hospital and 2nd Medical Brigade over the last 18 months and this paper describes a personal account of this development work to date. Future contingent Deployed Hospital Capability must meet the requirements of Defence; that is to be rapidly deployable delivering a hospital standard of care. The excellence seen in clinical delivery on recent operations is intensive; in personnel, equipment, infrastructure and sustainment. The challenge in developing a coherent capability has been in balancing the clinical capability and capacity against strategic load in light of recent advances in battlefield medicine. This paper explores the issues encountered and solutions found to date in reconstituting a Very High Readiness Deployed Hospital Capability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. System definition study of deployable, non-metallic space structures

    NASA Technical Reports Server (NTRS)

    Stimler, F. J.

    1984-01-01

    The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.

  9. Satellite Power Systems (SPS): Concept development and evaluation program: Preliminary assessment

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary assessment of a potential Satellite Power System (SPS) is provided. The assessment includes discussion of technical and economic feasibility; the effects of microwave power transmission beams on biological, ecological, and electromagnetic systems; the impact of SPS construction, deployment, and operations on the biosphere and on society; and the merits of SPS compared to other future energy alternatives.

  10. Rotorcraft and Enabling Robotic Rescue

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2010-01-01

    This paper examines some of the issues underlying potential robotic rescue devices (RRD) in the context where autonomous or manned rotorcraft deployment of such robotic systems is a crucial attribute for their success in supporting future disaster relief and emergency response (DRER) missions. As a part of this discussion, work related to proof-of-concept prototyping of two notional RRD systems is summarized.

  11. Learners' Ensemble Based Security Conceptual Model for M-Learning System in Malaysian Higher Learning Institution

    ERIC Educational Resources Information Center

    Mahalingam, Sheila; Abdollah, Faizal Mohd; Sahib, Shahrin

    2014-01-01

    M-Learning has a potential to improve efficiency in the education sector and has a tendency to grow advance and transform the learning environment in the future. Yet there are challenges in many areas faced when introducing and implementing m-learning. The learner centered attribute in mobile learning implies deployment in untrustworthy learning…

  12. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, M.; Ela, E.; Hein, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  13. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  14. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, C.; Bain, R.; Chapman, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  15. Renewable Electricity Futures Study. Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Sandor, D.; Wiser, R.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  16. Information technology issues during and after Katrina and usefulness of the Internet: how we mobilized and utilized digital communications systems

    PubMed Central

    Leitl, Eugen

    2006-01-01

    Even more than in previous disasters, Katrina has proven itself to be a testing ground for a plethora of new technologies. Although not all of these technologies did immediately save lives, in this regard a number of them exhibited considerable potential for the future, and hence there is a need to include them in future contingency plans. However, a need for change in the modes and patterns of technology deployment to maximize their leverage has also become very clear. PMID:16420650

  17. Peace umbrella, a vague policy and checkered past. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biszak, G.A.

    1997-03-01

    With the break-up of the former Soviet Union, the United Nations Security Council enjoyed a greater consensus among its members in confronting aggression and participation in humanitarian and peace operations. Deploying significant military forces under the peace umbrella at the beginning of this decade was highly unlikely. However, since 1990, 25 deployments have been conducted with the majority falling under the peace umbrella. This paper analyzes current national and military strategy in regards to the peace umbrella, specifically peace enforcement, military doctrine, and the case of Somalia. In addition, this paper looks at doctrine and directives that currently guide deploymentmore » of forces and the potential for future peace operations.« less

  18. Net-Centric Sensors and Data Sources (N-CSDS) GEODSS Sidecar

    NASA Astrophysics Data System (ADS)

    Richmond, D.

    2012-09-01

    Vast amounts of Space Situational Sensor data is collected each day on closed, legacy systems. Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL) developed a Net-Centric approach to expose this data under the Extended Space Sensors Architecture (ESSA) Advanced Concept Technology Demonstration (ACTD). The Net-Centric Sensors and Data Sources (N-CSDS) Ground-based Electro Optical Deep Space Surveillance (GEODSS) Sidecar is the next generation that moves the ESSA ACTD engineering tools to an operational baseline. The N-CSDS GEODSS sidecar high level architecture will be presented, highlighting the features that supports deployment at multiple diverse sensor sites. Other key items that will be covered include: 1) The Web Browser interface to perform searches of historical data 2) The capabilities of the deployed Web Services and example service request/responses 3) Example data and potential user applications will be highlighted 4) Specifics regarding the process to gain access to the N-CSDS GEODSS sensor data in near real time 5) Current status and future deployment plans (Including plans for deployment to the Maui GEODSS Site)

  19. Elastic memory composites (EMC) for deployable industrial and commercial applications

    NASA Astrophysics Data System (ADS)

    Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken

    2005-05-01

    The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.

  20. Artificially designed pathogens - a diagnostic option for future military deployments.

    PubMed

    Zautner, Andreas E; Masanta, Wycliffe O; Hinz, Rebecca; Hagen, Ralf Matthias; Frickmann, Hagen

    2015-01-01

    Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to restrictions by the International Air Transport Association. An alternative option might be inactivation and sequencing of the pathogen at the deployment site with subsequent sequence-based revitalization in well-equipped laboratories in the home country for further scientific assessment. A literature review was written based on a PubMed search. First described for poliovirus in 2002, de novo synthesis of pathogens based on their sequence information has become a well-established procedure in science. Successful syntheses have been demonstrated for both viruses and prokaryotes. However, the technology is not yet available for routine diagnostic purposes. Due to the potential utility of diagnostic sequencing and sequence-based de novo synthesis of pathogens, it seems worthwhile to establish the technology for diagnostic purposes over the intermediate term. This is particularly true for resource-restricted deployment settings, where safe handling of harmful pathogens cannot always be guaranteed.

  1. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.; Baldwin, S.; DeMeo, E.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  2. Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishik, Claire; Sheldon, Frederick T; Ott, David

    Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutionsmore » are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.« less

  3. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work,more » we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage technologies with lower energy capacities are deployed to support solar deployment, and higher energy capacity technologies support wind. Finally, we identify potential future research and areas of improvement to build on this initial analysis.« less

  4. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    PubMed

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  5. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, Bethany; Keyser, David; Tegen, Suzanne

    Construction of the first offshore wind farm in the United States began in 2015, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) has commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical, large-scale deployment scenarios for California: 16more » GW of offshore wind by 2050 (Scenario A) and 10 GW of offshore wind by 2050 (Scenario B). The results of this analysis can be used to better understand the general scales of economic opportunities that could result from offshore wind development. Results show total state gross domestic product (GDP) impacts of $16.2 billion in Scenario B or $39.7 billion in Scenario A for construction; and $3.5 billion in Scenario B or $7.9 billion in Scenario A for the operations phases.« less

  6. Space Surveillance Catalog growth during SBIRS low deployment.

    NASA Astrophysics Data System (ADS)

    Hoult, C. P.; Wright, R. P.

    The Space Surveillance Catalog is a database of all Resident Space Objects (RSOs) on Earth orbit. It is expected to grow in the future as more RSOs accumulate on orbit. Potentially still more dramatic growth could follow the deployment of the Space Based Infrared System Low Earth Orbit Component (SBTRS Low). SBIRS Low, currently about to enter development, offers the potential to detect and acquire much smaller debris RSOs than can be seen by the current ground-based Space Surveillance Network (SSN). SBIRS Low will host multicolor infrared/visible sensors on each satellite in a proliferated constellation on low Earth orbit, and if appropriately tasked, these sensors could provide significant space surveillance capability. Catalog growth during SBIRS Low deployment was analyzed using a highly aggregated code that numerically integrates the Markov equations governing the state transitions of RSOs from uncataloged to cataloged, and back again. It was assumed that all newly observed debris RSOs will be detected as by-products of routine Catalog maintenance, not including any post breakup searches, and if sufficient sensor resources are available, be acquired into the Catalog. Debris over the entire low to high altitude regime were considered.

  7. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could bemore » used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  8. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could bemore » used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  9. NREL Screens Universities for Solar and Battery Storage Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgqvist, Emma M

    In support of the U.S. Department of Energy's SunShot initiative, NREL provided solar photovoltaic (PV) screenings in 2016 and 2017 for universities seeking to go solar. Fifteen universities were selected for screenings based on campus solar and sustainability goals, plans for future solar projects and solar deployment capacity (megawatts), regional diversity, energy costs, and availability of campus energy data for the analysis.

  10. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Bain, Richard; Chapman, Jamie

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  11. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  12. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Ela, Erik; Hein, Jeff

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  13. Automated Deployment of Advanced Controls and Analytics in Buildings

    NASA Astrophysics Data System (ADS)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  14. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers.

    PubMed

    Smid, Geert E; van Zuiden, Mirjam; Geuze, Elbert; Kavelaars, Annemieke; Heijnen, Cobi J; Vermetten, Eric

    2015-01-01

    Combat stress exposed soldiers may respond to post-deployment stressful life events (SLE) with increases in symptoms of posttraumatic stress disorder (PTSD), consistent with a model of stress sensitization. Several lines of research point to sensitization as a model to describe the relations between exposure to traumatic events, subsequent SLE, and symptoms of PTSD. Based on previous findings we hypothesized that immune activation, measured as a high in vitro capacity of leukocytes to produce cytokines upon stimulation, underlies stress sensitization. We assessed mitogen-induced cytokine production at 1 month, SLE at 1 year, and PTSD symptoms from 1 month up to 2 years post-deployment in soldiers returned from deployment to Afghanistan (N=693). Exploratory structural equation modeling as well as latent growth models were applied. The data demonstrated significant three-way interaction effects of combat stress exposure, cytokine production, and post-deployment SLE on linear change in PTSD symptoms over the first 2 years following return from deployment. In soldiers reporting high combat stress exposure, both high mitogen-stimulated T-cell cytokine production and high innate cytokine production were associated with increases in PTSD symptoms in response to post-deployment SLE. In low combat stress exposed soldiers as well as those with low cytokine production, post-deployment SLE were not associated with increases in PTSD symptoms. High stimulated T-cell and innate cytokine production may contribute to stress sensitization in recently deployed, high combat stress exposed soldiers. These findings suggest that detecting and eventually normalizing immune activation may potentially complement future strategies to prevent progression of PTSD symptoms following return from deployment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Medical-encounter mental health diagnoses, non-fatal injury and polypharmacy indicators of risk for accident death in the US Army enlisted soldiers, 2004-2009.

    PubMed

    Lewandowski-Romps, Lisa; Schroeder, Heather M; Berglund, Patricia A; Colpe, Lisa J; Cox, Kenneth; Hauret, Keith; Hay, Jeffrey D; Jones, Bruce; Little, Roderick J A; Mitchell, Colter; Schoenbaum, Michael; Schulz, Paul; Stein, Murray B; Ursano, Robert J; Heeringa, Steven G

    2018-06-01

    Accidents are a leading cause of deaths in U.S. active duty personnel. Understanding accident deaths during wartime could facilitate future operational planning and inform risk prevention efforts. This study expands prior research, identifying health risk factors associated with U.S. Army accident deaths during the Afghanistan and Iraq war. Military records for 2004-2009 enlisted, active duty, Regular Army soldiers were analyzed using logistic regression modeling to identify mental health, injury, and polypharmacy (multiple narcotic and/or psychotropic medications) predictors of accident deaths for current, previously, and never deployed groups. Deployed soldiers with anxiety diagnoses showed higher risk for accident deaths. Over half had anxiety diagnoses prior to being deployed, suggesting anticipatory anxiety or symptom recurrence may contribute to high risk. For previously deployed soldiers, traumatic brain injury (TBI) indicated higher risk. Two-thirds of these soldiers had first TBI medical-encounter while non-deployed, but mild, combat-related TBIs may have been undetected during deployments. Post-Traumatic Stress Disorder (PTSD) predicted higher risk for never deployed soldiers, as did polypharmacy which may relate to reasons for deployment ineligibility. Health risk predictors for Army accident deaths are identified and potential practice and policy implications discussed. Further research could test for replicability and expand models to include unobserved factors or modifiable mechanisms related to high risk. PTSD predicted high risk among those never deployed, suggesting importance of identification, treatment, and prevention of non-combat traumatic events. Finally, risk predictors overlapped with those identified for suicides, suggesting effective intervention might reduce both types of deaths. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Importance of biometrics to addressing vulnerabilities of the U.S. infrastructure

    NASA Astrophysics Data System (ADS)

    Arndt, Craig M.; Hall, Nathaniel A.

    2004-08-01

    Human identification technologies are important threat countermeasures in minimizing select infrastructure vulnerabilities. Properly targeted countermeasures should be selected and integrated into an overall security solution based on disciplined analysis and modeling. Available data on infrastructure value, threat intelligence, and system vulnerabilities are carefully organized, analyzed and modeled. Prior to design and deployment of an effective countermeasure; the proper role and appropriateness of technology in addressing the overall set of vulnerabilities is established. Deployment of biometrics systems, as with other countermeasures, introduces potentially heightened vulnerabilities into the system. Heightened vulnerabilities may arise from both the newly introduced system complexities and an unfocused understanding of the set of vulnerabilities impacted by the new countermeasure. The countermeasure's own inherent vulnerabilities and those introduced by the system's integration with the existing system are analyzed and modeled to determine the overall vulnerability impact. The United States infrastructure is composed of government and private assets. The infrastructure is valued by their potential impact on several components: human physical safety, physical/information replacement/repair cost, potential contribution to future loss (criticality in weapons production), direct productivity output, national macro-economic output/productivity, and information integrity. These components must be considered in determining the overall impact of an infrastructure security breach. Cost/benefit analysis is then incorporated in the security technology deployment decision process. Overall security risks based on system vulnerabilities and threat intelligence determines areas of potential benefit. Biometric countermeasures are often considered when additional security at intended points of entry would minimize vulnerabilities.

  17. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Kai; Kim, Donghoe; Whitaker, James B

    Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemicalmore » routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.« less

  18. Carbon Lock-In: Barriers to the Deployment of Climate Change Mitigation Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapsa, Melissa Voss; Brown, Marilyn A.

    The United States shares with many other countries the objective of stabilizing greenhouse gas (GHG) concentrations in the Earth's atmosphere at a level that would prevent dangerous interference with the climate system. Many believe that accelerating the pace of technology improvement and deployment could significantly reduce the cost of achieving this goal. The critical role of new technologies is underscored by the fact that most anthropogenic greenhouse gases emitted over the next century will come from equipment and infrastructure built in the future. As a result, new technologies and fuels have the potential to transform the nation's energy system whilemore » meeting climate change as well as energy security and other goals.« less

  19. Hedge math: Theoretical limits on minimum stockpile size across nuclear hedging strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, Jarret Marshall; Roesler, Alexander W.

    2016-09-01

    In June 2013, the Department of Defense published a congressionally mandated, unclassified update on the U.S. Nuclear Employment Strategy. Among the many updates in this document are three key ground rules for guiding the sizing of the non-deployed U.S. nuclear stockpile. Furthermore, these ground rules form an important and objective set of criteria against which potential future stockpile hedging strategies can be evaluated.

  20. Integrating Solar into Florida's Power System: Potential Roles for Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine T; Stoll, Brady; Novacheck, Joshua E

    Although Florida has very little photovoltaic (PV) generation to date, it is reasonable to expect significant deployment in the 2020s under a variety of future policy and cost scenarios. To understand these potential futures, we model Florida Reliability Coordinating Council operations in 2026 over a wide range of PV penetrations with various combinations of battery storage capacity, demand response, and increased operational flexibility. By calculating the value of PV under a wide range of conditions, we find that at least 5%, and more likely 10-24%, PV penetration is cost competitive in Florida within the next decade with baseline flexibility andmore » all but the most pessimistic of assumptions. For high PV penetrations, we demonstrate Florida's electrical net-load variability (duck curve) challenges, the associated reduction of PV's value to the system, and the ability of flexibility options-in particular energy-shifting resources-to preserve value and increase the economic carrying capacity of PV. A high level of demand response boosts the economic carrying capacity of PV by up to 0.5-2 percentage points, which is comparable to the impact of deploying 1 GW of battery storage. Adding 4 GW of battery storage expands the economic carrying capacity of PV by up to 6 percentage points.« less

  1. Biodiversity characterisation and hydrodynamic consequences of marine fouling communities on marine renewable energy infrastructure in the Orkney Islands Archipelago, Scotland, UK.

    PubMed

    Want, Andrew; Crawford, Rebecca; Kakkonen, Jenni; Kiddie, Greg; Miller, Susan; Harris, Robert E; Porter, Joanne S

    2017-08-01

    As part of ongoing commitments to produce electricity from renewable energy sources in Scotland, Orkney waters have been targeted for potential large-scale deployment of wave and tidal energy converting devices. Orkney has a well-developed infrastructure supporting the marine energy industry; recently enhanced by the construction of additional piers. A major concern to marine industries is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, the marine energy infrastructure and instrumentation were surveyed to characterise the biofouling. Fouling communities varied between deployment habitats; key species were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive organisms. A method to measure the impact of biofouling on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Orkney. The results are discussed in relation to the accuracy of the measurement resources for power generation. Further applications are suggested for future testing in other scenarios, including tidal energy.

  2. Fabrication and Design Testing of 4 Petals for Deployable Starshade Prototype : JPL Summer Internship Program : Final Report

    NASA Technical Reports Server (NTRS)

    Paxton, Laurel

    2012-01-01

    One of the next steps in the exoplanet search is the development of occulter technology. Starlight suppression for a telescope would provide the ability to more accurately find and characterize potential true-Earth analogs. Coronagraphs have been the subject of much research in recent years but have yet to prove themselves a feasible approach. Attention has now turned to external occulters or starshades. A large occulting mask in front of a telescope should provide a comparable optical resolution to a coronagraph. Under a TDEM grant, a proposed starshade design was demonstrated to exceed coronagraph resolution by at least an order of magnitude. The current project is to demonstrate that the current design can be manufactured and then properly deployed. 4 sample starshade petals were constructed, ready to be attached to a pre-existing deployment truss. Time was spent detailing and modifying the petal construction process, so that future petals could be constructed at a more accurate and faster pace.

  3. The Role of Structural Models in the Solar Sail Flight Validation Process

    NASA Technical Reports Server (NTRS)

    Johnston, John D.

    2004-01-01

    NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.

  4. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-01-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  5. Performance, Cost, and Financial Parameters of Geothermal District Heating Systems for Market Penetration Modeling under Various Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; Young, Katherine R

    Geothermal district heating (GDH) systems have limited penetration in the U.S., with an estimated installed capacity of only 100 MWth for a total of 21 sites. We see higher deployment in other regions, for example, in Europe with an installed capacity of more than 4,700 MWth for 257 GDH sites. The U.S. Department of Energy Geothermal Vision (GeoVision) Study is currently looking at the potential to increase the deployment in the U.S. and to understand the impact of this increased deployment. This paper reviews 31 performance, cost, and financial parameters as input for numerical simulations describing GDH system deployment inmore » support of the GeoVision effort. The focus is on GDH systems using hydrothermal and Enhanced Geothermal System resources in the U.S.; ground-source heat pumps and heat-to-electricity conversion technology were excluded. Parameters investigated include 1) capital and operation and maintenance costs for both subsurface and surface equipment; 2) performance factors such as resource recovery factors, well flow rates, and system efficiencies; and 3) financial parameters such as inflation, interest, and tax rates. Current values as well as potential future improved values under various scenarios are presented. Sources of data considered include academic and popular literature, software tools such as GETEM and GEOPHIRES, industry interviews, and analysis conducted by other task forces for the GeoVision Study, e.g., on the drilling costs and reservoir performance.« less

  6. Lessons Learned in the Development of Gamma-Rover (GRover) Inspection Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Patrick LJ; Alzheimer, James M.; Catalan, Michael A.

    2006-02-11

    The Gamma-Rover (GRover) is an electrically powered crawler designed to visually inspect and characterize the radiological conditions within the B-Cell and D-Cell ventilation ducting in support of the Hanford Site’s 324 Building Stabilization/Deactivation Project. Due to the bid opening of the Department of Energy’s River Corridor Project prior to deployment, GRover has not yet been deployed. The delay in deployment has allowed the designers to develop lessons learned from the original development in order to propose improvements when the system is deployed in the future. Gamma field information is detected with a pair of Eberline DA1-8/RMS systems. One system ismore » mounted directly on the crawler, while the second is mounted on the deployment platform. Four web cameras on a pair of CAT-5e/USB channels provide video feedback from both the crawler and the deployment platform. The drive system was designed to overcome a potentially difficult path of the duct, which included three ninety-degree bends. Mockups of the duct bends yielded high friction on the tether, and a drive system to overcome this friction was especially difficult to design into such a small package. Deployment was to be performed during a routine air filter change-out. As such, a specialized deployment platform was designed to pass through the existing filter housing. GRover would be required to be staged within the hot cell prior to the filter change-out and could therefore be dosed in excess of 8 hours. Thus, the platform also had to protect the electronics from radiation damage for an extended period of time.« less

  7. Indirect associations of combat exposure with post-deployment physical symptoms in U.S. soldiers: roles of post-traumatic stress disorder, depression and insomnia.

    PubMed

    Quartana, Phillip J; Wilk, Joshua E; Balkin, Thomas J; Hoge, Charles W

    2015-05-01

    To characterize the indirect associations of combat exposure with post-deployment physical symptoms through shared associations with post-traumatic stress disorder (PTSD), depression and insomnia symptoms. Surveys were administered to a sample of U.S. soldiers (N = 587) three months after a 15-month deployment to Iraq. A multiple indirect effects model was used to characterize direct and indirect associations between combat exposure and physical symptoms. Despite a zero-order correlation between combat exposure and physical symptoms, the multiple indirect effects analysis did not provide evidence of a direct association between these variables. Evidence for a significant indirect association of combat exposure and physical symptoms was observed through PTSD, depression, and insomnia symptoms. In fact, 92% of the total effect of combat exposure on physical symptoms scores was indirect. These findings were evident even after adjusting for the physical injury and relevant demographics. This is the first empirical study to suggest that PTSD, depression and insomnia collectively and independently contribute to the association between combat exposure and post-deployment physical symptoms. Limitations, future research directions, and potential policy implications are discussed. Published by Elsevier Inc.

  8. U.S. Service Member Deployment in Response to the Ebola Crisis: The Psychological Perspective.

    PubMed

    Sipos, Maurice L; Kim, Paul Y; Thomas, Stephen J; Adler, Amy B

    2018-03-01

    In the fall of 2014, the United States and other nations responded to the worst outbreak of the Ebola virus disease in history. As part of this effort, U.S. service members deployed to West Africa to support a spectrum of activities that did not involve direct patient care. Although previous studies identified the psychological impact of responding to an outbreak, these studies were limited to retrospective data, small sample sizes, and medical personnel. The goals of the present study were to (a) document the mental health and well-being of troops deploying in response to an infectious disease outbreak; (b) identify their stressors, attitudes toward deployment, and health risk concerns; and (c) understand the role of combat experience in adjusting to these types of missions. Study participants at both pre- and during deployment were active duty U.S. soldiers in a combat aviation battalion from a large U.S. military installation. U.S. soldiers were surveyed (n = 251) 3 wk before deploying to Liberia (October 2014) and surveyed again during their deployment (February 2015; n = 173). Participants were primarily male (86.1%), junior ranking (56.0%), and just over half had previous combat deployment experience (51.2%). Surveys were anonymous and not linked to one another over time. Overall rates of mental health problems were low (2.4% at pre-deployment and 5.8% during deployment), whereas sleep problems were reported by 4.9% at pre-deployment and 12% during deployment. At pre-deployment, top stressors focused on health threats; fewer stressors were reported during deployment. Soldiers were relatively less concerned about contracting Ebola than other more prevalent diseases. Soldiers with combat experience reported more somatic and sleep problems at pre-deployment than those without previous combat experience. There were no significant differences during deployment between those with and without previous combat experience. Overall, a small proportion of respondents reported significant rates of mental health problems. In contrast, sleep problems were reported by 12% during deployment. In terms of attitudes toward the mission, the vast majority reported that they knew what to do to protect themselves from disease and that they understood the potential risk involved. The study also confirmed previous findings that soldiers with previous combat experience had more somatic symptoms at pre-deployment than those without, although this distinction appeared limited to the pre-deployment phase. Results can be used to address anxiety by personnel during pre-deployment and to inform leadership preparing personnel to deploy in response to future infectious disease outbreaks.

  9. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Sigrin, Benjamin O.; Lantz, Eric J.

    This work seeks to identify current and future spatial distributions of economic potential for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities in Colorado, Minnesota, and New York. These states were identified by technical experts based on their current favorability for distributed wind deployment. We use NREL's Distributed Wind Market Demand Model (dWind) (Lantz et al. 2017; Sigrin et al. 2016) to identify and rank counties in each of the states by their overall and per capita potential. From this baseline assessment, we also explore how and where improvements in cost, performance, and other marketmore » sensitivities affect distributed wind potential.« less

  10. Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data

    PubMed Central

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621

  11. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  12. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  13. Design and analysis considerations for deployment mechanisms in a space environment

    NASA Technical Reports Server (NTRS)

    Vorlicek, P. L.; Gore, J. V.; Plescia, C. T.

    1982-01-01

    On the second flight of the INTELSAT V spacecraft the time required for successful deployment of the north solar array was longer than originally predicted. The south solar array deployed as predicted. As a result of the difference in deployment times a series of experiments was conducted to locate the cause of the difference. Deployment rate sensitivity to hinge friction and temperature levels was investigated. A digital computer simulation of the deployment was created to evaluate the effects of parameter changes on deployment. Hinge design was optimized for nominal solar array deployment time for future INTELSAT V satellites. The nominal deployment times of both solar arrays on the third flight of INTELSAT V confirms the validity of the simulation and design optimization.

  14. The underestimated potential of solar energy to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  15. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  16. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Astrophysics Data System (ADS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-04-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  17. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less

  18. Tier-scalable reconnaissance: the future in autonomous C4ISR systems has arrived: progress towards an outdoor testbed

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.

    2017-05-01

    Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. Inmore » September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.« less

  20. Deployable wing model considering structural flexibility and aerodynamic unsteadiness for deployment system design

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro

    2017-11-01

    In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.

  1. The Future Nuclear Arms Control Agenda and Its Potential Implications for the Air Force

    DTIC Science & Technology

    2015-08-01

    triad of delivery systems will need to be replaced. Nuclear warhead life-cycle extension also will need to continue, assuming it remains too difficult...U.S. and Russian strategic nuclear forces. Thus, formal U.S.-Russian arms control negotiations for strategic nuclear systems will almost certainly...reductions in numbers of deployed systems to a more far-reaching agreement that would begin a process of verified elimination of nuclear warheads. The

  2. Adaptable, Deployable Entry and Placement Technology (ADEPT) for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Wercinski, P.; Venkatapathy, E.; Gage, P.; Prabhu, D.; Smith, B.; Cassell, A.; Yount, B.; Allen, G.

    2013-01-01

    The concept of a mechanically deploy- able hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets.

  3. The future of transportation starts here

    DOT National Transportation Integrated Search

    1998-05-01

    The report provides the U.S. DOT Intelligent Transportation Systems deployment community with information describing transportation investment decision-making at the state and local level and specific insight into the ITS deployment opportunities and...

  4. Role of Lidar Technology in Future NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2008-01-01

    The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

  5. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar sail missions for such composite boom systems are already under consideration and development at NASA, as well as mission studies that will benefit from planned scaled-up versions of the composite boom technologies to be introduced. The paper presents ongoing research and development of thin-shell rollable composite booms designed under the particular stringent and challenging system requirements of relatively large solar sails housed on small satellites. These requirements will be derived and listed. Several new boom concepts are proposed and other existing ones are improved upon using thin-ply composite materials to yield unprecedented compact deployable structures. Some of these booms are shown in Fig. 1. For every boom to be introduced the scalable fabrication process developed to keep the overall boom system cost down will be shown. Finally, the initial results of purposely designed boom structural characterization test methods with gravity off-loading will be presented to compare their structural performance under expected and general load cases.

  6. Integrating distributed multimedia systems and interactive television networks

    NASA Astrophysics Data System (ADS)

    Shvartsman, Alex A.

    1996-01-01

    Recent advances in networks, storage and video delivery systems are about to make commercial deployment of interactive multimedia services over digital television networks a reality. The emerging components individually have the potential to satisfy the technical requirements in the near future. However, no single vendor is offering a complete end-to-end commercially-deployable and scalable interactive multimedia applications systems over digital/analog television systems. Integrating a large set of maturing sub-assemblies and interactive multimedia applications is a major task in deploying such systems. Here we deal with integration issues, requirements and trade-offs in building delivery platforms and applications for interactive television services. Such integration efforts must overcome lack of standards, and deal with unpredictable development cycles and quality problems of leading- edge technology. There are also the conflicting goals of optimizing systems for video delivery while enabling highly interactive distributed applications. It is becoming possible to deliver continuous video streams from specific sources, but it is difficult and expensive to provide the ability to rapidly switch among multiple sources of video and data. Finally, there is the ever- present challenge of integrating and deploying expensive systems whose scalability and extensibility is limited, while ensuring some resiliency in the face of inevitable changes. This proceedings version of the paper is an extended abstract.

  7. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adversemore » environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.« less

  8. Medical Informatics Education & Research in Greece.

    PubMed

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  9. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  10. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  11. Economic viability of photovoltaic power for development assistance applications

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  12. Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1974-01-01

    A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.

  13. Physical training, smoking, and injury during deployment: a comparison of men and women in the US Army.

    PubMed

    Anderson, Morgan K; Grier, Tyson; Canham-Chervak, Michelle; Bushman, Timothy T; Jones, Bruce H

    2015-01-01

    To investigate changes in physical training (PT), fitness, and injury during deployment and identify differences between men and women. Data were collected on male and female US Army Soldiers through self-reported surveys completed before and after deployment to Afghanistan. Changes in physical training activities, physical fitness, injury incidence, BMI, and smoking status were analyzed. Descriptive statistics were used to compare before deployment and deployment results and differences between men and women. Surveys were completed by 727 men and 43 women. The percentage of Soldiers engaging in unit PT running of 5 miles or more per week decreased by almost half for men and women. The percentage of Soldiers doing personal PT running of 5 miles or more per week and engaged in resistance training 3 or more days per week more than doubled for men and women during deployment. Cardiorespiratory endurance for women improved by 50 seconds (P=.06) and for men declined by 29 seconds (P<.01), while muscular endurance increased by 0.6 repetitions (P<.01) during deployment. Injury rates for men decreased, on average, 36.2 to 19.0 injuries per 1,000 Soldiers per month (P=.01). Injury rates for women decreased on average from 42.6 to 14.0 injuries per 1,000 Soldiers per month (P=.02). During deployment, BMI did not change for men or women and smoking increased 19% for men (P<.01), but did not increase for women. Comparisons of physical training activities and health behavior among men and women before and during deployment suggests that increased resistance training could be recommended for women and smoking cessation for men. Given the potentially important role of personal PT in maintaining physical fitness in the deployment environment, future work should support provision of the necessary environment and equipment for Soldiers to perform personal PT effectively and safely on their own. Further, the physical training gaps between men and women should be addressed, with suggestions regarding where improvements can be made, especially for women interested in seeking combat positions with high physical demands.

  14. A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.

  15. Expanding the role of the nurse practitioner in the deployed setting.

    PubMed

    Dargis, Julie; Horne, Theresa; Tillman-Ortiz, Sophie; Scherr, Diane; Yackel, Edward E

    2006-08-01

    Today's military is experiencing rapid advances in technology and in manpower utilization. The Army Medical Department is redesigning the structure and function of deployable hospital systems as part of this effort. The transformation of deployable hospital systems requires that a critical analysis of manpower utilization be undertaken to optimize the employment of soldier-medics. The objective of this article was to describe the use of nurse practitioners as primary care providers during deployment. The lived experiences of five nurse practitioners deployed to Operation Iraqi Freedom are presented. Data gathered during the deployment and an analysis of the literature clearly support expanded and legitimized roles for these health care professionals in future conflicts and peacekeeping operations.

  16. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

    PubMed Central

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  17. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.

    PubMed

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-06-07

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.

  18. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  19. Geospatial Analysis of Near-Term Technical Potential of BECCS in the U.S.

    NASA Astrophysics Data System (ADS)

    Baik, E.; Sanchez, D.; Turner, P. A.; Mach, K. J.; Field, C. B.; Benson, S. M.

    2017-12-01

    Atmospheric carbon dioxide (CO2) removal using bioenergy with carbon capture and storage (BECCS) is crucial for achieving stringent climate change mitigation targets. To date, previous work discussing the feasibility of BECCS has largely focused on land availability and bioenergy potential, while CCS components - including capacity, injectivity, and location of potential storage sites - have not been thoroughly considered in the context of BECCS. A high-resolution geospatial analysis of both biomass production and potential geologic storage sites is conducted to consider the near-term deployment potential of BECCS in the U.S. The analysis quantifies the overlap between the biomass resource and CO2 storage locations within the context of storage capacity and injectivity. This analysis leverages county-level biomass production data from the U.S. Department of Energy's Billion Ton Report alongside potential CO2 geologic storage sites as provided by the USGS Assessment of Geologic Carbon Dioxide Storage Resources. Various types of lignocellulosic biomass (agricultural residues, dedicated energy crops, and woody biomass) result in a potential 370-400 Mt CO2 /yr of negative emissions in 2020. Of that CO2, only 30-31% of the produced biomass (110-120 Mt CO2 /yr) is co-located with a potential storage site. While large potential exists, there would need to be more than 250 50-MW biomass power plants fitted with CCS to capture all the co-located CO2 capacity in 2020. Neither absolute injectivity nor absolute storage capacity is likely to limit BECCS, but the results show regional capacity and injectivity constraints in the U.S. that had not been identified in previous BECCS analysis studies. The state of Illinois, the Gulf region, and western North Dakota emerge as the best locations for near-term deployment of BECCS with abundant biomass, sufficient storage capacity and injectivity, and the co-location of the two resources. Future studies assessing BECCS potential should employ higher-resolution spatial datasets to identify near-term deployment opportunities, explicitly including the availability of co-located storage, regional capacity limitations, and integration of electricity produced with BECCS into local electricity grids.

  20. Estimating the Economic Potential of Offshore Wind in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, P.; Musial, W.; Smith, A.

    The potential for cost reduction and market deployment for offshore wind varies considerably within the United States. This analysis estimates the future economic viability of offshore wind at more than 7,000 sites under a variety of electric sector and cost reduction scenarios. Identifying the economic potential of offshore wind at a high geospatial resolution can capture the significant variation in local offshore resource quality, costs, and revenue potential. In estimating economic potential, this article applies a method initially developed in Brown et al. (2015) to offshore wind and estimates the sensitivity of results under a variety of most likely electricmore » sector scenarios. For the purposes of this analysis, a theoretical framework is developed introducing a novel offshore resource classification system that is analogous to established resource classifications from the oil and gas sector. Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The results of this analysis are intended to inform the development of the U.S. Department of Energy's offshore wind strategy.« less

  1. Efficacy of critical incident monitoring for evaluating disaster medical readiness and response during the Sydney 2000 Olympic Games.

    PubMed

    Flabouris, Arthas; Nocera, Antony; Garner, Alan

    2004-01-01

    Multiple casualty incidents (MCI) are infrequent events for medical systems. This renders audit and quality improvement of the medical responses difficult. Quality tools and use of such tools for improvement is necessary to ensure that the design of medical systems facilitates the best possible response to MCI. To describe the utility of incident reporting as a quality monitoring and improvement tool during the deployment of medical teams for mass gatherings and multiple casualty incidents. Voluntary and confidential reporting of incidents was provided by members of the disaster medical response teams during the period of disaster medical team deployment for the 2000 Sydney Olympic Games. Qualitative evaluations were conducted of reported incidents. The main outcome measures included the nature of incident and associated contributing factors, minimization factors, harm potential, and comparison with the post-deployment, cold debriefings. A total of 53 incidents were reported. Management-based decisions, poor or non-existent protocols, and equipment and communication-related issues were the principal contributing factors. Eighty nine percent of the incidents were considered preventable. A potential for harm to patients and/or team members was documented in 58% of reports, of which 76% were likely to cause at least significant harm. Of equipment incidents, personal protective equipment (33%), medical equipment (27%), provision of equipment (22%), and communication equipment (17%) predominated. Personal protective equipment (50%) was reported as the most frequent occupational health and safety incident followed by fatigue (25%). Pre-deployment planning was the most important factor for future incident impact minimization. Incident monitoring was efficacious as a quality tool in identifying incident contributing factors. Incident monitoring allowed for greater systems evaluation. Further evaluation of this quality tool within different disaster settings is required.

  2. Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-05-01

    In this paper, we consider the potential of data-transmission in a system with a massive number of radiating and sensing elements, thought of as a contiguous surface of electromagnetically active material. We refer to this as a large intelligent surface (LIS). The "LIS" is a newly proposed concept, which conceptually goes beyond contemporary massive MIMO technology, that arises from our vision of a future where man-made structures are electronically active with integrated electronics and wireless communication making the entire environment "intelligent". We consider capacities of single-antenna autonomous terminals communicating to the LIS where the entire surface is used as a receiving antenna array. Under the condition that the surface-area is sufficiently large, the received signal after a matched-filtering (MF) operation can be closely approximated by a sinc-function-like intersymbol interference (ISI) channel. We analyze the capacity per square meter (m^2) deployed surface, \\hat{C}, that is achievable for a fixed transmit power per volume-unit, \\hat{P}. Moreover, we also show that the number of independent signal dimensions per m deployed surface is 2/\\lambda for one-dimensional terminal-deployment, and \\pi/\\lambda^2 per m^2 for two and three dimensional terminal-deployments. Lastly, we consider implementations of the LIS in the form of a grid of conventional antenna elements and show that, the sampling lattice that minimizes the surface-area of the LIS and simultaneously obtains one signal space dimension for every spent antenna is the hexagonal lattice. We extensively discuss the design of the state-of-the-art low-complexity channel shortening (CS) demodulator for data-transmission with the LIS.

  3. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    PubMed Central

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  4. Experiences of engineering Grid-based medical software.

    PubMed

    Estrella, F; Hauer, T; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T

    2007-08-01

    Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading to a set of recommendations from the delivery of the first deployed Grid-based medical imaging application. We report critically on the application of software engineering techniques in the specification and implementation of the MammoGrid project and show that use-case modelling is a suitable vehicle for representing medical requirements and for communicating effectively with the clinical community. This paper also discusses the practical advantages and limitations of applying the Grid to real-life clinical applications and presents the consequent lessons learned. The work presented in this paper demonstrates that given suitable commitment from collaborating radiologists it is practical to deploy in practice medical imaging analysis applications using the Grid but that standardization in and stability of the Grid software is a necessary pre-requisite for successful healthgrids. The MammoGrid prototype has therefore paved the way for further advanced Grid-based deployments in the medical and biomedical domains.

  5. Potential climatic impacts and reliability of large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    Wang, Chien; Prinn, Ronald G.

    2011-04-01

    The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.

  6. Space Situational Awareness of Large Numbers of Payloads From a Single Deployment

    NASA Astrophysics Data System (ADS)

    Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.

    2014-09-01

    The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft, examining current methods. Potential new approaches are discussed, including simulations to evaluate their utility. Acknowledgement: This work was supported by the Office of the Assistant Secretary of Defense for R&E, via the Data-to-Decisions program.

  7. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Monty

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whalesmore » in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.« less

  8. Safety pilot model deployment : lessons learned and recommendations for future connected vehicle activities.

    DOT National Transportation Integrated Search

    2015-09-01

    The Connected Vehicle Safety Pilot was a research program that demonstrated the readiness of DSRC-based connected vehicle safety applications for nationwide deployment. The vision of the Connected Vehicle Safety Pilot Program was to test connected ve...

  9. Cascadia Initiative Ocean Bottom Seismograph Performance

    NASA Astrophysics Data System (ADS)

    Evers, B.; Aderhold, K.

    2017-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) provided instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigated geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marked the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments featured trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Station instrumentation included weak and strong motion seismometers, differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments is available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date, encompassing a diverse technical implementation and demonstrating an effective structure for community experiments. Thus, the results from Cascadia serve as both a technical and operational resource for the development of future community experiments, such as might be contemplated as part of the SZ4D Initiative. To guide future efforts, we investigate and summarize the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse deployment to explore other environmental and configuration factors that can impact sensor and network performance and inform the design of future deployments.

  10. Salvaging of the Final SSMIS Flight Unit for a Future Flight-of-Opportunity

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Boucher, D. J., Jr.; Park, E. S.; Swadley, S. D.; Poe, G.

    2017-12-01

    The final Special Sensor Microwave Imager/Sounder (SSMIS) that was originally manifested aboard the DMSP F-20 platform became available when that mission was deactivated. The U.S. Naval Research Laboratory and The Aerospace Corporation have secured the de-manifested SSMIS for potential flight on a future mission-of-opportunity. A number of mission options are under consideration, including installation aboard the International Space Station. The intent is for any such deployment to provide a measure of continuity between SSMIS units currently operating aboard DMSP F-16, F-17, and F-18 and whatever equivalent sensor may be selected for the next-generation DoD Weather Satellite Follow-on program. We will describe the current status of SSMIS preparations for flight.

  11. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens

    PubMed Central

    Rey, Jean-François; Barrett, Luke G.; Thrall, Peter H.

    2018-01-01

    Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. PMID:29649208

  12. FeatherSail - Design, Development and Future Impact

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Scheierl, J. M.

    2010-01-01

    To the present day, the idea of using solar sails for space propulsion is still just a concept, but one that provides a great potential for future space exploration missions. Several notable solar propulsion missions and experiments have been performed and more are still in the development stage. Solar Sailing is a method of space flight propulsion, which utilizes the light photons to propel spacecrafts through the vacuum of space. This concept will be tested in the near future with the launch of the NanoSail-D satellite. NanoSail-D is a nano-class satellite, <10kg, which will deploy a thin lightweight sheet of reflective material used to propel the satellite in its low earth orbit. Using the features of the NanoSail-D architecture, a second-generation solar sail design concept, dubbed FeatherSail, has been developed. The goal of the FeatherSail project is to create a sail vehicle with the ability to provide steering from the sails and increase the areal density. The FeatherSail design will utilize the NanoSail-D based extendable boom technology with only one sail on each set of booms. This design also allows each of the four sails to feather as much as ninety degrees. The FeatherSail concept uses deployable solar arrays to generate the power necessary for deep space missions. In addition, recent developments in low power, low temperature Silicon-Germanium electronics provide the capability for long duration deep space missions. It is envisioned that the FeatherSail conceptual design will provide the impetus for future sail vehicles, which may someday visit distant places that mankind has only observed.

  13. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  14. ADEPT - A Mechanically Deployable Entry System Technology in Development at NASA

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Wercinski, Paul; Cassell, Alan; Smith, Brandon; Yount, Bryan

    2016-01-01

    The proposed presentation will give an overview of a mechanically deployable entry system concept development with a comprehensive summary of the ground tests and design development completed to-date, and current plans for a small-scale flight test in the near future.

  15. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities.

    PubMed

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-06-29

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  16. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities

    PubMed Central

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-01-01

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds. PMID:27367695

  17. Development of Novel Integrated Antennas for CubeSats

    NASA Technical Reports Server (NTRS)

    Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.

  18. The impact of parental deployment to war on children: the crucial role of parenting.

    PubMed

    Gewirtz, Abigail H; Zamirt, Osnat

    2014-01-01

    It is estimated that approximately 2 million children have been affected by military deployment, yet much of what is known about the adjustment of children experiencing a parent's combat deployment has emerged only within the past 5-10 years. The extant literature on associations of parental deployment and children's adjustment is briefly reviewed by child's developmental stage. Applying a family stress model to the literature, we propose that the impact of parental deployment and reintegration on children's adjustment is largely mediated by parenting practices. Extensive developmental literature has demonstrated the importance of parenting for children's resilience in adverse contexts more generally, but not specifically in deployment contexts. We review the sparse literature on parenting in deployed families as well as emerging data on empirically supported parenting interventions for military families. An agenda for future research in this area is proffered.

  19. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  20. Expert elicitation survey on future wind energy costs

    DOE PAGES

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; ...

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends - in part - on the future costs of both onshore and offshore wind. In this paper, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions bymore » 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R & D and industry strategy.« less

  1. Expert elicitation survey on future wind energy costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 andmore » 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.« less

  2. Expert elicitation survey on future wind energy costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends - in part - on the future costs of both onshore and offshore wind. In this paper, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions bymore » 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R & D and industry strategy.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  4. An Analysis of the Deployment of the 235th Aviation Company (Attack Helicopter)

    DTIC Science & Technology

    1977-07-01

    moves. Possible additional economies in future deployments of this nature are discussed in subsequent portions of this analysis. b. For this...tubes with water and clean the area in and around the horns with O-D-406, or equivalent, disinfectant- deodorant solution. f. Lock cyclic and

  5. Potentially modifiable pre-, peri-, and postdeployment characteristics associated with deployment-related posttraumatic stress disorder among ohio army national guard soldiers.

    PubMed

    Goldmann, Emily; Calabrese, Joseph R; Prescott, Marta R; Tamburrino, Marijo; Liberzon, Israel; Slembarski, Renee; Shirley, Edwin; Fine, Thomas; Goto, Toyomi; Wilson, Kimberly; Ganocy, Stephen; Chan, Philip; Serrano, Mary Beth; Sizemore, James; Galea, Sandro

    2012-02-01

    To evaluate potentially modifiable deployment characteristics-- predeployment preparedness, unit support during deployment, and postdeployment support-that may be associated with deployment-related posttraumatic stress disorder (PTSD). We recruited a sample of 2616 Ohio Army National Guard (OHARNG) soldiers and conducted structured interviews to assess traumatic event exposure and PTSD related to the soldiers' most recent deployment, consistent with DSM-IV criteria. We assessed preparedness, unit support, and postdeployment support by using multimeasure scales adapted from the Deployment Risk and Resilience Survey. The prevalence of deployment-related PTSD was 9.6%. In adjusted logistic models, high levels of all three deployment characteristics (compared with low) were independently associated with lower odds of PTSD. When we evaluated the influence of combinations of deployment characteristics on the development of PTSD, we found that postdeployment support was an essential factor in the prevention of PTSD. Results show that factors throughout the life course of deployment-in particular, postdeployment support-may influence the development of PTSD. These results suggest that the development of suitable postdeployment support opportunities may be centrally important in mitigating the psychological consequences of war. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States

    PubMed Central

    Baik, Ejeong; Turner, Peter A.; Mach, Katharine J.; Field, Christopher B.; Benson, Sally M.

    2018-01-01

    Bioenergy with carbon capture and storage (BECCS) is a negative-emissions technology that may play a crucial role in climate change mitigation. BECCS relies on the capture and sequestration of carbon dioxide (CO2) following bioenergy production to remove and reliably sequester atmospheric CO2. Previous BECCS deployment assessments have largely overlooked the potential lack of spatial colocation of suitable storage basins and biomass availability, in the absence of long-distance biomass and CO2 transport. These conditions could constrain the near-term technical deployment potential of BECCS due to social and economic barriers that exist for biomass and CO2 transport. This study leverages biomass production data and site-specific injection and storage capacity estimates at high spatial resolution to assess the near-term deployment opportunities for BECCS in the United States. If the total biomass resource available in the United States was mobilized for BECCS, an estimated 370 Mt CO2⋅y−1 of negative emissions could be supplied in 2020. However, the absence of long-distance biomass and CO2 transport, as well as limitations imposed by unsuitable regional storage and injection capacities, collectively decrease the technical potential of negative emissions to 100 Mt CO2⋅y−1. Meeting this technical potential may require large-scale deployment of BECCS technology in more than 1,000 counties, as well as widespread deployment of dedicated energy crops. Specifically, the Illinois basin, Gulf region, and western North Dakota have the greatest potential for near-term BECCS deployment. High-resolution spatial assessment as conducted in this study can inform near-term opportunities that minimize social and economic barriers to BECCS deployment. PMID:29531081

  7. Technology development for deployable aerodynamic decelerators at Mars

    NASA Astrophysics Data System (ADS)

    Masciarelli, James P.

    2002-01-01

    Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa. .

  8. Technology Development for Deployable Aerodynamic Decelerators at Mars

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.

    2002-01-01

    Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa.

  9. Metrics required for Power System Resilient Operations and Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshghi, K.; Johnson, B. K.; Rieger, C. G.

    Today’s complex grid involves many interdependent systems. Various layers of hierarchical control and communication systems are coordinated, both spatially and temporally to achieve gird reliability. As new communication network based control system technologies are being deployed, the interconnected nature of these systems is becoming more complex. Deployment of smart grid concepts promises effective integration of renewable resources, especially if combined with energy storage. However, without a philosophical focus on resilience, a smart grid will potentially lead to higher magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure depends upon its ability to anticipate, absorb, adapt to, and/ormore » rapidly recover from a potentially catastrophic event. Future system operations can be enhanced with a resilient philosophy through architecting the complexity with state awareness metrics that recognize changing system conditions and provide for an agile and adaptive response. The starting point for metrics lies in first understanding the attributes of performance that will be qualified. In this paper, we will overview those attributes and describe how they will be characterized by designing a distributed agent that can be applied to the power grid.« less

  10. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    PubMed Central

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences.— Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world.The future trajectory of the GSB project is also briefly considered. PMID:22419984

  11. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project.

    PubMed

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-04-06

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: - Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.- Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.- Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences.- Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world.The future trajectory of the GSB project is also briefly considered.

  12. Current and Future Constraints on Primordial Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sutton, Dylan R.; Feng, Chang; Reichardt, Christian L.

    2017-09-01

    We present new limits on the amplitude of potential primordial magnetic fields (PMFs) using temperature and polarization measurements of the cosmic microwave background (CMB) from Planck, the BICEP2/Keck Array, Polarbear, and SPTpol. We reduce twofold the 95% confidence upper limit on the CMB anisotropy power due to a nearly scale-invariant PMF, with an allowed B-mode power at ℓ = 1500 of {D}{\\ell =1500}{BB}< 0.071 μ {K}2 for Planck versus {D}{\\ell =1500}{BB}< 0.034 μ {K}2 for the combined data set. We also forecast the expected limits from soon-to-deploy CMB experiments (like SPT-3G, Adv. ACTpol, or the Simons Array) and the proposed CMB-S4 experiment. Future CMB experiments should dramatically reduce the current uncertainties by one order of magnitude for the near-term experiments and two orders of magnitude for the CMB-S4 experiment. The constraints from CMB-S4 have the potential to rule out much of the parameter space for PMFs.

  13. Background estimation of cosmic-ray induced neutrons in Chooz site water veto tank for possible future Ricochet Deployment

    NASA Astrophysics Data System (ADS)

    Silva, James

    2017-09-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.

  14. Iran’s Nuclear Future: Critical U.S. Policy Choices

    DTIC Science & Technology

    2011-01-01

    embargo as an act of war, and it could respond by attempting to close the Strait of Hormuz, using mines , antiship cruise missiles, or fast patrol boats...even it means we have to compromise on sovereignty by having U.S. troops deployed here” (quoted in Barbara Opall -Rome, “U.S. to Deploy Radar, Troops...2009. As of January 13, 2011: http://handle.dtic.mil/100.2/ADA510110 Opall -Rome, Barbara, “U.S. to Deploy Radar, Troops in Israel,” Defense News, August

  15. The Deployment Life Study: Longitudinal Analysis of Military Families Across the Deployment Cycle

    DTIC Science & Technology

    2016-01-01

    psychological and physical aggression than they reported prior to the deployment. 1 H. Fischer, A Guide to U.S. Military Casualty Statistics ...analyses include a large number of statistical tests and thus the results pre- sented in this report should be viewed in terms of patterns, rather...Military Children and Families,” The Future of Children, Vol. 23, No. 2, 2013, pp. 13–39. Fischer, H., A Guide to U.S. Military Casualty Statistics

  16. Chronic Left Lower Lobe Pulmonary Infiltrates During Military Deployment.

    PubMed

    Hunninghake, John C; Skabelund, Andrew J; Morris, Michael J

    2016-08-01

    Deployment to Southwest Asia is associated with increased airborne hazards such as geologic dusts, burn pit smoke, vehicle exhaust, or air pollution. There are numerous ongoing studies to evaluate the potential effects of inhaled particulate matter on reported increases in acute and chronic respiratory symptoms. Providers need to be aware of potential causes of pulmonary disease such as acute eosinophilic pneumonia, asthma, and vocal cord dysfunction that have been associated with deployment. Other pulmonary disorders such as interstitial lung disease are infrequently reported. Not all deployment-related respiratory complaints may result from deployment airborne hazards and a broad differential should be considered. We present the case of a military member with a prolonged deployment found to have lobar infiltrates secondary to pulmonary vein stenosis from treatment for atrial fibrillation. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  17. Analysis of the Lenticular Jointed MARSIS Antenna Deployment

    NASA Technical Reports Server (NTRS)

    Mobrem, Mehran; Adams, Douglas S.

    2006-01-01

    This paper summarizes important milestones in a yearlong comprehensive effort which culminated in successful deployments of the MARSIS antenna booms in May and June of 2005. Experimentally measured straight section and hinge properties are incorporated into specialized modeling techniques that are used to simulate the boom lenticular joints. System level models are exercised to understand the boom deployment dynamics and spacecraft level implications. Discussion includes a comparison of ADAMS simulation results to measured flight data taken during the three boom deployments. Important parameters that govern lenticular joint behavior are outlined and a short summary of lessons learned and recommendations is included to better understand future applications of this technology.

  18. Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-01-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  19. Chemosterilants for Control of Insects and Insect Vectors of Disease.

    PubMed

    Baxter, Richard H G

    2016-10-01

    Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.

  20. Run control techniques for the Fermilab DART data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-10-01

    DART is the high speed, Unix based data acquisition system being developed by the Fermilab Computing Division in collaboration with eight High Energy Physics Experiments. This paper describes DART run-control which implements flexible, distributed, extensible and portable paradigms for the control and monitoring of data acquisition systems. We discuss the unique and interesting aspects of the run-control - why we chose the concepts we did, the benefits we have seen from the choices we made, as well as our experiences in deploying and supporting it for experiments during their commissioning and sub-system testing phases. We emphasize the software and techniquesmore » we believe are extensible to future use, and potential future modifications and extensions for those we feel are not.« less

  1. Development of a Device to Deploy Fluid Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; Chai, An-Ti

    1997-01-01

    A free-floating droplet in microgravity is ideal for scientific observation since it is free of confounding factors such as wetting and nonsymmetrical heat transfer introduced by contact with surfaces. However, the technology to reliably deploy in microgravity has not yet been developed. In some recent fluid deployment experiments, droplets are either shaken off the dispenser or the dispenser is quickly retracted from the droplet. These solutions impart random residual motion to deployed droplet, which can be undesirable for certain investigations. In the present study, two new types of droplet injectors were built and tested. Testing of the droplet injectors consisted of neutral buoyancy tank tests, 5-sec drop tower tests at the NASA Lewis Zero Gravity Facility, and DC-9 tests. One type, the concentric injector, worked well in the neutral buoyancy tank but did not do well in low-gravity. However, it appeared that it makes a fine apparatus for constructing bubbles in low-gravity conditions. The other type, the T-injector, showed the most promise for future development. In both neutral buoyancy and DC-9 tests, water droplets were formed and deployed with some control and repeatability, although in low-gravity the residual velocities were higher than desirable. Based on our observations, further refinements are suggested for future development work.

  2. Deployment Effects of Marin Renewable Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty.more » In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.« less

  3. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Vavrin, A. B.; Manis, A. P.

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.

  4. Readiness: observations and comments from a medical team deployment.

    PubMed

    Popper, S E; Noble, D E; Mason, L J; Schaffer, L A; Glover, J G; Barkley, M S

    1997-02-01

    The evolving strategy of the United States in dealing with the changing world order calls for a force structure capable of fighting and winning two nearly simultaneous major regional conflicts and conducting a range of other military operations. Readiness is a key factor in this new strategy. Consequently, major paradigm shifts are occurring within the Air Force Medical Service. Maintaining current and accurate medical records on personnel to meet deployment requirements is a significant challenge. Historically, time and resources are consumed determining the deployability of troops prior to a deployment. This adds to the cost of doing business and increases the time required to clear the deploying team, even though there is an established process to avoid these very problems. The experience of a recent medical team deployment to Bosnia is discussed. Future directions given the implementation of TRI-CARE, the Preventive Health Assessment Program, and the Strategic Health Resourcing Plan are also considered.

  5. Deployment-Related Benefit Finding and Postdeployment Marital Satisfaction in Military Couples.

    PubMed

    Renshaw, Keith D; Campbell, Sarah B

    2017-12-01

    Extensive research has evaluated potential negative effects of military deployments on romantic relationships. Comparatively few studies have examined potential positive effects of such deployments. In stressful situations, benefit finding (BF) has been found to be linked with better functioning on both individual and interpersonal levels. This study reports on deployment-related BF in a sample of 67 male service members (SMs) who deployed at least once since 9/11/2001 and their wives. Couples completed measures of marital satisfaction at baseline (an average of 1 year postdeployment) and follow-up 4-6 months later. At follow-up, SMs also provided data on symptoms of posttraumatic stress, and both partners provided reports of deployment-related BF. Multivariate path analysis controlling for SMs' PTSD symptom severity revealed that wives' BF was positively associated with increases in SMs' relationship satisfaction. These findings suggest that wives' responses to deployment may be more influential than SMs' responses to deployment on military couples' relationships. This pattern indicates that support for spouses during deployments is essential; furthermore, such support should include an emphasis on trying to facilitate personal growth in spouses. © 2016 Family Process Institute.

  6. Effects of combat deployment on risky and self-destructive behavior among active duty military personnel.

    PubMed

    Thomsen, Cynthia J; Stander, Valerie A; McWhorter, Stephanie K; Rabenhorst, Mandy M; Milner, Joel S

    2011-10-01

    Although research has documented negative effects of combat deployment on mental health, few studies have examined whether deployment increases risky or self-destructive behavior. The present study addressed this issue. In addition, we examined whether deployment effects on risky behavior varied depending on history of pre-deployment risky behavior, and assessed whether psychiatric conditions mediated effects of deployment on risky behavior. In an anonymous survey, active duty members of the U.S. Marine Corps and U.S. Navy (N = 2116) described their deployment experiences and their participation in risky recreational activities, unprotected sex, illegal drug use, self-injurious behavior, and suicide attempts during three time frames (civilian, military pre-deployment, and military post-deployment). Respondents also reported whether they had problems with depression, anxiety, or PTSD during the same three time frames. Results revealed that risky behavior was much more common in civilian than in military life, with personnel who had not deployed, compared to those who had deployed, reporting more risky behavior and more psychiatric problems as civilians. For the current time period, in contrast, personnel who had deployed (versus never deployed) were significantly more likely to report both risky behavior and psychiatric problems. Importantly, deployment was associated with increases in risky behavior only for personnel with a pre-deployment history of engaging in risky behavior. Although psychiatric conditions were associated with higher levels of risky behavior, psychiatric problems did not mediate associations between deployment and risky behavior. Implications for understanding effects of combat deployment on active duty personnel and directions for future research are discussed. Published by Elsevier Ltd.

  7. The investigation of using 5G millimeter-wave communications links for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Han, Congzheng

    2017-04-01

    There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.

  8. Utility of the Department of Defense Serum Repository in Assessing Deployment Exposure.

    PubMed

    Lushniak, Boris; Mallon, Col Timothy M; Gaydos, Joel C; Smith, David J

    2016-08-01

    This paper describes why the research project was conducted in terms of demonstrating the utility of the Department of Defense Serum Repository in addressing deployment environmental exposures. The history deployment exposure surveillance was reviewed and the rationale for developing validated biomarkers that were detected in sera in postdeployment samples and compared with nondeployed controls was described. The goal was to find validated biomarkers that are associated with both exposures and health outcomes. The articles in this supplement described novel serum biomarkers that were found to be associated with deployment exposures and weakly associated with some health outcomes. Future research must continue to validate the use of serum biomarkers when operational contingencies prevent the gold standard collection of real-time breathing zone samples in deployed service members.

  9. The role of postdeployment social factors in linking deployment experiences and current posttraumatic stress disorder symptomatology among male and female veterans.

    PubMed

    Smith, Brian N; Wang, Joyce M; Vaughn-Coaxum, Rachel A; Di Leone, Brooke A L; Vogt, Dawne

    2017-01-01

    The postdeployment social context is likely highly salient in explaining mental health symptoms following deployment. The aim of this study was to examine the role of postdeployment social factors (social support and social reintegration difficulty) in linking deployment-related experiences (warfare exposure, sexual harassment, concerns about relationship disruptions, and deployment social support) and posttraumatic stress disorder (PTSD) symptomatology in male and female veterans. A survey was administered to 998 potential participants (after accounting for undeliverable mail) who had returned from deployment to Afghanistan or Iraq. Completed surveys were received from 469 veterans, yielding a response rate of 47%. Hypotheses were examined using structural equation modeling. For male and female veterans, deployment factors predicted later PTSD symptoms through postdeployment social support and social reintegration, with lower support and higher social reintegration difficulty both associated with higher PTSD symptomatology. While the final models for women and men indicated similar risk mechanisms, some differences in pathways were observed. Sexual harassment presented more of a risk for women, whereas lower social support was a greater risk factor for men. Postdeployment social factors appear to represent potentially important targets for interventions aiming to reduce the potential impact of stressful deployment experiences.

  10. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  11. NASA RPS Program Overview: A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Sutliff, Thomas J.; Sandifer, Carl E., II; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  12. End-user perspective of low-cost sensors for outdoor air pollution monitoring.

    PubMed

    Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David

    2017-12-31

    Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The economics and ethics of aerosol geoengineering strategies

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with the rate of change. Second, the relative contribution of aerosol geoengineering to an economically optimal portfolio hinges critically on deeply uncertain estimates of the damages due to aerosol forcing. Even if we assume that aerosol forcing could be deployed continuously, the aerosol geoengineering does not considerably displace the reduction of greenhouse gas emissions in the simple economic optimal growth model until the damages due to the aerosol forcing are rather low. Third, deploying aerosol geoengineering may also fail an ethical test regarding issues of intergenerational justice. Substituting aerosol geoengineering for reducing greenhouse gas emissions constitutes a conscious risk transfer to future generations, for example due to the increased risk of future abrupt climate change. This risk transfer is in tension with the requirement of intergenerational justice that present generations should not create benefits for themselves in exchange for burdens on future generations.

  14. Deployment cycle stressors and post-traumatic stress symptoms in Army National Guard women: the mediating effect of resilience.

    PubMed

    Wooten, Nikki R

    2012-01-01

    This study examined the associations between deployment cycle stressors, post-traumatic stress symptoms (PTSS), and resilience in Army National Guard (ARNG) women deployed to Operations Enduring Freedom and Iraqi Freedom. Resilience was also tested as a mediator. Hierarchical linear regression indicated that deployment and post-deployment stressors were positively associated, and resilience was negatively associated with PTSS. Resilience fully mediated the association between post-deployment stressors and PTSS. Findings suggest assessing deployment and post-deployment stressors in ARNG women may be helpful in identifying those at risk for severe PTSS; and highlight the potential of individual-level resilient characteristics in mitigating the adverse impact of post-deployment stressors.

  15. Advanced situation awareness with localised environmental community observatories in the Future Internet

    NASA Astrophysics Data System (ADS)

    Sabeur, Z. A.; Denis, H.; Nativi, S.

    2012-04-01

    The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other domains and scenarios concerning smart and safe living in the Future Internet.

  16. Missile defense and strategic stability: Terminal High Altitude Area Defense (THAAD) in South Korea

    DOE PAGES

    Sankaran, Jaganath; Fearey, Bryan L.

    2017-02-06

    South Korea is threatened by its troubled relationship with North Korea. North Korea possesses a large cache of missiles as well as chemical and biological weapons, and the future potential to mount nuclear weapons on its missiles. The United States is also challenged because of its defense commitments to Seoul. As a countermeasure, the United States and South Korea decided to deploy Terminal High Altitude Area Defense (THAAD) missile defenses in South Korea. However, China has objected. Chinese scholars believe the THAAD radar would be able to track Chinese inter-continental ballistic missiles, thereby weakening their deterrent. A technical analysis doesmore » not support this assertion. But, it is vital for South Korea, given its proximity and economic interdependence, to reassure China. The United States Forces Korea will deploy THAD and that is not a commitment by Seoul to become part of U.S.-led missile defenses in the Asia-Pacific.« less

  17. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    NASA Astrophysics Data System (ADS)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  18. The Crisis Map of the Czech Republic: the nationwide deployment of an Ushahidi application for disasters.

    PubMed

    Pánek, Jiří; Marek, Lukáš; Pászto, Vít; Valůch, Jaroslav

    2017-10-01

    Crisis mapping is a legitimate component of both crisis informatics and disaster risk management. It has become an effective tool for humanitarian workers, especially after the earthquake in Haiti in 2010. Ushahidi is among the many mapping platforms on offer in the growing field of crisis mapping, and involves the application of crowdsourcing to create online and interactive maps of areas in turmoil. This paper presents the Crisis Map of the Czech Republic, which is the first such instrument to be deployed nationwide in Central Europe. It describes the methodologies used in the preparatory work phase and details some practices identified during the creation and actual employment of the map. In addition, the paper assesses its structure and technological architecture, as well as its potential possible development in the future. Lastly, it evaluates the utilisation of the Crisis Map during the floods in the Czech Republic in 2013. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  19. Missile defense and strategic stability: Terminal High Altitude Area Defense (THAAD) in South Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, Jaganath; Fearey, Bryan L.

    South Korea is threatened by its troubled relationship with North Korea. North Korea possesses a large cache of missiles as well as chemical and biological weapons, and the future potential to mount nuclear weapons on its missiles. The United States is also challenged because of its defense commitments to Seoul. As a countermeasure, the United States and South Korea decided to deploy Terminal High Altitude Area Defense (THAAD) missile defenses in South Korea. However, China has objected. Chinese scholars believe the THAAD radar would be able to track Chinese inter-continental ballistic missiles, thereby weakening their deterrent. A technical analysis doesmore » not support this assertion. But, it is vital for South Korea, given its proximity and economic interdependence, to reassure China. The United States Forces Korea will deploy THAD and that is not a commitment by Seoul to become part of U.S.-led missile defenses in the Asia-Pacific.« less

  20. Alignment and phasing of deployable telescopes

    NASA Technical Reports Server (NTRS)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  1. Mars Network: Strategies for Deploying Enabling Telecommunications Capabilities in Support of Mars Exploration

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.; Adams, J. T.; Agre, J. R.; Bell, D. J.; Clare, L. P.; Durning, J. F.; Ely, T. A.; Hemmati, H.; Leung, R. Y.; McGraw, C. A.

    2000-01-01

    The coming decade of Mars exploration will involve a diverse set of robotic science missions, including in situ and sample return investigations, and ultimately moving towards sustained robotic presence on the Martian surface. In supporting this mission set, NASA must establish a robust telecommunications architecture that meets the specific science needs of near-term missions while enabling new methods of future exploration. This paper will assess the anticipated telecommunications needs of future Mars exploration, examine specific options for deploying capabilities, and quantify the performance of these options in terms of key figures of merit.

  2. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Raghavan, Sesha; Rames, Clement

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networksmore » to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.« less

  3. Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilliestam, Johan; Barradi, Touria; Caldes, Natalia

    Concentrating solar power (CSP) is one of the few renewable electricity technologies that can offer dispatchable electricity at large scale. Thus, it may play an important role in the future, especially to balance fluctuating sources in increasingly renewables-based power systems. Today, its costs are higher than those of PV and wind power and, as most countries do not support CSP, deployment is slow. Unless the expansion gains pace and costs decrease, the industry may stagnate or collapse, and an important technology for climate change mitigation has been lost. Keeping CSP as a maturing technology for dispatchable renewable power thus requiresmore » measures to improve its short-term economic attractiveness and to continue reducing costs in the longer term. We suggest a set of three policy instruments - feed-in tariffs or auctions reflecting the value of dispatchable CSP, and not merely its cost; risk coverage support for innovative designs; and demonstration projects - to be deployed, in regions where CSP has a potentially large role to play. This could provide the CSP industry with a balance of attractive profits and competitive pressure, the incentive to expand CSP while also reducing its costs, making it ready for broad-scale deployment when it is needed.« less

  4. Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity

    DOE PAGES

    Lilliestam, Johan; Barradi, Touria; Caldes, Natalia; ...

    2018-02-16

    Concentrating solar power (CSP) is one of the few renewable electricity technologies that can offer dispatchable electricity at large scale. Thus, it may play an important role in the future, especially to balance fluctuating sources in increasingly renewables-based power systems. Today, its costs are higher than those of PV and wind power and, as most countries do not support CSP, deployment is slow. Unless the expansion gains pace and costs decrease, the industry may stagnate or collapse, and an important technology for climate change mitigation has been lost. Keeping CSP as a maturing technology for dispatchable renewable power thus requiresmore » measures to improve its short-term economic attractiveness and to continue reducing costs in the longer term. We suggest a set of three policy instruments - feed-in tariffs or auctions reflecting the value of dispatchable CSP, and not merely its cost; risk coverage support for innovative designs; and demonstration projects - to be deployed, in regions where CSP has a potentially large role to play. This could provide the CSP industry with a balance of attractive profits and competitive pressure, the incentive to expand CSP while also reducing its costs, making it ready for broad-scale deployment when it is needed.« less

  5. Preparation and characterization of triple shape memory composite foams.

    PubMed

    Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T

    2014-10-28

    Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.

  6. The Application of LiDAR to Assessment of Rooftop Solar Photovoltaic Deployment Potential in a Municipal District Unit

    PubMed Central

    Nguyen, Ha T.; Pearce, Joshua M.; Harrap, Rob; Barber, Gerald

    2012-01-01

    A methodology is provided for the application of Light Detection and Ranging (LiDAR) to automated solar photovoltaic (PV) deployment analysis on the regional scale. Challenges in urban information extraction and management for solar PV deployment assessment are determined and quantitative solutions are offered. This paper provides the following contributions: (i) a methodology that is consistent with recommendations from existing literature advocating the integration of cross-disciplinary competences in remote sensing (RS), GIS, computer vision and urban environmental studies; (ii) a robust methodology that can work with low-resolution, incomprehensive data and reconstruct vegetation and building separately, but concurrently; (iii) recommendations for future generation of software. A case study is presented as an example of the methodology. Experience from the case study such as the trade-off between time consumption and data quality are discussed to highlight a need for connectivity between demographic information, electrical engineering schemes and GIS and a typical factor of solar useful roofs extracted per method. Finally, conclusions are developed to provide a final methodology to extract the most useful information from the lowest resolution and least comprehensive data to provide solar electric assessments over large areas, which can be adapted anywhere in the world. PMID:22666044

  7. Military Service, Deployments, and Exposures in Relation to Amyotrophic Lateral Sclerosis Etiology and Survival

    PubMed Central

    Beard, John D.; Kamel, Freya

    2015-01-01

    Rates of amyotrophic lateral sclerosis (ALS) have been reported to be higher among US military veterans, who currently number more than 21 million, but the causal factor(s) has not been identified. We conducted a review to examine the weight of evidence for associations between military service, deployments, and exposures and ALS etiology and survival. Thirty articles or abstracts published through 2013 were reviewed. Although the current evidence suggests a positive association with ALS etiology, it is too limited to draw firm conclusions regarding associations between military service and ALS etiology or survival. Some evidence suggests that deployment to the 1990–1991 Persian Gulf War may be associated with ALS etiology, but there is currently no strong evidence that any particular military exposure is associated with ALS etiology. Future studies should address the limitations of previous ones, such as reliance on mortality as a surrogate for incidence, a dearth of survival analyses, lack of clinical data, low statistical power, and limited exposure assessment. The Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis (GENEVA) Study is one such study, but additional research is needed to determine whether military-related factors are associated with ALS and to assess potential prevention strategies. PMID:25365170

  8. A survey of outpatient visits in a United States Army forward unit during Operation Desert Shield.

    PubMed

    Wasserman, G M; Martin, B L; Hyams, K C; Merrill, B R; Oaks, H G; McAdoo, H A

    1997-06-01

    Reports suggest that deployed soldiers during Operations Desert Shield and Desert Storm remained healthy, but primary care data are limited. We reviewed the outpatient visit surveillance data from the 3d Armored Cavalry Regiment to obtain information regarding soldiers' health in the field. Nontraumatic orthopedic problems accounted for the highest incidence of primary health care visits, followed by unintended injuries, gastrointestinal, respiratory, and dermatologic conditions. Visits for heat injuries, sexually transmitted diseases, unexplained fever, and psychiatric problems were low, probably due to preventive measures. These results suggest that increased prevention to decrease orthopedic problems and unintended injuries may substantially reduce outpatient visits during future deployments. Medical surveillance during future deployments can be improved by taking advantage of current advances in technology to facilitate patient data retrieval and provide timely information to first- and second-echelon medical personnel.

  9. Exploring the Potential of the Massive, Open, Online Astronomy Course

    NASA Astrophysics Data System (ADS)

    Austin, Carmen; Impey, C. D.; Wenger, M.

    2014-01-01

    Astronomy: State of the Art is a massive, open, online course (MOOC) in astronomy. Course content was released weekly, over 7 weeks, in the spring of 2013. More than 10 hours of video lectures were produced and deployed along with supplementary readings, podcasts, and realtime Q&A sessions with professor Chris Impey. All content is still available online as a self-paced course. Over 5,000 students have enrolled in the course through the online course platform Udemy. This poster presents student engagement data, and a discussion of lessons learned and opportunities for future improvement.

  10. In-Space Deployable Reflectarray Antenna: Current and Future

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Knarr, Kevin; Quijano, Ubaldo; Huang, John; Thomson, Mark

    2008-01-01

    Technologies associated with a 10-m X/Ka-band dual-frequency reflectarray antenna have been developed for deep space communication applications. The first task is the development of a 3-m diameter X/Ka dual frequency reflectarray which serves as a stepping-stone to the 10-m aperture antenna. The second task is to develop a deployable frame.

  11. Children of National Guard troops: a pilot study of deployment, patriotism, and media coverage.

    PubMed

    Pfefferbaum, Betty; Jeon-Slaughter, Haekyung; Jacobs, Anne K; Houston, J Brian

    2013-01-01

    This exploratory pilot study examined the psychosocial effects of the war in Iraq, patriotism, and attention to war-related media coverage in the children of National Guard troops across phases of parental deployment--pre deployment, during deployment, and post deployment. Participants included 11 children, ages 8 to 18 years. Data collected in each deployment phase included demographics, the Behavior Assessment System for Children, (Second Edition, BASC-2), patriotism (national identity, uncritical patriotism, and constructive patriotism), and attention to war-related media coverage. School problems and emotional symptoms were significantly higher during deployment than post deployment. National identity and constructive patriotism increased and uncritical patriotism decreased post deployment from levels during deployment. Uncritical patriotism correlated positively with emotional symptoms and correlated negatively with personal adjustment. Constructive patriotism correlated positively with emotional symptoms and with internalizing problems. Greater attention to war-related media coverage correlated with uncritical patriotism, and attention to internet coverage correlated with constructive patriotism. Attention to media coverage was linked to greater emotional and behavioral problems and was negatively correlated with personal adjustment. The results of this pilot study identified relationships of both patriotism and attention to media coverage with children's emotional and behavioral status and personal adjustment suggesting areas for future investigation.

  12. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented

  13. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  14. Assessing Resource Assessment for MRE (Invited)

    NASA Astrophysics Data System (ADS)

    Hanson, H. P.; Bozec, A.; Duerr, A. S.; Rauchenstein, L. T.

    2010-12-01

    The Southeast National Marine Renewable Energy Center at Florida Atlantic University is concerned with marine renewable energy (MRE) recovery from the Florida Current using marine hydrokinetic technology and, in the future, from the thermocline in the Florida Straits via ocean thermal energy conversion. Although neither concept is new, technology improvements and the evolution of policy now warrant optimism for the future of these potentially rich resources. In moving toward commercial-scale deployments of energy-generating systems, an important first step is accurate and unembellished assessment of the resource itself. In short, we must ask: how much energy might be available? The answer to this deceptively simple question depends, of course, on the technology itself - system efficiencies, for example - but it also depends on a variety of other limiting factors such as deployment strategies, environmental considerations, and the overall economics of MRE in the context of competing energy resources. While it is universally agreed that MRE development must occur within a framework of environmental stewardship, it is nonetheless inevitable that there will be trade-offs between absolute environmental protection and realizing the benefits of MRE implementation. As with solar-energy and wind-power technologies, MRE technologies interact with the environment in which they are deployed. Ecological, societal, and even physical resource concerns all require investigation and, in some cases, mitigation. Moreover, the converse - how will the environment affect the equipment? - presents technical challenges that have confounded the seagoing community forever. Biofouling, for example, will affect system efficiency and create significant maintenance and operations issues. Because this will also affect the economics of MRE, nonlinear interactions among the limiting factors complicate the overall issue of resource assessment significantly. While MRE technology development is largely an engineering task, resource assessment falls more to the oceanography community. Current and temperature structure measurements, for example, are critical for these efforts. Once again, however, the picture is complicated by the nature of the endeavor: deploying complex equipment of scales of tens of meters into a medium that is traditionally measured on scales of tens of kilometers implies a scale mismatch that must be overcome. The challenge, then, is to develop assessments of the resource on larger scales - so that the potential of the resource may be understood - while characterizing it on very small scales to be able to understand how equipment will be affected. Meeting this challenge will require both funding and time, but it will also result in new oceanographic insight and understanding.

  15. Introduction to Department of Defense Research on Burn Pits, Biomarkers, and Health Outcomes Related to Deployment in Iraq and Afghanistan.

    PubMed

    Mallon, Col Timothy M; Rohrbeck, Maj Patricia; Haines, Maj Kevin M; Jones, Dean P; Utell, Mark; Hopke, Philip K; Phipps, Richard P; Walker, Douglas I; Thatcher, Thomas; Woeller, Collynn F; Baird, Coleen P; Pollard, Harvey B; Dalgard, Clifton L; Gaydos, Joel C

    2016-08-01

    This paper provides an overview of our study that was designed to assess the health impact of environmental exposures to open pit burning in deployed troops. The rationale for the study and the structure of the research plan was laid out. An overview of each article in the supplement was provided. The cohort of deployed Service members was assessed for airborne exposure, relevant biomarkers, and health outcomes following deployment to Balad, Iraq, and/or Bagram, Afghanistan. Polycyclic aromatic hydrocarbon (PAH) exposures were elevated, and serum biomarkers were statistically different postdeployment. Associations were noted between PAHs and dioxins and microRNAs. Some health outcomes were evident in deployers compared with nondeployers. Future research will examine the associations between demographic variables, smoking status, biomarker levels, and related health outcomes.

  16. Overview of Existing and Future Residential Use Cases for Connected Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, Julia; Johnson, Robert; Gonzalez, Nancy

    This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last 5 years—both in terms of the number of units sold and the number of firms offering competing products—and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, there remains a great dealmore » of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.« less

  17. Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Cole, Wesley; Lantz, Eric

    Federal tax credits for renewable energy (RE) have served as one of the primary financial incentives for RE deployment over the last two decades in the United States. In December 2015, the wind power production tax credit and solar investment tax credits were extended for five years as part of the Consolidated Appropriations Act of 2016. This report explores the impact that these tax credit extensions might have on future RE capacity deployment and power sector carbon dioxide (CO2) emissions. The analysis examines the impacts of the tax credit extensions under two distinct natural gas price futures as natural gasmore » prices have been key factors in influencing the economic competitiveness of new RE development. The analysis finds that, in both natural gas price futures, RE tax credit extensions can spur RE capacity investments at least through the early 2020s and can help lower emissions from the U.S. electricity system. More specifically, the RE tax credit extensions are estimated to drive a net peak increase of 48-53 GW in installed RE capacity in the early 2020s -- longer term impacts are less certain. In the longer term after the tax credits ramp down, greater RE capacity is driven by a combination of assumed RE cost declines, rising fossil fuel prices, and other clean energy policies such as the Clean Power Plan. The tax credit extension-driven acceleration in RE capacity development can reduce fossil fuel-based generation and lower electric sector CO2 emissions. Cumulative emissions reductions over a 15-year period (spanning 2016-2030) as a result of the tax credit extensions are estimated to range from 540 to 1420 million metric tonnes CO2. These findings suggest that tax credit extensions can have a measurable impact on future RE deployment and electric sector CO2 emissions under a range of natural gas price futures.« less

  18. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance

    PubMed Central

    2014-01-01

    The use of synthetic pesticides and repellents to target pests of veterinary and medical significance is becoming increasingly problematic. One alternative approach employs the bioactive attributes of plant-derived products (PDPs). These are particularly attractive on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries that should limit development of pest resistance against them. Several pesticides and repellents based on PDPs are already available, and in some cases widely utilised, in modern pest management. Many more have a long history of traditional use in poorer areas of the globe where access to synthetic pesticides is often limited. Preliminary studies support that PDPs could be more widely used to target numerous medical and veterinary pests, with modes of action often specific to invertebrates. Though their current and future potential appears significant, development and deployment of PDPs to target veterinary and medical pests is not without issue. Variable efficacy is widely recognised as a restraint to PDPs for pest control. Identifying and developing natural bioactive PDP components in place of chemically less-stable raw or 'whole’ products seems to be the most popular solution to this problem. A limited residual activity, often due to photosensitivity or high volatility, is a further drawback in some cases (though potentially advantageous in others). Nevertheless, encapsulation technologies and other slow-release mechanisms offer strong potential to improve residual activity where needed. The current review provides a summary of existing use and future potential of PDPs against ectoparasites of veterinary and medical significance. Four main types of PDP are considered (pyrethrum, neem, essential oils and plant extracts) for their pesticidal, growth regulating and repellent or deterrent properties. An overview of existing use and research for each is provided, with direction to more extensive reviews given in many sections. Sections to highlight potential issues, modes of action and emerging and future potential are also included. PMID:24428899

  19. Experiences and career intentions of combat-deployed UK military personnel.

    PubMed

    Morris-Butler, R; Jones, N; Greenberg, N; Campion, B; Wessely, S

    2018-05-17

    Most studies of the psychological impact of military deployment focus on the negative and traumatic aspects. Less is known about the full range of deployment experiences nor how these may impact on career intentions. To examine subjective operational experiences and career intentions in deployed UK military personnel using data gathered toward the end of an operational deployment. Data were gathered during deployment in Iraq and Afghanistan. A self-report survey collected data on sociodemographic, operational and military factors. Respondents provided their strength of agreement or disagreement with six potentially positive deployment experiences and their endorsement or rejection of six possible career intentions. Two mental health measures assessed symptoms of common mental disorder and post-traumatic stress disorder. Responses were 681 in Iran 2009 (100% response rate); 1421 in Afghanistan in 2010 (100%), 1362 in 2011 (96%) and 860 in 2015 (91%). Five of the potentially positive outcomes were endorsed by >50% of the sample: confidence about remaining healthy after returning home, pride in accomplishments, increased confidence in abilities, improved unit cohesion and experiencing a positive life effect. Ninety per cent of respondents planned to continue in service after returning home. Fewer positive deployment experiences, poorer mental health, lesser unit cohesion and more negative impressions of leadership were significantly associated with intention to leave service. Contrary to the popular belief that UK military personnel deployed to Iraq or Afghanistan experience negative outcomes, this paper shows that deployment can be a positive experience for a substantial majority of deployed personnel.

  20. The mental health of deployed UK maritime forces.

    PubMed

    Whybrow, Dean; Jones, Norman; Evans, Charlotte; Minshall, Darren; Smith, Darren; Greenberg, Neil

    2016-02-01

    To establish the level of psychological symptoms and the risk factors for possible decreased mental health among deployed UK maritime forces. A survey was completed by deployed Royal Navy (RN) personnel which measured the prevalence of common mental disorder (CMD), post-traumatic stress disorder (PTSD) and potential alcohol misuse. Military and operational characteristics were also measured including exposure to potentially traumatic events, problems occurring at home during the deployment, unit cohesion, leadership and morale. Associations between variables of interest were identified using binary logistic regression to generate ORs and 95% CIs adjusted for a range of potential confounding variables. In total, 41.2% (n=572/1387) of respondents reported probable CMD, 7.8% (n=109/1389) probable PTSD and 17.4% (n=242/1387) potentially harmful alcohol use. Lower morale, cohesion, leadership and problems at home were associated with CMD; lower morale, leadership, problems at home and exposure to potentially traumatic events were associated with probable PTSD; working in ships with a smaller crew size was associated with potentially harmful alcohol use. CMD and PTSD were more frequently reported in the maritime environment than during recent land-based deployments. Rates of potentially harmful alcohol use have reduced but remain higher than the wider military. Experiencing problems at home and exposure to potentially traumatic events were associated with experiencing poorer mental health; higher morale, cohesion and better leadership with fewer psychological symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Protocol and the post-human performativity of security techniques.

    PubMed

    O'Grady, Nathaniel

    2016-07-01

    This article explores the deployment of exercises by the United Kingdom Fire and Rescue Service. Exercises stage, simulate and act out potential future emergencies and in so doing help the Fire and Rescue Service prepare for future emergencies. Specifically, exercises operate to assess and develop protocol; sets of guidelines which plan out the actions undertaken by the Fire and Rescue Service in responding to a fire. In the article I outline and assess the forms of knowledge and technologies, what I call the 'aesthetic forces', by which the exercise makes present and imagines future emergencies. By critically engaging with Karen Barad's notion of post-human performativity, I argue that exercises provide a site where such forces can entangle with one another; creating a bricolage through which future emergencies are evoked sensually and representatively, ultimately making it possible to experience emergencies in the present. This understanding of exercises allows also for critical appraisal of protocol both as phenomena that are produced through the enmeshing of different aesthetic forces and as devices which premise the operation of the security apparatus on contingency.

  2. Protocol and the post-human performativity of security techniques

    PubMed Central

    O’Grady, Nathaniel

    2015-01-01

    This article explores the deployment of exercises by the United Kingdom Fire and Rescue Service. Exercises stage, simulate and act out potential future emergencies and in so doing help the Fire and Rescue Service prepare for future emergencies. Specifically, exercises operate to assess and develop protocol; sets of guidelines which plan out the actions undertaken by the Fire and Rescue Service in responding to a fire. In the article I outline and assess the forms of knowledge and technologies, what I call the ‘aesthetic forces’, by which the exercise makes present and imagines future emergencies. By critically engaging with Karen Barad’s notion of post-human performativity, I argue that exercises provide a site where such forces can entangle with one another; creating a bricolage through which future emergencies are evoked sensually and representatively, ultimately making it possible to experience emergencies in the present. This understanding of exercises allows also for critical appraisal of protocol both as phenomena that are produced through the enmeshing of different aesthetic forces and as devices which premise the operation of the security apparatus on contingency. PMID:29708110

  3. Vaccines 'on demand': science fiction or a future reality.

    PubMed

    Ulmer, Jeffrey B; Mansoura, Monique K; Geall, Andrew J

    2015-02-01

    Self-amplifying mRNA vaccines are being developed as a platform technology with potential to be used for a broad range of targets. The synthetic production methods for their manufacture, combined with the modern tools of bioinformatics and synthetic biology, enable these vaccines to be produced rapidly from an electronic gene sequence. Preclinical proof of concept has so far been achieved for influenza, respiratory syncytial virus, rabies, Ebola, cytomegalovirus, human immunodeficiency virus and malaria. This editorial highlights the key milestones in the discovery and development of self-amplifying mRNA vaccines, and reviews how they might be used as a rapid response platform. The paper points out how future improvements in RNA vector design and non-viral delivery may lead to decreases in effective dose and increases in production capacity. The prospects for non-viral delivery of self-amplifying mRNA vaccines are very promising. Like other types of nucleic acid vaccines, these vaccines have the potential to draw on the positive attributes of live-attenuated vaccines while obviating many potential safety limitations. Hence, this approach could enable the concept of vaccines on demand as a rapid response to a real threat rather than the deployment of strategic stockpiles based on epidemiological predictions for possible threats.

  4. Regional Energy Deployment System (ReEDS) | Energy Analysis | NREL

    Science.gov Websites

    System Model The Regional Energy Deployment System (ReEDS) model helps the U.S. Department of model. Visualize Future Capacity Expansion of Renewable Energy Watch this video of the ReEDS model audio. Model Documentation ReEDS Model Documentation: Version 2016 ReEDS Map with Numbered Regions

  5. Preliminary Analysis of Delta-V Requirements for a Lunar CubeSat Impactor with Deployment Altitude Variations

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Ho, Jin; Kim, Bang-Yeop

    2015-09-01

    Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.

  6. Development of the Flight Tether for ProSEDS

    NASA Technical Reports Server (NTRS)

    Curtis, Leslie; Vaughn, Jason; Welzyn, Ken; Carroll, Joe; Brown, Norman S. (Technical Monitor)

    2002-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS will use the flight-proven Small Expendable Deployer System to deploy a newly designed and developed tether which will provide tether generated drag thrust of approx. 0.4 N. The development and production of very long tethers with specific properties for performance and survivability will be required to enable future tether missions. The ProSEDS tether design and the development process may provide some lessons learned for these future missions. The ProSEDS system requirements drove the design of the tether to have three different sections of tether each serving a specialized purpose. The tether is a total of 15 kilometers long: 10 kilometers of a non-conductive Dyneema lead tether; 5 km of CCOR conductive coated wire; and 220 meters of insulated wire with a protective Kevlar overbraid. Production and joining of long tether lengths involved many development efforts. Extensive testing of tether materials including ground deployment of the full-length ProSEDS tether was conducted to validate the tether design and performance before flight.

  7. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.

    PubMed

    Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver

    2015-11-05

    The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zack, J; Natenberg, E J; Knowe, G V

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region, which encompasses the Bonneville Power Administration (BPA) wind generation area (Figure 1) that includes the Klondike, Stateline, and Hopkins Ridge wind plants. There are two tasks in the current project effort designed to validate themore » Ensemble Sensitivity Analysis (ESA) observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach. The results of this task are presented in a separate report. (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. This report presents the results of the OSSE task. The specific objective is to test strategies for future deployment of observing systems in order to suggest the best and most efficient ways to improve wind forecasting at BPA wind farm locations. OSSEs have been used for many years in meteorology to evaluate the potential impact of proposed observing systems, determine tradeoffs in instrument design, and study the most effective data assimilation methodologies to incorporate the new observations into numerical weather prediction (NWP) models (Atlas 1997; Lord 1997). For this project, a series of OSSEs will allow consideration of the impact of new observing systems of various types and in various locations.« less

  9. Heart rate variability characteristics in a large group of active-duty Marines and relationship to posttraumatic stress

    PubMed Central

    Minassian, Arpi; Geyer, Mark A.; Baker, Dewleen G.; Nievergelt, Caroline M.; O'Connor, Daniel T.; Risbrough, Victoria B.

    2014-01-01

    Objective Heart rate variability (HRV), thought to reflect autonomic nervous system function, is lowered in conditions such as posttraumatic stress disorder (PTSD). The potential confounding effects of traumatic brain injury (TBI) and depression in the relationship between HRV and PTSD have not been elucidated in a large cohort of military service members. Here we describe HRV associations with stress disorder symptoms in a large study of Marines, while accounting for well-known covariates of HRV and PTSD including TBI and depression. Methods Four battalions of male active-duty Marines (N=2430) were assessed 1-2 months prior to a combat deployment. HRV was measured during 5 minutes of rest. Depression and PTSD were assessed using the Beck Depression Inventory and Clinician Administered PTSD scale respectively. Results After accounting for covariates including TBI, a regression indicated that lower levels of high frequency (HF) HRV were associated with a diagnosis of PTSD (beta = -.20, p=.035). Depression and PTSD severity were correlated (r= .49, p <.001), however participants with PTSD but relatively low depression scores exhibited reduced HF compared to controls (p=.012). Marines with deployment experience (n=1254) had lower HRV than those with no experience (p = .033). Conclusions This cross-sectional analysis of a large cohort supports associations between PTSD and reduced HRV when accounting for TBI and depression symptoms. Future post-deployment assessments will be used to determine whether pre-deployment HRV can predict vulnerability and resilience to the serious psychological and physiological consequences of combat exposure. PMID:24804881

  10. AMF 1 Site Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mark Alan

    This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less

  11. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that theremore » was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to the decision-making process.« less

  12. Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.

  13. Organizational Culture and the Deployment of Agile Methods: The Competing Values Model View

    NASA Astrophysics Data System (ADS)

    Iivari, Juhani; Iivari, Netta

    A number of researchers have identified organizational culture as a factor that potentially affects the deployment of agile systems development methods. Inspired by the study of Iivari and Huisman (2007), which focused on the deployment of traditional systems development methods, the present paper proposes a number of hypotheses about the influence of organizational culture on the deployment of agile methods.

  14. Doctors in space (ships): biomedical uncertainties and medical authority in imagined futures

    PubMed Central

    Henderson, Lesley; Carter, Simon

    2016-01-01

    There has been considerable interest in images of medicine in popular science fiction and in representations of doctors in television fiction. Surprisingly little attention has been paid to doctors administering space medicine in science fiction. This article redresses this gap. We analyse the evolving figure of ‘the doctor’ in different popular science fiction television series. Building upon debates within Medical Sociology, Cultural Studies and Media Studies we argue that the figure of ‘the doctor’ is discursively deployed to act as the moral compass at the centre of the programme narrative. Our analysis highlights that the qualities, norms and ethics represented by doctors in space (ships) are intertwined with issues of gender equality, speciesism and posthuman ethics. We explore the signifying practices and political articulations that are played out through these cultural imaginaries. For example, the ways in which ‘the simple country doctor’ is deployed to help establish hegemonic formations concerning potentially destabilising technoscientific futures involving alternative sexualities, or military dystopia. Doctors mostly function to provide the ethical point of narrative stability within a world in flux, referencing a nostalgia for the traditional, attentive, humanistic family physician. The science fiction doctor facilitates the personalisation of technological change and thus becomes a useful conduit through which societal fears and anxieties concerning medicine, bioethics and morality in a ‘post 9/11’ world can be expressed and explored. PMID:27694600

  15. Direct Operational Field Test Evaluation, Simulation And Modeling

    DOT National Transportation Integrated Search

    1998-08-01

    THE PURPOSE OF THE SIMULATION EVALUATION IS TO ASSESS THE EXPECTED FUTURE IMPACTS OF THE DIRECT TECHNOLOGIES UNDER SCENARIOS OF FULL DEPLOYMENT. THIS PROVIDED SOME INDICATION OF THE LEVEL OF BENEFITS THAT CAN BE EXPECTED FROM DIRECT IN THE FUTURE. BE...

  16. Emerging technologies in healthcare: navigating risks, evaluating rewards.

    PubMed

    McGrady, Elizabeth; Conger, Sue; Blanke, Sandra; Landry, Brett J L

    2010-01-01

    The purpose of this prescriptive research is to help decision makers become better informed about three technologies emerging in the healthcare arena by providing a basic description of the technology and describing their current applications, future healthcare deployment, potential risks, and related managerial issues. Two of the technologies, radio frequency identification (RFID) and global positioning systems (GPS), are currently available to healthcare organizations and appear capable of decreasing cost but may require significant initial investment and have disruptive potential. The third technology, nanotechnology, has limited current use but may revolutionize both the delivery of medicine and hospital infrastructure management. With cautious attention to managerial issues and meticulous attention to implementation details, healthcare organizations that can successfully navigate the coming technologically driven paradigm shifts will emerge more resilient organizations.

  17. Technology Projections for Solar Dynamic Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.

  18. San Antonio's Medical Center Corridor: Lessons Learned From The Metropolitan Model Deployment Initiative: Reducing Delay Through Integrated Freeway & Arterial Management

    DOT National Transportation Integrated Search

    2000-10-01

    This report demonstrates the benefits and potential pitfalls of deploying and operating an integrated freeway and arterial management system. In particular, it discusses the lessons learned about the Medical Center Corridor (MCC) Project deployed in ...

  19. The current and potential role of satellite remote sensing in the campaign against malaria

    NASA Astrophysics Data System (ADS)

    Kazansky, Yaniv; Wood, Danielle; Sutherlun, Jacob

    2016-04-01

    Malaria and other vector borne diseases claim lives and cause illness, especially in less developed countries. Although well understood methods, such as spraying and insecticidal nets, are identified as effective deterrents to malaria transmission by mosquitoes, the nations that have the greatest burden from the disease also struggle to deploy such measures sufficiently. More targeted and up to date information is needed to identify which regions of malaria-endemic countries are most likely to be at risk of malaria in the near future. This will allow national governments, local officials and public health workers to deploy protective equipment and personnel where they are most needed. This paper explores the role of environmental data generated via satellite remote sensing as an ingredient to a Malaria Early Warning System. Data from remote sensing satellites can cover broad geographical areas frequently and consistently. Much of the relevant data may be accessed by malaria-endemic countries at minimal cost via international data sharing polices. While previous research studies have demonstrated the potential to assign malaria risk to a geographic region based on indicators from satellites and other sources, there is still a need to deploy such tools in a broader and more operational manner to inform decision making on malaria management. This paper describes current research on the use of satellite-based environmental data to predict malaria risk and examines the barriers and opportunities for implementing Malaria Early Warning Systems enabled by satellite remote sensing. A Systems Architecture Framework analyses the components of a Malaria Early Warning System and highlights the need for effective coordination across public and private sector organizations.

  20. Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Glasser, Melodie

    Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the contextmore » of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.« less

  1. Potential benefits from a successful solar thermal program

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1982-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs.

  2. Effects of Combat Deployment on Risky and Self-Destructive Behavior Among Active Duty Military Personnel

    DTIC Science & Technology

    2011-01-01

    Research has docu- mented increases in psychological problems among personnel returning from combat deployment. Although most studies have focused on...1995; Hoge et al., 2004). Compar- atively less attention has been paid to potential effects of deploy- ment on other psychological and behavioral health...Zuckerman, 2007). There are several mechanisms by which combat deployment might increase risky behavior. Joiner’s (2005) interpersonal- psychological

  3. Overview of Existing and Future Residential Use Cases for Connected Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, Julia; Johnson, Robert; Gonzales, Nancy

    This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last five years — both in terms of the number of units sold and the number of firms offering competing products — and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, theremore » remains a great deal of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.« less

  4. Prospective Assessment of Neurocognition in Future Gulf-deployed and Gulf-nondeployed Military Personnel: A Pilot Study

    DTIC Science & Technology

    2007-02-01

    increased emotional distress but with advantaged simple reactiontime. Unit cohesion buffers the adverse effects of early life events on PTSD prior to...motor speed), and emotional (e.g., mood) behaviors thought to reflect neural integrity. Unresolved issues include whether subjective...including neurobehavioral and emotional functioning, (b) examine the impact of deployment-related stress and environmental exposures on

  5. Ten Years of Analyzing the Duck Chart: How an NREL Discovery in 2008 Is

    Science.gov Websites

    examined how to plan for future large-scale integration of solar photovoltaic (PV) generation on the result, PV was deployed more widely, and system operators became increasingly concerned about how solar emerging energy and environmental policy initiatives pushing for higher levels of solar PV deployment. As a

  6. Advanced Telecommunications in Rural America: The Challenge of Bringing Broadband Service to All Americans.

    ERIC Educational Resources Information Center

    National Telecommunications and Information Administration (DOC), Washington, DC.

    This report, in response to a request by 10 U.S. Senators examines the status of broadband deployment in the United States. The rate of deployment of broadband services will be key to future economic growth, particularly in rural areas far from urban and world markets. This report finds that rural areas, especially remote areas outside of towns,…

  7. Understanding the elevated suicide risk of female soldiers during deployments.

    PubMed

    Street, A E; Gilman, S E; Rosellini, A J; Stein, M B; Bromet, E J; Cox, K L; Colpe, L J; Fullerton, C S; Gruber, M J; Heeringa, S G; Lewandowski-Romps, L; Little, R J A; Naifeh, J A; Nock, M K; Sampson, N A; Schoenbaum, M; Ursano, R J; Zaslavsky, A M; Kessler, R C

    2015-03-01

    The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS) has found that the proportional elevation in the US Army enlisted soldier suicide rate during deployment (compared with the never-deployed or previously deployed) is significantly higher among women than men, raising the possibility of gender differences in the adverse psychological effects of deployment. Person-month survival models based on a consolidated administrative database for active duty enlisted Regular Army soldiers in 2004-2009 (n = 975,057) were used to characterize the gender × deployment interaction predicting suicide. Four explanatory hypotheses were explored involving the proportion of females in each soldier's occupation, the proportion of same-gender soldiers in each soldier's unit, whether the soldier reported sexual assault victimization in the previous 12 months, and the soldier's pre-deployment history of treated mental/behavioral disorders. The suicide rate of currently deployed women (14.0/100,000 person-years) was 3.1-3.5 times the rates of other (i.e. never-deployed/previously deployed) women. The suicide rate of currently deployed men (22.6/100,000 person-years) was 0.9-1.2 times the rates of other men. The adjusted (for time trends, sociodemographics, and Army career variables) female:male odds ratio comparing the suicide rates of currently deployed v. other women v. men was 2.8 (95% confidence interval 1.1-6.8), became 2.4 after excluding soldiers with Direct Combat Arms occupations, and remained elevated (in the range 1.9-2.8) after adjusting for the hypothesized explanatory variables. These results are valuable in excluding otherwise plausible hypotheses for the elevated suicide rate of deployed women and point to the importance of expanding future research on the psychological challenges of deployment for women.

  8. Deployer Performance Results for the TSS-1 Mission

    NASA Technical Reports Server (NTRS)

    Marshall, Leland S.; Geiger, Ronald V.

    1995-01-01

    Performance of the Tethered Satellite System (TSS) Deployer during the STS-46 mission (July and August 1992) is analyzed in terms of hardware operation at the component and system level. Although only a limited deployment of the satellite was achieved (256 meters vs 20 kilometers planned), the mission served to verify the basic capability of the Deployer to release, control and retrieve a tethered satellite. - Deployer operational flexibility that was demonstrated during the flight is also addressed. Martin Marietta was the prime contractor for the development of the Deployer, under management of the NASA George C. Marshall Space Flight Center (MSFC). The satellite was provided by Alenia, Torino, Italy under contract to the Agencia Spaziale Italiana (ASI). Proper operation of the avionics components and the majority of mechanisms was observed during the flight. System operations driven by control laws for the deployment and retrieval of the satellite were also successful for the limited deployment distance. Anomalies included separation problems for one of the two umbilical connectors between the Deployer and satellite, tether jamming (at initial Satellite fly-away and at a deployment distance of 224 meters), and a mechanical interference which prevented tether deployment beyond 256 meters. The Deployer was used in several off-nominal conditions to respond to these anomalies, which ultimately enabled a successful satellite retrieval and preservation of hardware integrity for a future re-flight. The paper begins with an introduction defining the significance of the TSS-1 mission. The body of the paper is divided into four major sections: (1) Description of Deployer System and Components, (2) Deployer Components/Systems Demonstrating Successful Operation, (3) Hardware Anomalies and Operational Responses, and (4) Design Modifications for the TSS-1R Re-flight Mission. Conclusions from the TSS-1 mission, including lessons learned are presented at the end of the manuscript.

  9. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    NASA Astrophysics Data System (ADS)

    Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars

    2013-08-01

    There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.

  10. Development of the Upgraded DC Brush Gear Motor for Spacebus Platforms

    NASA Technical Reports Server (NTRS)

    Berning, Robert H.; Viout, Olivier

    2010-01-01

    The obsolescence of materials and processes used in the manufacture of traditional DC brush gear motors has necessitated the development of an upgraded DC brush gear motor (UBGM). The current traditional DC brush gear motor (BGM) design was evaluated using Six-Sigma process to identify potential design and production process improvements. The development effort resulted in a qualified UBGM design which improved manufacturability and reduced production costs. Using Six-Sigma processes and incorporating lessons learned during the development process also improved motor performance for UBGM making it a more viable option for future use as a deployment mechanism in space flight applications.

  11. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  12. Novel data visualizations of X-ray data for aviation security applications using the Open Threat Assessment Platform (OTAP)

    NASA Astrophysics Data System (ADS)

    Gittinger, Jaxon M.; Jimenez, Edward S.; Holswade, Erica A.; Nunna, Rahul S.

    2017-02-01

    This work will demonstrate the implementation of a traditional and non-traditional visualization of x-ray images for aviation security applications that will be feasible with open system architecture initiatives such as the Open Threat Assessment Platform (OTAP). Anomalies of interest to aviation security are fluid, where characteristic signals of anomalies of interest can evolve rapidly. OTAP is a limited scope open architecture baggage screening prototype that intends to allow 3rd-party vendors to develop and easily implement, integrate, and deploy detection algorithms and specialized hardware on a field deployable screening technology [13]. In this study, stereoscopic images were created using an unmodified, field-deployed system and rendered on the Oculus Rift, a commercial virtual reality video gaming headset. The example described in this work is not dependent on the Oculus Rift, and is possible using any comparable hardware configuration capable of rendering stereoscopic images. The depth information provided from viewing the images will aid in the detection of characteristic signals from anomalies of interest. If successful, OTAP has the potential to allow for aviation security to become more fluid in its adaptation to the evolution of anomalies of interest. This work demonstrates one example that is easily implemented using the OTAP platform, that could lead to the future generation of ATR algorithms and data visualization approaches.

  13. Non-Constant Learning Rates in Retrospective Experience Curve Analyses and their Correlation to Deployment Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    2015-07-16

    A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline ofmore » historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.« less

  14. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? [Metal-Air Batteries: Future Electrochemical Energy Storage of Choice?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanguang; Lu, Jun

    Metal-air batteries have much higher theoretical energy density than lithium-ion batteries, and are frequently advocated as the solution toward next-generation electrochemical energy storage for applications including electric vehicles or grid energy storage. Yet they have not fulfilled their full potentials as limited by challenges associated with the metal anode, air cathode and electrolyte. These challenges would have to be properly resolved before metal-air batteries can become a practical reality and be deployed on a large scale. Here we survey the current status and latest advances in metal-air battery research for both aqueous (e.g. Zn-air) and non-aqueous (e.g. Li-air) systems. Themore » general technical issues confronting their developments are overviewed, and our perspective on possible solutions is offered.« less

  15. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? [Metal-Air Batteries: Future Electrochemical Energy Storage of Choice?

    DOE PAGES

    Li, Yanguang; Lu, Jun

    2017-05-05

    Metal-air batteries have much higher theoretical energy density than lithium-ion batteries, and are frequently advocated as the solution toward next-generation electrochemical energy storage for applications including electric vehicles or grid energy storage. Yet they have not fulfilled their full potentials as limited by challenges associated with the metal anode, air cathode and electrolyte. These challenges would have to be properly resolved before metal-air batteries can become a practical reality and be deployed on a large scale. Here we survey the current status and latest advances in metal-air battery research for both aqueous (e.g. Zn-air) and non-aqueous (e.g. Li-air) systems. Themore » general technical issues confronting their developments are overviewed, and our perspective on possible solutions is offered.« less

  16. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  17. Renewable Electricity in the United States: The National Research Council Study and Recent Trends

    NASA Astrophysics Data System (ADS)

    Holmes, K. John; Papay, Lawrence T.

    2011-11-01

    The National Research Council issued Electricity from Renewables: Status, Prospects, and Impediments in 2009 as part of the America's Energy Future Study. The panel that authored this report, the Panel on Electricity from Renewable Sources, worked from 2007 to 2009 gathering information and analysis on the cost, performance and impacts of renewable electricity resources and technologies in the United States. The panel considered the magnitude and distribution of the resource base, the status of renewable electricity technologies, the economics of these technologies, their environmental footprint, and the issues related to scaling up renewables deployment. In its consideration of the future potential for renewable electricity, the panel emphasizes policy, technology, and capital equally because greatly scaling up renewable electricity encounters significant issues that go beyond resource availability or technical capabilities. Here we provide a summary of this report and discuss several recent trends that impact renewable electricity.

  18. Integration of power over fiber on RoF systems in different scenarios

    NASA Astrophysics Data System (ADS)

    Vázquez, C.; Montero, D. S.; Pinzón, P. J.; López-Cardona, J. D.; Contreras, P.; Tapetado, A.

    2017-01-01

    Future high capacity of the 5th Generation radio environment will boost transport networks to be adapted. The high bandwidth, together with stringent delay and jitter requirements, make dedicated optical connectivity a preferred solution for fronthaul. Those Radio Access Networks apart from higher capacity and lower latency should have higher energy efficiency. In order to cover this aspect, power over fiber has been pointed out as a key technology for that purpose having in mind that control plane will be centralized on future Cloud RAN and that sometimes Remote Radio Heads should be deployed in places lacking external power supply in order to fulfill the desired coverage. In this paper, different scenarios on potential demanding environments of power over fiber on Radio over Fiber systems such as automotive, in-house and remote mobile fronthaul will be discussed. Some tests on power over fiber systems based on different optical fibers are provided.

  19. Preliminary design method for deployable spacecraft beams

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Cassapakis, Costas

    1995-01-01

    There is currently considerable interest in low-cost, lightweight, compactly packageable deployable elements for various future missions involving small spacecraft. These elements must also have a simple and reliable deployment scheme and possess zero or very small free-play. Although most small spacecraft do not experience large disturbances, very low stiffness appendages or free-play can couple with even small disturbances and lead to unacceptably large attitude errors which may involve the introduction of a flexible-body control system. A class of structures referred to as 'rigidized structures' offers significant promise in providing deployable elements that will meet these needs for small spacecraft. The purpose of this paper is to introduce several rigidizable concepts and to develop a design methodology which permits a rational comparison of these elements to be made with alternate concepts.

  20. Robotics for Nuclear Material Handling at LANL:Capabilities and Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, Troy A; Lloyd, Jane A; Turner, Cameron J

    Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less

  1. Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs

    NASA Technical Reports Server (NTRS)

    Footdale, Joseph N.; Murphey, Thomas W.

    2014-01-01

    The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.

  2. The impact of potentially traumatic events on the mental health of males who have served in the military: Findings from the Australian National Survey of Mental Health and Wellbeing.

    PubMed

    Wade, Darryl; Mewton, Louise; Varker, Tracey; Phelps, Andrea; Forbes, David

    2017-07-01

    The study investigated the impact of potentially traumatic events on mental health outcomes among males who had ever served in the Australian Defence Force. Data from a nationally representative household survey of Australian residents, the 2007 National Survey of Mental Health and Wellbeing, were used for this study. Compared with community members, Australian Defence Force males were significantly more likely to have experienced not only deployment and other war-like events but also accidents or other unexpected events, and trauma to someone close. For non-deployed males, Australian Defence Force members were at increased risk of accidents or other unexpected events compared to community members. After controlling for the effect of potentially traumatic events that were more prevalent among all Australian Defence Force members, the increased risk of mental disorders among Australian Defence Force members was no longer evident. For non-deployed males, Australian Defence Force and community members were at comparable risk of poor mental health outcomes. A significant minority of Australian Defence Force members had onset of a mental disorder prior to their first deployment. Deployment and other potentially traumatic events among Australian Defence Force members can help to explain their increased vulnerability to mental disorders compared with community members. Providers should routinely enquire about a range of potentially traumatic events among serving and ex-serving military personnel.

  3. Data near processing support for climate data analysis

    NASA Astrophysics Data System (ADS)

    Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils

    2016-04-01

    Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted. Also aspects supporting future WPS based cross community usage scenarios supporting data reuse and data provenance aspects are reflected.

  4. The impact of deployment length on the health and well-being of military personnel: a systematic review of the literature.

    PubMed

    Buckman, Joshua E J; Sundin, Josefin; Greene, Talya; Fear, Nicola T; Dandeker, Christopher; Greenberg, Neil; Wessely, Simon

    2011-01-01

    To determine the current state of knowledge regarding the effects of deployment length and a 'mismatch' between the expected and actual length of deployments on the health and well-being of military personnel in order to draw relevant conclusions for all organisations that deploy personnel to conflict zones. A systematic review was conducted of studies measuring deployment length to theatres of operations and the issue of 'mismatch' between expected and actual tour lengths. The nine studies included were rated for quality. Of the nine studies reviewed, six were rated as high quality, two as moderate quality and one as low quality. Seven of these studies found adverse effects of longer deployments on health and well-being. The two studies that measured 'mismatch' found adverse effects on mental health and well-being when deployments lasted longer than personnel expected. There are a limited number of studies which have assessed the effects of deployment length and very few that have assessed the effects of 'mismatch' on health and well-being. However, this review suggests that, as deployment length increases, the potential for personnel to suffer adverse health effects also increases. Further research is required to investigate the effects of spending prolonged periods of time away from family and friends, especially when deployment lasts longer than expected by personnel. These results are important not only for the Armed Forces, but also for other organisations that place employees in similar working conditions. Taking account of these findings may allow better preparation for the potentially harmful effects that deployments can have on employees' health and well-being.

  5. Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers.

    PubMed

    Karstoft, Karen-Inge; Statnikov, Alexander; Andersen, Søren B; Madsen, Trine; Galatzer-Levy, Isaac R

    2015-09-15

    Pre-deployment identification of soldiers at risk for long-term posttraumatic stress psychopathology after home coming is important to guide decisions about deployment. Early post-deployment identification can direct early interventions to those in need and thereby prevents the development of chronic psychopathology. Both hold significant public health benefits given large numbers of deployed soldiers, but has so far not been achieved. Here, we aim to assess the potential for pre- and early post-deployment prediction of resilience or posttraumatic stress development in soldiers by application of machine learning (ML) methods. ML feature selection and prediction algorithms were applied to a prospective cohort of 561 Danish soldiers deployed to Afghanistan in 2009 to identify unique risk indicators and forecast long-term posttraumatic stress responses. Robust pre- and early postdeployment risk indicators were identified, and included individual PTSD symptoms as well as total level of PTSD symptoms, previous trauma and treatment, negative emotions, and thought suppression. The predictive performance of these risk indicators combined was assessed by cross-validation. Together, these indicators forecasted long term posttraumatic stress responses with high accuracy (pre-deployment: AUC = 0.84 (95% CI = 0.81-0.87), post-deployment: AUC = 0.88 (95% CI = 0.85-0.91)). This study utilized a previously collected data set and was therefore not designed to exhaust the potential of ML methods. Further, the study relied solely on self-reported measures. Pre-deployment and early post-deployment identification of risk for long-term posttraumatic psychopathology are feasible and could greatly reduce the public health costs of war. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles

    NASA Astrophysics Data System (ADS)

    Greenblatt, Jeffery B.; Saxena, Samveg

    2015-09-01

    Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.

  7. The clinical application of mobile technology to disaster medicine.

    PubMed

    Case, Timothy; Morrison, Cecily; Vuylsteke, Alain

    2012-10-01

    Mobile health care technology (mHealth) has the potential to improve communication and clinical information management in disasters. This study reviews the literature on health care and computing published in the past five years to determine the types and efficacy of mobile applications available to disaster medicine, along with lessons learned. Five types of applications are identified: (1) disaster scene management; (2) remote monitoring of casualties; (3) medical image transmission (teleradiology); (4) decision support applications; and (5) field hospital information technology (IT) systems. Most projects have not yet reached the deployment stage, but evaluation exercises show that mHealth should allow faster processing and transport of patients, improved accuracy of triage and better monitoring of unattended patients at a disaster scene. Deployments of teleradiology and field hospital IT systems to disaster zones suggest that mHealth can improve resource allocation and patient care. The key problems include suitability of equipment for use in disaster zones and providing sufficient training to ensure staff familiarity with complex equipment. Future research should focus on providing unbiased observations of the use of mHealth in disaster medicine.

  8. Experiences and recommendations in deploying a real-time, water quality monitoring system

    NASA Astrophysics Data System (ADS)

    O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.

    2010-12-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points have been collected since the multi-sensor system was deployed in May 2009. Extreme meteorological events have occurred during the period of deployment and the collection of real-time water quality data as well as the knowledge, experience and recommendations for future deployments are discussed.

  9. A scoping review of training and deployment policies for human resources for health for maternal, newborn, and child health in rural Africa.

    PubMed

    Murphy, Gail Tomblin; Goma, Fastone; MacKenzie, Adrian; Bradish, Stephanie; Price, Sheri; Nzala, Selestine; Rose, Annette Elliott; Rigby, Janet; Muzongwe, Chilweza; Chizuni, Nellisiwe; Carey, Amanda; Hamavhwa, Derrick

    2014-12-16

    Most African countries are facing a human resources for health (HRH) crisis, lacking the required workforce to deliver basic health care, including care for mothers and children. This is especially acute in rural areas and has limited countries' abilities to meet maternal, newborn, and child health (MNCH) targets outlined by Millennium Development Goals 4 and 5. To address the HRH challenges, evidence-based deployment and training policies are required. However, the resources available to country-level policy makers to create such policies are limited. To inform future HRH planning, a scoping review was conducted to identify the type, extent, and quality of evidence that exists on HRH policies for rural MNCH in Africa. Fourteen electronic health and health education databases were searched for peer-reviewed papers specific to training and deployment policies for doctors, nurses, and midwives for rural MNCH in African countries with English, Portuguese, or French as official languages. Non-peer reviewed literature and policy documents were also identified through systematic searches of selected international organizations and government websites. Documents were included based on pre-determined criteria. There was an overall paucity of information on training and deployment policies for HRH for MNCH in rural Africa; 37 articles met the inclusion criteria. Of these, the majority of primary research studies employed a variety of qualitative and quantitative methods. Doctors, nurses, and midwives were equally represented in the selected policy literature. Policies focusing exclusively on training or deployment were limited; most documents focused on both training and deployment or were broader with embedded implications for the management of HRH or MNCH. Relevant government websites varied in functionality and in the availability of policy documents. The lack of available documentation and an apparent bias towards HRH research in developed areas suggest a need for strengthened capacity for HRH policy research in Africa. This will result in enhanced potential for evidence uptake into policy. Enhanced alignment between policy-makers' information needs and the independent research agenda could further assist knowledge development and uptake. The results of this scoping review informed an in-depth analysis of relevant policies in a sub-set of African countries.

  10. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  11. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, Etsushi; Yamagata, Yoshiki

    2014-09-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socioeconomic scenarios that aim to keep mean global temperature rise below 2°C above preindustrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high-fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full postprocess combustion CO2 capture is deployed with a high-fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required; however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise, a conflict of land use with food production is inevitable.

  12. Venus entry probe technology reference mission

    NASA Astrophysics Data System (ADS)

    van den Berg, M. L.; Falkner, P.; Atzei, A. C.; Phipps, A.; Mieremet, A.; Kraft, S.; Peacock, A.

    The Venus Entry Probe is one of ESA's Technology Reference Missions (TRM). TRMs are model science-driven missions that are, although not part of the ESA science programme, able to provide focus to future technology requirements. This is accomplished through the study of several technologically demanding and scientifically meaningful mission concepts, which are strategically chosen to address diverse technological issues. The TRMs complement ESA's current mission specific development programme and allow the ESA Science Directorate to strategically plan the development of technologies that will enable potential future scientific missions. Key technological objectives for future planetary exploration include the use of small orbiters and in-situ probes with highly miniaturized and highly integrated payload suites. The low resource, and therefore low cost, spacecraft allow for a phased strategic approach to planetary exploration. The aim of the Venus Entry Probe TRM (VEP) is to study approaches for low cost in-situ exploration of the Venusian atmosphere. The mission profile consists of two minisats. The first satellite enters low Venus orbit. This satellite contains a highly integrated remote sensing payload suite primarily dedicated to support the in-situ atmospheric measurements of the aerobot. The second minisat enters deep elliptical orbit, deploys the aerobot, and subsequently operates as a data relay, data processing and overall resource allocation satellite. The micro-aerobot consists of a long-duration balloon that will analyze the Venusian middle cloud layer at an altitude of ˜ 55 km, where the environment is relatively benign (T = 20 C and p = 0.45 bars). The balloon will deploy a swarm of active ballast probes, which determine vertical profiles of selected properties of the lower atmosphere. In this presentation, the mission objectives and profile of the Venus Entry Probe TRM will be given as well as the key technological challenges.

  13. The Navy at a Tipping Point: Maritime Dominance at Stake?

    DTIC Science & Technology

    2010-03-01

    Navy" USN Deployment Strategy Future Global Environment for USN Operations External and Internal Drivers on USN Options Five Means for a "Global...Defense CARAT Deployment HCA cruises Counter-Dnjg oPs NAVSO/4 ,h Fleet Patmi NAVCENT/5,h Fleet GFS . . „ Horn of Global Fleet Station ...against advanced air defenses, conduct and enable littoral/amphibious operations in opposed environments , and establish blue-water dominance against

  14. Deployment Family Stress: Child Neglect and Maltreatment in U.S. Army Families

    DTIC Science & Technology

    2009-10-01

    in u.s. Army Families." The rationale for the study was based on scientific reports indicating a possible connection between the increase in rates of...greater ease of use in the future. Key Research Accomplishments a. Scientific poster presentations ("Deployment Family Stress: Child Neglect and...Community Resources Questionnaire Appendix D: Example copy of Neglect Poster Presentation 4 Appendix A KEY INFORMANT COMMUNITY RESOURCES QUESTIONNAIRE

  15. Neural and Biological Soldier Enhancement: From SciFi to Deployment

    DTIC Science & Technology

    2009-10-01

    and force, extra- and ultra-sensory perception , side-effect free 72-hours unbowed alertness, or brain-based Report Documentation Page Form...Deployment 33 - 2 RTO-MP-HFM-181 augmented reality perception , become conceivable and increasingly within reach. A lot of these extraordinary...visionary or exotic, might severely impact NATO forces´ future performance. In addition, a shift in society´s perception of the parting rule between human

  16. Review of Large Spacecraft Deployable Membrane Antenna Structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  17. Case study: design and implementation of training for scientists deploying to Ebola diagnostic field laboratories in Sierra Leone: October 2014 to February 2016

    PubMed Central

    Lewis, Suzanna M.; Lansley, Amber; Fraser, Sara; Shieber, Clare; Shah, Sonal; Semper, Amanda; Bailey, Daniel; Busuttil, Jason; Evans, Liz; Carroll, Miles W.; Silman, Nigel J.; Brooks, Tim; Shallcross, Jane A.

    2017-01-01

    As part of the UK response to the 2013–2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396470

  18. Postdeployment behavioral health screening: face-to-face versus virtual behavioral health interviews.

    PubMed

    Sipos, Maurice L; Foran, Heather M; Crane, Maria L; Wood, Michael D; Wright, Kathleen M

    2012-05-01

    Virtual behavioral health (VBH) services are used frequently to address the high demand for behavioral health (BH) services in the military. Few studies have investigated the relationship between the use of VBH services and BH outcomes or preferences for the use of VBH technologies. In this article, we evaluated BH interviews conducted via video teleconferencing (VTC) or face-to-face in terms of BH symptoms, satisfaction rates, stigma, barriers to care, and preferences for future use of BH care. Soldiers (n = 307) from the headquarters element of an operational unit were surveyed 4 months following a 12-month deployment to Iraq. There were no significant differences in satisfaction rates based on interview modality, but significantly more soldiers preferred face-to-face interviews over VTC interviews in the future. Soldiers who preferred face-to-face interviews also reported higher levels of anxiety and depression symptoms than those who preferred VTC interviews. No significant age differences were found in terms of interview modality satisfaction or preference. Soldiers with greater deployment experience were more likely to report that they would not like using VTC if seeking BH care in the future than soldiers with less deployment experience. These findings highlight the importance of promoting choice in type of BH interview modality.

  19. Distributed Underwater Sensing: A Paradigm Change for the Future

    NASA Astrophysics Data System (ADS)

    Yang, T. C.

    Distributed netted underwater sensors (DNUS) present a paradigm change that has generated high interest all over the world. It utilizes many small spatially distributed, inexpensive sensors, and a certain number of mobile nodes, such as autonomous underwater vehicles (AUVs), forming a wireless acoustic network to relate data and provide real time monitoring of the ocean. Distributed underwater sensors can be used for oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications over wide areas. These functions were traditionally accomplished by a cabled system, such as an array of sensors deployed from a platform, or a large number of sensors moored on the ocean bottom, connected by a cable. The cabled systems are not only expensive but often require heavy ocean engineering (e.g., equipment to deploy heavy armored cables). In the future, as fabrication technology advances making low cost sensors a reality, DNUS is expected to be affordable and will become the undersea "OceanNet" for the marine industry like the current "internet" on land. This paper gives a layman view of the system concept, the state of the art, and future challenges. One of challenges, of particular interest to this conference, is to develop technologies for miniature-size sensors that are energy efficient, allowing long time deployment in the ocean.

  20. Military Combat Deployments and Substance Use: Review and Future Directions

    PubMed Central

    LARSON, MARY JO; WOOTEN, NIKKI R.; ADAMS, RACHEL SAYKO; MERRICK, ELIZABETH L.

    2012-01-01

    Iraq and Afghanistan veterans experience extreme stressors and injuries during deployments, witnessing and participating in traumatic events. The military has organized prevention and treatment programs as a result of increasing suicides and posttraumatic stress disorder among troops; however, there is limited research on how to intervene with alcohol misuse and drug use that accompany these problems. This review presents statistics about post-deployment substance use problems and comorbidities, and discusses the military’s dual role in 1) enforcing troop readiness with its alcohol and drug policies and resiliency-building programs, and 2) seeking to provide treatment to troops with combat-acquired problems including substance abuse. PMID:22496626

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Matt; Hamilton, Chris

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal tomore » liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.« less

  2. The need for preventive and curative services for malaria when the military is deployed in endemic overseas territories: a case study and lessons learned.

    PubMed

    Fernando, Sumadhya Deepika; Booso, Rahuman; Dharmawardena, Priyani; Harintheran, Arunagirinathan; Raviraj, Kugapiriyan; Rodrigo, Chaturaka; Danansuriya, Manjula; Wickremasinghe, Rajitha

    2017-01-01

    Sri Lanka has been free from indigenous malaria since November 2012 and received the WHO certificate for malaria-free status in September 2016. Due to increased global travel, imported malaria cases continue to be reported in the country. Military personnel returning home from international peace-keeping missions in malaria endemic countries represent a key risk group in terms of imported malaria. The present study intended to characterize the potential causes of a malaria outbreak among the Sri Lankan security forces personnel deployed in the Central African Republic (CAR). Data were collected from a cross-sectional survey distributed among Sri Lankan Air Force personnel who had returned from United Nations peace-keeping missions in the CAR region. A pre-tested questionnaire was used for the data collection, and focus group discussions were also conducted. One hundred twenty male Air Force personnel were interviewed (out of a group of 122 officers and airmen). All participants were deployed in the CAR for 14 months and were aware of the existence of chemoprophylaxis against malaria. The majority of the subjects (92.5%, 111/120) also knew that prophylaxis should be started prior to departure. However, the regular use of chemoprophylaxis was reported by only 61.7% (74/120) of the sample. Overall, 30.8% of the participants (37/120) had 44 symptomatic episodes of malaria during deployment, and one person succumbed to severe malaria. All cases were associated with noncompliance with chemoprophylaxis. Better coordination with overseas healthcare services and the establishment of directly observed chemoprophylaxis may help to avoid similar outbreaks in the future.

  3. Comparing supply and demand models for future photovoltaic power generation in the USA

    DOE PAGES

    Basore, Paul A.; Cole, Wesley J.

    2018-02-22

    We explore the plausible range of future deployment of photovoltaic generation capacity in the USA using a supply-focused model based on supply-chain growth constraints and a demand-focused model based on minimizing the overall cost of the electricity system. Both approaches require assumptions based on previous experience and anticipated trends. For each of the models, we assign plausible ranges for the key assumptions and then compare the resulting PV deployment over time. Each model was applied to 2 different future scenarios: one in which PV market penetration is ultimately constrained by the uncontrolled variability of solar power and one in whichmore » low-cost energy storage or some equivalent measure largely alleviates this constraint. The supply-focused and demand-focused models are in substantial agreement, not just in the long term, where deployment is largely determined by the assumed market penetration constraints, but also in the interim years. For the future scenario without low-cost energy storage or equivalent measures, the 2 models give an average plausible range of PV generation capacity in the USA of 150 to 530 GWdc in 2030 and 260 to 810 GWdc in 2040. With low-cost energy storage or equivalent measures, the corresponding ranges are 160 to 630 GWdc in 2030 and 280 to 1200 GWdc in 2040. The latter range is enough to supply 10% to 40% of US electricity demand in 2040, based on current demand growth.« less

  4. Comparing supply and demand models for future photovoltaic power generation in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basore, Paul A.; Cole, Wesley J.

    We explore the plausible range of future deployment of photovoltaic generation capacity in the USA using a supply-focused model based on supply-chain growth constraints and a demand-focused model based on minimizing the overall cost of the electricity system. Both approaches require assumptions based on previous experience and anticipated trends. For each of the models, we assign plausible ranges for the key assumptions and then compare the resulting PV deployment over time. Each model was applied to 2 different future scenarios: one in which PV market penetration is ultimately constrained by the uncontrolled variability of solar power and one in whichmore » low-cost energy storage or some equivalent measure largely alleviates this constraint. The supply-focused and demand-focused models are in substantial agreement, not just in the long term, where deployment is largely determined by the assumed market penetration constraints, but also in the interim years. For the future scenario without low-cost energy storage or equivalent measures, the 2 models give an average plausible range of PV generation capacity in the USA of 150 to 530 GWdc in 2030 and 260 to 810 GWdc in 2040. With low-cost energy storage or equivalent measures, the corresponding ranges are 160 to 630 GWdc in 2030 and 280 to 1200 GWdc in 2040. The latter range is enough to supply 10% to 40% of US electricity demand in 2040, based on current demand growth.« less

  5. Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqun; Li, Na; Yang, Guigeng; Ru, Wenrui

    2017-02-01

    This paper presents a dynamic analysis approach for the composite structure of a deployable truss and cable-net system. An Elastic Catenary Element is adopted to model the slack/tensioned cables. Then, from the energy standpoint, the kinetic energy, elasticity-potential energy and geopotential energy of the cable-net structure and deployable truss are derived. Thus, the flexible multi-body dynamic model of the deployable antenna is built based on the Lagrange equation. The effect of the cable-net tension on the antenna truss is discussed and compared with previous publications and a dynamic deployment analysis is performed. Both the simulation and experimental results verify the validity of the method presented.

  6. Information management to enable personalized medicine: stakeholder roles in building clinical decision support.

    PubMed

    Downing, Gregory J; Boyle, Scott N; Brinner, Kristin M; Osheroff, Jerome A

    2009-10-08

    Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent meaningful benefits to personalized decision-making, a comparison of current and future applications of clinical decision support to enable individualized medical treatment plans is presented. If clinical decision support tools are to impact outcomes in a clear and positive manner, their development and deployment must therefore consider the needs of the providers, including specific practice needs, information workflow, and practice environment.

  7. Information management to enable personalized medicine: stakeholder roles in building clinical decision support

    PubMed Central

    2009-01-01

    Background Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies. Discussion Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine. Summary This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent meaningful benefits to personalized decision-making, a comparison of current and future applications of clinical decision support to enable individualized medical treatment plans is presented. If clinical decision support tools are to impact outcomes in a clear and positive manner, their development and deployment must therefore consider the needs of the providers, including specific practice needs, information workflow, and practice environment. PMID:19814826

  8. Demand Response and Energy Storage Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less

  9. Demand Response and Energy Storage Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ookie; Cheung, Kerry

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less

  10. Iron Status of Deployed Military Members

    DTIC Science & Technology

    2017-01-04

    iron status should consider race and ethnicity, military specialty, duty requirements affecting physical activity, and dietary intake. If altitude...in the deployed setting; many military personnel face potentially limited dietary options and increased physical activity while deployed. Because ID...JP, Cable SJ, et al: Randomized, double-blind, placebo controlled trial of iron supplementation in female soldiers during military training: effects

  11. Unmanned Aircraft System (UAS) service demand 2015 - 2035 : literature review & projections of future usage, technical report, version 1.0 - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    This report assesses opportunities, risks, and challenges attendant to future development and deployment of UAS within the National Airspace System (NAS) affecting UAS forecast growth from 2015 to 2035. Analysis of four key areas is performed: techno...

  12. Optimization Techniques for 3D Graphics Deployment on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Koskela, Timo; Vatjus-Anttila, Jarkko

    2015-03-01

    3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.

  13. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control.

    PubMed

    Norris, Edmund J; Coats, Joel R

    2017-01-29

    Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed.

  14. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control

    PubMed Central

    Norris, Edmund J.; Coats, Joel R.

    2017-01-01

    Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed. PMID:28146066

  15. Novel large deployable antenna backing structure concepts for foldable reflectors

    NASA Astrophysics Data System (ADS)

    Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.

    2013-12-01

    This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.

  16. Deploying Embodied AI into Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Burden, David J. H.

    The last two years have seen the start of commercial activity within virtual worlds. Unlike computer games where Non-Player-Character avatars are common, in most virtual worlds they are the exception — and until recently in Second Life they were non-existent. However there is real commercial scope for Als in these worlds — in roles from virtual sales staff and tutors to personal assistants. Deploying an embodied AI into a virtual world offers a unique opportunity to evaluate embodied Als, and to develop them within an environment where human and computer are on almost equal terms. This paper presents an architecture being used for the deployment of chatbot driven avatars within the Second Life virtual world, looks at the challenges of deploying an AI within such a virtual world, the possible implications for the Turing Test, and identifies research directions for the future.

  17. Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Bolinger, Mark; Heath, Garvin

    We model scenarios of the U.S. electric sector in which wind generation reaches 10% of end-use electricity demand in 2020, 20% in 2030, and 35% in 2050. As shown in a companion paper, achieving these penetration levels would have significant implications for the wind industry and the broader electric sector. Compared to a baseline that assumes no new wind deployment, under the primary scenario modeled, achieving these penetrations imposes an incremental cost to electricity consumers of less than 1% through 2030. These cost implications, however, should be balanced against the variety of environmental and social implications of such a scenario.more » Relative to a baseline that assumes no new wind deployment, our analysis shows that the high-penetration wind scenario yields potential greenhouse-gas benefits of $85-$1,230 billion in present-value terms, with a central estimate of $400 billion. Air-pollution-related health benefits are estimated at $52-$272 billion, while annual electric-sector water withdrawals and consumption are lower by 15% and 23% in 2050, respectively. We also find that a high-wind-energy future would have implications for the diversity and risk of energy supply, local economic development, and land use and related local impacts on communities and ecosystems; however, these additional impacts may not greatly affect aggregate social welfare owing to their nature, in part, as resource transfers.« less

  18. Space Technology 5: Pathfinder for Future Micro-Sat Constellations

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Finnegan, Eric

    2004-01-01

    The Space Technology 5 (ST-5) Project, currently in the implementation phase, is part of the National Aeronautics and Space Administration (NASA) s New Millennium Program (NMP). ST-5 will consist of a constellation of three miniature satellites, each with mass less than 25 kg and size approximately 60 cm by 30 cm. ST-5 addresses technology challenges, as well as fabrication, assembly, test and operations strategies for future micro-satellite missions. ST-5 will be deployed into a highly eccentric, geo-transfer orbit (GTO). This will expose the spacecraft to a high radiation environment as well as provide a low level magnetic background. A three-month flight demonstration phase is planned to validate the technologies and demonstrate concepts for future missions. Each ST-5 spacecraft incorporates NMP competitively-selected breakthrough technologies. These include Cold Gas Micro-Thrusters for propulsion and attitude control, miniature X-band transponder for space-ground communications, Variable Emittance Coatings for dynamic thermal control, and CULPRiT ultra low power logic chip used for Reed-Solomon encoding. The ST-5 spacecraft itself is a technology that can be infused into future missions. It is a fully functional micro-spacecraft built within tight volume and mass constraints. It is built to withstand a high radiation environment, large thermal variations, and high launch loads. The spacecraft power system is low-power and low-voltage, and is designed to turn on after separation &om the launch vehicle. Some of the innovations that are included in the ST-5 design are a custom spacecraft deployment structure, magnetometer deployment boom, nutation damper, X-band antenna, miniature spinning sun sensor, solar array with triple junction solar cells, integral card cage assembly containing single card Command and Data Handling and Power System Electronics, miniature magnetometer, and lithium ion battery. ST-5 will demonstrate the ability of a micro satellite to perform research-quality science. Each ST-5 spacecraft will deploy a precision magnetometer to be used both for attitude determination and as a representative science instrument. The spacecraft has been developed with a low magnetic signature to avoid interference with the magnetometer. The spacecraft will be able to detect and respond autonomously to science events, i.e. significant changes in the magnetic field measurements. The three spacecraft will be a pathfinder for future constellation missions. They will be deployed to demonstrate an appropriate geometry for scientific measurements as a constellation. They will be operationally managed as a constellation, demonstrating automation and communication strategies that will be useful for future missions. The technologies and future mission concepts will be validated both on the ground and in space. Technologies will be validated on the ground by a combination of component level and system level testing of the flight hardware in a thermal vacuum environment. In flight, specific validation runs are planned for each of the technologies. Each validation run consists of one or more orbits with a specific validation objective. This paper will describe the ST-5 mission, and the applicability of the NMP technologies, spacecraft, and mission concepts to future missions. It will also discuss the validation approach for the ST-5 technologies and mission concepts.

  19. Data mining for health executive decision support: an imperative with a daunting future!

    PubMed Central

    Glover, Saundra; Rivers, Patrick A; Asoh, Derek A; Piper, Crystal N; Murph, Keva

    2010-01-01

    Summary Data mining is highly profiled. It has the potential to enhance executive information systems. Such enhancement would mean better decision-making by management, which in turn would mean better services for customers. While the future of data mining as technology should be exciting, some are worried about privacy concerns, which make the future of data mining daunting. This paper examines why data mining is highly profiled – the imperative toward data mining, data mining models and processes. Additionally, the paper examines some of the benefits and challenges of using data mining processes within the health-care arena. We cast the future of data mining by highlighting two of the many data mining tools available – one commercial and one freely available. Subsequently, we discuss a number of social and technical factors that may thwart the extensive deployment of data mining, especially when the intent is to know more about the people that organizations have to serve and cast a view of what the future holds for data mining. This component is especially important when attempting to determine the longevity of data mining within health-care organizations. It is hoped that our discussions would be useful to organizations as they engage data mining, strategies for executive information systems and information policy issues. PMID:20150610

  20. Understanding the elevated suicide risk of female soldiers during deployments

    PubMed Central

    Street, A. E.; Gilman, S. E.; Rosellini, A. J.; Stein, M. B.; Bromet, E. J.; Cox, K. L.; Colpe, L. J.; Fullerton, C. S.; Gruber, M. J.; Heeringa, S. G.; Lewandowski-Romps, L.; Little, R. J. A.; Naifeh, J. A.; Nock, M. K.; Sampson, N. A.; Schoenbaum, M.; Ursano, R. J.; Zaslavsky, A. M.; Kessler, R. C.

    2016-01-01

    Background The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS) has found that the proportional elevation in the US Army enlisted soldier suicide rate during deployment (compared with the never-deployed or previously deployed) is significantly higher among women than men, raising the possibility of gender differences in the adverse psychological effects of deployment. Method Person-month survival models based on a consolidated administrative database for active duty enlisted Regular Army soldiers in 2004–2009 (n = 975 057) were used to characterize the gender × deployment interaction predicting suicide. Four explanatory hypotheses were explored involving the proportion of females in each soldier’s occupation, the proportion of same-gender soldiers in each soldier’s unit, whether the soldier reported sexual assault victimization in the previous 12 months, and the soldier’s pre-deployment history of treated mental/behavioral disorders. Results The suicide rate of currently deployed women (14.0/100 000 person-years) was 3.1–3.5 times the rates of other (i.e. never-deployed/previously deployed) women. The suicide rate of currently deployed men (22.6/100 000 person-years) was 0.9–1.2 times the rates of other men. The adjusted (for time trends, sociodemographics, and Army career variables) female:male odds ratio comparing the suicide rates of currently deployed v. other women v. men was 2.8 (95% confidence interval 1.1–6.8), became 2.4 after excluding soldiers with Direct Combat Arms occupations, and remained elevated (in the range 1.9–2.8) after adjusting for the hypothesized explanatory variables. Conclusions These results are valuable in excluding otherwise plausible hypotheses for the elevated suicide rate of deployed women and point to the importance of expanding future research on the psychological challenges of deployment for women. PMID:25359554

  1. Impact of Deployment-Related Sexual Stressors on Psychiatric Symptoms After Accounting for Predeployment Stressors: Findings From a U.S. National Guard Cohort.

    PubMed

    McCallum, Ethan B; Murdoch, Maureen; Erbes, Christopher R; Arbisi, Paul; Polusny, Melissa A

    2015-08-01

    This study used a longitudinal research design to examine the impact of predeployment stressors and deployment-related sexual stressors on self-reported psychiatric symptoms of U.S. National Guard soldiers returning from deployments to Iraq or Afghanistan. Prior to deployment, participants completed measures of depression and posttraumatic stress symptoms, along with an inventory of predeployment stressor experiences. At 3-months postdeployment, participants (468 men, 60 women) again completed self-report measures of psychiatric symptoms, along with an inventory of sexual stressors experienced during deployment. We compared a cross-sectional model of sexual stressors' impact on psychiatric symptoms, in which only postdeployment reports were considered, to a longitudinal model in which we adjusted for participants' predeployment stressors and psychiatric symptoms. No participants reported sexual assault during deployment, though sexual harassment was common. The cross-sectional model suggested that deployment-related sexual stressors were significantly associated with postdeployment depression (R(2) = .11) and posttraumatic stress symptoms (R(2) = .10). Once predeployment factors were taken into consideration, however, sexual stressors were no longer significant. The results did not support the notion of lasting negative impact for low-level sexual stressors (e.g., sexual harassment) during deployment after predeployment stressors are accounted for. Future studies of sexual stressors should consider longitudinal designs. © 2015 International Society for Traumatic Stress Studies.

  2. Energy release for the actuation and deployment of muscle-inspired asymmetrically multistable chains

    NASA Astrophysics Data System (ADS)

    Kidambi, Narayanan; Zheng, Yisheng; Harne, Ryan L.; Wang, K. W.

    2018-03-01

    Animal locomotion and movement requires energy, and the elastic potential energy stored in skeletal muscle can facilitate movements that are otherwise energetically infeasible. A significant proportion of this energy is captured and stored in the micro- and nano-scale constituents of muscle near the point of instability between asymmetric equilibrium states. This energy may be quickly released to enable explosive macroscopic motions or to reduce the metabolic cost of cyclic movements. Inspired by these behaviors, this research explores modular metastructures of bistable element chains and develops methods to release the energy stored in higher-potential system configurations. Quasi-static investigations reveal the role of state-transition pathways on the overall efficiency of the deployment event. It is shown that sequential, local release of energy from the bistable elements is more efficient than concurrent energy release achieved by applying a force at the free end of the structure. From dynamic analyses and experiments, it is shown that that the energy released from one bistable element can be used to activate the release of energy from subsequent links, reducing the actuation energy required to extend or deploy the chain below that required for quasi-static deployment. This phenomenon is influenced by the level of asymmetry in the bistable constituents and the location of the impulse that initiates the deployment of the structure. The results provide insight into the design and behavior of asymmetrically multistable chains that can leverage stored potential energy to enable efficient and effective system deployment and length change.

  3. Data and Analysis Methods of the Son-O-Mermaid and MERMAID Experiments

    NASA Astrophysics Data System (ADS)

    Simon, J. D.; Simons, F. J.; Nolet, G.

    2014-12-01

    Here we present, for the first time, the results from pilot deployments of the Son-O-Mermaid project, an autonomously drifting, oceangoing data-collection platform that can be cheaply deployed without the need for a costly research vessel, and that records and transmits hydroacoustic signals (with a target of those generated by teleseismic earthquakes) in near real-time. Both deployments employ three identical hydrophones spaced about 70 cm apart at the end of a 700 m long cable attached to a surface buoy that houses electronics, communications, and a GPS location package. The maiden voyage occurred October 8, 2012, in Exuma Bay, Bahamas and returned 25 hours of acoustic data. A second deployment is to take place in September 2014, with near-immediate data relay via Iridium modem. The experimental setup is different from the MERMAID instrument, which sinks to a midcolumn depth and surfaces to transmit waveforms when an event detection algorithm is triggered. MERMAIDs have recorded hundreds of seismic traces from 18 active floats in the Indian and Mediterranean Oceans with a signal-to-noise ratio suitable for global tomography. As with earthquake early-warning studies, both Son-O-Mermaid and MERMAID benefit from rapid and accurate event detection, discrimination, and measurement technology. With this triple purpose in mind we continue to improve methods (in the time-domain, via spectrogram analysis and using wavelets) that we illustrate on the latest and some of the older data, as well. While hydroacoustic data have numerous other applications beyond seismology (whale calls, ice calving, weather patterns, and so on) the Son-O-Mermaid and MERMAID instruments may potentially revolutionize seismic data collection in the oceans. Moreover, in the near future they will be fitted with more or different instruments, becoming multipurpose and multidisciplinary platforms for all types of scientific research in and of the oceans. In seismology we envision a future when the world's oceans are populated by a permanent array of hundreds of passively drifting Son-O-Mermaid and MERMAID floats, recording and transmitting data, being to ocean-bottom seismometers what a US Flexible Array is to the Backbone Array: lesser data in some sense, but much more abundant, more reliably recovered - and all that at a much lower-cost.

  4. Increased Small-World Network Topology Following Deployment-Acquired Traumatic Brain Injury Associated with the Development of Post-Traumatic Stress Disorder.

    PubMed

    Rowland, Jared A; Stapleton-Kotloski, Jennifer R; Dobbins, Dorothy L; Rogers, Emily; Godwin, Dwayne W; Taber, Katherine H

    2018-05-01

    Cross-sectional and longitudinal studies in active duty and veteran cohorts have both demonstrated that deployment-acquired traumatic brain injury (TBI) is an independent risk factor for developing post-traumatic stress disorder (PTSD), beyond confounds such as combat exposure, physical injury, predeployment TBI, and pre-deployment psychiatric symptoms. This study investigated how resting-state brain networks differ between individuals who developed PTSD and those who did not following deployment-acquired TBI. Participants included postdeployment veterans with deployment-acquired TBI history both with and without current PTSD diagnosis. Graph metrics, including small-worldness, clustering coefficient, and modularity, were calculated from individually constructed whole-brain networks based on 5-min eyes-open resting-state magnetoencephalography (MEG) recordings. Analyses were adjusted for age and premorbid IQ. Results demonstrated that participants with current PTSD displayed higher levels of small-worldness, F(1,12) = 5.364, p < 0.039, partial eta squared = 0.309, and Cohen's d = 0.972, and clustering coefficient, F(1, 12) = 12.204, p < 0.004, partial eta squared = 0.504, and Cohen's d = 0.905, than participants without current PTSD. There were no between-group differences in modularity or the number of modules present. These findings are consistent with a hyperconnectivity hypothesis of the effect of TBI history on functional networks rather than a disconnection hypothesis, demonstrating increased levels of clustering coefficient rather than a decrease as might be expected; however, these results do not account for potential changes in brain structure. These results demonstrate the potential pathological sequelae of changes in functional brain networks following deployment-acquired TBI and represent potential neurobiological changes associated with deployment-acquired TBI that may increase the risk of subsequently developing PTSD.

  5. Tackling Africa's digital divide

    NASA Astrophysics Data System (ADS)

    Lavery, Martin P. J.; Abadi, Mojtaba Mansour; Bauer, Ralf; Brambilla, Gilberto; Cheng, Ling; Cox, Mitchell A.; Dudley, Angela; Ellis, Andrew D.; Fontaine, Nicolas K.; Kelly, Anthony E.; Marquardt, Christoph; Matlhane, Selaelo; Ndagano, Bienvenu; Petruccione, Francesco; Slavík, Radan; Romanato, Filippo; Rosales-Guzmán, Carmelo; Roux, Filippus S.; Roux, Kobus; Wang, Jian; Forbes, Andrew

    2018-05-01

    Innovations in `sustainable' photonics technologies such as free-space optical links and solar-powered equipment provide developing countries with new cost-effective opportunities for deploying future-proof telecommunication networks.

  6. Advances in damage control resuscitation and surgery: implications on the organization of future military field forces

    PubMed Central

    Tien, Col Homer; Beckett, Maj Andrew; Garraway, LCol Naisan; Talbot, LCol Max; Pannell, Capt Dylan; Alabbasi, Thamer

    2015-01-01

    Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future. PMID:26100784

  7. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  8. Feasibility study for ergonomic analysis and design of future helicopter cockpit systems

    NASA Technical Reports Server (NTRS)

    Hawkins, H. L.

    1985-01-01

    The Army's light scout-attack helicopters (LHXs), planned for deployment in the 1990's, will fly nap-of-the-earth (NOE) missions in high threat environments, often under poor visibility and adverse atmospheric conditions, and probably with a one man crew. A procedure for the analysis of pilot workload that will identify and explicate the main characteristics of those LHX mission components holding overload potential is described. A principled, in-depth, explication of the cognitive demans of LHX piloting is essential to any effective effort to address the human factors issues. A task-analytic procedure that will yield the detail and organizstion needed to achieve these goals is examined.

  9. Lessons from the Deployment of the SPIRIT App to Support Collaborative Care for Rural Patients with Complex Psychiatric Conditions

    PubMed Central

    Bauer, Amy M.; Hodsdon, Sarah; Hunter, Suzanne; Choi, Youlim; Bechtel, Jared; Fortney, John C.

    2017-01-01

    We report the design and deployment of a mobile health system for patients receiving primary care-based mental health services (Collaborative Care) for post-traumatic stress disorder and/or bipolar disorder in rural health centers. Here we describe the clinical model, our participatory approach to designing and deploying the mobile system, and describe the final system. We focus on the integration of the system into providers’ clinical workflow and patient registry system. We present lessons learned about the technical and training requirements for integration into practice that can inform future efforts to incorporate health technologies to improve care for patients with psychiatric conditions. PMID:29075683

  10. Phaeton Mast Dynamics: On-Orbit Characterization of Deployable Masts

    NASA Technical Reports Server (NTRS)

    Michaels, Darren J.

    2011-01-01

    The PMD instrument is a set of three custom-designed triaxial accelerometer systems designed specifically to detect and characterize the modal dynamics of deployable masts in orbit. The instrument was designed and built as a payload for the NuSTAR spacecraft, but it is now sponsored by the Air Force Research Laboratory's DSX project. It can detect acceleration levels from 1 micro gram to 0.12g over a frequency range of 0.1Hz to 30Hz, the results of which can support future modeling and designing of deployable mast structures for space. This paper details the hardware architecture and design, calibration test and results, and current status of the PMD instrument.

  11. Demonstrations of Deployable Systems for Robotic Precursor Missions

    NASA Technical Reports Server (NTRS)

    Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.

  12. Airport Surface Traffic Control Systems Deployment Analysis

    DOT National Transportation Integrated Search

    1974-01-01

    The report summarizes the findings of an analysis of ASTC (Airport Surface Traffic Control) system requirements and develops estimates of the deployment potential of proposed system alternatives. The tower control problem areas were investigated by a...

  13. Airport Surface Control Systems Development Analysis Expanded

    DOT National Transportation Integrated Search

    1990-01-01

    A previous MITRE Technical Report, Airport Surface Traffic Control Systems Deployment Analysis, FAA-RD-74-6, presented an analysis of ASTC (Airport Surface Traffic Control) system requirements and developed estimates of the deployment potential of pr...

  14. On the Path to SunShot - Utility Regulatory Business Model Reforms forAddressing the Financial Impacts of Distributed Solar on Utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Net-energy metering (NEM) with volumetric retail electricity pricing has enabled rapid proliferation of distributed photovoltaics (DPV) in the United States. However, this transformation is raising concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. Although DPV deployment in most utility territories remains too low to produce significant impacts, these concerns have motivated real and proposed reforms to utility regulatory and business models, with profound implications for future DPV deployment. This report explores the challenges and opportunities associated with such reforms in the context ofmore » the U.S. Department of Energy’s SunShot Initiative. As such, the report focuses on a subset of a broader range of reforms underway in the electric utility sector. Drawing on original analysis and existing literature, we analyze the significance of DPV’s financial impacts on utilities and non-solar ratepayers under current NEM rules and rate designs, the projected effects of proposed NEM and rate reforms on DPV deployment, and alternative reforms that could address utility and ratepayer concerns while supporting continued DPV growth. We categorize reforms into one or more of four conceptual strategies. Understanding how specific reforms map onto these general strategies can help decision makers identify and prioritize options for addressing specific DPV concerns that balance stakeholder interests.« less

  15. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology and survival.

    PubMed

    Beard, John D; Kamel, Freya

    2015-01-01

    Rates of amyotrophic lateral sclerosis (ALS) have been reported to be higher among US military veterans, who currently number more than 21 million, but the causal factor(s) has not been identified. We conducted a review to examine the weight of evidence for associations between military service, deployments, and exposures and ALS etiology and survival. Thirty articles or abstracts published through 2013 were reviewed. Although the current evidence suggests a positive association with ALS etiology, it is too limited to draw firm conclusions regarding associations between military service and ALS etiology or survival. Some evidence suggests that deployment to the 1990-1991 Persian Gulf War may be associated with ALS etiology, but there is currently no strong evidence that any particular military exposure is associated with ALS etiology. Future studies should address the limitations of previous ones, such as reliance on mortality as a surrogate for incidence, a dearth of survival analyses, lack of clinical data, low statistical power, and limited exposure assessment. The Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis (GENEVA) Study is one such study, but additional research is needed to determine whether military-related factors are associated with ALS and to assess potential prevention strategies. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. 'A band of brothers'-an exploration of the range of medical ethical issues faced by British senior military clinicians on deployment to Afghanistan: a qualitative study.

    PubMed

    Bernthal, Elizabeth M; Draper, H J A; Henning, J; Kelly, J C

    2017-06-01

    To identify and explore features of ethical issues that senior clinicians faced as deployed medical directors (DMDs) to the British Field Hospital in Afghanistan as well as to determine the ethical training requirements for future deployments. A qualitative study in two phases conducted from November 2014 to June 2015. Phase 1 analysed 60 vignettes of cases that had generated ethical dilemmas for DMDs. Phase 2 included focus groups and an interview with 13 DMDs. Phase 1 identified working with limited resources, dual conflict of meeting both clinical and military obligations and consent of children as the most prevalent ethical challenges. Themes found in Phase 2 included sharing clinical responsibilities with clinicians from other countries and not knowing team members' ways of working, in addition to the themes from Phase 1. This study has drawn together examples of scenarios to form a repository that will aid future training. Recommendations included undertaking ethics training together as a team before, during and after deployment which must include all nationalities who are assigned to the same operational tour, so that different ethical views can be explored beforehand. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Effects on health of volunteers deployed during a disaster.

    PubMed

    Swygard, Heidi; Stafford, Renae E

    2009-09-01

    Little is known about the risks, hazards, and health outcomes for health care personnel and volunteers working in disaster relief. We sought to characterize risks and outcomes in volunteers deployed to provide relief for victims of Hurricane Katrina. We performed a longitudinal e-mail survey that assessed preventive measures taken before and during deployment, exposures to hazards while deployed, and health outcomes at 1, 3, and 6 months postdeployment. Overall response rate was 36.1 per cent and one-third of those who responded did so for all three surveys. Exposures to different types of hazards changed over time with exposures to contaminated water being common. Despite predeployment and on-site education, use of preventive measures such as vaccination, appropriate clothing, hydration, sunscreen, and insect repellant was variable. Few injuries were sustained. Insect bites were common despite the use of insect repellants. Skin lesions, diarrhea, and other gastrointestinal complaints occurred most commonly early on during or after deployment. Psychological complaints were common at 3 and 6 months. In conclusion, identification of at risk volunteer cohorts with longitudinal surveillance is critical for future disaster planning to provide training for volunteers and workers and to allow for deployment of appropriate resources pre, during, and postdeployment.

  18. Atlanta NAVIGATOR case study. Final report, May 1996--Jun 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amodei, R.; Bard, E.; Brong, B.

    1998-11-01

    The Atlanta metropolitan region was the location of one of the most ambitious Intelligent Transportation Systems (ITS) deployments in the United States. This deployment included several individual projects--a Central Transportation Management Center (TMC), six Traffic Control Centers (TCC), one Transit Information Center (TIC), the Travel Information Showcase (TIS), and the extension of the Metropolitan Atlanta Rapid Transit Authority (MARTA) rail network and the new high-occupancy vehicle (HOV) lanes on I-85 and I-75. The Atlanta Centennial Olympic Games and Paralympic Games created a focus for these projects. All of these systems were to be brought on line in time for themore » Olympic Games. This report presents the findings of the NAVIGATOR Case Study and documents the lessons learned from the Atlanta ITS deployment experience in order to improve other ITS deployments in the future. The Case Study focuses on the institutional, programmatic, and technical issues and opportunities from planning and implementing the ITS deployment in Atlanta. The Case Study collected data and information from interviews, observations, focus groups, and documentation reviews. It presents a series of lessons learned and recommendations for enabling successful ITS deployments nationwide.« less

  19. The Impact of Military Deployment and Reintegration on Children and Parenting: A Systematic Review

    PubMed Central

    Creech, Suzannah K.; Hadley, Wendy; Borsari, Brian

    2015-01-01

    Hundreds of thousands of children have had at least 1 parent deploy as part of military operations in Iraq (Operation Iraqi Freedom; OIF; Operation New Dawn; OND) and Afghanistan (Operation Enduring Freedom; OEF). However, there is little knowledge of the impact of deployment on the relationship of parents and their children. This systematic review examines findings from 3 areas of relevant research: the impact of deployment separation on parenting, and children's emotional, behavioral, and health outcomes; the impact of parental mental health symptoms during and after reintegration; and current treatment approaches in veteran and military families. Several trends emerged. First, across all age groups, deployment of a parent may be related to increased emotional and behavioral difficulties for children, including higher rates of health-care visits for psychological problems during deployment. Second, symptoms of PTSD and depression may be related to increased symptomatology in children and problems with parenting during and well after reintegration. Third, although several treatments have been developed to address the needs of military families, most are untested or in the early stages of implementation and evaluation. This body of research suggests several promising avenues for future research. PMID:25844014

  20. The impact of deployment to Iraq or Afghanistan on partners and wives of military personnel.

    PubMed

    de Burgh, H Thomas; White, Claire J; Fear, Nicola T; Iversen, Amy C

    2011-04-01

    Deployment has well documented psychological consequences for military personnel. To fully understand the human cost of war, the psychosocial impact of separation and homecoming of military personnel on their families must also be considered. Recent arduous conflicts in Iraq and Afghanistan make understanding the impact of war on spouses topical and pertinent. Widespread psychological morbidity and social dysfunction have been reported in spouses of military personnel who have been deployed to combat zones such as Vietnam, with difficulties most acute for spouses of military personnel with post-traumatic stress disorder (PTSD). A review of the literature published between 2001 and 2010 assessing the impact of deployments to Iraq and Afghanistan on spouses of military personnel was conducted. A total of 14 US-based studies were identified which examined psychological morbidity, help seeking, marital dysfunction and stress in spouses. Longer deployments, deployment extensions and PTSD in military personnel were found to be associated with psychological problems for the spouse. Methodological differences in the studies limit direct comparisons. Recommendations for future research are outlined. The needs of spouses of military personnel remain an important issue with implications for service provision and occupational capability of both partners.

  1. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    PubMed

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  2. Evaluating and operationalizing unmanned aircraft for wildland fire use

    NASA Astrophysics Data System (ADS)

    Watts, A.

    2015-12-01

    Many potential uses of unmanned aircraft systems (UAS) related to wildland fire research and operations have been demonstrated, but the vast majority of these have been proof-of-concept or one-time flights. Scientists, practitioners, and firefighting agencies look forward to the widespread adoption of this powerful technology and its regular use. Similarly, the UAS industry awaits opportunities for commercialization. Our collaboration brings together UAS industry, research and management agencies, and universities in the USA and Canada to investigate the perceived effectiveness of UAS for wildland fire use, and the factors affecting their commercial-scale employment. Our current and future activities include market research, training and technology transfer, and deployment of UAS over fires to promote development of sensors as well as their safe integration into fire operations. We will present initial results, and as a part of our presentation we also invite participation of the AGU community for planned future project phases. We anticipate that the outcomes of our work will be useful to potential users who are unfamiliar with UAS, and to researchers and practitioners with experience or an interest in their use in fire and related natural-resource disciplines.

  3. Solar thermal technologies - Potential benefits to U.S. utilities and industry

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1983-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs. Previously announced in STAR as N83-10547

  4. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply making more resources available for development does not increase deployment; however, impacts to deployment could increase when coupled with other improvements (e.g., permitting, market and/or technology improvements).« less

  5. Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D): Risk Reduction for 6U-Class Nanosatellite Constellations

    NASA Astrophysics Data System (ADS)

    Reising, Steven C.; Gaier, Todd C.; Kummerow, Christian D.; Padmanabhan, Sharmila; Lim, Boon H.; Brown, Shannon T.; Heneghan, Cate; Chandra, Chandrasekar V.; Olson, Jon; Berg, Wesley

    2016-04-01

    TEMPEST-D will reduce the risk, cost and development time of a future constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition from non-precipitating to precipitating clouds using high-temporal resolution observations. TEMPEST-D provides passive millimeter-wave observations using a compact instrument that fits well within the size, weight and power (SWaP) requirements of the 6U-Class satellite architecture. TEMPEST-D is suitable for launch through NASA's CubeSat Launch Initiative (CSLI), for which it was selected in February 2015. By measuring the temporal evolution of clouds from the moment of the onset of precipitation, a TEMPEST constellation mission would improve our understanding of cloud processes and help to constrain one of the largest sources of uncertainty in climate models. Knowledge of clouds, cloud processes and precipitation is essential to our understanding of climate change. Uncertainties in the representation of key processes that govern the formation and dissipation of clouds and, in turn, control the global water and energy budgets lead to substantially different predictions of future climate in current models. TEMPEST millimeter-wave radiometers with five frequencies from 89 GHz to 182 GHz penetrate into the cloud to observe key changes as precipitation begins or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction and a key factor in Earth's radiation budget. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation, yielding a first-order understanding of assumptions and uncertainties in current cloud parameterizations in general circulation models in diverse climate regimes. For a potential future one-year operational mission, five identical 6U-Class satellites would be deployed in the same orbital plane with 5- to 10-minute spacing deployed in an orbit similar to the International Space Station resupply missions, i.e. at ~400 km altitude and ~51° inclination. A one-year mission would capture 3 million observations of precipitation greater than 1 mm/hour rain rate, including at least 100,000 deep convective events. Passive drag-adjusting maneuvers would separate the five CubeSats in the same orbital plane by 5-10 minutes each, similar to deployment techniques to be used by NASA's Cyclone Global Navigation Satellite Systems (CYGNSS) mission.

  6. The potential of treating Gulf War Illness with curcumin.

    PubMed

    Leibowitz, Jeffrey A; Ormerod, Brandi K

    2018-05-01

    A large proportion of Gulf War Veterans suffer from Gulf War Illness (GWI) - a devastating chronic disorder characterized by heterogeneous fatigue, pain and neuropsychological symptoms. In their recent Brain, Behavior and Immunity publication entitled "Curcumin Treatment Leads to Better Cognitive and Mood Function in a Model of Gulf War Illness with Enhanced Neurogenesis, and Alleviation of Inflammation and Mitochondrial Dysfunction in the Hippocampus", Kodali and colleagues (2018) report that the polyphenol curcumin improves cognition and mood in a rat model of GWI, potentially by increasing the expression of antioxidant genes and by reversing the effects of chronic combined acetylcholinesterase inhibitor exposure on neuroinflammation, mitochondrial respiration and hippocampal neurogenesis. This preclinical work is encouraging for our veterans who suffer chronically from GWI as well as for developing strategies to protect our troops during future deployments in similar environments. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Post-fledging movements of white-tailed eagles: Conservation implications for wind-energy development.

    PubMed

    Balotari-Chiebao, Fabio; Villers, Alexandre; Ijäs, Asko; Ovaskainen, Otso; Repka, Sari; Laaksonen, Toni

    2016-11-01

    The presence of poorly sited wind farms raises concerns for wildlife, including birds of prey. Therefore, there is a need to extend the knowledge of the potential human-wildlife conflicts associated with wind energy. Here, we report on the movements and habitat use of post-fledging satellite-tagged white-tailed eagles in Finland, where wind-energy development is expected to increase in the near future. In particular, we examine the probability of a fledgling approaching a hypothetical turbine that is placed at different distances from the nest. We found that this probability is high at short distances but considerably decreases with increasing distances to the nest. A utilisation-availability analysis showed that the coast was the preferred habitat. We argue that avoiding construction between active nests and the shoreline, as well as adopting the currently 2-km buffer zone for turbine deployment, can avoid or minimise potential impacts on post-fledging white-tailed eagles.

  8. State-of-the-art low-cost solar reflector materials

    NASA Astrophysics Data System (ADS)

    Kennedy, C.; Jorgensen, G.

    1994-11-01

    Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.

  9. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions.

    PubMed

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-06-16

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.

  10. Technology based transportation solutions : model deployment initiative

    DOT National Transportation Integrated Search

    1997-08-01

    The Model Deployment Initiative provides real-life examples of technologys potential in metropolitan areas across the country. Investments from public and private sector partners will integrate existing ITS elements in the four sites as part of a ...

  11. Security-by-Experiment: Lessons from Responsible Deployment in Cyberspace.

    PubMed

    Pieters, Wolter; Hadžiosmanović, Dina; Dechesne, Francien

    2016-06-01

    Conceiving new technologies as social experiments is a means to discuss responsible deployment of technologies that may have unknown and potentially harmful side-effects. Thus far, the uncertain outcomes addressed in the paradigm of new technologies as social experiments have been mostly safety-related, meaning that potential harm is caused by the design plus accidental events in the environment. In some domains, such as cyberspace, adversarial agents (attackers) may be at least as important when it comes to undesirable effects of deployed technologies. In such cases, conditions for responsible experimentation may need to be implemented differently, as attackers behave strategically rather than probabilistically. In this contribution, we outline how adversarial aspects are already taken into account in technology deployment in the field of cyber security, and what the paradigm of new technologies as social experiments can learn from this. In particular, we show the importance of adversarial roles in social experiments with new technologies.

  12. What pre-deployment and early post-deployment factors predict health function after combat deployment?: a prospective longitudinal study of Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) soldiers

    PubMed Central

    2013-01-01

    Background Physical and mental function are strong indicators of disability and mortality. OEF/OIF Veterans returning from deployment have been found to have poorer function than soldiers who have not deployed; however the reasons for this are unknown. Methods A prospective cohort of 790 soldiers was assessed both pre- and immediately after deployment to determine predictors of physical and mental function after war. Results On average, OEF/OIF Veterans showed significant declines in both physical (t=6.65, p<.0001) and mental function (t=7.11, p<.0001). After controlling for pre-deployment function, poorer physical function after deployment was associated with older age, more physical symptoms, blunted systolic blood pressure reactivity and being injured. After controlling for pre-deployment function, poorer mental function after deployment was associated with younger age, lower social desirability, lower social support, greater physical symptoms and greater PTSD symptoms. Conclusions Combat deployment was associated with an immediate decline in both mental and physical function. The relationship of combat deployment to function is complex and influenced by demographic, psychosocial, physiological and experiential factors. Social support and physical symptoms emerged as potentially modifiable factors. PMID:23631419

  13. Ocean Bottom Seismograph Performance during the Cascadia Initiative

    NASA Astrophysics Data System (ADS)

    Aderhold, K.; Evers, B.

    2015-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) provides instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigates geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marks the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments feature trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Stations include differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments will be freely available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date and demonstrates an effective structure for community experiments through collaborative efforts from the Cascadia Initiative Expedition Team (CIET), OBSIP (institutional instrument contributors [LDEO, SIO, WHOI] and Management Office [IRIS]), and the IRIS DMC. The successes and lessons from Cascadia are a vital resource for the development of a Subduction Zone Observatory (SZO). To guide future efforts, we investigate the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse deployment to determine how water depth and instrument shielding influence recorded data. Additionally, multi-year data collection allows us to identify temporal noise trends so that we can take advantage of quieter seasons for future deployments.

  14. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    NASA Technical Reports Server (NTRS)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  15. Gender Differences Among Military Combatants: Does Social Support, Ostracism, and Pain Perception Influence Psychological Health?

    PubMed

    McGraw, Kate

    2016-01-01

    The literature on gender differences related to psychological health among in-theater service members who are deployed in a combatant role is limited. Much focuses on retrospective reports of service members who have returned from deployment. Potential key factors that contribute to gender differences in psychological health among combatants are found in literature across several topic areas, but integration of findings across disciplines is lacking. A growing body of literature on gender differences related to psychological health of postdeployment military populations suggests males and females respond differently to perceived levels of social support pre-and postdeployment. One study on service members who were deployed suggested no significant gender differences related to reported psychological health symptoms, but did appear to find significant gender differences related to reported perception of unit morale. In another related area, research explores how ostracism impacts physical and psychological health of individuals and organizations, and can result in perceptions of physical pain, although research on gender differences related to the impact of ostracism is scarce. Research has also begun to focus on sex differences in pain responses, and has identified multiple biopsychosocial, genetic, and hormonal factors that may contribute as potential underlying mechanisms. In this brief review, we focus on and begin to integrate relevant findings related to the psychological health of females in combat roles, gender differences in the impact of perception of social support on psychological health, the psychological and physical impact of ostracism on individuals and organizations, and the current literature on sex differences in pain perception. We conclude with a synthesis and discussion of research gaps identified through this review, implications for clinical practice, and potential future research directions. In conclusion, there appear to be gender differences related to the presence or absence of social support, the impact of ostracism, and the perception of pain. These differences may play a critical role in the psychological health of female combatants. More research on this topic is needed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  16. Dengue Virus Exposures Among Deployed U.S. Military Personnel

    PubMed Central

    Hesse, Elisabeth M.; Martinez, Luis J.; Jarman, Richard G.; Lyons, Arthur G.; Eckels, Kenneth H.; De La Barrera, Rafael A.; Thomas, Stephen J.

    2017-01-01

    Dengue virus infections have adversely impacted U.S. military operations since the Spanish–American War. The erosion of mission capabilities and lost duty days are underestimated. Appreciating the incidence and prevalence of dengue infections in U.S. military personnel is important to inform disease prevention strategies. Banked pre- and post-deployment serum samples from 1,000 U.S. military personnel with a single deployment to a dengue-endemic region were tested using a screening microneutralization assay to detect anti-dengue-virus-neutralizing antibodies. A total of 76 (7.6%) post-deployment samples were positive and 15 of the pre-deployment samples were negative. These figures represent an infection incidence of 1.5% and total of 17.6 seroconversions per 10,000 deployment months. These data represent a deploying military population with a relatively high background rate of dengue seropositivity, a low level of infection during deployment compared with background infection rates in the local populations, and the potential for worsening clinical attack rates with increased frequency of deployment. Additional studies are required to more clearly elucidate the dengue infection and disease risk in U.S. military personnel. PMID:28193746

  17. Dengue Virus Exposures Among Deployed U.S. Military Personnel.

    PubMed

    Hesse, Elisabeth M; Martinez, Luis J; Jarman, Richard G; Lyons, Arthur G; Eckels, Kenneth H; De La Barrera, Rafael A; Thomas, Stephen J

    2017-05-01

    AbstractDengue virus infections have adversely impacted U.S. military operations since the Spanish-American War. The erosion of mission capabilities and lost duty days are underestimated. Appreciating the incidence and prevalence of dengue infections in U.S. military personnel is important to inform disease prevention strategies. Banked pre- and post-deployment serum samples from 1,000 U.S. military personnel with a single deployment to a dengue-endemic region were tested using a screening microneutralization assay to detect anti-dengue-virus-neutralizing antibodies. A total of 76 (7.6%) post-deployment samples were positive and 15 of the pre-deployment samples were negative. These figures represent an infection incidence of 1.5% and total of 17.6 seroconversions per 10,000 deployment months. These data represent a deploying military population with a relatively high background rate of dengue seropositivity, a low level of infection during deployment compared with background infection rates in the local populations, and the potential for worsening clinical attack rates with increased frequency of deployment. Additional studies are required to more clearly elucidate the dengue infection and disease risk in U.S. military personnel.

  18. Hard is Normal: Military Families' Transitions Within the Process of Deployment.

    PubMed

    Yablonsky, Abigail M; Barbero, Edie Devers; Richardson, Jeanita W

    2016-02-01

    US military deployments have become more frequent and lengthier in duration since 2003. Over half of US military members are married, and many also have children. The authors sought to understand the process of deployment from the perspective of the military family. After a thorough search of the literature, 21 primary research reports of 19 studies with an aggregate sample of 874 were analyzed using qualitative metasynthesis. The deployment process was experienced in four temporal domains. The military family as a whole shared the pre-deployment transition: all family members felt uncertain about the future, needed to complete tasks to "get ready" for deployment, and experienced a sense of distancing in preparation for the upcoming separation. The AD member went through the deployment transition independently, needing to "stay engaged" with the military mission, building a surrogate family and simultaneously trying to maintain connection with the family at home. In parallel, the home front family was going through a transposement transition, moving forward as an altered family unit, taking on new roles and responsibilities, and trying to simultaneously connect with the deployed member and find support from other military families. In post-deployment, the family went through the "reintegration" transition together, managing expectations, and readjusting family roles, all needing understanding and appreciation for their sacrifices during the recent separation. Effective family communication was important for military family well-being after deployment but unexpectedly challenging for many. Clinical, research, and policy recommendations are discussed. © 2015 Wiley Periodicals, Inc. This article has been contributed to by a US Government employee and her work is in the public domain in the USA.

  19. Methods for monitoring corals and crustose coralline algae to quantify in-situ calcification rates

    USGS Publications Warehouse

    Morrison, Jennifer M.; Kuffner, Ilsa B.; Hickey, T. Don

    2013-01-01

    The potential effect of global climate change on calcifying marine organisms, such as scleractinian (reef-building) corals, is becoming increasingly evident. Understanding the process of coral calcification and establishing baseline calcification rates are necessary to detect future changes in growth resulting from climate change or other stressors. Here we describe the methods used to establish a network of calcification-monitoring stations along the outer Florida Keys Reef Tract in 2009. In addition to detailing the initial setup and periodic monitoring of calcification stations, we discuss the utility and success of our design and offer suggestions for future deployments. Stations were designed such that whole coral colonies were securely attached to fixed apparati (n = 10 at each site) on the seafloor but also could be easily removed and reattached as needed for periodic weighing. Corals were weighed every 6 months, using the buoyant weight technique, to determine calcification rates in situ. Sites were visited in May and November to obtain winter and summer rates, respectively, and identify seasonal patterns in calcification. Calcification rates of the crustose coralline algal community also were measured by affixing commercially available plastic tiles, deployed vertically, at each station. Colonization by invertebrates and fleshy algae on the tiles was low, indicating relative specificity for the crustose coralline algal community. We also describe a new, nonlethal technique for sampling the corals, used following the completion of the monitoring period, in which two slabs were obtained from the center of each colony. Sampled corals were reattached to the seafloor, and most corals had completely recovered within 6 months. The station design and sampling methods described herein provide an effective approach to assessing coral and crustose coralline algal calcification rates across time and space, offering the ability to quantify the potential effects of ocean warming and acidification on calcification processes.

  20. Security Shift in Future Network Architectures

    DTIC Science & Technology

    2010-11-01

    RTO-MP-IST-091 2 - 1 Security Shift in Future Network Architectures Tim Hartog, M.Sc Information Security Dept. TNO Information and...current practice military communication infrastructures are deployed as stand-alone networked information systems. Network -Enabled Capabilities (NEC) and...information architects and security specialists about the separation of network and information security, the consequences of this shift and our view

  1. Toward Endemic Deployment of Educational Simulation Games: A Review of Progress and Future Recommendations

    ERIC Educational Resources Information Center

    Moizer, Jonathan; Lean, Jonathan

    2010-01-01

    This article presents a conceptual analysis of simulation game adoption and use across university faculty. The metaphor of epidemiology is used to characterize the diffusion of simulation games for teaching and learning. A simple stock-flow diagram is presented to illustrate this dynamic. Future scenarios for simulation game adoption are…

  2. The French Advanced Course for Deployment Surgery (ACDS) called Cours Avancé de Chirurgie en Mission Extérieure (CACHIRMEX): history of its development and future prospects.

    PubMed

    Bonnet, Stéphane; Gonzalez, F; Mathieu, L; Boddaert, G; Hornez, E; Bertani, A; Avaro, J-P; Durand, X; Rongieras, F; Balandraud, P; Rigal, S; Pons, F

    2016-10-01

    The composition of a French Forward Surgical Team (FST) has remained constant since its creation in the early 1950s: 12 personnel, including a general and an orthopaedic surgeon. The training of military surgeons, however, has had to evolve to adapt to the growing complexities of modern warfare injuries in the context of increasing subspecialisation within surgery. The Advanced Course for Deployment Surgery (ACDS)-called Cours Avancé de Chirurgie en Mission Extérieure (CACHIRMEX)-has been designed to extend, reinforce and adapt the surgical skill set of the FST that will be deployed. Created in 2007 by the French Military Health Service Academy (Ecole du Val-de-Grâce), this annual course is composed of five modules. The surgical knowledge and skills necessary to manage complex military trauma and give medical support to populations during deployment are provided through a combination of didactic lectures, deployment experience reports and hands-on workshops. The course is now a compulsory component of initial surgical training for junior military surgeons and part of the Continuous Medical Education programme for senior military surgeons. From 2012, the standardised content of the ACDS paved the way for the development of two more team-training courses: the FST and the Special Operation Surgical Team training. The content of this French military original war surgery course is described, emphasising its practical implications and future prospects. The military surgical training needs to be regularly assessed to deliver the best quality of care in an context of evolving modern warfare casualties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  4. Heritage Adoption Lessons Learned: Cover Deployment and Latch Mechanism

    NASA Technical Reports Server (NTRS)

    Wincentsen, James

    2006-01-01

    Within JPL, there is a technology thrust need to develop a larger Cover Deployment and Latch Mechanism (CDLM) for future missions. The approach taken was to adopt and scale the CDLM design as used on the Galaxy Evolution Explorer (GALEX) project. The three separate mechanisms that comprise the CDLM will be discussed in this paper in addition to a focus on heritage adoption lessons learned and specific examples. These lessons learned will be valuable to any project considering the use of heritage designs.

  5. Architectures and methodologies for future deployment of multi-site Zettabyte-Exascale data handling platforms

    NASA Astrophysics Data System (ADS)

    Acín, V.; Bird, I.; Boccali, T.; Cancio, G.; Collier, I. P.; Corney, D.; Delaunay, B.; Delfino, M.; dell'Agnello, L.; Flix, J.; Fuhrmann, P.; Gasthuber, M.; Gülzow, V.; Heiss, A.; Lamanna, G.; Macchi, P.-E.; Maggi, M.; Matthews, B.; Neissner, C.; Nief, J.-Y.; Porto, M. C.; Sansum, A.; Schulz, M.; Shiers, J.

    2015-12-01

    Several scientific fields, including Astrophysics, Astroparticle Physics, Cosmology, Nuclear and Particle Physics, and Research with Photons, are estimating that by the 2020 decade they will require data handling systems with data volumes approaching the Zettabyte distributed amongst as many as 1018 individually addressable data objects (Zettabyte-Exascale systems). It may be convenient or necessary to deploy such systems using multiple physical sites. This paper describes the findings of a working group composed of experts from several

  6. Study on the three-station typical network deployments of workspace Measurement and Positioning System

    NASA Astrophysics Data System (ADS)

    Xiong, Zhi; Zhu, J. G.; Xue, B.; Ye, Sh. H.; Xiong, Y.

    2013-10-01

    As a novel network coordinate measurement system based on multi-directional positioning, workspace Measurement and Positioning System (wMPS) has outstanding advantages of good parallelism, wide measurement range and high measurement accuracy, which makes it to be the research hotspots and important development direction in the field of large-scale measurement. Since station deployment has a significant impact on the measurement range and accuracy, and also restricts the use-cost, the optimization method of station deployment was researched in this paper. Firstly, positioning error model was established. Then focusing on the small network consisted of three stations, the typical deployments and error distribution characteristics were studied. Finally, through measuring the simulated fuselage using typical deployments at the industrial spot and comparing the results with Laser Tracker, some conclusions are obtained. The comparison results show that under existing prototype conditions, I_3 typical deployment of which three stations are distributed in a straight line has an average error of 0.30 mm and the maximum error is 0.50 mm in the range of 12 m. Meanwhile, C_3 typical deployment of which three stations are uniformly distributed in the half-circumference of an circle has an average error of 0.17 mm and the maximum error is 0.28 mm. Obviously, C_3 typical deployment has a higher control effect on precision than I_3 type. The research work provides effective theoretical support for global measurement network optimization in the future work.

  7. Potential impacts of nanotechnology on energy transmission applications and needs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possiblymore » reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.« less

  8. Impact of Social Networking Sites on Children in Military Families.

    PubMed

    McGuire, Austen B; Steele, Ric G

    2016-09-01

    Youth in military families experience a relatively unique set of stressors that can put them at risk for numerous psychological and behavior problems. Thus, there is a need to identify potential mechanisms by which children can gain resiliency against these stressors. One potential mechanism that has yet to be empirically studied with military youth is social networking sites (SNSs). SNSs have gained significant popularity among society, especially youth. Given the significance of these communication tools in youths' lives, it is important to analyze how SNS use may affect military youth and their ability to cope with common military life stressors. The current review examines the potential positive and negative consequences associated with SNS use in coping with three common stressors of youth in military families: parent deployment, frequent relocation, and having a family member with a psychological or physical disability. By drawing from SNS and military literature, we predict that SNS use can be a positive tool for helping children in military families to cope with stressors. However, certain SNS behaviors can potentially result in more negative outcomes. Recommendations for future research are also discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  10. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  11. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  12. Expert assessment concludes negative emissions scenarios may not deliver

    NASA Astrophysics Data System (ADS)

    Vaughan, Naomi E.; Gough, Clair

    2016-09-01

    Many integrated assessment models (IAMs) rely on the availability and extensive use of biomass energy with carbon capture and storage (BECCS) to deliver emissions scenarios consistent with limiting climate change to below 2 °C average temperature rise. BECCS has the potential to remove carbon dioxide (CO2) from the atmosphere, delivering ‘negative emissions’. The deployment of BECCS at the scale assumed in IAM scenarios is highly uncertain: biomass energy is commonly used but not at such a scale, and CCS technologies have been demonstrated but not commercially established. Here we present the results of an expert elicitation process that explores the explicit and implicit assumptions underpinning the feasibility of BECCS in IAM scenarios. Our results show that the assumptions are considered realistic regarding technical aspects of CCS but unrealistic regarding the extent of bioenergy deployment, and development of adequate societal support and governance structures for BECCS. The results highlight concerns about the assumed magnitude of carbon dioxide removal achieved across a full BECCS supply chain, with the greatest uncertainty in bioenergy production. Unrealistically optimistic assumptions regarding the future availability of BECCS in IAM scenarios could lead to the overshoot of critical warming limits and have significant impacts on near-term mitigation options.

  13. An early deployment strategy for carbon capture, utilisation, and storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, L.D.

    2012-11-01

    This report describes the current use of CO2 for EOR, and discusses potential expansion of EOR using CO2 from power plants. Analysis of potential EOR development in the USA, where most current CO2-based EOR production takes place, indicates that relatively low cost, traditional sources of CO2 for EOR (CO2 domes and CO2 from natural gas processing plants) are insufficient to exploit the full potential of EOR. To achieve that full potential will require use of CO2 from combustion and gasification systems, such as fossil fuel power plants, where capture of CO2 is more costly. The cost of current CCUS systems,more » even with the revenue stream for sale of the CO2 for EOR, is too high to result in broad deployment of the technology in the near term. In the longer term, research and development may be sufficient to reduce CO2 capture costs to a point where CCUS would be broadly deployed. This report describes a case study of conditions in the USA to explore a financial incentive to promote early deployment of CCUS, providing a range of immediate benefits to society, greater likelihood of reducing the long-term cost of CCUS, and greater likelihood of broad deployment of CCUS and CCS in the long term. Additionally, it may be possible to craft such an incentive in a manner that its cost is more than offset by taxes flowing from increased domestic oil production. An example of such an incentive is included in this report.« less

  14. Public health foodborne illness case study during a Special Operations Forces deployment to South America.

    PubMed

    McCown, Michael; Grzeszak, Benjamin

    2010-01-01

    Although many public health articles have been published detailing foodborne illness outbreaks, a medical literature search revealed no articles that detail a case study or a specific response of a deployed U.S. military unit to a potential foodborne illness. This article describes a recent public health case study of a U.S. Special Operations Forces (SOF) team sickened while deployed to South America. It highlights public health factors which may affect U.S. personnel deployed or serving overseas and may serve as a guide for a deployed SOF medic to reference in response to a potential food- or waterborne illness outbreak. Eight food samples and five water samples were collected. The food samples were obtained from the host nation kitchen that provided food to the SOF team. The water samples were collected from the kitchen as well as from multiple sites on the host nation base. These samples were packaged in sterile containers, stored at appropriate temperatures, and submitted to a U.S. Army diagnostic laboratory for analysis. Laboratory results confirmed the presence of elevated aerobic plate counts (APCs) in the food prepared by the host nation and consumed by the SOF team. High APCs in food are the primary indicator of improper sanitation of food preparation surfaces and utensils. This case study concluded that poor kitchen sanitation, improper food storage, preparation, and/or holding were the probable conditions that led to the team?s symptoms. These results emphasize the importance of ensuring safe food and water for U.S. personnel serving overseas, especially in a deployment or combat setting. Contaminated food and/or water will negatively impact the health and availability of forces, which may lead to mission failure. The SOF medic must respond to potential outbreaks and be able to (1) critically inspect food preparation areas and accurately advise commanders in order to correct deficiencies and (2) perform food/water surveillance testing consistently throughout a deployment and at any time in response to a potential outbreak.

  15. NEON's Mobile Deployment Platform: A Resource for Community Research

    NASA Astrophysics Data System (ADS)

    Sanclements, M.

    2015-12-01

    Here we provide an update on construction and validation of the NEON Mobile Deployment Platforms (MDPs) as well as a description of the infrastructure and sensors available to researchers in the future. The MDPs will provide the means to observe stochastic or spatially important events, gradients, or quantities that cannot be reliably observed using fixed location sampling (e.g. fires and floods). Due to the transient temporal and spatial nature of such events, the MDPs will be designed to accommodate rapid deployment for time periods up to ~ 1 year. Broadly, the MDPs will be comprised of infrastructure and instrumentation capable of functioning individually or in conjunction with one another to support observations of ecological change, as well as education, training and outreach.

  16. Options for Staging Orbits in Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Martinez, Roland

    2015-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. First, a set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Second, the ability to support potential lunar surface activities is considered. Finally, deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include potential for uninterrupted communication with deployed assets, thermal, communications, and other operational implications. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key attributes that favor a variety of mission classes to meet multiple, sometimes competing, constraints.

  17. Options for Staging Orbits in Cis-Lunar Space

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Whitley, Ryan

    2016-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key attributes that favor a variety of mission classes to meet multiple, sometimes competing, constraints.

  18. Wave resource variability: Impacts on wave power supply over regional to international scales

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian

    2017-04-01

    The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the planning and siting of future wave energy arrays when the industry reaches the point of large-scale deployment.

  19. Design and operation of a low-cost and compact autonomous buoy system for use in coastal aquaculture and water quality monitoring.

    PubMed

    Schmidt, Wiebke; Raymond, David; Parish, David; Ashton, Ian G C; Miller, Peter I; Campos, Carlos J A; Shutler, Jamie D

    2018-01-01

    The need to ensure future food security and issues of varying estuarine water quality is driving the expansion of aquaculture into near-shore coastal waters. It is prudent to fully evaluate new or proposed aquaculture sites, prior to any substantial financial investment in infrastructure and staffing. Measurements of water temperature, salinity and dissolved oxygen can be used to gain insight into the physical, chemical and biological water quality conditions within a farm site, towards identifying its suitability for farming, both for the stock species of interest and for assessing the potential risk from harmful or toxic algae. The latter can cause closure of shellfish harvesting. Unfortunately, commercial scientific monitoring systems can be cost prohibitive for small organisations and companies to purchase and operate. Here we describe the design, construction and deployment of a low cost (<£ 5000) monitoring buoy suitable for use within a near-shore aquaculture farm or bathing waters. The mooring includes a suite of sensors designed for supporting and understanding variations in near-shore physical, chemical and biological water quality. The system has been designed so that it can be operated and maintained by non-scientific staff, whilst still providing good quality scientific data. Data collected from two deployments totalling 14 months, one in a coastal bay location, another in an estuary, have illustrated the robust design and provided insight into the suitability of these sites for aquaculture and the potential occurrence of a toxin causing algae ( Dinophysis spp.). The instruments maintained good accuracy during the deployments when compared to independent in situ measurements (e.g. RMSE 0.13-0.16 °C, bias 0.03-0.08 °C) enabling stratification and biological features to be identified, along with confirming that the waters were suitable for mussel ( Mytilus spp.) and lobster ( Homarus gammarus ) aquaculture, whilst sites showed conditions agreeable for Dinophysis spp.

  20. Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-04-01

    We consider the potential for positioning with a system where antenna arrays are deployed as a large intelligent surface (LIS), which is a newly proposed concept beyond massive-MIMO where future man-made structures are electronically active with integrated electronics and wireless communication making the entire environment \\lq\\lq{}intelligent\\rq\\rq{}. In a first step, we derive Fisher-information and Cram\\'{e}r-Rao lower bounds (CRLBs) in closed-form for positioning a terminal located perpendicular to the center of the LIS, whose location we refer to as being on the central perpendicular line (CPL) of the LIS. For a terminal that is not on the CPL, closed-form expressions of the Fisher-information and CRLB seem out of reach, and we alternatively find approximations of them which are shown to be accurate. Under mild conditions, we show that the CRLB for all three Cartesian dimensions ($x$, $y$ and $z$) decreases quadratically in the surface-area of the LIS, except for a terminal exactly on the CPL where the CRLB for the $z$-dimension (distance from the LIS) decreases linearly in the same. In a second step, we analyze the CRLB for positioning when there is an unknown phase $\\varphi$ presented in the analog circuits of the LIS. We then show that the CRLBs are dramatically increased for all three dimensions but decrease in the third-order of the surface-area. Moreover, with an infinitely large LIS the CRLB for the $z$-dimension with an unknown $\\varphi$ is 6 dB higher than the case without phase uncertainty, and the CRLB for estimating $\\varphi$ converges to a constant that is independent of the wavelength $\\lambda$. At last, we extensively discuss the impact of centralized and distributed deployments of LIS, and show that a distributed deployment of LIS can enlarge the coverage for terminal-positioning and improve the overall positioning performance.

  1. Review of deployment technology for tethered satellite systems

    NASA Astrophysics Data System (ADS)

    Yu, B. S.; Wen, H.; Jin, D. P.

    2018-03-01

    Tethered satellite systems (TSSs) have attracted significant attention due to their potential and valuable applications for scientific research. With the development of various launched on-orbit missions, the deployment of tethers is considered a crucial technology for operation of a TSS. Both past orbiting experiments and numerical results have shown that oscillations of the deployed tether due to the Coriolis force and environmental perturbations are inevitable and that the impact between the space tether and end-body at the end of the deployment process leads to complicated nonlinear phenomena. Hence, a set of suitable control methods plays a fundamental role in tether deployment. This review article summarizes previous work on aspects of the dynamics, control, and ground-based experiments of tether deployment. The relevant basic principles, analytical expressions, simulation cases, and experimental results are presented as well.

  2. Optical ground station site diversity for Deep Space Optical Communications the Mars Telecom Orbiter optical link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Parvin, B.; Fugate, R.; Kervin, P.; Zingales, S.

    2003-01-01

    Future NASA deep space missions will fly advanced high resolution imaging instruments that will require high bandwidth links to return the huge data volumes generated by these instruments. Optical communications is a key technology for returning these large data volumes from deep space probes. Yet to cost effectively realize the high bandwidth potential of the optical link will require deployment of ground receivers in diverse locations to provide high link availability. A recent analysis of GOES weather satellite data showed that a network of ground stations located in Hawaii and the Southwest continental US can provide an average of 90% availability for the deep space optical link. JPL and AFRL are exploring the use of large telescopes in Hawaii, California, and Albuquerque to support the Mars Telesat laser communications demonstration. Designed to demonstrate multi-Mbps communications from Mars, the mission will investigate key operational strategies of future deep space optical communications network.

  3. Highway Incident Detection Timeline

    DOT National Transportation Integrated Search

    2017-10-16

    The ITS JPO is the U.S. Department of Transportations primary advocate and national leader for ITS research, development, and future deployment of connected vehicle technologies, focusing on intelligent vehicles, intelligent infrastructure, and th...

  4. Illness experience of Gulf War veterans possibly exposed to chemical warfare agents.

    PubMed

    McCauley, Linda A; Lasarev, Michael; Sticker, Diana; Rischitelli, D Gary; Spencer, Peter S

    2002-10-01

    During the 1991 Gulf War, some Allied troops were potentially exposed to chemical warfare agents as the result of the detonation of Iraqi munitions at Khamisiyah. In 1999, we conducted a computer-assisted telephone survey of 2918 Gulf War veterans from Oregon, Washington, California, North Carolina, and Georgia to evaluate the prevalence of self-reported medical diagnoses and hospitalizations among this potentially exposed population and among comparison groups of veterans deployed and nondeployed to the Southwest Asia theater of operations. Troops reported to be within 50 kilometers of the Khamisiyah site did not differ from other deployed troops on reports of any medical conditions or hospitalizations in the 9 years following the Gulf War. Hospitalization rates among deployed and nondeployed troops did not differ. Deployed troops were significantly more likely to report diagnoses of high blood pressure (odds ratio [OR]=1.7); heart disease (OR=2.5); slipped disk or pinched nerve (OR=1.5); post-traumatic stress disorder (OR=14.9); hospitalization for depression (OR=5.1); and periodontal disease (OR=1.8) when compared to nondeployed troops. There was a trend for deployed veterans to report more diagnoses of any cancer (OR=3.0). These findings do not provide evidence of any long-term health effect associated with exposure to the detonation of chemical warfare agents, but support findings from other investigations of increased morbidity among deployed troops. The prevalence of cancer among this population of deployed troops merits ongoing attention.

  5. Why We Need to Have Broad-Based Societal Discussions of the Governance of Geoengineering, at national and international levels, starting with scientists and increasingly with policy makers?

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Rowan, L. R.; Field, L. A.; Keith, D.; Robock, A.; Anbar, A. D.; van der Pluijm, B.; Pasztor, J.

    2017-12-01

    The Paris Agreement aims to limit the global temperature rise to 1.5 to 2°C above preindustrial temperature, but achieving this goal requires much higher levels of mitigation than currently planned. This challenge has focused greater attention on climate geoengineering approaches, as part of an overall response starting with radical mitigation. Geoengineering cannot address climate change on its own, but some scientists say that it could delay or reduce the overshoot. In so doing, we may expose the world to other serious risks. There is , however, no comprehensive international framework for governing these emerging technologies. Carbon dioxide removal technologies can have serious environmental, social and economic impacts, which need to be addressed. The largest immediate risk, however, could be the unilateral deployment of solar engineering by one country, a small group of countries, or a wealthy individual. The real or perceived impacts of deployment, including geopolitical reactions, could further destabilize a world already going through rapid change. Effective global governance frameworks could reduce this risk. SRM research is in its infancy. The real challenges are not technical, but pertain to ethics and governance. Should there be a strategic research programme, coupled with a global agreement to prohibit deployment unless and until certain risks and governance questions are adequately addressed? How would the world's governments determine if the potential global benefit of geoengineering is worth the risks to certain regions? How should trans-border and trans-generational issues be addressed? How would governance frameworks withstand geopolitical changes over decades or more of deployment? How might such technologies be developed and deployed without undermining political will to cut emissions? The world is heading to an increasingly risky future and is unprepared to address the institutional and governance challenges posed by these technologies. Geoengineering has planet-wide consequences and must therefore be discussed within intergovernmental institutions, including the United Nations. The research community has been addressing many of these issues, but the global policy community and the public largely have not. It's time to do so.

  6. Why We Need to Have Broad-Based Societal Discussions of the Governance of Geoengineering, at national and international levels, starting with scientists and increasingly with policy makers?

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Rowan, L. R.; Field, L. A.; Keith, D.; Robock, A.; Anbar, A. D.; van der Pluijm, B.; Pasztor, J.

    2016-12-01

    The Paris Agreement aims to limit the global temperature rise to 1.5 to 2°C above preindustrial temperature, but achieving this goal requires much higher levels of mitigation than currently planned. This challenge has focused greater attention on climate geoengineering approaches, as part of an overall response starting with radical mitigation. Geoengineering cannot address climate change on its own, but some scientists say that it could delay or reduce the overshoot. In so doing, we may expose the world to other serious risks. There is , however, no comprehensive international framework for governing these emerging technologies. Carbon dioxide removal technologies can have serious environmental, social and economic impacts, which need to be addressed. The largest immediate risk, however, could be the unilateral deployment of solar engineering by one country, a small group of countries, or a wealthy individual. The real or perceived impacts of deployment, including geopolitical reactions, could further destabilize a world already going through rapid change. Effective global governance frameworks could reduce this risk. SRM research is in its infancy. The real challenges are not technical, but pertain to ethics and governance. Should there be a strategic research programme, coupled with a global agreement to prohibit deployment unless and until certain risks and governance questions are adequately addressed? How would the world's governments determine if the potential global benefit of geoengineering is worth the risks to certain regions? How should trans-border and trans-generational issues be addressed? How would governance frameworks withstand geopolitical changes over decades or more of deployment? How might such technologies be developed and deployed without undermining political will to cut emissions? The world is heading to an increasingly risky future and is unprepared to address the institutional and governance challenges posed by these technologies. Geoengineering has planet-wide consequences and must therefore be discussed within intergovernmental institutions, including the United Nations. The research community has been addressing many of these issues, but the global policy community and the public largely have not. It's time to do so.

  7. Mass spectrometry in the U.S. space program: past, present, and future.

    PubMed

    Palmer, P T; Limero, T F

    2001-06-01

    Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.

  8. Doctors in space (ships): biomedical uncertainties and medical authority in imagined futures.

    PubMed

    Henderson, Lesley; Carter, Simon

    2016-12-01

    There has been considerable interest in images of medicine in popular science fiction and in representations of doctors in television fiction. Surprisingly little attention has been paid to doctors administering space medicine in science fiction. This article redresses this gap. We analyse the evolving figure of 'the doctor' in different popular science fiction television series. Building upon debates within Medical Sociology, Cultural Studies and Media Studies we argue that the figure of 'the doctor' is discursively deployed to act as the moral compass at the centre of the programme narrative. Our analysis highlights that the qualities, norms and ethics represented by doctors in space (ships) are intertwined with issues of gender equality, speciesism and posthuman ethics. We explore the signifying practices and political articulations that are played out through these cultural imaginaries. For example, the ways in which 'the simple country doctor' is deployed to help establish hegemonic formations concerning potentially destabilising technoscientific futures involving alternative sexualities, or military dystopia. Doctors mostly function to provide the ethical point of narrative stability within a world in flux, referencing a nostalgia for the traditional, attentive, humanistic family physician. The science fiction doctor facilitates the personalisation of technological change and thus becomes a useful conduit through which societal fears and anxieties concerning medicine, bioethics and morality in a 'post 9/11' world can be expressed and explored. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Mass spectrometry in the U.S. space program: past, present, and future

    NASA Technical Reports Server (NTRS)

    Palmer, P. T.; Limero, T. F.

    2001-01-01

    Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.

  10. CCS Activities Being Performed by the U.S. DOE

    PubMed Central

    Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry

    2011-01-01

    The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188

  11. Envisioning the Future for Older Adults: Autonomy, Health, Well-being, and Social Connectedness with Technology Support.

    PubMed

    Rogers, Wendy A; Mitzner, Tracy L

    2017-03-01

    Envisioning the future of older adults of 2050 is a challenging task given the heterogeneity of the older adult population. We consider primarily the domains of home, health, and social participation for individuals over age 65 and the potential role of information, communication, and robotic technology for enhanced independence, maintenance of autonomy, and enriched quality of life. We develop several scenarios to illustrate the diversity of circumstances, health, and living situations for older adults in the future. We discuss possible negative outcomes resulting from the proliferation of technology, including increased social isolation and a widening digital divide. However, we focus primarily on envisioning desired situations wherein older adults have autonomy and independence; are easily able to manage their health and wellness needs; have rich and rewarding opportunities for social connectedness, personal growth, continued life purpose, and overall high quality of life. To attain this future, we must be acting now: designing the technology with involvement by today's older adults who represent the needs and capabilities of tomorrow's older adults; developing the necessary infrastructure to support widespread availability and deployment of these technologies; and supporting the integration of technology into people's lives at younger ages with adaptive functionality to support changing needs and preferences.

  12. Synthesis Study on Transitions in Signal Infrastructure and Control Algorithms for Connected and Automated Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Wang, Hong; Young, Stan

    Documenting existing state of practice is an initial step in developing future control infrastructure to be co-deployed for heterogeneous mix of connected and automated vehicles with human drivers while leveraging benefits to safety, congestion, and energy. With advances in information technology and extensive deployment of connected and automated vehicle technology anticipated over the coming decades, cities globally are making efforts to plan and prepare for these transitions. CAVs not only offer opportunities to improve transportation systems through enhanced safety and efficient operations of vehicles. There are also significant needs in terms of exploring how best to leverage vehicle-to-vehicle (V2V) technology,more » vehicle-to-infrastructure (V2I) technology and vehicle-to-everything (V2X) technology. Both Connected Vehicle (CV) and Connected and Automated Vehicle (CAV) paradigms feature bi-directional connectivity and share similar applications in terms of signal control algorithm and infrastructure implementation. The discussion in our synthesis study assumes the CAV/CV context where connectivity exists with or without automated vehicles. Our synthesis study explores the current state of signal control algorithms and infrastructure, reports the completed and newly proposed CV/CAV deployment studies regarding signal control schemes, reviews the deployment costs for CAV/AV signal infrastructure, and concludes with a discussion on the opportunities such as detector free signal control schemes and dynamic performance management for intersections, and challenges such as dependency on market adaptation and the need to build a fault-tolerant signal system deployment in a CAV/CV environment. The study will serve as an initial critical assessment of existing signal control infrastructure (devices, control instruments, and firmware) and control schemes (actuated, adaptive, and coordinated-green wave). Also, the report will help to identify the future needs for the signal infrastructure to act as the nervous system for urban transportation networks, providing not only signaling, but also observability, surveillance, and measurement capacity. The discussion of the opportunities space includes network optimization and control theory perspectives, and the current states of observability for key system parameters (what can be detected, how frequently can it be reported) as well as controllability of dynamic parameters (this includes adjusting not only the signal phase and timing, but also the ability to alter vehicle trajectories through information or direct control). The perspective of observability and controllability of the dynamic systems provides an appropriate lens to discuss future directions as CAV/CV become more prevalent in the future.« less

  13. Utilizing Telehealth to Support Treatment of Acute Stress Disorder in a Theater of War: Prolonged Exposure via Clinical Videoconferencing.

    PubMed

    Pelton, Dan; Wangelin, Bethany; Tuerk, Peter

    2015-05-01

    Posttraumatic stress disorder (PTSD) and acute stress disorder are prevalent mental health diagnoses associated with the military operations in Iraq and Afghanistan and are especially significant in service members returning from combat. Prolonged exposure (PE) therapy is a highly effective behavioral treatment for these symptoms, and providing this treatment as soon as possible, even in the midst of a soldier's combat deployment, has strong potential benefits. In the current case study, telehealth technology was used to support the delivery of PE therapy to treat a service member diagnosed with acute stress disorder in a war zone. PE was conducted face-to-face on the relatively secure Forward Operating Base for the first half of therapy and via clinical videoconferencing (CV) to the service member's remote combat outpost during the later stages of therapy. The service member exhibited marked improvements in symptoms over 10 sessions. Results are consistent with previous empirical findings and highlight the potential benefits of using telehealth to deliver evidenced-based treatment for traumatic stress disorders in a war zone. This case study provides a preliminary working model for delivering PE in a combat environment using multiple delivery systems. Benefits and clinical utility of CV-delivered exposure therapy are discussed, particularly for providers pending future operational deployments (e.g., including members of the military, independent government agencies, and first responders) and for those treating patients in remote locations.

  14. Arcjet Testing of Woven Carbon Cloth for Use on Adaptive Deployable Entry Placement Technology

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; laub, Bernard; Chen, Yih-Kang; Prabhu, Dinesh K.; Bittner, M. E.; Venkatapathy, Ethiraj

    2013-01-01

    This paper describes arcjet testing and analysis that has successfully demonstrated the viability of three dimensional woven carbon cloth for dual use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle s shroud and deployed in space prior to reaching the atmospheric interface. A key feature of the ADEPT concept is its lower ballistic coefficient for delivery of a given payload than those for conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient include factor of ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth now base lined for ADEPT has a dual use in that it serves as ADEPT s thermal protection system and as the "skin" that transfers aerodynamic deceleration loads to its umbrella-like substructure. The arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. The ADEPT project considered the carbon cloth to be mission enabling and was carrying it as a major risk during Fiscal Year 2012. The testing and analysis reported here played a major role in retiring that risk and is highly significant to the success and possible adoption of ADEPT for future NASA missions. Finally, this paper also describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future missions using ADEPT and to predict carbon cloth performance in future arcjet tests.

  15. Viability of 3 D Woven Carbon Cloth and Advanced Carbon-Carbon Ribs for Adaptive Deployable Entry Placement Technology (ADEPT) for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Arnold, James O.; Peterson, K. H.; Blosser, M. L.

    2013-01-01

    This paper describes aerothermodynamic and thermal structural testing that demonstrate the viability of three dimensional woven carbon cloth and advanced carbon-carbon (ACC) ribs for use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle's shroud and deployed prior to reaching the atmeopheric interface. A key feature of the ADEPT concept is a lower ballistic coefficient for delivery of a given payload than seen with conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient incllude factor-of-ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth base lined for ADEPT has a dual use in that it serves as the thermal protection system and as the "skin" that transfers aerdynamic deceleration loads to its umbrella-like substructure. Arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. Recently completed the thermal structural testing of the cloth attached to a representative ACC rib design is also described. Finally, this paper describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future ADEPT missions and to predict carbon cloth performance in future arcjet tests.

  16. Concept, Design, and Prototyping of XSAS: A High Power Extendable Solar Array for CubeSat Applications

    NASA Technical Reports Server (NTRS)

    Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James

    2010-01-01

    CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.

  17. Site Selection and Deployment Scenarios for Servicing of Deep-Space Observatories

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Fruhwirth, Michael A.; Potter, Seth D.; Leete, Stephen J.; Moe, Rud V.

    2001-01-01

    The deep-space environment and relative transportation accessibility of the Weak Stability Boundary (WSB) region connecting the Earth-Moon and Sun-Earth libration points makes the Sun-Earth L2 an attractive operating location for future observatories. A summary is presented of key characteristics of future observatories designed to operate in this region. The ability to service observatories that operate within the region around the Lagrange points may greatly enhance their reliability, lifetime, and scientific return. The range of servicing missions might begin with initial deployment, assembly, test, and checkout. Post-assembly servicing missions might also include maintenance and repair, critical fluids resupply, and instrument upgrades. We define the range of servicing missions that can be performed with extravehicular activity, with teleoperated robots, and with autonomous robots. We then describe deployment scenarios that affect payload design. A trade study is summarized of the benefits and risks of alternative servicing sites, including at the International Space Station, at other low-Earth-orbit locations, at the Earth-Moon L1 location, and on-site at the Sun-Earth L2 location. Required technology trades and development issues for observatory servicing at each site, and with each level of autonomy, are summarized.

  18. Deployable bamboo structure project: A building life-cycle report

    NASA Astrophysics Data System (ADS)

    Firdaus, Adrian; Prastyatama, Budianastas; Sagara, Altho; Wirabuana, Revian N.

    2017-11-01

    Bamboo is considered as a sustainable material in the world of construction, and it is vastly available in Indonesia. The general utilization of the material is increasingly frequent, however, its usage as a deployable structure-a recently-developed use of bamboo, is still untapped. This paper presents a report on a deployable bamboo structure project, covering the entire building life-cycle phase. The cycle encompasses the designing; fabrication; transportation; construction; operation and maintenance; as well as a plan for future re-use. The building is made of a configuration of the structural module, each being a folding set of bars which could be reduced in size to fit into vehicles for easy transportation. Each structural module was made of Gigantochloa apus bamboo. The fabrication, transportation, and construction phase require by a minimum of three workers. The fabrication and construction phase require three hours and fifteen minutes respectively. The building is utilized as cafeteria stands, the operation and maintenance phase started since early March 2017. The maintenance plan is scheduled on a monthly basis, focusing on the inspection of the locking mechanism element and the entire structural integrity. The building is designed to allow disassembly process so that it is reusable in the future.

  19. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  20. Solar geoengineering could substantially reduce climate risks—A research hypothesis for the next decade

    NASA Astrophysics Data System (ADS)

    Keith, David W.; Irvine, Peter J.

    2016-11-01

    We offer a hypothesis that if solar geoengineering (SG) were deployed to offset half of the increase in global-mean temperature from the date of deployment using a technology and deployment method chosen to approximate a reduction in the solar constant then, over the 21st century, it would (a) substantially reduce the global aggregate risks of climate change, (b) without making any country worse off, and (c) with the aggregate risks from side-effects being small in comparison to the reduction in climate risks. We do not set out to demonstrate this hypothesis; rather we propose it with the goal of stimulating a strategic engagement of the SG research community with policy-relevant questions. We elaborate seven sub-hypotheses on the effects of our scenario for key risks of climate change that could be assessed in future modeling work. As an example, we provide a defence of one of our sub-hypotheses, that our scenario of SG would reduce the risk of drought in dry regions, but also identify issues that may undermine this sub-hypothesis and how future work could resolve this question. SG cannot substitute for emissions mitigation but it may be a useful supplement. It is our hope that scientific and technical research over the next decade focuses more closely on well-articulated variants of the key policy-relevant question: could SG be designed and deployed in such a way that it could substantially and equitably reduce climate risks?

  1. The fractal heart — embracing mathematics in the cardiology clinic

    PubMed Central

    Captur, Gabriella; Karperien, Audrey L.; Hughes, Alun D.; Francis, Darrel P.; Moon, James C.

    2017-01-01

    For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care. PMID:27708281

  2. Heat pipe radiator technology for space power systems

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Ercegovic, B. A.

    1986-01-01

    High-reliability high-performance deployable monogroove and dual-slot heat pipe radiator systems to meet the requirements for electric power in future space missions, such as the 300-kW(e) electric powder demand projected for NASA's Space Station, are discussed. Analytical model trade studies of various configurations show the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight reduction potential over the 50-350 F temperature range. The ammonia-aluminum monogroove heat pipe, limited to below-180 F operating temperatures, is under development, and can employ methanol-stainless steel heat pipes to achieve operating temperatures in excess of 300 F. Dual-slot heat pipe configuration proof-of-concept testing was begun in 1985.

  3. Space tug thermal control

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1975-01-01

    The future development of full capability Space Tug will impose strict requirements upon the thermal design. While requiring a reliable and reusable design, Space Tug must be capable of steady-state and transient thermal operation during any given mission for mission durations of up to seven days and potentially longer periods of time. Maximum flexibility and adaptability of Space Tug to the mission model requires that the vehicle operate within attitude constraints throughout any specific mission. These requirements were translated into a preliminary design study for a geostationary deploy and retrieve mission definition for Space Tug to determine the thermal control design requirements. Results of the study are discussed with emphasis given to some of the unique avenues pursued during the study, as well as the recommended thermal design configuration.

  4. Integrated corridor management initiative : demonstration phase evaluation, San Diego decision support system analysis test plan.

    DOT National Transportation Integrated Search

    2000-01-01

    This report demonstrates the benefits and potential pitfalls of deploying and operating an integrated freeway and arterial management system. In particular, it discusses the lessons learned about the Medical Center Corridor (MCC) Project deployed in ...

  5. Gender differences in the effects of deployment-related stressors and pre-deployment risk factors on the development of PTSD symptoms in National Guard Soldiers deployed to Iraq and Afghanistan.

    PubMed

    Polusny, Melissa A; Kumpula, Mandy J; Meis, Laura A; Erbes, Christopher R; Arbisi, Paul A; Murdoch, Maureen; Thuras, Paul; Kehle-Forbes, Shannon M; Johnson, Alexandria K

    2014-02-01

    Although women in the military are exposed to combat and its aftermath, little is known about whether combat as well as pre-deployment risk/protective factors differentially predict post-deployment PTSD symptoms among women compared to men. The current study assesses the influence of combat-related stressors and pre-deployment risk/protective factors on women's risk of developing PTSD symptoms following deployment relative to men's risk. Participants were 801 US National Guard Soldiers (712 men, 89 women) deployed to Iraq or Afghanistan who completed measures of potential risk/protective factors and PTSD symptoms one month before deployment (Time 1) and measures of deployment-related stressors and PTSD symptoms about 2-3 months after returning from deployment (Time 2). Men reported greater exposure to combat situations than women, while women reported greater sexual stressors during deployment than men. Exposure to the aftermath of combat (e.g., witnessing injured/dying people) did not differ by gender. At Time 2, women reported more severe PTSD symptoms and higher rates of probable PTSD than did men. Gender remained a predictor of higher PTSD symptoms after accounting for pre-deployment symptoms, prior interpersonal victimization, and combat related stressors. Gender moderated the association between several risk factors (combat-related stressors, prior interpersonal victimization, lack of unit support and pre-deployment concerns about life/family disruptions) and post-deployment PTSD symptoms. Elevated PTSD symptoms among female service members were not explained simply by gender differences in pre-deployment or deployment-related risk factors. Combat related stressors, prior interpersonal victimization, and pre-deployment concerns about life and family disruptions during deployment were differentially associated with greater post-deployment PTSD symptoms for women than men. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The Future of Additive Manufacturing in Air Force Acquisition

    DTIC Science & Technology

    2017-03-22

    manufacturing data - Designing and deploying a virtual aircraft fleet for future conflict - Space-based satellite production for defense capabilities via...changing system design via lower production costs, enhanced performance possibilities, and rapid replenishment. In the Technology Maturation and Risk... manufacturing as well as major cost savings via reduction of required materials, unique tooling, specialized production plans, and segments of the

  7. Supply Constraints Analysis | Energy Analysis | NREL

    Science.gov Websites

    module cost, and future price could be critical to the economic viability of this PV technology. Even constraints on future CdTe PV module deployment and found that: CdTe PV modules can remain cost-competitive and 4070 GW of annual CdTe production by 2030. Cost estimates were based on NREL's manufacturing cost

  8. A Survey of Telecommunications Technology. Part I. President's Task Force on Communications Policy. Staff Paper One, Part I.

    ERIC Educational Resources Information Center

    Rostow, Eugene V.

    A staff paper submitted to the President's Task Force on Communications Policy surveys the range of present and future innovations in communications techniques, assesses their feasibility and costs, and projects the rate and manner in which they will be deployed in the future. In general, the many technological possibilities--including…

  9. The Potential for Energy Storage to Provide Peaking Capacity in California Under Increased Penetration of Solar Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L; Margolis, Robert M

    In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.

  10. OMEGA for the Future of Biofuels

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2010-01-01

    OMEGA: Offshore Membrane Enclosure for Growing Algae. To develop a photobioreactor (PBR) for growing algae (Oil, food, fertilizer) that does not compete with agriculture for land (deployed offshore), water or fertilizer (uses/treats wastewater).

  11. MRI, Battelle, Bechtel Team Wins National Renewable Energy Laboratory

    Science.gov Websites

    sustainable energy future by developing and deploying renewable energy technologies and improving energy with both industrial and government clients in developing new technologies and products. "We are

  12. Antenna Technology Shuttle Experiment (ATSE)

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

    1987-01-01

    Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

  13. A Data Handling System for Modern and Future Fermilab Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illingworth, R. A.

    2014-01-01

    Current and future Fermilab experiments such as Minerva, NOνA, and MicroBoone are now using an improved version of the Fermilab SAM data handling system. SAM was originally used by the CDF and D0 experiments for Run II of the Fermilab Tevatron to provide file metadata and location cataloguing, uploading of new files to tape storage, dataset management, file transfers between global processing sites, and processing history tracking. However SAM was heavily tailored to the Run II environment and required complex and hard to deploy client software, which made it hard to adapt to new experiments. The Fermilab Computing Sector hasmore » progressively updated SAM to use modern, standardized, technologies in order to more easily deploy it for current and upcoming Fermilab experiments, and to support the data preservation efforts of the Run II experiments.« less

  14. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  15. Newly reported lupus and rheumatoid arthritis in relation to deployment within proximity to a documented open-air burn pit in Iraq.

    PubMed

    Jones, Kelly A; Smith, Besa; Granado, Nisara S; Boyko, Edward J; Gackstetter, Gary D; Ryan, Margaret A K; Phillips, Christopher J; Smith, Tyler C

    2012-06-01

    To assess the relationship between possible exposure to smoke from documented open-air burn pits and newly reported lupus and rheumatoid arthritis among Millennium Cohort participants who have deployed in support of operations in Iraq and Afghanistan. Prospectively assessed self-reported lupus and rheumatoid arthritis among deployers who completed both 2004-2006 and 2007-2008 questionnaires. After exclusions, more than 18,000 participants were deployed, including more than 3000 participants deployed within a 3-mile radius of a documented burn pit. After adjustment, proximity within 3 miles of a burn pit was not significantly associated with rheumatoid arthritis or lupus in general; however, one location was associated with lupus, although few cases were at this site (n = 2). Results indicate deployers potentially exposed to documented burn pits in the combined three-camp analysis were not at an elevated risk of lupus or rheumatoid arthritis.

  16. Prospective assessment of chronic multisymptom illness reporting possibly associated with open-air burn pit smoke exposure in Iraq.

    PubMed

    Powell, Teresa M; Smith, Tyler C; Jacobson, Isabel G; Boyko, Edward J; Hooper, Tomoko I; Gackstetter, Gary D; Phillips, Christopher J; Smith, Besa

    2012-06-01

    To investigate the relationship between chronic multisymptom illness (CMI) and possible exposure to an open-air burn pit at three selected bases among those deployed to operations in Iraq and Afghanistan. Chronic multisymptom illness (reporting at least one symptom in at least two of the following symptom constructs: general fatigue; mood and cognition problems; and musculoskeletal discomfort) was assessed, differentiating by potential burn pit exposure, among deployers who completed 2004 and 2007 Millennium Cohort questionnaires. More than 21,000 Cohort participants were deployed in support of the current operations, including more than 3000 participants with at least one deployment within a 3-mile radius of a documented burn pit. After adjusting for covariates, no elevated risk of CMI was observed among those exposed. There was no increase in CMI symptom reporting in those deployed to three selected bases with documented burn pits compared with other deployers.

  17. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that aremore » associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.« less

  18. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture

    PubMed Central

    Lim, Felix; James, Rachael H.; Pearce, Christopher R.; Scholes, Julie; Freckleton, Robert P.; Beerling, David J.

    2017-01-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. PMID:28381631

  19. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    PubMed

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  20. Demographic, Physical, and Mental Health Factors Associated With Deployment of U.S. Army Soldiers to the Persian Gulf

    DTIC Science & Technology

    2010-04-01

    MILITARY MEDICINE , 175,4:227, 2010 Demographic, Physical, and Mental Health Factors Associated With Deployment of U.S. Army Soldiers to the Persian...these soldiers who *SSDS, Inc., Natick, MA. tU.S. Army Research Institute for Environmental Medicine , Natick, MA. tDepartment of Psychiatry, Uniformed...article originally appeared in Military Medicine 2000; 165(10): 762-72. did ultimately deploy to the Persian Gulf. At a minimum, the potential

  1. Demographic, Physical, and Mental Health Factors Associated with Deployment of U.S. Army Soldiers to the Persian Gulf

    DTIC Science & Technology

    2010-04-01

    MILITARY MEDICINE , 175,4:227, 2010 Demographic, Physical, and Mental Health Factors Associated With Deployment of U.S. Army Soldiers to the Persian...these soldiers who *SSDS, Inc., Natick, MA. tU.S. Army Research Institute for Environmental Medicine , Natick, MA. tDepartment of Psychiatry, Uniformed...article originally appeared in Military Medicine 2000; 165(10): 762-72. did ultimately deploy to the Persian Gulf. At a minimum, the potential

  2. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, T.; Tegen, S.; Beiter, P.

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and themore » second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.« less

  3. Nanosatellite constellation deployment using on-board magnetic torquer interaction with space plasma

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Matsuzawa, Shinji; Inamori, Takaya; Jeung, In-Seuck

    2018-04-01

    One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3 U (1-3 kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.

  4. Flying on Sun Shine: Sailing in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhorn, Dean

    2012-03-28

    On January 20th, 2011, NanoSail-D successfully deployed its sail in space. It was the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The 10m2 sail, deployment mechanism and electronics were packed into a 3U CubeSat with a volume of about 3500cc. The NanoSail-D mission had two objectives: eject a nanosatellite from a minisatellite; deploy its sail from a highly compacted volume to validate large structure deployment and potential de-orbit technologies. NanoSail-D was jointly developed by NASA's Marshall Space Flight Center and Ames Research Center. The ManTech/NeXolve Corporation provided key sail design support.more » NanoSail-D is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Space Test Program, the Von Braun Center for Science and Innovation and Dynetics Inc. The presentation will provide insights into sailcraft advances and potential missions enabled by this emerging in-space propulsion technology.« less

  5. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, aftermore » more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.« less

  6. An Autonomous Data Reduction Pipeline for Wide Angle EO Systems

    NASA Astrophysics Data System (ADS)

    Privett, G.; George, S.; Feline, W.; Ash, A.; Routledge, G.

    The UK’s National Space and Security Policy states that the identification of potential on-orbit collisions and re-entry warning over the UK is of high importance, and is driving requirements for indigenous Space Situational Awareness (SSA) systems. To meet these requirements options are being examined, including the creation of a distributed network of simple, low cost commercial–off-the-shelf electro-optical sensors to support survey work and catalogue maintenance. This paper outlines work at Dstl examining whether data obtained using readily-deployable equipment could significantly enhance UK SSA capability and support cross-cueing between multiple deployed systems. To effectively exploit data from this distributed sensor architecture, a data handling system is required to autonomously detect satellite trails in a manner that pragmatically handles highly variable target intensities, periodicity and rates of apparent motion. The processing and collection strategies must be tailored to specific mission sets to ensure effective detections of platforms as diverse as stable geostationary satellites and low altitude CubeSats. Data captured during the Automated Transfer Vehicle-5 (ATV-5) de-orbit trial and images captured of a rocket body break up and a deployed deorbit sail have been employed to inform the development of a prototype processing pipeline for autonomous on-site processing. The approach taken employs tools such as Astrometry.Net and DAOPHOT from the astronomical community, together with image processing and orbit determination software developed inhouse by Dstl. Interim results from the automated analysis of data collected from wide angle sensors are described, together with the current perceived limitations of the proposed system and our plans for future development.

  7. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  8. Medical and physical readiness of the U.S. Army Reserve for Noble Eagle/Enduring Freedom/Iraqi Freedom: recommendations for future mobilizations.

    PubMed

    Ruble, Paul; Silverman, Michael; Harrell, Janie; Ringenberg, Lynnette; Fruendt, Jonathan; Walters, Terry; Christiansen, Loren; Llorente, Maria; Barnett, Scott D; Scherb, Barbara; Lumpkin, Eddie; Mitchell, Deborah

    2005-06-01

    The U.S. Army Reserve plays an important role in the war-fighting capabilities of the U.S. military. There have been concerns, however, regarding the health and physical readiness of this force. Recently Army Reservists were mobilized for Operation Noble Eagle/Iraqi Freedom. We report on both the medical waivers requested and issues related to soldiers found medically nonavailable for deployment on data collected and analyzed from several mobilization sites. Four hundred thirty-one medical waivers were requested. Of 60,000 mobilized, approximately 2.7% were found to be medically nonavailable for deployment, predominately enlisted and male. The most common problems identified were orthopedic, psychiatric, diabetes, asthma, obstetrical-gynecological, and cardiac. The overall prevalence of medically nonavailable for deployment of Army Reservists was low. Most of the conditions leading to nondeployable troops were attributable to chronic disease. Interventions to decrease the level of medically nonavailable for deployment and to lessen mobilization site operations are being implemented.

  9. On the Path to SunShot. The Environmental and Public Health Benefits of Achieving High Solar Penetrations in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Mai, Trieu; Millstein, Dev

    Compared with fossil fuel generators, photovoltaics (PV) and concentrating solar power (CSP) produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO 2), and nitrogen oxides (NO x). In this report, we monetize the emission reductions from achieving the U.S. Department of Energy's SunShot deployment goals: 14% of U.S. electricity demand met by solar in 2030 and 27% in 2050. We estimate that achieving these goals could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238-$252 billion. This is equivalent to 2.0-2.2more » cents per kilowatt-hour of solar installed (cents/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO 2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4 cents/kWh-solar--while also preventing 25,000-59,000 premature deaths. To put this in perspective, this estimated combined benefit of 3.5 cents/kWh-solar due to SunShot-level solar deployment is approximately equal to the additional levelized cost of electricity reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, the analysis shows that achieving the SunShot goals could save 4% of total power-sector water withdrawals and 9% of total power-sector water consumption over the 2015-2050 period--a particularly important consideration for arid states where substantial solar will be deployed. These results have potential implications for policy innovation and the economic competitiveness of solar and other generation technologies.« less

  10. Scalable Data Management, Analysis, and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Han-Wei

    This report is the entire final report for the SciDAC project authored by the whole team. OSU is part of the contributors to the report. This report is organized into sections and subsections, each covering an area of development and deployment of technologies applied to scientific applications of interest to the Department of Energy. Each sub-section includes: 1) a summary description of the research, development, and deployment carried out, the results and the extent to which the stated project objectives were met; 2) significant results, including major findings, developments, or conclusions; 3) products, such as publications and presentations, software developed,more » project website(s), technologies or techniques, inventions, awards, etc., and 4) conclusions of the projects and future directions for research, development, and deployment in this technology area.« less

  11. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.

  12. The Federal Nursing Service Award. Individual readiness in nursing.

    PubMed

    Reineck, C

    1999-04-01

    Individual readiness is critical for effective nursing in deployed environments. Although readiness is routinely tracked and reported, a study of its complexity among federal nurses was needed. An inductive research approach clarified the concept of individual readiness. Representing a broad range of deployment experience, focus group members developed a definition of the concept and identified six components: clinical competency; operational competency; survival skills; personal/psychosocial/physical readiness; leadership and administrative support; and group integration and identification. The findings form an overdue conceptual basis for future measurement of this important dimension of federal nursing.

  13. Borrow the Buoys: DOE’s Lidar Buoy Loan Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-02-27

    After a 19-month deployment off the coast of Virginia, one of PNNL’s research buoys has returned to shore where researchers can analyze the data recorded by the buoy. The data revealed a few major takeaways that will inform future buoy deployments, including the times and conditions when data measurement is most accurate. Through the Department of Energy's Wind Energy Technologies Office's Lidar Buoy Loan Program, managed by PNNL, interested parties can borrow the buoys for year and contribute invaluable data to the wind energy community.

  14. Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Satter, Celeste M.

    2005-01-01

    Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.

  15. Urban Rail Noise Abatement Program : A Description

    DOT National Transportation Integrated Search

    1980-03-01

    This report presents the background, current activities, and future plans for the Urban Rail Noise Abatement Program. This program, sponsored by the Office of Technology Development and Deployment of the Urban Mass Transportation Administration (UMTA...

  16. Strategic charging infrastructure deployment for electric vehicles.

    DOT National Transportation Integrated Search

    2016-05-01

    Electric vehicles (EV) are promoted as a foreseeable future vehicle technology to reduce dependence on fossil fuels and greenhouse : gas emissions associated with conventional vehicles. This paper proposes a data-driven approach to improving the elec...

  17. Bodybuilding, energy, and weight-loss supplements are associated with deployment and physical activity in U.S. military personnel.

    PubMed

    Jacobson, Isabel G; Horton, Jaime L; Smith, Besa; Wells, Timothy S; Boyko, Edward J; Lieberman, Harris R; Ryan, Margaret A K; Smith, Tyler C

    2012-05-01

    The characteristics of U.S. military personnel who use dietary supplements have not been well described. This study aimed to determine whether deployment experience and physical activity were associated with the use of bodybuilding, energy, or weight-loss supplement among U.S. military personnel. Self-reported data from active-duty, Reserve, and National Guard participants of the Millennium Cohort Study collected from 2007-2008 (n = 106,698) on supplement use, physical activity, and other behavioral data were linked with deployment and demographic data. We used multivariable logistic regression sex-stratified models to compare the adjusted odds of each type of supplement use among those with deployment experience in support of operations in Iraq or Afghanistan and those engaged in aerobic or strength-training activities. Overall, 46.7% of participants reported using at least one type of supplement, and 22.0% reported using multiple supplements. Male deployers were more likely to use bodybuilding supplements, whereas female deployers were more likely to use weight-loss supplements. Physically active and younger subjects reported all types of supplement use. Men and women reporting 5 or less hours of sleep per night were more likely to use energy supplements. The high prevalence of supplement use and important characteristics found to be associated with their use, including deployment, physical activity, and suboptimal sleep, suggest focus areas for future research and adverse event monitoring. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. System Level Aerothermal Testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)

    NASA Technical Reports Server (NTRS)

    Cassell, Alan; Gorbunov, Sergey; Yount, Bryan; Prabhu, Dinesh; de Jong, Maxim; Boghozian, Tane; Hui, Frank; Chen, Y.-K.; Kruger, Carl; Poteet, Carl; hide

    2016-01-01

    The Adaptive Deployable Entry and Placement Technology (ADEPT), a mechanically deployable entry vehicle technology, has been under development at NASA since 2011. As part of the technical maturation of ADEPT, designs capable of delivering small payloads (10 kg) are being considered to rapidly mature sub 1 m deployed diameter designs. The unique capability of ADEPT for small payloads comes from its ability to stow within a slender volume and deploy to achieve a mass efficient drag surface with a high heat rate capability. The low ballistic coefficient results in entry heating and mechanical loads that can be met by a revolutionary three-dimensionally woven carbon fabric supported by a deployable skeleton structure. This carbon fabric has test proven capability as both primary structure and payload thermal protection system. In order to rapidly advance ADEPTs technical maturation, the project is developing test methods that enable thermostructural design requirement verification of ADEPT designs at the system level using ground test facilities. Results from these tests are also relevant to larger class missions and help us define areas of focused component level testing in order to mature material and thermal response design codes. The ability to ground test sub 1 m diameter ADEPT configurations at or near full-scale provides significant value to the rapid maturation of this class of deployable entry vehicles. This paper will summarize arc jet test results, highlight design challenges, provide a summary of lessons learned and discuss future test approaches based upon this methodology.

  19. Rural Connected Vehicle Gap Analysis : Factors Impeding Deployment and Recommendations for Moving Forward

    DOT National Transportation Integrated Search

    2017-08-25

    The intent of the Rural Connected Vehicle Gap Analysis project was to identify any current gaps in the connected vehicle program that may result in a reduced deployment potential in the rural areas of the United States. Through a workshop conducted a...

  20. Tony Jimenez | NREL

    Science.gov Websites

    pre-feasibility analysis; wind data analysis; the small wind turbine certification process; economic Regional Test Center effort, analysis of the potential economic impact of large-scale MHK deployment off pre-feasibility analysis. Tony is an engineer officer in the Army Reserve. He has deployed twice

  1. Deploying the ODIS robot in Iraq and Afghanistan

    NASA Astrophysics Data System (ADS)

    Smuda, Bill; Schoenherr, Edward; Andrusz, Henry; Gerhart, Grant

    2005-05-01

    The wars in Iraq and Afghanistan have shown the importance of robotic technology as a force multiplier and a tool for moving soldiers out of harms way. Situations on the ground make soldiers performing checkpoint operations easy targets for snipers and suicide bombers. Robotics technology reduces risk to soldiers and other personnel at checkpoints. Early user involvement in innovative and aggressive development and acquisition strategies are the key to moving robotic and associated technology into the hands of the user. This paper updates activity associated with rapid development of the Omni-Directional Inspection System (ODIS) robot for under vehicle inspection and reports on our field experience with robotics in Iraq and Afghanistan. In February of 2004, two TARDEC Engineers departed for a mission to Iraq and Afghanistan with ten ODIS Robots. Six robots were deployed in the Green Zone in Baghdad. Two Robots were deployed at Kandahar Army Airfield and two were deployed at Bagram Army Airfield in Afghanistan. The TARDEC Engineers who performed this mission trained the soldiers and provided initial on site support. They also trained Exponent employees assigned to the Rapid Equipping Force in ODIS repair. We will discuss our initial deployment, lessons learned and future plans.

  2. Strategic Studies Quarterly. Volume 9, Number 2. Summer 2015

    DTIC Science & Technology

    2015-01-01

    disrupting financial markets. Among other indicators, China’s already deployed and future Type 094 Jin -ciass nuclear ballistic missile submarines (SSBN...on agility instead of brute force re- inforces traditional Chinese military thinking. Since Sun Tzu, the acme of skill has been winning without... mechanical (both political and technical) nature of digital developments. Given this, the nature of system constraints under a dif- ferent future

  3. ACRF Instrumentation Status: New, Current, and Future - October – November 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JW Voyles

    2007-11-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  4. The Future of Energy from Nuclear Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Taiwo, Temitope

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of thesemore » five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.« less

  5. Defense Science Board 1996 Summer Study Task Force On Tactics and Technology for 21st Century Military Superiority. Volume 2, Part 1. Supporting Materials

    DTIC Science & Technology

    1996-10-01

    systems currently headed for deployment ( BIDS is highlighted in the chart) to widely dispersed microsensors on micro, autonomous platforms. Small room... Small , Rapidly Deployable Forces" Joe Polito, Dan Rondeau, Sandia National Laboratory V.2. "Robotic Concepts for Small Rapidly Deployable Forces" V-7...Robert Palmquist, Jill Fahrenholtz, Richard Wheeler, Sandia National Laboratory V.3. "Potential for Distributed Ground Sensors in Support of Small Unit V

  6. Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Gurwell, W.E.; Nelson, T.A.

    1979-06-01

    Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billionmore » m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.« less

  7. Promising technological innovations in cognitive training to treat eating-related behavior.

    PubMed

    Forman, Evan M; Goldstein, Stephanie P; Flack, Daniel; Evans, Brittney C; Manasse, Stephanie M; Dochat, Cara

    2018-05-01

    One potential reason for the suboptimal outcomes of treatments targeting appetitive behavior, such as eating and alcohol consumption, is that they do not target the implicit cognitive processes that may be driving these behaviors. Two groups of related neurocognitive processes that are robustly associated with dysregulated eating and drinking are attention bias (AB; selective attention to specific stimuli) and executive function (EF; a set of cognitive control processes such as inhibitory control, working memory, set shifting, that govern goal-directed behaviors). An increasing body of work suggests that EF and AB training programs improve regulation of appetitive behaviors, especially if trainings are frequent and sustained. However, several key challenges, such as adherence to the trainings in the long term, and overall potency of the training, remain. The current manuscript describes five technological innovations that have the potential to address difficulties related to the effectiveness and feasibility of EF and AB trainings: (1) deployment of training in the home, (2) training via smartphone, (3) gamification, (4) virtual reality, and (5) personalization. The drawbacks of these innovations, as well as areas for future research, are also discussed. The above-mentioned innovations are likely to be instrumental in the future empirical work to develop and evaluate effective EF and AB trainings for appetitive behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The contribution of vaccination to global health: past, present and future.

    PubMed

    Greenwood, Brian

    2014-01-01

    Vaccination has made an enormous contribution to global health. Two major infections, smallpox and rinderpest, have been eradicated. Global coverage of vaccination against many important infectious diseases of childhood has been enhanced dramatically since the creation of WHO's Expanded Programme of Immunization in 1974 and of the Global Alliance for Vaccination and Immunization in 2000. Polio has almost been eradicated and success in controlling measles makes this infection another potential target for eradication. Despite these successes, approximately 6.6 million children still die each year and about a half of these deaths are caused by infections, including pneumonia and diarrhoea, which could be prevented by vaccination. Enhanced deployment of recently developed pneumococcal conjugate and rotavirus vaccines should, therefore, result in a further decline in childhood mortality. Development of vaccines against more complex infections, such as malaria, tuberculosis and HIV, has been challenging and achievements so far have been modest. Final success against these infections may require combination vaccinations, each component stimulating a different arm of the immune system. In the longer term, vaccines are likely to be used to prevent or modulate the course of some non-infectious diseases. Progress has already been made with therapeutic cancer vaccines and future potential targets include addiction, diabetes, hypertension and Alzheimer's disease.

  9. Stress, Behavior and Health: Developing a Model for Predicting Post-Deployment Morbidity, Mortality and Other Adverse Outcomes

    DTIC Science & Technology

    2001-07-01

    line corresponded very closely to media coverage of "mysterious illnesses" among GWE veterans (17). The role of publicity in affecting healthcare ...of deployment related health, and in particular the potential etiologic role of stress in the development of Gulf War Illnesses (GWI). To this end we...have devoted considerable resources to the scrupulous collection and linkage of data with the potential to shed light on the role of stress and other

  10. Advanced warning for railroad delays in San Antonio : lessons learned from the Metropolitan Model Deployment Initiative : providing enhanced information to the public

    DOT National Transportation Integrated Search

    This report demonstrates the benefits of deploying and operating an integrated highway/rail system, along with the potential barriers to implementation. In particular, it discusses the lessons learned associated with the Advanced Warning to Avoid Rai...

  11. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks

    PubMed Central

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-01

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364

  12. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks.

    PubMed

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-09

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

  13. Reinforced wind turbine blades--an environmental life cycle evaluation.

    PubMed

    Merugula, Laura; Khanna, Vikas; Bakshi, Bhavik R

    2012-09-04

    A fiberglass composite reinforced with carbon nanofibers (CNF) at the resin-fiber interface is being developed for potential use in wind turbine blades. An energy and midpoint impact assessment was performed to gauge impacts of scaling production to blades 40 m and longer. Higher loadings force trade-offs in energy return on investment and midpoint impacts relative to the base case while remaining superior to thermoelectric power generation in these indicators. Energy-intensive production of CNFs forces impacts disproportionate to mass contribution. The polymer nanocomposite increases a 2 MW plant's global warming potential nearly 100% per kWh electricity generated with 5% CNF by mass in the blades if no increase in electrical output is realized. The relative scale of impact must be compensated by systematic improvements whether by deployment in higher potential zones or by increased life span; the trade-offs are expected to be significantly lessened with CNF manufacturing maturity. Significant challenges are faced in evaluating emerging technologies including uncertainty in future scenarios and process scaling. Inventories available for raw materials and monte carlos analysis have been used to gain insight to impacts of this development.

  14. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Vavrin, Andrew; Manis, Alyssa

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO-to- GEO Environment Debris) model, are used to make predictions about how space activities will affect the manner in which the debris environment evolves over time. Part of this process predicts how spacecraft and rocket bodies will be launched and remain in the future environment. This has usually been accomplished by repeating past launch history to simulate future launches. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding CubeSats to the environment. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major CubeSat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of postmission disposal.

  15. Video Guidance Sensor for Surface Mobility Operations

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce

    2008-01-01

    Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.

  16. Preparedness Evaluation of French Military Orthopedic Surgeons Before Deployment.

    PubMed

    Choufani, Camille; Barbier, Olivier; Mayet, Aurélie; Rigal, Sylvain; Mathieu, Laurent

    2018-06-13

    A deployed military orthopedic surgeon is a trauma surgeon working in austere conditions. The first aim of this study was to analyze the current activity of French military orthopedic surgeons in the field and to identify the differences of the combat zone with their daily practice. The second aim was to assess the adequacy of the preparedness they received before their deployment and to identify additional needs that could be addressed in future training. An evaluation survey was sent to all French military orthopedic surgeons deployed in theaters of operations between 2004 and 2014. An analogic visual scale of 10 was used to evaluate their surgical activity abroad and prior training. A total of 55 surgeons, with a median deployment number of 7, were included in this study after they answered the survey. Debridement and external fixation were the most common orthopedic procedures. The practice of general surgery was mostly concerned with vascular and abdominal injuries as part of damage control procedures. Median scores were ranked at seven for surgical preparedness, five for physical readiness, and three for mental preparedness. There was a significant inverse relationship between the number of missions performed and the evaluation of surgical preparedness. The higher they perceived their mental preparedness, the better they estimated their surgical preparedness. In the French Army, deployed orthopedic surgeons perform general surgical activity. Their initial training must be adapted to this constraint and enhanced by continuing medical education.

  17. Newberry Seismic Deployment Fieldwork Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquakemore » detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.« less

  18. Coming home: A prospective study of family reintegration following deployment to a war zone.

    PubMed

    Balderrama-Durbin, Christina; Cigrang, Jeffrey A; Osborne, Laura J; Snyder, Douglas K; Talcott, G Wayne; Slep, Amy M Smith; Heyman, Richard E; Tatum, JoLyn; Baker, Monty; Cassidy, Daniel; Sonnek, Scott

    2015-08-01

    The consequences of deployment extend beyond the service member to impact the entire family. The current investigation evaluated the unique challenges of family reintegration for partnered service members using a prospective design. In total, 76 partnered service members who deployed on a year-long, high-risk mission to Iraq were assessed across the entirety of the deployment cycle, i.e., pre-, during, and postdeployment. At follow-up, nearly 1 in 5 partnered service members reported moderate to severe difficulties in multiple aspects of family reintegration. Prospective interpersonal indicators such as preparations for deployment as a couple, shared commitment to the military, and predeployment relationship distress predicted postdeployment family reintegration difficulties. Significant interpersonal risk factors were medium to large in their effect sizes. Airmen's willingness to disclose deployment- and combat-related experiences, and postdeployment relationship distress served as concurrent interpersonal correlates of difficulties with family reintegration. Intrapersonal factors, including posttraumatic stress symptoms and alcohol misuse were concurrently related to challenges with family reintegration; predeployment alcohol misuse also predicted subsequent family reintegration difficulties. Additional analyses indicated that pre- and postdeployment relationship distress, combat disclosure, and postdeployment alcohol misuse each contributed to family reintegration when controlling for other intra- and interpersonal risk factors. Implications for prevention and early intervention strategies as well as future research are discussed. (c) 2015 APA, all rights reserved).

  19. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  20. Deployment-related Respiratory Issues.

    PubMed

    Morris, Michael J; Rawlins, Frederic A; Forbes, Damon A; Skabelund, Andrew J; Lucero, Pedro F

    2016-01-01

    Military deployment to Southwest Asia since 2003 in support of Operations Enduring Freedom/Iraqi Freedom/New Dawn has presented unique challenges from a pulmonary perspective. Various airborne hazards in the deployed environment include suspended geologic dusts, burn pit smoke, vehicle exhaust emissions, industrial air pollution, and isolated exposure incidents. These exposures may give rise to both acute respiratory symptoms and in some instances development of chronic lung disease. While increased respiratory symptoms during deployment are well documented, there is limited data on whether inhalation of airborne particulate matter is causally related to an increase in either common or unique pulmonary diseases. While disease processes such as acute eosinophilic pneumonia and exacerbation of preexisting asthma have been adequately documented, there is significant controversy surrounding the potential effects of deployment exposures and development of rare pulmonary disorders such as constrictive bronchiolitis. The role of smoking and related disorders has yet to be defined. This article presents the current evidence for deployment-related respiratory symptoms and ongoing Department of Defense studies. Further, it also provides general recommendations for evaluating pulmonary health in the deployed military population.

  1. U.S. Army Reserve (Medical) soldier prescription challenges during Operation Iraqi Freedom.

    PubMed

    Savitala, Murty; Dydek, George J

    2004-12-01

    The continuous requirement to mobilize and deploy reserve soldiers presents numerous challenges for the Army Medical Department. One of the challenges in the preparation for deployment of reserve soldiers is the assessment of chronic prescription medication requirements and the eventual filling of these requirements during deployment. The assigned unit pharmacy officer can provide a value-added service through the identification and coordination of the pharmaceutical needs of an activated deploying unit. A unit pharmacy officer conducted a prescription medication use analysis on an activated Army Reserve Medical Unit before deployment in support of Operation Iraqi Freedom. The study population consisted of 181 soldiers identified through a volunteer survey administered by the assigned pharmacy officer. The prescription medication requirements for the unit were identified in a predeployment status and an evaluation was conducted to determine the ability to sustain the medication requirements once the unit was to be deployed. Gaps in the availability of prescription medication requirements in a predeployed status were identified indicating potential deficiencies in the capability to replenish prescription medication requirements during deployment.

  2. Vaccines against Ebola virus.

    PubMed

    Venkatraman, Navin; Silman, Daniel; Folegatti, Pedro M; Hill, Adrian V S

    2017-08-02

    We have just witnessed the largest and most devastating outbreak of Ebola virus disease, which highlighted the urgent need for development of an efficacious vaccine that could be used to curtail future outbreaks. Prior to 2014, there had been limited impetus worldwide to develop a vaccine since the virus was first discovered in 1976. Though too many lives were lost during this outbreak, it resulted in the significantly accelerated clinical development of a number of candidate vaccines through an extraordinary collaborative global effort coordinated by the World Health Organisation (WHO) and involving a number of companies, trial centres, funders, global stakeholders and agencies. We have acquired substantial safety and immunogenicity data on a number of vaccines in Caucasian and African populations. The rapid pace of events led to the initiation of the landmark efficacy trial testing the rVSV-vectored vaccine, which showed high level efficacy in an outbreak setting when deployed using an innovative ring vaccination strategy. Though the Public Health Emergency of International Concern (PHEIC) declared by the WHO has now been lifted, the global scientific community faces numerous challenges ahead to ensure that there is a licensed, deployable vaccine available for use in future outbreaks for at least the Zaire and Sudan strains of Ebola virus. There remain several unanswered questions on the durability of protection, mechanistic immunological correlates and preferred deployment strategies. This review outlines a brief history of the development of Ebola vaccines, the significant progress made since the scale of the outbreak became apparent, some lessons learnt and how they could shape future development of vaccines and the management of similar outbreaks. Copyright © 2017. Published by Elsevier Ltd.

  3. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    PubMed

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.

  4. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and the affected region and published an online peer-reviewed report on their results. Subsequently, the DOI used SSG findings to ensure supplemental investments for mitigation projects were prioritized to enhance regional resilience. The SSG is an innovative and flexible tool to support decision making that continues to evolve and show that it has applications across multiple phases of emergency management. The SSG methodology was developed during the Deepwater Horizon oil spill, when its predecessor, the Strategic Sciences Working Group (SSWG), convened to develop scenarios analyzing the cascading consequences of the spill on the Gulf of Mexico. The SSWG was deployed during the height of the emergency, when oil was still flowing from the broken pipe. By comparison, the recent deployment of the SSG was in Sandy's aftermath, when local, state, and federal institutions were focused on rebuilding efforts. Together, these deployments have enabled the SSG to assess its approach to scenario building during both emergency and recovery situations. The SSG continues to identify lessons learned from this experience to use in preparation for future deployments.

  5. Development and Deployment of the OpenMRS-Ebola Electronic Health Record System for an Ebola Treatment Center in Sierra Leone

    PubMed Central

    Jazayeri, Darius; Teich, Jonathan M; Ball, Ellen; Nankubuge, Patricia Alexandra; Rwebembera, Job; Wing, Kevin; Sesay, Alieu Amara; Kanter, Andrew S; Ramos, Glauber D; Walton, David; Cummings, Rachael; Checchi, Francesco; Fraser, Hamish S

    2017-01-01

    Background Stringent infection control requirements at Ebola treatment centers (ETCs), which are specialized facilities for isolating and treating Ebola patients, create substantial challenges for recording and reviewing patient information. During the 2014-2016 West African Ebola epidemic, paper-based data collection systems at ETCs compromised the quality, quantity, and confidentiality of patient data. Electronic health record (EHR) systems have the potential to address such problems, with benefits for patient care, surveillance, and research. However, no suitable software was available for deployment when large-scale ETCs opened as the epidemic escalated in 2014. Objective We present our work on rapidly developing and deploying OpenMRS-Ebola, an EHR system for the Kerry Town ETC in Sierra Leone. We describe our experience, lessons learned, and recommendations for future health emergencies. Methods We used the OpenMRS platform and Agile software development approaches to build OpenMRS-Ebola. Key features of our work included daily communications between the development team and ground-based operations team, iterative processes, and phased development and implementation. We made design decisions based on the restrictions of the ETC environment and regular user feedback. To evaluate the system, we conducted predeployment user questionnaires and compared the EHR records with duplicate paper records. Results We successfully built OpenMRS-Ebola, a modular stand-alone EHR system with a tablet-based application for infectious patient wards and a desktop-based application for noninfectious areas. OpenMRS-Ebola supports patient tracking (registration, bed allocation, and discharge); recording of vital signs and symptoms; medication and intravenous fluid ordering and monitoring; laboratory results; clinician notes; and data export. It displays relevant patient information to clinicians in infectious and noninfectious zones. We implemented phase 1 (patient tracking; drug ordering and monitoring) after 2.5 months of full-time development. OpenMRS-Ebola was used for 112 patient registrations, 569 prescription orders, and 971 medication administration recordings. We were unable to fully implement phases 2 and 3 as the ETC closed because of a decrease in new Ebola cases. The phase 1 evaluation suggested that OpenMRS-Ebola worked well in the context of the rollout, and the user feedback was positive. Conclusions To our knowledge, OpenMRS-Ebola is the most comprehensive adaptable clinical EHR built for a low-resource setting health emergency. It is designed to address the main challenges of data collection in highly infectious environments that require robust infection prevention and control measures and it is interoperable with other electronic health systems. Although we built and deployed OpenMRS-Ebola more rapidly than typical software, our work highlights the challenges of having to develop an appropriate system during an emergency rather than being able to rapidly adapt an existing one. Lessons learned from this and previous emergencies should be used to ensure that a set of well-designed, easy-to-use, pretested health software is ready for quick deployment in future. PMID:28827211

  6. SMARD-REXUS-18: Development and Verification of an SMA Based CubeSat Solar Panel Deployment Mechanism

    NASA Astrophysics Data System (ADS)

    Grulich, M.; Koop, A.; Ludewig, P.; Gutsmiedl, J.; Kugele, J.; Ruck, T.; Mayer, I.; Schmid, A.; Dietmann, K.

    2015-09-01

    SMARD (Shape Memory Alloy Reusable Deployment Mechanism) is an experiment for a sounding rocket developed by students at Technische Universität MUnchen (TUM). It was launched in March 2015 on REXUS 18 (Rocket Experiments for University Students). The goal of SMARD was to develop a solar panel holddown and release mechanism (HDRM) for a CubeSat using shape memory alloys (SMA) for repeatable actuation and the ability to be quickly resettable. This paper describes the technical approach as well as the technological development and design of the experiment platform, which is capable of proving the functionality of the deployment mechanism. Furthermore, the realization of the experiment as well as the results of the flight campaign are presented. Finally, the future applications of the developed HDRM and its possible further developments are discussed.

  7. Advanced protection technology for ground combat vehicles.

    PubMed

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield.

  8. Trouble-shooting deployment and recovery options for various stationary passive acoustic monitoring devices in both shallow- and deep-water applications.

    PubMed

    Dudzinski, Kathleen M; Brown, Shani J; Lammers, Marc; Lucke, Klaus; Mann, David A; Simard, Peter; Wall, Carrie C; Rasmussen, Marianne Helene; Magnúsdóttir, Edda Elísabet; Tougaard, Jakob; Eriksen, Nina

    2011-01-01

    Deployment of any type of measuring device into the ocean, whether to shallow or deeper depths, is accompanied by the hope that this equipment and associated data will be recovered. The ocean is harsh on gear. Salt water corrodes. Currents, tides, surge, storms, and winds collaborate to increase the severity of the conditions that monitoring devices will endure. All ocean-related research has encountered the situations described in this paper. In collating the details of various deployment and recovery scenarios related to stationary passive acoustic monitoring use in the ocean, it is the intent of this paper to share trouble-shooting successes and failures to guide future work with this gear to monitor marine mammal, fish, and ambient (biologic and anthropogenic) sounds in the ocean-in both coastal and open waters.

  9. Lessons learned from a successful MEDRETE in El Salvador.

    PubMed

    Post, James C; Melendez, Manuel E; Hershey, Donna N; Hakim, Abdul

    2003-04-01

    Medical readiness education and training exercises are short-term exercises designed to provide health care and preventive medicine education to underserved civilian populations overseas. These high profile missions provide superb training opportunities, build democracies, and can be a powerful incentive to retain soldiers in the Reserves. Despite this, the literature offers little guidance in terms of how to best conduct a MEDRETE, particularly with a unit that has not been recently deployed. A U.S. Army Reserve unit was deployed to El Salvador following two devastating earthquakes and treated 20,890 patients in 10 days. This patient volume was achieved by a close cooperative effort among an experienced Mission Coordinator and Reservists and superb host nation support. Lessons learned regarding predeployment, deployment, patient management, and safety issues are presented to assist future units in conducting successful medical readiness education and training exercises.

  10. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We will review existing IRIS projects that explore new array capabilities and highlight future directions for IRIS instrumentation facilities.

  11. The development and deployment of electronic personal health records records: a strategic positioning perspective.

    PubMed

    Lewis, Mark; Baxter, Ryan; Pouder, Richard

    2013-01-01

    The purpose of this study is to examine the impact of strategic position on the ability of an entrepreneurial firm to successfully develop and deploy electronic personal health records technology within the US healthcare industry. This study uses an in-depth longitudinal case study methodology. The study contributes by juxtaposing a longitudinal view of how the focal firm proposed and acted on different strategic positions in an attempt to achieve development and deployment success. In doing so, the study also elaborates on Porter's recognition that firms need to make trade-offs when choosing a strategic position, as the purposeful limitation of service offerings can protect against the degradation of existing value creating activities. The authors' study highlights the enormous challenge of facilitating the adoption and diffusion of technology enabled interventions in the US healthcare ecosystem. Future research that combines both interdisciplinary and multi-level investigation and analysis is sorely needed to develop a more sophisticated understanding of the phenomenon and to encourage the development and deployment of useful technology enabled interventions within the US healthcare industry. While the fragmented nature of the healthcare industry provides opportunities for entrepreneurial firms, such complexity within the ecosystem should not be underestimated as a reason for concern for small firms. Total economic burden due to chronic diseases and other healthcare-related expenses is massive for the USA. Consequently, prevention and early detection of future disease states has become a core component of the current healthcare reform debate. EPHRs are considered one core component of a broader healthcare strategy to improve health outcomes and lower costs. By deepening our understanding of how best to develop and deploy such interventions, society will surely benefit. The longitudinal nature of the authors' study provides a unique opportunity to understand the dynamic interrelationships between context, position, and performance within the US healthcare industry.

  12. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  13. Novel Functional Genomics Approaches: A Promising Future in the Combat Against Plant Viruses.

    PubMed

    Fondong, Vincent N; Nagalakshmi, Ugrappa; Dinesh-Kumar, Savithramma P

    2016-10-01

    Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat-associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.

  14. Intelligent personal health record: experience and open issues.

    PubMed

    Luo, Gang; Tang, Chunqiang; Thomas, Selena B

    2012-08-01

    Web-based personal health records (PHRs) are under massive deployment. To improve PHR's capability and usability, we previously proposed the concept of intelligent PHR (iPHR). By introducing and extending expert system technology and Web search technology into the PHR domain, iPHR can automatically provide users with personalized healthcare information to facilitate their daily activities of living. Our iPHR system currently provides three functions: guided search for disease information, recommendation of home nursing activities, and recommendation of home medical products. This paper discusses our experience with iPHR as well as the open issues, including both enhancements to the existing functions and potential new functions. We outline some preliminary solutions, whereas a main purpose of this paper is to stimulate future research work in the area of consumer health informatics.

  15. Development of New Research-Quality Low-Resource Magnetometers for Small Satellites

    NASA Technical Reports Server (NTRS)

    Moldwin, Mark; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    Researchers from the University of Michigan (UM) and NASA Goddard Spaceflight Center (GSFC) are partnering to develop new types of magnetometers for use on future small satellites. These new instruments not only fulfill stringent requirements for low-amplitude and high-precision measurements, they are also enabling the team to develop a new approach to achieve high-quality magnetic measurements from space, without the need for a boom. Typically, space-based magnetometers are deployed on a boom that extends from the space vehicle to reduce exposure of magnetic noise emanating from the spacecraft, which could potentially contaminate measurements. The UMNASA team has developed algorithms to identify and eliminate spacecraft magnetic noise, which will allow placement of these economical, science-grade instrument magnetometers on and inside the satellite bus, instead of on a boom.

  16. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  17. Carbon composites in space vehicle structures

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  18. The roles of energy and material efficiency in meeting steel industry CO2 targets.

    PubMed

    Milford, Rachel L; Pauliuk, Stefan; Allwood, Julian M; Müller, Daniel B

    2013-04-02

    Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.

  19. Materials Based on Antimony and Bismuth for Sodium Storage: A Review.

    PubMed

    Li, Xinyan; Ni, Jiangfeng; Savilov, S V; Li, Liang

    2018-06-06

    Sodium-ion batteries (SIBs) that efficiently store electricity into chemical energy have been extensively pursued because of their great potential for low-cost and large-scale stationary application such as smart grid and renewable energy. Successful deployment of SIBs requires efficient anode materials that could store Na+ ions via a reversible way at reasonable rates. Materials based on antimony and bismuth are capable of storing a high-concentration of Na+ ions via a reversible alloying reaction at suitable redox potentials, and thus havedrawn substantial attention. However, these electrode materials are facing significant technical challenges, such as poor conductivity, multiple phase transformation, and severe volume swelling and shrinking, which make efficient materials design a necessity. In this review, we will give a latest overview of research progress in the design and application of electrode materials based on antimony and bismuth, and offer some value insights into their future development in sodium storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures.

    PubMed

    Song, Xiaoye; Xie, Ming; Li, Yun; Li, Guoxue; Luo, Wenhai

    2018-06-01

    Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions

    PubMed Central

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-01-01

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design. PMID:27322265

  2. Exercise BANYAN TREE II, 8-16 March 1960

    DTIC Science & Technology

    1960-04-23

    confirmed that a composite air strike force was available for deployment to this command. c. At this time, participation in Banyan Tree II by Latin...participate in future exercises conducted in this area. b. That desired composition of forces for future exercises be determined sufficiently early to...channel ( VHP ) radio relay system was established between the Canal Zone and Rio Hato. Ter- minals were installed on Flamenco Island, Canal Zone and

  3. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    NASA Astrophysics Data System (ADS)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.

  4. Road weather information system statewide implementation plan.

    DOT National Transportation Integrated Search

    2014-03-01

    The objective of this project was to develop a plan for deploying a statewide RWIS to support both current NYSDOT operations and future MDSS applications. To develop the plan, various information and data sources were investigated, including the curr...

  5. Seattle To Portland Inter-City ITS Corridor Study And Communications Plan, Final Report

    DOT National Transportation Integrated Search

    1996-03-01

    THIS DOCUMENT IS THE FINAL REPORT PRESENTING THE SEATTLE TO PORTLAND INTELLIGENT TRANSPORTATION SYSTEM (ITS) EARLY DEPLOYMENT PLAN. THE FINAL REPORT SYNTHESIZES INFORMATION FROM TECHNICAL MEMORANDUMS 1 THROUGH 5; INCLUDING EXISTING AND FUTURE CONDITI...

  6. Fission Meter Information Barrier Attribute Measurement System: Task 1 Report: Document existing Fission Meter neutron IB system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, P. L.

    An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements inmore » a way the does not reveal sensitive information. In full IB mode, only red/green ‘lights’ are displayed in the software. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.« less

  7. Wound fragments from cutaneous sites of U.S. Military personnel deployed in operation Iraqi Freedom: clinical aspects and pathologic characterizations.

    PubMed

    Maggio, Kurt L; Kalasinsky, Victor F; Lewin-Smith, Michael R; Mullick, Florabel G

    2008-04-01

    A wide variety of materials present in current military conflict zones may be implanted and retained as "foreign bodies" or fragments in wounds. Analysis of removed fragments can be valuable to the patient, for research purposes, and for the protection of future potential victims. The objectives were to evaluate the composition of retained fragments in wounds from combat injuries and correlate this information with the mechanism of injury. Wound fragments from 10 U.S. military personnel wounded while deployed in Iraq for Operation Iraqi Freedom were removed from their skin and were subjected to gross examination, light microscopy, and scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDXA), with specimen radiography and infrared spectroscopy if indicated. A variety of exogenous substances, including iron, lead, antimony, copper, aluminum, and acrylonitrile-styrene plastic were detected. No (depleted) uranium was detected. There was a high degree of correlation between the composition of the fragment removed and the wounding event. Wound fragments may take months to years to manifest. Their gross appearance can be misleading. Establishing the composition of retained materials in wounds may assist in the clinical care of the wounded, provide forensic information, and have broader value in wound analysis and research.

  8. Developing a novel UAV (Unmanned Aerial Vehicle) helicopter platform for very high resolution environmental monitoring of catchment processes

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Richardson, T.; Yang, Z.

    2012-12-01

    Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to present this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data.We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.

  9. Developing a novel UAV (Unmanned Aerial Vehicle) helicopter platform for very high resolution environmental monitoring of catchment processes

    NASA Astrophysics Data System (ADS)

    Freer, J.; Richardson, T. S.

    2012-04-01

    Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.

  10. Roles and contributions of pharmacists in regulatory affairs at the Centers for Disease Control and Prevention for public health emergency preparedness and response.

    PubMed

    Bhavsar, Tina R; Kim, Hye-Joo; Yu, Yon

    To provide a general description of the roles and contributions of three pharmacists from the Regulatory Affairs program (RA) at the Centers for Disease Control and Prevention (CDC) who are involved in emergency preparedness and response activities, including the 2009 pandemic influenza A (H1N1) public health emergency. Atlanta, GA. RA consists of a staff of nine members, three of whom are pharmacists. The mission of RA is to support CDC's preparedness and emergency response activities and to ensure regulatory compliance for critical medical countermeasures against potential threats from natural, chemical, biological, radiological, or nuclear events. RA was well involved in the response to the H1N1 outbreak through numerous activities, such as submitting multiple Emergency Use Authorization (EUA) requests to the Food and Drug Administration, including those for medical countermeasures to be deployed from the Strategic National Stockpile, and developing the CDC EUA website (www.cdc.gov/h1n1flu/eua). RA will continue to support current and future preparedness and emergency response activities by ensuring that the appropriate regulatory mechanisms are in place for the deployment of critical medical countermeasures from the Strategic National Stockpile against threats to public health.

  11. An Expert Elicitation of the Proliferation Resistance of Using Small Modular Reactors (SMR) for the Expansion of Civilian Nuclear Systems.

    PubMed

    Siegel, Jonas; Gilmore, Elisabeth A; Gallagher, Nancy; Fetter, Steve

    2018-02-01

    To facilitate the use of nuclear energy globally, small modular reactors (SMRs) may represent a viable alternative or complement to large reactor designs. One potential benefit is that SMRs could allow for more proliferation resistant designs, manufacturing arrangements, and fuel-cycle practices at widespread deployment. However, there is limited work evaluating the proliferation resistance of SMRs, and existing proliferation assessment approaches are not well suited for these novel arrangements. Here, we conduct an expert elicitation of the relative proliferation resistance of scenarios for future nuclear energy deployment driven by Generation III+ light-water reactors, fast reactors, or SMRs. Specifically, we construct the scenarios to investigate relevant technical and institutional features that are postulated to enhance the proliferation resistance of SMRs. The experts do not consistently judge the scenario with SMRs to have greater overall proliferation resistance than scenarios that rely on conventional nuclear energy generation options. Further, the experts disagreed on whether incorporating a long-lifetime sealed core into an SMR design would strengthen or weaken proliferation resistance. However, regardless of the type of reactor, the experts judged that proliferation resistance would be enhanced by improving international safeguards and operating several multinational fuel-cycle facilities rather than supporting many more national facilities. © 2017 Society for Risk Analysis.

  12. Wind Tunnel Testing of Microtabs and Microjets for Active Load Control of Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Cooperman, Aubryn Murray

    Increases in wind turbine size have made controlling loads on the blades an important consideration for future turbine designs. One approach that could reduce extreme loads and minimize load variation is to incorporate active control devices into the blades that are able to change the aerodynamic forces acting on the turbine. A wind tunnel model has been constructed to allow testing of different active aerodynamic load control devices. Two such devices have been tested in the UC Davis Aeronautical Wind Tunnel: microtabs and microjets. Microtabs are small surfaces oriented perpendicular to an airfoil surface that can be deployed and retracted to alter the lift coefficient of the airfoil. Microjets produce similar effects using air blown perpendicular to the airfoil surface. Results are presented here for both static and dynamic performance of the two devices. Microtabs, located at 95% chord on the lower surface and 90% chord on the upper surface, with a height of 1% chord, produce a change in the lift coefficient of 0.18, increasing lift when deployed on the lower surface and decreasing lift when deployed on the upper surface. Microjets with a momentum coefficient of 0.006 at the same locations produce a change in the lift coefficient of 0.19. The activation time for both devices is less than 0.3 s, which is rapid compared to typical gust rise times. The potential of active device to mitigate changes in loads was tested using simulated gusts. The gusts were produced in the wind tunnel by accelerating the test section air speed at rates of up to 7 ft/s 2. Open-loop control of microtabs was tested in two modes: simultaneous and sequential tab deployment. Activating all tabs along the model span simultaneously was found to produce a change in the loads that occurred more rapidly than a gust. Sequential tab deployment more closely matched the rates of change due to gusts and tab deployment. A closed-loop control system was developed for the microtabs using a simple feedback control based on lift measurements from a six-component balance. An alternative input to the control system that would be easier to implement on a turbine was also investigated: the lift force was estimated using the difference in surface pressure at 15% chord. Both control system approaches were found to decrease lift deviations by around 50% during rapid changes in the free stream air speed.

  13. New Analysis Finds Synergistic Relationship Between High PV Penetration and

    Science.gov Websites

    High PV Penetration and Energy Storage Deployment April 10, 2018 Adding higher penetrations of solar High PV Penetration and Energy Storage Deployment New Analysis Finds Synergistic Relationship Between photovoltaics (PV) to the electric power grid could increase the potential for energy storage to meet peak

  14. Developing and Deploying OERs in Sub-Saharan Africa: Building on the Present

    ERIC Educational Resources Information Center

    Wright, Clayton R.; Reju, Sunday A.

    2012-01-01

    Open educational resources (OERs) have the potential to reduce costs, improve quality, and increase access to educational opportunities. OER development and deployment is one path that could contribute to achieving education for all. This article builds on existing information and communication technology (ICT) implementation plans in Africa and…

  15. 77 FR 16907 - Special Conditions: Embraer S.A., Model EMB 505; Inflatable Side-Facing Seat Three-Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... inflatable portion of the restraint system will rely on sensors to electronically activate the inflator for... inflatable restraint system relies on sensors to electronically activate the inflator for deployment. These sensors could be susceptible to inadvertent activation, causing deployment in a potentially unsafe manner...

  16. Integrated Incident Management System (IIMS) web client application development, deployment and evaluation: an evaluation of a potential IIMS deployment in Western New York : final report.

    DOT National Transportation Integrated Search

    2015-09-30

    Incident Management (IM) is an area of transportation management that can significantly decrease the congestion and increase the : efficiency of transportation networks in non-ideal conditions. In this study, the existing state of the Integrated Inci...

  17. Floating Potential Probe Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2001-01-01

    In the spring and summer of 2000, at the request of the International Space Station (ISS) Program Office, a Plasma Contactor Unit Tiger Team was set up to investigate the threat of the ISS arcing in the event of a plasma contactor outage. Modeling and ground tests done under that effort showed that it is possible for the external structure of the ISS to become electrically charged to as much as -160 V under some conditions. Much of this work was done in anticipation of the deployment of the first large ISS solar array in November 2000. It was recognized that, with this deployment, the power system would be energized to its full voltage and that the predicted charging would pose an immediate threat to crewmembers involved in extravehicular activities (EVA's), as well as long-term damage to the station structure, were the ISS plasma contactors to be turned off or stop functioning. The Floating Potential Probe was conceived, designed, built, and deployed in record time by a crack team of scientists and engineers led by the NASA Glenn Research Center in response to ISS concerns about crew safety.

  18. The Potential for Health Monitoring in Expandable Space Modules: The Bigelow Expandable Activity Module on the ISS

    NASA Technical Reports Server (NTRS)

    Wells, Nathan D.; Madaras, Eric I.

    2017-01-01

    Expandable modules for use in space and on the Moon or Mars offer a great opportunity for volume and mass savings in future space exploration missions. This type of module can be compressed into a relatively small shape on the ground, allowing them to fit into space vehicles with a smaller cargo/fairing size than a traditional solid, metallic structure based module would allow. In April 2016, the Bigelow Expandable Activity Module (BEAM) was berthed to the International Space Station (ISS). BEAM is the first human-rated expandable habitat/module to be deployed and crewed in space. BEAM is a NASA managed ISS payload project in partnership with Bigelow Aerospace. BEAM is intended to stay attached to ISS for an operational period of 2 years to help advance the technology readiness for future expandable modules. BEAM has been instrumented with a suite of space flight certified sensors systems which will help characterize the module's performance for thermal, radiation shielding and impact monitoring against potential Micro Meteoroid/Orbital Debris (MM/OD) providing fundamental information on the BEAM environment for potential health monitoring requirements and capabilities. This paper will provide an overview of how the sensors/instrumentation systems were developed, tested, installed and an overview of the current sensor system operations. It will also discuss how the MM/OD impact detection system referred to as the Distributed Impact Detection System (DIDS) data is being processed and reviewed on the ground by the principle investigators.

  19. Combat deployment is associated with sexual harassment or sexual assault in a large, female military cohort.

    PubMed

    Leardmann, Cynthia A; Pietrucha, Amanda; Magruder, Kathryn M; Smith, Besa; Murdoch, Maureen; Jacobson, Isabel G; Ryan, Margaret A K; Gackstetter, Gary; Smith, Tyler C

    2013-01-01

    Previous studies have examined the prevalence, risk factors, and health correlates of sexual stressors in the military, but have been limited to specific subpopulations. Furthermore, little is known about sexual stressors' occurrence and their correlates in relation to female troops deployed to the current operations in Iraq and Afghanistan. Using longitudinal data from Millennium Cohort participants, the associations of recent deployment as well as other individual and environmental factors with sexual harassment and sexual assault were assessed among U.S. female military personnel. Multivariable analyses were used to investigate the associations. Of 13,262 eligible participants, 1,362 (10.3%) reported at least one sexual stressor at follow-up. Women who deployed and reported combat experiences were significantly more likely to report sexual harassment (odds ratio [OR], 2.20; 95% confidence interval [CI], 1.84-2.64) or both sexual harassment and sexual assault (OR, 2.47; 95% CI, 1.61-3.78) compared with nondeployers. In addition, significant risk factors for sexual stressors included younger age, recent separation or divorce, service in the Marine Corps, positive screen for a baseline mental health condition, moderate/severe life stress, and prior sexual stressor experiences. Although deployment itself was not associated with sexual stressors, women who both deployed and reported combat were at a significantly increased odds for sexual stressors than other female service members who did not deploy. Understanding the factors associated with sexual stressors can inform future policy and prevention efforts to eliminate sexual stressors. Copyright © 2013 Jacobs Institute of Women's Health. All rights reserved.

  20. Safe and Effective Deployment of Personnel to Support the Ebola Response - West Africa.

    PubMed

    Rouse, Edward N; Zarecki, Shauna Mettee; Flowers, Donald; Robinson, Shawn T; Sheridan, Reed J; Goolsby, Gary D; Nemhauser, Jeffrey; Kuwabara, Sachiko

    2016-07-08

    From the initial task of getting "50 deployers within 30 days" into the field to support the 2014-2016 Ebola virus disease (Ebola) epidemic response in West Africa to maintaining well over 200 staff per day in the most affected countries (Guinea, Liberia, and Sierra Leone) during the peak of the response, ensuring the safe and effective deployment of international responders was an unprecedented accomplishment by CDC. Response experiences shared by CDC deployed staff returning from West Africa were quickly incorporated into lessons learned and resulted in new activities to better protect the health, safety, security, and resiliency of responding personnel. Enhanced screening of personnel to better match skill sets and experience with deployment needs was developed as a staffing strategy. The mandatory predeployment briefings were periodically updated with these lessons to ensure that staff were aware of what to expect before, during, and after their deployments. Medical clearance, security awareness, and resiliency programs became a standard part of both predeployment and postdeployment activities. Response experience also led to the identification and provision of more appropriate equipment for the environment. Supporting the social and emotional needs of deployed staff and their families also became an agency focus for care and communication. These enhancements set a precedent as a new standard for future CDC responses, regardless of size or complexity.The activities summarized in this report would not have been possible without collaboration with many U.S and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).

  1. Emotional reactivity to a single inhalation of 35% carbon dioxide and its association with later symptoms of posttraumatic stress disorder and anxiety in soldiers deployed to Iraq.

    PubMed

    Telch, Michael J; Rosenfield, David; Lee, Han-Joo; Pai, Anushka

    2012-11-01

    The identification of modifiable predeployment vulnerability factors that increase the risk of combat stress reactions among soldiers once deployed to a war zone offers significant potential for the prevention of posttraumatic stress disorder (PTSD) and other combat-related stress disorders. Adults with anxiety disorders display heightened emotional reactivity to a single inhalation of 35% carbon dioxide (CO(2)); however, data investigating prospective linkages between emotional reactivity to CO(2) and susceptibility to war-zone stress reactions are lacking. To investigate the association of soldiers' predeployment emotional reactivity to 35% CO(2) challenge with several indices of subsequent war-zone stress symptoms assessed monthly while deployed in Iraq. Prospective cohort study of 158 soldiers with no history of deployment to a war zone were recruited from the Texas Combat Stress Risk Study between April 2, 2007, and August 28, 2009. Multilevel regression models were used to investigate the association between emotional reactivity to 35% CO(2) challenge (assessed before deployment) and soldiers' reported symptoms of general anxiety/stress, PTSD, and depression while deployed to Iraq. Growth curves of PTSD, depression, and general anxiety/stress symptoms showed a significant curvilinear relationship during the 16-month deployment period. War-zone stressors reported in theater were associated with symptoms of general anxiety/stress, PTSD, and depression. Consistent with the prediction, soldiers' emotional reactivity to a single inhalation of 35% CO(2)-enriched air before deployment significantly potentiated the effects of war-zone stressors on the subsequent development of PTSD symptoms and general anxiety/stress symptoms but not on the development of depression, even after accounting for the effects of trait anxiety and the presence of past or current Axis I mental disorders. Soldiers' emotional reactivity to a 35% CO(2) challenge may serve as a vulnerability factor for increasing soldiers' risk for PTSD and general anxiety/stress symptoms in response to war-zone stressors.

  2. Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations

    NASA Image and Video Library

    2006-09-15

    S115-E-06184 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.

  3. Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations

    NASA Image and Video Library

    2006-09-15

    S115-E-06186 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.

  4. Deployment of the P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations

    NASA Image and Video Library

    2006-09-14

    S115-E-05996 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday and the deployment of the arrays set the stage for future expansion of the station.

  5. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastelum, Zoe N.; Gitau, Ernest T. N.; Doehle, Joel R.

    2014-09-01

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges formore » IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.« less

  6. In-step inflatable antenna experiment

    NASA Astrophysics Data System (ADS)

    Freeland, R. E.; Bilyeu, G.

    Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be completed by the end of fiscal year (FY) 1992; hardware development (Phase C/D) is expected to start by early FY 1993; and launch is scheduled for 1995. The paper describes the accomplishments to date and the approach for the remainder of the experiment.

  7. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    NASA Technical Reports Server (NTRS)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.

  8. Net radiative forcing from widespread deployment of photovoltaics.

    PubMed

    Nemet, Gregory F

    2009-03-15

    If photovoltaics (PV) are to contribute significantly to stabilizing the climate, they will need to be deployed on the scale of multiple terawatts. Installation of that much PV would cover substantial portions of the Earth's surface with dark-colored, sunlight-absorbing panels, reducing the Earth's albedo. How much radiative forcing would result from this change in land use? How does this amount compare to the radiative forcing avoided by substituting PV for fossil fuels? This analysis uses a series of simple equations to compare the two effects and finds that substitution dominates; the avoided radiative forcing due to substitution of PV for fossil fuels is approximately 30 times largerthan the forcing due to albedo modification. Sensitivity analysis, including discounting of future costs and benefits, identifies unfavorable yet plausible configurations in which the albedo effect substantially reduces the climatic benefits of PV. The value of PV as a climate mitigation option depends on how it is deployed, not just how much it is deployed--efficiency of PV systems and the carbon intensity of the substituted energy are particularly important

  9. Personal communications services: Improving theater deployable communications for the 21st century

    NASA Astrophysics Data System (ADS)

    Cournoyer, Ronald C., Jr.

    1994-06-01

    Personal Communications Services (PCS) may be the key ingredient for vastly improved military communications capabilities at the turn of the century. The Federal Communications Commission (FCC) defines PCS as a family of mobile or portable radio communications services which could provide services to individuals and businesses and be integrated with a variety of competing networks ... the primary focus of PCS will be to meet communications requirements of people on the move. Today's generation of Theater Deployable Communications, which provides joint tactical communications to deployed forces, is the Tri-Service Tactical Communications (TRI-TAC) system. A description of TRITAC's family of equipment, network topology, typical employment, and critical limitations is presented in this thesis. Five commercial Mobile Satellite Services (MSS) are described as viable candidates for augmenting existing communications systems. Cellular design principles such as frequency reuse, cell splitting, channel access methods, and propagation factors are also addressed. Finally, a framework for comparison of the candidate MSS systems is proposed as a baseline for further studies into the most beneficial implementation of PCS into theater deployable communications systems for the future.

  10. Development of deployable structures for large space platform systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1983-01-01

    The preponderance of study effort was devoted toward the deployable platform systems study which culminated in the detailed design of a ground test article for future development testing. This design is representative of a prototype square-truss, single-fold building-block design that can construct deployable platform structures. This prototype design was selected through a comprehensive and traceable selection process applied to eight competitive designs. The selection process compared the competitive designs according to seven major selection criteria, i.e., design versatility, cost, thermal stability, meteoroid impact significance, reliability, performance predictability, and orbiter integration suitability. In support of the foregoing, a materials data base, and platform systems technology development needs were established. An erectable design of an OTV hangar was selected and recommended for further design development. This design was selected from five study-developed competitive single-fold and double-fold designs including hard-shell and inflatable designs. Also, two deployable manned module configurations, i.e., a hard-shell and an inflatable design were each developed to the same requirements as the composite of two Space station baseline habitat modules.

  11. The effects of exposure to documented open-air burn pits on respiratory health among deployers of the Millennium Cohort Study.

    PubMed

    Smith, Besa; Wong, Charlene A; Boyko, Edward J; Phillips, Christopher J; Gackstetter, Gary D; Ryan, Margaret A K; Smith, Tyler C

    2012-06-01

    To investigate respiratory illnesses and potential open-air burn pit exposure among Millennium Cohort participants who deployed to Iraq or Afghanistan. Using multivariable logistic regression, newly reported chronic bronchitis or emphysema, newly reported asthma, and self-reported respiratory symptoms and possible burn pit exposure within 2, 3, or 5 miles were examined among Army and Air Force deployers surveyed in 2004 to 2006 and 2007 to 2008 (n = 22,844). Burn pit exposure within 3 or 5 miles was not associated with respiratory outcomes after statistical adjustment. Increased symptom reporting was observed among Air Force deployers located within 2 miles of Joint Base Balad; however, this finding was marginally significant with no evidence of trend. In general, these findings do not support an elevated risk for respiratory outcomes among personnel deployed within proximity of documented burn pits in Iraq.

  12. Ground Zero recollections of US Public Health Service nurses deployed to New York City in September 2001.

    PubMed

    Knebel, Ann R; Martinelli, Angela M; Orsega, Susan; Doss, Thomas L; Balingit-Wines, Ana Marie; Konchan, Carol L

    2010-06-01

    The events of September 11, 2001, set in motion the broadest emergency response ever conducted by the US Department of Health and Human Services. In this article, some of the nurses who deployed to New York City in the aftermath of that horrific attack on the United States offer their recollections of the events. Although Public Health Service Commissioned Corps (PHS CC) officers participated in deployments before 9/11, this particular deployment accelerated the transformation of the PHS CC, because people came to realize the tremendous potential of a uniformed service of 6,000 health care professionals. When not responding to emergencies, PHS CC nurses daily serve the mission of the PHS to protect, promote, and advance the health and safety of the nation. In times of crisis, the PHS CC nurses stand ready to deploy in support of those in need of medical assistance. Published by Elsevier Inc.

  13. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks

    PubMed Central

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-01-01

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709

  14. TMBM: Tethered Micro-Balloons on Mars

    NASA Technical Reports Server (NTRS)

    Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.

    2000-01-01

    The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.

  15. Recent Experiences and Challenges of Military Physiotherapists Deployed to Afghanistan: A Qualitative Study

    PubMed Central

    Carpenter, Christine

    2011-01-01

    ABSTRACT Purpose: Military physiotherapists in the Canadian Forces meet the unique rehabilitation needs of military personnel. Recently, the physiotherapy officer role has evolved in response to the Canadian Forces' involvement in the combat theatre of operations of Afghanistan, and this has created new and unique challenges and demands. The purpose of this study was to describe the experiences and challenges of military physiotherapists deployed to Afghanistan. Methods: A qualitative research design guided by descriptive phenomenology involved recruitment of key informants and in-depth interviews as the data collection method. The interviews were transcribed verbatim and the data analyzed using a foundational thematic analysis approach. Strategies of peer review and member checking were incorporated into the study design. Results: Six military physiotherapists were interviewed. They described rewarding experiences that were stressful yet highly career-satisfying. Main challenges revolved around heavy workloads, an expanded scope of practice as sole-charge practitioners, and the consequences and criticality of their clinical decisions. Conclusions: Our findings suggest that enhanced pre-deployment training and the implementation of a stronger support network will improve the capabilities of military physiotherapists deployed to difficult theatres of operations. This type of systematic and comprehensive research is needed to assist the Canadian Forces in proactively preparing and supporting physiotherapists deployed on future missions. PMID:22942524

  16. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.; Keyser, D.; Flores-Espino, F.

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.

  17. Minimizing the injury potential of deploying airbag interactions with car occupants.

    PubMed

    Mertz, Harold J; Prasad, Priya; Dalmotas, Dainius

    2013-11-01

    Minimizing the injury potential of the interactions between deploying airbags and car occupants is the major issue with the design of airbag systems. This concern was identified in 1964 by Carl Clark when he presented the results of human volunteer and dummy testing of the "Airstop" system that was being developed for aircraft. The following is a chronological summary of the actions taken by the car manufacturers, airbag suppliers, SAE and ISO task groups, research institutes and universities, and consumer and government groups to address this issue.

  18. On-road vehicle detection: a review.

    PubMed

    Sun, Zehang; Bebis, George; Miller, Ronald

    2006-05-01

    Developing on-board automotive driver assistance systems aiming to alert drivers about driving environments, and possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a critical step. This paper presents a review of recent vision-based on-road vehicle detection systems. Our focus is on systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems. First, we discuss the problem of on-road vehicle detection using optical sensors followed by a brief review of intelligent vehicle research worldwide. Then, we discuss active and passive sensors to set the stage for vision-based vehicle detection. Methods aiming to quickly hypothesize the location of vehicles in an image as well as to verify the hypothesized locations are reviewed next. Integrating detection with tracking is also reviewed to illustrate the benefits of exploiting temporal continuity for vehicle detection. Finally, we present a critical overview of the methods discussed, we assess their potential for future deployment, and we present directions for future research.

  19. An agenda for 21st century neurodevelopmental medicine: lessons from autism.

    PubMed

    Klin, A; Jones, W

    2018-03-01

    The future of neurodevelopmental medicine has the potential of situating child neurology at the forefront of a broad-based public health effort to optimize neurodevelopmental outcomes of children born with high-prevalence and diverse genetic, pre- and peri-natal, and environmental burdens compromising early brain development and leading to lifetime disabilities. Building on advancements in developmental social neuroscience and in implementation science, this shift is already occurring in the case of emblematic neurodevelopmental disorders such as autism. Capitalizing on early neuroplasticity and on quantification of trajectories of social-communicative development, new technologies are emerging for high-throughput and cost-effective diagnosis and for community-viable delivery of powerful treatments, in seamless integration across previously fragmented systems of healthcare delivery. These solutions could be deployed in the case of other groups of children at greater risk for autism and communication delays, such as those born extremely premature or with congenital heart disease. The galvanizing concept in this aspirational future is a public health focus on promoting optimal conditions for early brain development, not unlike current campaigns promoting pre-natal care, nutrition or vaccination.

  20. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  1. Deployment of sustainable fueling/charging systems at California highway safety roadside rest areas.

    DOT National Transportation Integrated Search

    2016-12-01

    The transportation and electricity sectors are facing the challenges of shifting toward a sustainable future. Building hydrogen : fueling stations for fuel cell vehicles and fast charging stations for electric vehicles (EV), and installing grid-level...

  2. Crash safety assurance strategies for future plastic and composite intensive vehicles (PCIVs).

    DOT National Transportation Integrated Search

    2010-06-01

    This report identifies outstanding safety issues and research needs for Plastics and Composite Intensive Vehicles (PCIV) to facilitate their safe deployment by 2020. A PCIV definition is proposed, which ensures that the weight and efficiency objectiv...

  3. Pulmonary Function and Respiratory Health of Military Personnel Before Southwest Asia Deployment.

    PubMed

    Skabelund, Andrew J; Rawlins, Frederic A; McCann, Edward T; Lospinoso, Joshua A; Burroughs, Lorraine; Gallup, Roger A; Morris, Michael J

    2017-09-01

    Significant concern exists regarding the respiratory health of military personnel deployed to Southwest Asia, given their exposures to numerous environmental hazards. Although the deployed military force is generally assumed to be fit, the pre-deployment respiratory health of these individuals is largely unknown. Soldiers deploying to Southwest Asia were recruited from the pre-deployment processing center at Fort Hood, Texas. Participants completed a general and respiratory health questionnaire and performed baseline spirometry. One thousand six hundred ninety-three pre-deployment evaluations were completed. The average age of the participants was 32.2 y, and 83.1% were male. More than one third of surveyed solders had a smoking history, 73% were overweight or obese, and 6.2% reported a history of asthma. Abnormal spirometry was found in 22.3% of participants. Soldiers with abnormal spirometry reported more asthma (10.1% vs 5.1%, P < .001), failed physical fitness tests (9.0% vs 4.6%, P = .02), and respiratory symptoms (32.8% vs 24.3%, P = .001). This is the first prospective pre-deployment evaluation of military personnel that delineates factors potentially associated with the development of pulmonary symptoms and/or disease. This study suggests that deploying soldiers are older, heavier, frequently smoke, and may have undiagnosed pre-deployment lung disease. Abnormal spirometry is common but may not represent underlying disease. Self-reported asthma, wheezing, and slower 2-mile run times were predictive of abnormal spirometry. Pre-deployment evaluation of military personnel identified numerous soldiers with active pulmonary symptoms and abnormal spirometry. When combined with questions regarding asthma history, wheezing and exercise intolerance, spirometry may identify individuals at risk for deployment-related respiratory complaints. Copyright © 2017 by Daedalus Enterprises.

  4. Prospective risk factors for new-onset post-traumatic stress disorder in National Guard soldiers deployed to Iraq.

    PubMed

    Polusny, M A; Erbes, C R; Murdoch, M; Arbisi, P A; Thuras, P; Rath, M B

    2011-04-01

    National Guard troops are at increased risk for post-traumatic stress disorder (PTSD); however, little is known about risk and resilience in this population. The Readiness and Resilience in National Guard Soldiers Study is a prospective, longitudinal investigation of 522 Army National Guard troops deployed to Iraq from March 2006 to July 2007. Participants completed measures of PTSD symptoms and potential risk/protective factors 1 month before deployment. Of these, 81% (n=424) completed measures of PTSD, deployment stressor exposure and post-deployment outcomes 2-3 months after returning from Iraq. New onset of probable PTSD 'diagnosis' was measured by the PTSD Checklist - Military (PCL-M). Independent predictors of new-onset probable PTSD were identified using hierarchical logistic regression analyses. At baseline prior to deployment, 3.7% had probable PTSD. Among soldiers without PTSD symptoms at baseline, 13.8% reported post-deployment new-onset probable PTSD. Hierarchical logistic regression adjusted for gender, age, race/ethnicity and military rank showed that reporting more stressors prior to deployment predicted new-onset probable PTSD [odds ratio (OR) 2.20] as did feeling less prepared for deployment (OR 0.58). After accounting for pre-deployment factors, new-onset probable PTSD was predicted by exposure to combat (OR 2.19) and to combat's aftermath (OR 1.62). Reporting more stressful life events after deployment (OR 1.96) was associated with increased odds of new-onset probable PTSD, while post-deployment social support (OR 0.31) was a significant protective factor in the etiology of PTSD. Combat exposure may be unavoidable in military service members, but other vulnerability and protective factors also predict PTSD and could be targets for prevention strategies.

  5. Personality Traits and Combat Exposure as Predictors of Psychopathology Over Time

    PubMed Central

    Koffel, Erin; Kramer, Mark D.; Arbisi, Paul A.; Erbes, Christopher R.; Kaler, Matthew; Polusny, Melissa A.

    2016-01-01

    Background Research suggests that personality traits have both direct and indirect effects on the development of psychological symptoms, with indirect effects mediated by stressful or traumatic events. This study models the direct influence of personality traits on residualized changes in internalizing and externalizing symptoms following a stressful and potentially traumatic deployment, as well as the indirect influence of personality on symptom levels mediated by combat exposure. Method We utilized structural equation modeling with a longitudinal prospective study of 522 US National Guard soldiers deployed to Iraq. Analyses were based on self-report measures of personality, combat exposure, and internalizing and externalizing symptoms. Results Both pre-deployment Disconstraint and externalizing symptoms predicted combat exposure, which in turn predicted internalizing and externalizing symptoms. There was a significant indirect effect for pre-deployment externalizing symptoms on post-deployment externalizing via combat exposure (p < .01). Negative Emotionality and pre-deployment internalizing symptoms directly predicted post-deployment internalizing symptoms, but both were unrelated to combat exposure. No direct effects of personality on residualized changes in externalizing symptoms were found. Conclusions Baseline symptom dimensions had significant direct and indirect effects on post-deployment symptoms. Controlling for both pre-exposure personality and symptoms, combat experiences remained positively related to both internalizing and externalizing symptoms. Implications for diagnostic classification are discussed. PMID:26347314

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Bruce Duncan

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Providesmore » an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.« less

  7. Lake Michigan Offshore Wind Feasibility Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of futuremore » offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.« less

  8. Causes of Death in Military Working Dogs During Operation Iraqi Freedom and Operation Enduring Freedom, 2001-2013.

    PubMed

    Miller, Laura; Pacheco, Gerardo J; C Janak, Jud; Grimm, Rose C; Dierschke, Nicole A; Baker, Janice; Orman, Jean A

    2018-03-14

    Military working dogs (MWDs) are a major asset in the theater of operations. Their unique abilities make them ideal for tasks such as tracking, patrol, and scent detection. MWDs deployed to a war zone are exposed to harsh environments and battlefield dangers that increase their risk of disease, injuries, and death. Although canines have been used extensively in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF), no published studies have reported detailed causes of death among MWDs deployed to these conflicts. Potential cases were defined as U.S. military-owned MWDs that died while deployed in Iraq (OIF) or Afghanistan (OEF) from January 1, 2001 through December 31, 2013 and identified from both official sources and unofficial sources, that is, online searches. Cases included in this study were limited to MWDs with data on cause of death obtained by abstraction from official veterinary treatment records (VTRs) from the Department of Defense Military Working Dog Veterinary Service, Joint Base San Antonio-Lackland Air Force Base, San Antonio, Texas, and Special Operations Forces units. We identified 92 MWDs that died while deployed to OEF/OIF from 2001 through 2013 and had cause of death information from official VTRs. For both OEF and OIF, the most common training program was Multi-Purpose Canine (36.5% and 51.7%, respectively), followed by Improvised Explosive Detector Dog for OEF (34.9%) and Patrol Explosive Detector Dog for OIF (34.5%). Injuries were the primary cause of death for 77.2% of the MWDs for which we had cause of death data. The most frequent external injuries were gunshot wounds (GSW) (31.5%), explosion or blast (26.1%), and heat stress (9.8%). The proportion of deaths due to GSW was similar for OEF and OIF (30.2% vs. and 34.5%, respectively). However, a greater proportion of MWDs died from explosions during OEF than during OIF (30.2% vs. 17.2%, respectively). Diseases were the cause of death in 23.0% of the MWDs. The most common diseases were gastric dilation and volvulus (GDV, n = 3), pleuritis (n = 2), and sepsis (n = 3). Two deaths were associated with anesthesia-related medical procedures. A total of 8.7% of cases were missing cause of death, 8.7% were missing age, 32.6% of cases were missing data on necropsy, and 14.1% were missing data on final disposition of the body. Other variables of interest including number of deployments and duration of training had a very high proportion of missing values and thus could not be analyzed. Our study is the most comprehensive to date that reports causes of death of MWDs deployed to OIF and OEF. However, limitations in the available data lessen the potential of our results to inform improvements in training and point of injury medical care. Better documentation in VTRs and systematic data collection into an official MWD trauma registry could lead to improved training and facilitate further development and evaluation of guidelines to improve care of wounded MWDs in future conflicts.

  9. Effects of Combat Deployment on Anthropometrics and Physiological Status of U.S. Army Special Operations Forces Soldiers.

    PubMed

    Farina, Emily K; Taylor, Jonathan C; Means, Gary E; Williams, Kelly W; Murphy, Nancy E; Margolis, Lee M; Pasiakos, Stefan M; Lieberman, Harris R; McClung, James P

    2017-03-01

    U.S. Army Special Operations Forces (SOF) soldiers deploy frequently and conduct military operations through special warfare and surgical strike capabilities. Tasks required to execute these capabilities may induce physical and mental stress and have the potential to degrade soldier physiological status. No investigations have longitudinally characterized whether combat deployment alters anthropometrics or biochemical markers of physiological status in a SOF population of frequent deployers. Effects of modern combat deployment on longitudinal changes in anthropometrics and physiological status of elite U.S. Army SOF soldiers (n = 50) were assessed. Changes in measures of body composition, grip strength, physiological status, and health behaviors from baseline to postdeployment were determined with paired t test and McNemar's statistic. Baseline measures were obtained between 4 and 8 weeks before deployment. Deployment length was a uniform duration of time between 3 and 6 months (all soldiers completed the same length of deployment). Post hoc analyses determined change in body mass within quartiles of baseline body mass with paired t test and associations between change in sex hormone-binding globulin (SHBG) and change in body mass with correlation coefficient. The study was approved by the Human Use Review Committee at the U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts. In response to deployment, increases in lean mass (77.1 ± 7.6 to 77.8 ± 7.5 kg), maximum grip strength (57.9 ± 7.2 to 61.6 ± 8.8 kg), and conduct of aerobic (156 ± 106 to 250 ± 182 minutes/week) and strength training (190 ± 101 to 336 ± 251 minutes/week) exercise were observed (p < 0.05). Increases in serum SHBG (35.42 ± 10.68 to 38.77 ± 12.26 nmol/L) and decreases in serum cortisol (443.2 ± 79.3 to 381.9 ± 111.6 nmol/L) were also observed (p < 0.05). Body mass changes were dependent on baseline body mass. Soldiers in the lowest quartile of baseline body mass increased body mass (75.6 ± 2.6 vs. 76.6 ± 2.8 kg, p = 0.03), as did those in the second quartile (81.6 ± 2.0 vs. 83.7 ± 3.5 kg, p = 0.02). Those in the third quartile also tended to increase body mass (89.2 ± 2.6 vs. 90.9 ± 3.3 kg, p = 0.05), while those in the upper quartile tended to decrease body mass (98.5 ± 3.6 vs. 96.7 kg, p = 0.06). Change in SHBG was inversely correlated with change in body mass (r = -0.33, p = 0.02). There were no changes in fat mass, body fat percentage, waist circumference, neck circumference, total testosterone, calculated bioavailable or free testosterone, high-sensitivity C-reactive protein, tumor necrosis factor-α, interleukin-1β, or interleukin-6. Inflammatory markers were skewed toward lower values. Overall, physiological status of elite SOF soldiers characterized by multiple prior deployments was minimally impacted by combat deployment, in the absence of major unit casualties. The majority experienced some adaptive changes, including increased lean mass, grip strength, time spent engaged in exercise, and decreased levels of the stress hormone cortisol. Mechanisms contributing to inverse correlations between change in SHBG and change in body mass may be further clarified. Future investigations may also more fully characterize the degradation and optimization of health and physiological status of SOF training and deployment cycles with in-theater data collection and repeated measures. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  10. Submerged RadBall® deployments in Hanford Site hot cells containing 137CsCl capsules.

    PubMed

    Farfán, Eduardo B; Coleman, J Rusty; Stanley, Steven; Adamovics, John; Oldham, Mark; Thomas, Andrew

    2012-07-01

    The overall objective of this study was to demonstrate that a new technology, known as RadBall®, could locate submerged radiological hazards. RadBall® is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technology has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall® deployments in hot cells containing 137CsCl capsules at the U.S. Department of Energy's Hanford Site. RadBall® can be used to characterize a contaminated room, hot cell, or glovebox by providing the locations of the radiation sources and hazards, identifying the radionuclides present within the cell, and determining the radiation sources' strength (e.g., intensities or dose rates). These parameters have been previously determined for dry deployments; however, only the location of radiation sources and hazards can be determined for an underwater RadBall® deployment. The results from this study include 3-D images representing the location of the radiation sources within the Hanford Site cells. Due to RadBall®'s unique deployability and non-electrical nature, this technology shows significant promise for future characterization of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  11. A Conceptual Analysis of Quality in Quality Function Deployment-Based Contexts of Higher Education

    ERIC Educational Resources Information Center

    Matorera, Douglas

    2015-01-01

    The purpose of this paper is to assess and evaluate how higher education institutions (HEIs) using Quality Function Deployment draw out the relevancy and potential of the model in shaping their concept of "Quality" and how that Quality can be assured in higher education institutions' (HEIs') programmes. An intensive literature review was…

  12. REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swegle, J.; Tincher, D.

    This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as somemore » closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. The Small ICBM (SICBM), or Midgetman, a road-mobile, single-warhead missile for which per-unit costs were climbing when it was eliminated under the PNIs. Although there were liabilities associated with each of these systems, there were also unique capabilities; this paper lays out the pros and cons for each. Further, we articulate the capabilities that were eliminated with these systems.« less

  13. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.

    PubMed

    Rial-Lovera, Karen; Davies, W Paul; Cannon, Nicola D

    2017-01-01

    The UK, like the rest of the world, is confronting the impacts of climate change. Further changes are expected and they will have a profound effect on agriculture. Future crop production will take place against increasing CO 2 levels and temperatures, decreasing water availability, and increasing frequency of extreme weather events. This review contributes to research on agricultural practices for climate change, but with a more regional perspective. The present study explores climate change impacts on UK agriculture, particularly food crop production, and how to mitigate and build resilience to climate change by adopting and/or changing soil management practices, including fertilisation and tillage systems, new crop adoption and variety choice. Some mitigation can be adopted in the shorter term, such as changes in crop type and reduction in fertiliser use, but in other cases the options will need greater investment and longer adaptation period. This is the case for new crop variety development and deployment, and possible changes to soil cultivations. Uncertainty of future weather conditions, particularly extreme weather, also affect decision-making for adoption of practices by farmers to ensure more stable and sustainable production. Even when there is real potential for climate change mitigation, it can sometimes be more difficult to accomplish with certainty on-farm. Better future climate projections and long-term investments will be required to create more resilient agricultural systems in the UK in the face of climate change challenges. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Using the NANA toolkit at home to predict older adults' future depression.

    PubMed

    Andrews, J A; Harrison, R F; Brown, L J E; MacLean, L M; Hwang, F; Smith, T; Williams, E A; Timon, C; Adlam, T; Khadra, H; Astell, A J

    2017-04-15

    Depression is currently underdiagnosed among older adults. As part of the Novel Assessment of Nutrition and Aging (NANA) validation study, 40 older adults self-reported their mood using a touchscreen computer over three, one-week periods. Here, we demonstrate the potential of these data to predict future depression status. We analysed data from the NANA validation study using a machine learning approach. We applied the least absolute shrinkage and selection operator with a logistic model to averages of six measures of mood, with depression status according to the Geriatric Depression Scale 10 weeks later as the outcome variable. We tested multiple values of the selection parameter in order to produce a model with low deviance. We used a cross-validation framework to avoid overspecialisation, and receiver operating characteristic (ROC) curve analysis to determine the quality of the fitted model. The model we report contained coefficients for two variables: sadness and tiredness, as well as a constant. The cross-validated area under the ROC curve for this model was 0.88 (CI: 0.69-0.97). While results are based on a small sample, the methodology for the selection of variables appears suitable for the problem at hand, suggesting promise for a wider study and ultimate deployment with older adults at increased risk of depression. We have identified self-reported scales of sadness and tiredness as sensitive measures which have the potential to predict future depression status in older adults, partially addressing the problem of underdiagnosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The US Department of Defense Millennium Cohort Study: career span and beyond longitudinal follow-up.

    PubMed

    Smith, Tyler C

    2009-10-01

    To describe current and future career-span health research in the US Department of Defense Millennium Cohort Study. Collaborating with all military service branches and the Department of Veterans Affairs, the Millennium Cohort Study launched in 2001, before September 11 and the start of deployments in Afghanistan and Iraq, to conduct coordinated strategic research to determine any effects of military occupational and deployment-related exposures, on long-term health. More than 150,000 consenting members represent demographic, occupational, military, and health characteristics of the US military. More than 70% of the first two panels have submitted follow-up questionnaires and >50% have deployed since 2001. Prospective cohort data have identified subgroups of military populations at higher risk or more resilient to decrements in mental and physical health. Continued career span and beyond follow-up will answer long-term health questions related to military service.

  16. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  17. Needs for Robotic Assessments of Nuclear Disasters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Walker; Derek Wadsworth

    Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment wemore » need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.« less

  18. Risk and resilience in military families experiencing deployment: the role of the family attachment network.

    PubMed

    Riggs, Shelley A; Riggs, David S

    2011-10-01

    Deployment separation constitutes a significant stressor for U.S. military men and women and their families. Many military personnel return home struggling with physical and/or psychological injuries that challenge their ability to reintegrate and contribute to marital problems, family dysfunction, and emotional or behavioral disturbance in spouses and children. Yet research examining the psychological health and functioning of military families is scarce and rarely driven by developmental theory. The primary purpose of this theoretical paper is to describe a family attachment network model of military families during deployment and reintegration that is grounded in attachment theory and family systems theory. This integrative perspective provides a solid empirical foundation and a comprehensive account of individual and family risk and resilience during military-related separations and reunions. The proposed family attachment network model will inform future research and intervention efforts with service members and their families.

  19. Design and evaluation of a web-based decision support tool for district-level disease surveillance in a low-resource setting

    PubMed Central

    Pore, Meenal; Sengeh, David M.; Mugambi, Purity; Purswani, Nuri V.; Sesay, Tom; Arnold, Anna Lena; Tran, Anh-Minh A.; Myers, Ralph

    2017-01-01

    During the 2014 West African Ebola Virus outbreak it became apparent that the initial response to the outbreak was hampered by limitations in the collection, aggregation, analysis and use of data for intervention planning. As part of the post-Ebola recovery phase, IBM Research Africa partnered with the Port Loko District Health Management Team (DHMT) in Sierra Leone and GOAL Global, to design, implement and deploy a web-based decision support tool for district-level disease surveillance. This paper discusses the design process and the functionality of the first version of the system. The paper presents evaluation results prior to a pilot deployment and identifies features for future iterations. A qualitative assessment of the tool prior to pilot deployment indicates that it improves the timeliness and ease of using data for making decisions at the DHMT level. PMID:29854209

  20. Development of a Lunar Borehole Seismometer

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Siegler, M.; Malin, P. E.; Passmore, K.; Zacny, K.; Avenson, B.; Weber, R. C.; Schmerr, N. C.; Nagihara, S.

    2017-12-01

    Nearly all seismic stations on Earth are buried below the ground. Burial provides controlled temperatures and greater seismic coupling at little cost. This is also true on the Moon and other planetary bodies. Burial of a seismometer under just 1 meter of lunar regolith would provide an isothermal environment and potentially reduce signal scattering noise by an order of magnitude. Here we explain how we will use an existing NASA SBIR and PIDDP funded subsurface heat flow probe deployment system to bury a miniaturized, broadband, optical seismometer 1 meter below the lunar surface. The system is sensitive, low mass and low power. We believe this system offers a compelling architecture for NASA's future seismic exploration of the solar system. We will report on a prototype 3-axis, broadband seismometer package that has been tested under low pressure conditions in lunar-regolith simulant. The deployment mechanism reaches 1m depth in less than 25 seconds. Our designed and tested system: 1) Would be deployed at least 1m below the lunar surface to achieve isothermal conditions without thermal shielding or heaters, increase seismic coupling, and decrease noise. 2) Is small (our prototype probe is a cylinder 50mm in diameter, 36cm long including electronics, potentially as small as 10 cm with sensors only). 3) Is low-mass (each sensor is 0.1 kg, so an extra redundancy 4-component seismograph plus 1.5 kg borehole sonde and recorder weighs less than 2 kg and is feasibly smaller with miniaturized electronics). 4) Is low-power (our complete 3-sensor borehole seismographic system's power consumption is about half a Watt, or 7% of Apollo's 7.1 W average and 30% of the InSight SEIS's 1.5W winter-time heating system). 5) Is broadband and highly sensitive (the "off the shelf" sensors have a wide passband: 0.005-1000 Hz - and high dynamic range of 183 dB (or about 10-9g Hz-1/2, with hopes for simple modifications to be at least an order of magnitude better). Burial also aids the sensitivity, by decreasing scattered noise through the upper, extremely low density lunar regolith.

Top