Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.
2010-01-01
Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.
Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.
2010-01-01
Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.
Savitz, D A
1993-01-01
Epidemiologic research concerning electric and magnetic fields in relation to cancer has focused on the potential etiologic roles of residential exposure on childhood cancer and occupational exposure on adult leukemia and brain cancer. Future residential studies must concentrate on exposure assessment that is enhanced by developing models of historical exposure, assessment of the relation between magnetic fields and wire codes, and consideration of alternate exposure indices. Study design issues deserving attention include possible biases in random digit dialing control selection, consideration of the temporal course of exposure and disease, and acquisition of the necessary information to assess the potential value of ecologic studies. Highest priorities are comprehensive evaluation of exposure patterns and sources and examination of the sociology and geography of residential wire codes. Future occupational studies should also concentrate on improved exposure assessment with increased attention to nonutility worker populations and development of historical exposure indicators that are superior to job titles alone. Potential carcinogens in the workplace that could act as confounders need to be more carefully examined. The temporal relation between exposure and disease and possible effect modification by other workplace agents should be incorporated into future studies. The most pressing need is for measurement of exposure patterns in a variety of worker populations and performance of traditional epidemiologic evaluations of cancer occurrence. The principal source of bias toward the null is nondifferential misclassification of exposure with improvements expected to enhance any true etiologic association that is present. Biases away from the null might include biased control selection in residential studies and chemical carcinogens acting as confounders in occupational studies. PMID:8206046
NASA Astrophysics Data System (ADS)
Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.
2017-09-01
Researchers have investigated the immediate effects of end-of-century climate change scenarios on many marine species, yet it remains unclear whether we can reliably predict how marine species may respond to future conditions because biota may become either more or less resistant over time. Here, we examined the role of pre-exposure to elevated temperature and reduced pH in mitigating the potential negative effects of future ocean conditions on polyps of a dangerous Irukandji jellyfish Alatina alata. We pre-exposed polyps to elevated temperature (28 °C) and reduced pH (7.6), in a full factorial experiment that ran for 14 d. We secondarily exposed original polyps and their daughter polyps to either current (pH 8.0, 25 °C) or future conditions (pH 7.6, 28 °C) for a further 34 d to assess potential phenotypic plastic responses and whether asexual offspring could benefit from parental pre-exposure. Polyp fitness was characterised as asexual reproduction, respiration, feeding, and protein concentrations. Pre-exposure to elevated temperature alone partially mitigated the negative effects of future conditions on polyp fitness, while pre-exposure to reduced pH in isolation completely mitigated the negative effects of future conditions on polyp fitness. Pre-exposure to the dual stressors, however, reduced fitness under future conditions relative to those in the control treatment. Under future conditions, polyps had higher respiration rates regardless of the conditions they were pre-exposed to, suggesting that metabolic rates will be higher under future conditions. Parent and daughter polyps responded similarly to the various treatments tested, demonstrating that parental pre-exposure did not confer any benefit to asexual offspring under future conditions. Importantly, we demonstrate that while pre-exposure to the stressors individually may allow Irukandji polyps to acclimate over short timescales, the stressors are unlikely to occur in isolation in the long term, and thus, warming and acidification in parallel may prevent polyp populations from acclimating to future ocean conditions.
Epidemiologic studies of electric and magnetic fields and cancer: Strategies for extending knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savitz, D.A.
1993-12-01
Epidemiologic research concerning electric and magnetic fields in relation to cancer has focused on the potential etiologic roles of residential exposure on childhood cancer and occupational exposure on adult leukemia and brain cancer. Future residential studies must concentrate on exposure assessment that is enhanced by developing models of historical exposure, assessment of the relation between magnetic fields and wire codes, and consideration of alternate exposure indices. Study design issues deserving attention include possible biases in random digit dialing control selection, consideration of the temporal course of exposure and disease, and acquisition of the necessary information to assess the potential valuemore » of ecologic studies. Highest priorities are comprehensive evaluation of exposure patterns and sources and examination of the sociology and geography of residential wire codes. Future occupational studies should also concentrate on improved exposure assessment with increased attention to nonutility worker populations and development of historical exposure indicators that are superior to job titles alone. Potential carcinogens in the workplace that could act as confounders need to be more carefully examined. The temporal relation between exposure and disease and possible effect modification by other workplace agents should be incorporated into future studies. The most pressing need is for measurement of exposure patterns in a variety of worker populations and performance of traditional epidemiologic evaluations of cancer occurrence. The principal source of bias toward the null is nondifferential misclassification of exposure with improvements expected to enhance any true etiologic association that is present. Biases away from the null might include biased control selection in residential studies and chemical carcinogens acting as confounders in occupational studies. 51 refs., 1 tab.« less
Mills, David; Jones, Russell; Wobus, Cameron; Ekstrom, Julia; Jantarasami, Lesley; St Juliana, Alexis; Crimmins, Allison
2018-04-17
The public health community readily recognizes flooding and wildfires as climate-related health hazards, but few studies quantify changes in risk of exposure, particularly for vulnerable children and older adults. This study quantifies future populations potentially exposed to inland flooding and wildfire smoke under two climate scenarios, highlighting the populations in particularly vulnerable age groups (≤4 y old and ≥65 y old). Spatially explicit projections of inland flooding and wildfire under two representative concentration pathways (RCP8.5 and RCP4.5) are integrated with static (2010) and dynamic (2050 and 2090) age-stratified projections of future contiguous U.S. populations at the county level. In both 2050 and 2090, an additional one-third of the population will live in areas affected by larger and more frequent inland flooding under RCP8.5 than under RCP4.5. Approximately 15 million children and 25 million older adults could avoid this increased risk of flood exposure each year by 2090 under a moderate mitigation scenario (RCP4.5 compared with RCP8.5). We also find reduced exposure to wildfire smoke under the moderate mitigation scenario. Nearly 1 million young children and 1.7 million older adults would avoid exposure to wildfire smoke each year under RCP4.5 than under RCP8.5 by the end of the century. By integrating climate-driven hazard and population projections, newly created county-level exposure maps identify locations of potential significant future public health risk. These potential exposure results can help inform actions to prevent and prepare for associated future adverse health outcomes, particularly for vulnerable children and older adults. https://doi.org/10.1289/EHP2594.
Dietary Acrylamide and Human Cancer: A Systematic Review of Literature
Nagy, Tim R.; Barnes, Stephen; Groopman, John
2014-01-01
Cancer remains the second leading cause of death in the United States, and the numbers of cases are expected to continue to rise worldwide. Cancer prevention strategies are crucial for reducing the cancer burden. The carcinogenic potential of dietary acrylamide exposure from cooked foods is unknown. Acrylamide is a by-product of the common Maillard reaction where reducing sugars (i.e., fructose and glucose) react with the amino acid, asparagine. Based on the evidence of acrylamide carcinogenicity in animals, the International Agency for Research on Cancer has classified acrylamide as a group 2A carcinogen for humans. Since the discovery of acrylamide in foods in 2002, a number of studies have explored its potential as a human carcinogen. This paper outlines a systematic review of dietary acrylamide and human cancer, acrylamide exposure and internal dose, exposure assessment methods in the epidemiologic studies, existing data gaps, and future directions. A majority of the studies reported no statistically significant association between dietary acrylamide intake and various cancers, and few studies reported increased risk for renal, endometrial, and ovarian cancers; however, the exposure assessment has been inadequate leading to potential misclassification or underestimation of exposure. Future studies with improved dietary acrylamide exposure assessment are encouraged. PMID:24875401
Young, M K; Banu, S; McCall, B J; Vlack, S; Carroll, H; Bennett, S; Davison, R; Francis, D
2018-02-01
Despite ongoing public health messages about the risks associated with bat contact, the number of potential exposures to Australian bat lyssavirus (ABLV) due to intentional handling by members of the general public in Queensland has remained high. We sought to better understand the reasons for intentional handling among these members of the public who reported their potential exposure to inform future public health messages. We interviewed adults who resided in a defined geographic area in South East Queensland and notified potential exposure to ABLV due to intentional handling of bats by telephone between 1 January 2012 and 31 December 2013. The participation rate was 54%. Adults who reported they had intentionally handled bats in South East Queensland indicated high levels of knowledge and perception of a moderately high risk associated with bats with overall low intentions to handle bats in the future. However, substantial proportions of people would attempt to handle bats again in some circumstances, particularly to protect their children or pets. Fifty-two percent indicated that they would handle a bat if a child was about to pick up or touch a live bat, and 49% would intervene if a pet was interacting with a bat. Future public health communications should recognize the situations in which even people with highrisk perceptions of bats will attempt to handle them. Public health messages currently focus on avoidance of bats in all circumstances and recommend calling in a trained vaccinated handler, but messaging directed at adults for circumstances where children or pets may be potentially exposed should provide safe immediate management options. © 2017 Blackwell Verlag GmbH.
Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G
2013-01-01
Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.
de la Hoz, R E; Young, R O; Pedersen, D H
1997-02-01
Few data are available about the prevalence of occupational exposures to agents which can cause occupational asthma or aggravate preexisting asthma (asthmogens). Using potential occupational exposure data from the National Occupational Exposure Survey (NOES) of 1980-1983, we investigated the number of asthmogen exposures, asthmogen-exposure(s) per production worker, and unprotected occupational asthmogen exposures in different industries and occupations. Data for the entire United States were used to generate estimates of occupational exposure at two selected state and local levels. It was estimated that 7,864,000 workers in the surveyed industries were potentially exposed to one or more occupational asthmogen(s) in the United States. The average number of observed potential exposures per asthmogen-exposed worker was 4.4, and varied from 11.9, in the Water Transportation industry, to 1.2 in Local and Suburban transportation. The largest number of observed potential exposures was recorded in the Apparel and Other Finished Products (garment) industry. This work and further analyses using this approach are expected to contribute to a better understanding of the epidemiology of occupational asthma, and to serve as a guide to target future occupational asthma surveillance efforts.
Dionisio, Kathie L; Nolte, Christopher G; Spero, Tanya L; Graham, Stephen; Caraway, Nina; Foley, Kristen M; Isaacs, Kristin K
2017-05-01
The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O 3 ) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O 3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O 3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O 3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O 3 are much larger than the impacts of changing demographics. These results indicate the potential for future changes in O 3 exposure as a result of changes in climate that could impact human health.
Coal seam gas water: potential hazards and exposure pathways in Queensland.
Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram
2015-01-01
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
A review of the health impacts of barium from natural and anthropogenic exposure.
Kravchenko, Julia; Darrah, Thomas H; Miller, Richard K; Lyerly, H Kim; Vengosh, Avner
2014-08-01
There is an increasing public awareness of the relatively new and expanded industrial barium uses which are potential sources of human exposure (e.g., a shale gas development that causes an increased awareness of environmental exposures to barium). However, absorption of barium in exposed humans and a full spectrum of its health effects, especially among chronically exposed to moderate and low doses of barium populations, remain unclear. We suggest a systematic literature review (from 1875 to 2014) on environmental distribution of barium, its bioaccumulation, and potential and proven health impacts (in animal models and humans) to provide the information that can be used for optimization of future experimental and epidemiological studies and developing of mitigative and preventive strategies to minimize negative health effects in exposed populations. The potential health effects of barium exposure are largely based on animal studies, while epidemiological data for humans, specifically for chronic low-level exposures, are sparse. The reported health effects include cardiovascular and kidney diseases, metabolic, neurological, and mental disorders. Age, race, dietary patterns, behavioral risks (e.g., smoking), use of medications (those that interfere with absorbed barium in human organism), and specific physiological status (e.g., pregnancy) can modify barium effects on human health. Identifying, evaluating, and predicting the health effects of chronic low-level and moderate-level barium exposures in humans is challenging: Future research is needed to develop an understanding of barium bioaccumulation in order to mitigate its potential health impacts in various exposured populations. Further, while occupationally exposed at-risk populations exist, it is also important to identify potentially vulnerable subgroups among non-occupationally exposed populations (e.g., elderly, pregnant women, children) who are at higher risk of barium exposure from drinking water and food.
Yeatts, Karin; Sly, Peter; Shore, Stephanie; Weiss, Scott; Martinez, Fernando; Geller, Andrew; Bromberg, Philip; Enright, Paul; Koren, Hillel; Weissman, David; Selgrade, MaryJane
2006-01-01
Relative to research on effects of environmental exposures on exacerbation of existing asthma, little research on incident asthma and environmental exposures has been conducted. However, this research is needed to better devise strategies for the prevention of asthma. The U.S. Environmental Protection Agency (EPA) and National Institute of Environmental Health Sciences held a conference in October 2004 to collaboratively discuss a future research agenda in this area. The first three articles in this mini-monograph summarize the discussion on potential putative environmental exposure; they include an overview of asthma and conclusions of the workshop participants with respect to public health actions that could currently be applied to the problem and research needs to better understand and control the induction and incidence of asthma, the potential role of indoor/outdoor air pollutants in the induction of asthma), and biologics in the induction of asthma. Susceptibility is a key concept in the U.S. EPA “Asthma Research Strategy” document and is associated with the U.S. EPA framework of protecting vulnerable populations from potentially harmful environmental exposures. Genetics, age, and lifestyle (obesity, diet) are major susceptibility factors in the induction of asthma and can interact with environmental exposures either synergistically or antagonistically. Therefore, in this fourth and last article we consider a number of “susceptibility factors” that potentially influence the asthmatic response to environmental exposures and propose a framework for developing research hypotheses regarding the effects of environmental exposures on asthma incidence and induction. PMID:16581558
High Throughput Pharmacokinetics for Environmental Chemicals (FutureToxII)
Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant bio...
Plastic and Human Health: A Micro Issue?
Wright, Stephanie L; Kelly, Frank J
2017-06-20
Microplastics are a pollutant of environmental concern. Their presence in food destined for human consumption and in air samples has been reported. Thus, microplastic exposure via diet or inhalation could occur, the human health effects of which are unknown. The current review article draws upon cross-disciplinary scientific literature to discuss and evaluate the potential human health impacts of microplastics and outlines urgent areas for future research. Key literature up to September 2016 relating to accumulation, particle toxicity, and chemical and microbial contaminants was critically examined. Although microplastics and human health is an emerging field, complementary existing fields indicate potential particle, chemical and microbial hazards. If inhaled or ingested, microplastics may accumulate and exert localized particle toxicity by inducing or enhancing an immune response. Chemical toxicity could occur due to the localized leaching of component monomers, endogenous additives, and adsorbed environmental pollutants. Chronic exposure is anticipated to be of greater concern due to the accumulative effect that could occur. This is expected to be dose-dependent, and a robust evidence-base of exposure levels is currently lacking. Although there is potential for microplastics to impact human health, assessing current exposure levels and burdens is key. This information will guide future research into the potential mechanisms of toxicity and hence therein possible health effects.
Sleeter, Benjamin M.; Wood, Nathan J.; Soulard, Christopher E.; Wilson, Tamara
2017-01-01
Tsunamis have the potential to cause considerable damage to communities along the U.S. Pacific Northwest coastline. As coastal communities expand over time, the potential societal impact of tsunami inundation changes. To understand how community exposure to tsunami hazards may change in coming decades, we projected future development (i.e. urban, residential, and rural), households, and residents over a 50-year period (2011–2061) along the Washington, Oregon, and northern California coasts. We created a spatially explicit, land use/land cover, state-and-transition simulation model to project future developed land use based on historical development trends. We then compared our development projection results to tsunami-hazard zones associated with a Cascadia subduction zone (CSZ) earthquake. Changes in tsunami-hazard exposure by 2061 were estimated for 50 incorporated cities, 7 tribal reservations, and 17 counties relative to current (2011) estimates. Across the region, 2061 population exposure in tsunami-hazard zones was projected to increase by 3880 households and 6940 residents. The top ten communities with highest population exposure to CSZ-related tsunamis in 2011 are projected to remain the areas with the highest population exposure by 2061. The largest net population increases in tsunami-hazard zones were projected in the unincorporated portions of several counties, including Skagit, Coos, and Humboldt. Land-change simulation modeling of projected future development serves as an exploratory tool aimed at helping local governments understand the hazard-exposure implications of community growth and to include this knowledge in risk-reduction planning.
Jang, Min-Hee; Lim, Myunghee; Hwang, Yu Sik
2014-01-01
Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications.
Jang, Min-Hee; Lim, Myunghee; Hwang, Yu Sik
2014-01-01
Objectives Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications. PMID:25518840
NASA Astrophysics Data System (ADS)
Case, B. W.; Abraham, J. L.
2009-02-01
As mesothelioma risk has begun to decline in the United States, two trends are gaining relative importance. "Legacy" exposures causing this disease are most important in locales having past asbestos industry, shipyards, and/or local distribution of asbestos amphibole-containing material as a result. "Future" exposures are of particular concern in relation to so-called "naturally occurring asbestos" (NOA) areas which include unequivocally asbestiform amphibole. In this paper, Jefferson Parish, Louisiana is used as an example of the first trend, and El Dorado County, California as an example of the second. Available tumor registry, epidemiology, historical and mineralogical data, and lung-retained fibre content are used as indicators of disease and exposure. Jefferson Parish, LA was chosen as the prototype of "legacy" exposures on the basis of historical evidence of asbestos plants with known mesotheliomas in the workforce, known shipyards in the same area, EPA records of distribution of crocidolite-containing scrap to and remediation of over 1400 properties, NIOSH published data on mesothelioma by county, and exposure data including lung-retained fibre analyses in victims, where available. El Dorado, CA was chosen as the prototype of NOA amphibole exposures on the basis of tumor registry data, activity-based EPA sampling data in one area, and lung-retained fibre analyses in area pets, and future risk assessment based on tremolite-specific modelling in Libby, Montana and elsewhere. As expected, the legacy exposure area was high in mesothelioma incidence and mortality. Lung-retained fibre content confirms crocidolite exposures in exposed plant-workers and those exposed to crocidolite-containing scrap, and amosite in shipyard workers. In contrast, to date, cancer registry data in the NOA-amphibole ("future") county does not show a clear increase in incidence or mortality, but grouped county data from the area show a shift in higher incidence rates to the NOA areas and away from California "legacy" (e.g., shipyard) areas from 1988-2005. EPA active sampling has confirmed excess tremolite/ actinolite fibre(s) in air, although there is debate about its nature and the appropriateness of the area sampled. Lung-retained fibre in local pets shows unequivocally elevated asbestiform tremolite/ actinolite in areas thought to be most affected, but numbers are small. Future risk is expected to rise due to a vastly increased population base coupled with exposures potentially created by related construction activities. Although legacy exposures are producing smaller numbers of cases with time, they continue to occur at high rates, and new sources of legacy exposure are being discovered in highly localized "hotspots". Differential exposure sources remain a problem in attribution, but continued remediation seems the best strategy for prevention. In the "future" risk county and surrounding areas, incidence trends are less clear, but again highly localized exposures as opposed to broad areas seem important. Activity-based air sampling; targeted soil samples, and lung-retained fibre analyses may be useful in defining areas of highest future risk and potential prevention.
Climate change: the potential impact on occupational exposure to pesticides.
Gatto, Maria Pia; Cabella, Renato; Gherardi, Monica
2016-01-01
This study investigates the possible influence of global climate change (GCC) on exposure to plant protection products (PPP) in the workplace. The paper has evaluated the main potential relationships between GCC and occupational exposure to pesticides, by highlighting how global warming might affect their future use and by reviewing its possible consequence on workers' exposure. Global warming, influencing the spatial and temporal distribution and proliferation of weeds, the impact of already present insect pests and pathogens and the introduction of new infesting species, could cause a changed use of pesticides in terms of higher amounts, doses and types of products applied, so influencing the human exposure to them during agricultural activities. GCC, in particular heat waves, may also potentially have impact on workers' susceptibility to pesticides absorption. Prevention policies of health in the workplace must be ready to address new risks from occupational exposure to pesticide, presumably different from current risks, since an increased use may be expected.
2014-01-01
Occupational heat exposure threatens the health of a worker not only when heat illness occurs but also when a worker’s performance and work capacity is impaired. Occupational contexts that involve hot and humid climatic conditions, heavy physical workloads and/or protective clothing create a strenuous and potentially dangerous thermal load for a worker. There are recognized heat prevention strategies and international thermal ergonomic standards to protect the worker. However, such standards have been developed largely in temperate western settings, and their validity and relevance is questionable for some geographical, cultural and socioeconomic contexts where the risk of excessive heat exposure can be high. There is evidence from low- and middle-income tropical countries that excessive heat exposure remains a significant issue for occupational health. Workers in these countries are likely to be at high risk of excessive heat exposure as they are densely populated, have large informal work sectors and are expected to experience substantial increases in temperature due to global climate change. The aim of this paper is to discuss current and future ergonomic risks associated with working in the heat as well as potential methods for maintaining the health and productivity of workers, particularly those most vulnerable to excessive heat exposure. PMID:25057350
Rousselle, C; Ormsby, J N; Schaefer, B; Lampen, A; Platzek, T; Hirsch-Ernst, K; Warholm, M; Oskarsson, A; Nielsen, P J; Holmer, M L; Emond, C
2013-02-01
The French Agency for Food, Environmental and Occupational Health and Safety (Anses) hosted a two-day workshop on Endocrine Disruptors: Exposure and Potential Impact on Consumers Health, bringing together participants from international organizations, academia, research institutes and from German, Swedish, Danish and French governmental agencies. The main objective of the workshop was to share knowledge and experiences on endocrine disruptors (ED) exposure and potential impact on consumers' health, to identify current risk assessment practices and knowledge gaps and issue recommendations on research needs and future collaboration. The following topics were reviewed: (1) Definition of ED, (2) endpoints to be considered for Risk assessment (RA) of ED, (3) non-monotonic dose response curves, (4) studies to be considered for RA (regulatory versus academic studies), (5) point of departure and uncertainty factors, (6) exposure assessment, (7) regulatory issues related to ED. The opinions expressed during this workshop reflect day-to-day experiences from scientists, regulators, researchers, and others from many different countries in the fields of risk assessment, and were regarded by the attendees as an important basis for further discussions. Accordingly, the participants underlined the need for more exchange in the future to share experiences and improve the methodology related to risk assessment for endocrine disrupters. Copyright © 2012 Elsevier Inc. All rights reserved.
Phytotechnologies – Preventing Exposures, Improving Public Health
Henry, Heather F.; Burken, Joel G.; Maier, Raina M.; Newman, Lee A.; Rock, Steven; Schnoor, Jerald L.; Suk, William A.
2014-01-01
Phytotechnologies have the potential to reduce the amount and/or toxicity of deleterious chemicals/agents, and thereby, prevent human exposures to hazardous substances. As such, phytotechnologies are a tool for primary prevention within the context of public health. Research advances demonstrate that phytotechnologies can be uniquely tailored for effective exposure prevention for a variety of applications. In addition to exposure prevention, phytotechnologists have advanced the use of plants as sensors to delineate environmental contaminants and potential exposures. The applications presented in this paper are at various stages of development and are presented in a framework to reflect how phytotechnologies can help meet basic public health needs for access to clean water, air, and food resources. As plant-based technologies can often be integrated into communities at minimal cost and with low infrastructure needs, their use in improving environmental quality can be applied broadly to minimize potential contaminant exposure. These natural treatment systems concurrently provide ecosystem services of notable value to communities and society. In the future, integration and coordination of phytotechnology activities with public health research will allow technology development that focuses on prevention of environmental exposures. Such an approach will lead to an important role of phytotechnologies in providing sustainable solutions to environmental exposure challenges that improve public health and potentially reduce the burden of disease. PMID:23819283
Yu, Haofei; Stuart, Amy L
2017-01-15
'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NO x ), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NO x , butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NO x (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NO x (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption of electric vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.
Current and future risks of asbestos exposure in the Australian community
2016-01-01
Background Australia mined asbestos for more than 100 years and manufactured and imported asbestos products. There is a legacy of in situ asbestos throughout the built environment. Methods The aim of this study was to identify the possible sources of current and future asbestos exposure from the built environment. Telephone interviews with environmental health officers, asbestos removalists, and asbestos assessors in Australia sought information about common asbestos scenarios encountered. Results There is a considerable amount of asbestos remaining in situ in the Australian built environment. Potential current and future sources of asbestos exposure to the public are from asbestos-containing roofs and fences, unsafe asbestos removal practices, do-it-yourself home renovations and illegal dumping. Conclusion This research has highlighted a need for consistent approaches in the regulation and enforcement of safe practices for the management and removal of asbestos to ensure that in situ asbestos in the built environment is managed appropriately. PMID:27611196
Current and future risks of asbestos exposure in the Australian community.
Gray, Corie; Carey, Renee N; Reid, Alison
2016-10-01
Australia mined asbestos for more than 100 years and manufactured and imported asbestos products. There is a legacy of in situ asbestos throughout the built environment. The aim of this study was to identify the possible sources of current and future asbestos exposure from the built environment. Telephone interviews with environmental health officers, asbestos removalists, and asbestos assessors in Australia sought information about common asbestos scenarios encountered. There is a considerable amount of asbestos remaining in situ in the Australian built environment. Potential current and future sources of asbestos exposure to the public are from asbestos-containing roofs and fences, unsafe asbestos removal practices, do-it-yourself home renovations and illegal dumping. This research has highlighted a need for consistent approaches in the regulation and enforcement of safe practices for the management and removal of asbestos to ensure that in situ asbestos in the built environment is managed appropriately.
Influence of internal variability on population exposure to hydroclimatic changes
NASA Astrophysics Data System (ADS)
Mankin, Justin S.; Viviroli, Daniel; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Horton, Radley M.; E Smerdon, Jason; Diffenbaugh, Noah S.
2017-04-01
Future freshwater supply, human water demand, and people’s exposure to water stress are subject to multiple sources of uncertainty, including unknown future pathways of fossil fuel and water consumption, and ‘irreducible’ uncertainty arising from internal climate system variability. Such internal variability can conceal forced hydroclimatic changes on multi-decadal timescales and near-continental spatial-scales. Using three projections of population growth, a large ensemble from a single Earth system model, and assuming stationary per capita water consumption, we quantify the likelihoods of future population exposure to increased hydroclimatic deficits, which we define as the average duration and magnitude by which evapotranspiration exceeds precipitation in a basin. We calculate that by 2060, ∽31%-35% of the global population will be exposed to >50% probability of hydroclimatic deficit increases that exceed existing hydrological storage, with up to 9% of people exposed to >90% probability. However, internal variability, which is an irreducible uncertainty in climate model predictions that is under-sampled in water resource projections, creates substantial uncertainty in predicted exposure: ∽86%-91% of people will reside where irreducible uncertainty spans the potential for both increases and decreases in sub-annual water deficits. In one population scenario, changes in exposure to large hydroclimate deficits vary from -3% to +6% of global population, a range arising entirely from internal variability. The uncertainty in risk arising from irreducible uncertainty in the precise pattern of hydroclimatic change, which is typically conflated with other uncertainties in projections, is critical for climate risk management that seeks to optimize adaptations that are robust to the full set of potential real-world outcomes.
Bakulski, Kelly M.; Rozek, Laura S.; Dolinoy, Dana C.; Paulson, Henry L.; Hu, Howard
2013-01-01
Several lines of evidence indicate that the etiology of late-onset Alzheimer’s disease (LOAD) is complex, with significant contributions from both genes and environmental factors. Recent research suggests the importance of epigenetic mechanisms in defining the relationship between environmental exposures and LOAD. In epidemiologic studies of adults, cumulative lifetime lead (Pb) exposure has been associated with accelerated declines in cognition. In addition, research in animal models suggests a causal association between Pb exposure during early life, epigenetics, and LOAD. There are multiple challenges to human epidemiologic research evaluating the relationship between epigenetics, LOAD, and Pb exposure. Epidemiologic studies are not well-suited to accommodate the long latency period between exposures during early life and onset of Alzheimer’s disease. There is also a lack of validated circulating epigenetics biomarkers and retrospective biomarkers of Pb exposure. Members of our research group have shown bone Pb is an accurate measurement of historical Pb exposure in adults, offering an avenue for future epidemiologic studies. However, this would not address the risk of LOAD attributable to early-life Pb exposures. Future studies that use a cohort design to measure both Pb exposure and validated epigenetic biomarkers of LOAD will be useful to clarify this important relationship. PMID:22272628
Energy futures: Trading opportunities for the 1980's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treat, J.E.; Cowie, S.; Davidson, F.E.
1984-01-01
This text gives a broad background in both theory and practice of energy futures trading. It details successful contract requirements. It analyzes fundamental and technical pricing and using both to manage risk and achieve trading objectives. Hedging strategy, financial aspects of trading, accounting procedures, internal control systems and tax implications are all expertly covered. The book concludes with the potential impact of futures trading on the structure of world markets. Contents: Energy futures: an overview; Exchanges and their contracts; Fundamental analysis and the theory of hedging; The principles of technical analysis; Putting it all together; Integrated trading strategies; Energy futures;more » Financing and exposure management in the oil industry; Accounting principles, taxation, and internal control; The potential impacts of trading in oil futures on the world oil market; Appendix; Glossary; Index.« less
Future property damage from flooding: sensitivities to economy and climate change
Liu, Jing; Hertel, Thomas; Diffenbaugh, Noah; ...
2015-08-09
Using a unique dataset for Indiana counties during the period 1995-2012, we estimate the effects of flood hazard, asset exposure, and social vulnerability on property damage. This relationship then is combined with the expected level of future flood risks to project property damage from flooding in 2030 under various scenarios. We compare these scenario projections to identify which risk management strategy offers the greatest potential to mitigate flooding loss. Results show that by 2030, county level flooding hazard measured by extreme flow volume and frequency will increase by an average of 16.2% and 7.4%, respectively. The total increase in propertymore » damages projected under different model specifications range from 13.3% to 20.8%. Across models future damages consistently exhibit the highest sensitivity to future increases in asset exposure, reinforcing the importance of non-structural measures in managing floodplain development.« less
Potential Sex Differences Relative to Autism Spectrum Disorder and Metals.
Dickerson, Aisha S; Rotem, Ran S; Christian, MacKinsey A; Nguyen, Vy T; Specht, Aaron J
2017-12-01
This study aims to summarize the current body of literature on the relationship between various toxic metals exposures (i.e., aluminum, antimony, arsenic, beryllium, cadmium, chromium, lead, manganese, and nickel) and autism spectrum disorder (ASD), with a focus on potential sex differences in these associations. Sex differences in ASD diagnosis and mutagenic effects of toxic exposures indicate that sex differences may play a major part in the causal relationship of any potential associations seen; however, we were only able to find three studies that reported on sex differences in observed associations with toxic metals exposure and ASD. We also found several studies investigating associations between ASD and metals exposures, including 11 on aluminum, 6 on antimony, 15 on arsenic, 5 on beryllium, 17 on cadmium, 11 on chromium, 25 on lead, 14 on manganese, and 13 on nickel with markers of exposure in hair, urine, blood, teeth, fingernails, and air pollution. Results for each metal were conflicting, but studies on cadmium and lead yielded the highest proportion of studies with positive results (72% and 36%, respectively). Based on our examination of existing literature, the current evidence warrants a considerable need for evaluations of sex differences in future studies assessing the association between metals exposures and ASD. Additionally, failure to account for potential sex differences could result in bias and misinterpretation of exposure-disease relationships.
Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure
2014-01-01
The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242
Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite.
Anderson, Barbara A; Dearwent, Steve M; Durant, James T; Dyken, Jill J; Freed, Jennifer A; Moore, Susan McAfee; Wheeler, John S
2005-01-01
The Agency for Toxic Substances and Disease Registry (ATSDR) is currently evaluating the potential public health impacts associated with the processing of asbestos-contaminated vermiculite at various facilities around the country. Vermiculite ore contaminated with significant levels of asbestos was mined and milled in Libby, Montana, from the early 1920s until 1990. The majority of the Libby ore was then shipped to processing facilities for exfoliation. ATSDR initiated the National Asbestos Exposure Review (NAER) to identify and evaluate exposure pathways associated with these processing facilities. This manuscript details ATSDR's phased approach in addressing exposure potential around these sites. As this is an ongoing project, only the results from a selected set of completed site analyses are presented. Historical occupational exposures are the most significant exposure pathway for the site evaluations completed to date. Former workers also probably brought asbestos fibers home on their clothing, shoes, and hair, and their household contacts may have been exposed. Currently, most site-related worker and community exposure pathways have been eliminated. One community exposure pathway of indeterminate significance is the current exposure of individuals through direct contact with waste rock brought home for personal use as fill material, driveway surfacing, or soil amendment. Trace levels of asbestos are present in soil at many of the sites and buried waste rock has been discovered at a few sites; therefore, future worker and community exposure associated with disturbing on-site soil during construction or redevelopment at these sites is also a potential exposure pathway.
Smith, Tyler C
2011-07-01
To describe current efforts and future potential for understanding long-term health of military service members by linking the Millennium Cohort Study data to exposures and health outcomes. The Millennium Cohort Study launched in 2001, before September 11 and the start of combat operations in Afghanistan and Iraq. Other substantial Department of Defense (DoD) health, personnel, and exposure databases are maintained in electronic form and may be linked by personal identifiers. More than 150,000 consenting members comprise the Millennium Cohort from all services, and include active duty, Reserve, and National Guard current and past members, and represent demographic, occupational, military, and health characteristics of the U.S. military. These prospective data offer symptom assessment, behavioral health, and self-reported exposures that may complement and fill gaps in capability presented by other DoD electronic health and exposure data. In conjunction with Millennium Cohort survey data, prospective individual-level exposure and health outcome assessment is crucial to understand and quantify any long-term health outcomes potentially associated with unique military occupational exposures.
Möller, L; Schuetzle, D; Autrup, H
1994-01-01
This paper presents key conclusions and future research needs from a Workshop on the Risk Assessment of Urban Air, Emissions, Exposure, Risk Identification, and Quantification, which was held in Stockholm during June 1992 by 41 participants from 13 countries. Research is recommended in the areas of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out this research. PMID:7529703
Kauppinen, Timo; Uuksulainen, Sanni; Saalo, Anja; Mäkinen, Ilpo; Pukkala, Eero
2014-04-01
This paper reviews the use of the Finnish Information System on Occupational Exposure (Finnish job-exposure matrix, FINJEM) in different applications in Finland and other countries. We describe and discuss studies on FINJEM and studies utilizing FINJEM in regard to the validity of exposure estimates, occupational epidemiology, hazard surveillance and prevention, the assessment of health risks and the burden of disease, the assessment of exposure trends and future hazards, and the construction of job-exposure matrices (JEMs) in countries other than Finland. FINJEM can be used as an exposure assessment tool in occupational epidemiology, particularly in large register-based studies. It also provides information for hazard surveillance at the national level. It is able to identify occupations with high average exposures to chemical agents and can therefore serve the priority setting of prevention. However, it has only limited use at the workplace level due to the variability of exposure between workplaces. The national estimates of exposure and their temporal trends may contribute to the assessment of both the recent and future burden of work-related health outcomes. FINJEM has also proved to be useful in the construction of other national JEMs, for example in the Nordic Occupational Cancer study in the Nordic countries. FINJEM is a quantitative JEM, which can serve many purposes and its comprehensive documentation also makes it potentially useful in countries other than Finland.
Global Characteristics of Childhood Acute Promyelocytic Leukemia
Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C
2014-01-01
Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717
Clinical Trials Methods for Evaluation of Potential Reduced Exposure Products
Hatsukami, Dorothy K.; Hanson, Karen; Briggs, Anna; Parascandola, Mark; Genkinger, Jeanine M.; O'Connor, Richard; Shields, Peter
2009-01-01
Potential reduced exposure tobacco products (PREPs) may have promise in reducing tobacco-related morbidity or mortality or may promote greater harm to individuals or the population. Critical to determining the risks or benefits from these products are valid human clinical trial PREP assessment methods. Assessment involves determining the effects of these products on biomarkers of exposure and of effect, which serve as proxies for harm, and assessing the potential for consumer uptake and abuse of the product. This article raises the critical methodological issues associated with PREP assessment, reviews the methods that have been used to assess PREPs, and describes the strengths and limitations of these methods. Additionally, recommendations for clinical trials PREP assessment methods and future research directions in this area based on this review and on the deliberations from a National Cancer Institute sponsored Clinical Trials PREP Methods Workshop are provided. PMID:19959672
Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W
2013-08-01
There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-06-06
There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewedmore » at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.« less
NASA Astrophysics Data System (ADS)
Schlögl, Matthias; Matulla, Christoph
2018-04-01
In the face of climate change, the assessment of land transport infrastructure exposure towards adverse climate events is of major importance for Europe's economic prosperity and social wellbeing. In this study, a climate index estimating rainfall patterns which trigger landslides in central Europe is analysed until the end of this century and compared to present-day conditions. The analysis of the potential future development of landslide risk is based on an ensemble of dynamically downscaled climate projections which are driven by the SRES A1B socio-economic scenario. Resulting regional-scale climate change projections across central Europe are concatenated with Europe's road and railway network. Results indicate overall increases of landslide occurrence. While flat terrain at low altitudes exhibits an increase of about 1 more potentially landslide-inducing rainfall period per year until the end of this century, higher elevated regions are more affected and show increases of up to 14 additional periods. This general spatial distribution emerges in the near future (2021-2050) but becomes more pronounced in the remote future (2071-2100). Since largest increases are to be found in Alsace, potential impacts of an increasing amount of landslides are discussed using the example of a case study covering the Black Forest mountain range in Baden-Württemberg by further enriching the climate information with additional geodata. The findings derived are suitable to support political decision makers and European authorities in transport, freight and logistics by offering detailed information on which parts of Europe's ground transport network are at particularly high risk concerning landslide activity.
VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi
2018-04-17
Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.
Toward risk reduction: predicting the future burden of occupational cancer.
Hutchings, Sally; Rushton, Lesley
2011-05-01
Interventions to reduce cancers related to certain occupations should be evidence-based. The authors have developed a method for forecasting the future burden of occupational cancer to inform strategies for risk reduction. They project risk exposure periods, accounting for cancer latencies of up to 50 years, forward in time to estimate attributable fractions for a series of forecast target years given past and projected exposure trends and under targeted reduction scenarios. Adjustment factors for changes in exposed numbers and levels are applied in estimation intervals within the risk-exposure periods. The authors illustrate the methods by using a range of scenarios for reducing lung cancer due to occupational exposure to respirable crystalline silica. Attributable fractions for lung cancer due to respirable crystalline silica could be potentially reduced from 2.07% in 2010 to nearly 0% by 2060, depending on the timing and success of interventions. Focusing on achieving compliance with current exposure standards in small industries can be more effective than setting standards at a lower level. The method can be used to highlight high-risk carcinogens, industries, and occupations. It is adaptable for other countries and other exposure situations in the general environment and can be extended to include socioeconomic impact assessment.
Development of an agricultural job-exposure matrix for British Columbia, Canada.
Wood, David; Astrakianakis, George; Lang, Barbara; Le, Nhu; Bert, Joel
2002-09-01
Farmers in British Columbia (BC), Canada have been shown to have unexplained elevated proportional mortality rates for several cancers. Because agricultural exposures have never been documented systematically in BC, a quantitative agricultural Job-exposure matrix (JEM) was developed containing exposure assessments from 1950 to 1998. This JEM was developed to document historical exposures and to facilitate future epidemiological studies. Available information regarding BC farming practices was compiled and checklists of potential exposures were produced for each crop. Exposures identified included chemical, biological, and physical agents. Interviews with farmers and agricultural experts were conducted using the checklists as a starting point. This allowed the creation of an initial or 'potential' JEM based on three axes: exposure agent, 'type of work' and time. The 'type of work' axis was determined by combining several variables: region, crop, job title and task. This allowed for a complete description of exposures. Exposure assessments were made quantitatively, where data allowed, or by a dichotomous variable (exposed/unexposed). Quantitative calculations were divided into re-entry and application scenarios. 'Re-entry' exposures were quantified using a standard exposure model with some modification while application exposure estimates were derived using data from the North American Pesticide Handlers Exposure Database (PHED). As expected, exposures differed between crops and job titles both quantitatively and qualitatively. Of the 290 agents included in the exposure axis; 180 were pesticides. Over 3000 estimates of exposure were conducted; 50% of these were quantitative. Each quantitative estimate was at the daily absorbed dose level. Exposure estimates were then rated as high, medium, or low based on comparing them with their respective oral chemical reference dose (RfD) or Acceptable Daily Intake (ADI). This data was mainly obtained from the US Environmental Protection Agency (EPA) Integrated Risk Information System database. Of the quantitative estimates, 74% were rated as low (< 100%) and only 10% were rated as high (>500%). The JEM resulting from this study fills a void concerning exposures for BC farmers and farm workers. While only limited validation of assessments were possible, this JEM can serve as a benchmark for future studies. Preliminary analysis at the BC Cancer Agency (BCCA) using the JEM with prostate cancer records from a large cancer and occupation study/survey has already shown promising results. Development of this JEM provides a useful model for developing historical quantitative exposure estimates where is very little documented information available.
Direct-to-consumer television advertising exposure, diagnosis with high cholesterol, and statin use.
Niederdeppe, Jeff; Byrne, Sahara; Avery, Rosemary J; Cantor, Jonathan
2013-07-01
While statin drugs are recommended for secondary prevention of coronary heart disease (CHD), there is no medical consensus on whether or not a statin should be added to lifestyle change efforts for primary prevention of CHD. Previous research suggests that exposure to direct-to-consumer advertising (DTCA) increases drug demand among those at comparatively low risk. Research has yet to examine whether individual-level DTCA exposure may influence statin use among men and women at high, moderate, or low risk for future cardiac events. To determine the relationship between estimated exposure to DTCA for statin drugs and two clinical variables: diagnosis with high cholesterol and statin use. We used logistic regression to analyze repeated cross-sectional surveys of the United States population, merged with data on the frequency of DTCA appearances on national, cable, and local television, between 2001 and 2007. American adults (n=106,685) aged 18 and older. Levels of exposure to statin DTCA, based on ad appearances and TV viewing patterns; self-reports of whether or not a respondent has been diagnosed with high cholesterol, and whether or not a respondent took a statin in the past year. Adjusting for potential confounders, we estimate that exposure to statin ads increased the odds of being diagnosed with high cholesterol by 16 to 20 %, and increased statin use by 16 to 22 %, among both men and women (p<0.05). These associations were driven almost exclusively by men and women at low risk for future cardiac events. There was also evidence of a negative association between DTCA exposure and statin use among high-risk women (p<0.05) CONCLUSIONS: This study provides new evidence that DTCA may promote over-diagnosis of high cholesterol and over-treatment for populations where risks of statin use may outweigh potential benefits.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine
2016-09-01
One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil sands) on ground-level ozone levels as an air quality management tool in the AOSR. It allows an evaluation of the relationships between the pollutants emitted to the atmosphere and potential ground level ozone concentrations throughout the AOSR thereby extending the spatial coverage of the results beyond the monitoring network and also allowing an assessment of the potential impacts of possible future emission cases.
Chemical Mixtures and Epidemiologic Fundamentals for Risk Assessment Applications
Risk management options are increasingly being considered early in the risk assessment process to help scope the considerations and bound the inherent complexities related to potential exposures, risk and future clean-up decisions (including acceptable pollutant levels) related t...
Potential human exposures to neonicotinoid insecticides: A review.
Zhang, Q; Li, Z; Chang, C H; Lou, J L; Zhao, M R; Lu, C
2018-05-01
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics' persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brey, S. J.; Fischer, E. V.; Pierce, J. R.; Ford, B.; Lassman, W.; Pfister, G.; Volckens, J.; Gan, R.; Magzamen, S.; Barnes, E. A.
2015-12-01
Exposure to wildfire smoke plumes represents an episodic, uncertain, and potentially growing threat to public health in the western United States. The area burned by wildfires in this region has increased over recent decades, and the future of fires within this region is largely unknown. Future fire emissions are intimately linked to future meteorological conditions, which are uncertain due to the variability of climate model outputs and differences between representative concentration pathways (RCP) scenarios. We know that exposure to wildfire smoke is harmful, particularly for vulnerable populations. However the literature on the heath effects of wildfire smoke exposure is thin, particularly when compared to the depth of information we have on the effects of exposure to smoke of anthropogenic origin. We are exploring the relationships between climate, fires, air quality and public health through multiple interdisciplinary collaborations. We will present several examples from these projects including 1) an analysis of the influence of fire on ozone abundances over the United States, and 2) efforts to use a high-resolution weather forecasting model to nail down exposure within specific smoke plumes. We will also highlight how our team works together. This discussion will include examples of the university structure that facilitates our current collaborations, and the lessons we have learned by seeking stakeholder input to make our science more useful.
Brauer, Michael
2010-05-01
Epidemiology has played an important role in the understanding of air pollution as a risk factor for respiratory disease and in the evidence base for air quality standards. With the widespread availability of genetic information and increasingly sophisticated measurements of molecular markers of adverse effects, there is a need for more specific and precise assessment of exposure to maximize the potential information to be derived from epidemiologic studies. Here advances in air pollution exposure assessment and their applications to studies of respiratory disease are reviewed, with a focus on recent studies of traffic-related air pollution and asthma. Although continuous measurements of personal exposures for all study subjects for a complete study period might be considered the desired "gold standard" for exposure, this is rarely, if ever, achieved due to feasibility constraints. Given this, exposure is typically estimated using models. Recent applications of geospatial (e.g., land use regression) models to studies of respiratory disease have made possible new study designs focused on spatial variability in exposure within urban areas and have provided new insights into the potential role of traffic-related air pollution (TRAP) as a risk factor for the development of childhood asthma. Substantial uncertainty remains, however, regarding what agent(s) within TRAP might be responsible for the observed associations. Future research will require increasing the specificity of exposure assessment to identify the potential roles of individual air pollution components, to elucidate potential mechanisms, and to facilitate studies of mixtures and gene-air pollution interactions.
Ochratoxin A and human health risk: a review of the evidence.
Bui-Klimke, Travis R; Wu, Felicia
2015-01-01
Ochratoxin A (OTA) is a mycotoxin produced by several fungal species including Aspergillus ochraceus, A. carbonarius, A. niger, and Penicillium verrucosum. OTA causes nephrotoxicity and renal tumors in a variety of animal species; however, human health effects are less well-characterized. Various studies have linked OTA exposure with the human diseases Balkan endemic nephropathy (BEN) and chronic interstitial nephropathy (CIN), as well as other renal diseases. This study reviews the epidemiological literature on OTA exposure and adverse health effects in different populations worldwide, and assesses the potential human health risks of OTA exposure. Epidemiological studies identified in a systematic review were used to calculate unadjusted odds ratios for OTA associated with various health endpoints. With one exception, there appears to be no statistically significant evidence for human health risks associated with OTA exposure. One Egyptian study showed a significantly higher risk of nephritic syndrome in those with very high urinary OTA levels compared with relatively unexposed individuals; however, other potential risk factors were not controlled for in the study. Larger cohort or case-control studies are needed in the future to better establish potential OTA-related human health effects, and further duplicate-diet studies are needed to validate biomarkers of OTA exposure in humans.
Environmental contaminant exposures and preterm birth: A comprehensive review
Ferguson, Kelly K.; O’Neill, Marie S.; Meeker, John D.
2013-01-01
Preterm birth is a significant public health concern, as it is associated with high risk of infant mortality, various morbidities in both the neonatal period and later in life, and a significant societal economic burden. As many cases are of unknown etiology, identification of the contribution of environmental contaminant exposures is a priority in the study of preterm birth. This is a comprehensive review of all known studies published from 1992 through August 2012 linking maternal exposure to environmental chemicals during pregnancy with preterm birth. Using PubMed searches studies were identified that examined associations between preterm birth and exposure to 5 categories of environmental toxicants, including persistent organic pollutants, drinking water contaminants, atmospheric pollutants, metals and metalloids, and other environmental contaminants. Individual studies were summarized and specific suggestions made for future work in regard to exposure and outcome assessment methods as well as study design, with the recommendation of focusing on potential mediating toxicological mechanisms. In conclusion, no consistent evidence was found for positive associations between individual chemical exposures and preterm birth. By identifying limitations and addressing the gaps that may have impeded the ability to identify true associations thus far, this review can guide future epidemiologic studies of environmental exposures and preterm birth. PMID:23682677
Early life programming as a target for prevention of child and adolescent mental disorders
2014-01-01
This paper concerns future policy development and programs of research for the prevention of mental disorders based on research emerging from fetal and early life programming. The current review offers an overview of findings on pregnancy exposures such as maternal mental health, lifestyle factors, and potential teratogenic and neurotoxic exposures on child outcomes. Outcomes of interest are common child and adolescent mental disorders including hyperactive, behavioral and emotional disorders. This literature suggests that the preconception and perinatal periods offer important opportunities for the prevention of deleterious fetal exposures. As such, the perinatal period is a critical period where future mental health prevention efforts should be focused and prevention models developed. Interventions grounded in evidence-based recommendations for the perinatal period could take the form of public health, universal and more targeted interventions. If successful, such interventions are likely to have lifelong effects on (mental) health. PMID:24559477
Potential exposures and risks from beryllium-containing products.
Willis, Henry H; Florig, H Keith
2002-10-01
Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.
Climate change, agricultural insecticide exposure, and risk for freshwater communities.
Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias
2011-09-01
Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and nonagricultural recolonization zones along streams.
Chlorine dioxide water disinfection: a prospective epidemiology study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, G.E.; Miday, R.K.; Bercz, J.P.
An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.
Emissions from Open Burning of Simulated Military Waste from Forward Operating Bases
Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenar...
Characterizing the impact of projected changes in climate and ...
The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O3) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O3 are much larger than the impacts of changing demographics.
Space Radiation Risk Assessment
NASA Astrophysics Data System (ADS)
Blakely, E.
Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from
Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures
Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington
2012-01-01
The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864
Trentacosta, Christopher J; McLear, Caitlin M; Ziadni, Maisa S; Lumley, Mark A; Arfken, Cynthia L
2016-01-01
This study examined mental health problems among children of Iraqi refugees, most of whom were Christian. Exposure to potentially traumatic events was hypothesized to predict more symptoms of depression and traumatic stress. Moreover, youth reports of supportive relationships with parents and positive feelings about school were examined in relation to mental health problems. These promotive factors were expected to mitigate the hypothesized association between traumatic event exposure and mental health problems. Participants were 211 youth recruited from agencies and programs serving Iraqi refugees in a large metropolitan area in the United States. The hypotheses were partially supported. Youth who reported experiencing more potentially traumatic events endorsed more traumatic stress and depression symptoms. After accounting for exposure to potentially traumatic events and other covariates, youth who reported more positive feelings about school endorsed fewer symptoms of traumatic stress, and youth who reported more supportive relationships with parents endorsed fewer symptoms of depression. In addition, there was an interaction between potentially traumatic events and relationships with parents when predicting depression symptoms. Youth endorsed higher levels of depression symptoms when they reported less supportive relationships, regardless of the amount of traumatic event exposure, whereas youth endorsed lower levels of depression symptoms when they reported more supportive relationships with parents, but only at low levels of traumatic event exposure. Otherwise, the main effects were not qualified by interactions between potentially traumatic event exposure and the promotive factors. The findings from this study have implications for future research, policy, and practice with children of refugees. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Bekker, Cindy; Brouwer, Derk H; Tielemans, Erik; Pronk, Anjoeka
2013-04-01
In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands. A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3). The most dominant industrial sectors producing or applying MNM-enabled end products (market penetration >5%) are shoe repair shops, automotive, construction, paint, metal, and textile cleaning industry. In the majority of the companies (76%), potential risks related to working with MNM are not a specific point of interest. The total number of workers potentially exposed to MNM during the production or application of MNM-enabled end products was estimated at approximately 3000 workers in the Netherlands. The results of this study will serve as a basis for in-depth exposure and health surveys that are currently planned in the Netherlands. In addition, the results can be used to identify the most relevant sectors for policy makers and future studies focussing on evaluating the risks of occupational exposure to MNM.
Friedman, Stephen M.; Pillai, Parul S.; Reibman, Joan; Berger, Kenneth I.; Goldring, Roberta; Stellman, Steven D.; Farfel, Mark
2012-01-01
Objectives. We assessed associations between new-onset (post–September 11, 2001 [9/11]) lower respiratory symptoms reported on 2 surveys, administered 3 years apart, and acute and chronic 9/11-related exposures among New York City World Trade Center–area residents and workers enrolled in the World Trade Center Health Registry. Methods. World Trade Center–area residents and workers were categorized as case participants or control participants on the basis of lower respiratory symptoms reported in surveys administered 2 to 3 and 5 to 6 years after 9/11. We created composite exposure scales after principal components analyses of detailed exposure histories obtained during face-to-face interviews. We used multivariate logistic regression models to determine associations between lower respiratory symptoms and composite exposure scales. Results. Both acute and chronic exposures to the events of 9/11 were independently associated, often in a dose-dependent manner, with lower respiratory symptoms among individuals who lived and worked in the area of the World Trade Center. Conclusions. Study findings argue for detailed assessments of exposure during and after events in the future from which potentially toxic materials may be released and for rapid interventions to minimize exposures and screen for potential adverse health effects. PMID:22515865
Maslow, Carey B; Friedman, Stephen M; Pillai, Parul S; Reibman, Joan; Berger, Kenneth I; Goldring, Roberta; Stellman, Steven D; Farfel, Mark
2012-06-01
We assessed associations between new-onset (post-September 11, 2001 [9/11]) lower respiratory symptoms reported on 2 surveys, administered 3 years apart, and acute and chronic 9/11-related exposures among New York City World Trade Center-area residents and workers enrolled in the World Trade Center Health Registry. World Trade Center-area residents and workers were categorized as case participants or control participants on the basis of lower respiratory symptoms reported in surveys administered 2 to 3 and 5 to 6 years after 9/11. We created composite exposure scales after principal components analyses of detailed exposure histories obtained during face-to-face interviews. We used multivariate logistic regression models to determine associations between lower respiratory symptoms and composite exposure scales. Both acute and chronic exposures to the events of 9/11 were independently associated, often in a dose-dependent manner, with lower respiratory symptoms among individuals who lived and worked in the area of the World Trade Center. Study findings argue for detailed assessments of exposure during and after events in the future from which potentially toxic materials may be released and for rapid interventions to minimize exposures and screen for potential adverse health effects.
GUIDANCE ON SELECTING AGE GROUPS FOR ...
This guidance document provides a set of early-lifestage age groups for Environmental Protection Agency scientists to consider when assessing children’s exposure to environmental contaminants and the resultant potential dose. These recommended age groups are based on current understanding of differences in behavior and physiology which may impact exposures in children. A consistent set of early-life age groups, supported by an underlying scientific rationale, is expected to improve Agency exposure and risk assessments for children by increasing the consistency and comparability of risk assessments across the Agency; by improving accuracy and transparency in assessments for those cases where current practice might too broadly combine behaviorally and physiologically disparate age groups; and by fostering a consistent approach to future exposure surveys and monitoring efforts to generate improved exposure factors for children. see description
Han, Wenchao; Tian, Ying; Shen, Xiaoming
2018-02-01
Neonicotinoid insecticides have become the fastest growing class of insecticides over the past few decades. The insecticidal activity of neonicotinoids is attributed to their agonist action on nicotinic acetylcholine receptors (nAChRs). Because of the special selective action on nAChRs in central nervous system of insects, and versatility in application methods, neonicotinoids are used to protect crops and pets from insect attacks globally. Although neonicotinoids are considered low toxicity to mammals and humans in comparison with traditional insecticides, more and more studies show exposure to neonicotinoids pose potential risk to mammals and even humans. In recent years, neonicotinoids and their metabolites have been successfully detected in various human biological samples. Meanwhile, many studies have focused on the health effects of neonicotinoids on humans. Our aims here are to review studies on human neonicotinoid exposure levels, health effect, evaluation of potential toxicity and to suggest possible directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reproductive and developmental effects of disinfection by-products in drinking water.
Reif, J S; Hatch, M C; Bracken, M; Holmes, L B; Schwetz, B A; Singer, P C
1996-01-01
Recent epidemiologic studies have reported associations between the consumption of chlorinated drinking water and reproductive and developmental effects. Here we review the available epidemiologic data, assess the hazard potential posed by exposure to disinfection by-products, identify critical data gaps, and offer recommendations for further research. The epidemiologic evidence supporting associations between exposure to water disinfection by-products (DBPs) and adverse pregnancy outcomes is sparse, and positive findings should be interpreted cautiously. The methods used during the early stages of research in this area have been diverse. Variability in exposure assessment and endpoints makes it difficult to synthesize or combine the available data. Exposure misclassification and unmeasured confounding may have lead to bias in risk estimation. Future studies of reproductive outcome and exposure to chlorinated water should use improved methods for exposure assessment to 1) assure selection of appropriate exposure markers, 2) assess seasonal and annual fluctuations in DBPs, 3) assess variability within the distribution system, and 4) assess exposure through multiple routes such as bathing and showering, as well as consumption. Population-based studies should be conducted to evaluate male and female fertility, conception delay, growth retardation, and specific birth defects. The reproductive and developmental effects of exposure to DBPs could be efficiently explored in ongoing investigations by incorporating valid exposure markers and relevant questionnaire information. Future studies should make use of naturally occurring variability in the concentrations of DBPs and may incorporate biomarkers of exposure and effect in their design. Epidemiologic investigations should be conducted in parallel with laboratory-based and animal studies in a coordinated, multidisciplinary approach. PMID:8930546
Exposure to Bioterrorism and Mental Health Response among Staff on Capitol Hill
Pfefferbaum, Betty; Vythilingam, Meena; Martin, Gregory J.; Schorr, John K.; Boudreaux, Angela S.; Spitznagel, Edward L.; Hong, Barry A.
2009-01-01
The October 2001 anthrax attacks heralded a new era of bioterrorism threat in the U.S. At the time, little systematic data on mental health effects were available to guide authorities' response. For this study, which was conducted 7 months after the anthrax attacks, structured diagnostic interviews were conducted with 137 Capitol Hill staff workers, including 56 who had been directly exposed to areas independently determined to have been contaminated. Postdisaster psychopathology was associated with exposure; of those with positive nasal swab tests, PTSD was diagnosed in 27% and any post-anthrax psychiatric disorder in 55%. Fewer than half of those who were prescribed antibiotics completed the entire course, and only one-fourth had flawless antibiotic adherence. Thirty percent of those not exposed believed they had been exposed; 18% of all study participants had symptoms they suspected were symptoms of anthrax infection, and most of them sought medical care. Extrapolation of raw numbers to large future disasters from proportions with incorrect belief in exposure in this limited study indicates a potential for important public health consequences, to the degree that people alter their healthcare behavior based on incorrect exposure beliefs. Incorrect belief in exposure was associated with being very upset, losing trust in health authorities, having concerns about mortality, taking antibiotics, and being male. Those who incorrectly believe they were exposed may warrant concern and potential interventions as well as those exposed. Treatment adherence and maintenance of trust for public health authorities may be areas of special concern, warranting further study to inform authorities in future disasters involving biological, chemical, and radiological agents. PMID:20028246
Edelman, P
1990-01-01
The semiconductor industry has been an enormous worldwide growth industry. At the heart of computer and other electronic technological advances, the environment in and around these manufacturing facilities has not been scrutinized to fully detail the health effects to the workers and the community from such exposures. Hazard identification in this industry leads to the conclusion that there are many sources of potential exposure to chemicals including arsenic, solvents, photoactive polymers and other materials. As the size of the semiconductor work force expands, the potential for adverse health effects, ranging from transient irritant symptoms to reproductive effects and cancer, must be determined and control measures instituted. Risk assessments need to be effected for areas where these facilities conduct manufacturing. The predominance of women in the manufacturing areas requires evaluating the exposures to reproductive hazards and outcomes. Arsenic exposures must also be evaluated and minimized, especially for maintenance workers; evaluation for lung and skin cancers is also appropriate. PMID:2401268
McGill, Tia M.; Self-Brown, Shannon R.; Lai, Betty S.; Cowart-Osborne, Melissa; Tiwari, Ashwini; LeBlanc, Monique; Kelley, Mary Lou
2014-01-01
Adolescents who are exposed to violence during childhood are at an increased risk for developing posttraumatic stress (PTS) symptoms. The literature suggests that violence exposure might also have negative effects on school functioning, and that PTS might serve as a potential mediator in this association. The purpose of the current study was to replicate and extend prior research by examining PTS symptoms as a mediator of the relationship between two types of violence exposure and school functioning problems among adolescent youth from an urban setting. Participants included a sample of 121 junior high and high school students (M = 15 years; range = 13–16 years; 60 males, 61 females) within high-crime neighborhoods. Consistent with our hypotheses, community violence and family violence were associated with PTS symptoms and school functioning problems. Our data suggest that community and family violence were indirectly related to school functioning problems through PTS symptoms. Findings from this study demonstrate that PTS symptoms potentially mediate the relationship between violence exposure and school functioning problems across two settings (community and home). Future research should further examine protective factors that can prevent youth violence exposure as well as negative outcomes related to violence. PMID:24570897
Bell, Michelle L.; Belanger, Kathleen
2012-01-01
Studies on environmental exposures during pregnancy often have limited residential history (e.g., at delivery), potentially introducing exposure misclassification. We reviewed studies reporting residential mobility during pregnancy to summarize current evidence and discuss research implications. A meaningful quantitative combination of results (e.g., meta-analysis), was infeasible owing to variation in study designs. Fourteen studies were identified, of which half were from the US. Most were case-control studies examining birth defects. Residential history was typically assessed after delivery. Overall mobility rates were 9–32% and highest in the second trimester. Mobility generally declined with age, parity, and socioeconomic status, although not consistently. Married mothers moved less frequently. Findings were dissimilar by race, smoking, or alcohol use. On the basis of the few studies reporting distance moved, most distances were short (median often <10 km). Results indicate potential misclassification for environmental exposures estimated with incomplete residential information. This misclassification could be associated with potential confounders, such as socioeconomics, thereby affecting risk estimates. As most moves were short distances, exposures that are homogenous within a community may be well estimated with limited residential data. Future research should consider the implications of residential mobility during pregnancy in relation to the exposure’s spatial heterogeneity and factors associated with the likelihood of moving and distance moved. PMID:22617723
Exposure to airborne engineered nanoparticles in the indoor environment
NASA Astrophysics Data System (ADS)
Vance, Marina E.; Marr, Linsey C.
2015-04-01
This literature review assesses the current state of knowledge about inhalation exposure to airborne, engineered nanoparticles in the indoor environment. We present principal exposure scenarios in indoor environments, complemented by analysis of the published literature and of an inventory of nanotechnology-enhanced consumer products. Of all products listed in the inventory, 10.8% (194 products) present the potential for aerosolization of nanomaterials and subsequent inhalation exposure during use or misuse. Among those, silver-containing products are the most prevalent (68 products). Roughly 50% of products would release wet aerosols and 50% would potentially release dry aerosols. Approximately 14% are cleaning products that can be broadly used in public indoor environments, where building occupants may be exposed. While a variety of nanomaterial compositions have been investigated in the limited number of published release and exposure studies, we identified a need for studies investigating nanofibers (beyond carbon nanotubes), nanofilms, nanoplatelets, and other emerging nanomaterials such as ceria and their nanocomposites. Finally, we provide recommendations for future research to advance the understanding of exposure to airborne nanomaterials indoors, such as studies into indoor chemistry of nanomaterials, better nanomaterial reporting and labeling in consumer products, and safer design of nanomaterial-containing consumer products.
Lotfi, C F; Brentani, M M; Böhm, G M
1990-08-01
The mutagenic activity of the new Brazilian fuel, ethanol, was determined by employing the Salmonella typhimurium microsomal mutagenesis assay (TA97, TA98, TA100, TA102, and TA104) and a direct exposure method. This methodology was first used to determine the mutagenic activity of gasoline, revealing mutagenic activity of base-pair substitution without any need for metabolic activation, indicating the presence of direct-action mutagens. Experiments with ethanol suggest an indirect mutagenic activity of the oxidant type. The exposure system was considered suitable for future studies of gaseous mixtures.
Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming
2014-10-01
Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Value of Using Multiple Metrics to Evaluate PCB Exposure.
Archer, Megan C; Harwood, Amanda D; Nutile, Samuel A; Hartz, Kara E Huff; Mills, Marc A; Garvey, Jim E; Lydy, Michael J
2018-04-01
Current methods for evaluating exposure in ecosystems contaminated with hydrophobic organic contaminants typically focus on sediment exposure. However, a comprehensive environmental assessment requires a more holistic approach that not only estimates sediment concentrations, but also accounts for exposure by quantifying other pathways, such as bioavailability, bioaccumulation, trophic transfer potential, and transport of hydrophobic organic contaminants within and outside of the aquatic system. The current study evaluated the ability of multiple metrics to estimate exposure in an aquatic ecosystem. This study utilized a small lake contaminated with polychlorinated biphenyls (PCBs) to evaluate exposure to multiple trophic levels as well as the transport of these contaminants within and outside of the lake. The PCBs were localized to sediments in one area of the lake, yet this area served as the source of PCBs to aquatic invertebrates, emerging insects, and fish and terrestrial spiders in the riparian ecosystem. The Tenax extractable and biota PCB concentrations indicated tissue concentrations were localized to benthic invertebrates and riparian spiders in a specific cove. Fish data, however, demonstrated that fish throughout the lake had PCB tissue concentrations, leading to wider exposure risk. The inclusion of PCB exposure measures at several trophic levels provided multiple lines of evidence to the scope of exposure through the aquatic and riparian food web, which aids in assessing risk and developing potential future remediation strategies.
Modeling Coastal Vulnerability through Space and Time.
Hopper, Thomas; Meixler, Marcia S
2016-01-01
Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time periods have considerable potential to provide valuable predictions that resource managers can effectively use to identify areas for restoration and protection.
Modeling Coastal Vulnerability through Space and Time
2016-01-01
Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time periods have considerable potential to provide valuable predictions that resource managers can effectively use to identify areas for restoration and protection. PMID:27732674
Environmental Health Promotion Interventions: Considerations for Preparation and Practice
ERIC Educational Resources Information Center
Kegler, Michelle Crozier; Miner, Kathleen
2004-01-01
Interventions to address current, future, and potential public health dilemmas, such as air pollution, urban sprawl, brown field reclamation, and threats of intentional toxic exposures would benefit from a synergy between the disciplines of environmental health and health education. A comparison between the Protocol for Assessing Community…
Bekker, Cindy; Voogd, Eef; Fransman, Wouter; Vermeulen, Roel
2016-11-01
Control banding can be used as a first-tier assessment to control worker exposure to nano-objects and their aggregates and agglomerates (NOAA). In a second tier, more advanced modelling approaches are needed to produce quantitative exposure estimates. As currently no general quantitative nano-specific exposure models are available, this study evaluated the validity and applicability of using a generic exposure assessment model (the Advanced REACH Tool-ART) for occupational exposure to NOAA. The predictive capability of ART for occupational exposure to NOAA was tested by calculating the relative bias and correlations (Pearson) between the model estimates and measured concentrations using a dataset of 102 NOAA exposure measurements collected during experimental and workplace exposure studies. Moderate to (very) strong correlations between the ART estimates and measured concentrations were found. Estimates correlated better to measured concentration levels of dust (r = 0.76, P < 0.01) than liquid aerosols (r = 0.51, P = 0.19). However, ART overestimated the measured NOAA concentrations for both the experimental and field measurements (factor 2-127). Overestimation was highest at low concentrations and decreased with increasing concentration. Correlations seemed to be better when looking at the nanomaterials individually compared to combined scenarios, indicating that nanomaterial-specific characteristics are not well captured within the mechanistic model of the ART. Although ART in its current state is not capable to estimate occupational exposure to NOAA, the strong correlations for the individual nanomaterials indicate that the ART (and potentially other generic exposure models) have the potential to be extended or adapted for exposure to NOAA. In the future, studies investigating the potential to estimate exposure to NOAA should incorporate more explicitly nanomaterial-specific characteristics in their models. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Neven, Kristof Y; Nawrot, Tim S; Bollati, Valentina
2017-03-01
To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.
Environmental epigenetics: a role in endocrine disease?
Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A
2012-10-01
Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.
Gulf War Illness: Challenges Persist.
Nettleman, Mary
2015-01-01
It has been more than 20 years since the United States and coalition forces entered Kuwait and Iraq. Actual combat was of remarkably short duration: less than 1 week of sustained ground activity and 6 weeks of air missions. Thus, it was surprising when approximately 200,000 returning US veterans were affected by a chronic multi-symptom illness that came to be known as Gulf War Illness (GWI). There were many challenges in investigating GWI, not least of which was that it took several years before the condition was officially taken seriously. There were multiple exposures to potentially causal agents on and off the battlefield, but these exposures were documented incompletely if at all, leaving epidemiologists to rely on self-report for information. In the past 2 years, significant controversy has arisen over the future directions of the field. Despite these challenges, several studies have implicated exposure to acetylcholinesterase inhibitors such as pyridostigmine bromide in the genesis of the condition. The story of GWI can inform research into other conditions and guide future work on veterans' health.
The future of pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection.
Özdener, Ayşe Elif; Park, Tae Eun; Kalabalik, Julie; Gupta, Rachna
2017-05-01
People at high risk for HIV acquisition should be offered pre-exposure prophylaxis (PrEP). Tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) is currently the only medication recommended for pre-exposure prophylaxis (PrEP) by the Centers for Disease Control and Prevention (CDC) in people at high risk for HIV acquisition. This article will review medications currently under investigation and the future landscape of PrEP therapy. Areas covered: This article will review clinical trials that have investigated nontraditional regimens of TDF/FTC, antiretroviral agents from different drug classes such as integrase strand transfer inhibitors (INSTI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) as potential PrEP therapies. Expert commentary: Currently, there are several investigational drugs in the pipeline for PrEP against HIV infection. Increased utilization of PrEP therapy depends on provider identification of people at high risk for HIV transmission. Advances in PrEP development will expand options and access for people and reduce the risk of HIV acquisition.
In vitro influence of light radiation on hair steroid concentrations.
Grass, Juliane; Miller, Robert; Carlitz, Esther H D; Patrovsky, Fabian; Gao, Wei; Kirschbaum, Clemens; Stalder, Tobias
2016-11-01
Hair cortisol concentrations (hairF) are considered to be relatively robust to various confounding influences. However, a potentially important covariate factor that has received little attention in this context is hair exposure to ultraviolet/sunlight radiation. We conducted a detailed experimental investigation to examine the effects of light exposure on hair cortisol. In study I, a hydrocortisone-containing solution was subjected to short-term artificial light irradiation for 1, 3, 5, 10, 15, or 30min to evaluate the stability of cortisol molecules due to radiant energy. In study II, hair samples (N=12) were subjected to single short-term artificial light irradiation for 0, 1, or 5h to examine light-induced effects in the hair matrix. In study III, hair samples (N=25) were subjected to long-term naturalistic sunlight radiation over a period of two months (during summer) with daily exposure times of 0, 1, 3, or 6h, respectively. Besides cortisol, studies II & III also examined concentrations of cortisone (hairE), dehydroepiandrosterone (hairDHEA) and progesterone (hairP) in hair, quantified using LC-MS/MS technology. Results across the three studies consistently revealed effects of light irradiation on hair steroid concentrations: Longer light exposure resulted in a decrease of dissolved hydrocortisone (study I) as well as of hairF and hairE (studies II and III). Conversely, hairDHEA and hairP increased with longer natural sunlight exposure times (study III), while this effect was not observed for short-term artificial light irradiation (study II). Combined, our findings imply sunlight exposure as a potential confound in hair steroid research. Given the experimental character of this investigation, the magnitude of this effect under real-life testing conditions is difficult to estimate. To support future investigation into this, we designed a 'sunlight-exposure' questionnaire to share with the research community. The assessment and statistical accounting for sunlight exposure-related effects in future hair steroid research (using this or a similar questionnaire) may help to reduce the potential influence of this unwanted error source and could thus lead to more valid and reliable results. In addition, our data strongly suggest that hair samples for steroid analyses need to be stored in a dark environment. Copyright © 2016. Published by Elsevier Ltd.
Hu, Zhiwei; Brooks, Samira A.; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W. Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Prudhomme, Kalan R.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P.; Woodrick, Jordan; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Lowe, Leroy; Jensen, Lasse; Bisson, William H.; Kleinstreuer, Nicole
2015-01-01
One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. PMID:26106137
An emission-weighted proximity model for air pollution exposure assessment.
Zou, Bin; Wilson, J Gaines; Zhan, F Benjamin; Zeng, Yongnian
2009-08-15
Among the most common spatial models for estimating personal exposure are Traditional Proximity Models (TPMs). Though TPMs are straightforward to configure and interpret, they are prone to extensive errors in exposure estimates and do not provide prospective estimates. To resolve these inherent problems with TPMs, we introduce here a novel Emission Weighted Proximity Model (EWPM) to improve the TPM, which takes into consideration the emissions from all sources potentially influencing the receptors. EWPM performance was evaluated by comparing the normalized exposure risk values of sulfur dioxide (SO(2)) calculated by EWPM with those calculated by TPM and monitored observations over a one-year period in two large Texas counties. In order to investigate whether the limitations of TPM in potential exposure risk prediction without recorded incidence can be overcome, we also introduce a hybrid framework, a 'Geo-statistical EWPM'. Geo-statistical EWPM is a synthesis of Ordinary Kriging Geo-statistical interpolation and EWPM. The prediction results are presented as two potential exposure risk prediction maps. The performance of these two exposure maps in predicting individual SO(2) exposure risk was validated with 10 virtual cases in prospective exposure scenarios. Risk values for EWPM were clearly more agreeable with the observed concentrations than those from TPM. Over the entire study area, the mean SO(2) exposure risk from EWPM was higher relative to TPM (1.00 vs. 0.91). The mean bias of the exposure risk values of 10 virtual cases between EWPM and 'Geo-statistical EWPM' are much smaller than those between TPM and 'Geo-statistical TPM' (5.12 vs. 24.63). EWPM appears to more accurately portray individual exposure relative to TPM. The 'Geo-statistical EWPM' effectively augments the role of the standard proximity model and makes it possible to predict individual risk in future exposure scenarios resulting in adverse health effects from environmental pollution.
McArley, Tristan J; Hickey, Anthony J R; Herbert, Neill A
2017-10-01
Intertidal fish species face gradual chronic changes in temperature and greater extremes of acute thermal exposure through climate-induced warming. As sea temperatures rise, it has been proposed that whole-animal performance will be impaired through oxygen and capacity limited thermal tolerance [OCLTT; reduced aerobic metabolic scope (MS)] and, on acute exposure to high temperatures, thermal safety margins may be reduced because of constrained acclimation capacity of upper thermal limits. Using the New Zealand triplefin fish ( Forsterygion lapillum ), this study addressed how performance in terms of growth and metabolism (MS) and upper thermal tolerance limits would be affected by chronic exposure to elevated temperature. Growth was measured in fish acclimated (12 weeks) to present and predicted future temperatures and metabolic rates were then determined in fish at acclimation temperatures and with acute thermal ramping. In agreement with the OCLTT hypothesis, chronic exposure to elevated temperature significantly reduced growth performance and MS. However, despite the prospect of impaired growth performance under warmer future summertime conditions, an annual growth model revealed that elevated temperatures may only shift the timing of high growth potential and not the overall annual growth rate. While the upper thermal tolerance (i.e. critical thermal maxima) increased with exposure to warmer temperatures and was associated with depressed metabolic rates during acute thermal ramping, upper thermal tolerance did not differ between present and predicted future summertime temperatures. This suggests that warming may progressively decrease thermal safety margins for hardy generalist species and could limit the available habitat range of intertidal populations. © 2017. Published by The Company of Biologists Ltd.
Biokinetics of Nanomaterials: the Role of Biopersistence.
Laux, Peter; Riebeling, Christian; Booth, Andy M; Brain, Joseph D; Brunner, Josephine; Cerrillo, Cristina; Creutzenberg, Otto; Estrela-Lopis, Irina; Gebel, Thomas; Johanson, Gunnar; Jungnickel, Harald; Kock, Heiko; Tentschert, Jutta; Tlili, Ahmed; Schäffer, Andreas; Sips, Adriënne J A M; Yokel, Robert A; Luch, Andreas
2017-04-01
Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
Pesticide exposures and respiratory health in general populations.
Ye, Ming; Beach, Jeremy; Martin, Jonathan W; Senthilselvan, Ambikaipakan
2017-01-01
Human exposures to pesticides can occur in the workplace, in the household and through the ambient environment. While several articles have reviewed the impact of pesticide exposures on human respiratory health in occupational settings, to the best of our knowledge, this article is the first one to review published studies on the association between pesticide exposures and human respiratory health in the general populations. In this article, we critically reviewed evidences up to date studying the associations between non-occupational pesticide exposures and respiratory health in general populations. This article also highlighted questions arising from these studies, including our recent analyses using the data from the Canadian Health Measures Survey (CHMS), for future research. We found few studies have addressed the impact of environmental pesticide exposures on respiratory health, especially on lung function, in general populations. In the studies using the data from CHMS Cycle 1, exposures to OP insecticides, pyrethroid insecticides, and the organochlorine pesticide DDT were associated with impaired lung function in the Canadian general population, but no significant associations were observed for the herbicide 2,4-D. Future research should focus on the potential age-specific and pesticide-specific effect on respiratory health in the general population, and repeated longitudinal study design is critical for assessing the temporal variations in pesticide exposures. Research findings from current studies of non-occupational pesticide exposures and their health impact in general population will help to improve the role of regulatory policies in mitigating pesticide-related public health problems, and thereafter providing greater benefit to the general population. Copyright © 2016. Published by Elsevier B.V.
Combat-related blast-induced neurotrauma: a public health problem?
Jett, Shirley
2010-01-01
The purpose of this article is to raise nurses' awareness of the significance and potential public health impact of combat-related blast-induced neurotrauma (BINT) in U.S. troops returning from Afghanistan and Iraq. A comprehensive review of the current literature on BINT was completed by the author, based primarily on combat-related blast exposure in the military population. She found that it is necessary to theorize about potential etiologies for mild traumatic brain injury in the military population since the literature suggests that neurological and psychological trauma resulting from military duty may be linked to exposure to blasts. Identification of potential risk factors for BINT in the military population provides direction for scientific inquiry into this emerging phenomenon. Gaps in current knowledge and its health implications for future scientific study in nursing are presented. © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Williams, Ron; Creason, John; Zweidinger, Roy; Watts, Randall; Sheldon, Linda; Shy, Carl
A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was integrated with results from a paired epidemiological pilot study. This integration was used to investigate the potential pathophysiological health effects resulting from daily changes in estimated PM exposures with results reported elsewhere. Objectives of the exposure study were to determine the feasibility of performing PM exposure assessment upon an elderly population and establishing relationships between the various exposure measures including personal monitoring. PM 2.5 was determined to be the dominant outdoor size fraction (0.83 PM 2.5/PM 10 mass ratio by dichot monitoring). Individual 24-h PM 1.5 personal exposures ranged from 12 to 58 μg m -3. Comparison of data from matched sampling dates resulted in mean daily PM 1.5 personal, PM 2.5 outdoor, and PM 1.5 indoor concentrations of 34, 17, and 17 μg m -3, respectively. Activity patterns of the study population indicated a generally sedentary population spending a mean of 96% of each day indoors. Future studies would benefit from the use of a consistent sampling methodology across a larger number of PM measurement sites relevant to the elderly subjects, as well as a larger personal PM exposure study population to more successfully collect data needed in matched epidemiological-exposure studies.
Bekker, Cindy; Fransman, Wouter; Boessen, Ruud; Oerlemans, Arné; Ottenbros, Ilse B; Vermeulen, Roel
2017-01-01
Nano-specific inhalation exposure models could potentially be effective tools to assess and control worker exposure to nano-objects, and their aggregates and agglomerates (NOAA). However, due to the lack of reliable and consistent collected NOAA exposure data, the scientific basis for validation of the existing NOAA exposure models is missing or limited. The main objective of this study was to gain more insight into the effect of various determinants underlying the potential on the concentration of airborne NOAA close to the source with the purpose of providing a scientific basis for existing and future exposure inhalation models. Four experimental studies were conducted to investigate the effect of 11 determinants of emission on the concentration airborne NOAA close to the source during dumping of ~100% nanopowders. Determinants under study were: nanomaterial, particle size, dump mass, height, rate, ventilation rate, mixing speed, containment, particle surface coating, moisture content of the powder, and receiving surface. The experiments were conducted in an experimental room (19.5 m3) with well-controlled environmental and ventilation conditions. Particle number concentration and size distribution were measured using real-time measurement devices. Dumping of nanopowders resulted in a higher number concentration and larger particles than dumping their reference microsized powder (P < 0.05). Statistically significant more and larger particles were also found during dumping of SiO2 nanopowder compared to TiO2/Al2O3 nanopowders. Particle surface coating did not affect the number concentration but on average larger particles were found during dumping of coated nanopowders. An increase of the powder's moisture content resulted in less and smaller particles in the air. Furthermore, the results indicate that particle number concentration increases with increasing dump height, rate, and mass and decreases when ventilation is turned on. These results give an indication of the direction and magnitude of the effect of the studied determinants on concentrations close to the source and provide a scientific basis for (further) development of existing and future NOAA inhalation exposure models. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Trost, Zina; Zielke, Marjorie; Guck, Adam; Nowlin, Liza; Zakhidov, Djanhangir; France, Christopher R; Keefe, Francis
2015-01-01
Virtual reality (VR) technologies have been successfully applied to acute pain interventions and recent reviews have suggested their potential utility in chronic pain. The current review highlights the specific relevance of VR interactive gaming technologies for pain-specific intervention, including their current use across a variety of physical conditions. Using the example of graded-exposure treatment for pain-related fear and disability in chronic low back pain, we discuss ways that VR gaming can be harnessed to optimize existing chronic pain therapies and examine the potential limitations of traditional VR interfaces in the context of chronic pain. We conclude by discussing directions for future research on VR-mediated applications in chronic pain.
Nanoparticle exposure at nanotechnology workplaces: A review
2011-01-01
Risk, associated with nanomaterial use, is determined by exposure and hazard potential of these materials. Both topics cannot be evaluated absolutely independently. Realistic dose concentrations should be tested based on stringent exposure assessments for the corresponding nanomaterial taking into account also the environmental and product matrix. This review focuses on current available information from peer reviewed publications related to airborne nanomaterial exposure. Two approaches to derive realistic exposure values are differentiated and independently presented; those based on workplace measurements and the others based on simulations in laboratories. An assessment of the current available workplace measurement data using a matrix, which is related to nanomaterials and work processes, shows, that data are available on the likelihood of release and possible exposure. Laboratory studies are seen as an important complementary source of information on particle release processes and hence for possible exposure. In both cases, whether workplace measurements or laboratories studies, the issue of background particles is a major problem. From this review, major areas for future activities and focal points are identified. PMID:21794132
Actuarial considerations of medical malpractice evaluations in M&As.
Frese, Richard C
2014-11-01
To best project an actuarial estimate for medical malpractice exposure for a merger and acquisition, a organization's leaders should consider the following factors, among others: How to support an unbiased actuarial estimation. Experience of the actuary. The full picture of the organization's malpractice coverage. The potential for future loss development. Frequency and severity trends.
Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.
Guzman, Christine; Conaco, Cecilia
2016-01-01
Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.
Ecotoxicology of mercury in fish and wildlife: Recent advances
Scheuhammer, Anton M.; Basu, Niladri; Evers, David C.; Heinz, Gary H.; Sandheinrich, Mark B.; Bank, Michael S.; edited by Bank, Michael S.; Bank, Michael S.
2012-01-01
A number of recent studies have documented subtle, yet potentially important effects of mercury on behavior, neurochemistry, and endocrine function in fish and wildlife at currently realistic levels of environmental exposure. Current levels of environmental methylmercury exposure are sufficient to cause significant biological impairment, both in individuals and in whole populations, in some ecosystems. Future toxicological studies on fish and wildlife will focus on linking biomarkers of methylmercury exposure and associated oxidative stress to effects on reproduction and population change; determining the genetic basis for mercury-related neurotoxic and other biological changes; determining the genetic basis for species differences in sensitivity to methylmercury; and linking toxic effects of methylmercury in individual animals to population-level changes.
Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.
Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir
2016-11-01
Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Stevia rebaudiana Bertoni effect on the hemolytic potential of Listeria monocytogenes.
Sansano, S; Rivas, A; Pina-Pérez, M C; Martinez, A; Rodrigo, D
2017-06-05
The effect of Stevia rebaudiana Bertoni on the hemolytic potential of Listeria monocytogenes was studied by means of the assessment of the Listeriolysin O (LLO) production. The three factors under study, stevia concentration in the range [0-2.5] % (w/v), incubation temperature (10 and 37°C), and exposure time (0-65h) significantly affected (p≤0.05) the hemolytic activity of L. monocytogenes. Results showed that at the lower incubation temperature the hemolytic potential of the bacterium was significantly reduced, from 100% at 37°C to 8% at 10°C (after 65h of incubation) in unsupplemented substrate (0% stevia). Irrespective of the temperature, 10 or 37°C, supplementation of the medium with stevia at 2.5 % (w/v) reduced the bacterium's hemolytic activity by a maximum of 100%. Furthermore, the time of exposure to 2.5 % (w/v) stevia concentration was also a significant factor reducing the hemolytic capability of L. monocytogenes. The possibility of reducing the pathogenic potential of L. monocytogenes (hemolysis) by exposure to stevia should be confirmed in real food matrices, opening a research niche with a valuable future impact on food safety. Copyright © 2017 Elsevier B.V. All rights reserved.
A Decision Analytic Approach to Exposure-Based Chemical Prioritization
Mitchell, Jade; Pabon, Nicolas; Collier, Zachary A.; Egeghy, Peter P.; Cohen-Hubal, Elaine; Linkov, Igor; Vallero, Daniel A.
2013-01-01
The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies. PMID:23940664
Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.
Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye
2017-01-01
Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.
Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures.
O'Brien, Katie M; Upson, Kristen; Buckley, Jessie P
2017-03-01
Urine- and serum-based biomarkers are useful for assessing individuals' exposure to environmental factors. However, variations in urinary creatinine (a measure of dilution) or serum lipid levels, if not adequately corrected for, can directly impact biomarker concentrations and bias exposure-disease association measures. Recent methodological literature has considered the complex relationships between creatinine or serum lipid levels, exposure biomarkers, outcomes, and other potentially relevant factors using directed acyclic graphs and simulation studies. The optimal measures of urinary dilution and serum lipids have also been investigated. Existing evidence supports the use of covariate-adjusted standardization plus creatinine adjustment for urinary biomarkers and standardization plus serum lipid adjustment for lipophilic, serum-based biomarkers. It is unclear which urinary dilution measure is best, but all serum lipid measures performed similarly. Future research should assess methods for pooled biomarkers and for studying diseases and exposures that affect creatinine or serum lipids directly.
Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures
O’Brien, Katie M.; Upson, Kristen; Buckley, Jessie P.
2017-01-01
Purpose of review Urine- and serum-based biomarkers are useful for assessing individuals’ exposure to environmental factors. However, variations in urinary creatinine (a measure of dilution) or serum lipid levels, if not adequately corrected for, can directly impact biomarker concentrations and bias exposure-disease association measures. Recent findings Recent methodological literature has considered the complex relationships between creatinine or serum lipid levels, exposure biomarkers, outcomes, and other potentially relevant factors using directed acyclic graphs and simulation studies. The optimal measures of urinary dilution and serum lipids have also been investigated. Summary Existing evidence supports the use of covariate-adjusted standardization plus creatinine adjustment for urinary biomarkers and standardization plus serum lipid adjustment for lipophilic, serum-based biomarkers. It is unclear which urinary dilution measure is best, but all serum lipid measures performed similarly. Future research should assess methods for pooled biomarkers and for studying diseases and exposures that affect creatinine or serum lipids directly. PMID:28097619
Fatal chlorine gas exposure at a metal recycling facility: Case report.
Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J
2018-06-01
At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.
Georgopoulos, Panos G; Sasso, Alan F; Isukapalli, Sastry S; Lioy, Paul J; Vallero, Daniel A; Okino, Miles; Reiter, Larry
2009-02-01
A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical "inversion" techniques. To quantify the value of different types of exposure data "accompanying" biomarker data, a study was conducted focusing on reconstructing exposures to chlorpyrifos, from measurements of its metabolite levels in urine. The study employed biomarker data as well as supporting exposure-related information from the National Human Exposure Assessment Survey (NHEXAS), Maryland, while the MENTOR-3P system (Modeling ENvironment for TOtal Risk with Physiologically based Pharmacokinetic modeling for Populations) was used for PBTK modeling. Recently proposed, simple numerical reconstruction methods were applied in this study, in conjunction with PBTK models. Two types of reconstructions were studied using (a) just the available biomarker and supporting exposure data and (b) synthetic data developed via augmenting available observations. Reconstruction using only available data resulted in a wide range of variation in estimated exposures. Reconstruction using synthetic data facilitated evaluation of numerical inversion methods and characterization of the value of additional information, such as study-specific data that can be collected in conjunction with the biomarker data. Although the NHEXAS data set provides a significant amount of supporting exposure-related information, especially when compared to national studies such as the National Health and Nutrition Examination Survey (NHANES), this information is still not adequate for detailed reconstruction of exposures under several conditions, as demonstrated here. The analysis presented here provides a starting point for introducing improved designs for future biomonitoring studies, from the perspective of exposure reconstruction; identifies specific limitations in existing exposure reconstruction methods that can be applied to population biomarker data; and suggests potential approaches for addressing exposure reconstruction from such data.
Prugh, Amber M; Cole, Stephanie D; Glaros, Trevor; Angelini, Daniel J
2017-03-25
Mesenchymal stem cells (MSCs) are multipotent cells located within various adult tissues. Recent literature has reported that human bone marrow-derived MSCs express active acetylcholinesterase (AChE) and that disruption of AChE activity by organophosphate (OP) chemicals decreases the ability of MSCs to differentiate into osteoblasts. The potential role of AChE in regulating MSC proliferation and differentiation is currently unknown. In the present study, we demonstrate that MSCs exposed to OPs have both decreased AChE activity and abundance. In addition, exposure to these OPs induced cellular death while decreasing cellular proliferation. Exposures to these compounds also reduced the adipogenic/osteogenic differentiation potentials of the MSCs. To elucidate the possible role of AChE in MSCs signaling following OP exposure, we captured potential AChE binding partners by performing polyhistidine (His 8 )-tagged AChE pulldowns, followed by protein identification using liquid chromatography mass spectrometry (LC-MS). Using this method, we determined that the focal adhesion protein, vinculin, is a potential binding partner with AChE in MSCs and these initial findings were confirmed with follow-up co-immunoprecipitation experiments. Identifying AChE binding partners helps to determine potential pathways associated with MSC proliferation and differentiation, and this understanding could lead to the development of future MSC-based tissue repair therapies. Published by Elsevier B.V.
Hu, Zhiwei; Brooks, Samira A; Dormoy, Valérian; Hsu, Chia-Wen; Hsu, Hsue-Yin; Lin, Liang-Tzung; Massfelder, Thierry; Rathmell, W Kimryn; Xia, Menghang; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Prudhomme, Kalan R; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Lowe, Leroy; Jensen, Lasse; Bisson, William H; Kleinstreuer, Nicole
2015-06-01
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Carbon monoxide pollution and neurodevelopment: A public health concern.
Levy, Richard J
2015-01-01
Although an association between air pollution and adverse systemic health effects has been known for years, the effect of pollutants on neurodevelopment has been underappreciated. Recent evidence suggests a possible link between air pollution and neurocognitive impairment and behavioral disorders in children, however, the exact nature of this relationship remains poorly understood. Infants and children are uniquely vulnerable due to the potential for exposure in both the fetal and postnatal environments during critical periods in development. Carbon monoxide (CO), a common component of indoor and outdoor air pollution, can cross the placenta to gain access to the fetal circulation and the developing brain. Thus, CO is of particular interest as a known neurotoxin and a potential public health threat. Here we review overt CO toxicity and the policies regulating CO exposure, detail the evidence suggesting a potential link between CO-associated ambient air pollution, tobacco smoke, and learning and behavioral abnormalities in children, describe the effects of subclinical CO exposure on the brain during development, and provide mechanistic insight into a potential connection between CO exposure and neurodevelopmental outcome. CO can disrupt a number of critical processes in the developing brain, providing a better understanding of how this specific neurotoxin may impair neurodevelopment. However, further investigation is needed to better define the effects of perinatal CO exposure on the immature brain. Current policies regarding CO standards were established based on evidence of cardiovascular risk in adults with pre-existing comorbidities. Thus, recent and emerging data highlighted in this review regarding CO exposure in the fetus and developing child may be important to consider when the standards and guidelines are evaluated and revised in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
Carbon Monoxide Pollution and Neurodevelopment: A Public Health Concern
Levy, Richard J.
2015-01-01
Although an association between air pollution and adverse systemic health effects has been known for years, the effect of pollutants on neurodevelopment has been underappreciated. Recent evidence suggests a possible link between air pollution and neurocognitive impairment and behavioral disorders in children, however, the exact nature of this relationship remains poorly understood. Infants and children are uniquely vulnerable due to the potential for exposure in both the fetal and postnatal environments during critical periods in development. Carbon monoxide (CO), a common component of indoor and outdoor air pollution, can cross the placenta to gain access to the fetal circulation and the developing brain. Thus, CO is of particular interest as a known neurotoxin and a potential public health threat. Here we review overt CO toxicity and the policies regulating CO exposure, detail the evidence suggesting a potential link between CO-associated ambient air pollution, tobacco smoke, and learning and behavioral abnormalities in children, describe the effects of subclinical CO exposure on the brain during development, and provide mechanistic insight into a potential connection between CO exposure and neurodevelopmental outcome. CO can disrupt a number of critical processes in the developing brain, providing a better understanding of how this specific neurotoxin may impair neurodevelopment. However, further investigation is needed to better define the effects of perinatal CO exposure on the immature brain. Current policies regarding CO standards were established based on evidence of cardiovascular risk in adults with pre-existing comorbidities. Thus, recent and emerging data highlighted in this review regarding CO exposure in the fetus and developing child may be important to consider when the standards and guidelines are evaluated and revised in the future. PMID:25772154
Merritt, J H; Kiel, J L; Hurt, W D
1995-06-01
Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses.
Rees, Vaughan W; Kreslake, Jennifer M; Cummings, K Michael; O'Connor, Richard J; Hatsukami, Dorothy K; Parascandola, Mark; Shields, Peter G; Connolly, Gregory N
2009-12-01
Internal tobacco industry documents and the mainstream literature are reviewed to identify methods and measures for evaluating tobacco consumer response. The review aims to outline areas in which established methods exist, identify gaps in current methods for assessing consumer response, and consider how these methods might be applied to evaluate potentially reduced exposure tobacco products and new products. Internal industry research reviewed included published articles, manuscript drafts, presentations, protocols, and instruments relating to consumer response measures were identified and analyzed. Peer-reviewed research was identified using PubMed and Scopus. Industry research on consumer response focuses on product development and marketing. To develop and refine new products, the tobacco industry has developed notable strategies for assessing consumers' sensory and subjective responses to product design characteristics. Independent research is often conducted to gauge the likelihood of future product adoption by measuring consumers' risk perceptions, responses to product, and product acceptability. A model that conceptualizes consumer response as comprising the separate, but interacting, domains of product perceptions and response to product is outlined. Industry and independent research supports the dual domain model and provides a wide range of methods for assessment of the construct components of consumer response. Further research is needed to validate consumer response constructs, determine the relationship between consumer response and tobacco user behavior, and improve reliability of consumer response measures. Scientifically rigorous consumer response assessment methods will provide a needed empirical basis for future regulation of potentially reduced-exposure tobacco products and new products, to counteract tobacco industry influence on consumers, and enhance the public health.
Romanok, Kristin M.; Reilly, Timothy J.; Barber, Larry B.; Boone, J. Scott; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Hladik, Michelle; Iwanowicz, Luke R.; Journey, Celeste A.; Kolpin, Dana W.; Kuivila, Kathryn; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Smalling, Kelly L.; Villeneuve, Daniel L.; Bradley, Paul M.
2017-03-22
A vast array of chemical compounds are in wide commercial use in the United States, and the potential ecological and human-health effect of exposure to chemical mixtures has been identified as a high priority in environment health science. Awareness of the potential effects of low-level chemical exposures is rising. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted a study in which samples were collected from 38 streams in 25 States to provide an overview of contaminants found in stream water across the Nation. Additionally, biological screening assays were used to help determine any potential ecological and human-health effects of these chemical mixtures and to prioritize target chemicals for future toxicological studies. This report describes the site locations and the sampling and analytical methods and quality-assurance procedures used in the study.
Hydrophobic potential of mean force as a solvation function for protein structure prediction.
Lin, Matthew S; Fawzi, Nicolas Lux; Head-Gordon, Teresa
2007-06-01
We have developed a solvation function that combines a Generalized Born model for polarization of protein charge by the high dielectric solvent, with a hydrophobic potential of mean force (HPMF) as a model for hydrophobic interaction, to aid in the discrimination of native structures from other misfolded states in protein structure prediction. We find that our energy function outperforms other reported scoring functions in terms of correct native ranking for 91% of proteins and low Z scores for a variety of decoy sets, including the challenging Rosetta decoys. This work shows that the stabilizing effect of hydrophobic exposure to aqueous solvent that defines the HPMF hydration physics is an apparent improvement over solvent-accessible surface area models that penalize hydrophobic exposure. Decoys generated by thermal sampling around the native-state basin reveal a potentially important role for side-chain entropy in the future development of even more accurate free energy surfaces.
High volume hydraulic fracturing operations: potential impacts on surface water and human health.
Mrdjen, Igor; Lee, Jiyoung
2016-08-01
High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Persoff
The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. Thesemore » studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ({le} 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra.« less
Mercury in Children: Current State on Exposure through Human Biomonitoring Studies
Ruggieri, Flavia; Majorani, Costanza; Domanico, Francesco; Alimonti, Alessandro
2017-01-01
Mercury (Hg) in children has multiple exposure sources and the toxicity of Hg compounds depends on exposure routes, dose, timing of exposure, and developmental stage (be it prenatal or postnatal). Over the last decades, Hg was widely recognized as a threat to the children’s health and there have been acknowledgements at the international level of the need of a global policy intervention—like the Minamata treaty—aimed at reducing or preventing Hg exposure and protecting the child health. National human biomonitoring (HBM) data has demonstrated that low levels of exposure of Hg are still an important health concern for children, which no one country can solve alone. Although independent HBM surveys have provided the basis for the achievements of exposure mitigation in specific contexts, a new paradigm for a coordinated global monitoring of children’s exposure, aimed at a reliable decision-making tool at global level is yet a great challenge for the next future. The objective of the present review is to describe current HBM studies on Hg exposure in children, taking into account the potential pathways of Hg exposure and the actual Hg exposure levels assessed by different biomarkers. PMID:28498344
Rowley, Jack T; Joyner, Ken H
2012-01-01
This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles. PMID:22377680
Rowley, Jack T; Joyner, Ken H
2012-01-01
This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles.
Short-Term Medical Consequences of the Chernobyl Nuclear Accident: Lessons for the Future
Gale, Robert Peter
1988-01-01
The author of this article discusses the world's most serious nuclear accident to date: the Chernobyl nuclear accident of April 1986. His major focus is on the short-term medical consequences of the accident, including reduction of exposure to persons at risk, evaluation of persons potentially affected, dosimetry, and specific medical interventions. PMID:21253129
Environmental exposure assessment in European birth cohorts: results from the ENRIECO project
2013-01-01
Environmental exposures during pregnancy and early life may have adverse health effects. Single birth cohort studies often lack statistical power to tease out such effects reliably. To improve the use of existing data and to facilitate collaboration among these studies, an inventory of the environmental exposure and health data in these studies was made as part of the ENRIECO (Environmental Health Risks in European Birth Cohorts) project. The focus with regard to exposure was on outdoor air pollution, water contamination, allergens and biological organisms, metals, pesticides, smoking and second hand tobacco smoke (SHS), persistent organic pollutants (POPs), noise, radiation, and occupational exposures. The review lists methods and data on environmental exposures in 37 European birth cohort studies. Most data is currently available for smoking and SHS (N=37 cohorts), occupational exposures (N=33), outdoor air pollution, and allergens and microbial agents (N=27). Exposure modeling is increasingly used for long-term air pollution exposure assessment; biomonitoring is used for assessment of exposure to metals, POPs and other chemicals; and environmental monitoring for house dust mite exposure assessment. Collaborative analyses with data from several birth cohorts have already been performed successfully for outdoor air pollution, water contamination, allergens, biological contaminants, molds, POPs and SHS. Key success factors for collaborative analyses are common definitions of main exposure and health variables. Our review emphasizes that such common definitions need ideally be arrived at in the study design phase. However, careful comparison of methods used in existing studies also offers excellent opportunities for collaborative analyses. Investigators can use this review to evaluate the potential for future collaborative analyses with respect to data availability and methods used in the different cohorts and to identify potential partners for a specific research question. PMID:23343014
Ackerman, Janet M.; Attfield, Kathleen R.; Brody, Julia Green
2014-01-01
Background: Exposure to chemicals that cause rodent mammary gland tumors is common, but few studies have evaluated potential breast cancer risks of these chemicals in humans. Objective: The goal of this review was to identify and bring together the needed tools to facilitate the measurement of biomarkers of exposure to potential breast carcinogens in breast cancer studies and biomonitoring. Methods: We conducted a structured literature search to identify measurement methods for exposure biomarkers for 102 chemicals that cause rodent mammary tumors. To evaluate concordance, we compared human and animal evidence for agents identified as plausibly linked to breast cancer in major reviews. To facilitate future application of exposure biomarkers, we compiled information about relevant cohort studies. Results: Exposure biomarkers have been developed for nearly three-quarters of these rodent mammary carcinogens. Analytical methods have been published for 73 of the chemicals. Some of the remaining chemicals could be measured using modified versions of existing methods for related chemicals. In humans, biomarkers of exposure have been measured for 62 chemicals, and for 45 in a nonoccupationally exposed population. The Centers for Disease Control and Prevention has measured 23 in the U.S. population. Seventy-five of the rodent mammary carcinogens fall into 17 groups, based on exposure potential, carcinogenicity, and structural similarity. Carcinogenicity in humans and rodents is generally consistent, although comparisons are limited because few agents have been studied in humans. We identified 44 cohort studies, with a total of > 3.5 million women enrolled, that have recorded breast cancer incidence and stored biological samples. Conclusions: Exposure measurement methods and cohort study resources are available to expand biomonitoring and epidemiology related to breast cancer etiology and prevention. Citation: Rudel RA, Ackerman JM, Attfield KR, Brody JG. 2014. New exposure biomarkers as tools for breast cancer epidemiology, biomonitoring, and prevention: a systematic approach based on animal evidence. Environ Health Perspect 122:881–895; http://dx.doi.org/10.1289/ehp.1307455 PMID:24818537
Restoration of contaminated ecosystems: adaptive management in a changing climate
Farag, Aida; Larson, Diane L.; Stauber, Jenny; Stahl, Ralph; Isanhart, John; McAbee, Kevin T.; Walsh, Christopher J.
2017-01-01
Three case studies illustrate how adaptive management (AM) has been used in ecological restorations that involve contaminants. Contaminants addressed include mercury, selenium, and contaminants and physical disturbances delivered to streams by urban stormwater runoff. All three cases emphasize the importance of broad stakeholder input early and consistently throughout decision analysis for AM. Risk of contaminant exposure provided input to the decision analyses (e.g. selenium exposure to endangered razorback suckers, Stewart Lake; multiple contaminants in urban stormwater runoff, Melbourne) and was balanced with the protection of resources critical for a desired future state (e.g. preservation old growth trees, South River). Monitoring also played a critical role in the ability to conduct the decision analyses necessary for AM plans. For example, newer technologies in the Melbourne case provided a testable situation where contaminant concentrations and flow disturbance were reduced to support a return to good ecological condition. In at least one case (Stewart Lake), long-term monitoring data are being used to document the potential effects of climate change on a restoration trajectory. Decision analysis formalized the process by which stakeholders arrived at the priorities for the sites, which together constituted the desired future condition towards which each restoration is aimed. Alternative models were developed that described in mechanistic terms how restoration can influence the system towards the desired future condition. Including known and anticipated effects of future climate scenarios in these models will make them robust to the long-term exposure and effects of contaminants in restored ecosystems.
Carnevale, F; Baldasseroni, A
1998-01-01
The implementation in our country of recent legislation on carcinogenic risk assessment and management (VIIth title of Law 626/94) is considered. The authors describe potentialities and limits of the new legislation and of the derived Guidelines issued by the Regions. The health policy in this field and possible evolution in the near future are outlined, bearing in mind the experience of other countries. A short list of questions is suggested as a contribution to the discussion on the future scenario: whether exposure to carcinogens should be lower in the working environment than in the general environment; what is the relative importance of multifactoriality, individual biological variability, individual life-style in the genesis of cancers; whether medical health surveillance is worthwhile in terms of primary prevention; is it always true that there is no threshold limit value for carcinogens; what is the role of individual attitudes to prevention in exposure to carcinogens compared to "objective" protection; which balance between costs and benefits should be aimed at.
Brown, Mark
2009-10-01
Military chemical warfare agent testing from World War I to 1975 produced thousands of veterans with concerns of possible long-term health consequences. Clinical and research evaluation of potential long-term health effects has been difficult because the exposures occurred decades ago, the identity of troops exposed and exposure magnitudes are uncertain, and acute effects during experiments poorly documented. In contrast, a companion article describes the large amount of information available about the specific agents tested and their long-term health effects. This short history describes U.S. military chemical-agent experiments with human subjects and identifies tested agents. Finally, the demonstrated need to anticipate future health concerns from military personnel involved in such military testing suggests current and future military researchers should be required, by law and regulation, to fully record the identity of those exposed, relevant exposure magnitude, and complete medical information for all subjects. New study protocols and institutional review board approvals for research involving military personnel should reflect this need.
Meeting Report: Atmospheric Pollution and Human Reproduction
Slama, Rémy; Darrow, Lyndsey; Parker, Jennifer; Woodruff, Tracey J.; Strickland, Matthew; Nieuwenhuijsen, Mark; Glinianaia, Svetlana; Hoggatt, Katherine J.; Kannan, Srimathi; Hurley, Fintan; Kalinka, Jaroslaw; Šrám, Radim; Brauer, Michael; Wilhelm, Michelle; Heinrich, Joachim; Ritz, Beate
2008-01-01
Background There is a growing body of epidemiologic literature reporting associations between atmospheric pollutants and reproductive outcomes, particularly birth weight and gestational duration. Objectives The objectives of our international workshop were to discuss the current evidence, to identify the strengths and weaknesses of published epidemiologic studies, and to suggest future directions for research. Discussion Participants identified promising exposure assessment tools, including exposure models with fine spatial and temporal resolution that take into account time–activity patterns. More knowledge on factors correlated with exposure to air pollution, such as other environmental pollutants with similar temporal variations, and assessment of nutritional factors possibly influencing birth outcomes would help evaluate importance of residual confounding. Participants proposed a list of points to report in future publications on this topic to facilitate research syntheses. Nested case–control studies analyzed using two-phase statistical techniques and development of cohorts with extensive information on pregnancy behaviors and biological samples are promising study designs. Issues related to the identification of critical exposure windows and potential biological mechanisms through which air pollutants may lead to intrauterine growth restriction and premature birth were reviewed. Conclusions To make progress, this research field needs input from toxicology, exposure assessment, and clinical research, especially to aid in the identification and exposure assessment of feto-toxic agents in ambient air, in the development of early markers of adverse reproductive outcomes, and of relevant biological pathways. In particular, additional research using animal models would help better delineate the biological mechanisms underpinning the associations reported in human studies. PMID:18560536
Meeting report: atmospheric pollution and human reproduction.
Slama, Rémy; Darrow, Lyndsey; Parker, Jennifer; Woodruff, Tracey J; Strickland, Matthew; Nieuwenhuijsen, Mark; Glinianaia, Svetlana; Hoggatt, Katherine J; Kannan, Srimathi; Hurley, Fintan; Kalinka, Jaroslaw; Srám, Radim; Brauer, Michael; Wilhelm, Michelle; Heinrich, Joachim; Ritz, Beate
2008-06-01
There is a growing body of epidemiologic literature reporting associations between atmospheric pollutants and reproductive outcomes, particularly birth weight and gestational duration. The objectives of our international workshop were to discuss the current evidence, to identify the strengths and weaknesses of published epidemiologic studies, and to suggest future directions for research. Participants identified promising exposure assessment tools, including exposure models with fine spatial and temporal resolution that take into account time-activity patterns. More knowledge on factors correlated with exposure to air pollution, such as other environmental pollutants with similar temporal variations, and assessment of nutritional factors possibly influencing birth outcomes would help evaluate importance of residual confounding. Participants proposed a list of points to report in future publications on this topic to facilitate research syntheses. Nested case-control studies analyzed using two-phase statistical techniques and development of cohorts with extensive information on pregnancy behaviors and biological samples are promising study designs. Issues related to the identification of critical exposure windows and potential biological mechanisms through which air pollutants may lead to intrauterine growth restriction and premature birth were reviewed. To make progress, this research field needs input from toxicology, exposure assessment, and clinical research, especially to aid in the identification and exposure assessment of feto-toxic agents in ambient air, in the development of early markers of adverse reproductive outcomes, and of relevant biological pathways. In particular, additional research using animal models would help better delineate the biological mechanisms underpinning the associations reported in human studies.
Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.
Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J
2009-04-01
Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.
Gracia-Lor, Emma; Castiglioni, Sara; Bade, Richard; Been, Frederic; Castrignanò, Erika; Covaci, Adrian; González-Mariño, Iria; Hapeshi, Evroula; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; Lai, Foon Yin; Letzel, Thomas; Lopardo, Luigi; Meyer, Markus R; O'Brien, Jake; Ramin, Pedram; Rousis, Nikolaos I; Rydevik, Axel; Ryu, Yeonsuk; Santos, Miguel M; Senta, Ivan; Thomaidis, Nikolaos S; Veloutsou, Sofia; Yang, Zhugen; Zuccato, Ettore; Bijlsma, Lubertus
2017-02-01
The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about lifestyle habits, health and wellbeing, but its selection is not an easy task as it should fulfil several specific requirements in order to be successfully employed. This paper aims to summarize the current knowledge related to the most relevant biomarkers used so far. In addition, some potential wastewater biomarkers that could be used for future applications were evaluated. For this purpose, representative chemical classes have been chosen and grouped in four main categories: (i) those that provide estimates of lifestyle factors and substance use, (ii) those used to estimate the exposure to toxicants present in the environment and food, (iii) those that have the potential to provide information about public health and illness and (iv) those used to estimate the population size. To facilitate the evaluation of the eligibility of a compound as a biomarker, information, when available, on stability in urine and wastewater and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Potential Role of Pet Cats As a Sentinel Species for Human Exposure to Flame Retardants
Henríquez-Hernández, Luis A.; Carretón, Elena; Camacho, María; Montoya-Alonso, José Alberto; Boada, Luis D.; Bernal Martín, Verónica; Falcón Cordón, Yaiza; Falcón Cordón, Soraya; Zumbado, Manuel; Luzardo, Octavio P.
2017-01-01
Flame retardants are a wide group of chemicals used by the industry to avoid combustion of materials. These substances are commonly found in plastics, electronic equipment, fabrics, and in many other everyday articles. Subsequently, ubiquitous environmental contamination by these common chemical is frequently reported. In the present study, we have evaluated the level of exposure to polychlorinated biphenyls (PCBs), brominated diphenyl ethers (BDEs), and organophosphorous flame retardants (OPFRs) in pet cats through the analysis of their serum. We also analyzed the level exposure to such chemicals in a series of 20 cat owners, trying to disclose the role of pet cats as sentinel species of human exposure to FRs. Our results showed that PCBs, banned 40 years ago, showed the lowest levels of exposure, followed by BDEs—banned recently. Congeners PCB-138 and PCB-180 were detected in ≥50% of the series, while BDE-47 was detected in near 90% of the pet cats. On the other hand, the highest levels were that of OPFRs, whose pattern of detection was similar to that observed in humans, thus suggesting a potential role of cats as a sentinel species for human exposure to these currently used FRs. Six out of 11 OPFRs determined [2-ethylhexyldiphenyl phosphate, tributylphosphate, triisobutylphosphate, triphenylphosphate, tris (2-chloroethyl) phosphate, and tris (2-chloroisopropyl) phosphate] were detected in 100% of the samples. It will be interesting to perform future studied aimed to elucidating the potential toxicological effects of these highly detected chemicals both, in cats and humans. PMID:28620612
Preventing secondary traumatic stress in educators.
Hydon, Stephen; Wong, Marleen; Langley, Audra K; Stein, Bradley D; Kataoka, Sheryl H
2015-04-01
Teachers can be vulnerable to secondary traumatic stress (STS) because of their supportive role with students and potential exposure to students' experiences with traumas, violence, disasters, or crises. STS symptoms, similar to those found in posttraumatic stress disorder, include nightmares, avoidance, agitation, and withdrawal, and can result from secondary exposure to hearing about students' traumas. This article describes how STS presents, how teachers can be at risk, and how STS can manifest in schools. A US Department of Education training program is presented, and thoughts on future directions are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Brockmeier, Erica K.; Yu, Fahong; Amador, David Moraga; Bargar, Timothy A.; Denslow, Nancy D.
2013-01-01
Coupling microarray data with phenotypic changes driven by androgen exposure in mosquitofish is key for developing this organism into a bioindicator for EDCs. Future studies using this array will enhance knowledge of the biology and toxicological response of this species. This work provides a foundation of molecular knowledge and tools that can be used to delve further into understanding the biology of G. holbrooki and how this organism can be used as a bioindicator organism for endocrine disrupting pollutants in the environment.
Wendt, Chris H; Ramachandran, Gurumurthy; Lo, Charles; Hertz, Marshall; Mandel, Jeffrey H
2015-03-16
Increased industrialization and urbanization have led to marked increases in air pollutants in China over the last decade. Pollutant levels in the north and eastern regions are often four times higher than current daily levels in the United States. Recent reports indicate a higher incidence of lung cancer and mortality in men and urban dwellers, but the contribution of air pollution to these findings remains unknown. Future studies that define individual exposures, combined with biomarkers linked to disease, will be essential to the understanding of risk posed by air pollution in China.
Exposure to asbestos: past, present and future
Donato, Francesca; Maida, Luisa; Discalzi, Gianluigi
2018-01-01
This paper summarises the past, present and future of asbestos exposure. The future scenarios as to the mesothelioma incidence in countries, where asbestos has been banned, are discussed. PMID:29507791
McKenzie, Stephen P; Hassed, Craig S; Gear, Jacqui L
2012-01-01
Mindfulness is a technique for training people to pay full attention and to fully accept the reality of what they are paying attention to. The clinical efficacy of mindfulness has been increasingly demonstrated during the last two decades. Very little research, however, has been undertaken on health professionals' and students of health professions' knowledge of and attitudes towards mindfulness. These may affect the current and future level of use of a technique that offers important clinical advantages. We aimed to compare knowledge of and attitudes towards mindfulness of medical students without exposure to it in their training with psychology students without exposure and with medical students with exposure to mindfulness in their training. A total of 91 medical students from Monash University, 49 medical students from Deakin University, and 31 psychology students from Deakin University were given a questionnaire that elicited quantitative and qualitative responses about level of knowledge of mindfulness and willingness to administer or recommend it to their future patients. Psychology students without exposure to mindfulness in their training have a greater knowledge of it and are more likely to administer it or recommend it than are medical students without exposure to it in their training. Medical students with exposure to mindfulness in their course have a greater knowledge of it and are more likely to administer it or recommend it than are medical students without exposure. Knowledge of mindfulness is positively correlated with students' willingness to use or recommend it. Possible implications of the findings of this study are that if future doctors are routinely instructed in mindfulness as a clinical intervention they may be more likely to form a more positive attitude towards it, that is more consistent with that of nonmedical health professions such as psychologists, and that they therefore may be more likely to administer it or refer its use. The inclusion of mindfulness exposure in medical courses, and possibly also in psychology courses, may help mindfulness fulfill its clinical potential, and increasingly benefit patients who are suffering from a range of clinical conditions. Copyright © 2012 Elsevier Inc. All rights reserved.
Chen, Jing; Ford, Ken L
2017-01-01
Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m -3 ; range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R 2 = 0.68 for linear regression and R 2 = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils
Fillipelli, Gabriel M.; Risch, Martin R.; Laidlaw, Mark A. S.; Nichols, Deborah E.; Crewe, Julie
2015-01-01
Acute exposure to lead (Pb), a powerful neurotoxin to which children are particularly susceptible, has largely been eliminated in the U.S. and other countries through policy-based restrictions on leaded gasoline and lead-based paints. But the legacy of these sources remains in the form of surface soil Pb contamination, a common problem in cities and one that has only recently emerged as a widespread chronic exposure mechanism in cities. Some urban soils are also contaminated with another neurotoxin, mercury (Hg). The greatest human exposure to Hg is through fish consumption, so eating fish caught in urban areas presents risks for toxic Hg exposure. The potential double impact of chronic exposure to these two neurotoxins is pronounced in cities. Overall, there is a paradigmatic shift from reaction to and remediation of acute exposures towards a more nuanced understanding of the dynamic cycling of persistent environmental contaminants with resultant widespread and chronic exposure of inner-city dwellers, leading to chronic toxic illness and disability at substantial human and social cost.
Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders
Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael
2016-01-01
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505
Space radiation and cardiovascular disease risk
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-01-01
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293
A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates.
Foley, Carolyn J; Feiner, Zachary S; Malinich, Timothy D; Höök, Tomas O
2018-08-01
Microplastics are present in aquatic ecosystems the world over and may influence the feeding, growth, reproduction, and survival of freshwater and marine biota; however, the extent and magnitude of potential effects of microplastics on aquatic organisms is poorly understood. In the current study, we conducted a meta-analysis of published literature to examine impacts of exposure to microplastics on consumption (and feeding), growth, reproduction, and survival of fish and aquatic invertebrates. While we did observe within-taxa negative effects for all four categories of responses, many of the effects summarized in our study were neutral, indicating that the effects of exposure to microplastics are highly variable across taxa. The most consistent effect was a reduction in consumption of natural prey when microplastics were present. For some taxa, negative effects on growth, reproduction and even survival were also evident. Organisms that serve as prey to larger predators, e.g., zooplankton, may be particularly susceptible to negative impacts of exposure to microplastic pollution, with potential for ramifications throughout the food web. Future work should focus on whether microplastics may be affecting aquatic organisms more subtly, e.g., by influencing exposure to contaminants and pathogens, or by acting at a molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.
Space radiation and cardiovascular disease risk.
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-12-26
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.
Borges, Francisco O; Figueiredo, Cátia; Sampaio, Eduardo; Rosa, Rui; Grilo, Tiago F
2018-07-01
Ocean acidification (OA) poses a global threat to marine biodiversity. Notwithstanding, marine organisms may maintain their performance under future OA conditions, either through acclimation or evolutionary adaptation. Surprisingly, the transgenerational effects of high CO 2 exposure in crustaceans are still poorly understood. For the first time, the present study investigated the transgenerational effect of OA, from hatching to maturity, of a key amphipod species (Gammarus locusta). Negative transgenerational effects were observed on survival of the acidified lineage, resulting in significant declines (10-15%) compared to the control groups in each generation. Mate-guarding duration was also significantly reduced under high CO 2 and this effect was not alleviated by transgenerational acclimation, indicating that precopulatory behaviours can be disturbed under a future high CO 2 scenario. Although OA may initially stimulate female investment, transgenerational exposure led to a general decline in egg number and fecundity. Overall, the present findings suggest a potential fitness reduction of natural populations of G. locusta in a future high CO 2 ocean, emphasizing the need of management tools towards species' sustainability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biomarkers of nanomaterial exposure and effect: current status
NASA Astrophysics Data System (ADS)
Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.
2014-03-01
Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In this context, the application of the most recent advances in analytical chemistry and biochemistry to the biological monitoring of nanomaterial exposure may be also useful to detect and define patterns and mechanisms of early nanospecific biochemical alterations.
Superfund record of decision (EPA Region 5): Skinner Landfill, West Chester, OH, June 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-06-04
The decision document presents the selected final remedial action for the Skinner Landfill site in West Chester, Ohio. The remedy is the second and final of two operable units for this site. The first operable unit addressed immediate site concerns, through the construction of a fence around the contaminated area, and by offering an alternate supply of drinking water to the potentially affected users of groundwater. This final operable unit addresses potential future migration of site contaminants into the groundwater and will limit the potential for direct exposure of site contaminants to humans through source control measures.
A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators
Ranzi, Andrea; De Leo, Giulio A.; Lauriola, Paolo
2013-01-01
Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address). Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i) make full use of pollution dispersion models; (ii) localize population on a fine-scale; and (iii) explicitly account for the presence of potential environmental and socioeconomic confounding. PMID:23840228
Li, Wei; Wu, Jun
2014-01-01
Objectives. We assessed how traffic and mobile-source air pollution impacts are distributed across racial/ethnic and socioeconomically diverse groups in port-adjacent communities in southern Los Angeles County, which may experience divergent levels of exposure to port-related heavy-duty diesel truck traffic because of existing residential and land use patterns. Methods. We used spatial regression techniques to assess the association of neighborhood racial/ethnic and socioeconomic composition with residential parcel-level traffic and vehicle-related fine particulate matter exposure after accounting for built environment and land use factors. Results. After controlling for factors associated with traffic generation, we found that a higher percentage of nearby Black and Asian/Pacific Islander residents was associated with higher exposure, a higher percentage of Hispanic residents was associated with higher traffic exposure but lower vehicle particulate matter exposure, and areas with lower socioeconomic status experienced lower exposure. Conclusions. Disparities in traffic and vehicle particulate matter exposure are nuanced depending on the exposure metric used, the distribution of the traffic and emissions, and pollutant dispersal patterns. Future comparative research is needed to assess potential disparities in other transportation and goods movement corridors. PMID:23678919
Houston, Douglas; Li, Wei; Wu, Jun
2014-01-01
We assessed how traffic and mobile-source air pollution impacts are distributed across racial/ethnic and socioeconomically diverse groups in port-adjacent communities in southern Los Angeles County, which may experience divergent levels of exposure to port-related heavy-duty diesel truck traffic because of existing residential and land use patterns. We used spatial regression techniques to assess the association of neighborhood racial/ethnic and socioeconomic composition with residential parcel-level traffic and vehicle-related fine particulate matter exposure after accounting for built environment and land use factors. After controlling for factors associated with traffic generation, we found that a higher percentage of nearby Black and Asian/Pacific Islander residents was associated with higher exposure, a higher percentage of Hispanic residents was associated with higher traffic exposure but lower vehicle particulate matter exposure, and areas with lower socioeconomic status experienced lower exposure. Disparities in traffic and vehicle particulate matter exposure are nuanced depending on the exposure metric used, the distribution of the traffic and emissions, and pollutant dispersal patterns. Future comparative research is needed to assess potential disparities in other transportation and goods movement corridors.
Monahan, Kathryn C; King, Kevin M; Shulman, Elizabeth P; Cauffman, Elizabeth; Chassin, Laurie
2015-11-01
Impulse control and future orientation increase across adolescence, but little is known about how contextual factors shape the development of these capacities. The present study investigates how stress exposure, operationalized as exposure to violence, alters the developmental pattern of impulse control and future orientation across adolescence and early adulthood. In a sample of 1,354 serious juvenile offenders, higher exposure to violence was associated with lower levels of future orientation at age 15 and suppressed development of future orientation from ages 15 to 25. Increases in witnessing violence or victimization were linked to declines in impulse control 1 year later, but only during adolescence. Thus, beyond previous experiences of exposure to violence, witnessing violence and victimization during adolescence conveys unique risk for suppressed development of self-regulation.
2014 Space Radiation Standing Review Panel
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2015-01-01
The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one consequence of radiation exposure that is monitored, potential other side effects (CNS, Alzheimer Disease, loss of cognitive function, etc.) are not included in long-term studies and would be missed. Inclusion of long-term data would be of benefit to the astronauts themselves who have given their service to the corps but also to future astronauts and the future of space exploration.
ERIC Educational Resources Information Center
Oskin, Deborah L.
This study examined age, gender, and subjects' realistic perceptions of control as potential moderators of the effect of community violence exposure (victimization and witnessing) on children's hopes for the future. Home interviews were conducted with 99 children ages 8 to 12 years living in high violence areas of a large southeastern city.…
Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?
Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J
2014-11-11
The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.
Vollet, Kaitlin; Dietrich, Kim N.
2016-01-01
Manganese (Mn) is both an essential micronutrient and potential neurotoxicant. This dual role underlies a growing body of literature demonstrating that Mn exhibits a biphasic dose-response relationship with neurocognitive outcomes. We reviewed recent epidemiologic studies from 2007–2016 that investigated the relationship between Mn exposure and cognitive outcomes across the lifespan: early life, school-aged children, and adulthood. In total, 27 research articles were included in this review: 12 pediatric and 15 adult studies (10 occupational and five environmental exposures). The majority of these studies provided evidence of the negative effects of Mn exposure on cognition. The pediatric literature provides evidence that both high and low levels of Mn are negatively associated with intellectual development. Future Mn research should include examination of non-linear relationships and multiple neurotoxicants across the lifespan, and particularly during critical developmental windows. PMID:27722879
Comer, Jonathan S; DeSerisy, Mariah; Green, Jennifer Greif
2016-01-01
Although practitioners and researchers have considered children's television-based terrorism exposure, Internet-based exposure has not been sufficiently examined. We examined the scope and correlates of children's Internet-based exposure following the Boston Marathon bombing among Boston-area youth (N=460; 4-19 years), and the potential moderating role of age. Further exploratory analyses examined patterns of caregiver attempts to regulate child Internet exposure. Caregivers reported on child Internet-based and direct exposure to traumatic bombing-related events, and youth posttraumatic stress (PTS). Online youth consumed on average over two daily hours of Internet coverage, and roughly one-third consumed over three daily hours of coverage. Internet exposure was particularly high among children over 12. Greater Internet-based exposure was associated with PTS, and 12-15 year olds were particularly vulnerable. Further exploratory analyses found that although most caregivers reported believing media exposure can cause children further trauma, a considerable proportion of caregivers made no attempt to restrict or regulate their child's Internet-based exposure. These findings help practitioners clarify forms of indirect exposure that can place youth at risk following terrorism. Future work is needed to examine the important roles caregivers play as media regulators and as promoters of child coping and media literacy following terrorism.
Comer, Jonathan S.; DeSerisy, Mariah; Green, Jennifer Greif
2017-01-01
Although practitioners and researchers have considered children’s television-based terrorism exposure, Internet-based exposure has not been sufficiently examined. We examined the scope and correlates of children’s Internet-based exposure following the Boston Marathon bombing among Boston-area youth (N=460; 4–19 years), and the potential moderating role of age. Further exploratory analyses examined patterns of caregiver attempts to regulate child Internet exposure. Caregivers reported on child Internet-based and direct exposure to traumatic bombing-related events, and youth posttraumatic stress (PTS). Online youth consumed on average over two daily hours of Internet coverage, and roughly one-third consumed over three daily hours of coverage. Internet exposure was particularly high among children over 12. Greater Internet-based exposure was associated with PTS, and 12–15 year olds were particularly vulnerable. Further exploratory analyses found that although most caregivers reported believing media exposure can cause children further trauma, a considerable proportion of caregivers made no attempt to restrict or regulate their child’s Internet-based exposure. These findings help practitioners clarify forms of indirect exposure that can place youth at risk following terrorism. Future work is needed to examine the important roles caregivers play as media regulators and as promoters of child coping and media literacy following terrorism. PMID:28770253
Solvents and Parkinson disease: A systematic review of toxicological and epidemiological evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lock, Edward A., E-mail: e.lock@ljmu.ac.uk; Zhang, Jing; Checkoway, Harvey
2013-02-01
Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed.more » Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose–response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic. -- Highlights: ► The potential for organic solvents to cause Parkinson's disease has been reviewed. ► Twins study suggests etiologic relations with chlorinated solvents and Parkinson's. ► Animal studies with TCE showed potential to cause damage to dopaminergic neurons. ► Need to determine if effects in animals are relevant to human exposure levels.« less
Future trends in flood risk in Indonesia - A probabilistic approach
NASA Astrophysics Data System (ADS)
Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip
2014-05-01
Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.
Lloyd, Amanda J; Favé, Gaëlle; Beckmann, Manfred; Lin, Wanchang; Tailliart, Kathleen; Xie, Long; Mathers, John C; Draper, John
2011-10-01
The lack of robust biological markers of dietary exposure hinders the quantitative understanding of causal relations between diet and health. We aimed to develop an efficient procedure to discover metabolites in urine that may have future potential as biomarkers of acute exposure to foods of high public health importance. Twenty-four participants were provided with a test breakfast in which the cereal component of a standardized breakfast was replaced by 1 of 4 foods of high public health importance; 1.5-, 3-, and 4.5-h postprandial urine samples were collected. Flow infusion electrospray-ionization mass spectrometry followed by supervised multivariate data analysis was used to discover signals resulting from consumption of each test food. Fasted-state urine samples provided a universal comparator for food biomarker lead discovery in postprandial urine. The filtering of data features associated with consumption of the common components of the standardized breakfast improved discrimination models and readily identified metabolites that showed consumption of specific test foods. A combination of trimethylamine-N-oxide and 1-methylhistidine was associated with salmon consumption. Novel ascorbate derivatives were discovered in urine after consumption of either broccoli or raspberries. Sulphonated caffeic acid and sulphonated methyl-epicatechin concentrations increased dramatically after consumption of raspberries. This biomarker lead discovery strategy can identify urinary metabolites associated with acute exposure to individual foods. Future studies are required to validate the specificity and utility of potential biomarkers in an epidemiologic context.
Exposure to occupational therapy as a factor influencing recruitment to the profession.
Byrne, Nicole
2015-08-01
This article provides insight into the impact that exposure to an occupational therapist, in personal capacity or via a professional interaction, has on the decision to enter an occupational therapy undergraduate programme. A quantitative survey was completed by 139 occupational therapy students. The survey tool focussed on the students' exposure to a range of allied health professions (e.g. occupational therapy, physiotherapy, psychology) and investigated how exposure to occupational therapy had influenced their decision to enter the programme. The results indicated that over 70% of respondents had personal professional exposure to occupational therapy prior to making a career decision. Exposure most frequently involved occupational therapy intervention of a friend or family member. The majority of students who had professional exposure to occupational therapy (e.g. family, self, friend received occupational therapy) identified that it was the most influential factor in their career choice. Forty per cent of the occupational therapy students did not enter the programme straight from school and the influence of 'working with an occupational therapist' was noteworthy for mature aged students. Occupational therapists need to consider that every interaction they have with the community provides valuable information regarding the profession and gives insight into occupational therapy as a potential career path for other people. Additionally, the current research identifies there were differences in the impact, type and number of exposures for different student groups, and this potentially offers some insight into ways in which occupational therapy could target specific groups within the community to increase future diversity in the profession. © 2015 Occupational Therapy Australia.
Strum, K.M.; Hooper, M.J.; Johnson, K.A.; Lanctot, Richard B.; Zaccagnini, M.E.; Sandercock, B.K.
2010-01-01
Migratory shorebirds frequently forage and roost in agricultural habitats, where they may be exposed to cholinesterase-inhibiting pesticides. Exposure to organophosphorus and carbamate compounds, common anti-cholinesterases, can cause sublethal effects, even death. To evaluate exposure of migratory shorebirds to organophosphorus and carbamates, we sampled birds stopping over during migration in North America and wintering in South America. We compared plasma cholinesterase activities and body masses of individuals captured at sites with no known sources of organophosphorus or carbamates to those captured in agricultural areas where agrochemicals were recommended for control of crop pests. In South America, plasma acetylcholinesterase and butyrylcholinesterase activity in Buff-breasted Sandpipers was lower at agricultural sites than at reference sites, indicating exposure to organophosphorus and carbamates. Results of plasma cholinesterase reactivation assays and foot-wash analyses were inconclusive. A meta-analysis of six species revealed no widespread effect of agricultural chemicals on cholinesterase activity. however, four of six species were negative for acetylcholinesterase and one of six for butyrylcholinesterase, indicating negative effects of pesticides on cholinesterase activity in a subset of shorebirds. Exposure to cholinesterase inhibitors can decrease body mass, but comparisons between treatments and hemispheres suggest that agrochemicals did not affect migratory shorebirds' body mass. Our study, one of the first to estimate of shorebirds' exposure to cholinesterase-inhibiting pesticides, suggests that shorebirds are being exposed to cholinesterase- inhibiting pesticides at specific sites in the winter range but not at migratory stopover sites. future research should examine potential behavioral effects of exposure and identify other potential sitesand levels of exposure. ?? The Cooper Ornithological Society 2010.
Epigenetics studies of fetal alcohol spectrum disorder: where are we now?
Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S
2017-03-01
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
New approaches to addiction treatment based on learning and memory.
Kiefer, Falk; Dinter, Christina
2013-01-01
Preclinical studies suggest that physiological learning processes are similar to changes observed in addicts at the molecular, neuronal, and structural levels. Based on the importance of classical and instrumental conditioning in the development and maintenance of addictive disorders, many have suggested cue-exposure-based extinction training of conditioned, drug-related responses as a potential new treatment of addiction. It may also be possible to facilitate this extinction training with pharmacological compounds that strengthen memory consolidation during cue exposure. Another potential therapeutic intervention would be based on the so-called reconsolidation theory. According to this hypothesis, already-consolidated memories return to a labile state when reactivated, allowing them to undergo another phase of consolidation-reconsolidation, which can be pharmacologically manipulated. These approaches suggest that the extinction of drug-related memories may represent a viable treatment strategy in the future treatment of addiction.
Three Mile Island epidemiologic radiation dose assessment revisited: 25 years after the accident.
Field, R William
2005-01-01
Over the past 25 years, public health concerns following the Three Mile Island (TMI) accident prompted several epidemiologic investigations in the vicinity of TMI. One of these studies is ongoing. This commentary suggests that the major source of radiation exposure to the population has been ignored as a potential confounding factor or effect modifying factor in previous and ongoing TMI epidemiologic studies that explore whether or not TMI accidental plant radiation releases caused an increase in lung cancer in the community around TMI. The commentary also documents the observation that the counties around TMI have the highest regional radon potential in the United States and concludes that radon progeny exposure should be included as part of the overall radiation dose assessment in future studies of radiation-induced lung cancer resulting from the TMI accident.
Carey, Renee N; Hutchings, Sally J; Rushton, Lesley; Driscoll, Timothy R; Reid, Alison; Glass, Deborah C; Darcey, Ellie; Si, Si; Peters, Susan; Benke, Geza; Fritschi, Lin
2017-04-01
Studies in other countries have generally found approximately 4% of current cancers to be attributable to past occupational exposures. This study aimed to estimate the future burden of cancer resulting from current occupational exposures in Australia. The future excess fraction method was used to estimate the future burden of occupational cancer (2012-2094) among the proportion of the Australian working population who were exposed to occupational carcinogens in 2012. Calculations were conducted for 19 cancer types and 53 cancer-exposure pairings, assuming historical trends and current patterns continued to 2094. The cohort of 14.6 million Australians of working age in 2012 will develop an estimated 4.8 million cancers during their lifetime, of which 68,500 (1.4%) are attributable to occupational exposure in those exposed in 2012. The majority of these will be lung cancers (n=26,000), leukaemias (n=8000), and malignant mesotheliomas (n=7500). A significant proportion of future cancers will result from occupational exposures. This estimate is lower than previous estimates in the literature; however, our estimate is not directly comparable to past estimates of the occupational cancer burden because they describe different quantities - future cancers in currently exposed versus current cancers due to past exposures. The results of this study allow us to determine which current occupational exposures are most important, and where to target exposure prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stoddard, Sarah A.; Heinze, Justin E.; Choe, Daniel Ewon; Zimmerman, Marc A.
2015-01-01
Few researchers have explored future educational aspirations as a promotive factor against exposure to community violence in relation to adolescents’ violent behavior over time. The present study examined the direct and indirect effect of exposure to community violence prior to 9th grade on attitudes about violence and violent behavior in 12th grade, and violent behavior at age 22 via 9th grade future educational aspirations in a sample of urban African American youth (n = 681; 49% male). Multi-group SEM was used to test the moderating effect of gender. Exposure to violence was associated with lower future educational aspirations. For boys, attitudes about violence directly predicted violent behavior at age 22. For boys, future educational aspirations indirectly predicted less violent behavior at age 22. Implications of the findings and suggestions for future research are discussed. PMID:26282242
Aktar, Evin; Bögels, Susan M
2017-12-01
Depression and anxiety load in families. In the present study, we focus on exposure to parental negative emotions in first postnatal year as a developmental pathway to early parent-to-child transmission of depression and anxiety. We provide an overview of the little research available on the links between infants' exposure to negative emotion and infants' emotional development in this developmentally sensitive period, and highlight priorities for future research. To address continuity between normative and maladaptive development, we discuss exposure to parental negative emotions in infants of parents with as well as without depression and/or anxiety diagnoses. We focus on infants' emotional expressions in everyday parent-infant interactions, and on infants' attention to negative facial expressions as early indices of emotional development. Available evidence suggests that infants' emotional expressions echo parents' expressions and reactions in everyday interactions. In turn, infants exposed more to negative emotions from the parent seem to attend less to negative emotions in others' facial expressions. The links between exposure to parental negative emotion and development hold similarly in infants of parents with and without depression and/or anxiety diagnoses. Given its potential links to infants' emotional development, and to later psychological outcomes in children of parents with depression and anxiety, we conclude that early exposure to parental negative emotions is an important developmental mechanism that awaits further research. Longitudinal designs that incorporate the study of early exposure to parents' negative emotion, socio-emotional development in infancy, and later psychological functioning while considering other genetic and biological vulnerabilities should be prioritized in future research.
Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture
Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.
2009-01-01
Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487
THE ENVIRONMENT AND SUSCEPTIBILITY TO SCHIZOPHRENIA
Brown, Alan S.
2010-01-01
In the present article the putative role of environmental factors in schizophrenia is reviewed and synthesized. Accumulating evidence from recent studies suggests that environmental exposures may play a more significant role in the etiopathogenesis of this disorder than previously thought. This expanding knowledge base is largely a consequence of refinements in the methodology of epidemiologic studies, including birth cohort investigations, and in preclinical research that has been inspired by the evolving literature on animal models of environmental exposures. The bulk of evidence supports a contribution of environmental factors acting during fetal and perinatal life; these include infections, nutritional deficiencies, paternal age, fetal/neonatal hypoxic insults, maternal stress and other exposures. A considerable amount of data supports cannabis use in adolescence, migration, unfavorable neighborhood environments, and possibly infections at different points in the lifespan as risk factors for schizophrenia. Animal models have yielded evidence suggesting that these exposures cause brain and behavioral phenotypes that are analogous to findings observed in patients with schizophrenia. It is suggested that future studies attempt to replicate these findings, identify new risk factors, explore the gestational specificity of environmental insults, elaborate developmental trajectories, and examine relationships between environmental exposures and structural and functional brain anomalies in schizophrenia patients. Future research on gene-environment interactions and epigenetic effects of environmental exposures should shed further light on genes and exposures that may not be identified in the absence of these integrated approaches. Moreover, translational studies should further facilitate the discovery of neurodevelopmental mechanisms that increase susceptibility to schizophrenia. The study of environmental factors in schizophrenia may have important implications for the prevention of this disorder, and offers the potential to complement, and refine, existing efforts on explanatory neurodevelopmental models. PMID:955757
NASA Astrophysics Data System (ADS)
Puissant, Anne; Wernert, Pauline; Débonnaire, Nicolas; Malet, Jean-Philippe; Bernardie, Séverine; Thomas, Loic
2017-04-01
Landslide risk assessment has become a major research subject within the last decades. In the context of the French-funded ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, we developed a procedure to quantify changes in landslide risk at catchment scales. First, we investigate landslide susceptibility, the spatial component of the hazard, through a weight of evidence probabilistic model. This latter is based on the knowledge of past and current landslides in order to simulate their spatial locations in relation to environmental controlling factors. Second, we studied potential consequences using a semi-quantitative region-scale indicator-based method, called method of the Potential Damage Index (PDI). It allows estimating the possible damages related to landslides by combining weighted indicators reflecting the exposure of the element at risk for structural, functional and socio-economic stakes. Finally, we provide landslide risk maps by combining both susceptibility and potential consequence maps resulting from the two previous steps. The risk maps are produced for the present time and for the future (e.g. period 2050 and 2100) taking into account four scenarios of future landcover and landuse development (based on the Prelude European Project) that are consistent with the likely evolution of mountain communities. Results allow identifying the geographical areas that are likely to be exposed to landslide risk in the future. The results are integrated on a web-based demonstrator, enabling the comparison between various scenarios, and could thus be used as decision-support tools for local stakeholders. The method and the demonstrator will be presented through the analysis of landslide risk in two catchments of the French Alps: the Vars catchment and the Barcelonnette basin, both characterized by a different exposure to landslide hazards.
Exposure matrix development for the Libby cohort.
Noonan, C W
2006-11-01
The Libby, MT, cohort includes current and former residents with potential historical exposure to asbestos-contaminated vermiculite. This cohort includes individuals with a broad range of exposure experiences and work histories. While both occupational and nonoccupational exposure pathways were found to be relevant in recent investigations of health effects among this cohort, there has not been a comprehensive approach to characterizing these varied exposure pathways. Any approach toward assessing historical exposures among this population must account for three general categories: (1) occupational exposures, (2) residential exposures, and (3) exposures related to a variety of nonoccupational activities thought to be associated with vermiculite/asbestos exposure in this community. First, a job exposure matrix is commonly used in occupational epidemiology to assess historical worker exposures, allowing for the incorporation of numerous occupational categories and weighting factors applied to specific jobs for different time periods. Second, residential exposures can best be quantified by integrating individuals' residential histories with data on environmental asbestos contamination in the community. Previous soil or sediment sampling as well as air modeling could inform estimates of time- and spatial-dependent exposure concentrations for a residential exposure matrix. Finally, exposure opportunities due to nonoccupational activities could be weighted by factors such as time, geography, environmental sampling, and an assessment of the relative importance for each pathway. These three matrices for occupational, residential, and activity exposure pathways could be combined or used separately to provide a more comprehensive and quantitative, or semiquantitative, assessment of individual exposure in future epidemiological studies of this cohort.
Assessing exposure to violence in urban youth.
Selner-O'Hagan, M B; Kindlon, D J; Buka, S L; Raudenbush, S W; Earls, F J
1998-02-01
This study reports on the development of a structured interview, My Exposure to Violence (My ETV), that was designed to assess child and youth exposure to violence. Eighty participants between the ages of 9 and 24 were assessed. Data from My ETV were fit to a Rasch model for rating scales, a technique that generates interval level measures and allows the characterization of both chronic and acute exposure. Results indicated that the fit statistics for six scales, covering both lifetime and past year victimization, witnessing of violence, and total exposure, were all good. These scales were found to have high internal consistency (r = .68 to .93) and test-retest reliability (r = .75 to .94). Evidence of construct validity was provided by the item analysis, which revealed a theoretically sensible ordering of item extremity, and also by analysis of bivariate associations. As expected, younger subjects generally reported less exposure to violence than did older subjects, males reported more exposure than did females, African-American subjects reported higher levels of exposure than did White subjects, violent offenders reported more exposure than did non-offenders, and those living in high crime areas reported more exposure than did those residing in low crime areas. Future areas of investigation and the potential contribution to studies of antisocial behavior and post-traumatic stress disorder are discussed.
The exposome concept: a challenge and a potential driver for environmental health research.
Siroux, Valérie; Agier, Lydiane; Slama, Rémy
2016-06-01
The exposome concept was defined in 2005 as encompassing all environmental exposures from conception onwards, as a new strategy to evidence environmental disease risk factors. Although very appealing, the exposome concept is challenging in many respects. In terms of assessment, several hundreds of time-varying exposures need to be considered, but increasing the number of exposures assessed should not be done at the cost of increased exposure misclassification. Accurately assessing the exposome currently requires numerous measurements, which rely on different technologies; resulting in an expensive set of protocols. In the future, high-throughput 'omics technologies may be a promising technique to integrate a wide range of exposures from a small numbers of biological matrices. Assessing the association between many exposures and health raises statistical challenges. Due to the correlation structure of the exposome, existing statistical methods cannot fully and efficiently untangle the exposures truly affecting the health outcome from correlated exposures. Other statistical challenges relate to accounting for exposure misclassification or identifying synergistic effects between exposures. On-going exposome projects are trying to overcome technical and statistical challenges. From a public health perspective, a better understanding of the environmental risk factors should open the way to improved prevention strategies. Copyright ©ERS 2016.
[Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].
Nowak, D; Radon, K
2004-02-26
The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.
Racial discrimination: a continuum of violence exposure for children of color.
Sanders-Phillips, Kathy
2009-06-01
This article reviews and examines findings on the impact of racial discrimination on the development and functioning of children of color in the US. Based on current definitions of violence and child maltreatment, exposure to racial discrimination should be considered as a form of violence that can significantly impact child outcomes and limit the ability of parents and communities to provide support that promotes resiliency and optimal child development. In this article, a conceptual model of the effects of racial discrimination in children of color is presented. The model posits that exposure to racial discrimination may be a chronic source of trauma in the lives of many children of color that negatively influences mental and physical outcomes as well as parent and community support and functioning. Concurrent exposure to other forms of violence, including domestic, interpersonal and/or community violence, may exacerbate these effects. The impact of a potential continuum of violence exposure for children of color in the US and the need for future research and theoretical models on children's exposure to violence that attend to the impact of racial discrimination on child outcomes are discussed.
Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.
LaMontagne, A D; Kelsey, K T
2001-03-01
This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts.
Oral Chromium Exposure and Toxicity
Sun, Hong; Brocato, Jason
2015-01-01
Hexavalent chromium [Cr(VI)] is a known carcinogen when inhaled. However, inhalational exposure to Cr(VI) affects only a small portion of the population, mainly by occupational exposures. In contrast, oral exposure to Cr(VI) is widespread and affects many people throughout the globe. In 2008, the National Toxicology Program (NTP) released a 2-year study demonstrating that ingested Cr(VI) was carcinogenic in rats and mice. The effects of Cr(VI) oral exposure is mitigated by reduction in the gut, however a portion evades the reductive detoxification and reaches target tissues. Once Cr(VI) enters the cell, it ultimately gets reduced to Cr(III), which mediates its toxicity via induction of oxidative stress during the reduction while Cr intermediates react with protein and DNA. Cr(III) can form adducts with DNA that may lead to mutations. This review will discuss the potential adverse effects of oral exposure to Cr(VI) by presenting up-to-date human and animal studies, examining the underlying mechanisms that mediate Cr(VI) toxicity, as well as highlighting opportunities for future research. PMID:26231506
Public health implications of wireless technologies.
Sage, Cindy; Carpenter, David O
2009-08-01
Global exposures to emerging wireless technologies from applications including mobile phones, cordless phones, DECT phones, WI-FI, WLAN, WiMAX, wireless internet, baby monitors, and others may present serious public health consequences. Evidence supporting a public health risk is documented in the BioInitiative Report. New, biologically based public exposure standards for chronic exposure to low-intensity exposures are warranted. Existing safety standards are obsolete because they are based solely on thermal effects from acute exposures. The rapidly expanding development of new wireless technologies and the long latency for the development of such serious diseases as brain cancers means that failure to take immediate action to reduce risks may result in an epidemic of potentially fatal diseases in the future. Regardless of whether or not the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Such action is fully compatible with the precautionary principle, as enunciated by the Rio Declaration, the European Constitution Principle on Health (Section 3.1) and the European Union Treaties Article 174.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallinger, K.; Huggins, A.; Warner, L.
1995-12-31
An Indirect Exposure Assessment (IEA) was conducted, under USEPA`s RCRA Combustion Strategy, as part of the Part B permitting process for a proposed hazardous waste incinerator. The IEA involved identification of constituents of concern, emissions estimations, air dispersion and deposition modeling, evaluation of site-specific exposure pathways/scenarios, and food chain modeling in order to evaluate potential human health and environmental risks. The COMPDEP model was used to determine ambient ground level concentrations and dry and wet deposition rates of constituents of concern. The air modeling results were input into 50th percentile (Central) and 95th percentile (High-End) exposure scenarios which evaluated directmore » exposure via inhalation, dermal contact, and soil ingestion pathways, and indirect exposure through the food chain. The indirect pathway analysis considered the accumulation of constituents in plants and animals used as food sources by local inhabitants. Local food consumption data obtained from the Puerto Rico USDA were combined with realistic present-day and future-use exposure scenarios such as residential use, pineapple farming, and subsistence farming to obtain a comprehensive evaluation of risk, Overall risk was calculated using constituent doses and toxicity factors associated with the various routes of exposure. Risk values for each exposure pathway were summed to determine total carcinogenic and non-carcinogenic hazard to exposed individuals. A population risk assessment was also conducted in order to assess potential risks to the population surrounding the facility. Results of the assessment indicated no acute effects from constituents of concern, and a high-end excess lifetime cancer risk of approximately 6 in a million with dioxins (as 2,3,7,8-TCDD) and arsenic dominating the risk estimate.« less
Epigenetic Perspective on the Developmental Effects of Bisphenol A
Kundakovic, Marija; Champagne, Frances A.
2013-01-01
Bisphenol A (BPA) is an estrogenic environmental toxin widely used in the production of plastics and ubiquitous human exposure to this chemical has been proposed to be a potential risk to public health. Animal studies suggest that in utero and early postnatal exposure to this compound may produce a broad range of adverse effects, including impaired brain development, sexual differentiation, behavior, and immune function, which could extend to future generations. Molecular mechanisms that underlie the long-lasting effects of BPA continue to be elucidated, and likely involve disruption of epigenetic programming of gene expression during development. Several studies have provided evidence that maternal exposure to BPA results in postnatal changes in DNA methylation status and altered expression of specific genes in offspring. However, further studies are needed to extend these initial findings to other genes in different tissues, and to examine the correlations between BPA-induced epigenetic alterations, changes in gene expression, and various phenotypic outcomes. It will be also important to explore whether the epigenetic effects of BPA are related to its estrogenic activity, and to determine which downstream effector proteins could mediate changes in DNA methylation. In this review, we will highlight research indicating a consequence of prenatal BPA exposure for brain, behavior, and immune outcomes and discuss evidence for the role of epigenetic pathways in shaping these developmental effects. Based on this evidence, we will suggest future directions in the study of BPA-induced epigenetic effects and discuss the transgenerational implications of exposure to endocrine disrupting chemicals. PMID:21333735
Effects of Exposure to Microwaves: Problems and Perspectives*
Michaelson, Sol M.
1974-01-01
During the last 25 years, there has been a remarkable development and increase in the number of processes and devices that utilize or emit microwaves. Such devices are used in all sectors of our society for military, industrial, telecommunications, and consumer applications. Although there is information on biologic effects and potential hazard to man from exposure to microwaves, considerable confusion and misinformation has permeated not only the public press but also some scientific and technical publications. The purpose of this review is to place the available information on biologic effects of microwaves in proper perspective and to suggest approaches to future studies. PMID:4620329
Journy, Neige M Y; Lee, Choonsik; Harbron, Richard W; McHugh, Kieran; Pearce, Mark S; Berrington de González, Amy
2017-01-03
To project risks of developing cancer and the number of cases potentially induced by past, current, and future computed tomography (CT) scans performed in the United Kingdom in individuals aged <20 years. Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool. In 2000-2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan were reduced by 50-70% in 2000-2008 compared with 1990-1995, subsequent to dose reduction over time. The 130 750 scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38-113) future cancers. Current practices would lead to about 300 (90% UI: 230-680) future cancers induced by scans performed in 2016-2020. Absolute excess risks from single exposures would be low compared with background risks, but even small increases in annual CT rates over the next years would substantially increase the number of potential subsequent cancers.
Climate change and the health impact of aflatoxins exposure in Portugal - an overview.
Assunção, Ricardo; Martins, Carla; Viegas, Susana; Viegas, Carla; Jakobsen, Lea S; Pires, Sara; Alvito, Paula
2018-03-08
Climate change has been indicated as a driver for food safety issues worldwide, mainly due to the impact on the occurrence of food safety hazards at various stages of food chain. Mycotoxins, natural contaminants produced by fungi, are among the most important of such hazards. Aflatoxins, which have the highest acute and chronic toxicity of all mycotoxins, assume particular importance. A recent study predicted aflatoxin contamination in maize and wheat crops in Europe within the next 100 years and aflatoxin B1 is predicted to become a food safety issue in Europe, especially in the most probable scenario of climate change (+2°C). This review discusses the potential influence of climate change on the health risk associated to aflatoxins dietary exposure of Portuguese population. We estimated the burden of disease associated to the current aflatoxin exposure for Portuguese population in terms of Disability Adjusted Life Years (DALYs). It is expected that in the future the number of DALYs and the associated cases of hepatocellular carcinoma due to aflatoxins exposure will increase due to climate change. The topics highlighted through this review, including the potential impact on health of the Portuguese population through the dietary exposure to aflatoxins, should represent an alert for the potential consequences of an incompletely explored perspective of climate change. Politics and decision-makers should be involved and committed to implement effective measures to deal with climate change issues and to reduce its possible consequences. This review constitutes a contribution for the prioritisation of strategies to face the unequal burden of effects of weather-related hazards in Portugal and across Europe.
Pteropod eggs released at high pCO2 lack resilience to ocean acidification
NASA Astrophysics Data System (ADS)
Manno, Clara; Peck, Victoria L.; Tarling, Geraint A.
2016-05-01
The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750 μatm and 1200 μatm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600 m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades.
Challenges and future direction of molecular research in air pollution-related lung cancers.
Shahadin, Maizatul Syafinaz; Ab Mutalib, Nurul Syakima; Latif, Mohd Talib; Greene, Catherine M; Hassan, Tidi
2018-04-01
Hazardous air pollutants or chemical release into the environment by a variety of natural and/or anthropogenic activities may give adverse effects to human health. Air pollutants such as sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), heavy metals and particulate matter (PM) affect number of different human organs, especially the respiratory system. The International Agency for Research on Cancer (IARC) reported that ambient air pollution is a cause of lung cancer. Recently, the agency has classified outdoor air pollution as well as PM air pollution as Group 1 carcinogens. In addition, several epidemiological studies have shown a positive association between air pollutants to lung cancer risks and mortality. However, there are only a few studies examining the molecular effects of air pollution exposure specifically in lung cancer due to multiple challenges to mimic air pollution exposure in basic experimentation. Another major issue is the lack of adequate adjustments for exposure misclassification as air pollution may differ temporo-spatially and socioeconomically. Thus, the purpose of this paper is to review the current molecular understanding of air pollution-related lung cancer and potential future direction in this challenging yet important research field. Copyright © 2018 Elsevier B.V. All rights reserved.
Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.
Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael
2016-03-01
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Im, Heewon; Huh, Jisu
2017-03-01
As an important public health issue, patient medication non-adherence has drawn much attention, but research on the impact of mass media as an information source on patient medication adherence has been scant. Given that mass media often provide confusing and contradicting information regarding health/medical issues, this study examined the potential negative influence of exposure to health information in mass media on patients' beliefs about their illnesses and medications, and medication adherence, in comparison with the effects of exposure to another primary medication information source, physicians. Survey data obtained from patients on blood thinner regimens revealed that the frequency of exposure to health information in mass media was negatively related to accuracy of patients' beliefs about their medication benefits and patient medication adherence. On the other hand, frequency of visits with physicians was positively associated with patients' beliefs about their medication benefits but had no significant relation to medication regimen adherence. The implications of the study findings are discussed, and methodological limitations and suggestion for future research are presented.
Foster, Kenneth R; Glaser, Roland
2007-06-01
This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.
The potential biomarkers of drug addiction: proteomic and metabolomics challenges.
Wang, Lv; Wu, Ning; Zhao, Tai-Yun; Li, Jin
2016-07-28
Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.
Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C
2017-10-01
Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Cousins, Ian T; Vestergren, Robin; Wang, Zhanyun; Scheringer, Martin; McLachlan, Michael S
2016-09-01
Already in the late 1990s microgram-per-liter levels of perfluorooctane sulfonate (PFOS) were measured in water samples from areas where fire-fighting foams were used or spilled. Despite these early warnings, the problems of groundwater, and thus drinking water, contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) including PFOS are only beginning to be addressed. It is clear that this PFAS contamination is poorly reversible and that the societal costs of clean-up will be high. This inability to reverse exposure in a reasonable timeframe is a major motivation for application of the precautionary principle in chemicals management. We conclude that exposure can be poorly reversible; 1) due to slow elimination kinetics in organisms, or 2) due to poorly reversible environmental contamination that leads to continuous exposure. In the second case, which is relevant for contaminated groundwater, the reversibility of exposure is not related to the magnitude of a chemical's bioaccumulation potential. We argue therefore that all PFASs entering groundwater, irrespective of their perfluoroalkyl chain length and bioaccumulation potential, will result in poorly reversible exposures and risks as well as further clean-up costs for society. To protect groundwater resources for future generations, society should consider a precautionary approach to chemicals management and prevent the use and release of highly persistent and mobile chemicals such as PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Burgoine, Thomas; Monsivais, Pablo
2013-06-27
Socio-ecological models of behaviour suggest that dietary behaviours are potentially shaped by exposure to the food environment ('foodscape'). Research on associations between the foodscape and diet and health has largely focussed on foodscapes around the home, despite recognition that non-home environments are likely to be important in a more complete assessment of foodscape exposure. This paper characterises and describes foodscape exposure of different types, at home, at work, and along commuting routes for a sample of working adults in Cambridgeshire, UK. Home and work locations, and transport habits for 2,696 adults aged 29-60 were drawn from the Fenland Study, UK. Food outlet locations were obtained from local councils and classified by type - we focus on convenience stores, restaurants, supermarkets and takeaway food outlets. Density of and proximity to food outlets was characterised at home and work. Commuting routes were modelled based on the shortest street network distance between home and work, with exposure (counts of food outlets) that accounted for travel mode and frequency. We describe these three domains of food environment exposure using descriptive and inferential statistics. For all types of food outlet, we found very different foodscapes around homes and workplaces (with overall outlet exposure at work 125% higher), as well as a potentially substantial exposure contribution from commuting routes. On average, work and commuting environments each contributed to foodscape exposure at least equally to residential neighbourhoods, which only accounted for roughly 30% of total exposure. Furthermore, for participants with highest overall exposure to takeaway food outlets, workplaces accounted for most of the exposure. Levels of relative exposure between home, work and commuting environments were poorly correlated. Relying solely on residential neighbourhood characterisation greatly underestimated total foodscape exposure in this sample, with levels of home exposure unrelated to levels of away from home exposure. Such mis-estimation is likely to be expressed in analyses as attenuated parameter estimates, suggesting a minimal 'environmental' contribution to outcomes of interest. Future work should aim to assess exposure more completely through characterising environments beyond the residential neighbourhood, where behaviours related to food consumption are likely to occur.
Momentary effects of exposure to prosmoking media on college students' future smoking risk.
Shadel, William G; Martino, Steven C; Setodji, Claude; Scharf, Deborah
2012-07-01
This study used ecological momentary assessment to examine acute changes in college students' future smoking risk as a function of their exposure to prosmoking media (e.g., smoking in movies, paid advertising, point-of-sale displays). A sample of 135 college students ("ever" and "never" smokers) carried handheld computers for 21 days, recording their exposures to all forms of prosmoking media during the assessment period. They also responded to three investigator-initiated control prompts during each day of the assessment period (i.e., programmed to occur randomly). After each prosmoking media exposure and after each random control prompt they answered questions that measured their risk of future smoking. Responses between prosmoking media encounters were compared (within subjects) to responses made during random control prompts. Compliance with the study protocol was high, with participants responding to over 83% of all random prompts. Participants recorded nearly three encounters with prosmoking media each week. Results of linear mixed modeling indicated that all participants had higher future smoking risk following exposure to prosmoking media compared with control prompts (p < .05); this pattern of response did not differ between ever and never smokers (p = .769). Additional modeling of the variances around participants' risk of future smoking revealed that the response of never smokers to prosmoking media was significantly more variable than the response of ever smokers. Exposure to prosmoking media is associated with acute changes in future smoking risk, and never smokers and ever smokers respond differently to these exposures.
Virtual reality exposure in anxiety disorders: impact on psychophysiological reactivity.
Diemer, Julia; Mühlberger, Andreas; Pauli, Paul; Zwanzger, Peter
2014-08-01
Anxiety disorders are among the most frequently encountered psychiatric disorders. Recommended treatments include cognitive behavioural therapy (CBT) and/or medication. In recent years, beneficial effects of virtual reality (VR) exposure therapy have been shown, making this technique a promising addition to CBT. However, the ability of VR to mimic threatening stimuli in a way comparable to in vivo cues has been discussed. In particular, it has been questioned whether VR is capable of provoking psychophysiological symptoms of anxiety. Since psychophysiological arousal is considered a prerequisite for effective exposure treatment, this systematic review aims to evaluate the evidence for the potential of VR exposure to evoke and modulate psychophysiological fear reactions. PubMed and PsycINFO/Academic Search Premier databases were searched. Thirty-eight studies investigating challenge or habituation effects were included. VR exposure does provoke psychophysiological arousal, especially in terms of electrodermal activity. Results on psychophysiological habituation in VR are inconclusive. Study design and methodological rigour vary widely. Despite several limitations, this review provides evidence that VR exposure elicits psychophysiological fear reactions in patients and healthy subjects, rendering VR a promising treatment for anxiety disorders, and a potent research tool for future investigations of psychophysiological processes and their significance during exposure treatment.
Quartana, Phillip J; Wilk, Joshua E; Balkin, Thomas J; Hoge, Charles W
2015-05-01
To characterize the indirect associations of combat exposure with post-deployment physical symptoms through shared associations with post-traumatic stress disorder (PTSD), depression and insomnia symptoms. Surveys were administered to a sample of U.S. soldiers (N = 587) three months after a 15-month deployment to Iraq. A multiple indirect effects model was used to characterize direct and indirect associations between combat exposure and physical symptoms. Despite a zero-order correlation between combat exposure and physical symptoms, the multiple indirect effects analysis did not provide evidence of a direct association between these variables. Evidence for a significant indirect association of combat exposure and physical symptoms was observed through PTSD, depression, and insomnia symptoms. In fact, 92% of the total effect of combat exposure on physical symptoms scores was indirect. These findings were evident even after adjusting for the physical injury and relevant demographics. This is the first empirical study to suggest that PTSD, depression and insomnia collectively and independently contribute to the association between combat exposure and post-deployment physical symptoms. Limitations, future research directions, and potential policy implications are discussed. Published by Elsevier Inc.
Simoni-Wastila, Linda; Zuckerman, Ilene H; Singhal, Puneet K; Briesacher, Becky; Hsu, Van Doren
2005-03-01
The use of prescription drugs with addiction potential is an overlooked and growing problem among today's elderly. This paper provides national prevalence estimates of exposure to prescription drugs with addiction potential among community-dwelling elders and explores risk factors for such exposure. Using the Medicare Current Beneficiary Survey, a nationally-representative database of Medicare eligibles, we calculated the prevalence of abusable prescription drug use, overall, by therapeutic class, and by drug. Nearly 22% (7.22 million) of all community-dwelling Medicare elders used at least one prescription medication with addiction potential. Opioid analgesics were used most frequently (14.9%; 95% CI 14.0, 15.8%); central nervous system (CNS) depressants were used by 10.4% of the nation's elders (95% CI 9.5, 10.8%). Using logistic regression analysis, we examined the association of explanatory variables with three outcome variables: any controlled substances use, any opioid analgesic use, and any CNS depressant use. We found that females, whites, those aged 65-79, and those with non-spousal others, were significantly more likely to use one or more prescription drugs with addiction potential, controlling for health status and severity-of-illness. The significance and magnitude of several explanatory variables, including age, race, ethnicity, living arrangement, and health status, varied by therapeutic category. This paper provides an important first step in acknowledging the widespread use of abusable prescription drugs in elders, and provides a foundation for future research and practical solutions to preventing subsequent problem use of prescription drugs.
Epigenetics studies of fetal alcohol spectrum disorder: where are we now?
Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S
2017-01-01
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field. PMID:28234026
Stoddard, Sarah A; Heinze, Justin E; Choe, Daniel Ewon; Zimmerman, Marc A
2015-10-01
Few researchers have explored future educational aspirations as a promotive factor against exposure to community violence in relation to adolescents' violent behavior over time. The present study examined the direct and indirect effect of exposure to community violence prior to 9th grade on attitudes about violence and violent behavior in 12th grade, and violent behavior at age 22 via 9th grade future educational aspirations in a sample of urban African American youth (n = 681; 49% male). Multi-group SEM was used to test the moderating effect of gender. Exposure to violence was associated with lower future educational aspirations. For boys, attitudes about violence directly predicted violent behavior at age 22. For boys, future educational aspirations indirectly predicted less violent behavior at age 22. Implications of the findings and suggestions for future research are discussed. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Noble metals: a toxicological appraisal of potential new environmental contaminants.
Brubaker, P E; Moran, J P; Bridbord, K; Hueter, F G
1975-01-01
The public health benefits expected by reducing known hazardous emissions from mobile sources should not be compromised by increasing levels of other potentially hazardous unregulated emissions. Catalytic converters are going to be used to meet the statutory requirements on carbon monoxide and hydrocarbon emissions from light duty motor vehicles. Platinum and palladium metals are the catalytic materials to be used in these emission control devices. Preliminary experimental evidence and analysis of the impact of these control devices on the future use and demand for platinum indicates that this metal may appear at detectable levels in the environment by the end of this decade. At the present time, platinum and palladium are not present in the public environment and represent potentially new environmental contaminants as a consequence of use of this new abatement control technology. There is relatively little information available to adequately assess the potential health hazards that may be associated with exposure to these metals and their compounds. Analysis of the environmental problems and concerns associated with possible new environmental contaminants are discussed. Limited estimates are made on community exposure by use of a meteorological dispersion model. Biodegradation potential and attention is also given to the limited toxicological information available. PMID:50939
Robins, Meridith T.; Lu, Julie
2016-01-01
The number of highly caffeinated products has increased dramatically in the past few years. Among these products, highly caffeinated energy drinks are the most heavily advertised and purchased, which has resulted in increased incidences of co-consumption of energy drinks with alcohol. Despite the growing number of adolescents and young adults reporting caffeine-mixed alcohol use, knowledge of the potential consequences associated with co-consumption has been limited to survey-based results and in-laboratory human behavioral testing. Here, we investigate the effect of repeated adolescent (post-natal days P35-61) exposure to caffeine-mixed alcohol in C57BL/6 mice on common drug-related behaviors such as locomotor sensitivity, drug reward and cross-sensitivity, and natural reward. To determine changes in neurological activity resulting from adolescent exposure, we monitored changes in expression of the transcription factor ΔFosB in the dopaminergic reward pathway as a sign of long-term increases in neuronal activity. Repeated adolescent exposure to caffeine-mixed alcohol exposure induced significant locomotor sensitization, desensitized cocaine conditioned place preference, decreased cocaine locomotor cross-sensitivity, and increased natural reward consumption. We also observed increased accumulation of ΔFosB in the nucleus accumbens following repeated adolescent caffeine-mixed alcohol exposure compared to alcohol or caffeine alone. Using our exposure model, we found that repeated exposure to caffeine-mixed alcohol during adolescence causes unique behavioral and neurochemical effects not observed in mice exposed to caffeine or alcohol alone. Based on similar findings for different substances of abuse, it is possible that repeated exposure to caffeine-mixed alcohol during adolescence could potentially alter or escalate future substance abuse as means to compensate for these behavioral and neurochemical alterations. PMID:27380261
Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry
2013-12-01
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.
Preliminary calculation of solar cosmic ray dose to the female breast in space mission
NASA Technical Reports Server (NTRS)
Shavers, Mark; Poston, John W.; Atwell, William; Hardy, Alva C.; Wilson, John W.
1991-01-01
No regulatory dose limits are specifically assigned for the radiation exposure of female breasts during manned space flight. However, the relatively high radiosensitivity of the glandular tissue of the breasts and its potential exposure to solar flare protons on short- and long-term missions mandate a priori estimation of the associated risks. A model for estimating exposure within the breast is developed for use in future NASA missions. The female breast and torso geometry is represented by a simple interim model. A recently developed proton dose-buildup procedure is used for estimating doses. The model considers geomagnetic shielding, magnetic-storm conditions, spacecraft shielding, and body self-shielding. Inputs to the model include proton energy spectra, spacecraft orbital parameters, STS orbiter-shielding distribution at a given position, and a single parameter allowing for variation in breast size.
Advances in maskless and mask-based optical lithography on plastic flexible substrates
NASA Astrophysics Data System (ADS)
Barbu, Ionut; Ivan, Marius G.; Giesen, Peter; Van de Moosdijk, Michel; Meinders, Erwin R.
2009-12-01
Organic flexible electronics is an emerging technology with huge potential growth in the future which is likely to open up a complete new series of potential applications such as flexible OLED-based displays, urban commercial signage, and flexible electronic paper. The transistor is the fundamental building block of all these applications. A key challenge in patterning transistors on flexible plastic substrates stems from the in-plane nonlinear deformations as a consequence of foil expansion/shrinkage, moisture uptake, baking etc. during various processing steps. Optical maskless lithography is one of the potential candidates for compensating for these foil distortions by in-situ adjustment prior to exposure of the new layer image with respect to the already patterned layers. Maskless lithography also brings the added value of reducing the cost-of-ownership related to traditional mask-based tools by eliminating the need for expensive masks. For the purpose of this paper, single-layer maskless exposures at 355 nm were performed on gold-coated poly(ethylenenaphthalate) (PEN) flexible substrates temporarily attached to rigid carriers to ensure dimensional stability during processing. Two positive photoresists were employed for this study and the results on plastic foils were benchmarked against maskless as well as mask-based (ASML PAS 5500/100D stepper) exposures on silicon wafers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Alex, E-mail: alst461@ecy.wa.go; Delistraty, Damon, E-mail: ddel461@ecy.wa.go
Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology wasmore » developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was constrained by specific requirements in the CSPA, the intent of this work was to identify HPCs and CHCCs that might guide future regulatory actions and inform chemical management policies, aimed at protecting children's health.« less
Prevention of accidental exposure in radiotherapy: the risk matrix approach.
Vilaragut, J J; Duménigo, C; Delgado, J M; Morales, J; McDonnell, J D; Ferro, R; Ortiz López, P; Ramírez, M L; Pérez Mulas, A; Papadopulos, S; Gonçalves, M; López Morones, R; Sánchez Cayuela, C; Cascajo Castresana, A; Somoano, F; Álvarez, C; Guillén, A; Rodríguez, M; Pereira, P P; Nader, A
2013-02-01
Knowledge and lessons from past accidental exposures in radiotherapy are very helpful in finding safety provisions to prevent recurrence. Disseminating lessons is necessary but not sufficient. There may be additional latent risks for other accidental exposures, which have not been reported or have not occurred, but are possible and may occur in the future if not identified, analyzed, and prevented by safety provisions. Proactive methods are available for anticipating and quantifying risk from potential event sequences. In this work, proactive methods, successfully used in industry, have been adapted and used in radiotherapy. Risk matrix is a tool that can be used in individual hospitals to classify event sequences in levels of risk. As with any anticipative method, the risk matrix involves a systematic search for potential risks; that is, any situation that can cause an accidental exposure. The method contributes new insights: The application of the risk matrix approach has identified that another group of less catastrophic but still severe single-patient events may have a higher probability, resulting in higher risk. The use of the risk matrix approach for safety assessment in individual hospitals would provide an opportunity for self-evaluation and managing the safety measures that are most suitable to the hospital's own conditions.
Comprehensive Environmental Assessment Applied to ...
In September 2013, EPA announced the availability of the final report, Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments. This final report presents a case study of multiwalled carbon nanotubes (MWCNTs); it focuses on the specific example of MWCNTs as used in flame-retardant coatings applied to upholstery textiles. This case study is organized around the comprehensive environmental assessment (CEA) framework, which structures available information pertaining to the product life cycle, environmental transport and fate, exposure-dose in receptors (i.e., humans, ecological populations, and the environment), and potential impacts in these receptors. A group of experts representing multiple disciplines and multiple sector perspectives used an earlier draft of the case study in conjunction with a structured workshop process to identify and prioritize research gaps that, if pursued, could inform future MWCNT assessment efforts. The final report is not a health, risk, or exposure assessment and as such does not draw conclusions about potential risks, or present an exhaustive review of the literature. Rather, it presents the MWCNT research priorities that experts identified in this application of CEA in order to aid research planning throughout the scientific community. The outcomes of these research efforts may subsequ
Kaur, Gurjot; Muthumalage, Thivanka; Rahman, Irfan
2018-05-15
Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Geochemical Legacies and the Future Health of Cities: An Analysis of two Neurotoxins in Urban Soils
NASA Astrophysics Data System (ADS)
Filippelli, G. M.; Risch, M.
2015-12-01
The past and future of cities are inextricably linked, a linkage that can be seen clearly in the long-term impacts of urban geochemical legacies. As loci of population as well as the means of employment and industry to support these populations, cities have a long history of co-locating contaminating practices and people, sometimes with negative implications for human health. Working at the intersection between geochemical processes, communities, and human health is critical to grapple with environmental legacies and to support healthy, sustainable, and growing urban populations. An emerging area of environmental health research is to understand the impacts of chronic exposures and exposure mixtures—these impacts are very poorly studied, yet have materialized as perhaps the greatest threat to large-scale population health. Acute exposure to lead (Pb), a powerful neurotoxin to which children are particularly susceptible, has largely been eliminated in the U.S. and other countries through policy-based restrictions on leaded gasoline and lead-based paints. But these legacy Pb sources are still around in the form of surface soil Pb contamination, a common problem in cities and one that has only recently emerged as a pernicious and widespread chronic exposure mechanism in cities. Some urban soils are also contaminated with another neurotoxin, mercury (Hg), although very little work has been done to understand human exposures to low levels of this element in soils. The most documented human exposure to Hg is through fish consumption, so eating fish caught in urban areas presents risks for above average dietary Hg exposure. The potential double impact of chronic exposure to these two neurotoxins is pronounced in cities. Many aspects of the dose-response curves for individual elements and mixtures are poorly understood, especially at lower levels, leaving unanswered several interesting and provocative questions about environmental impacts on neurological and developmental disorders.
Pesticides and Parkinson’s Disease—Is There a Link?
Brown, Terry P.; Rumsby, Paul C.; Capleton, Alexander C.; Rushton, Lesley; Levy, Leonard S.
2006-01-01
Parkinson’s disease (PD) is an idiopathic disease of the nervous system characterized by progressive tremor, bradykinesia, rigidity, and postural instability. It has been postulated that exogenous toxicants, including pesticides, might be involved in the etiology of PD. In this article we present a comprehensive review of the published epidemiologic and toxicologic literature and critically evaluate whether a relationship exists between pesticide exposure and PD. From the epidemiologic literature, there does appear to be a relatively consistent relationship between pesticide exposure and PD. This relationship appears strongest for exposure to herbicides and insecticides, and after long durations of exposure. Toxicologic data suggest that paraquat and rotenone may have neurotoxic actions that potentially play a role in the development of PD, with limited data for other pesticides. However, both the epidemiology and toxicology studies were limited by methodologic weaknesses. Particular issues of current and future interest include multiple exposures (both pesticides and other exogenous toxicants), developmental exposures, and gene–environment interactions. At present, the weight of evidence is sufficient to conclude that a generic association between pesticide exposure and PD exists but is insufficient for concluding that this is a causal relationship or that such a relationship exists for any particular pesticide compound or combined pesticide and other exogenous toxicant exposure. PMID:16451848
Momentary Effects of Exposure to Pro-Smoking Media on College Students’ Future Smoking Risk
Shadel, William G.; Martino, Steven C.; Setodji, Claude; Scharf, Deborah
2012-01-01
Objective This study used ecological momentary assessment to examine acute changes in college students’ future smoking risk as a function of their exposure to pro-smoking media (e.g., smoking in movies, paid advertising, point-of-sale promotions). Methods A sample of 135 college students (ever and never smokers) carried handheld computers for 21 days, recording their exposures to all forms of pro-smoking media during the assessment period. They also responded to three investigator-initiated control prompts during each day of the assessment period (i.e., programmed to occur randomly). After each pro-media smoking exposure and after each random control prompt they answered questions that measured their risk of future smoking. Responses between pro-smoking media encounters were compared to responses made during random control prompts. Results Compliance with the study protocol was high, with participants responding to over 83% of all random prompts. Participants recorded nearly three encounters with pro-smoking media each week. Results of linear mixed modeling indicated that all participants had higher future smoking risk following exposure to pro-smoking media compared with control prompts (p < 0.05); this pattern of response did not differ between ever and never smokers (p = 0.769). Additional modeling of the variances around participants’ risk of future smoking revealed that the response of never smokers to pro-smoking media was significantly more variable than the response of ever smokers. Conclusions Exposure to pro-smoking media is associated with acute changes in future smoking risk, and never smokers and ever smokers respond differently to these exposures. PMID:22353027
NASA Astrophysics Data System (ADS)
Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian
2017-05-01
Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.
Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian
2017-05-01
Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.
Huang, Lei; Wu, Haiyun; van der Kuijp, Tsering Jan
2015-01-01
Chronic arsenic exposure through drinking water has been a vigorously studied and debated subject. However, the existing literature does not allow for a thorough examination of the potential regional discrepancies that may arise among arsenic-related health outcomes. The purpose of this article is to provide an updated review of the literature on arsenic exposure and commonly discussed health effects according to global geographical distribution. This geographically segmented approach helps uncover the discrepancies in the health effects of arsenic. For instance, women are more susceptible than men to a few types of cancer in Taiwan, but not in other countries. Although skin cancer and arsenic exposure correlations have been discovered in Chile, Argentina, the United States, and Taiwan, no evident association was found in mainland China. We then propose several globally applicable recommendations to prevent and treat the further spread of arsenic poisoning and suggestions of future study designs and decision-making.
Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.
Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella
2015-01-01
In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.
Neubauer, Georg; Feychting, Maria; Hamnerius, Yngve; Kheifets, Leeka; Kuster, Niels; Ruiz, Ignacio; Schüz, Joachim; Uberbacher, Richard; Wiart, Joe; Röösli, Martin
2007-04-01
The increasing deployment of mobile communication base stations led to an increasing demand for epidemiological studies on possible health effects of radio frequency emissions. The methodological challenges of such studies have been critically evaluated by a panel of scientists in the fields of radiofrequency engineering/dosimetry and epidemiology. Strengths and weaknesses of previous studies have been identified. Dosimetric concepts and crucial aspects in exposure assessment were evaluated in terms of epidemiological studies on different types of outcomes. We conclude that in principle base station epidemiological studies are feasible. However, the exposure contributions from all relevant radio frequency sources have to be taken into account. The applied exposure assessment method should be piloted and validated. Short to medium term effects on physiology or health related quality of life are best investigated by cohort studies. For long term effects, groups with a potential for high exposure need to first be identified; for immediate effect, human laboratory studies are the preferred approach. (c) 2006 Wiley-Liss, Inc.
Prenatal, perinatal, and adolescent exposure to marijuana: Relationships with aggressive behavior.
Barthelemy, Olivier J; Richardson, Mark A; Cabral, Howard J; Frank, Deborah A
This manuscript reviews research exploring the relationship between prenatal, perinatal, and adolescent exposure to marijuana and aggressive behavior, including physical aggression. Areas of inquiry include animal research, as well as human research, on prenatal exposure and on marijuana use during adolescence. Potential psychosocial and psychopharmacological mechanisms are identified, as well as relevant confounds. The prenatal marijuana exposure literature provides minimal support for a direct relationship with aggressive behavior in childhood. The adolescent use literature suggests a marginal (at best) association between acute intoxication and aggressive behavior, and an association between chronic use and aggressive behavior heavily influenced by demographic variables, rather than direct, psychopharmacological mechanisms. Cannabis withdrawal symptoms also may include aggression and anger, but there is little evidence to suggest that these effects are large or specific to withdrawal from marijuana compared to other substances. This review will offer recommendations for clinical care and public policy, as well as important questions for future research. Copyright © 2016 Elsevier Inc. All rights reserved.
Hewett, P
1995-02-01
The particle size distributions and bulk fume densities for mild steel and stainless steel welding fumes generated using two welding processes (shielded metal arc welding [SMAW] and gas metal arc welding [GMAW]) were used in mathematical models to estimate regional pulmonary deposition (the fraction of each fume expected to deposit in each region of the pulmonary system) and regional pulmonary exposure (the fraction of each fume expected to penetrate to each pulmonary region and would be collected by a particle size-selective sampling device). Total lung deposition for GMAW fumes was estimated at 60% greater than that of SMAW fumes. Considering both the potential for deposition and the fume specific surface areas, it is likely that for equal exposure concentrations GMAW fumes deliver nearly three times the particle surface area to the lungs as SMAW fumes. This leads to the hypothesis that exposure to GMAW fumes constitutes a greater pulmonary hazard than equal exposure to SMAW fumes. The implications of this hypothesis regarding the design of future health studies of welders is discussed.
Racial Differences in Perceptions of Air Pollution Health Risk: Does Environmental Exposure Matter?
Chakraborty, Jayajit; Collins, Timothy W.; Grineski, Sara E.; Maldonado, Alejandra
2017-01-01
This article extends environmental risk perception research by exploring how potential health risk from exposure to industrial and vehicular air pollutants, as well as other contextual and socio-demographic factors, influence racial/ethnic differences in air pollution health risk perception. Our study site is the Greater Houston metropolitan area, Texas, USA—a racially/ethnically diverse area facing high levels of exposure to pollutants from both industrial and transportation sources. We integrate primary household-level survey data with estimates of excess cancer risk from ambient exposure to industrial and on-road mobile source emissions of air toxics obtained from the U.S. Environmental Protection Agency. Statistical analysis is based on multivariate generalized estimation equation models which account for geographic clustering of surveyed households. Our results reveal significantly higher risk perceptions for non-Hispanic Black residents and those exposed to greater cancer risk from industrial pollutants, and also indicate that gender influences the relationship between race/ethnicity and air pollution risk perception. These findings highlight the need to incorporate measures of environmental health risk exposure in future analysis of social disparities in risk perception. PMID:28125059
Electronic Cigarette Exposure: Calls to Wisconsin Poison Control Centers, 2010–2015.
Weiss, Debora; Tomasallo, Carrie D; Meiman, Jon G; Creswell, Paul D; Melstrom, Paul C; Gummin, David D; Patel, Disa J; Michaud, Nancy T; Sebero, Heather A; Anderson, Henry A
2016-12-01
E-cigarettes are battery-powered devices that deliver nicotine and flavorings by aerosol and have been marketed in the United States since 2007. Because e-cigarettes have increased in popularity, toxicity potential from device misuse and malfunction also has increased. National data indicate that during 2010–2014, exposure calls to US poison control centers increased only 0.3% for conventional cigarette exposures, whereas calls increased 41.7% for e-cigarette exposures. We characterized cigarette and e-cigarette exposure calls to the Wisconsin Poison Center January 1, 2010 through October 10, 2015. We compared cigarette and e-cigarette exposure calls by exposure year, demographic characteristics, caller site, exposure site, exposure route, exposure reason, medical outcome, management site, and level of care at a health care facility. During January 2010 to October 2015, a total of 98 e-cigarette exposure calls were reported, and annual exposure calls increased approximately 17-fold, from 2 to 35. During the same period, 671 single-exposure cigarette calls with stable annual call volumes were reported. E-cigarette exposure calls were associated with children aged ≤5 years (57/98, 58.2%) and adults aged ≥20 years (30/98, 30.6%). Cigarette exposure calls predominated among children aged ≤5 years (643/671, 95.8%). The frequency of e-cigarette exposure calls to the Wisconsin Poison Center has increased and is highest among children aged ≤5 years and adults. Strategies are warranted to prevent future poisonings from these devices, including nicotine warning labels and public advisories to keep e-cigarettes away from children.
Direct measurements of protein-stabilized gold nanoparticle interactions.
Eichmann, Shannon L; Bevan, Michael A
2010-09-21
We report integrated video and total internal reflection microscopy measurements of protein stabilized 110 nm Au nanoparticles confined in 280 nm gaps in physiological media. Measured potential energy profiles display quantitative agreement with Brownian dynamic simulations that include hydrodynamic interactions and camera exposure time and noise effects. Our results demonstrate agreement between measured nonspecific van der Waals and adsorbed protein interactions with theoretical potentials. Confined, lateral nanoparticle diffusivity measurements also display excellent agreement with predictions. These findings provide a basis to interrogate specific biomacromolecular interactions in similar experimental configurations and to design future improved measurement methods.
Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.
Hartle, R
1993-01-01
Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8020445
Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.
Hartle, R
1993-12-01
Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)
Burger, J
1999-02-26
Several federal agencies are reclaiming land through remediation and restoration, and are considering potential future land uses that are compatible with current land uses and local needs. Understanding potential recreational and wild game consumption patterns and risk perceptions are critical for determining cleanup levels and assessing potential risk associated with certain uses. In this article, recreational rates of people attending the Lewiston "Roundup" rodeo in northwestern Idaho were examined, as well as their perceptions of the safety of consuming fish and game from two Department of Energy (DOE) facilities: the Hanford Site and the Idaho National Engineering and Environmental Laboratory (INEEL). These are two of DOE's largest sites. Lewiston is closer to Hanford, but is in the same state as INEEL. Men engaged in significantly higher hunting and fishing rates than women, but there were no gender differences in camping and hiking rates. Rates of hunting and camping decreased significantly with age, while rates of hiking were lowest for 31- to 45-yr-olds. Level of education generally was not related to rates of recreation. Over 70% of the subjects ate deer, elk, and self-caught fish; 30-50% ate grouse, moose, and waterfowl; and fewer people ate other game species. Overall, subjects were less concerned about eating the fish and game from INEEL than from Hanford, and more people thought Hanford should be cleaned up completely compared to INEEL. Mean rates of fishing, hiking, and camping all exceeded the DOE's maximum recreational exposure assumption of 14 d/yr used in their future use documents. Although at present people are generally not allowed access to DOE lands for recreation, recreation is one future land use being considered for these federal facilities. Given that some people would engage in multiple activities, the potential exists for people living in the general region of Hanford and INEEL to exceed the 14-d exposure assumption. The relative gender differences in recreational rates mean that men are potentially more at risk, particularly since hunting (on both sites) and fishing (on Hanford) are attractive.
Moylan, Steven; Jacka, Felice N; Pasco, Julie A; Berk, Michael
2013-01-01
Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis. PMID:23785661
Declining Prevalence of Disease Vectors Under Climate Change
NASA Astrophysics Data System (ADS)
Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian
2016-12-01
More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.
Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.
LaMontagne, A D; Kelsey, K T
2001-01-01
OBJECTIVES: This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. METHODS: An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. RESULTS: After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. CONCLUSIONS: These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts. PMID:11236406
Journy, Neige M Y; Lee, Choonsik; Harbron, Richard W; McHugh, Kieran; Pearce, Mark S; Berrington de González, Amy
2017-01-01
Background: To project risks of developing cancer and the number of cases potentially induced by past, current, and future computed tomography (CT) scans performed in the United Kingdom in individuals aged <20 years. Methods: Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool. Results: In 2000–2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan were reduced by 50–70% in 2000–2008 compared with 1990–1995, subsequent to dose reduction over time. The 130 750 scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38–113) future cancers. Current practices would lead to about 300 (90% UI: 230–680) future cancers induced by scans performed in 2016–2020. Conclusions: Absolute excess risks from single exposures would be low compared with background risks, but even small increases in annual CT rates over the next years would substantially increase the number of potential subsequent cancers. PMID:27824812
Quach, Thu; Liu, Ruiling; Nelson, David O; Hurley, Susan; Von Behren, Julie; Hertz, Andrew; Reynolds, Peggy
2014-11-01
The Asian American and Pacific Islander (AAPI) population is heterogeneous and rapidly growing in the United States, with a high proportion concentrated in California. Although traditionally assumed to have lower rates of breast cancer than non-Hispanic white women, recent studies have suggested considerable variation in incidence by AAPI ethnic group, with rates in some exceeding those in non-Hispanic whites. The potential role of environmental toxicants has not been well explored and may provide insights into these patterns. We created an exposure potential index (EPI) score for 24 hazardous air pollutants modeled by the U.S. Environmental Protection Agency National-Scale Air Toxics Assessment considered to be mammary gland carcinogens, and compared values at the census tract level for "geographically concentrated" AAPI groups throughout the State. "Geographically concentrated" populations were defined as census tracts with at least 100 individuals from a specified racial/ethnic population as enumerated by the 2000 Census. Although EPI scores differed little between census tracts with aggregated AAPI (mean EPI = 0.53) and non-Hispanic white women (mean EPI = 0.63), there was substantial variation between tracts for disaggregated AAPI groups, with notably higher EPI scores for tracts enumerated for Korean or Japanese women (mean EPI of 0.78 and 0.77, respectively) compared with other AAPI groups. Our findings underscore the importance of disaggregating data for the heterogeneous AAPI population to identify differences in potential environmental exposures across groups. Future cancer etiology studies should examine environmental exposure differences within and across groups for the diverse AAPI population. ©2014 American Association for Cancer Research.
Besheer, Joyce; Fisher, Kristen R.; Lindsay, Tessa G.; Cannady, Reginald
2013-01-01
Stressful life events and chronic stressors have been associated with escalations in alcohol drinking. Stress exposure leads to the secretion of glucocorticoids (cortisol in the human; corticosterone (CORT) in the rodent). To model a period of heightened elevations in CORT, the present work assessed the effects of chronic exposure to the stress hormone CORT on alcohol self-administration. Male Long Evans rats were trained to self-administer a sweetened alcohol solution (2% sucrose/15% alcohol) resulting in moderate levels of daily alcohol intake (0.5–0.7 g/kg). Following stable baseline operant self-administration, rats received CORT in the drinking water for 7 days. A transient increase in alcohol self-administration was observed on the first self-administration session following CORT exposure, and behavior returned to control levels by the second session. Control experiments determined that this increase in alcohol self-administration was specific to alcohol, unrelated to general motor activation, and functionally dissociated from decreased CORT levels at the time of testing. These results indicate that repeated exposure to heightened levels of stress hormone (e.g., as may be experienced during stressful episodes) has the potential to lead to exacerbated alcohol intake in low to moderate drinkers. Given that maladaptive drinking patterns, such as escalated alcohol drinking following stressful episodes, have the potential to put an individual at risk for future drinking disorders, utilization of this model will be important for examination of neuroadaptations that occur as a consequence of CORT exposure in order to better understand escalated drinking following stressful episodes in nondependent individuals. PMID:23643750
O'Sullivan, Aaron J; Pigat, Sandrine; O'Mahony, Cian; Gibney, Michael J; McKevitt, Aideen I
2018-01-01
Children with Phenylketonuria (PKU) and severe cow's milk protein allergy (CMPA) consume prescribed, specially formulated, foods for special medical purposes (FSMPs) as well as restricted amounts of normal foods. These patients are exposed to artificial sweeteners from the consumption of a combination of free and prescribed foods. Young patients with PKU and CMPA have a higher risk of exceeding acceptable daily intakes (ADI) for additives than age-matched healthy children. A predictive modelling approach has been adapted successfully to assess the additive exposure of young patients with PKU and CMPA to artificial sweeteners. Steviol glycosides (E960) are at various stages of regulatory approval for the various food categories in the EU but are not as yet permitted for use in products intended for young children. The aim of this study was to predict potential steviol glycoside exposure in young children with PKU and CMPA considering the potential for future provisions for the use of this sweetener. The recent introduction of steviol glycosides means that no exposure data are available for children with CMPA and PKU. Food consumption data were derived from the food consumption survey data of healthy young children in Ireland from the National Preschool and Nutrition Survey (NPNS, 2010-11). Specially formulated amino acid-based FSMPs are used to replace whole or milk protein foods and were included in the exposure model to replace restricted foods. The recommendations to ensure adequate protein intake in these patients were used to determine FSMP intake. Exposure assessment results indicated that the maximum permitted level (MPL) for FSMPs would warrant careful consideration to avoid exposures above the ADI. These data can be used to inform recommendations for the medical nutrition industry.
Van Meijgaard, Jeroen; Fielding, Jonathan E; Kominski, Gerald F
2009-01-01
A comprehensive population health-forecasting model has the potential to interject new and valuable information about the future health status of the population based on current conditions, socioeconomic and demographic trends, and potential changes in policies and programs. Our Health Forecasting Model uses a continuous-time microsimulation framework to simulate individuals' lifetime histories by using birth, risk exposures, disease incidence, and death rates to mark changes in the state of the individual. The model generates a reference forecast of future health in California, including details on physical activity, obesity, coronary heart disease, all-cause mortality, and medical expenditures. We use the model to answer specific research questions, inform debate on important policy issues in public health, support community advocacy, and provide analysis on the long-term impact of proposed changes in policies and programs, thus informing stakeholders at all levels and supporting decisions that can improve the health of populations.
Raffler, Nastaran; Rissler, Jörg; Ellegast, Rolf; Schikowsky, Christian; Kraus, Thomas; Ochsmann, Elke
2017-11-01
Multifactorial workloads such as whole-body vibration (WBV), awkward posture and heavy lifting are potential predictors for low back pain (LBP). In this study, we investigate the association between LBP and these exposures among 102 professional drivers. The combined exposures of WBV and posture are measured at different workplaces. Health and personal data as well as information about lifting tasks are collected by a questionnaire. The daily vibration exposure value (odds ratio 1.69) and an index for awkward posture (odds ratio 1.63) show significant association with the occurence of LBP. Awkward posture and heavy lifting appear to be more strongly associated with sick leave than WBV exposure. Furthermore, a combination of the measurement results of WBV and awkward posture into one quantity also shows significant correlation to LBP. The combined exposure of WBV and awkward posture can be described in terms of the daily vibration exposure and the index for awkward posture. This facilitates work place assessments and future research in this area. Practitioner Summary: For the first time, quantitative measures combining whole-body vibration and awkward posture exposures have shown to correlate with the occurrence of low back pain significantly. This validates the proposed quantities and measurement methods, which facilitate workplace assessments and assist in the design of further studies which are necessary to establish a causal exposure-response relationship.
Too much of a good thing? Nitrate from nitrogen fertilizers and cancer.
Ward, Mary H
2009-01-01
Nitrate levels in water supplies have been increasing in many areas of the world; therefore, additional studies of populations with well-characterized exposures are urgently needed to further our understanding of cancer risk associated with nitrate ingestion. Future studies should assess exposure for individuals (e.g., case-control, cohort studies) in a time frame relevant to disease development, and evaluate factors affecting nitrosation. Estimating N-nitroso compounds formation via nitrate ingestion requires information on dietary and drinking water sources of nitrate, inhibitors of nitrosation (e.g., vitamin C), nitrosation precursors (e.g., red meat, nitrosatable drugs), and medical conditions that may increase nitrosation (e.g., inflammatory bowel disease). Studies should account for the potentially different effects of dietary and water sources of nitrate and should include the population using private wells for whom exposure levels are often higher than public supplies.
Air pollution impacts on avian species via inhalation exposure and associated outcomes
NASA Astrophysics Data System (ADS)
Sanderfoot, Olivia V.; Holloway, Tracey
2017-08-01
Despite the well-established links between air pollution and human health, vegetation, and aquatic ecosystems, less attention has been paid to the potential impact of reactive atmospheric gases and aerosols on avian species. In this literature review, we summarize findings published since 1950 regarding avian responses to air pollution and discuss knowledge gaps that could be addressed in future studies. We find consistent evidence for adverse health impacts on birds attributable to exposure to gas-phase and particulate air pollutants, including carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), smoke, and heavy metals, as well as mixtures of urban and industrial emissions. Avian responses to air pollution include respiratory distress and illness, increased detoxification effort, elevated stress levels, immunosuppression, behavioral changes, and impaired reproductive success. Exposure to air pollution may furthermore reduce population density, species diversity, and species richness in bird communities.
Exposure, Uptake, and Barriers
NASA Astrophysics Data System (ADS)
Baeza-Squiban, Armelle; Lanone, Sophie
The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.
In utero exposure and breast cancer development: an epigenetic perspective.
Hill, Jacob; Hodsdon, Wendy
2014-01-01
The ubiquitous and detrimental disease of breast cancer requires continual research into new and alternative forms of treatment and prevention. The emerging field of epigenetics is beginning to unfold an array of contemporary approaches to reduce the risk and improve the clinical approach to breast cancer. The information contained in this non-systematic review highlights and expands on the estrogen-based model of breast cancer epigenetics to provide an overview of epigenetic alterations induced by nutrition and environmental exposure. The majority of evidence suggests that various sources of excess estrogen correlate to future breast cancer development. In addition, maternal macro- and micronutrient balance appear to play a role in genomic regulation, and preliminary data suggest that specific superfoods, such as blueberries, have a protective epigenetic effect. Identifying the influence of environmental toxicants, hormonal exposure, maternal nutrition, and maternal disease on fetal epigenetics may have potential for development of new therapeutic approaches for the prevention of breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronevich, Joseph Allen; Balch, Dorian K.; San Marchi, Christopher W.
2015-12-01
This project was intended to enable SNL-CA to produce appropriate specimens of relevant stainless steels for testing and perform baseline testing of weld heat-affected zone and weld fusion zone. One of the key deliverables in this project was to establish a procedure for fracture testing stainless steel weld fusion zone and heat affected zones that were pre-charged with hydrogen. Following the establishment of the procedure, a round robin was planned between SNL-CA and SRNL to ensure testing consistency between laboratories. SNL-CA and SRNL would then develop a comprehensive test plan, which would include tritium exposures of several years at SRNLmore » on samples delivered by SNL-CA. Testing would follow the procedures developed at SNL-CA. SRNL will also purchase tritium charging vessels to perform the tritium exposures. Although comprehensive understanding of isotope-induced fracture in GTS reservoir materials is a several year effort, the FY15 work would enabled us to jump-start the tests and initiate long-term tritium exposures to aid comprehensive future investigations. Development of a procedure and laboratory testing consistency between SNL-CA and SNRL ensures reliability in results as future evaluations are performed on aluminum alloys and potentially additively-manufactured components.« less
Pteropod eggs released at high pCO2 lack resilience to ocean acidification
Manno, Clara; Peck, Victoria L.; Tarling, Geraint A.
2016-01-01
The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750 μatm and 1200 μatm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600 m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades. PMID:27181210
Increasing flood exposure in the Netherlands: implications for risk financing
NASA Astrophysics Data System (ADS)
Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.
2014-05-01
The effectiveness of disaster risk management and financing mechanisms depends on an accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information provides valuable input to discussions on possible risk financing practices. The case study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood-prone areas has been higher than in non-flood-prone areas. We also find that property values in flood-prone areas are lower than those in non-flood-prone areas. We argue that the increase in the share of economic value located in potential flood-prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.
Short and Long-Term Sunlight Radiation and Stroke Incidence
McClure, Leslie A.; Judd, Suzanne E.; Howard, Virginia J.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Wadley, Virginia G.; Peace, Fredrick; Kabagambe, Edmond K.
2012-01-01
OBJECTIVE Examine whether long and short-term sunlight radiation is related to stroke incidence. METHODS Fifteen-year residential histories merged with satellite, ground monitor, and model reanalysis data were used to determine sunlight radiation (insolation) and temperature exposure for a cohort of 16,606 stroke and coronary artery disease free black and white participants aged 45+ from the 48 contiguous United States. Fifteen, ten, five, two and one-year exposures were used to predict stroke incidence during follow-up in Cox proportional hazard models. Potential confounders and mediators were included during model-building. RESULTS Shorter exposure periods exhibited similar, but slightly stronger relationships than longer exposure periods. After adjustment for other covariates, the previous year’s monthly average insolation exposure below the median gave an HR=1.61 (95% CI: 1.15, 2.26) and the previous year’s highest compared to the second highest quartile of monthly average maximum temperature exposure gave an HR=1.92 (1.27, 2.92). INTERPRETATION These results indicate a relationship between lower levels of sunlight radiation and higher stroke incidence. The biological pathway of this relationship is not clear. Future research will show whether this finding stands, the pathway for this relationship, and if it is due to short or long-term exposures. PMID:23225379
Virtual reality exposure versus prolonged exposure for PTSD: Which treatment for whom?
Norr, Aaron M; Smolenski, Derek J; Katz, Andrea C; Rizzo, Albert A; Rothbaum, Barbara O; Difede, JoAnn; Koenen-Woods, Patricia; Reger, Mark A; Reger, Greg M
2018-06-01
The majority of studies comparing active psychological treatments for posttraumatic stress disorder (PTSD) do not find significant differences at posttreatment. This was the case in a recent trial examining prolonged exposure (PE) and virtual reality exposure (VRE) among active-duty soldiers with combat-related PTSD. Matching individual patients to specific treatments provides a potential avenue to improve significantly the public health impact of effective treatments for PTSD. A composite moderator approach was used to identify profiles of patients who would see superior PTSD symptom reduction in VRE or PE to inform future treatment matching. Active duty U.S. army soldiers (N = 108) were enrolled in a randomized clinical trial comparing VRE and PE in the treatment of PTSD stemming from deployments to Iraq or Afghanistan. Eighteen baseline variables were examined to identify treatment response heterogeneity in two patient groups: those with a superior response to PE and those with a superior response to VRE. The final composite moderator comprised four of 18 baseline variables. Results revealed that patients who were predicted to see greater PTSD symptom reduction in VRE were likely to be younger, not taking antidepressant medication, had greater PTSD hyperarousal symptoms, and were more likely to have greater than minimal suicide risk. Results suggest that treatment matching based on patient profiles could meaningfully improve treatment efficacy for combat-related PTSD. Future research can build on these results to improve our understanding of how to improve treatment matching for PTSD. © 2018 Wiley Periodicals, Inc.
Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.
Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella
2017-10-01
We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Cadwallader
The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclearmore » endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.« less
Valencia-Quintana, Rafael; Sánchez-Alarcón, Juana; Tenorio-Arvide, María G; Deng, Youjun; Montiel-González, José M R; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Cortés-Eslava, Josefina; Flores-Márquez, Ana R; Arenas-Huertero, Francisco
2014-01-01
The identification of aflatoxins as human carcinogens has stimulated extensive research efforts, which continue to the present, to assess potential health hazards resulting from contamination of the human food supply and to minimize exposure. The use of biomarkers that are mechanistically supported by toxicological studies will be important tools for identifying stages in the progression of development of the health effects of environmental agents. miRNAs are small non-coding mRNAs that regulate post-transcriptional gene expression. Also, they are molecular markers of cellular responses to various chemical agents. Growing evidence has demonstrated that environmental chemicals can induce changes in miRNA expression. miRNAs are good biomarkers because they are well defined, chemically uniform, restricted to a manageable number of species, and stable in cells and in the circulation. miRNAs have been used as serological markers of HCC and other tumors. The expression patterns of different miRNAs can distinguish among HCC-hepatitis viruses related, HCC cirrhosis-derivate, and HCC unrelated to either of them. The main objective of this review is to find unreported miRNAs in HCC related to other causes, so that they can be used as specific molecular biomarkers in populations exposed to aflatoxins and as early markers of exposure, damage/presence of HCC. Until today specific miRNAs as markers for aflatoxins-exposure and their reliability are currently lacking. Based on their elucidated mechanisms of action, potential miRNAs that could serve as possible markers of HCC by exposure to aflatoxins are miR-27a, miR-27b, miR-122, miR-148, miR-155, miR-192, miR-214, miR-221, miR-429, and miR-500. Future validation for all of these miRNAs will be needed to assess their prognostic significance and confirm their relationship with the induction of HCC due to aflatoxin exposure.
Snyder-Talkington, Brandi N.; Dymacek, Julian; Porter, Dale W.; Wolfarth, Michael G.; Mercer, Robert R.; Pacurari, Maricica; Denvir, James; Castranova, Vincent; Qian, Yong; Guo, Nancy L.
2014-01-01
The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and were used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. PMID:23845593
Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites.
Chojnacki, Matthew; Banks, Maria; Urso, Anna
2018-02-01
Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.
Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites
Chojnacki, Matthew; Banks, Maria; Urso, Anna
2018-01-01
Aeolian processes have likely been the predominant geomorphic agent for most of Mars’ history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low. PMID:29568719
Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites
NASA Astrophysics Data System (ADS)
Chojnacki, Matthew; Banks, Maria; Urso, Anna
2018-02-01
Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.
Potential release scenarios for carbon nanotubes used in composites.
Nowack, Bernd; David, Raymond M; Fissan, Heinz; Morris, Howard; Shatkin, Jo Anne; Stintz, Michael; Zepp, Richard; Brouwer, Derk
2013-09-01
The expected widespread use of carbon nanotube (CNT)-composites in consumer products calls for an assessment of the possible release and exposure to workers, consumers and the environment. Release of CNTs may occur at all steps in the life cycle of products, but to date only limited information is available about release of CNTs from actual products and articles. As a starting point for exposure assessment, exploring sources and pathways of release helps to identify relevant applications and situations where the environment and especially humans may encounter releases of CNTs. It is the aim of this review to identify various potential release scenarios for CNTs used in polymers and identify the greatest likelihood of release at the various stages throughout the life-cycle of the product. The available information on release of CNTs from products and articles is reviewed in a first part. In a second part nine relevant release scenarios are described in detail: injection molding, manufacturing, sports equipment, electronics, windmill blades, fuel system components, tires, textiles, incineration, and landfills. Release from products can potentially occur by two pathways; (a) where free CNTs are released directly, or more frequently (b) where the initial release is a particle with CNTs embedded in the matrix, potentially followed by the subsequent release of CNTs from the matrix. The potential for release during manufacturing exists for all scenarios, however, this is also the situation when exposure can be best controlled. For most of the other life cycle stages and their corresponding release scenarios, potential release of CNTs can be considered to be low, but it cannot be excluded totally. Direct release to the environment is also considered to be very low for most scenarios except for the use of CNTs in tires where significant abrasion during use and release into the environment would occur. Also the possible future use of CNTs in textiles could result in consumer exposure. A possibility for significant release also exists during recycling operations when the polymers containing CNTs are handled together with other polymers and mainly occupational users would be exposed. It can be concluded that in general, significant release of CNTs from products and articles is unlikely except in manufacturing and subsequent processing, tires, recycling, and potentially in textiles. However except for high energy machining processes, most likely the resulting exposure for these scenarios will be low and to a non-pristine form of CNTs. Actual exposure studies, which quantify the amount of material released should be conducted to provide further evidence for this conclusion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood.
Sullivan, Elinor L; Smith, M Susan; Grove, Kevin L
2011-01-01
The perinatal environment plays an important role in programming many aspects of physiology and behavior including metabolism, body weight set point, energy balance regulation and predisposition to mental health-related disorders such as anxiety, depression and attention deficit hyperactivity disorder. Maternal health and nutritional status heavily influence the early environment and have a long-term impact on critical central pathways, including the melanocortinergic, serotonergic system and dopaminergic systems. Evidence from a variety of animal models including rodents and nonhuman primates indicates that exposure to maternal high-fat diet (HFD) consumption programs offspring for increased risk of adult obesity. Hyperphagia and increased preference for fatty and sugary foods are implicated as mechanisms for the increased obesity risk. The effects of maternal HFD consumption on energy expenditure are unclear, and future studies need to address the impact of perinatal HFD exposure on this important component of energy balance regulation. Recent evidence from animal models also indicates that maternal HFD consumption increases the risk of offspring developing mental health-related disorders such as anxiety. Potential mechanisms for perinatal HFD programming of neural pathways include circulating factors, such as hormones (leptin, insulin), nutrients (fatty acids, triglycerides and glucose) and inflammatory cytokines. As maternal HFD consumption and obesity are common and rapidly increasing, we speculate that future generations will be at increased risk for both metabolic and mental health disorders. Thus, it is critical that future studies identify therapeutic strategies that are effective at preventing maternal HFD-induced malprogramming. Copyright © 2010 S. Karger AG, Basel.
Perception of risk and potential occupational exposure to HIV/AIDS among medical interns in Delhi.
Lal, Panna; Singh, M M; Malhotra, Rahul; Ingle, G K
2007-06-01
A cross sectional study was conducted among 129 medical interns of Maulana Azad Medical College, New Delhi for assessing the perceived levels of risk of acquiring HIV infection in the health care settings among medical interns, reasons for the same and their exposure to situations having potential of HIV transmission. Majority of the interns (68.3%) perceived themselves to be at a very high/high risk of acquiring HIV infection during their medical career. The common reasons for perceived risk of acquiring HIV infection were getting injuries due to needle pricks/cuts during surgical procedures (32.4%), frequent exposure to the blood/ secretions of patients (28.5%) and insufficient availability of gloves (17.6%). Some (23.2%) were of the opinion that students in future might lose interest in the medical profession due to increasing risk of HIV infection and few (3.1%) were even considering to leave the medical profession for the same reason. Majority of the interns (72.9%) had experienced needle pricks and more than half (53.7%) of them even had had blood splashes in their eyes/ nose/ mouth during surgical procedures. The findings of the study call for efforts for bringing a reduction in the risk perception of the interns through awareness campaigns and reorientation trainings, ensuring availability of gloves and other items necessary for observing universal work precautions and proper disposal of potentially contaminated articles.
Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A.
2016-01-01
Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. PMID:26724381
Nance, Earthea; King, Denae; Wright, Beverly; Bullard, Robert D
2016-02-01
The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.
Owensby, Justin K; Kavookjian, Jan
2017-07-01
To explore student pharmacists' perceptions of 1) future patient counseling, 2) use of mobile health applications (mHealth apps), and 3) usefulness of motivational interviewing (MI) in patient encounters and potential app messaging. A cross-sectional design with first and second year pharmacy students (n=315) at a multi-campus university after exposure to mHealth app and MI curricular content. A questionnaire assessed perceptions of 1) future patient counseling, 2) using apps for personal use and professional encounters, and 3) potential practicality and usefulness of MI principles/skills in apps messaging. Over 70% of students perceived they will be counseling future patients for medication therapy/comprehensive disease management; 91% believed it is an important role as a future pharmacist. A majority own a smartphone (98%), have used an mHealth app to monitor/change a health behavior (73%), and are likely to recommend an mHealth app in future patient encounters (90%). Perceptions of counseling importance and likelihood to recommend an mHealth app varied by gender (women higher than men, p<0.01, p<0.01) and previous mHealth app use (yes higher than no, p<0.05, p<0.001). Most students reported a high likelihood of incorporating MI into current (88%) and future (91%) patient encounters and particularly noted 'supporting self-efficacy' as a useful MI principle to incorporate into mHealth app messaging. Those using apps for personal health behavior change(s) perceived future patient counseling as important and were more likely to recommend mHealth apps during those future encounters. Results may inform curricular development to prepare future pharmacists for the high-tech, patient-centered practice that is inevitable. Copyright © 2017 Elsevier Inc. All rights reserved.
Monitoring of fetal radiation exposure during pregnancy.
Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei
2013-09-01
One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.
Asbestos exposure during home renovation in New South Wales.
Park, Eun-Kee; Yates, Deborah H; Hyland, Rebecca A; Johnson, Anthony R
2013-09-16
Asbestos exposure is causally associated with the development of malignant mesothelioma (MM), which is increasingly being reported after exposure to asbestos fibro sheeting in Australia. In this study, we investigate self-reported non-occupational asbestos exposure during home renovation in New South Wales. Cross-sectional mailed questionnaire examining renovation activity, tasks undertaken during renovation and self-reported exposure to asbestos among respondents and their family members in NSW between January and June 2008. 10 000 adults aged 18-99 years, randomly selected from the NSW electoral roll. We received 3612 responses, while 365 questionnaires did not reach addressees, giving an overall response rate of 37.5%. Differences in self-reported asbestos exposure between do-it-yourself (DIY) and non-DIY renovators. 1597 participants (44.2%) had renovated their home and among these, 858 participants (53.7%) self-reported as DIY renovators. Of these, 527 (61.4%) reported asbestos exposure during home renovations, 337 (39.3%) reported that their partner had been exposed to asbestos during renovations, and 196 (22.8%) reported that their children had been exposed. More than 20% of renovators planned to further renovate their current homes within the next 5 years. Self-reported asbestos exposure during home renovation is common. This preventable exposure could place adults and children at risk of MM many years into the future. Although such exposure is self-reported and ideally should be verified, this study identifies a potentially important problem in NSW.
Yohn, Nicole L.; Bartolomei, Marisa S.; Blendy, Julie A.
2015-01-01
Familial inheritance of drug abuse is composed of both genetic and environmental factors. Additionally, epigenetic transgenerational inheritance may provide a means by which parental drug use can influence several generations of offspring. Recent evidence suggests that parental drug exposure produces behavioral, biochemical, and neuroanatomical changes in future generations. The focus of this review is to discuss these multigenerational and transgenerational phenotypes in the offspring of animals exposed to drugs of abuse. Specifically, changes found following the administration of alcohol, opioids, cocaine, marijuana, and nicotine will be discussed. In addition, epigenetic modifications to the genome following administration of these drugs will be detailed as well as their potential for transmission to the next generation. PMID:25839742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, T. P.; Easterly, C. E.
Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and bettermore » communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.« less
The role of CO2 variability and exposure time for biological impacts of ocean acidification
NASA Astrophysics Data System (ADS)
Shaw, Emily C.; Munday, Philip L.; McNeil, Ben I.
2013-09-01
impacts of ocean acidification have mostly been studied using future levels of CO2 without consideration of natural variability or how this modulates both duration and magnitude of CO2 exposure. Here we combine results from laboratory studies on coral reef fish with diurnal in situ CO2 data from a shallow coral reef, to demonstrate how natural variability alters exposure times for marine organisms under increasingly high-CO2 conditions. Large in situ CO2 variability already results in exposure of coral reef fish to short-term CO2 levels higher than laboratory-derived critical CO2 levels (~600 µatm). However, we suggest that the in situ exposure time is presently insufficient to induce negative effects observed in laboratory studies. Our results suggest that both exposure time and the magnitude of CO2 levels will be important in determining the response of organisms to future ocean acidification, where both will increase markedly with future increases in CO2.
2015-05-30
provides a smnmaty of results from the site visits and discusses areas of potential future research. 1S. SUBJECT TERMS Aircraft Paint Hangar...Airlift Wing ACCPFF ACGIH Aircraft Corrosion Control and Paint Finishing Facility American Conference of Governmental Industrial Hygienists ACS Cross...velocity did not increase exposure resulted in an interest in expanding the project to encompass more sites around the U.S. with support from the
Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Wilkins, Richard; Armendariz, Lupita (Technical Monitor)
2002-01-01
Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
This operable unit consists of Sites 41 and 74. The remedial actions are designed to prevent future potential exposure by implementing institutional controls. These controls include: (1) designate the sites as `restricted` or `limited use` areas, within the base master plan; (2) prohibit the installation of potable water supply wells within the vicinity of the sites: and (3) implement a groundwater, surface water and sediment monitoring program.
Reduced infectivity of waterborne viable but nonculturable Helicobacter pylori strain SS1 in mice.
Boehnke, Kevin F; Eaton, Kathryn A; Fontaine, Clinton; Brewster, Rebecca; Wu, Jianfeng; Eisenberg, Joseph N S; Valdivieso, Manuel; Baker, Laurence H; Xi, Chuanwu
2017-08-01
Helicobacter pylori infection has been consistently associated with lack of access to clean water and proper sanitation, but no studies have demonstrated that the transmission of viable but nonculturable (VBNC) H. pylori can occur from drinking contaminated water. In this study, we used a laboratory mouse model to test whether waterborne VBNCH. pylori could cause gastric infection. We performed five mouse experiments to assess the infectivity of VBNCH. pylori in various exposure scenarios. VBNC viability was examined using Live/Dead staining and Biolog phenotype metabolism arrays. High doses of VBNCH. pylori in water were chosen to test the "worst-case" scenario for different periods of time. One experiment also investigated the infectious capabilities of VBNC SS1 using gavage. Further, immunocompromised mice were exposed to examine infectivity among potentially vulnerable groups. After exposure, mice were euthanized and their stomachs were examined for H. pylori infection using culture and PCR methodology. VBNC cells were membrane intact and retained metabolic activity. Mice exposed to VBNCH. pylori via drinking water and gavage were not infected, despite the various exposure scenarios (immunocompromised, high doses) that might have permitted infection with VBNCH. pylori. The positive controls exposed to viable, culturable H. pylori did become infected. While other studies that have used viable, culturable SS1 via gavage or drinking water exposures to successfully infect mice, in our study, waterborne VBNC SS1 failed to colonize mice under all test conditions. Future studies could examine different H. pylori strains in similar exposure scenarios to compare the relative infectivity of the VBNC vs the viable, culturable state, which would help inform future risk assessments of H. pylori in water. © 2017 The Authors. Helicobacter Published by John Wiley & Sons Ltd.
Monaghan, A J; Sampson, K M; Steinhoff, D F; Ernst, K C; Ebi, K L; Jones, B; Hayden, M H
2018-02-01
The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue and chikungunya, two globally-important vector-borne diseases. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti . Occurrence patterns for Ae. aegypti for 2061-2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950-2000 reference period. A global land area of 56.9 M km 2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8% (RCP4.5) to 13% (RCP8.5) by 2061-2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298-460 M (8-12%) by 2061-2080 if only climate change is considered, and by 4805-5084 M (127-134%) for SSP3 and 2232-2483 M (59-65%) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.
Screening and Mitigation of Layperson Anxiety in Aerospace Environments.
Mulcahy, Robert A; Blue, Rebecca S; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M
Anxiety may present challenges for commercial spaceflight operations, as little is known regarding the psychological effects of spaceflight on laypersons. A recent investigation evaluated measures of anxiety during centrifuge-simulated suborbital commercial spaceflight, highlighting the potential for severe anxiousness to interrupt spaceflight operations. To pave the way for future research, an extensive literature review identified existing knowledge that may contribute to formation of interventions for anxiety in commercial spaceflight. Useful literature was identified regarding anxiety from a variety of fields, including centrifugation, fear of flying, motion sickness, and military operations. Fear of flying is the most extensively studied area, with some supportive evidence from centrifugation studies. Virtual reality exposure (VRE) is as effective as actual training flight exposure (or analog exposure) in mitigation of flight-related anxiety. The addition of other modalities, such as cognitive behavioral therapy or biofeedback, to VRE improves desensitization compared to VRE alone. Motion sickness-susceptible individuals demonstrate higher trait anxiety than nonsusceptible individuals; for this reason, motion sickness susceptibility questionnaires may be useful measures to identify at-risk individuals. Some military studies indicate that psychiatric history and personality classification may have predictive value in future research. Medication countermeasures consisting of benzodiazepines may quell in-flight anxiety, but do not likely improve anxiety on repeat exposure. The scarce available literature addressing anxiety in unique environments indicates that training/repeated exposure may mitigate anxiety. Anxiety and personality indices may be helpful screening tools, while pharmaceuticals may be useful countermeasures when needed. Mulcahy RA, Blue RS, Vardiman JL, Castleberry TL, Vanderploeg JM. Screening and mitigation of layperson anxiety in aerospace environments. Aerosp Med Hum Perform. 2016; 87(10):882-889.
Yiin, James H; Anderson, Jeri L; Bertke, Stephen J; Tollerud, David J
2018-05-09
To examine dose-response relationships between internal uranium exposures and select outcomes among a cohort of uranium enrichment workers. Cox regression was conducted to examine associations between selected health outcomes and cumulative internal uranium with consideration for external ionizing radiation, work-related medical X-rays and contaminant radionuclides technetium ( 99 Tc) and plutonium ( 239 Pu) as potential confounders. Elevated and monotonically increasing mortality risks were observed for kidney cancer, chronic renal diseases, and multiple myeloma, and the association with internal uranium absorbed organ dose was statistically significant for multiple myeloma. Adjustment for potential confounders had minimal impact on the risk estimates. Kidney cancer, chronic renal disease, and multiple myeloma mortality risks were elevated with increasing internal uranium absorbed organ dose. The findings add to evidence of an association between internal exposure to uranium and cancer. Future investigation includes a study of cancer incidence in this cohort. © 2018 Wiley Periodicals, Inc.
Detection of fullerenes (C60 and C70) in commercial cosmetics
Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre
2013-01-01
Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27–42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. PMID:21300421
70 years of radiation genetics: Fruit flies, mice and humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahamson, S.
1997-03-01
Radiation protection`s function is to protect society from the potential hazards that might occur through the human use of radiation, whether it be from energy production, medical uses or other sources of exposure. To do so, various scientific bodies are called upon to develop risk estimates which will provide society with adequate protection to the adverse effects of radiation, as best we can understand those adverse affects. Geneticists have the added burden, in that they must attempt to provide protection not only to the offspring of the present generation but also for all subsequent generations. While most of us havemore » difficulty in thinking of effects that might be manifest only one or two generations into the future, some have projected potential risks for 50 to 100 generations. Here the author reviews work on fruit flies and mice, and studies of human exposures, which has provided much of the foundational information upon which geneticists can derive conclusions with regard to radiation protection questions.« less
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Kia-Keating, Maryam; Santacrose, Diana E; Liu, Sabrina R; Adams, Jessica
High rates of exposure to violence and other adversities among Latino/a youth contribute to health disparities. The current article addresses the ways in which community-based participatory research (CBPR) and human-centered design (HCD) can help engage communities in dialogue and action. We present a project exemplifying how community forums, with researchers, practitioners, and key stakeholders, including youths and parents, integrated HCD strategies with a CBPR approach. Given the potential for power inequities among these groups, CBPR + HCD acted as a catalyst for reciprocal dialogue and generated potential opportunity areas for health promotion and change. Future directions are described.
Effects of radiation on DNA's double helix
NASA Technical Reports Server (NTRS)
2003-01-01
The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)
2003-01-22
The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)
Suicide Risk Associated with Experience of Violence and Impulsivity in Alcohol Dependent Patients.
Khemiri, Lotfi; Jokinen, Jussi; Runeson, Bo; Jayaram-Lindström, Nitya
2016-01-19
Alcohol dependence (AD) and aggression-impulsivity are both associated with increased suicide risk. There is a need to evaluate clinical tools in order to improve suicide risk assessment of AD patients. The present study consisted of 95 individuals with a diagnosis of AD, consecutively admitted for addiction treatment, compared with 95 healthy controls. Suicidal risk was assessed together with exposure of violence and impulsivity. AD patients reported significantly higher rates of exposure to violence in childhood, as measured by the Karolinska Interpersonal Violence Scale (KIVS), compared to HC. Within the AD group, individuals with history of suicidal ideation and suicidal behavior reported higher levels of violence experience compared to AD individuals without such history. AD patients with previous suicidal ideation scored higher on self-reported impulsivity as assessed by the Barratt Impulsivity Scale (BIS). Our main finding was that experience of trauma and expression of violent behavior, coupled with increased impulsivity are associated with an elevated suicide risk in AD patients. Future longitudinal studies assessing these traits are needed to evaluate their potential role in identifying AD patients at risk of future suicide.
Suicide Risk Associated with Experience of Violence and Impulsivity in Alcohol Dependent Patients
Khemiri, Lotfi; Jokinen, Jussi; Runeson, Bo; Jayaram-Lindström, Nitya
2016-01-01
Alcohol dependence (AD) and aggression-impulsivity are both associated with increased suicide risk. There is a need to evaluate clinical tools in order to improve suicide risk assessment of AD patients. The present study consisted of 95 individuals with a diagnosis of AD, consecutively admitted for addiction treatment, compared with 95 healthy controls. Suicidal risk was assessed together with exposure of violence and impulsivity. AD patients reported significantly higher rates of exposure to violence in childhood, as measured by the Karolinska Interpersonal Violence Scale (KIVS), compared to HC. Within the AD group, individuals with history of suicidal ideation and suicidal behavior reported higher levels of violence experience compared to AD individuals without such history. AD patients with previous suicidal ideation scored higher on self-reported impulsivity as assessed by the Barratt Impulsivity Scale (BIS). Our main finding was that experience of trauma and expression of violent behavior, coupled with increased impulsivity are associated with an elevated suicide risk in AD patients. Future longitudinal studies assessing these traits are needed to evaluate their potential role in identifying AD patients at risk of future suicide. PMID:26784730
Harper, Martin; Weis, Christopher; Pleil, Joachim D; Blount, Benjamin C; Miller, Aubrey; Hoover, Mark D; Jahn, Steven
2015-01-01
Exposure science is a holistic concept without prejudice to exposure source. Traditionally, measurements aimed at mitigating environmental exposures have not included exposures in the workplace, instead considering such exposures to be an internal affair between workers and their employers. Similarly, occupational (or industrial) hygiene has not typically accounted for environmental contributions to poor health at work. Many persons spend a significant amount of their lifetime in the workplace, where they maybe exposed to more numerous chemicals at higher levels than elsewhere in their environment. In addition, workplace chemical exposures and other exogenous stressors may increase epigenetic and germline modifications that are passed on to future generations. We provide a brief history of the development of exposure science from its roots in the assessment of workplace exposures, including an appendix where we detail current resources for education and training in exposure science offered through occupational hygiene organizations. We describe existing successful collaborations between occupational and environmental practitioners in the field of exposure science, which may serve as a model for future interactions. Finally, we provide an integrated vision for the field of exposure science, emphasizing interagency collaboration, the need for complete exposure information in epidemiological studies, and the importance of integrating occupational, environmental, and residential assessments. Our goal is to encourage communication and spur additional collaboration between the fields of occupational and environmental exposure assessment. Providing a more comprehensive approach to exposure science is critical to the study of the "exposome", which conceptualizes the totality of exposures throughout a person's life, not only chemical, but also from diet, stress, drugs, infection, and so on, and the individual response.
Harper, Martin; Weis, Christopher; Pleil, Joachim D.; Blount, Benjamin C.; Miller, Aubrey; Hoover, Mark D.; Jahn, Steven
2015-01-01
Exposure science is a holistic concept without prejudice to exposure source. Traditionally, measurements aimed at mitigating environmental exposures have not included exposures in the workplace, instead considering such exposures to be an internal affair between workers and their employers. Similarly, occupational (or industrial) hygiene has not typically accounted for environmental contributions to poor health at work. Many persons spend a significant amount of their lifetime in the workplace, where they maybe exposed to more numerous chemicals at higher levels than elsewhere in their environment. In addition, workplace chemical exposures and other exogenous stressors may increase epigenetic and germline modifications that are passed on to future generations. We provide a brief history of the development of exposure science from its roots in the assessment of workplace exposures, including an appendix where we detail current resources for education and training in exposure science offered through occupational hygiene organizations. We describe existing successful collaborations between occupational and environmental practitioners in the field of exposure science, which may serve as a model for future interactions. Finally, we provide an integrated vision for the field of exposure science, emphasizing interagency collaboration, the need for complete exposure information in epidemiological studies, and the importance of integrating occupational, environmental, and residential assessments. Our goal is to encourage communication and spur additional collaboration between the fields of occupational and environmental exposure assessment. Providing a more comprehensive approach to exposure science is critical to the study of the “exposome”, which conceptualizes the totality of exposures throughout a person’s life, not only chemical, but also from diet, stress, drugs, infection, and so on, and the individual response. PMID:25670022
Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy.
Davis, Benjamin B; Zeki, Amir A; Bratt, Jennifer M; Wang, Lei; Filosto, Simone; Walby, William F; Kenyon, Nicholas J; Goldkorn, Tzipora; Schelegle, Edward S; Pinkerton, Kent E
2013-08-01
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death. The statin drugs may have therapeutic potential in respiratory diseases such as COPD, but whether they prevent bronchial epithelial injury is unknown. We hypothesised that simvastatin attenuates acute tobacco smoke-induced neutrophilic lung inflammation and airway epithelial injury. Spontaneously hypertensive rats were given simvastatin (20 mg·kg(-1) i.p.) daily for either 7 days prior to tobacco smoke exposure and during 3 days of smoke exposure, or only during tobacco smoke exposure. Pretreatment with simvastatin prior to and continued throughout smoke exposure reduced the total influx of leukocytes, neutrophils and macrophages into the lung and airways. Simvastatin attenuated tobacco smoke-induced cellular infiltration into lung parenchymal and airway subepithelial and interstitial spaces. 1 week of simvastatin pretreatment almost completely prevented smoke-induced denudation of the airway epithelial layer, while simvastatin given only concurrently with the smoke exposure had no effect. Simvastatin may be a novel adjunctive therapy for smoke-induced lung diseases, such as COPD. Given the need for statin pretreatment there may be a critical process of conditioning that is necessary for statins' anti-inflammatory effects. Future work is needed to elucidate the mechanisms of this statin protective effect.
Kerr, Kathleen J
2015-01-01
During or very soon after the 1990-1991 Persian Gulf War, veterans of the conflict began to report symptoms of illness. Common complaints included combinations of cognitive difficulties, fatigue, myalgia, rashes, dyspnea, insomnia, gastrointestinal symptoms and sensitivity to odors. Gradually in the USA, and later in the UK, France, Canada, Denmark and Australia, governments implemented medical assessment programs and epidemiologic studies to determine the scope of what was popularly referred to as "the Gulf War syndrome". Attention was drawn to numerous potentially toxic deployment-related exposures that appeared to vary by country of deployment, by location within the theater, by unit, and by personal job types. Identifying a single toxicant cause was considered unlikely and it was recognized that outcomes were influenced by genetic variability in xenobiotic metabolism. Derived from primary papers and key reports by the Research Advisory Committee on Gulf War Veterans' Illnesses and the Institute of Medicine, a brief overview is presented of war related events, symptoms and diagnostic criteria for Gulf War illness (GWV), some international differences, the various war-related exposures and key epidemiologic studies. Possible exposure interactions and pathophysiologic mechanisms are discussed. Exposures to pyridostigmine bromide, pesticides, sarin and mustard gas or combinations thereof were most associated with GWI, especially in some genotype subgroups. The resultant oxidant stress and background exposome must be assumed to have played a role. Gulf War (GW) exposures and their potential toxic effects should be considered in the context of the human genome, the human exposome and resultant oxidant stress to better characterize this unique environmentally-linked illness and, ultimately, provide a rationale for more effective interventions and future prevention efforts.
Air Pollution Affects Lung Cancer Survival
Eckel, Sandrah P; Cockburn, Myles; Shu, Yu-Hsiang; Deng, Huiyu; Lurmann, Frederick W.; Liu, Lihua; Gilliland, Frank D
2017-01-01
Rationale Exposure to ambient air pollutants has been associated with increased lung cancer incidence and mortality but, due to the high case fatality rate, little is known about the impacts of air pollution exposures on survival after diagnosis. This study aimed to determine whether ambient air pollutant exposures are associated with lung cancer patient survival. Methods Participants were 352,053 patients with newly diagnosed lung cancer during 1988–2009 in California, ascertained by the California Cancer Registry. Average residential ambient air pollutant concentrations were estimated for each participant’s follow-up period. Cox proportional hazards models were used to estimate hazard ratios (HRs) relating air pollutant exposures to all-cause mortality overall and stratified by stage (localized only, regional, and distant site) and histology (squamous cell carcinoma, adenocarcinoma, small cell carcinoma, large cell carcinoma, and others) at diagnosis, adjusting for potential individual and area-level confounders. Results Adjusting for histology and other potential confounders, the HR associated with 1 standard deviation increases in NO2, O3, PM10, PM2.5 for patients with localized stage at diagnosis were 1.30 (95% CI: 1.28–1.32), 1.04 (95% CI: 1.02–1.05), 1.26 (95% CI: 1.25–1.28), and 1.38 (95% CI: 1.35–1.41), respectively. Adjusted HR were smaller in later stages, and varied by histological type within stage (p < 0.01, except O3). The largest associations were for patients with early stage non-small cell cancers, particularly adenocarcinomas. Conclusions These epidemiological findings support the hypothesis that air pollution exposures after lung cancer diagnosis shorten survival. Future studies should evaluate the impacts of exposure reduction. PMID:27491839
Baliatsas, Christos; Borlée, Floor; van Dijk, Christel E; van der Star, Baukje; Zock, Jan-Paul; Smit, Lidwien A M; Spreeuwenberg, Peter; Heederik, Dick; Yzermans, C Joris
2017-06-01
Patients with chronic obstructive pulmonary disease (COPD) constitute a potentially susceptible group towards environmental exposures such as livestock farm emissions, given their compromised respiratory health status. The primary aim of this study was to examine the association between livestock exposure and comorbidities and coexisting symptoms and infections in COPD patients. Data were collected from 1828 COPD patients (without co-occurring asthma) registered in 23 general practices and living in a rural area with a high livestock density. Prevalence of comorbid diseases/disorders and coexisting symptoms/infections were based on electronic health records from the year 2012. Various indicators of individual exposure to livestock were estimated based on residential addresses, using a geographic information system. At least one comorbid disorder was present in 69% of the COPD patients (especially cardiac disorders and depression, while 49% had at least one coexisting symptom and/or infection (especially upper respiratory tract infections, respiratory symptoms and pneumonia). Half of the COPD-patients resided less than 500m of the nearest farm. Some positive as well as inverse associations were found between the examined outcomes and exposure estimates, although not consistent. Despite the high prevalence of coexisting chronic and acute conditions presented in primary care by in COPD patients, this investigation found no convincing evidence for an association with livestock exposure estimates. There is a need for a replication of the present findings in studies with a longitudinal design, on different groups of potentially susceptible patients. Future research should also elucidate the biological plausibility of possible protective effects of exposure. Copyright © 2017 Elsevier GmbH. All rights reserved.
Preconception Brief: Occupational/Environmental Exposures
Gehle, Kim
2006-01-01
In the last decade, more than half of U.S. children were born to working mothers and 65% of working men and women were of reproductive age. In 2004 more than 28 million women age 18–44 were employed full time. This implies the need for clinicians to possess an awareness about the impact of work on the health of their patients and their future offspring. Most chemicals in the workplace have not been evaluated for reproductive toxicity, and where exposure limits do exist, they were generally not designed to mitigate reproductive risk. Therefore, many toxicants with unambiguous reproductive and developmental effects are still in regular commercial or therapeutic use and thus present exposure potential to workers. Examples of these include heavy metals, (lead, cadmium), organic solvents (glycol ethers, percholoroethylene), pesticides and herbicides (ethylene dibromide) and sterilants, anesthetic gases and anti-cancer drugs used in healthcare. Surprisingly, many of these reproductive toxicants are well represented in traditional employment sectors of women, such as healthcare and cosmetology. Environmental exposures also figure prominently in evaluating a woman’s health risk and that to a pregnancy. Food and water quality and pesticide and solvent usage are increasingly topics raised by women and men contemplating pregnancy. The microenvironment of a woman, such as her choices of hobbies and leisure time activities also come into play. Caregivers must be aware of their patients’ potential environmental and workplace exposures and weigh any risk of exposure in the context of the time-dependent window of reproductive susceptibility. This will allow informed decision-making about the need for changes in behavior, diet, hobbies or the need for added protections on the job or alternative duty assignment. Examples of such environmental and occupational history elements will be presented together with counseling strategies for the clinician. PMID:16897370
Watkins, B M; Smith, G M; Little, R H; Kessler, J
1999-04-01
Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... Utilization, Table D5, Runway Utilization By Category of Aircraft; Figure D3, INM Flight Tracks, West Flow, Figure D4, INM Flight Tracks, East Flow. The Future NEM is located in Figure D6, Future Noise Exposure... Assumptions for Future Conditions, 2021. The Flight Tracks depicted in Figure D3, INM Flight Tracks, West Flow...
Heiden, Jasmin P; Thoms, Silke; Bischof, Kai; Trimborn, Scarlett
2018-05-23
Impacts of rising atmospheric CO 2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO 2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO 2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO 2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (F v /F m ) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom-forming Antarctic coastal diatoms might increase carbon contents under future pCO 2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO 2 sequestration potential of diatom communities in the future coastal Southern Ocean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Violence and psychological distress among police officers and security guards.
Leino, T M; Selin, R; Summala, H; Virtanen, M
2011-09-01
Police officers and security guards are more exposed to violence during their work duties than the general workforce and it can damage their psychological health. Still research on specific forms of violence and a potential pathway through which violence may affect distress is scarce. The aim of this study was to investigate the association of two forms of violence with distress among police officers and security guards and whether personal worry about future violence mediates this association. Violence was specified as physically violent acts and threats or assaults with a deadly weapon. Symptoms of psychological distress were measured using the General Health Questionnaire-12 scale. Analyses of 1993 completed responses (response rate 58%) showed that the odds ratio of distress for 'physically violent acts was' 1.67 (95% CI = 1.11-2.51) and for 'threats or assaults with a deadly weapon' 1.62 (95% CI = 1.20-2.17). When personal worry about future violence was taken into account, the association between exposure to physically violent acts and distress was completely broken. Instead, with the same adjustment, the association between exposure to threats or assaults with a deadly weapon and distress held. The results indicate that the association between physically violent acts and distress is mediated by personal worry about future violence, while threats or assaults with a deadly weapon had a stronger and independent association with distress. It is concluded that there is association between violence and distress. Personal worry about future violence mediates this association.
Putnam, Hollie M; Gates, Ruth D
2015-08-01
Coral reefs are globally threatened by climate change-related ocean warming and ocean acidification (OA). To date, slow-response mechanisms such as genetic adaptation have been considered the major determinant of coral reef persistence, with little consideration of rapid-response acclimatization mechanisms. These rapid mechanisms such as parental effects that can contribute to trans-generational acclimatization (e.g. epigenetics) have, however, been identified as important contributors to offspring response in other systems. We present the first evidence of parental effects in a cross-generational exposure to temperature and OA in reef-building corals. Here, we exposed adults to high (28.9°C, 805 µatm P(CO2)) or ambient (26.5°C, 417 µatm P(CO2)) temperature and OA treatments during the larval brooding period. Exposure to high treatment negatively affected adult performance, but their larvae exhibited size differences and metabolic acclimation when subsequently re-exposed, unlike larvae from parents exposed to ambient conditions. Understanding the innate capacity corals possess to respond to current and future climatic conditions is essential to reef protection and maintenance. Our results identify that parental effects may have an important role through (1) ameliorating the effects of stress through preconditioning and adaptive plasticity, and/or (2) amplifying the negative parental response through latent effects on future life stages. Whether the consequences of parental effects and the potential for trans-generational acclimatization are beneficial or maladaptive, our work identifies a critical need to expand currently proposed climate change outcomes for corals to further assess rapid response mechanisms that include non-genetic inheritance through parental contributions and classical epigenetic mechanisms. © 2015. Published by The Company of Biologists Ltd.
Brooks, Ronald A; Landovitz, Raphael J; Kaplan, Rachel L; Lieber, Eli; Lee, Sung-Jae; Barkley, Thomas W
2012-02-01
The objective of this mixed methods study was to examine current sexual risk behaviors, acceptability and potential adoption of pre-exposure prophylaxis (PrEP) for HIV prevention, and sexual behavior intentions with PrEP adoption among HIV-negative gay and bisexual men (GBM) in HIV serodiscordant relationships. A multiracial/ethnic sample of 25 HIV-negative GBM in serodiscordant relationships completed a qualitative interview and a brief interviewer-administered survey. A modified grounded theory approach was used to identify key themes relating to acceptability and future adoption of PrEP. Participants reported engaging in sexual risk behaviors that place them at risk for HIV infection. Participants also reported a high level of acceptability for PrEP and willingness to adopt PrEP for HIV prevention. Qualitative themes explaining future PrEP adoption included: (1) the opportunity to engage in sex using a noncondom HIV prevention method, (2) protection from HIV infection, and (3) less anxiety when engaging in sex with an HIV-positive partner. Associated with the future adoption of PrEP, a majority (64%) of participants indicated the likelihood for an increase in sexual risk behaviors and a majority (60%) of participants also indicated the likelihood for a decrease or abandonment of condom use, both of which are in contrast to the findings from the large iPrEx study. These findings suggest that the use of PrEP by HIV-negative GBM in serodiscordant relationships carries with it the potential for risk compensation. The findings suggest that PrEP only be offered as part of a comprehensive HIV prevention strategy that includes ongoing risk reduction counseling in the delivery of PrEP to help moderate risk compensation.
Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga
2016-01-01
Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298
Benskin, Jonathan P; De Silva, Amila O; Martin, Jonathan W
2010-01-01
The two major manufacturing techniques for perfluorochemicals can be distinguished based on the isomeric profile of their products. ECF (major use from 1950s to 2002) results in a product containing both linear and branched isomers, while telomerization (major use from 2002 to present) typically yields an isomerically pure, linear product. Among the most important question today, which has implication for future regulation of these chemicals, is to what extent human and environmental exposure is from historical products (i.e., ECF) versus currently manufactured fluorochemicals (i.e., telomer). Perfluoroalkyl-chain branching can also affect the physical and chemical properties of these chemicals, which may influence their environmental transport and degradation, partitioning, bioaccumulation, pharmacokinetics, and toxicity. Unless perfluorinated substances are considered as individual isomers, much of this information will be overlooked or missed altogether, which could potentially lead to inaccuracies in human and environmental risk assessments. In this review, we have highlighted novel findings, current knowledge gaps, and areas for improvement based on early experiments on the disposition of PFA and PFA-precursor isomers in the environment. We have also emphasized the wealth of information that can potentially be gleaned from future work in this area, which renders routine adoption of isomer-specific methodologies an attractive and logical next step in the progression of fluorochemicals analysis. However, despite vast improvements in recent years, a fast and comprehensive method capable of separating all major PFA and PFA-precursor isomers, while removing interferences is still required before these methods becomes routine in most labs. Purified and characterized standards of PFOA and PFOS that have isomer profiles consistent with those of historically produced (i.e., 3M) PFOS and PFOA are also required. The limited data available on PFA isomer profiles that exist in the environment and the biological properties of each isomer suggest that examination of isomer profiles may yield clues on the source of PFA contamination to human and the environment. For example, contributions from historical versus current PFOA emissions can be quantified by examining the isomer profile in abiotic samples . Similarly, residual PFOS/PFOA in pre-2002 consumer products may be distinguished from directly emitted PFOS/PFOA by the existence of slight difference in isomer profile. PFOS signatures may also have the potential to distinguish between indirect exposure (via precursors) versus direct exposure (via the sulfonate), based on findings of isomer-specific and/or enantiospecific biotransformation in vitro. Isomer-specific monitoring extended to longer-chain PFAs may also be informative in determining current and historical exposure sources. Finally, given the recent increase of production of PFOSF-based chemicals, following their 2002 phase out, the ability of using isomer profiles to distinguish between historical and currently produced PFOS may also be possible.
Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique
2016-06-01
The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.
Effects of methanol vapor on human neurobehavioral measures. Research report, Jul 88-Oct 90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, M.R.; Bergman, F.J.; Cohen, H.D.
1991-01-01
Methanol may become an important alternative fuel for vehicles in the near future. The objective of the preliminary study was to determine if inhalation exposure to methanol, near the maximum concentration allowed for an eight-hour average exposure in the workplace (200 ppm), would have adverse effects on human neurobehavioral functions. Twelve healthy young men were exposed twice to filtered air and twice to 192 ppm methanol vapors for 75 minutes on different days under double-blind conditions. Twenty-two neurobehavioral and neurophysiological tests were administered before, during, and after exposure to measure visual, behavioral, reasoning, and hearing functions. Exposure to methanol producedmore » significant increases in blood and urine methanol concentration at the end of the exposure period. As expected, no changes in plasma formate were observed. Methanol exposure had no effect on the subjects' performance on most of the tests. However, some methanol-exposed subjects reported more fatigue and lack of concentration. Performance was also slightly impaired on the Sternberg memory task. There were also changes in the latency of the P200 component of the visual- and auditory-event related potential. These effects were small and did not exceed the range of results measured in filtered air-exposed subjects.« less
Jonker, D; Rolander, B; Balogh, I; Sandsjö, L; Ekberg, K; Winkel, J
2011-10-01
The present study investigates the dental work in terms of time distribution and mechanical exposure in value-adding work (VAW) and non-VAW. Further rationalisation of dental work would typically involve an increase in the proportion of VAW. Information on mechanical exposure within the classes of VAW and non-VAW may be used to predict possible implications of rationalisation. Sixteen dentists were investigated. Using a data logger, postures and movements were continuously recorded for each subject during the 4 h of work, which included the 45 min of video recording. Time distribution and mechanical exposure for the six different work activities identified were evaluated from the video recordings, using a loss analysis technique. VAW, which comprised 54% of the total working time, generally implied significantly more constrained mechanical exposures as compared with non-VAW. The results suggest that future rationalisation of dental work, involving a reduction of non-VAW, may increase the risk of developing musculoskeletal disorders. Statement of Relevance: The present study illustrates the potential effects of rationalisation on biomechanical exposures for dentists. The results highlight the significance of integrating ergonomic issues into the rationalisation process in dentistry in addition to ordinary workstation and tool design improvements performed by ergonomists.
Workplace, Household, and Personal Predictors of Pesticide Exposure for Farmworkers
Quandt, Sara A.; Hernández-Valero, María A.; Grzywacz, Joseph G.; Hovey, Joseph D.; Gonzales, Melissa; Arcury, Thomas A.
2006-01-01
In this article we identify factors potentially associated with pesticide exposure among farmworkers, grade the evidence in the peer-reviewed literature for such associations, and propose a minimum set of measures necessary to understand farmworker risk for pesticide exposure. Data sources we reviewed included Medline, Science Citation Index, Social Science Citation Index, PsycINFO, and AGRI-COLA databases. Data extraction was restricted to those articles that reported primary data collection and analysis published in 1990 or later. We read and summarized evidence for pesticide exposure associations. For data synthesis, articles were graded by type of evidence for association of risk factor with pesticide exposure as follows: 1 = association demonstrated in farmworkers; 2 = association demonstrated in nonfarmworker sample; 3 = plausible association proposed for farmworkers; or 4 = association plausible but not published for farmworkers. Of more than 80 studies we identified, only a third used environmental or biomarker evidence to document farmworker exposure to pesticides. Summaries of articles were compiled by level of evidence and presented in tabular form. A minimum list of data to be collected in farmworker pesticide studies was derived from these evidence tables. Despite ongoing concern about pesticide exposure of farmworkers and their families, relatively few studies have tried to test directly the association of behavioral and environmental factors with pesticide exposure in this population. Future studies should attempt to use similar behavioral, environmental, and psychosocial measures to build a body of evidence with which to better understand the risk factors for pesticide exposure among farmworkers. PMID:16759999
McDonald, Shelby Elaine; Dmitrieva, Julia; Shin, Sunny; Hitti, Stephanie A; Graham-Bermann, Sandra A; Ascione, Frank R; Williams, James Herbert
2017-10-01
Children exposed to intimate partner violence are at increased risk for concomitant exposure to maltreatment of companion animals. There is emerging evidence that childhood exposure to maltreatment of companion animals is associated with psychopathology in childhood and adulthood. However, few studies have explored developmental factors that might help to explain pathways from animal maltreatment exposure to children's maladjustment. The present study addresses this gap in the literature by examining relations between children's exposure to animal maltreatment, callous/unemotional traits (i.e., callousness, uncaring traits, and unemotional traits), and externalizing and internalizing behavior problems. A sample of 291 ethnically diverse children (55% Latino or Hispanic) between the ages of 7 and 12 was recruited from community-based domestic violence services. A meditational path model indicated that child exposure to animal maltreatment was associated with callousness (β=0.14), which in turn was associated with greater internalizing (β=0.32) and externalizing problems (β=0.47). The effect of animal maltreatment exposure on externalizing problems was mediated through callousness. Results suggest that callous/unemotional traits are a potential mechanism through which childhood exposure to animal maltreatment influences subsequent behavior problems. Future research is needed to evaluate the extent to which exposure to animal maltreatment affects children's adjustment over time in the context of other co-occurring adverse childhood experiences. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Tylka, A. J.; Dietrich, W. F.; Cucinotta, F. A.
2012-12-01
The occasional occurrence of solar particle events (SPEs) with large amounts of energy is non-predictable, while the expected frequency is strongly influenced by solar cycle activity. The potential for exposure to large SPEs with high energy levels is the major concern during extra-vehicular activities (EVAs) on the Moon, near Earth object, and Mars surface for future long duration space missions. We estimated the propensity for SPE occurrence with large proton fluence as a function of time within a typical future solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Φ30. The database includes a comprehensive collection of historical data set for the past 5 solar cycles. Using all the recorded proton fluence of SPEs, total fluence distributions of Φ30, Φ60, and Φ100 were simulated ranging from its 5th to 95th percentile for each mission durations. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the radiation cancer risk associated with energetic particles for large events. For radiation exposure assessments of major SPEs, we used the spectral functional form of a double power law in rigidity (the so-called Band function), which have provided a satisfactory representation of the combined satellite and neutron monitor data from ~10 MeV to ~10 GeV. The dependencies of exposure risk were evaluated as a function of proton fluence at a given energy threshold of 30, 60, and 100 MeV, and overall risk prediction was improved as the energy level threshold increases from 30 to 60 to 100 MeV. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.
A review of changes in composition of hot mix asphalt in the United States.
Mundt, Diane J; Marano, Kristin M; Nunes, Anthony P; Adams, Robert C
2009-11-01
This review researched the materials, methods, and practices in the hot mix asphalt industry that might impact future exposure assessments and epidemiologic research on road paving workers. Since World War II, the U.S. interstate highway system, increased traffic volume, transportation speeds, and vehicle axle loads have necessitated an increase in demand for hot mix asphalt for road construction and maintenance, while requiring a consistent road paving product that meets state-specific physical performance specifications. We reviewed typical practices in hot mix asphalt paving in the United States to understand the extent to which materials are and have been added to hot mix asphalt to meet specifications and how changes in practices and technology could affect evaluation of worker exposures for future research. Historical documents were reviewed, and industry experts from 16 states were interviewed to obtain relevant information on industry practices. Participants from all states reported additive use, with most being less than 2% by weight. Crumb rubber and recycled asphalt pavement were added in concentrations approximately 10% per unit weight of the mix. The most frequently added materials included polymers and anti-stripping agents. Crumb rubber, sulfur, asbestos, roofing shingles, slag, or fly ash have been used in limited amounts for short periods of time or in limited geographic areas. No state reported using coal tar as an additive to hot mix asphalt or as a binder alternative in hot mix pavements for high-volume road construction. Coal tar may be present in recycled asphalt pavement from historical use, which would need to be considered in future exposure assessments of pavers. Changes in hot mix asphalt production and laydown emission control equipment have been universally implemented over time as the technology has become available to reduce potential worker exposures. This work is a companion review to a study undertaken in the petroleum refining sector that investigated current and historical use of additives in producing petroleum-derived asphalt cements.
Jones, Alice R; Bull, C Michael; Brook, Barry W; Wells, Konstans; Pollock, Kenneth H; Fordham, Damien A
2016-03-01
Assessing the impacts of multiple, often synergistic, stressors on the population dynamics of long-lived species is becoming increasingly important due to recent and future global change. Tiliqua rugosa (sleepy lizard) is a long-lived skink (>30 years) that is adapted to survive in semi-arid environments with varying levels of parasite exposure and highly seasonal food availability. We used an exhaustive database of 30 years of capture-mark-recapture records to quantify the impacts of both parasite exposure and environmental conditions on the lizard's survival rates and long-term population dynamics. Lizard abundance was relatively stable throughout the study period; however, there were changing patterns in adult and juvenile apparent survival rates, driven by spatial and temporal variation in levels of tick exposure and temporal variation in environmental conditions. Extreme weather events during the winter and spring seasons were identified as important environmental drivers of survival. Climate models predict a dramatic increase in the frequency of extreme hot and dry winter and spring seasons in our South Australian study region; from a contemporary probability of 0.17 up to 0.47-0.83 in 2080 depending on the emissions scenario. Our stochastic population model projections showed that these future climatic conditions will induce a decline in the abundance of this long-lived reptile of up to 67% within 30 years from 2080, under worst case scenario modelling. The results have broad implications for future work investigating the drivers of population dynamics and persistence. We highlight the importance of long-term data sets and accounting for synergistic impacts between multiple stressors. We show that predicted increases in the frequency of extreme climate events have the potential to considerably and negatively influence a long-lived species, which might previously have been assumed to be resilient to environmental perturbations. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Adaptive response studies may help choose astronauts for long-term space travel.
Mortazavi, S M; Cameron, J R; Niroomand-rad, A
2003-01-01
Long-term manned exploratory missions are planned for the future. Exposure to high-energy neutrons, protons and high charge and energy particles during a deep space mission, needs protection against the detrimental effects of space radiation. It has been suggested that exposure to unpredictable extremely large solar particle events would kill the astronauts without massive shielding. To reduce this risk to astronauts and to minimize the need for shielding, astronauts with highest significant adaptive responses should be chosen. It has been demonstrated that some humans living in very high natural radiation areas have acquired high adaptive responses to external radiation. Therefore, we suggest that for a deep space mission the adaptive response of all potential crew members be measured and only those with high adaptive response be chosen. We also proclaim that chronic exposure to elevated levels of radiation can considerably decrease radiation susceptibility and better protect astronauts against the unpredictable exposure to sudden and dramatic increase in flux due to solar flares and coronal mass ejections. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.
2006-03-01
According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses.more » While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.« less
Exploration of the molecular basis of blast injury in a biofidelic model of traumatic brain injury
NASA Astrophysics Data System (ADS)
Thielen, P.; Mehoke, T.; Gleason, J.; Iwaskiw, A.; Paulson, J.; Merkle, A.; Wester, B.; Dymond, J.
2018-01-01
Biological response to blast overpressure is complex and results in various and potentially non-concomitant acute and long-term deficits to exposed individuals. Clinical links between blast severity and injury outcomes remain elusive and have yet to be fully described, resulting in a critical inability to develop associated protection and mitigation strategies. Further, experimental models frequently fail to reproduce observed physiological phenomena and/or introduce artifacts that confound analysis and reproducibility. New models are required that employ consistent mechanical inputs, scale with biological analogs and known clinical data, and permit high-throughput examination of biological responses for a range of environmental and battlefield- relevant exposures. Here we describe a novel, biofidelic headform capable of integrating complex biological samples for blast exposure studies. We additionally demonstrate its utility in detecting acute transcriptional responses in the model organism Caenorhabditis elegans after exposure to blast overpressure. This approach enables correlation between mechanical exposure and biological outcome, permitting both the enhancement of existing surrogate and computational models and the high-throughput biofidelic testing of current and future protection systems.
Dubansky, Benjamin; Verbeck, Guido; Mach, Phillip; Burggren, Warren
2018-03-01
Oil spills on birds and other organisms have focused primarily on direct effects of oil exposure through ingestion or direct body fouling. Little is known of indirect effects of airborne volatiles from spilled oil, especially on vulnerable developing embryos within the bird egg. Here a technique is described for exposing bird embryos in the egg to quantifiable amounts of airborne volatile toxicants from Deepwater Horizon crude oil. A novel membrane inlet mass spectrometry system was used to measure major classes of airborne oil-derived toxicants and correlate these exposures with biological endpoints. Exposure induced a reduction in platelet number and increase in osmolality of the blood of embryos of the chicken (Gallus gallus). Additionally, expression of cytochrome P4501A, a protein biomarker of oil exposure, occurred in renal, pulmonary, hepatic and vascular tissues. These data confirm that this system for generating and measuring airborne volatiles can be used for future in-depth analysis of the toxicity of volatile organic compounds in birds and potentially other terrestrial organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Pesticide exposure and liver cancer: a review
VoPham, Trang; Bertrand, Kimberly A.; Hart, Jaime E.; Laden, Francine; Brooks, Maria M.; Yuan, Jian-Min; Talbott, Evelyn O.; Ruddell, Darren; Chang, Chung-Chou H.; Weissfeld, Joel L.
2017-01-01
Purpose To review the epidemiologic literature examining pesticide exposure and liver cancer incidence. Methods A search of the MEDLINE and Embase databases was conducted in October 2015. Eligibility criteria included examining hepatocellular carcinoma (HCC) or primary liver cancer, pesticides as an exposure of interest, and individual-level incidence. The review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results Forty-eight papers were assessed for eligibility and 15 studies were included in the review. The majority of studies were conducted in China and Egypt (n=8), used a case-control design (n=14), and examined HCC (n=14). Most studies showed no association between self-reported and/or occupational exposure to pesticides and liver cancer risk. Six studies demonstrated statistically significant positive associations, including three biomarker-based studies (two using pre-diagnostic sera) that reported higher serum levels of dichlorodiphenyltrichloroethane (DDT) were associated with increased HCC risk. Studies indirectly measuring pesticide exposure using self-reported exposure, occupation, job-exposure matrices, or geographic residence demonstrated inconsistent results. These studies were limited by exposure assessment methods, lack of confounder information, minimal case confirmation, selection bias, and/or over-adjustment. Conclusions There is mixed evidence suggesting a possible association between specific pesticides and HCC risk, with the strongest evidence observed in biomarker-based studies. In particular, organochlorine pesticides, including DDT, may increase HCC risk. Future research should focus on improved pesticide exposure assessment methods, potentially incorporating multiple approaches including biomonitoring while considering the chemicals of interest, historical exposure to address latency periods, and examining specific chemicals and exposure pathways. PMID:28194594
Assessing the first wave of epidemiological studies of nanomaterial workers
NASA Astrophysics Data System (ADS)
Liou, Saou-Hsing; Tsai, Candace S. J.; Pelclova, Daniela; Schubauer-Berigan, Mary K.; Schulte, Paul A.
2015-10-01
The results of early animal studies of engineered nanomaterials (ENMs) and air pollution epidemiology suggest that it is important to assess the health of ENM workers. Initial epidemiological studies of workers' exposure to ENMs (<100 nm) are reviewed and characterized for their study designs, findings, and limitations. Of the 15 studies, 11 were cross-sectional, 4 were longitudinal (1 was both cross-sectional and longitudinal in design), and 1 was a descriptive pilot study. Generally, the studies used biologic markers as the dependent variables. All 11 cross-sectional studies showed a positive relationship between various biomarkers and ENM exposures. Three of the four longitudinal studies showed a negative relationship; the fourth showed positive findings after a 1-year follow-up. Each study considered exposure to ENMs as the independent variable. Exposure was assessed by mass concentration in 10 studies and by particle count in six studies. Six of them assessed both mass and particle concentrations. Some of the studies had limited exposure data because of inadequate exposure assessment. Generally, exposure levels were not very high in comparison to those in human inhalation chamber studies, but there were some exceptions. Most studies involved a small sample size, from 2 to 258 exposed workers. These studies represent the first wave of epidemiological studies of ENM workers. They are limited by small numbers of participants, inconsistent (and in some cases inadequate) exposure assessments, generally low exposures, and short intervals between exposure and effect. Still, these studies are a foundation for future work; they provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures.
Exposure Knowledge and Risk Perception of RF EMF
Freudenstein, Frederik; Wiedemann, Peter M.; Varsier, Nadège
2015-01-01
The presented study is part of the EU-Project Low EMF Exposure Future Networks (LEXNET), which deals among other things with the issue of whether a reduction of the radiofrequency (RF) electro-magnetic fields (EMF) exposure will result in more acceptance of wireless communication networks in the public sphere. We assume that the effects of any reduction of EMF exposure will depend on the subjective link between exposure perception and risk perception (RP). Therefore we evaluated respondents’ RP of different RF EMF sources and their subjective knowledge about various exposure characteristics with regard to their impact on potential health risks. The results show that participants are more concerned about base stations than about all other RF EMF sources. Concerning the subjective exposure knowledge the results suggest that people have a quite appropriate impact model. The question how RF EMF RP is actually affected by the knowledge about the various exposure characteristics was tested in a linear regression analysis. The regression indicates that these features – except distance – do influence people’s general RF EMF RP. In addition, we analyzed the effect of the quality of exposure knowledge on RF EMF RP of various sources. The results show a tendency that better exposure knowledge leads to higher RP, especially for mobile phones. The study provides empirical support for models of the relationships between exposure perception and RP. It is not the aim to extrapolate these findings to the whole population because the samples are not exactly representative for the general public in the participating countries. PMID:25629026
Occupational cancer in Britain
Van Tongeren, Martie; Jimenez, Araceli S; Hutchings, Sally J; MacCalman, Laura; Rushton, Lesley; Cherrie, John W
2012-01-01
To estimate the current occupational cancer burden due to past exposures in Britain, estimates of the number of exposed workers at different levels are required, as well as risk estimates of cancer due to the exposures. This paper describes the methods and results for estimating the historical exposures. All occupational carcinogens or exposure circumstances classified by the International Agency for Research on Cancer as definite or probable human carcinogens and potentially to be found in British workplaces over the past 20–40 years were included in this study. Estimates of the number of people exposed by industrial sector were based predominantly on two sources of data, the CARcinogen EXposure (CAREX) database and the UK Labour Force Survey. Where possible, multiple and overlapping exposures were taken into account. Dose–response risk estimates were generally not available in the epidemiological literature for the cancer–exposure pairs in this study, and none of the sources available for obtaining the numbers exposed provided data by different levels of exposure. Industrial sectors were therefore assigned using expert judgement to ‘higher'- and ‘lower'-exposure groups based on the similarity of exposure to the population in the key epidemiological studies from which risk estimates had been selected. Estimates of historical exposure prevalence were obtained for 41 carcinogens or occupational circumstances. These include exposures to chemicals and metals, combustion products, other mixtures or groups of chemicals, mineral and biological dusts, physical agents and work patterns, as well as occupations and industries that have been associated with increased risk of cancer, but for which the causative agents are unknown. There were more than half a million workers exposed to each of six carcinogens (radon, solar radiation, crystalline silica, mineral oils, non-arsenical insecticides and 2,3,7,8-tetrachlorodibenzo-p-dioxin); other agents to which a large number of workers are exposed included benzene, diesel engine exhaust and environmental tobacco smoke. The study has highlighted several industrial sectors with large proportions of workers potentially exposed to multiple carcinogens. The relevant available data have been used to generate estimates of the prevalence of past exposure to occupational carcinogens to enable the occupational cancer burden in Britain to be estimated. These data are considered adequate for the present purpose, but new data on the prevalence and intensity of current occupational exposure to carcinogens should be collected to ensure that future policy decisions be based on reliable evidence. PMID:22710674
Cavallin, Jenna E.; Durhan, Elizabeth J.; Evans, Nicola; Jensen, Kathleen M.; Kahl, Michael D.; Kolpin, Dana W.; Kolodziej, Edward P.; Foreman, William T.; LaLone, Carlie A.; Makynen, Elizabeth A.; Seidl, Sara M.; Thomas, Linnea M.; Villeneuve, Daniel L.; Weberg, Matthew A.; Wilson, Vickie S.; Ankley, Gerald T.
2014-01-01
Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture.
Projection of ambient PM2.5 exposure in India and associated health burden
NASA Astrophysics Data System (ADS)
Chowdhury, Sourangsu; Dey, Sagnik; Smith, Kirk
2017-04-01
Ambient particulate matter with diameter < 2.5 µm (PM2.5) is the major criteria pollutant for health assessments of air quality. (WHO, 2006). Exposure to PM2.5 has potential health risks due to cardiovascular and respiratory diseases leading to premature mortality. The annual premature mortality burden from ambient PM2.5 exposure in India is large ( 0.6-0.8 million). It is important to understand how the ambient PM2.5 concentration will change in future under the warming climate and how it translates into premature mortality, when the population distribution exposed to the pollution and baseline mortality are expected to change in response to changes in socio-economic condition to adapt to climate change impacts. We estimate ambient PM2.5 future (up to 2100) by adopting 2 approaches. In the first approach, PM2.5 is estimated as a product of AOD from the CMIP5 models (under both RCP4.5 and RCP8.5 scenarios) and the present day conversion factor estimated by the Geos-CHEM model as a function of present day meteorological conditions and emission. The second approach involves adding up all the PM2.5 components (SO4, NH4, BC, SOA, POA, a fraction of sea salt and dust) available from 13 CMIP5 models under the RCP4.5 and RCP8.5 climate change scenarios. The change is represented in relative terms with respect to the baseline period PM2.5 exposure (2001-2005), when satellite data are available and the CMIP5 models are run in historical mode. The difference between these two approaches implies the role of meteorology in modulating PM2.5 exposure for future due to climate change. We present the decadal statistics and separate the role of meteorology from the combined role of meteorology and emission in modulating PM2.5 variability. We project premature mortality for future using population for future, projected under 5 SSP (Shared Socioeconomic Pathways) scenarios (definitions of these scenarios are provided in Table 1) developed by IIASA. The population under these five scenarios have varying capability to adapt and mitigate to cope up with the changing climate. We estimate premature mortality for two cases, (i) assuming BM to remain constant as of the present day, and (ii) modifying the BM as a function of gross development product. Relative risk is estimated using the IER function. Hence we develop customized scenarios for estimating premature death by linking projected PM2.5 under 2 RCP scenarios with population and baseline mortality from 5 SSP scenarios for each decade up to 2100, creating a total of 10 combined scenarios for each decade. We project that if baseline mortality remains as of present day (WHO 2011) then premature mortality increases up to the middle of the century and then decreases, but never decreases below the present day premature mortality, whereas if we assume that baseline mortality varies as a exponentially decaying function of GDP, premature mortality for future decades are projected to decrease below the present day estimate of premature mortality as GDP is projected to increase in all the 5 SSP scenarios. We further separate the effect of future meteorology, epidemiological changes and demographic changes in future on projected premature mortality. This study can help in the government in developing policies for future in order to avert the projected mortality and follow all the requirements that the best case scenario deserves in order to mitigate the effect of PM2.5 on mortality.
Kautsky, Ulrik; Lindborg, Tobias; Valentin, Jack
2013-05-01
This is an overview of the strategy used to describe the effects of a potential release from a radioactive waste repository on human exposure and future environments. It introduces a special issue of AMBIO, in which 13 articles show ways of understanding and characterizing the future. The study relies mainly on research performed in the context of a recent safety report concerning a repository for spent nuclear fuel in Sweden (the so-called SR-Site project). The development of a good understanding of on-site processes and acquisition of site-specific data facilitated the development of new approaches for assessment of surface ecosystems. A systematic and scientifically coherent methodology utilizes the understanding of the current spatial and temporal dynamics as an analog for future conditions. We conclude that future ecosystem can be inferred from a few variables and that this multidisciplinary approach is relevant in a much wider context than radioactive waste.
Environmental source of arsenic exposure.
Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub
2014-09-01
Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.
Environmental Source of Arsenic Exposure
Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub
2014-01-01
Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196
Cobalt toxicity in humans-A review of the potential sources and systemic health effects.
Leyssens, Laura; Vinck, Bart; Van Der Straeten, Catherine; Wuyts, Floris; Maes, Leen
2017-07-15
Cobalt (Co) and its compounds are widely distributed in nature and are part of numerous anthropogenic activities. Although cobalt has a biologically necessary role as metal constituent of vitamin B 12 , excessive exposure has been shown to induce various adverse health effects. This review provides an extended overview of the possible Co sources and related intake routes, the detection and quantification methods for Co intake and the interpretation thereof, and the reported health effects. The Co sources were allocated to four exposure settings: occupational, environmental, dietary and medical exposure. Oral intake of Co supplements and internal exposure through metal-on-metal (MoM) hip implants deliver the highest systemic Co concentrations. The systemic health effects are characterized by a complex clinical syndrome, mainly including neurological (e.g. hearing and visual impairment), cardiovascular and endocrine deficits. Recently, a biokinetic model has been proposed to characterize the dose-response relationship and effects of chronic exposure. According to the model, health effects are unlikely to occur at blood Co concentrations under 300μg/l (100μg/l respecting a safety factor of 3) in healthy individuals, hematological and endocrine dysfunctions are the primary health endpoints, and chronic exposure to acceptable doses is not expected to pose considerable health hazards. However, toxic reactions at lower doses have been described in several cases of malfunctioning MoM hip implants, which may be explained by certain underlying pathologies that increase the individual susceptibility for Co-induced systemic toxicity. This may be associated with a decrease in Co bound to serum proteins and an increase in free ionic Co 2+ . As the latter is believed to be the primary toxic form, monitoring of the free fraction of Co 2+ might be advisable for future risk assessment. Furthermore, future research should focus on longitudinal studies in the clinical setting of MoM hip implant patients to further elucidate the dose-response discrepancies. Copyright © 2017 Elsevier B.V. All rights reserved.
Trude, Angela Cristina Bizzotto; Kharmats, Anna Yevgenyevna; Jones-Smith, Jessica C; Gittelsohn, Joel
2018-05-22
For community interventions to be effective in real-world conditions, participants need to have sufficient exposure to the intervention. It is unclear how the dose and intensity of the intervention differ among study participants in low-income areas. We aimed to understand patterns of exposure to different components of a multi-level multi-component obesity prevention program to inform our future impact analyses. B'more Healthy Communities for Kids (BHCK) was a community-randomized controlled trial implemented in 28 low-income zones in Baltimore in two rounds (waves). Exposure to three different intervention components (corner store/carryout restaurants, social media/text messaging, and youth-led nutrition education) was assessed via post-intervention interviews with 385 low-income urban youths and their caregivers. Exposure scores were generated based on self-reported viewing of BHCK materials (posters, handouts, educational displays, and social media posts) and participating in activities, including taste tests during the intervention. For each intervention component, points were assigned for exposure to study materials and activities, then scaled (0-1 range), yielding an overall BHCK exposure score [youths: mean 1.1 (range 0-7.6 points); caregivers: 1.1 (0-6.7), possible highest score: 13]. Ordered logit regression analyses were used to investigate correlates of youths' and caregivers' exposure level (quartile of exposure). Mean intervention exposure scores were significantly higher for intervention than comparison youths (mean 1.6 vs 0.5, p < 0.001) and caregivers (mean 1.6 vs 0.6, p < 0.001). However, exposure scores were low in both groups and 10% of the comparison group was moderately exposed to the intervention. For each 1-year increase in age, there was a 33% lower odds of being highly exposed to the intervention (odds ratio 0.77, 95% confidence interval 0.69; 0.88) in the unadjusted and adjusted model controlling for youths' sex and household income. Treatment effects may be attenuated in community-based trials, as participants may be differentially exposed to intervention components and the comparison group may also be exposed. Exposure should be measured to provide context to impact evaluations in multi-level trials. Future analyses linking exposure scores to the outcome should control for potential confounders in the treatment-on-the-treated approach, while recognizing that confounding and selection bias may exist affecting causal inference. ClinicalTrials.gov, NCT02181010 . Retrospectively registered on 2 July 2014.
1978-06-01
previous exposures to OD/OE of the participants. A significant benefit of the study in the eyes of the participants was the opportunity to learn firsthand of...of management and development. Before going any further, it will be helpful to explore the potential mapping of management theory and the technology...organizational structure and pro- cesses and when called upon for assistance could be -Ixpected to become productive without time lost in learning culture
Human biomonitoring: Science and policy for a healthy future, April 17-19, 2016, Berlin, Germany.
Joas, Anke; Schwedler, Gerda; Choi, Judy; Kolossa-Gehring, Marike
2017-03-01
Following the success of the 1st International Conference on Human Biomonitoring (HBM) in Berlin in 2010, the 2nd International Conference on Human Biomonitoring took place in Berlin from April 17-19, 2016 for an exchange and updates among participants on all aspects relating to HBM. Entitled "Science and Policy for a Healthy Future", the conference brought together international experts from the scientific sector, politics, authorities, industry, non-governmental organizations (NGOs), and other involved associations. The conference took a critical look at today's chemicals that have a potential impact on human health and should be investigated as a matter of priority. It also discussed current activities and research efforts on HBM occurring worldwide, presented HBM success stories, and emphasized areas, where further research and focus are needed to improve the use of HBM for policy making. In many countries, HBM has been proven to be a useful tool and warning system to indicate problematic human exposure to pollutants and to evaluate the effectiveness of existing chemicals policy and regulations. However, important challenges remain such as exposure assessment of mixtures of chemicals, the development of analytical methods to detect new chemicals of concern (e.g., substitutes for phthalates), the identification of exposure sources, and the assessment of the impact of exposure on health. This brief report summarizes the discussions and contributions from this conference, which was jointly organized by the German Federal Environment Agency (UBA) and the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMUB). Copyright © 2017.
Characterizing the food environment: Pitfalls and future directions
Vernez Moudon, Anne; Drewnowski, Adam; Duncan, Glen E; Hurvitz, Philip M; Saelens, Brian E; Scharnhorst, Eric
2014-01-01
Objective: To assess a county population’s exposure to different types of food sources reported to affect both diet quality and obesity rates. Design: Food permit records obtained from the local health department served to establish the full census of food stores and restaurants. Employing prior categorization schemes which classified the relative healthfulness of food sources based on establishment type (i.e. supermarkets versus convenience stores, or full-service versus fast food restaurants), food establishments were assigned to the healthy, unhealthy, or undetermined groups. Setting: King County, WA. Subjects: Full census of food sources. Results: According to all categorization schemes, most food establishments in King County fell into the unhealthy and undetermined groups. The use of the food permit data showed that large stores, which included supermarkets as healthy food establishments, contained a sizeable number of bakery/delis, fish/meat, ethnic and standard quick service restaurants, and coffee shops, all food sources that, when housed in a separate venue or owned by a different business establishment, were classified as either unhealthy or of undetermined value to health. Conclusions: To fully assess the potential health effects of exposure to the extant food environment, future research would need to establish the health value of foods in the many such common establishments as individually owned grocery stores and ethnic food stores and restaurants. Within- venue exposure to foods should also be investigated. PMID:23570695
EXPOSURE ASSESSMENT AND FUTURE DIRECTIONS IN EXPOSURE SCIENCE
Exposure is the contact between a stressor and a human or ecological receptor. Risk analysis step in which receptor interaction with the exposure stressor of concern is evaluated. To assess exposure to a particular stressor we need to know - Properties of the stressor; Sources, p...
The future of exposure assessment: perspectives from the X2012 Conference.
De Vocht, Frank; Northage, Christine; Money, Chris; Cherrie, John W; Rajan-Sithamparanadarajah, Bob; Egeghy, Peter; Niven, Karen; Demers, Paul; Van Tongeren, Martie
2013-04-01
The British Occupational Hygiene Society, in collaboration with the Institute of Occupational Medicine, the University of Manchester, the UK Health and Safety Executive, and the University of Aberdeen hosted the 7th International Conference on the Science of Exposure Assessment (X2012) on 2 July-5 July 2012 in Edinburgh, UK. The conference ended with a special session at which invited speakers from government, industry, independent research institutes, and academia were asked to reflect on the conference and discuss what may now constitute the important highlights or drivers of future exposure assessment research. This article summarizes these discussions with respect to current and future technical and methodological developments. For the exposure science community to continue to have an impact in protecting public health, additional efforts need to be made to improve partnerships and cross-disciplinary collaborations, although it is equally important to ensure that the traditional occupational exposure themes are still covered as these issues are becoming increasingly important in the developing world. To facilitate this the 'X' conferences should continue to retain a holistic approach to occupational and non-occupational exposures and should actively pursue collaborations with other disciplines and professional organizations to increase the presence of consumer and environmental exposure scientists.
Anti-infective use in children and pregnancy: current deficiencies and future challenges
Gwee, Amanda; Cranswick, Noel
2015-01-01
There are a number of challenges to using anti-infective agents in children and pregnant women. There is limited understanding of the altered pharmacokinetics of anti-infectives in these populations and as a result, optimized dosing regimens are yet to be established. The potential adverse effects of the drug on pregnancy outcome and the developing foetus is a major consideration, and the long term implications of drug side effects must be taken into account when drug exposure occurs early in life. These factors hinder research and licensing of new anti-infective drugs in these populations. We describe the current deficiencies and future challenges of anti-infective use in children and pregnant women, providing specific examples. PMID:24588467
Educational trajectories of graduate students in physics education research
NASA Astrophysics Data System (ADS)
Van Dusen, Ben; Barthelemy, Ramón S.; Henderson, Charles
2014-12-01
Physics education research (PER) is a rapidly growing area of PhD specialization. In this article we examine the trajectories that led respondents into a PER graduate program as well as their expected future trajectories. Data were collected in the form of an online survey sent to graduate students in PER. Our findings show a lack of visibility of PER as a field of study, a dominance of work at the undergraduate level, and a mismatch of future desires and expectations. We suggest that greater exposure is needed so PER is known as a field of inquiry for graduates, that more emphasis should be placed on research beyond the undergraduate level, and that there needs to be stronger communication to graduate students about potential careers.
Digital Media and Risks for Adolescent Substance Abuse and Problematic Gambling.
Romer, Dan; Moreno, Megan
2017-11-01
Digital media provide increased opportunities for both marketing and social transmission of risky products and behavior. We briefly review what is known about adolescent exposure to favorable presentations of addictive substances, such as alcohol, tobacco, and marijuana, as well as behaviors such as gambling, on social and other online media. Our understanding of these influences and whether they require greater regulation is still developing, and recommendations for future research to address these gaps in our understanding are described. Potential strategies to intervene in these environments to protect adolescents and young adults from the adverse effects of these products are described, as well as future challenges for developing interventions. Copyright © 2017 by the American Academy of Pediatrics.
The Future of Exposure Assessment: Perspectives from the ...
The British Occupational Hygiene Society, in collaboration with the Institute of Occupational Medicine, the University of Manchester, the UK Health and Safety Executive, and the University of Aberdeen hosted the 7th International Conference on the Science of Exposure Assessment (X2012) on 2 July–5 July 2012 in Edinburgh, UK. The conference ended with a special session at which invited speakers from government, industry, independent research institutes, and academia were asked to reflect on the conference and discuss what may now constitute the important highlights or drivers of future exposure assessment research. This article summarizes these discussions with respect to current and future technical and methodological developments. For the exposure science community to continue to have an impact in protecting public health, additional efforts need to be made to improve partnerships and cross-disciplinary collaborations, although it is equally important to ensure that the traditional occupational exposure themes are still covered as these issues are becoming increasingly important in the developing world. To facilitate this the ‘X’ conferences should continue to retain a holistic approach to occupational and non-occupational exposures and should actively pursue collaborations with other disciplines and professional organizations to increase the presence of consumer and environmental exposure scientists. The National Exposure Research Laboratory′s (NERL′
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iavicoli, Ivo, E-mail: ivo.iavicoli@unina.it
Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigeneticmore » alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. - Highlights: • To define susceptible populations is important for risk assessment and management; • Genetic susceptibility may influence the individual response to nanomaterial exposure; • Susceptibility factors in workplace settings have both scientific and ethical issues.« less
Wang, Bin; Chen, Qian; Shen, Lixiao; Zhao, Shasha; Pang, Weiyi; Zhang, Jun
2016-12-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are commonly used in industrial applications and consumer products, and their potential health impacts are of concern, especially for vulnerable population like fetuses. However, in utero exposure to PFASs and health implications are far from fully characterized in China. To fill in the gap, we analyzed 10 PFASs in cord plasma samples (N=687) collected in Shanghai between 2011 and 2012, one of the regions widely polluted with PFASs in China. A questionnaire survey on maternal and diet-related factors was conducted. Except for perfluoroheptanoic acid (PFHpA) and perfluorooctane sulfonamide (PFOSA), all other PFASs were detected in ˃90% of the samples. Perfluorooctanoic acid (PFOA) was the most predominant PFAS (median value: 6.96ng/mL), followed by perfluorooctane sulfonate (PFOS) (2.48ng/mL). PFOA and PFOS combined contributed to 80% of the total PFASs. The final multiple regression models showed that maternal factors including maternal age, body mass index, gestational age, economic status and educational level as well as consumption of fish and wheat were significantly related with concentrations of PFASs in cord blood. The risk assessment using the hazard quotients (HQs) approach on the basis of plasma PFAS levels indicated no potential concern for developmental toxicity in the local newborns. The results demonstrate the unique profiles of local prenatal exposure to PFASs, suggesting that PFOA has been the primary human exposure due to its widespread use and pollution. Special attention to high PFOA exposure and confirmation of potential determinants should be taken as a priority in the future plan for risk management and actions in this area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exposure and response prevention process predicts treatment outcome in youth with OCD.
Kircanski, Katharina; Peris, Tara S
2015-04-01
Recent research on the treatment of adults with anxiety disorders suggests that aspects of the in-session exposure therapy process are relevant to clinical outcomes. However, few comprehensive studies have been conducted with children and adolescents. In the present study, 35 youth diagnosed with primary obsessive-compulsive disorder (OCD; M age = 12.9 years, 49% male, 63% Caucasian) completed 12 sessions of exposure and response prevention (ERP) in one of two treatment conditions as part of a pilot randomized controlled testing of a family focused intervention for OCD. Key exposure process variables, including youth self-reported distress during ERP and the quantity and quality of ERP completed, were computed. These variables were examined as predictors of treatment outcomes assessed at mid-treatment, post-treatment, and three-month follow-up, partialing treatment condition. In general, greater variability of distress during ERP and completing a greater proportion of combined exposures (i.e., exposures targeting more than one OC symptom at once) were predictive of better outcomes. Conversely, greater distress at the end of treatment was generally predictive of poorer outcomes. Finally, several variables, including within- and between-session decreases in distress during ERP, were not consistently predictive of outcomes. Findings signal potentially important facets of exposure for youth with OCD and have implications for treatment. A number of results also parallel recent findings in the adult literature, suggesting that there may be some continuity in exposure processes from child to adult development. Future work should examine additional measures of exposure process, such as psychophysiological arousal during exposure, in youth.
Linking the oceans to public health: current efforts and future directions
Kite-Powell, Hauke L; Fleming, Lora E; Backer, Lorraine C; Faustman, Elaine M; Hoagland, Porter; Tsuchiya, Ami; Younglove, Lisa R; Wilcox, Bruce A; Gast, Rebecca J
2008-01-01
We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research. We find that: • There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health." • The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases. • The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs. PMID:19025677
Linking the oceans to public health: current efforts and future directions.
Kite-Powell, Hauke L; Fleming, Lora E; Backer, Lorraine C; Faustman, Elaine M; Hoagland, Porter; Tsuchiya, Ami; Younglove, Lisa R; Wilcox, Bruce A; Gast, Rebecca J
2008-11-07
We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.
An overview of algae biofuel production and potential environmental impact.
Menetrez, Marc Y
2012-07-03
Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.
Allergic sensitization: screening methods
2014-01-01
Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute. PMID:24739743
The changing face of nanomaterials: Risk assessment challenges along the value chain.
Mattsson, Mats-Olof; Simkó, Myrtill
2017-03-01
Risk assessment (RA) of manufactured nanomaterials (MNM) is essential for regulatory purposes and risk management activities. Similar to RA of "classical" chemicals, MNM RA requires knowledge about exposure as well as of hazard potential and dose response relationships. What makes MNM RA especially challenging is the multitude of materials (which is expected to increase substantially in the future), the complexity of MNM value chains and life cycles, the accompanying possible changes in material properties over time and in contact with various environmental and organismal milieus, and the difficulties to obtain proper exposure data and to consider the proper dose metric. This article discusses these challenges and also critically overviews the current state of the art regarding MNM RA approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
The Kuwait Oil Fire Health Risk Assessment Biological Surveillance Initiative.
Deeter, David P
2011-07-01
An important environmental concern during the first Gulf War (Operation Desert Storm) was assessing exposures and potential health effects in U.S. forces exposed to the Kuwait oil fires. With only 3 weeks for planning, a Biological Surveillance Initiative (BSI) was developed and implemented for a U.S. Army unit. The BSI included blood and urine collections, questionnaire administration, and other elements during the predeployment, deployment, and post-deployment phases. Many BSI objectives were accomplished. Difficulties encountered included planning failures, loss of data and information, and difficulty in interpreting laboratory results. In order for biological surveillance initiatives to provide useful information for future deployments where environmental exposures may be a concern, meaningful, detailed, and realistic planning and preparation must occur long before the deployment is initiated.
Report of Workshop on Traffic, Health, and Infrastructure Planning
White, Ronald H.; Spengler, John D.; Dilwali, Kumkum M.; Barry, Brenda E.; Samet, Jonathan M.
2009-01-01
Recent air pollutant measurement data document unique aspects of the air pollution mixture near roadways, and an expanding body of epidemiological data suggests increased risks for exacerbation of asthma and other respiratory diseases, premature mortality, and certain cancers and birth outcomes from air pollution exposures in populations residing in relatively close proximity to roadways. The Workshop on Traffic, Health, and Infrastructure Planning, held in February 2004, was convened to provide a forum for interdisciplinary discussion of motor vehicle emissions, exposures and potential health effects related to proximity to motor vehicle traffic. This report summarizes the workshop discussions and findings regarding the current science on this issue, identifies planning and policy issues related to localized motor vehicle emissions and health concerns, and provides recommendations for future research and policy directions. PMID:16983859
Effects of electromagnetic fields emitted by GSM phones on working memory: a meta-analysis.
Zubko, O; Gould, R L; Gay, H C; Cox, H J; Coulson, M C; Howard, R J
2017-02-01
Current treatments for Alzheimer's Disease (AD) do not affect the course of the illness and brain stimulation techniques are increasingly promoted as potential therapeutic interventions for AD. This study reviews the effects of electromagnetic field (EMF) exposure versus sham exposure on working memory (WM) performance of healthy human participants. Online literature databases and previous systematic reviews were searched for studies of EMF and WM in participants without reported memory problems. Two thousand eight hundred and fifty seven studies were identified, and 10 studies met the inclusion criteria. An assessment of study quality was completed, and separate, random effects meta-analyses were conducted for each of the three WM tasks included: n-back, substitution and digit span forward. No differences were found between participants exposed to active EMF versus sham conditions in any of the three working memory tasks examined. Results indicate that EMF does not affect WM during the n-back, substitution and digit-span tasks. Future studies should focus on the possible effects of chronic exposure to EMF in older adults with AD using a battery of comparable WM and attention tasks, before EMF can be seriously considered as a potential modulator of WM in AD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A Controlled Trial to Reduce the Risk of Human Nipah Virus Exposure in Bangladesh.
Nahar, Nazmun; Paul, Repon C; Sultana, Rebeca; Sumon, Shariful Amin; Banik, Kajal Chandra; Abedin, Jaynal; Asaduzzaman, Mohammad; Garcia, Fernando; Zimicki, Susan; Rahman, Mahmudur; Gurley, Emily S; Luby, Stephen P
2017-09-01
Human Nipah virus (NiV) infection, often fatal in Bangladesh, is primarily transmitted by drinking raw date palm sap contaminated by Pteropus bats. We assessed the impact of a behavior change communication intervention on reducing consumption of potentially NiV-contaminated raw sap. During the 2012-2014 sap harvesting seasons, we implemented interventions in two areas and compared results with a control area. In one area, we disseminated a "do not drink raw sap" message and, in the other area, encouraged only drinking sap if it had been protected from bat contamination by a barrier ("only safe sap"). Post-intervention, 40% more respondents in both intervention areas reported knowing about a disease contracted through raw sap consumption compared with control. Reported raw sap consumption decreased in all areas. The reductions in the intervention areas were not significantly greater compared to the control. Respondents directly exposed to the "only safe sap" message were more likely to report consuming raw sap from a protected source than those with no exposure (25 vs. 15%, OR 2.0, 95% CI 1.5-2.6, P < 0.001). While the intervention increased knowledge in both intervention areas, the "only safe sap" intervention reduced exposure to potentially NiV-contaminated sap and should be considered for future dissemination.
Gabriel, Mourad W.; Woods, Leslie W.; Poppenga, Robert; Sweitzer, Rick A.; Thompson, Craig; Matthews, Sean M.; Higley, J. Mark; Keller, Stefan M.; Purcell, Kathryn; Barrett, Reginald H.; Wengert, Greta M.; Sacks, Benjamin N.; Clifford, Deana L.
2012-01-01
Anticoagulant rodenticide (AR) poisoning has emerged as a significant concern for conservation and management of non-target wildlife. The purpose for these toxicants is to suppress pest populations in agricultural or urban settings. The potential of direct and indirect exposures and illicit use of ARs on public and community forest lands have recently raised concern for fishers (Martes pennanti), a candidate for listing under the federal Endangered Species Act in the Pacific states. In an investigation of threats to fisher population persistence in the two isolated California populations, we investigate the magnitude of this previously undocumented threat to fishers, we tested 58 carcasses for the presence and quantification of ARs, conducted spatial analysis of exposed fishers in an effort to identify potential point sources of AR, and identified fishers that died directly due to AR poisoning. We found 46 of 58 (79%) fishers exposed to an AR with 96% of those individuals having been exposed to one or more second-generation AR compounds. No spatial clustering of AR exposure was detected and the spatial distribution of exposure suggests that AR contamination is widespread within the fisher’s range in California, which encompasses mostly public forest and park lands Additionally, we diagnosed four fisher deaths, including a lactating female, that were directly attributed to AR toxicosis and documented the first neonatal or milk transfer of an AR to an altricial fisher kit. These ARs, which some are acutely toxic, pose both a direct mortality or fitness risk to fishers, and a significant indirect risk to these isolated populations. Future research should be directed towards investigating risks to prey populations fishers are dependent on, exposure in other rare forest carnivores, and potential AR point sources such as illegal marijuana cultivation in the range of fishers on California public lands. PMID:22808110
Genomic Analysis of Surrogate Tissues for Assessing Environmental Exposures and Future Disease States
John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Hongzu Ren, Judith E. Schmid, Jessica Stapelfeldt, Lillian F. Strader, Kary E. Thompson, Douglas B. T...
Simulation of Halocarbon Production and Emissions and Effects on Ozone Depletion
Holmes; Ellis
1997-09-01
/ This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably: changes in agricultural methyl bromide use, increases in effectiveness of bromine for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.KEY WORDS: Halocarbons; Ozone depletion; Montreal Protocol; Integrated assessment
Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.
Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki
2015-04-24
The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.
Quail, M Thomas
2017-01-01
Silicosis is the oldest know occupational pulmonary disease. It is a progressive disease and any level of exposure to respirable crystalline silica particles or dust has the potential to develop into silicosis. Silicosis is caused by silica particles or dust entering the lungs and damaging healthy lung tissue. The damage restricts the ability to breathe. Exposure to silica increases a worker’s risk of developing cancer or tuberculosis. This special report will provide background history of silicosis in the U.S., including the number of workers affected and their common industries. Over the years, these industries have impeded government oversight, resulting in silicosis exposure clusters. The risk of acquiring silicosis is diminished when industry implements safety measures with oversight by governmental agencies. Reputable authorities believe that the current innovative drilling techniques such as fracking will generate future cases of silicosis in the U.S. if safety measures to protect workers are ignored.
Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk.
Deng, Rui; Lin, Daohui; Zhu, Lizhong; Majumdar, Sanghamitra; White, Jason C; Gardea-Torresdey, Jorge L; Xing, Baoshan
2017-06-01
With their growing production and application, engineered nanoparticles (NPs) are increasingly discharged into the environment. The released NPs can potentially interact with pre-existing contaminants, leading to biological effects (bioaccumulation and/or toxicity) that are poorly understood. Most studies on NPs focus on single analyte exposure; the existing literature on joint toxicity of NPs and co-existing contaminants is rather limited but beginning to develop rapidly. This is the first review paper evaluating the current state of knowledge regarding the joint effects of NPs and co-contaminants. Here, we review: (1) methods for investigating and evaluating joint effects of NPs and co-contaminants; (2) simultaneous toxicities from NPs co-exposed with organic contaminants, metal/metalloid ions, dissolved organic matter (DOM), inorganic ligands and additional NPs; and (3) the influence of NPs co-exposure on the bioaccumulation of organic contaminants and heavy metal ions, as well as the influence of contaminants on NPs bioaccumulation. In addition, future research needs are discussed so as to better understand risk associated with NPs-contaminant co-exposure.
Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A
2016-05-15
Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. Copyright © 2015 Elsevier Inc. All rights reserved.
McAdam, Kevin; Murphy, James; Eldridge, Alison; Meredith, Clive; Proctor, Christopher
2018-06-01
The concept of a risk continuum for tobacco and nicotine products has been proposed, which differentiates products according to their propensity to reduce toxicant exposure and risk. Cigarettes are deemed the most risky and medicinal nicotine the least. We assessed whether a Reduced-Toxicant Prototype (RTP) cigarette could sufficiently reduce exposure to toxicants versus conventional cigarettes to be considered a distinct category in the risk continuum. We present findings from both pre-clinical and clinical studies in order to examine the potential for reduced smoke toxicant emissions to lower health risks associated with cigarette smoking. We conclude that current toxicant reducing technologies are unable to reduce toxicant emissions sufficiently to manifest beneficial disease-relevant changes in smokers. These findings point to a minimum toxicant exposure standard that future potentially reduced risk products would need to meet to be considered for full biological assessment. The RTP met WHO TobReg proposed limits on cigarette toxicant emissions, however the absence of beneficial disease relevant changes in smokers after six months reduced toxicant cigarette use, does not provide evidence that these regulatory proposals will positively impact risks of smoking related diseases. Greater toxicant reductions, such as those that can be achieved in next generation products e.g. tobacco heating products and electronic cigarettes are likely to be necessary to clearly reduce risks compared with conventional cigarettes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Future of Environmental Research in the Age of Epigenomics and Exposomics
Holland, Nina
2016-01-01
Environmental research and public health in the 21st century face serious challenges such as increased air pollution and global warming, widespread use of potentially harmful chemicals including pesticides, plasticizers, and other endocrine disruptors, and radical changes in nutrition and lifestyle typical of modern societies. In particular, exposure to environmental and occupational toxicants may contribute to the occurrence of adverse birth outcomes, neurodevelopmental deficits, and increased risk of cancer and other multifactorial diseases such as diabetes and asthma. Rapidly evolving methodologies of exposure assessment and the conceptual framework of the Exposome, first introduced in 2005, are new frontiers of environmental research. Metabolomics and adductomics provide remarkable opportunities for a better understanding of exposure and prediction of potential adverse health outcomes. Metabolomics, the study of metabolism at the whole-body level, involves assessment of the total repertoire of small molecules present in a biological sample, shedding light on interactions between gene expression, protein expression and the environment. Advances in genomics, transcriptomics and epigenomics are generating multidimensional structures of biomarkers of effect and susceptibility, increasingly important for the understanding of molecular mechanisms and the emergence of personalized medicine. Epigenetic mechanisms, particularly DNA methylation and miRNA expression, attract increasing attention as potential links between the genetic and environmental determinants of health and disease. Unlike genetics, epigenetic mechanisms could be reversible and an understanding of their role may lead to better protection of susceptible populations and improved public health. PMID:27768585
Environmental chemical exposures and human epigenetics
Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea
2012-01-01
Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299
Coastal vertebrate exposure to predicted habitat changes due to sea level rise
Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.
2015-01-01
Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.
Trasande, Leonardo; Massey, Rachel I; DiGangi, Joseph; Geiser, Kenneth; Olanipekun, Abiola Ifueko; Gallagher, Louise
2011-12-01
Increasing worldwide use of chemicals, including heavy metals used in industry and pesticides used in agriculture, may produce increases in chronic diseases in children unless steps are taken to manage the production, use, trade, and disposal of chemicals. In 2020 the developing world will account for 33 percent of global chemical demand and 31 percent of production, compared with 23 percent and 21 percent, respectively, in 1995. We describe present and potential costs of environmental exposures and discuss policy options to protect future generations of children in a sustainable development context. Specifically, we describe the principles of sound chemicals management, as follows: precaution, or the use of cost-effective measures to prevent potentially hazardous exposures before scientific understanding is complete; the right to know, or informing the public--especially vulnerable groups--in a timely fashion about the safe use of chemicals and any releases of chemicals into the environment; pollution prevention, or preventing the use of hazardous chemicals and the production of pollutants, rather than focusing on managing wastes; internalization of environmental and health costs, or ensuring that the consequences of exposures are reflected in the price of chemicals through such approaches as "polluter pays"; and use of best available scientific information in making decisions such as what chemicals to allow into the market. We recommend that industrializing nations in particular employ these principles to prevent disease among their populations while at the same time minimizing the risk to their own economic development.
Financing increasing flood risk: evidence from millions of buildings
NASA Astrophysics Data System (ADS)
Jongman, B.; Koks, E. E.; Husby, T. G.; Ward, P. J.
2014-01-01
The effectiveness of disaster risk management and financing mechanisms depends on the accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on the ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information can contribute to discussions on possible risk financing practices. The case-study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood prone areas has been higher than in not flood prone areas. We also find that property values in flood prone areas are lower than those in not flood prone areas. We argue that the increase in the share of economic value located in potential flood prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing.
Coastal Vertebrate Exposure to Predicted Habitat Changes Due to Sea Level Rise
NASA Astrophysics Data System (ADS)
Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel K.; Moore, Clinton T.; Cooper, Robert J.
2015-12-01
Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species' fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species ( n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species' foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.
Brown, Steven H; Edge, Russel; Elmer, John; McDonald, Michael
2018-06-01
Thousands of former uranium mining sites in the United States, primarily in the southwestern states of Colorado, Arizona, New Mexico, Arizona, and Utah, are being identified and evaluated to assess their potential for causing public and environmental impacts. The common radiological contaminant of concern that characterizes these sites is naturally occurring uranium ore and associated wastes that may have been left behind postmining. The majority of these sites were abandoned and in general, are referred to as abandoned uranium mines, regardless of the government authority currently managing the land or in some cases, assigned responsibility for the oversight of assessment and remediation. The U.S. Department of Energy has identified over 4,000 defense-related uranium mine sites from which uranium ore was purchased by the U.S. government for nuclear defense programs prior to 1970. U.S. Department of Energy has established a program to inventory and perform environmental screening on defense-related uranium mine sites. The focus of this paper is the approximately 2,400 defense-related uranium mine sites located on federal land managed by the Bureau of Land Management and the U.S. Forest Service. This paper presents the results of an analysis to develop radiological screening criteria for U.S. Department of Energy's defense-related uranium mine sites that can be used as input to the overall ranking of these sites for prioritization of additional assessment, reclamation, or remedial actions. For these sites managed by Bureau of Land Management, public access is typically limited to short-term use, primarily for recreational purposes. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, all-terrain vehicle use, and horseback riding. The radiological screening levels were developed by calculating the radiological dose to future recreational users of defense-related uranium mine sites assuming a future camper spends two weeks per year at the site engaged in recreational activities. Although a number of possible exposure pathways were included in this analysis (inhalation and ingestion of dust and soil, radon and progeny inhalation, and gamma radiation exposure from the soil), it is desirable as a practical matter to determine what gamma exposure rate would ensure that the annual acceptable exposure as determined by the regulatory authority will not be exceeded in the future. Because these sites are generally remote and located in semiarid environments, traditional exposure scenarios often applied in these types of analyses (e.g., subsistent farmers and ranchers), including exposure pathways for the ingestion of locally grown food products and water, were not considered relevant to short-term recreational use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, F.A.
1983-10-01
In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Electrical Workers Local 1600 for a Health Hazard Evaluation at the Pennsylvania Power and Light Company's Martins Creek Steam Electric Station in Martins Creek, Pennsylvania. The union was concerned about potential health and explosion hazards to employees from coal dust in Units 1 and 2 and the coal field. Based on environmental studies conducted at the time of the survey, NIOSH has determined that a potential health hazard may have existed due to exposure to respirable coal dust and quartz.more » Recommendations were made to ensure that potential health and explosion hazards are avoided in the future.« less
Trends in occupational hygiene in Finland.
Pääkkönen, Rauno; Koponen, Milja
2018-03-01
The aim of this work is to evaluate and describe the current status of, and prospects for, the future of occupational hygiene in Finland. The main sources of information include a seminar held in the annual meeting of Finnish Occupational Hygiene Society and interviews with different stakeholders. Nanotechnology and other new materials, changing work environments, circular economy including green jobs, new medical methods and advances of construction methods were recognized as future challenges. Future work opportunities for occupational hygiene experts included exposure assessments in indoor air surveys, private consulting and entrepreneurship in general, international activities and product safety issues. Unclear topics needing more attention in the future were thought to be in new exposures, sensitive persons, combined effects, skin exposures and applicability of personal protective equipment. Occupational hygiene should broaden its view; occupational hygienists should have to cooperate with other specialists and grasp new challenges.
Kia-Keating, Maryam; Capous, Diana; Liu, Sabrina; Adams, Jessica
2016-01-01
High rates of exposure to violence and other adversities among Latino/a youth contributes to health disparities. The current paper addresses the ways in which community-based participatory research (CBPR) and human centered design (HCD) can help to engage communities in dialogue and action. We present a project exemplifying how community forums, with researchers, practitioners, and key stakeholders, including youth and parents, integrated HCD strategies with a CBPR approach. Given the potential for power inequities between these groups, CBPR+HCD acted as a catalyst for reciprocal dialogue and generated potential opportunity areas for health promotion and change. Future directions are described. PMID:28207679
Harris, Nicholas A; Winder, Danny G
2018-06-13
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Cote, Ila; Andersen, Melvin E; Ankley, Gerald T; Barone, Stanley; Birnbaum, Linda S; Boekelheide, Kim; Bois, Frederic Y; Burgoon, Lyle D; Chiu, Weihsueh A; Crawford-Brown, Douglas; Crofton, Kevin M; DeVito, Michael; Devlin, Robert B; Edwards, Stephen W; Guyton, Kathryn Z; Hattis, Dale; Judson, Richard S; Knight, Derek; Krewski, Daniel; Lambert, Jason; Maull, Elizabeth Anne; Mendrick, Donna; Paoli, Gregory M; Patel, Chirag Jagdish; Perkins, Edward J; Poje, Gerald; Portier, Christopher J; Rusyn, Ivan; Schulte, Paul A; Simeonov, Anton; Smith, Martyn T; Thayer, Kristina A; Thomas, Russell S; Thomas, Reuben; Tice, Raymond R; Vandenberg, John J; Villeneuve, Daniel L; Wesselkamper, Scott; Whelan, Maurice; Whittaker, Christine; White, Ronald; Xia, Menghang; Yauk, Carole; Zeise, Lauren; Zhao, Jay; DeWoskin, Robert S
2016-11-01
The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.
Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects.
Le Prell, Colleen G; Dell, Shawna; Hensley, Brittany; Hall, James W; Campbell, Kathleen C M; Antonelli, Patrick J; Green, Glenn E; Miller, James M; Guire, Kenneth
2012-01-01
One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is the availability of an established clinical paradigm with real-world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal-hearing human subjects. Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93 to 95 (n = 10), 98 to 100 (n = 11), or 100 to 102 (n = 12) dBA in-ear exposure level for a period of 4 hr. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured before and after music exposure. Postmusic tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and 1 week later. Changes in thresholds after the lowest-level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a "notch" configuration, with the largest changes observed at 4 kHz (mean = 6.3 ± 3.9 dB; range = 0-14 dB). Recovery was largely complete within the first 4 hr postexposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1 week postexposure. These data provide insight into the variability of TTS induced by music-player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function after digital music-player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values.
Young, Megan K; El Saadi, Debra; McCall, Bradley J
2014-04-01
Ongoing potential exposure of members of the public to Australian bat lyssavirus (ABLV) in South East Queensland, Australia, prompted investigation of community knowledge, risk perception, and intention to handle bats to inform future prevention efforts. After pilot testing, a computer-assisted telephone survey of a representative sample of 700 adults without previous potential exposure to ABLV was undertaken in the defined geographic region. Twenty-four percent of eligible contacted individuals participated. Basic knowledge of bats and ABLV was generally high, with 65% of participants answering nine or more of 12 knowledge questions correctly. The perceived risk that bats pose to human health was also high, with 93% indicating some degree of risk. Although 88% of participants indicated they would handle bats in one or more of the scripted situations, overall intention to handle bats was low, with 59% indicating they would handle a bat in four or less of the 12 scenarios. Younger males with lower risk perception of bats most frequently indicated intention to handle bats in varying situations. Knowledge score was not associated with intention to handle bats on multivariate modeling. Future public health prevention efforts, both in Australia and overseas, should focus further on conveying the risk to humans and to bats when nontrained, nonvaccinated people attempt to handle bats rather than attempting to purely convey knowledge about bats and ABLV or rabies. Suitable alternative measures to handling should be included. Younger adult males are a particular target group for prevention efforts.
Exploring lifetime occupational exposure and SLE flare: a patient-focussed pilot study
Squance, Marline L; Guest, Maya; Reeves, Glenn; Attia, John; Bridgman, Howard
2014-01-01
Introduction Environmental effectors, such as ultraviolet radiation exposure, infection and stress, have been established as having a role in exacerbating lupus symptoms. However, unpredictable patterns of flare events still remain a mystery. Occupational effectors have also been suggested as having a contributing role; however, they are not widely researched. In this paper we report a pilot study designed to generate focus areas for future research regarding occupational exposures and systemic lupus erythematosus (SLE). Methods The study explored potential links between exposures and the occurrence of patient-reported flare events in 80 Australian women with SLE (American College of Rheumatology (ACR) criteria classified). Specifically, the study assessed the hypothesis that occupational exposure is associated with significant changes in the likelihood of lupus flares. Lifetime employment history was analysed with the Finnish Job Exposure Matrix (FINJEM), 40 different semiquantified exposure class estimates for a wide number of occupations based on probability of exposure (p≥5%=exposed) were analysed with the construction of negative binomial regression models to test relationships between occupational agents and flare days. A backward stepwise elimination was used to generate a parsimonious model. Results Significant associations were noted for exposure classes of manual handling burden, (p=0.02, incidence rate ratio (IRR) 1.01), Iron (p=0.00, IRR 1.37), wood dust (p=0.00, IRR 3.34) and asbestos (p=0.03, IRR 2.48). Conclusion Exposure assessment results indicated that occupations, such as nursing, with a high manual handling burden, posed increased risk to patients with SLE, however, the greatest risk was associated with wood dust and iron exposure with teachers and specialist labourers. PMID:25379190
Exposure Science: A View of the Past and Milestones for the Future
Lioy, Paul J.
2010-01-01
Background The study of human exposure to environmental toxicants has evolved as a scientific field over the past 30 years. Objectives This review provides a historical perspective on the growth of exposure science as a field, with some emphasis on the results from initial observational studies in obtaining information needed for generating hypotheses on significant human contact with environmental agents, testing the performance of models, and reducing exposures to protect public health. Discussion Advances in activity pattern and behavioral research that established a suite of variables needed to accurately define contact and factors that influence contact are also discussed. The identification and characterization of these factors have played a pivotal role in the growth of the field and in developing exposure reduction strategies. Answers to two key questions on the relevance and fundamental value of exposure science to the fields of environmental health and risk management are presented as a path forward: a) What does one do with such exposure information? b) What roles does exposure science play in situations beyond observational analyses and interpretation? Conclusions The discussion identifies the need for more focused use of observational studies of exposure for epidemiologic analyses. Further, the introduction and use of new tools and approaches for hypothesis testing that can improve the use of exposure science in prevention research for risk management is needed to affect the source-to-effect continuum. A major restructuring of the field is not required to achieve innovation. However, additional resources for training and education are required to ensure that the potential for exposure science to play a central role in reducing and preventing excess risk within environmental/occupational health is achieved. PMID:20308034
Prediction of Exposure Level of Energetic Solar Particle Events
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.; Blattnig, S.
2016-12-01
The potential for exposure to large solar particle events (SPEs) with fluxes that extend to high energies is a major concern during interplanetary transfer and extravehicular activities (EVAs) on the lunar and Martian surfaces. Prediction of sporadic occurrence of SPEs is not accurate for near or long-term scales, while the expected frequency of such events is strongly influenced by solar cycle activity. In the development of NASA's operational strategies real-time estimation of exposure to SPEs has been considered so that adequate responses can be applied in a timely manner to reduce exposures to well below the exposure limits. Previously, the organ doses of large historical SPEs had been calculated by using the complete energy spectra of each event and then developing a prediction model for blood-forming organ (BFO) dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. While BFO dose is determined primarily by solar protons with high energies, it was reasoned that more accurate BFO dose prediction models could be developed using integrated fluence above 60 MeV (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. In the current study, re-analysis of major SPEs (in which the proton spectra of the ground level enhancement [GLE] events since 1956 are correctly described by Band functions) has been used in evaluation of exposure levels. More accurate prediction models for BFO dose and NASA effective dose are then developed using integrated fluence above 200 MeV (Φ200), which by far have the most weight in the calculation of doses for deep-seated organs from exposure to extreme SPEs (GLEs or sub-GLEs). The unconditional probability of a BFO dose exceeding a pre-specified BFO dose limit is simultaneously calculated by taking into account the distribution of the predictor (Φ30, Φ60, Φ100, or Φ200) as estimated from historical SPEs. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.
Who is watching user-generated alcohol posts on social media?
Erevik, Eilin K; Pallesen, Ståle; Andreassen, Cecilie S; Vedaa, Øystein; Torsheim, Torbjørn
2018-03-01
To examine students' exposure to user-generated alcohol content on social media, and identify characteristics (i.e. demographics, personality traits, alcohol use, alcohol-related cognitions, and social media factors) associated with monthly or more frequent exposure. College/university students (N=11,236) in Bergen, Norway, completed a web-survey measuring exposure to alcohol on social media - both frequency and interpretations of alcohol content. The survey included questions regarding demographics, personality, alcohol-related cognitions, and general use of social media and alcohol. Binary logistic regressions were run to identify characteristics associated with monthly or more frequent exposure to alcohol-related posts on social media. A total of 96.7% had been exposed to alcohol-related posts, exposure to posts with a positive valence of alcohol were more frequently reported than exposure to content with a negative valence of alcohol. Reports of monthly or more frequent exposure to alcohol on social media were associated with a range of characteristics, among these younger age, being native Norwegian, lower extroversion and higher agreeableness and self-monitoring scores, higher alcohol use, stronger descriptive norms for alcohol use among online-friends, and more frequent logins to social media. Students' potential inflated alcohol norms (originating from social media) should be addressed. The results suggest that exposure may be determined by high alcohol use and membership in demographical groups associated with high alcohol use, an increased attentiveness towards others' behavior, and excessive social media use. Future studies investigating the relationship between alcohol exposure on social media and later alcohol use should control for such factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems.
Islam, Faisal; Wang, Jian; Farooq, Muhammad A; Khan, Muhammad S S; Xu, Ling; Zhu, Jinwen; Zhao, Min; Muños, Stéphane; Li, Qing X; Zhou, Weijun
2018-02-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is applied directly to aquatic and conventional farming systems to control weeds, and is among the most widely distributed pollutants in the environment. Non-target organisms are exposed to 2,4-D via several ways, which could produce toxic effects depending on the dose, frequency of exposure, and the host factors that influence susceptibility and sensitivity. An increasing number of experimental evidences have shown concerns about its presence/detection in the environment, because several investigations have pointed out its potential lethal effects on non-target organisms. In this review, we critically evaluated the environmental fate and behavior of 2,4-D along with its eco-toxicological effects on aquatic, plants and human life to provide concise assessment in the light of recently published reports. The findings demonstrate that 2,4-D is present in a low concentration in surface water of regions where its usage is high. The highest concentrations of 2,4-D were detected in soil, air and surface water surrounded by crop fields, which suggest that mitigation strategies must be implanted locally to prevent the entry of 2,4-D into the environment. A general public may have frequent exposure to 2,4-D due to its wide applications at home lawns and public parks, etc. Various in vivo and in vitro investigations suggest that several species (or their organs) at different trophic levels are extremely sensitive to the 2,4-D exposure, which may explain variation in outcomes of reported investigations. However, implications for the prenatal exposure to 2,4-D remain unknown because 2,4-D-induced toxicity thresholds in organism have only been derived from juveniles or adults. In near future, introduction of 2,4-D resistant crops will increase its use in agriculture, which may cause relatively high and potentially unsafe residue levels in the environment. The recent findings indicate the urgent need to further explore fate, accumulation and its continuous low level exposure impacts on the environment to generate reliable database which is key in drafting new regulation and policies to protect the population from further exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trueblood, Amber B; Forrester, Mathias B; Han, Daikwon; Shipp, Eva M; Cizmas, Leslie H
2016-11-01
Although national poison center data show that pesticides were the 8th most commonly reported substance category (3.27%) for children aged ≤5 years in 2014, there is limited information on childhood and adolescent pesticide exposures. This study assessed pesticide-related poison center exposures in children and adolescents aged ≤19 years from 2000-2013 in Texas to characterize the potential burden of pesticides. Pesticide-related poison center exposures among children and adolescents aged ≤19 years reported to Texas poison centers were identified. The distribution of exposures was estimated by gender, age category, medical outcome, management site, exposure route, and pesticide category. From 2000 to 2013, there were 61,147 pesticide-related poison center exposures in children and adolescents aged ≤19 years. The prevalence was highest among males at 864.24 per 100,000 population. The prevalence of unintentional exposures was highest among children aged ≤5 years at 2310.69 per 100,000 population, whereas the prevalence of intentional exposures was highest among adolescents aged 13-19 years at 13.82 per 100,000 population. A majority of medical outcomes reported were classified as having no effect (30.24%) and not followed, but minimal clinical effects possible (42.74%). Of all the exposures, 81.24% were managed on site. However, 57% of intentional exposures were referred to or treated at a health-care facility. The most common routes of exposure were ingestion (80.83%) and dermal (17.21%). The most common pesticide categories included rodenticides (30.02%), pyrethrins/pyrethroids (20.69%), and other and unspecified insecticides (18.14%). The study found differences in the frequency of exposures by intent for sex and age categories, and identified the most common medical outcomes, management site, exposure route, and pesticide category. Through characterizing pesticide-related poison center exposures, future interventions can be designed to address groups with higher prevalence of exposure.
Contracting infectious diseases in Sub-Saharan African wetlands: A question of use? A review.
Anthonj, Carmen; Rechenburg, Andrea; Höser, Christoph; Kistemann, Thomas
2017-10-01
Worldwide the pressure on water is increasing. In parts of Sub-Saharan Africa (SSA), natural wetlands constitute the only accessible water resources, providing water free of charge, agricultural potential and livelihoods in otherwise uninhabitable landscapes, which is why they are being used extensively. The degradation and contamination of water which result from the use of wetlands has the potential to spread disease-causing microorganisms and provide increased breeding habitats for disease vectors, Despite this importance, case studies are lacking and knowledge gaps remain about whether and how different kinds of wetland use influence the exposure to health risks and transmission of infectious diseases. This descriptive literature review aimed at identifying publications from peer-reviewed journals and book chapters that (i) address water-related infectious diseases in SSA wetlands and (ii) link those diseases to use-related exposures. The resulting overview includes 27 publications and shows that depending on the type of use, people in wetlands are exposed to different risk factors and water-related infectious diseases. Exposure to infectious agents depends on occupational characteristics, and time spent in wetlands. Disease transmission is driven by users' contact to water, characteristics of pathogens and vectors of disease. The amount of available literature varies significantly. Whereas several publications have linked crop production and the domestic use of wetland water to contraction of diseases, fewer are available on health risks identified with pastoralism in wetlands and other uses. Some risk factors are well researched, such as irrigation schemes favouring schistosomiasis prevalence. For others, including proximity of pastoralists to their livestock and the associated trachoma risk, knowledge remains limited. This review establishes connections of selected diseases with different transmission pathways that are linked to specific risk factors, transmission pathways and resulting diseases. All of these have been integrated into a detailed conceptual framework which simplifies the complexity of the relationships, while at the same time identifying missing links which might provide stimulus for future research tackling the potential research gaps. It concludes that socio-cultural and behavioural considerations regarding the wetland users are not sufficiently evaluated and should receive increased attention in future investigations. Copyright © 2017 Elsevier GmbH. All rights reserved.
O'Callaghan, James P; Kelly, Kimberly A; Locker, Alicia R; Miller, Diane B; Lasley, Steve M
2015-06-01
Gulf War Illness (GWI) is a multi-symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N-diethyl-meta-toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti-inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7-14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain-wide neuroinflammation assessed by qPCR of tumor necrosis factor-α, IL6, chemokine (C-C motif) ligand 2, IL-1β, leukemia inhibitory factor, and oncostatin M. Pre-treatment with high physiological levels of CORT greatly augmented (up to 300-fold) the neuroinflammatory responses to DFP. Anti-inflammatory pre-treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI. Gulf War (GW) veterans were exposed to stressors, prophylactic medicines and, potentially, nerve agents in theater. Subsequent development of GW Illness, a persistent multi-symptom disorder with features characteristic of sickness behavior, may be caused by priming of the CNS resulting in exaggerated neuroinflammatory responses to pathogens/insults. Nerve agent, diisopropyl fluorophosphate (DFP), produced a neuroinflammatory response that was exacerbated by pre-treatment with levels of corticosterone simulating heightened stressor conditions. While prophylactic treatments reduced DFP-induced neuroinflammation, this effect was negated when those treatments were combined with corticosterone. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.
Parate, Dinesh; Franco-Obregón, Alfredo; Fröhlich, Jürg; Beyer, Christian; Abbas, Azlina A; Kamarul, Tunku; Hui, James H P; Yang, Zheng
2017-08-25
Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
TOPICAL REVIEW: Climate change, ozone depletion and the impact on ultraviolet exposure of human skin
NASA Astrophysics Data System (ADS)
Diffey, Brian
2004-01-01
For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population.
Beard, John D.; Kamel, Freya
2015-01-01
Rates of amyotrophic lateral sclerosis (ALS) have been reported to be higher among US military veterans, who currently number more than 21 million, but the causal factor(s) has not been identified. We conducted a review to examine the weight of evidence for associations between military service, deployments, and exposures and ALS etiology and survival. Thirty articles or abstracts published through 2013 were reviewed. Although the current evidence suggests a positive association with ALS etiology, it is too limited to draw firm conclusions regarding associations between military service and ALS etiology or survival. Some evidence suggests that deployment to the 1990–1991 Persian Gulf War may be associated with ALS etiology, but there is currently no strong evidence that any particular military exposure is associated with ALS etiology. Future studies should address the limitations of previous ones, such as reliance on mortality as a surrogate for incidence, a dearth of survival analyses, lack of clinical data, low statistical power, and limited exposure assessment. The Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis (GENEVA) Study is one such study, but additional research is needed to determine whether military-related factors are associated with ALS and to assess potential prevention strategies. PMID:25365170
de la Monte, Suzanne M.; Neusner, Alexander; Chu, Jennifer; Lawton, Margot
2015-01-01
Nitrosamines mediate their mutagenic effects by causing DNA damage, oxidative stress, lipid peroxidation, and pro-inflammatory cytokine activation, which lead to increased cellular degeneration and death. However, the very same pathophysiological processes comprise the “unbuilding” blocks of aging and insulin-resistance diseases including, neurodegeneration, diabetes mellitus (DM), and non-alcoholic steatohepatitis (NASH). Previous studies demonstrated that experimental exposure to streptozotocin, a nitrosamine-related compound, causes NASH, and diabetes mellitus Types 1, 2 and 3 (Alzheimer (AD)-type neurodegeneration). Herein, we review evidence that the upwardly spiraling trends in mortality rates due to DM, AD, and Parkinson's disease typify exposure rather than genetic-based disease models, and parallel the progressive increases in human exposure to nitrates, nitrites, and nitrosamines via processed/preserved foods. We propose that such chronic exposures have critical roles in the pathogenesis of our insulin resistance disease pandemic. Potential solutions include: 1) eliminating the use of nitrites in food; 2) reducing nitrate levels in fertilizer and water used to irrigate crops; and 3) employing safe and effective measures to detoxify food and water prior to human consumption. Future research efforts should focus on refining our ability to detect and monitor human exposures to nitrosamines and assess early evidence of nitrosamine-mediated tissue injury and insulin resistance. PMID:19363256
Biomarkers of environmental benzene exposure.
Weisel, C; Yu, R; Roy, A; Georgopoulos, P
1996-01-01
Environmental exposures to benzene result in increases in body burden that are reflected in various biomarkers of exposure, including benzene in exhaled breath, benzene in blood and urinary trans-trans-muconic acid and S-phenylmercapturic acid. A review of the literature indicates that these biomarkers can be used to distinguish populations with different levels of exposure (such as smokers from nonsmokers and occupationally exposed from environmentally exposed populations) and to determine differences in metabolism. Biomarkers in humans have shown that the percentage of benzene metabolized by the ring-opening pathway is greater at environmental exposures than that at higher occupational exposures, a trend similar to that found in animal studies. This suggests that the dose-response curve is nonlinear; that potential different metabolic mechanisms exist at high and low doses; and that the validity of a linear extrapolation of adverse effects measured at high doses to a population exposed to lower, environmental levels of benzene is uncertain. Time-series measurements of the biomarker, exhaled breath, were used to evaluate a physiologically based pharmacokinetic (PBPK) model. Biases were identified between the PBPK model predictions and experimental data that were adequately described using an empirical compartmental model. It is suggested that a mapping of the PBPK model to a compartmental model can be done to optimize the parameters in the PBPK model to provide a future framework for developing a population physiologically based pharmacokinetic model. PMID:9118884
Modeled occupational exposures to gas-phase medical laser-generated air contaminants.
Lippert, Julia F; Lacey, Steven E; Jones, Rachael M
2014-01-01
Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.
Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I
2014-12-01
The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.
Many epidemiologic studies of the health effects of exposure to ambient air pollution use measurements from central-site monitors as their exposure estimate. However, measurements from central-site monitors may lack the spatial and temporal resolution required to capture exposure...
Le Prell, C. G.; Dell, S.; Hensley, B.; Hall, J. W.; Campbell, K. C. M.; Antonelli, P. J.; Green, G. E.; Miller, J. M.; Guire, K.
2012-01-01
Objectives One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is availability of an established clinical paradigm with real world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal hearing human subjects. Design Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93–95 (n=10), 98–100 (n=11), or 100–102 (n=12) dBA in-ear exposure level for a period of four hours. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured prior to and after music exposure. Post-music tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and one week later. Results Changes in thresholds after the lowest level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a “notch” configuration, with the largest changes observed at 4 kHz (mean=6.3±3.9dB; range=0–13 dB). Recovery was largely complete within the first 4 hours post-exposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1-week post-exposure. Conclusions These data provide insight into the variability of TTS induced by music player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function following digital music player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values. PMID:22885407
Anderson-Cook, Christine M.; Morzinski, Jerome; Blecker, Kenneth D.
2015-08-19
Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidatemore » inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. As a result, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model.« less
Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel
2012-08-01
Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.
Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds
NASA Astrophysics Data System (ADS)
Mishra, Vimal; Mukherjee, Sourav; Kumar, Rohini; Stone, Dáithí A.
2017-12-01
Heatwaves with large impacts have increased in the recent past and will continue to increase under future warming. However, the implication for population exposure to severe heatwaves remains unexplored. Here, we characterize maximum potential human exposure (without passive/active reduction measures) to severe heatwaves in India. We show that if the global mean temperature is limited to 2.0 °C above pre-industrial conditions, the frequency of severe heatwaves will rise by 30 times the current climate by the end-21st century. In contrast, the frequency is projected to be about 2.5 times more (than the low-warming scenario of 2 °C) under conditions expected if the RCP8.5 ‘business-as-usual’ emissions scenario is followed. Under the 2.0 °C low-warming target, population exposure to severe heatwaves is projected to increase by about 15 and 92 times the current level by the mid and end-21st century respectively. Strategies to reduce population growth in India during the 21st century may provide only limited mitigation of heatwave exposure mostly late in the century. Limiting global temperatures to 1.5 °C above preindustrial would reduce the exposure by half relative to RCP8.5 by the mid-21st century. If global temperatures are to exceed 1.5 °C then substantial measures will be required to offset the large increase in exposure to severe heatwaves in India.
NASA Astrophysics Data System (ADS)
Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antiño R.; Latendresse, John; Olsen, Reid H. J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2015-11-01
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.
Cue-induced cigarette cravings and smoking cessation: the role of expectancies.
Erblich, Joel; Montgomery, Guy H
2012-07-01
Cue-induced cigarette cravings have been oft studied as potentially important predictors of smoking cessation outcomes. The literature on the relationship between cue-induced cravings and cessation, however, remains mixed. One possible explanation for the discrepant results in the literature may be the as-yet untested variability in expectancies of craving. Indeed, as with many interoceptive responses, cravings and their downstream consequences may be influenced by expectancies. To date, no study has examined the influence of expected cravings following smoking cue exposures on actual craving experiences and cessation outcomes. The objective of this study, therefore, was to test the possibility that smokers' expected craving levels in response to smoking cues would be related to actual cravings following cue exposure and that expected cravings would be related to cessation outcomes. Nicotine-dependent adult smokers (n = 153) were exposed to sets of neutral and smoking cues and completed questionnaires assessing (a) prior to the exposures, the cigarette craving levels they expected to experience following the cue exposures and (b) following the exposures, their actual craving levels. Participants also reported the duration of their most recent quit attempt and their perceived future quit difficulty. Findings indicated that expected cravings assessed prior to the cue exposures were significantly related to actual cravings following the exposures. In addition, both expected cravings and actual cravings were related to shorter previous quit duration and higher perceived quit difficulty. Study results highlight the importance of considering both expected and actual cravings in cue-induced craving paradigms.
Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antino R.; Latendresse, John; Olsen, Reid H.J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2015-01-01
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation). Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. PMID:26553631
Detection of fullerenes (C60 and C70) in commercial cosmetics.
Benn, Troy M; Westerhoff, Paul; Herckes, Pierre
2011-05-01
Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hanford Site Asbestos Abatement Plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mewes, B.S.
The Hanford Site Asbestos Abatement Plan (Plan) lists priorities for asbestos abatement activities to be conducted in Hanford Site facilities. The Plan is based on asbestos assessment information gathered in fiscal year 1989 that evaluated all Hanford Site facilities for the presence and condition of asbestos. Of those facilities evaluated, 414 contain asbestos-containing materials and are classified according to the potential risk of asbestos exposure to building personnel. The Plan requires that asbestos condition update reports be prepared for all affected facilities. The reporting is completed by the asbestos coordinator for each of the 414 affected facilities and transmitted tomore » the Plan manager annually. The Plan manager uses this information to reprioritize future project lists. Currently, five facilities are determined to be Class Al, indicating a high potential for asbestos exposure. Class Al and B1 facilities are the highest priority for asbestos abatement. Abatement of the Class A1 and Bl facilities is scheduled through fiscal year 1997. Removal of asbestos in B1 facilities will reduce the risk for further Class ``A`` conditions to arise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankow, J. W.; Glick, S. H.
2006-05-01
Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposedmore » to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.« less
Human health risk assessment case study: an abandoned metal smelter site in Poland.
Wcisło, Eleonora; Ioven, Dawn; Kucharski, Rafal; Szdzuj, Jerzy
2002-05-01
United States Environmental Protection Agency methodologies for human health risk assessment (HRA) were applied in a Brownfields Demonstration Project on the Warynski smelter site (WSS), an abandoned industrial site at Piekary Slaskie town, Upper Silesia, Poland. The HRA included the baseline risk assessment (BRA) and the development of risk-based preliminary remedial goals (RBPRGs). The HRA focused on surface area covered with waste materials, which were evaluated with regard to the potential risks they may pose to humans. Cadmium, copper, iron, manganese, lead, and zinc were proposed as the contaminants of potential concern (COPCs) at WSS based on archive data on chemical composition of waste located on WSS. For the defined future land use patterns, the industrial (I) and recreational (II) exposure scenarios were assumed and evaluated. The combined hazard index for all COPCs was 3.1E+00 for Scenario I and 3.2E+00 for Scenario II. Regarding potential carcinogenic risks associated with the inhalation route, only cadmium was a contributor, with risks of 1.6E-06 and 2.6E-07 for Scenario I and Scenario II, respectively. The results of the BRA indicated that the potential health risks at WSS were mainly associated with waste material exposure to cadmium (industrial and recreational scenarios) and lead (industrial scenario). RBPRGs calculated under the industrial scenario were 1.17E+03 and 1.62E+03 mg/kg for cadmium and lead, respectively. The RBPRG for cadmium was 1.18E+03 mg/kg under the recreational scenario. The BRA results, as well as RBCs, are comparable for both scenarios, so it is impossible to prioritize land use patterns for WSS based on these results. For choosing a future land use pattern or an appropriate redevelopment option, different factors would be decisive in the decision-making process, e.g., social, market needs, technical feasibility and costs of redevelopment actions or acceptance of local community.
NASA Astrophysics Data System (ADS)
Biass, S.; Todde, A.; Cioni, R.; Pistolesi, M.; Geshi, N.; Bonadonna, C.
2017-10-01
We present an exposure analysis of infrastructure and lifeline to tephra fallout for a future large-scale explosive eruption of Sakurajima volcano. An eruption scenario is identified based on the field characterization of the last subplinian eruption at Sakurajima and a review of reports of the eruptions that occurred in the past six centuries. A scenario-based probabilistic hazard assessment is performed using the Tephra2 model, considering various eruption durations to reflect complex eruptive sequences of all considered reference eruptions. A quantitative exposure analysis of infrastructures and lifelines is presented primarily using open-access data. The post-event impact assessment of Magill et al. (Earth Planets Space 65:677-698, 2013) after the 2011 VEI 2 eruption of Shinmoedake is used to discuss the vulnerability and the resilience of infrastructures during a future large eruption of Sakurajima. Results indicate a main eastward dispersal, with longer eruption durations increasing the probability of tephra accumulation in proximal areas and reducing it in distal areas. The exposure analysis reveals that 2300 km of road network, 18 km2 of urban area, and 306 km2 of agricultural land have a 50% probability of being affected by an accumulation of tephra of 1 kg/m2. A simple qualitative exposure analysis suggests that the municipalities of Kagoshima, Kanoya, and Tarumizu are the most likely to suffer impacts. Finally, the 2011 VEI 2 eruption of Shinmoedake demonstrated that the already implemented mitigation strategies have increased resilience and improved recovery of affected infrastructures. Nevertheless, the extent to which these mitigation actions will perform during the VEI 4 eruption presented here is unclear and our hazard assessment points to possible damages on the Sakurajima peninsula and the neighboring municipality of Tarumizu.
Pacific Northwest National Laboratory’s Climate Resiliency Planning Process and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Kimberly M.; Judd, Kathleen S.; Brandenberger, Jill M.
2016-02-22
In 2015, the Pacific Northwest National Laboratory (PNNL) developed its first Climate Resilience Plan for its Richland Campus. PNNL has performed Climate Resilience Planning for the Department of Defense, Nuclear Regulatory Commission, and Department of Energy (DOE) over the past 5 years. The assessment team included climate scientists, social scientists, engineers, and operations managers. A multi-disciplinary team was needed to understand the potential exposures to future changes at the site, the state of the science on future impacts, and the best process for “mainstreaming” new actions into existing activities. The team uncovered that the site’s greatest vulnerabilities, and therefore prioritiesmore » for climate resilience planning, are high temperature due to degraded infrastructure, increased wildfire frequency, and intense precipitation impacts on stormwater conveyance systems.« less
Wright, Emily M; Fagan, Abigail A; Pinchevsky, Gillian M
2013-11-01
This study uses longitudinal data from the Project on Human Development in Chicago Neighborhoods (PHDCN) to examine the effects of exposure to school violence, community violence, child abuse, and parental intimate partner violence (IPV) on youths' subsequent alcohol and marijuana use. We also examine the cumulative effects of being exposed to violence across these domains. Longitudinal data were obtained from 1,655 adolescents and their primary caregivers participating in the PHDCN. The effects of adolescents' exposure to various forms of violence across different life domains were examined relative to adolescents' frequency of alcohol and marijuana use three years later. Multivariate statistical models were employed to control for a range of child, parent, and family risk factors. Exposure to violence in a one-year period increased the frequency of substance use three years later, though the specific relationships between victimization and use varied for alcohol and marijuana use. Community violence and child abuse, but not school violence or exposure to IPV, were predictive of future marijuana use. None of the independent measures of exposure to violence significantly predicted future alcohol use. Finally, the accumulation of exposure to violence across life domains was detrimental to both future alcohol and marijuana use. The findings support prior research indicating that exposure to multiple forms of violence, across multiple domains of life, negatively impacts adolescent outcomes, including substance use. The findings also suggest that the context in which exposure to violence occurs should be considered in future research, since the more domains in which youth are exposed to violence, the fewer "safe havens" they have available. Finally, a better understanding of the types of violence youth encounter and the contexts in which these experiences occur can help inform intervention efforts aimed at reducing victimization and its negative consequences. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wright, Emily M.; Fagan, Abigail A.; Pinchevsky, Gillian M.
2013-01-01
Objective This study uses longitudinal data from the Project on Human Development in Chicago Neighborhoods (PHDCN) to examine the effects of exposure to school violence, community violence, child abuse, and parental intimate partner violence (IPV) on youths’ subsequent alcohol and marijuana use. We also examine the cumulative effects of being exposed to violence across these domains. Methods Longitudinal data were obtained from 1,655 adolescents and their primary caregivers participating in the PHDCN. The effects of adolescents’ exposure to various forms of violence across different life domains were examined relative to adolescents’ frequency of alcohol and marijuana use three years later. Multivariate statistical models were employed to control for a range of child, parent, and family risk factors. Results Exposure to violence in a one-year period increased the frequency of substance use three years later, though the specific relationships between victimization and use varied for alcohol and marijuana use. Community violence and child abuse, but not school violence or exposure to IPV, were predictive of future marijuana use. None of the independent measures of exposure to violence significantly predicted future alcohol use. Finally, the accumulation of exposure to violence across life domains was detrimental to both future alcohol and marijuana use. Conclusion The findings support prior research indicating that exposure to multiple forms of violence, across multiple domains of life, negatively impacts adolescent outcomes, including substance use. The findings also suggest that the context in which exposure to violence occurs should be considered in future research, since the more domains in which youth are exposed to violence, the fewer “safe havens” they have available. Finally, a better understanding of the types of violence youth encounter and the contexts in which these experiences occur can help inform intervention efforts aimed at reducing victimization and its negative consequences. PMID:23743232
Nakashima, Ann; Farinaccio, Rocco
2015-04-01
Noise-induced hearing loss resulting from weapon noise exposure has been studied for decades. A summary of recent work in weapon noise signal analysis, current knowledge of hearing damage risk criteria, and auditory performance in impulse noise is presented. Most of the currently used damage risk criteria are based on data that cannot be replicated or verified. There is a need to address the effects of combined noise exposures, from similar or different weapons and continuous background noise, in future noise exposure regulations. Advancements in hearing protection technology have expanded the options available to soldiers. Individual selection of hearing protection devices that are best suited to the type of exposure, the auditory task requirements, and hearing status of the user could help to facilitate their use. However, hearing protection devices affect auditory performance, which in turn affects situational awareness in the field. This includes communication capability and the localization and identification of threats. Laboratory training using high-fidelity weapon noise recordings has the potential to improve the auditory performance of soldiers in the field, providing a low-cost tool to enhance readiness for combat. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Molecular mechanisms of maternal cannabis and cigarette use on human neurodevelopment
Morris, Claudia V.; DiNieri, Jennifer A.; Szutorisz, Henrietta; Hurd, Yasmin L.
2011-01-01
Prenatal development is highly sensitive to maternal drug use due to the vulnerability for disruption of the fetal brain where the ongoing neurodevelopmental, resulting in lifelong consequences that can enhance risk for psychiatric disorders. Cannabis and cigarettes are the most commonly used illicit and licit substances, respectively, among pregnant women. While the behavioral consequences of prenatal cannabis and cigarette exposure have been well-documented in epidemiological and clinical studies, only recently have investigations into the molecular mechanisms associated with the developmental impact of early drug exposure been addressed. This article reviews the literature relevant to long-term gene expression disturbances in the human fetal brain in relation to maternal cannabis and cigarette use. To provide translational insights, we discuss animal models in which protracted molecular consequences of prenatal cannabis and cigarette exposure can be better explored and enable future evaluation of epigenetic pathways such as DNA methylation and histone modification that could potentially maintain abnormal gene regulation and related behavioral disturbances. Altogether, this information may help to address the current gaps of knowledge regarding the impact of early drug exposure that set in motion lifelong molecular disturbances that underlie vulnerability to psychiatric disorders. PMID:22103415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trovato, S.A.; Parry, J.O.
1995-03-01
Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effectivemore » method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.« less
Xenotransplantation as a model for human testicular development.
Hutka, Marsida; Smith, Lee B; Mitchell, Rod T
The developing male reproductive system may be sensitive to disruption by a wide range of exogenous 'endocrine disruptors'. In-utero exposure to environmental chemicals and pharmaceuticals have been hypothesized to have an impact in the increasing incidence of male reproductive disorders. The vulnerability to adverse effects as a consequence of such exposures is elevated during a specific 'window of susceptibility' in fetal life referred to as the masculinisation programing window (MPW). Exposures that occur during prepuberty, such as chemotherapy treatment for cancer during childhood, may also affect future fertility. Much of our current knowledge about fetal and early postnatal human testicular development derives from studies conducted in animal models predictive for humans. Therefore, over recent years, testicular transplantation has been employed as a 'direct' approach to understand the development of human fetal and prepubertal testis in health and disease. In this review we describe the potential use of human testis xenotransplantation to study testicular development and its application for (i) assessing the effects of environmental exposures in humans, and (ii) establishing fertility preservation options for prepubertal boys with cancer. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
The status of childhood lead poisoning and prevention in Nevada, USA.
Rothweiler, Anne M; Cabb, Elena E; Gerstenberger, Shawn L
2007-03-30
One of the first steps in addressing the problem of childhood lead poisoning is to identify the possible sources of exposure in specific communities and target high-risk populations with appropriate interventions. Due to several factors, such as lack of funding and lack of blood lead reporting, little information exists regarding the occurrence of childhood lead poisoning and the prevalence of potential exposure sources in the state of Nevada. Following the recent establishment of a Nevada-based Lead Poisoning Program, we compiled the most current information available on Nevadans, and use this knowledge to suggest future research objectives and outreach activities for the state. Accordingly, we identify the characteristics of the vulnerable Nevada populations, explore possible sources of lead exposure unique to Nevada, and summarize the existing data on childhood lead poisoning. Emerging data indicates that Nevada is an area of rapid population growth, characterized by increasing immigration from Latin America, increasing numbers of children from low-income families with no health insurance. Also, childhood lead poisoning may arise from exposure to non-paint sources of lead. After presenting the Nevada statistics, we propose and recommend a set of research and outreach strategies that best suit the needs of Nevada residents.
Developmental Consequences of Fetal Exposure to Drugs: What We Know and What We Still Must Learn
Ross, Emily J; Graham, Devon L; Money, Kelli M; Stanwood, Gregg D
2015-01-01
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose–response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures. PMID:24938210
Gene expression profiles in liver of mouse after chronic exposure to drinking water.
Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei
2009-10-01
cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.
Programming research: where are we and where do we go from here?
Koletzko, Berthold; Symonds, Michael E; Olsen, Sjurdur F
2011-12-01
Convincing evidence has accumulated to show that both pre- and postnatal nutrition preprogram long-term health, well-being, and performance until adulthood and old age. There is a very large potential in the application of this knowledge to promote public health. One of the prerequisites for translational application is to strengthen the scientific evidence. More extensive knowledge is needed (eg, on effect sizes of early life programming in contemporary populations, on specific nutritional exposures, on sensitive time periods in early life, on precise underlying mechanisms, and on potential effect differences in subgroups characterized by, eg, genetic predisposition or sex). Future programming research should aim at filling the existing gaps in scientific knowledge, consider the entire lifespan, address socioeconomic issues, and foster innovation. Research should aim at results suitable for translational application (eg, by leading to health-promoting policies and evidence-based dietary recommendations in the perinatal period). International collaboration and a close research partnership of academia, industry, and small and medium enterprises may strengthen research and innovative potential enhancing the likelihood of translational application. The scientific know-how and methodology available today allow us to take major steps forward in the near future; hence, research on nutritional programming deserves high priority.
Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G
2016-01-01
Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time.
NASA Astrophysics Data System (ADS)
Schaub, Y.; Huggel, C.; Serraino, M.; Haeberli, W.
2012-04-01
The changes in high-mountain environments are increasingly fast and complex. GIS-based models of the Swiss Alps show that numerous topographic overdeepenings are likely to appear on progressively exposed glacier beds, which are considered as potential sites of future lake formation. In many cases these newly forming lakes will be situated in an over-steepened and destabilized high-mountain environment and are, therefore, prone to impact waves from landslides. The risk of glacier lake outburst floods, endangering infrastructure, residential areas and persons further downvalley, is increasing with further lake formation and glacier recession. This risk may persist for many decades if not centuries. Future-oriented hazard assessments have to be integrative and must deal with all possible process chains. Reference studies and methodologies are still scarce, however. We present an approach to compare risks resulting from high-mountain lakes in the Swiss Alps amongst each other. Already existing lakes are thereby as much included in the analysis as future ones. The presented risk assessment approach integrates the envisaged high-mountain hazard process chain with present and future socio-economic conditions. Applying the concept of integral risk management, the hazard and damage potentials have to be analyzed. The areas that feature the topographic potential for rock/iceavalanches to reach a lake were analyzed regarding their susceptibility to slope failure including the factors slope inclination, permafrost occurrence, glacier recession and bedrock lithology. Together with the analysis of the lakes (volume and runout path of potential outburst floods), the hazard analysis of the process chain was completed. As an example, high long-term hazard potentials in the Swiss Alps have, for instance, to be expected in the area of the Great Aletsch glacier. A methodology for the assessment of the damage potential was elaborated and will be presented. In order to estimate the location of the largest damage potentials, driving forces of different spatial development scenarios for the Swiss Alps will be implemented in a land allocation model for the Swiss Alps. By bringing together hazard, exposure and vulnerability analyses, a risk assessment for the entire Swiss Alps regarding lake-outburst floods triggered by impacts of rock/ice avalanches can be conducted for today, the middle of the century and even beyond.
Israeli Youth in the Second Intifada: PTSD and Future Orientation
ERIC Educational Resources Information Center
Solomon, Zahava; Lavi, Tamar
2005-01-01
Objective: To examine the relationship between exposure to political violence and posttraumatic symptoms, future orientation, and attitudes toward peace. Method: A total of 740 boys and girls aged 11.5-15 years from Jerusalem, Gilo, and the Jewish settlements in the disputed territories were assessed in the summer of 2001 using an exposure to…
Systems Toxicology: The Future of Risk Assessment.
Sauer, John Michael; Hartung, Thomas; Leist, Marcel; Knudsen, Thomas B; Hoeng, Julia; Hayes, A Wallace
2015-01-01
Risk assessment, in the context of public health, is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. With increasing public health concern regarding the potential risks associated with chemical exposure, there is a need for more predictive and accurate approaches to risk assessment. Developing such an approach requires a mechanistic understanding of the process by which xenobiotic substances perturb biological systems and lead to toxicity. Supplementing the shortfalls of traditional risk assessment with mechanistic biological data has been widely discussed but not routinely implemented in the evaluation of chemical exposure. These mechanistic approaches to risk assessment have been generally referred to as systems toxicology. This Symposium Overview article summarizes 4 talks presented at the 35th Annual Meeting of the American College of Toxicology. © The Author(s) 2015.
The Role of Mindfulness in Reducing the Adverse Effects of Childhood Stress and Trauma
Ortiz, Robin; Sibinga, Erica M.
2017-01-01
Research suggests that many children are exposed to adverse experiences in childhood. Such adverse childhood exposures may result in stress and trauma, which are associated with increased morbidity and mortality into adulthood. In general populations and trauma-exposed adults, mindfulness interventions have demonstrated reduced depression and anxiety, reduced trauma-related symptoms, enhanced coping and mood, and improved quality of life. Studies in children and youth also demonstrate that mindfulness interventions improve mental, behavioral, and physical outcomes. Taken together, this research suggests that high-quality, structured mindfulness instruction may mitigate the negative effects of stress and trauma related to adverse childhood exposures, improving short- and long-term outcomes, and potentially reducing poor health outcomes in adulthood. Future work is needed to optimize implementation of youth-based mindfulness programs and to study long-term outcomes into adulthood. PMID:28264496
How do you approach seizures in the high altitude traveler?
Maa, Edward H
2011-01-01
Counseling patients who suffer first-time or break- through seizures can be difficult, particularly when controllable external factors may be contributing to the lowering of their seizure threshold. High altitude as a potential trigger for seizures is a common question in our epilepsy clinics in Colorado, and this article reviews the existing anecdotal literature, presents our local experience with high altitude seizures (HAS), offers possible mechanisms to explain how high altitude may trigger seizures, and suggests an initial work-up and prophylactic strategies for future high altitude exposures.
A critical incident report: Propofol triggered anaphylaxis
Koul, Archna; Jain, Rashmi; Sood, Jayashree
2011-01-01
Although propofol is one of the most commonly used drugs for induction of anaesthesia, it is not devoid of anaphylactic potential. Early detection of any suspected anaphylactic reaction during anaesthesia, prompt management, identification of the offending agent and prevention of exposure to the offending agent in the future is the responsibility of the anaesthesiologist. This is a case report of anaphylaxis to propofol at the induction of anaesthesia in a previously non-allergic 56 year-old man, planned to undergo laparoscopic nephrectomy, who responded to epinephrine infusion. PMID:22174476
Interim Land Use Control Implementation Plan
NASA Technical Reports Server (NTRS)
Applegate, Joseph L.
2014-01-01
This Interim Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Contractors Road Heavy Equipment (CRHE) Area (SWMU 055; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the CRHE Area, an interim institutional land use control (LUC) is necessary to prevent human health exposure to volatile organic compound (VOC)-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.
Workplace cluster of Bell’s palsy in Lima, Peru
2014-01-01
Background We report on a workplace cluster of Bell’s palsy that occurred within a four-month period in 2011 among employees of a three-story office building in Lima, Peru and our investigation to determine the etiology and associated risk factors. Findings An outbreak investigation was conducted to identify possible common infectious or environmental exposures and included patient interviews, reviews of medical records, an epidemiologic survey, serological analysis for IgM and IgG antibodies to putative Bell’s palsy-inducing pathogens, and an environmental exposure assessment of the office building. Three cases of Bell’s palsy were reported among 65 at-risk employees, attack rate 4.6%. Although two patients had underlying risk factors, there was no clear association or common identifiable risk factor among all cases. Serologic analysis showed no evidence of recent infections, and air and water sample measures of all known chemical or neurotoxins were below maximum allowable concentrations for exposure. Conclusions An infection spread among workplace employees could not be excluded as a potential cause of this cluster; however, it was unlikely a pathogen commonly associated with individual cases of Bell’s palsy. Although a specific etiology was not identified among all cases, we believe this methodology will aid future outbreak investigations of Bell’s palsy and a better understanding of its etiology. While environmental assessments may be useful in their ability to ascertain the cause of clusters of Bell’s palsy, future investigations should prioritize focus on common infectious etiology. PMID:24885256
Investigating the American Time Use Survey from an exposure modeling perspective.
George, Barbara Jane; McCurdy, Thomas
2011-01-01
This paper describes an evaluation of the US Bureau of Labor Statistics' American Time Use Survey (ATUS) for potential use in modeling human exposures to environmental pollutants. The ATUS is a large, on-going, cross-sectional survey of where Americans spend time and what activities they undertake in those locations. The data are reported as a series of sequential activities over a 24-h time period--a "diary day"--starting at 0400 hours. Between 12,000 and 13,000 surveys are obtained each year and the Bureau has plans to continue ATUS for the foreseeable future. The ATUS already has about 73,000 diary days of data, more than twice as many as that which currently exists in the US Environmental Protection Agency's (EPA) "Consolidated Human Activity Database" (CHAD) that the Agency uses for exposure modeling purposes. There are limitations for using ATUS in modeling human exposures to environmental pollutants. The ATUS does not report the location for a number of activities regarded as "personal." For 2006, personal activities with missing location information totaled 572 min/day, on average, for survey participants: about 40% of their day. Another limitation is that ATUS does not distinguish between indoor and outdoor activities at home, two of the traditional locational demarcations used in human exposure modeling. This lack of information affects exposure estimates to both indoor and outdoor air pollutants and potentially affects non-dietary ingestion estimates for children, which can vary widely depending on whether or not a child is indoors. Finally, a detailed analysis of the work travel activity in a subsample from ATUS 2006 indicates that the coding scheme is not fully consistent with a CHAD-based exposure modeling approach. For ATUS respondents in this subsample who reported work as an activity, roughly 48% of their days were missing work travel at one or both ends of the work shift or reported within work-shift travel inconsistently. An extensive effort would be needed to recode work travel data from ATUS for EPA's exposure modeling purposes.
Bordner, Kelly; Deak, Terrence
2015-01-01
Background Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. Methods Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2 g/kg ethanol during the last few days of gestation (GD17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. Results Three main trends emerged - (1) mRNA for the majority of factors were found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. Conclusion We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant brain is sensitive to prenatal ethanol exposure and that such exposure may lead to relatively long-lasting changes in the endogenous opioid system within the reward circuitry. These data indicate a potential mechanism and target for additional assessments of ethanol's ability to program the brain, affecting later responsiveness towards the drug. PMID:25662024
Johnson, Nicole L; Carini, Lindsay; Schenk, Marian E; Stewart, Michelle; Byrnes, Elizabeth M
2011-01-01
The non-medical use of prescription opiates, such as Vicodin(®) and MSContin(®), has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females' spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1) demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e., social grooming and social exploration). Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.
Schulte, P A; Kuempel, E D; Drew, N M
2018-06-01
The commercialization of engineered nanomaterials (ENMs) began in the early 2000's. Since then the number of commercial products and the number of workers potentially exposed to ENMs is growing, as is the need to evaluate and manage the potential health risks. Occupational exposure limits (OELs) have been developed for some of the first generation of ENMs. These OELs have been based on risk assessments that progressed from qualitative to quantitative as nanotoxicology data became available. In this paper, that progression is characterized. It traces OEL development through the qualitative approach of general groups of ENMs based primarily on read-across with other materials to quantitative risk assessments for nanoscale particles including titanium dioxide, carbon nanotubes and nanofibers, silver nanoparticles, and cellulose nanocrystals. These represent prototypic approaches to risk assessment and OEL development for ENMs. Such substance-by-substance efforts are not practical given the insufficient data for many ENMs that are currently being used or potentially entering commerce. Consequently, categorical approaches are emerging to group and rank ENMs by hazard and potential health risk. The strengths and limitations of these approaches are described, and future derivations and research needs are discussed. Critical needs in moving forward with understanding the health effects of the numerous EMNs include more standardized and accessible quantitative data on the toxicity and physicochemical properties of ENMs. Published by Elsevier Inc.
Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways.
Rohat, Guillaume
2018-03-19
The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure-i.e., mainly future population patterns-, neglecting future human vulnerability. This paper first explores the research gaps-mainly linked to the paucity of available projections-that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs-namely the scenario matching approach and an approach based on experts' elicitation and correlation analyses-and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods-such as the spatial disaggregation of existing projections and the use of sectoral models-show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely on these methods to account for future human vulnerability-under varying levels of socioeconomic development-and to explore its influence on future health risks under different degrees of climate change.
Air pollution affects lung cancer survival.
Eckel, Sandrah P; Cockburn, Myles; Shu, Yu-Hsiang; Deng, Huiyu; Lurmann, Frederick W; Liu, Lihua; Gilliland, Frank D
2016-10-01
Exposure to ambient air pollutants has been associated with increased lung cancer incidence and mortality, but due to the high case fatality rate, little is known about the impacts of air pollution exposures on survival after diagnosis. This study aimed to determine whether ambient air pollutant exposures are associated with the survival of patients with lung cancer. Participants were 352 053 patients with newly diagnosed lung cancer during 1988-2009 in California, ascertained by the California Cancer Registry. Average residential ambient air pollutant concentrations were estimated for each participant's follow-up period. Cox proportional hazards models were used to estimate HRs relating air pollutant exposures to all-cause mortality overall and stratified by stage (localised only, regional and distant site) and histology (squamous cell carcinoma, adenocarcinoma, small cell carcinoma, large cell carcinoma and others) at diagnosis, adjusting for potential individual and area-level confounders. Adjusting for histology and other potential confounders, the HRs associated with 1 SD increases in NO2, O3, PM10, PM2.5 for patients with localised stage at diagnosis were 1.30 (95% CI 1.28 to 1.32), 1.04 (95% CI 1.02 to 1.05), 1.26 (95% CI 1.25 to 1.28) and 1.38 (95% CI 1.35 to 1.41), respectively. Adjusted HRs were smaller in later stages and varied by histological type within stage (p<0.01, except O3). The largest associations were for patients with early-stage non-small cell cancers, particularly adenocarcinomas. These epidemiological findings support the hypothesis that air pollution exposures after lung cancer diagnosis shorten survival. Future studies should evaluate the impacts of exposure reduction. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willians, G.P.; Hermes, A.M.; Policastro, A.J.
1998-03-01
This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of twomore » naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.« less
Brody, Julia Green; Rudel, Ruthann A; Michels, Karin B; Moysich, Kirsten B; Bernstein, Leslie; Attfield, Kathleen R; Gray, Sharon
2007-06-15
Breast cancer is the most common invasive cancer in women worldwide and the leading cause of death in US women in mid-life. Treatment has adverse effects, adding to the importance of finding modifiable risk factors. At the invitation of Susan G. Komen for the Cure, we reviewed studies of breast cancer and environmental pollutants, diet (assessed prospectively), body size, and physical activity, and animal studies that identify chemicals as potential mammary carcinogens. Databases developed in the review include information on 216 chemicals that increased mammary gland tumors in animal studies and 450 epidemiologic studies (accessible at www.silentspring.org/sciencereview and www.komen.org/environment). Exposure to potential mammary carcinogens is widespread from chemicals found in consumer products, air and drinking water pollution, food, and women's workplaces. Epidemiologic studies have included only a small number of chemicals identified as mammary carcinogens or as hormone disruptors, which may have implications for breast cancer; however, evidence is emerging for associations between breast cancer and polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organic solvents. Prospective diet studies have not revealed consistent associations with breast cancer. Improved exposure assessment methods will help advance future human studies of both diet and environmental pollutants. Studies of physical activity show that it is protective. In the same vein as evidence-based medicine, messages for patients, policymakers, and the public should support decision-making based on the strength of current evidence; such messages might address exposure reduction for some pollutants. Investments in research on environmental factors in breast cancer have potentially large public health benefits.
Human exposure to high natural background radiation: what can it teach us about radiation risks?
Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu
2014-01-01
Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802
Coastal Vertebrate Exposure to Predicted Habitat Changes Due to Sea Level Rise.
Hunter, Elizabeth A; Nibbelink, Nathan P; Alexander, Clark R; Barrett, Kyle; Mengak, Lara F; Guy, Rachel K; Moore, Clinton T; Cooper, Robert J
2015-12-01
Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species' fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species' foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.
Practices of Unregulated Tanning Facilities in Missouri: Implications for Statewide Legislation
Biesbroeck, Lauren K.; Lickerman, Stephanie H.; Cornelius, Lynn A.; Jeffe, Donna B.
2013-01-01
BACKGROUND: The incidence of skin cancer has increased in the United States, concomitant with increased UV radiation (UVR) exposure among young adults. We examined whether tanning facilities in Missouri, a state without indoor-tanning regulations, acted in accordance with the Food and Drug Administration’s recommendations and consistently imparted information to potential clients about the known risks of UVR. METHODS: We conducted a statewide telephone survey of randomly selected tanning facilities in Missouri. Each tanning facility was surveyed twice, in the morning (7 am–3 pm) and evening (3–10 pm), on different days, to determine intrasalon consistency of information provided to potential clients at different times. RESULTS: On average, 65% of 243 tanning-facility operators would allow children as young as 10 or 12 years old to use indoor-tanning devices, 80% claimed that indoor tanning would prevent future sunburns, and 43% claimed that there were no risks associated with indoor tanning. Intrasalon inconsistencies involved allowable age of use, and UVR exposure type and duration. Morning tanning-facility employees were more likely to allow consumers to start with maximum exposure times and UV-A–emitting devices (P < .001), whereas evening employees were more likely to allow 10- or 12-year-old children to use indoor-tanning devices (P = .008). CONCLUSIONS: Despite increasing evidence that UVR exposure in indoor-tanning devices is associated with skin cancer, ocular damage, and premature photoaging, tanning facilities in Missouri often misinformed consumers regarding these risks and lack of health benefits and inconsistently provided information about the Food and Drug Administration’s guidelines for tanning devices. PMID:23439910
Lorente, Nicolas; Fugon, Lionel; Carrieri, Maria Patrizia; Andreo, Christian; Le Gall, Jean-Marie; Cook, Emmanuel; Aboulker, Jean-Pierre; Capitant, Catherine; Molina, Jean-Michel; Spire, Bruno
2012-01-01
Although predictors of willingness to take daily, self-administered pre-exposure HIV prophylaxis (PrEP) for men who have sex with men (MSM) have been studied in the context of several PrEP trials internationally, little is known about MSM interested in participating in a trial on the use of PrEP on an "on -demand" basis, i.e., taking a first dose of combined tenofovir/emtricitabine a few hours before possible HIV sexual exposure and a second dose a few hours afterwards. A double-blind placebo randomized PrEP trial will soon begin in France to evaluate the effectiveness of PrEP in terms of reducing HIV infection rates, among MSM self-administering "on-demand" PrEP. To assess potential participants' characteristics associated with willingness to participate in the trial and identify barriers and facilitators to implementation, MSM completed a self-administered questionnaire, distributed via gay venues and community websites. Among the 443 respondents who reported being HIV-negative, 40% reported being interested in participating. Factors independently associated with interest included: reporting lower educational level, more than 20 male sexual partners in the previous year, reporting unprotected anal sex with casual partners and preferring PrEP follow-up visits in a devoted area within a hospital. There is great interest in participating in a future "on-demand" PrEP trial among HIV-negative MSM and particularly in those at potentially high risk of HIV exposure. Providing confidentiality and tailored counseling during PrEP follow-up are important issues.
Merwin, Samantha J; Obis, Teresa; Nunez, Yanelli; Re, Diane B
2017-08-01
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset paralytic disorder. It is characterized by progressive degeneration of the motor neurons controlling voluntary movement. The underlying mechanisms remain elusive, a fact that has precluded development of effective treatments. ALS presents as a sporadic condition 90-95% of the time, i.e., without familial history or obvious genetic mutation. This suggests that ALS has a strong environmental component. Organophosphates (OPs) are prime candidate neurotoxicants in the etiology of ALS, as exposure to OPs was linked to higher ALS incidence among farmers, soccer players, and Gulf War veterans. In addition, polymorphisms in paraoxonase 1, an enzyme that detoxifies OPs, may increase individual vulnerability both to OP poisoning and to the risk of developing ALS. Furthermore, exposure to high doses of OPs can give rise to OP-induced delayed neuropathy (OPIDN), a debilitating condition akin to ALS characterized by similar motor impairment and paralysis. The question we pose in this review is: "what can we learn from acute exposure to high doses of neurotoxicants (OPIDN) that could help our understanding of chronic diseases resulting from potentially decades of silent exposure (ALS)?" The resemblances between OPIDN and ALS are striking at the clinical, etiological, neuropathological, cellular, and potentially molecular levels. Here, we critically present available evidence, discuss current limitations, and posit future research. In the search for the environmental origin of ALS, OPIDN offers an exciting trail to follow, which can hopefully lead to the development of novel strategies to prevent and cure these dreadful disorders.
Phelka, Amanda D; Finley, Brent L
2012-01-01
Until the late 1970s, chrysotile asbestos was an ingredient in most industrial and consumer drywall accessory products manufactured in the US. In 1977, the Consumer Product Safety Commission (CPSC) issued a ban of consumer patching compounds containing "respirable, free-form asbestos" based on their prediction of exceptionally high rates of asbestos-related diseases among individuals using patching compounds for as little as a few days. Although hundreds of thousands of workers and homeowners handling these products may have experienced exposure to asbestos prior to the ban, there has been no systematic effort to summarize and interpret the information relevant to the potential health effects of such exposures. In this analysis, we provide a comprehensive review and analysis of the scientific studies assessing fiber type and dimension, toxicological and epidemiological endpoints, and airborne fiber concentrations associated with joint compound use. We conclude that: 1) asbestos in drywall accessory products was primarily short fiber (< 5 µm) chrysotile, 2) asbestos in inhaled joint compound particulate is probably not biopersistent in the lung, 3) estimated cumulative chrysotile exposures experienced by workers and homeowners are below levels known to be associated with respiratory disease, and 4) mortality studies of drywall installers have not demonstrated a significantly increased incidence of death attributable to any asbestos-related disease. Consequently, contrary to the predictions of the CPSC, the current weight of evidence does not indicate any clear health risks associated with the use of asbestos-containing drywall accessory products. We also describe information gaps and suggest possible areas of future research.
Stephenson, Caroline J; Rossheim, Matthew E; Frankenfeld, Cara L; Boncy, Jacques; Okech, Bernard A; von Fricken, Michael E
2017-12-01
The governments of Haiti and the Dominican Republic have a binational agreement to work towards malaria elimination for the island of Hispaniola by the year 2020. Understanding malaria-related knowledge and behaviors can help inform elimination efforts. This study examined the association between social-behavioral factors, like bedtime and bed net ownership, with malaria seroconversion status among people in the Ouest and Sud-Est departments of Haiti. In 2013, cross-sectional survey data (n=377) and blood samples were collected from a convenience sample of individuals within community, clinic and school settings. Logistic regression models were constructed to examine associations between social-behavioral factors and malaria exposure, adjusting for potential confounders. Compared to people going to bed between 6 and 8 pm, those going to bed between 8 and 10 pm were 2.67 (OR, 95% CI: 1.16-6.14) times as likely to have been exposed to malaria. Participants who reported going to bed after 10 pm were 5.96 times as likely to have had previous malaria exposure (OR, 95% CI: 2.26-15.7), compared to 6-8 pm. No significant associations were found between malaria exposure and either insecticide use nor bed net ownership. These findings are consistent with suspected feeding behaviors of Anopheles albimanus, which prefers feeding at night and outdoors. Study findings may improve overall understanding of malaria transmission in Haiti and potentially guide future studies conducted in this region. Copyright © 2017 Elsevier B.V. All rights reserved.
Infections and atopy: an exploratory study for a meta-analysis of the "hygiene hypothesis".
Randi, G; Altieri, A; Chatenoud, L; Chiaffarino, F; La Vecchia, C
2004-12-01
According to the "hygiene hypothesis" selected allergic diseases could be prevented by exposure to infectious agents during early childhood. This study was performed to assess the feasibility of a future meta-analysis on the "hygiene hypothesis" and atopic diseases. Differences concerning the potential association with a history of infectious events, in terms of magnitude and homogeneity of global risk estimates between the three major atopic diseases (i.e. atopic dermatitis, asthma and allergic rhinitis) were examined. We conducted a preliminary analysis on a sample of articles published on this topic and cited in a recent and authoritative review. The ranges of relative risks estimates (between 0.6 and 0.8) were similar for atopic dermatitis, allergic rhinitis and asthma. Compared with asthma and allergic rhinitis, reported global risk estimates were more stable for atopic dermatitis (lowest heterogeneity). Our analysis suggests that three main categories of indirect markers of exposure to infection can be identified: 1) geographical gradient, 2) indices of potential contact with infectious agents (such as number of siblings) and 3) history of infectious events. In this exploratory study, we chose articles cited in a single review and obtained a preliminary quantification of the association between infections and atopic diseases. The association with indirect markers of infection corresponded to 20% protection for atopic dermatitis, 30% for allergic rhinitis and 40% for asthma. In a subsequent meta-analysis, diseases should be considered separately and differences between types of exposures should be taken into account as one of the major end-points, with attention to time since exposure and disease onset.
ERIC Educational Resources Information Center
Cunningham, Michael; Mars, Dustin E.; Burns, Lateela J.
2012-01-01
Urban African American high school students (N = 206) completed a study to examine gender differences in parental monitoring and the effect on the relationship between exposure to stressful life events and nonacademic future expectations. Participant's ages range from 13 to 18 (M = 15.78, SD = 1.19). Participants reported high exposure to…
Ajduković, Marina; Rajter, Miroslav; Rezo, Ines
2018-04-01
The study assessed mothers' risk for abusing their children in middle adolescence in relation to individual and contextual factors during the economic crisis in Croatia. Socioeconomic status of mothers, family economic pressure, and mothers' exposure to stress were measured. Special attention was given to the perceived availability of social support as one of protective factors potentially buffering the negative impact of risks of child abuse. The community sample included 746 mothers (Mage = 42.85; SDage = 5.319). The results showed that the risk of child abuse is higher for mothers with lower education, those who perceive themselves as suffering greater family economic hardship, those who have experienced a higher number of stressful events, and those with lower social support. When the mothers perceive a lower availability of social support, the effects of exposure to cumulative risk, namely the combination of socioeconomic status, economic pressure, and exposure to stress, are stronger. Since social support proved to be one of the key protective factors in the relationship between adverse life circumstances and parenting, the development of effective and non-stigmatized interventions aiming to increase social support, positive social relationships, and adequate parenting practices for parents facing economic hardship is an important direction for future family policy measures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases.
Yang, Hyeon-Jong
2016-08-01
Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergy, are most common chronic, noncommunicable diseases in childhood. In the past few decades, the prevalence has increased abruptly worldwide. There are 2 possible explanations for the rising prevalence of allergic diseases worldwide, that an increased disease-awareness of physician, patient, or caregivers, and an abrupt exposure to unknown hazards. Unfortunately, the underlying mechanisms remain largely unknown. Despite the continuing efforts worldwide, the etiologies and rising prevalence remain unclear. Thus, it is important to identify and control risk factors in the susceptible individual for the best prevention and management. Genetic susceptibility or environments may be a potential background for the development of allergic disease, however they alone cannot explain the rising prevalence worldwide. There is growing evidence that epigenetic change depends on the gene, environment, and their interactions, may induce a long-lasting altered gene expression and the consequent development of allergic diseases. In epigenetic mechanisms, environmental tobacco smoke (ETS) exposure during critical period (i.e., during pregnancy and early life) are considered as a potential cause of the development of childhood allergic diseases. However, the causal relationship is still unclear. This review aimed to highlight the impact of ETS exposure during the perinatal period on the development of childhood allergic diseases and to propose a future research direction.
Intimate Partner Violence Experienced by Physicians: A Review.
Hernandez, Barbara Couden; Reibling, Ellen T; Maddux, Charles; Kahn, Michael
2016-03-01
Physicians play a significant role in screening for domestic violence. However, little information is available about the prevalence of physicians who experience intimate partner violence (IPV) or the implications for their clinical practice. National surveys indicate a potential prevalence of 16% for sexual abuse and 32% for abuse by an intimate partner. This extrapolates to more than 395,000 potential physician victims, the majority of which are women. We conducted a systematic review of IPV and physician victims from 1990 to 2014 that included peer-reviewed journals, trade books, and dissertations that referenced physician victims. We identified 17 publications; nine quantitative studies, four first-person accounts, one qualitative study, and a qualitative dissertation that included two physician subjects. Two case studies of victimized physicians were identified in trade books. Quantitative results noted that women reported higher prevalence for all experiences of violence [childhood exposure (6%-32%), adult IPV exposure (7%-24%)] than men (6%-10%). This review highlights the need for improved understanding of physician experience with IPV, and development of physician-sensitive resources and treatment approaches. Contributions and limitations are provided for each publication. IPV exposure impacts clinical practice, including reticence to consistently screen patients. Lower reported prevalence may be related to extreme stigma among physicians that may prevent their reporting and help seeking, but more research is needed. We provide recommendations for clinical practice, education, and future research.
Potential Exposures to Australian Bat Lyssavirus Notified in Queensland, Australia, 2009-2014.
Si, Damin; Marquess, John; Donnan, Ellen; Harrower, Bruce; McCall, Bradley; Bennett, Sonya; Lambert, Stephen
2016-12-01
Australian bat lyssavirus (ABLV) belongs to the genus Lyssavirus which also includes classic rabies virus and the European lyssaviruses. To date, the only three known human ABLV cases, all fatal, have been reported from Queensland, Australia. ABLV is widely distributed in Australian bats, and any bite or scratch from an Australian bat is considered a potential exposure to ABLV. Potential exposure to ABLV has been a notifiable condition in Queensland since 2005. We analysed notification data for potential exposures occurring between 2009 and 2014. There were 1,515 potential exposures to ABLV notified in Queensland, with an average annual notification rate of 5.6 per 100,000 population per year. The majority of notified individuals (96%) were potentially exposed to ABLV via bats, with a small number of cases potentially exposed via two ABLV infected horses and an ABLV infected human. The most common routes of potential exposure were through bat scratches (47%) or bites (37%), with less common routes being mucous membrane/broken skin exposure to bat saliva/brain tissue (2.2%). Intentional handling of bats by the general public was the major cause of potential exposures (56% of notifications). Examples of these potential exposures included people attempting to rescue bats caught in barbed wire fences/fruit tree netting, or attempting to remove bats from a home. Following potential exposures, 1,399 cases (92%) were recorded as having appropriate post-exposure prophylaxis (PEP) as defined in national guidelines, with the remainder having documentation of refusal or incomplete PEP. Up to a quarter of notifications occurred after two days from the potential exposure, but with some delays being more than three weeks. Of 393 bats available for testing during the reporting period, 20 (5.1%) had ABLV detected, including four species of megabats (all flying foxes) and one species of microbats (yellow-bellied sheathtail bat). Public health strategies should address the strong motivation of some members of the public to help injured bats or bats in distress, by emphasising that their action may harm the bat and put themselves at risk of the fatal ABLV infection. Alternative messaging should include seeking advice from professional animal rescue groups, or in the event of human contact, public health units. Further efforts are required to ensure that when potential exposure occurs, timely reporting and appropriate post-exposure prophylaxis occur.
Potential Exposures to Australian Bat Lyssavirus Notified in Queensland, Australia, 2009−2014
Si, Damin; Marquess, John; Donnan, Ellen; Harrower, Bruce; McCall, Bradley; Bennett, Sonya; Lambert, Stephen
2016-01-01
Background Australian bat lyssavirus (ABLV) belongs to the genus Lyssavirus which also includes classic rabies virus and the European lyssaviruses. To date, the only three known human ABLV cases, all fatal, have been reported from Queensland, Australia. ABLV is widely distributed in Australian bats, and any bite or scratch from an Australian bat is considered a potential exposure to ABLV. Methodology/Principal Findings Potential exposure to ABLV has been a notifiable condition in Queensland since 2005. We analysed notification data for potential exposures occurring between 2009 and 2014. There were 1,515 potential exposures to ABLV notified in Queensland, with an average annual notification rate of 5.6 per 100,000 population per year. The majority of notified individuals (96%) were potentially exposed to ABLV via bats, with a small number of cases potentially exposed via two ABLV infected horses and an ABLV infected human. The most common routes of potential exposure were through bat scratches (47%) or bites (37%), with less common routes being mucous membrane/broken skin exposure to bat saliva/brain tissue (2.2%). Intentional handling of bats by the general public was the major cause of potential exposures (56% of notifications). Examples of these potential exposures included people attempting to rescue bats caught in barbed wire fences/fruit tree netting, or attempting to remove bats from a home. Following potential exposures, 1,399 cases (92%) were recorded as having appropriate post-exposure prophylaxis (PEP) as defined in national guidelines, with the remainder having documentation of refusal or incomplete PEP. Up to a quarter of notifications occurred after two days from the potential exposure, but with some delays being more than three weeks. Of 393 bats available for testing during the reporting period, 20 (5.1%) had ABLV detected, including four species of megabats (all flying foxes) and one species of microbats (yellow-bellied sheathtail bat). Conclusions/Significance Public health strategies should address the strong motivation of some members of the public to help injured bats or bats in distress, by emphasising that their action may harm the bat and put themselves at risk of the fatal ABLV infection. Alternative messaging should include seeking advice from professional animal rescue groups, or in the event of human contact, public health units. Further efforts are required to ensure that when potential exposure occurs, timely reporting and appropriate post-exposure prophylaxis occur. PMID:28033365
A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs Physiologica...
Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio
2015-08-01
Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.
Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech
2016-01-01
Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527
Health and safety implications of alternative energy technologies. I. Geothermal and biomass
NASA Astrophysics Data System (ADS)
Watson, A. P.; Etnier, E. L.
1981-07-01
An evaluation of potential occupational and public health aspects of geopressure, hydrothermal, hot dry rock, silviculture, crop and animal residues, fermentable plant products, municipal waste, and plantation energy technologies has been performed. Future development of these energy options in the United States will contain hazards that could easily be eliminated by safer equipment design and common-sense attention to operation and maintenance. Occupational exposure to hydrogen sulfide gas occurs near all geothermal sites and wherever organic matter decomposes anaerobically. Respiratory damage has occurred to laborers in geothermal fields, while farm workers have been fatally overcome when employed near agitating liquid manure systems. However, the most frequent and severe of reported injuries to geothermal workers is dermal exposure to caustic sludges produced by H2S abatement systems. Principal health and safety considerations of biomass pathways are directly related to the diffuse nature of solar energy fixation by photosynthesis and subsequent transfer to animal food chains. Since the potential fuel is in an unconcentrated form, cultivation, harvest, and transport are necessarily laborintensive. Thus, a significant potential for occupational injuries and fatalities exists. Of all biomass systems evaluated, direct burning of solid fuels presents the greatest public health risk. Data are presented to characterize the population at risk and the frequency and severity of injuries.
Improving default risk prediction using Bayesian model uncertainty techniques.
Kazemi, Reza; Mosleh, Ali
2012-11-01
Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.
Elliott, Elise G; Ettinger, Adrienne S; Leaderer, Brian P; Bracken, Michael B; Deziel, Nicole C
2017-01-01
Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.
An occupational reproductive research agenda for the third millennium.
Lawson, Christina C; Schnorr, Teresa M; Daston, George P; Grajewski, Barbara; Marcus, Michele; McDiarmid, Melissa; Murono, Eisuke; Perreault, Sally D; Schrader, Steven M; Shelby, Michael
2003-01-01
There is a significant public health concern about the potential effects of occupational exposure to toxic substances on reproductive outcomes. Several toxicants with reported reproductive and developmental effects are still in regular commercial or therapeutic use and thus present potential exposure to workers. Examples of these include heavy metals, organic solvents, pesticides and herbicides, and sterilants, anesthetic gases, and anticancer drugs used in health care. Many other substances are suspected of producing reproductive or developmental toxicity but lack sufficient data. Progress has been limited in identifying hazards and quantifying their potencies and in separating the contribution of these hazards from other etiologic factors. Identifying the causative agents, mechanisms by which they act, and any potential target populations, present the opportunity to intervene and protect the reproductive health of workers. The pace of laboratory studies to identify hazards and to underpin the biologic plausibility of effects in humans has not matched the pace at which new chemicals are introduced into commerce. Though many research challenges exist today, recent technologic and methodologic advances have been made that allow researchers to overcome some of these obstacles. The objective of this article is to recommend future directions in occupational reproductive health research. By bridging interdisciplinary gaps, the scientific community can work together to improve health and reduce adverse outcomes. PMID:12676620
Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech
2016-04-20
Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.
Ambient ultraviolet radiation exposure and hepatocellular carcinoma incidence in the United States.
VoPham, Trang; Bertrand, Kimberly A; Yuan, Jian-Min; Tamimi, Rulla M; Hart, Jaime E; Laden, Francine
2017-08-18
Hepatocellular carcinoma (HCC), the most commonly occurring type of primary liver cancer, has been increasing in incidence worldwide. Vitamin D, acquired from sunlight exposure, diet, and dietary supplements, has been hypothesized to impact hepatocarcinogenesis. However, previous epidemiologic studies examining the associations between dietary and serum vitamin D reported mixed results. The purpose of this study was to examine the association between ambient ultraviolet (UV) radiation exposure and HCC risk in the U.S. The Surveillance, Epidemiology, and End Results (SEER) database provided information on HCC cases diagnosed between 2000 and 2014 from 16 population-based cancer registries across the U.S. Ambient UV exposure was estimated by linking the SEER county with a spatiotemporal UV exposure model using a geographic information system. Poisson regression with robust variance estimation was used to calculate incidence rate ratios (IRRs) and 95% confidence intervals (CIs) for the association between ambient UV exposure per interquartile range (IQR) increase (32.4 mW/m 2 ) and HCC risk adjusting for age at diagnosis, sex, race, year of diagnosis, SEER registry, and county-level information on prevalence of health conditions, lifestyle, socioeconomic, and environmental factors. Higher levels of ambient UV exposure were associated with statistically significant lower HCC risk (n = 56,245 cases; adjusted IRR per IQR increase: 0.83, 95% CI 0.77, 0.90; p < 0.01). A statistically significant inverse association between ambient UV and HCC risk was observed among males (p for interaction = 0.01) and whites (p for interaction = 0.01). Higher ambient UV exposure was associated with a decreased risk of HCC in the U.S. UV exposure may be a potential modifiable risk factor for HCC that should be explored in future research.
Lupo, Philip J; Symanski, Elaine; Langlois, Peter H; Lawson, Christina C; Malik, Sadia; Gilboa, Suzanne M; Lee, Laura J; Agopian, A J; Desrosiers, Tania A; Waters, Martha A; Romitti, Paul A; Correa, Adolfo; Shaw, Gary M; Mitchell, Laura E
2012-11-01
There is evidence in experimental model systems that exposure to polycyclic aromatic hydrocarbons (PAHs) results in congenital heart defects (CHDs); however, to our knowledge, this relationship has not been examined in humans. Therefore, we conducted a case-control study assessing the association between estimated maternal occupational exposure to PAHs and CHDs in offspring. Data on CHD cases and control infants were obtained from the National Birth Defects Prevention Study for the period of 1997 to 2002. Exposure to PAHs was assigned by industrial hygienist consensus, based on self-reported maternal occupational histories from 1 month before conception through the third month of pregnancy. Logistic regression was used to evaluate the association between maternal occupational PAH exposure and specific CHD phenotypic subtypes among offspring. The prevalence of occupational PAH exposure was 4.0% in CHD case mothers (76/1907) and 3.6% in control mothers (104/2853). After adjusting for maternal age, race or ethnicity, education, smoking, folic acid supplementation, and study center, exposure was not associated with conotruncal defects (adjusted odds ratio [AOR], 0.98; 95% confidence interval [CI], 0.58-1.67), septal defects (AOR, 1.28; 95% CI, 0.86-1.90), or with any isolated CHD subtype. Our findings do not support an association between potential maternal occupational exposure to PAHs and various CHDs in a large, population-based study. For CHD phenotypic subtypes in which modest nonsignificant associations were observed, future investigations could be improved by studying populations with a higher prevalence of PAH exposure and by incorporating information on maternal and fetal genotypes related to PAH metabolism. Birth Defects Research (Part A), 2012. Copyright © 2012 Wiley Periodicals, Inc.
Sun exposure and protection behaviors among long-term melanoma survivors and non-cancer controls
Vogel, Rachel Isaksson; Strayer, Lori G.; Engelman, Leah; Nelson, Heather H.; Blaes, Anne H.; Anderson, Kristin E.; Lazovich, DeAnn
2016-01-01
Introduction Melanoma is considered a generally preventable cancer, with excessive ultraviolet radiation (UVR) exposure being a strong causal factor. UVR exposure following a melanoma diagnosis can be modified to reduce risk of second primary melanomas. The goal of this study was to compare measures of UVR exposure and protection behaviors between long-term melanoma survivors and controls. Methods Participants from a previously conducted case-control study were recruited for a cross-sectional survey. Melanoma cases were 25–59 years old at diagnosis; controls were age and sex matched. Participants were asked about UVR exposure and protection measures used in the past year and comparisons between melanoma survivors and controls were conducted using logistic regression models, adjusting for potential confounders. Results A total of 726 (67.7%) long-term melanoma survivors and 657 (60.9%) controls completed the follow-up survey. Melanoma survivors were significantly less likely to report high sun exposure on a typical weekday (OR=0.72 [0.55–0.94]), sunburns (OR=0.40 [0.30–0.53]), or indoor tanning (OR=0.20 [0.09–0.44]) than controls; however high sun exposure on a typical weekend day was similar. Report of optimal sun protection behaviors were higher in melanoma survivors compared to controls. However, a few melanoma survivors reported indoor tanning, 10% reported intentionally seeking sun to tan, and 20% reported sunburns. Conclusion Although long term melanoma survivors reported healthier UVR exposure and protection behaviors compared to controls, a sizeable proportion still reported elevated sun exposure, sunburns, and suboptimal UVR protection behaviors. Impact Opportunities remain for improving sun protection to reduce future melanoma risk among melanoma survivors. PMID:28254810
The Pregnancy Exposome: Multiple Environmental Exposures in the INMA-Sabadell Birth Cohort.
Robinson, Oliver; Basagaña, Xavier; Agier, Lydiane; de Castro, Montserrat; Hernandez-Ferrer, Carles; Gonzalez, Juan R; Grimalt, Joan O; Nieuwenhuijsen, Mark; Sunyer, Jordi; Slama, Rémy; Vrijheid, Martine
2015-09-01
The "exposome" is defined as "the totality of human environmental exposures from conception onward, complementing the genome" and its holistic approach may advance understanding of disease etiology. We aimed to describe the correlation structure of the exposome during pregnancy to better understand the relationships between and within families of exposure and to develop analytical tools appropriate to exposome data. Estimates on 81 environmental exposures of current health concern were obtained for 728 women enrolled in The INMA (INfancia y Medio Ambiente) birth cohort, in Sabadell, Spain, using biomonitoring, geospatial modeling, remote sensors, and questionnaires. Pair-wise Pearson's and polychoric correlations were calculated and principal components were derived. The median absolute correlation across all exposures was 0.06 (5th-95th centiles, 0.01-0.54). There were strong levels of correlation within families of exposure (median = 0.45, 5th-95th centiles, 0.07-0.85). Nine exposures (11%) had a correlation higher than 0.5 with at least one exposure outside their exposure family. Effectively all the variance in the data set (99.5%) was explained by 40 principal components. Future exposome studies should interpret exposure effects in light of their correlations to other exposures. The weak to moderate correlation observed between exposure families will permit adjustment for confounding in future exposome studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorne, J.L.C.M., E-mail: jean-lou.dorne@efsa.europa.eu; Fink-Gremmels, J.
Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chainmore » (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ► Principles of human and animal health risk assessment. ► Data gaps for each step of animal health risk assessment. ► Implications of animal risk assessment on human risk assessment. ► Future perspectives on chemical risk assessment.« less
Climatology and Impact of Polar Lows in the North Atlantic: Present and Future
NASA Astrophysics Data System (ADS)
Michel, Clio; Haukeland, Magnus; Spengler, Thomas
2016-04-01
Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. We use the Melbourne University algorithm to detect and track polar lows in the North Atlantic. The algorithm is applied to ERA-Interim reanalyses as well as high resolution (25 and 50 km) global climate model data from GFDL for present and future climates. Cyclone track densities for the GFDL present climate and the ERA-Interim reanalyses compare well for the occurrence of present day polar lows. We also present cyclone track densities for future climates under RCP4.5 and RCP8.5 for the early and late 21st century. Polar lows mainly form close to Svalbard but also along the coast of Greenland, in the Norwegian Sea and Barents Sea. We present the shifts in location and intensity of polar lows for future climates and discuss potential reasons for these changes. During their lifetime, they travel several 100 kilometres and can reach the Norwegian coast as well as off-shore infrastructures. Therefore we also assess the difference between current and future occurrence of polar lows reaching the coast of Norway as well as areas with oil platforms and active fisheries. This analysis pinpoints the exposure to current and future impacts of polar lows on these socio-economic assets.
Young, Megan K; McCall, Bradley J
2010-09-01
Public health measures have been targeting potential exposure to Australian bat lyssavirus (ABLV) since the first recognised human cases, more than a decade ago. The effect of these measures on the epidemiology of notifications of potential exposure has not been investigated since 2003. Trends in notifications of potential exposure to ABLV reported to the Brisbane Southside Public Health Unit between November 1996 and October 2008 were examined. During the study period notification rates declined among all population groups and potential exposures were notified more promptly. The proportion of female notifications and the proportion of notifications from volunteer bat carers and their families and professional groups decreased over time. These changes over 12 years may indicate success of public health measures, under-reporting of potential exposure or both. Intentional handling of bats by untrained members of the public continues to be an important source of potential exposure to ABLV and requires a sustained public health response.
2004-06-01
Additionally, we offer 3 conceptual cartoons outlining our vision for the future progres of laser bioeffects research, metabonomic risk assessment...future progress of laser bioeffects research, metabonomic risk assessment modeling and knowledge building from laser bioeffects data. BACKGROUND In the...our concepts of future laser bioeffects research directions (Figure 5), a metabonomic risk assessment model of laser tissue interaction (Figure 6
E-hail (Rideshare) Knowledge, Use, Reliance, and Future Expectations among Older Adults.
Vivoda, Jonathon M; Harmon, Annie C; Babulal, Ganesh M; Zikmund-Fisher, Brian J
2018-05-01
The goals of this study were to explore e-hail (e.g., Uber/Lyft) knowledge, use, reliance, and future expectations among older adults. Specifically, we aimed to identify factors that were related to e-hail, and how older adults view this mode as a potential future transportation option. Data were collected from a sample of older adults using a pencil-and-paper mailed survey. Univariate, bivariate, and regression techniques were used to assess the relationships among e-hail and several demographic and other factors. Almost three-quarters of the sample (74%) reported no e-hail knowledge. Only 1.7% had used e-hail to arrange a ride,andonly 3.3% reported that they relied on e-hail for any of their transportation needs. Younger age, male gender, more education, higher transportation satisfaction, and discussing transportation options with others were all independently associated with greater e-hail knowledge. Male gender also predicted e-hail use. E-hail was the mode least relied upon by older adults. Current e-hail knowledge was the biggest predictor of anticipated future use. E-hail may be a viable future option for older adults who have limited or stopped driving. More exposure to e-hail and continued evolution of these services is required to overcome older adults' lower internet/smartphone use. Policies could be implemented at departments of motor vehicles to pair information or training on transportation alternatives (like e-hail) with elimination of driving privileges, or at doctors' offices, senior centers, or hospitals. Potential underlying reasons for the findings are also discussed.
Chronic inflammation as a determinant of future aging phenotypes.
Akbaraly, Tasnime N; Hamer, Mark; Ferrie, Jane E; Lowe, Gordon; Batty, G David; Hagger-Johnson, Gareth; Singh-Manoux, Archana; Shipley, Martin J; Kivimäki, Mika
2013-11-05
The importance of chronic inflammation as a determinant of aging phenotypes may have been underestimated in previous studies that used a single measurement of inflammatory markers. We assessed inflammatory markers twice over a 5-year exposure period to examine the association between chronic inflammation and future aging phenotypes in a large population of men and women. We obtained data for 3044 middle-aged adults (28.2% women) who were participating in the Whitehall II study and had no history of stroke, myocardial infarction or cancer at our study's baseline (1997-1999). Interleukin-6 was measured at baseline and 5 years earlier. Cause-specific mortality, chronic disease and functioning were ascertained from hospital data, register linkage and clinical examinations. We used these data to create 4 aging phenotypes at the 10-year follow-up (2007-2009): successful aging (free of major chronic disease and with optimal physical, mental and cognitive functioning), incident fatal or nonfatal cardiovascular disease, death from noncardiovascular causes and normal aging (all other participants). Of the 3044 participants, 721 (23.7%) met the criteria for successful aging at the 10-year follow-up, 321 (10.6%) had cardiovascular disease events, 147 (4.8%) died from noncardiovascular causes, and the remaining 1855 (60.9%) were included in the normal aging phenotype. After adjustment for potential confounders, having a high interleukin-6 level (> 2.0 ng/L) twice over the 5-year exposure period nearly halved the odds of successful aging at the 10-year follow-up (odds ratio [OR] 0.53, 95% confidence interval [CI] 0.38-0.74) and increased the risk of future cardiovascular events (OR 1.64, 95% CI 1.15-2.33) and noncardiovascular death (OR 2.43, 95% CI 1.58-3.80). Chronic inflammation, as ascertained by repeat measurements, was associated with a range of unhealthy aging phenotypes and a decreased likelihood of successful aging. Our results suggest that assessing long-term chronic inflammation by repeat measurement of interleukin-6 has the potential to guide clinical practice.
Lessons learned from a practice-based, multi-site intervention study with nurse participants
Friese, Christopher R.; Mendelsohn-Victor, Kari; Ginex, Pamela; McMahon, Carol M.; Fauer, Alex J.; McCullagh, Marjorie C.
2016-01-01
Purpose To identify challenges and solutions to the efficient conduct of a multi-site, practice-based randomized controlled trial to improve nurses’ adherence to personal protective equipment use in ambulatory oncology settings. Design The Drug Exposure Feedback and Education for Nurses’ Safety (DEFENS) study is a clustered, randomized, controlled trial. Participating sites are randomized to web-based feedback on hazardous drug exposures in the sites plus tailored messages to address barriers versus a control intervention of a web-based continuing education video. Approach The study principal investigator, the study coordinator, and two site leaders identified challenges to study implementation and potential solutions, plus potential methods to prevent logistical challenges in future studies. Findings Noteworthy challenges included variation in human subjects protection policies, grants and contracts budgeting, infrastructure for nursing-led research, and information technology variation. Successful strategies included scheduled web conferences, site-based study champions, site visits by the principal investigator, and centrally-based document preparation. Strategies to improve efficiency in future studies include early and continued engagement with contract personnel in sites, and proposed changes to the common rule concerning human subjects. The DEFENS study successfully recruited 393 nurses across 12 sites. To date, 369 have completed surveys and 174 nurses have viewed educational materials. Conclusions Multi-site studies of nursing personnel are rare and challenging to existing infrastructure. These barriers can be overcome with strong engagement and planning. Clinical Relevance Leadership engagement, onsite staff support, and continuous communication can facilitate successful recruitment to a workplace-based randomized, controlled behavioral trial. PMID:28098951
Exposure to bright light biases effort-based decisions.
Bijleveld, Erik; Knufinke, Melanie
2018-06-01
Secreted in the evening and the night, melatonin suppresses activity of the mesolimbic dopamine pathway, a brain pathway involved in reward processing. However, exposure to bright light diminishes-or even prevents-melatonin secretion. Thus, we hypothesized that reward processing, in the evening, is more pronounced in bright light (vs. dim light). Healthy human participants carried out three tasks that tapped into various aspects of reward processing (effort expenditure for rewards task [EEfRT]; two-armed bandit task [2ABT]; balloon analogue risk task [BART). Brightness was manipulated within-subjects (bright vs. dim light), in separate evening sessions. During the EEfRT, participants used reward-value information more strongly when they were exposed to bright light (vs. dim light). This finding supported our hypothesis. However, exposure to bright light did not significantly affect task behavior on the 2ABT and the BART. While future research is necessary (e.g., to zoom in on working mechanisms), these findings have potential implications for the design of physical work environments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Neff, Jerry M; Page, David S; Landrum, Peter F; Chapman, Peter M
2013-02-15
This paper reanalyzes data from an earlier study that used effluents from oiled-gravel columns to assess the toxicity of aqueous fractions of weathered crude oil to Pacific herring embryos and larvae. This reanalysis has implications for future similar investigations, including the observance of two distinct dose-response curves for lethal and sublethal endpoints for different exposures in the same experiment, and the need to consider both potency and slope of dose-response curves for components of a toxicant mixture that shows potentially different toxicity mechanisms/causation. Contrary to conclusions of the original study, the aqueous concentration data cannot support the hypothesis that polycyclic aromatic hydrocarbons (PAHs) were the sole cause of toxicity and that oil toxicity increased with weathering. Confounding issues associated with the oiled gravel columns include changes in the concentration and composition of chemicals in exposure water, which interfere with the production of reliable and reproducible results relevant to the field. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bioaccumulation and ecotoxicity of carbon nanotubes
2013-01-01
Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships. PMID:24034413
Ford, Julian D; Gómez, Jennifer M
2015-01-01
We reviewed research on the relationship between (a) exposure to psychological trauma and (b) nonsuicidal self-injury (NSSI) and suicidality (suicidal ideation [SI] and suicide attempts [SA]) in individuals with dissociative disorders and posttraumatic stress disorder (PTSD). The review provides a context for the special issue of the Journal of Trauma & Dissociation on these topics. Exposure to childhood sexual abuse is the most consistent traumatic antecedent of self-harm, although traumatic violence in childhood (particularly physical abuse) and adulthood (particularly domestic violence) and exposure to multiple types of traumatic stressors also are associated with NSSI and SI/SA. Dissociative disorders and PTSD are consistently associated with increased NSSI and SA/SI. There is preliminary cross-sectional evidence that dissociation and posttraumatic stress disorders may mediate the relationship between psychological trauma and NSSI and SI/SA. Research on emotion dysregulation as a potential cross-cutting mechanism linking dissociation, PTSD, and self-harm is also reviewed. We conclude with a discussion of implications for clinical practice and future directions for scientific research.
Hu, Shaowen; Cucinotta, Francis A
2011-02-01
As significant ionising radiation exposure will occur during prolonged space travel in future, it is essential to understand their adverse effects on the radiosensitive organ systems that are important for immediate survival of humans, e.g. the haematopoietic system. In this paper, a biomathematical model of granulopoiesis is used to analyse the granulocyte changes seen in the blood of mammalians under acute and continuous radiation exposure. This is one of a set of haematopoietic models that have been successfully utilised to simulate and interpret the experimental data of acute and chronic radiation on rodents. Extension to canine and human systems indicates that the results of the model are consistent with the cumulative experimental and empirical data from various sources, implying the potential to integrate them into one united model system to monitor the haematopoietic response of various species under irradiation. The suppression of granulocytes' level of a space traveller under chronic stress of low-dose irradiation as well as the granulopoietic response when encountering a historically large solar particle event is also discussed.
Brzozek, Christopher; Benke, Kurt K; Zeleke, Berihun M; Abramson, Michael J; Benke, Geza
2018-03-26
Uncertainty in experimental studies of exposure to radiation from mobile phones has in the past only been framed within the context of statistical variability. It is now becoming more apparent to researchers that epistemic or reducible uncertainties can also affect the total error in results. These uncertainties are derived from a wide range of sources including human error, such as data transcription, model structure, measurement and linguistic errors in communication. The issue of epistemic uncertainty is reviewed and interpreted in the context of the MoRPhEUS, ExPOSURE and HERMES cohort studies which investigate the effect of radiofrequency electromagnetic radiation from mobile phones on memory performance. Research into this field has found inconsistent results due to limitations from a range of epistemic sources. Potential analytic approaches are suggested based on quantification of epistemic error using Monte Carlo simulation. It is recommended that future studies investigating the relationship between radiofrequency electromagnetic radiation and memory performance pay more attention to treatment of epistemic uncertainties as well as further research into improving exposure assessment. Use of directed acyclic graphs is also encouraged to display the assumed covariate relationship.
Exley, Christopher
2014-01-01
In the aluminum age, it is clearly unpalatable for aluminum, the globe's most successful metal, to be implicated in human disease. It is unpalatable because for approximately 100 years human beings have reaped the rewards of the most abundant metal of the Earth's crust without seriously considering the potential consequences for human health. The aluminum industry is a pillar of the developed and developing world and irrespective of the tyranny of human exposure to aluminum it cannot be challenged without significant consequences for businesses, economies, and governments. However, no matter how deep the dependency or unthinkable the withdrawal, science continues to document, if not too slowly, a burgeoning body burden of aluminum in human beings. Herein, I will make the case that it is inevitable both today and in the future that an individual's exposure to aluminum is impacting upon their health and is already contributing to, if not causing, chronic diseases such as Alzheimer's disease. This is the logical, if uncomfortable, consequence of living in the aluminum age.
EARLY INTERVENTIONS FOR PTSD: A REVIEW
Kearns, Megan C.; Ressler, Kerry J.; Zatzick, Doug; Rothbaum, Barbara Olasov
2013-01-01
The high prevalence of trauma exposure and subsequent negative consequences for both survivors and society as a whole emphasize the need for secondary prevention of posttraumatic stress disorder. However, clinicians and relief workers remain limited in their ability to intervene effectively in the aftermath of trauma and alleviate traumatic stress reactions that can lead to chronic PTSD. The scientific literature on early intervention for PTSD is reviewed, including early studies on psychological debriefing, pharmacological, and psychosocial interventions aimed at preventing chronic PTSD. Studies on fear extinction and memory consolidation are discussed in relation to PTSD prevention and the potential importance of immediate versus delayed intervention approaches and genetic predictors are briefly reviewed. Preliminary results from a modified prolonged exposure intervention applied within hours of trauma exposure in an emergency room setting are discussed, along with considerations related to intervention reach and overall population impact. Suggestions for future research are included. Prevention of PTSD, although currently not yet a reality, remains an exciting and hopeful possibility with current research approaches translating work from the laboratory to the clinic. PMID:22941845
A comparative assessment of the acute inhalation toxicity of vanadium compounds.
Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A
2016-11-01
Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.
Collaboration in Action: Office of Research and Development ...
The "Collaboration in Action: US EPA's Office of Research and Develop - Current Wildfire Research Program" was invited by the USDA's US Forest Service's Scientific Executive Committee to provide USFS scientific leadership active and potential future opportunities for cooperation/collaboration. Health impacts of wildfire smoke merit the attention and action of the US EPA and current research is supported in the ACE and SHC Research Programs. Wildland fire smoke research has taken on greater importance because the 1) contribution of wildland fire PM emissions relative to total US PM emissions is increasing, 2) the population health impacts are measurable and costly, 3) vulnerable and sensitive populations at-risk are increasing attendant to our aging U.S. population and the increasing area of the wildland-urban interface, and 4) health impacts of smoke could be minimized by identifying at-risk individuals and reducing their exposures. Examples are provided. The "Collaboration in Action: US EPA's Office of Research and Develop - Current Wildfire Research Program" was invited by the USDA's US Forest Service's Scientific Executive Committee to provide USFS scientific leadership active and potential future opportunities for cooperation/collaboration.
Flexible robotics: a new paradigm.
Aron, Monish; Haber, Georges-Pascal; Desai, Mihir M; Gill, Inderbir S
2007-05-01
The use of robotics in urologic surgery has seen exponential growth over the last 5 years. Existing surgical robots operate rigid instruments on the master/slave principle and currently allow extraluminal manipulations and surgical procedures. Flexible robotics is an entirely novel paradigm. This article explores the potential of flexible robotic platforms that could permit endoluminal and transluminal surgery in the future. Computerized catheter-control systems are being developed primarily for cardiac applications. This development is driven by the need for precise positioning and manipulation of the catheter tip in the three-dimensional cardiovascular space. Such systems employ either remote navigation in a magnetic field or a computer-controlled electromechanical flexible robotic system. We have adapted this robotic system for flexible ureteropyeloscopy and have to date completed the initial porcine studies. Flexible robotics is on the horizon. It has potential for improved scope-tip precision, superior operative ergonomics, and reduced occupational radiation exposure. In the near future, in urology, we believe that it holds promise for endoluminal therapeutic ureterorenoscopy. Looking further ahead, within the next 3-5 years, it could enable transluminal surgery.
[Smoking at workplace - Legislation and health aspect of exposure to second-hand tobacco smoke].
Lipińska-Ojrzanowska, Agnieszka; Polańska, Kinga; Wiszniewska, Marta; Kleniewska, Aneta; Dörre-Kolasa, Dominika; Walusiak-Skorupa, Jolanta
2015-01-01
Tobacco smoke contains thousands of xenobiotics harmful to human health. Their irritant, toxic and carcinogenic potential has been well documented. Passive smoking or exposure to second-hand smoke (SHS) in public places, including workplace, poses major medical problems. Owing to this fact there is a strong need to raise workers' awareness of smoking-related hazards through educational programs and to develop and implement legislation aimed at eliminating SHS exposure. This paper presents a review of reports on passive exposure to tobacco smoke and its impact on human health and also a review of binding legal regulations regarding smoking at workplace in Poland. It has been proved that exposure to tobacco smoke during pregnancy may lead to, e.g., preterm delivery and low birth weight, sudden infant death syndrome, lung function impairment, asthma and acute respiratory illnesses in the future. Exposure to tobacco smoke, only in the adult age, is also considered as an independent risk factor of cardiovascular diseases, acute and chronic respiratory diseases and cancer. Raising public awareness of tobacco smoke harmfulness should be a top priority in the field of workers' health prevention. Occupational medicine physicians have regular contacts with occupationally active people who smoke. Thus, occupational health services have a unique opportunity to increase employees and employers' awareness of adverse health effects of smoking and their prevention. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
van Wel, Luuk; Huss, Anke; Bachmann, Philipp; Zahner, Marco; Kromhout, Hans; Fröhlich, Jürg; Vermeulen, Roel
2017-06-01
Modern sensor technology makes it possible to collect vast amounts of environmental, behavioural and health data. These data are often linked to contextual information on for example exposure sources which is separately collected with considerable lag time, leading to complications in assessing transient and/or highly spatially variable environmental exposures. Context-Sensitive Ecological Momentary Assessments 1 (CS-EMAs) could be used to address this. We present a case study using radiofrequency-electromagnetic fields (RF-EMF) exposure as an example for implementing CS-EMA in environmental research. Participants were asked to install a custom application on their own smartphone and to wear an RF-EMF exposimeter for 48h. Questionnaires were triggered by the application based on a continuous data stream from the exposimeter. Triggers were divided into four categories: relative and absolute exposure levels, phone calls, and control condition. After the two days of use participants filled in an evaluation questionnaire. 74% of all CS-EMAs were completed, with an average time of 31s to complete a questionnaire once it was opened. Participants reported minimal influence on daily activities. There were no significant differences found between well-being and type of RF-EMF exposure. We show that a CS-EMA based method could be used in environmental research. Using several examples involving environmental stressors, we discuss both current and future applications of this methodology in studying potential health effects of environmental factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bisphenol-A and disparities in birth outcomes: a review and directions for future research
Ranjit, Nalini; Siefert, Kristine; Padmanabhan, Vasantha
2014-01-01
Racial disparities in pregnancy outcome in the United States are significant, persistent and costly, but the causes are poorly understood. We propose that disproportionate exposure of African-American women to environmental endocrine disrupting compounds (EDCs) may contribute to birth outcome disparities. Marked racial segregation, as well as health behaviors associated with poverty could result in differences in exposure to particular EDCs. One EDC that has aroused concern in recent years is bisphenol-A (BPA), a widely used industrial plasticizer with known estrogenic properties. Published studies indicate that excessive BPA exposure is associated with reduced fetal survival, as well as reductions in maternal weight and fetal body weight. Related findings include adverse effects of BPA exposure on ovarian function, mammary gland development, earlier age of puberty onset, and some metabolic parameters. However, these findings are largely limited to experimental animal studies, and need to be validated in human populations. Our review supports the need to move beyond the currently dominant toxicological approach to examining the effects of BPA exposure, and rely more on observational human studies and epidemiological methods. Many of the risk factors for racial disparities in pregnancy outcome are global or difficult to modify, but exposure to BPA is a potentially malleable risk factor. If BPA contributes to racial disparities in pregnancy outcome, there are important implications for prevention. It is our hope that this review will stimulate further research in this important and neglected area. PMID:19587689
Long- and Short-Term Health Effects of Pesticide Exposure: A Cohort Study from China
Li, Yifan; Zhang, Chao; Yin, Yanhong; Chen, Zhaohui; Jin, Yanhong; Cai, Jinyang; Cui, Fang
2015-01-01
Pesticides are extensively used by farmers in China. However, the effects of pesticides on farmers’ health have not yet been systematically studied. This study evaluated the effects of pesticides exposure on hematological and neurological indicators over 3 years and 10 days respectively. A cohort of 246 farmers was randomly selected from 3 provinces (Guangdong, Jiangxi, and Hebei) in China. Two rounds of health investigations, including blood tests and neurological examinations, were conducted by medical doctors before and after the crop season in 2012. The data on pesticide use in 2009–2011 were collected retrospectively via face-to-face interviews and the 2012 data were collected from personal records maintained by participants prospectively. Ordinary least square (OLS), Probit, and fixed effect models were used to evaluate the relationship between pesticides exposure frequency and the health indicators. Long-term pesticide exposure was found to be associated with increased abnormality of nerve conductions, especially in sensory nerves. It also affected a wide spectrum of health indicators based on blood tests and decreased the tibial nerve compound muscle action potential amplitudes. Short-term health effects included alterations in complete blood count, hepatic and renal functions, and nerve conduction velocities and amplitudes. However, these effects could not be detected after 3 days following pesticide exposure. Overall, our results demonstrate that pesticide exposure adversely affects blood cells, the liver, and the peripheral nervous system. Future studies are needed to elucidate the specific effects of each pesticide and the mechanisms of these effects. PMID:26042669
Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study.
De Roos, Anneclaire J; Blair, Aaron; Rusiecki, Jennifer A; Hoppin, Jane A; Svec, Megan; Dosemeci, Mustafa; Sandler, Dale P; Alavanja, Michael C
2005-01-01
Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993-1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or "cumulative exposure days" (years of use times days/year); and c) intensity-weighted cumulative exposure days (years of use times days/year times estimated intensity level). Poisson regression was used to estimate exposure-response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers.
Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development.
Burt, T; Yoshida, K; Lappin, G; Vuong, L; John, C; de Wildt, S N; Sugiyama, Y; Rowland, M
2016-04-01
A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications and design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. All phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.
Moss, Antony C; Evans, Stephen; Albery, Ian P
2017-10-05
Responsible drinking messages (RDMs) are a key component of many education-based interventions for reducing alcohol harms. The evidence base for the effectiveness of RDMs is extremely limited, with some recent research suggesting iatrogenic effects of such messages. To examine the effects of exposure to health messages on attitudes towards drinking and drunkenness, and intentions to drink and get drunk, amongst underage drinkers. Ninety-four underage drinkers were recruited from colleges in the UK. Participants were either actively or passively exposed to one of two health messages (RDM or general wellbeing). Measures of attitudes and intentions towards drinking and drunkenness were obtained one week before and immediately after participation in the study. A unit estimation task was also included. Active exposure to RDMs led to more positive attitude towards drunkenness, while passive exposure led to more negative attitudes. Passive RDM exposure led to increased intentions to get drunk in future. Wellbeing posters produced the opposite effect in some but not all of these measures. Exposure to RDMs may have some beneficial effects in terms of creating more negative attitudes towards alcohol consumption, but we also identified potential iatrogenic effects regarding attitudes and intentions towards drunkenness amongst an underage sample of drinkers. Further research is required to better understand optimal ways of framing RDMs to produce positive changes in attitudes, intentions, and prospective drinking behaviour.
Estimation of Biological Effects of Tritium.
Umata, Toshiyuki
2017-01-01
Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.
Encoded exposure to tobacco use in social media predicts subsequent smoking behavior.
Depue, Jacob B; Southwell, Brian G; Betzner, Anne E; Walsh, Barbara M
2015-01-01
Assessing the potential link between smoking behavior and exposure to mass media depictions of smoking on social networking Web sites. A representative longitudinal panel of 200 young adults in Connecticut. Telephone surveys were conducted by using computer assisted telephone interviewing technology and electronic dialing for random digit dialing and listed samples. Connecticut residents aged 18 to 24 years. To measure encoded exposure, respondents were asked whether or not they had smoked a cigarette in the past 30 days and about how often they had seen tobacco use on television, in movies, and in social media content. Respondents were also asked about cigarette use in the past 30 days, and a series of additional questions that have been shown to be predictive of tobacco use. Logistic regression was used to test for our main prediction that reported exposure to social media tobacco depictions at time 1 would influence time 2 smoking behavior. Encoded exposure to social media tobacco depictions (B = .47, p < .05) was a significant predictor of time 2 smoking, even after controlling for all the aforementioned predictors. Our results suggest that social media depictions of tobacco use predict future smoking tendency, over and above the influence of TV and movie depictions of smoking. This is the first known study to specifically assess the role of social media in informing tobacco behavior.
Understanding Arsenic Dynamics in Agronomic Systems to ...
This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly
Cowell, Whitney J; Wright, Rosalind J
2017-12-01
Environmental toxicants and psychosocial stressors share many biological substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-induced changes to the maternal milieu may prime rapidly developing physiological systems for disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we highlight putative mechanisms underlying sex-specific susceptibility of the developing neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants (bisphenol A, alcohol, phthalates, lead, chlorpyrifos, and traffic-related air pollution). We provide evidence indicating that concurrent or tandem exposure to chemical and non-chemical stressors during windows of rapid development is associated with sex-specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits, and innate immune function. We additionally identify gaps, such as the role that the endocrine-active placenta plays, in our understanding of these complex interactions. Finally, we discuss future research needs, including the investigation of non-hormonal biomarkers of stress. We demonstrate multiple physiologic systems are impacted by joint exposure to chemical and non-chemical stressors differentially among males and females. Collectively, the results highlight the importance of evaluating sex-specific endpoints when investigating the neuroendocrine system and underscore the need to examine exposure to chemical toxicants within the context of the social environment.
Han, Sung Gu; Kim, Jin Kwon; Shin, Jae Hoon; Hwang, Joo Hwan; Lee, Jong Seong; Kim, Tae-Gyu; Lee, Ji Hyun; Lee, Gun Ho; Kim, Keun Soo; Song, Nam Woong; Ahn, Kangho
2015-01-01
Graphene is receiving increased attention due to its potential widespread applications in future. However, the health effects of graphene have not yet been well studied. Therefore, this study examined the pulmonary effects of graphene oxide using male Sprague-Dawley rats and a single 6-hour nose-only inhalation technique. Following the exposure, the rats were allowed to recover for 1 day, 7 days, or 14 days. A total of three groups were compared: control (fresh air), low concentration (0.46 ± 0.06 mg/m3), and high concentration (3.76 ± 0.24 mg/m3). The exposure to graphene oxide did not induce significant changes in the body weights, organ weights, and food consumption during the 14 days of recovery time. The microalbumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid were not significantly changed due to the exposure. Similarly, total cell count, macrophages, polymorphonuclear leukocytes, and lymphocytes were not significantly altered in the BAL fluid. Plus, the histopathological examination of the rat lungs only showed an uptake of graphene oxide in the alveolar macrophages of the high-concentration group. Therefore, these results demonstrate that the single inhalation exposure to graphene oxide induce minimal toxic responses in rat lungs at the concentrations and time points used in the present study. PMID:26295037
Tennant, David Robin; Bruyninckx, Chris
2018-03-01
Consumer exposure assessments for food additives are incomplete without information about the proportions of foods in each authorised category that contain the additive. Such information has been difficult to obtain but the Mintel Global New Products Database (GNPD) provides information about product launches across Europe over the past 20 years. These data can be searched to identify products with specific additives listed on product labels and the numbers compared with total product launches for food and drink categories in the same database to determine the frequency of occurrence. There are uncertainties associated with the data but these can be managed by adopting a cautious and conservative approach. GNPD data can be mapped with authorised food categories and with food descriptions used in the EFSA Comprehensive European Food Consumption Surveys Database for exposure modelling. The data, when presented as percent occurrence, could be incorporated into the EFSA ANS Panel's 'brand-loyal/non-brand loyal exposure model in a quantitative way. Case studies of preservative, antioxidant, colour and sweetener additives showed that the impact of including occurrence data is greatest in the non-brand loyal scenario. Recommendations for future research include identifying occurrence data for alcoholic beverages, linking regulatory food codes, FoodEx and GNPD product descriptions, developing the use of occurrence data for carry-over foods and improving understanding of brand loyalty in consumer exposure models.
An overview of the characterization of occupational exposure to nanoaerosols in workplaces
NASA Astrophysics Data System (ADS)
Castellano, Paola; Ferrante, Riccardo; Curini, Roberta; Canepari, Silvia
2009-05-01
Currently, there is a lack of standardized sampling and metric methods that can be applied to measure the level of exposure to nanosized aerosols. Therefore, any attempt to characterize exposure to nanoparticles (NP) in a workplace must involve a multifaceted approach characterized by different sampling and analytical techniques to measure all relevant characteristics of NP exposure. Furthermore, as NP aerosols are always complex mixtures of multiple origins, sampling and analytical methods need to be improved to selectively evaluate the apportionment from specific sources to the final nanomaterials. An open question at the world's level is how to relate specific toxic effects of NP with one or more among several different parameters (such as particle size, mass, composition, surface area, number concentration, aggregation or agglomeration state, water solubility and surface chemistry). As the evaluation of occupational exposure to NP in workplaces needs dimensional and chemical characterization, the main problem is the choice of the sampling and dimensional separation techniques. Therefore a convenient approach to allow a satisfactory risk assessment could be the contemporary use of different sampling and measuring techniques for particles with known toxicity in selected workplaces. Despite the lack of specific NP exposure limit values, exposure metrics, appropriate to nanoaerosols, are discussed in the Technical Report ISO/TR 27628:2007 with the aim to enable occupational hygienists to characterize and monitor nanoaerosols in workplaces. Moreover, NIOSH has developed the Document Approaches to Safe Nanotechnology (intended to be an information exchange with NIOSH) in order to address current and future research needs to understanding the potential risks that nanotechnology may have to workers.
Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A
2017-04-01
Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.
Cue-Induced Cigarette Cravings and Smoking Cessation: The Role of Expectancies
Montgomery, Guy H.
2012-01-01
Introduction: Cue-induced cigarette cravings have been oft studied as potentially important predictors of smoking cessation outcomes. The literature on the relationship between cue-induced cravings and cessation, however, remains mixed. One possible explanation for the discrepant results in the literature may be the as-yet untested variability in expectancies of craving. Indeed, as with many interoceptive responses, cravings and their downstream consequences may be influenced by expectancies. To date, no study has examined the influence of expected cravings following smoking cue exposures on actual craving experiences and cessation outcomes. The objective of this study, therefore, was to test the possibility that smokers’ expected craving levels in response to smoking cues would be related to actual cravings following cue exposure and that expected cravings would be related to cessation outcomes. Methods: Nicotine-dependent adult smokers (n = 153) were exposed to sets of neutral and smoking cues and completed questionnaires assessing (a) prior to the exposures, the cigarette craving levels they expected to experience following the cue exposures and (b) following the exposures, their actual craving levels. Participants also reported the duration of their most recent quit attempt and their perceived future quit difficulty. Results: Findings indicated that expected cravings assessed prior to the cue exposures were significantly related to actual cravings following the exposures. In addition, both expected cravings and actual cravings were related to shorter previous quit duration and higher perceived quit difficulty. Conclusions: Study results highlight the importance of considering both expected and actual cravings in cue-induced craving paradigms. PMID:22218404
Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R; Pathak, Rupak; Allen, Antiño R; Latendresse, John; Olsen, Reid H J; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor
2015-11-01
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Review and Design of Low-Dose Bacillus anthracis Inhalation ...
Report In July 2011, EPA NHSRC sponsored a Review and Design of Low-Dose Bacillus anthracis Inhalation Exposures meeting to review the research done to date and to identify gaps that future research should address regarding low-dose exposures. This effort brought together many organizations across the country, including EPA’s program offices, federal government agencies and laboratories, academia, and the private sector. Participants of the conference shared knowledge, explored differing opinions, and expanded understanding of the current state of research for low-dose exposure and future research needs. This report represents a summary of the presentations and discussions during the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-16
The Petro-Processors of Louisiana, Inc. (PPI) site, located in East Baton Rouge Parish, Louisiana, operated two waste disposal facilities: the Brooklawn area and the Scenic Highway area. Both areas contain chlorinated aromatic hydrocarbons and chlorinated hydrocarbons. Contaminants have been detected in samples from soil, groundwater, surface water, and air at the Brooklawn area and in soil, groundwater, and air at the Scenic Highway area. The site is considered a public health hazard because of risks to human health from past, present, and future exposure to hazardous substances. Exposure pathways of public health concern are: ingestion of contaminated fish, potential ingestionmore » of contaminated groundwater and wildlife, dermal contact with contaminated sediments, inhalation of airborne volatile contaminants prior to and during remedial activities, and dermal contact and incidental ingestion of contaminated soils.« less
Epigenetic Effects of Cannabis Exposure
Szutorisz, Henrietta; Hurd, Yasmin L.
2015-01-01
The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one’s lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076
Formaldehyde exposure affects growth and metabolism of common bean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutters, R.G.; Madore, M.; Bytnerowicz, A.
Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design andmore » build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.« less
Douglas, P; Hayes, E T; Williams, W B; Tyrrel, S F; Kinnersley, R P; Walsh, K; O'Driscoll, M; Longhurst, P J; Pollard, S J T; Drew, G H
2017-12-01
With the increase in composting asa sustainable waste management option, biological air pollution (bioaerosols) from composting facilities have become a cause of increasing concern due to their potential health impacts. Estimating community exposure to bioaerosols is problematic due to limitations in current monitoring methods. Atmospheric dispersion modelling can be used to estimate exposure concentrations, however several issues arise from the lack of appropriate bioaerosol data to use as inputs into models, and the complexity of the emission sources at composting facilities. This paper analyses current progress in using dispersion models for bioaerosols, examines the remaining problems and provides recommendations for future prospects in this area. A key finding is the urgent need for guidance for model users to ensure consistent bioaerosol modelling practices. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Myriad Influences of Alcohol Advertising on Adolescent Drinking
Berey, Benjamin L.; Loparco, Cassidy; Leeman, Robert F.; Grube, Joel W.
2017-01-01
Purpose of Review This review investigates effects of alcohol advertising on adolescent drinking. Prior reviews focused on behavioral outcomes and long-term effects. In contrast, the present review focuses on subgroups with greater exposure to alcohol advertising, research methods to study alcohol advertising, potential mechanisms underlying relationships between adolescent exposure to alcohol advertising and increased drinking and points to prevention/intervention strategies that may reduce effects of alcohol advertising. Recent Findings Alcohol advertising influences current and future drinking. Further, evidence suggests adolescents may be targeted specifically. Alcohol advertisements may influence behavior by shifting alcohol expectancies, norms regarding alcohol use, and positive attitudes. Media literacy programs may be an effective intervention strategy. Summary Adolescents are exposed to large quantities of alcohol advertisements, which violates guidelines set by the alcohol industry. However, media literacy programs may be a promising strategy for adolescents to increase critical thinking and create more realistic expectations regarding alcohol. PMID:29242767
The Myriad Influences of Alcohol Advertising on Adolescent Drinking.
Berey, Benjamin L; Loparco, Cassidy; Leeman, Robert F; Grube, Joel W
2017-06-01
This review investigates effects of alcohol advertising on adolescent drinking. Prior reviews focused on behavioral outcomes and long-term effects. In contrast, the present review focuses on subgroups with greater exposure to alcohol advertising, research methods to study alcohol advertising, potential mechanisms underlying relationships between adolescent exposure to alcohol advertising and increased drinking and points to prevention/intervention strategies that may reduce effects of alcohol advertising. Alcohol advertising influences current and future drinking. Further, evidence suggests adolescents may be targeted specifically. Alcohol advertisements may influence behavior by shifting alcohol expectancies, norms regarding alcohol use, and positive attitudes. Media literacy programs may be an effective intervention strategy. Adolescents are exposed to large quantities of alcohol advertisements, which violates guidelines set by the alcohol industry. However, media literacy programs may be a promising strategy for adolescents to increase critical thinking and create more realistic expectations regarding alcohol.
Dissociation During Intense Military Stress is Related to Subsequent Somatic Symptoms in Women
Steffian, Lisa; Steffian, George; Doran, Anthony P.; Rasmusson, Ann M.; Morgan, CA
2007-01-01
Background: Research studies of the female response to intense stress are under-represented in the scientific literature; indeed, publications in female humans and animals number half those in male subjects. In addition, women have only recently entered more dangerous professions that were historically limited to men. The US Navy's survival course, therefore, offers a unique opportunity to examine, in a controlled manner, individual differences in the human female response to acute and realistic military stress. Method: The current study assessed the nature and prevalence of dissociative symptoms and other aspects of adaptive function in healthy female subjects experiencing acute, intense stress during US Navy survival training. Cognitive dissociation and previous exposure to traumatic events were assessed at baseline in 32 female service members prior to Navy survival training. At the conclusion of training, retrospectively rated levels of dissociation during peak training stress and current health symptoms were assessed. Results: Female subjects reported previous trauma (35%) and at least one symptom of dissociation at baseline prior to training (47%). Eighty-eight percent of subjects reported experiencing multiple symptoms of dissociation during peak training stress. Post-stress dissociation scores and stress-induced increases in dissociation, as well as prior cumulative exposure to potentially traumatic events, were significant predictors of post-stress health symptoms. Discussion: In this study, increases in dissociative symptoms during intense training stress, post-stress dissociation symptom levels, and prior cumulative exposure to stressful, potentially traumatic events predicted post-stress health symptoms in women. Prior studies in men have demonstrated correlations between neurobiological responses to stress and stress-associated levels of dissociation. Thus future studies in larger samples of women are needed to investigate the relationship between prior stress exposure, alterations in neurobiological responses to stress and potentially related alterations in neuropsychological and physical reactions to stress. PMID:20805901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder-Talkington, Brandi N.; Dymacek, Julian; Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
2013-10-15
The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chainmore » simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. - Highlights: • A novel computational model identified toxicity pathways matching in vivo pathology. • Systematic identification of MWCNT-induced biological processes in mouse lungs • MWCNT-induced functional networks of lung inflammation and fibrosis were revealed. • Two functional, representative genes, ccl2 and vegfa, were validated in vitro.« less
Tree Rings as Chroniclers of Mercury Exposure in Shenandoah National Park, Virginia
NASA Astrophysics Data System (ADS)
Riscassi, A. L.; Camper, T.; Lee, T. R.; Druckenbrod, D.; Scanlon, T. M.
2016-12-01
Although historical Hg emissions and subsequent deposition play a dominant role in shaping present and future Hg cycling, our knowledge of this is limited in both space and time. Recent studies have shown Hg concentrations in tree rings have the potential to archive historical Hg exposure from local, regional, and global sources, however, no studies have evaluated tree rings in the eastern U.S., a region of elevated Hg deposition from upwind power plants. In order to chronicle the historical Hg exposure of the central Appalachian region through dendrochemical analysis, tree rings were cored along a latitudinal gradient in Shenandoah National Park with sites clustered in North, Central and Southern regions. Long-lived tree species with low radial permeability, chosen to avoid the potential for chemical translocation, included white oak (Quercus Alba), northern red oak (Quercus rubra), and pitch pine (Pinus rigida). In each of the three regions, we collected a core from three individuals of each tree species (27 total cores) and analyzed each for Hg content in 10-yr increments. Overall, tree ring Hg concentrations (average 0.88 ng Hg g-1) were similar to other studies and varied between species. Temporal tree-core Hg trends did not relate to trends in modeled global atmospheric Hg concentrations or regional sources (e.g., fire, coal production), but rather tracked the use of Hg from a local industrial point source. Contemporary wind data originating from the location of the local Hg source in conjunction with an atmospheric model indicate emissions from the plant likely impact the southern region of the park, with a lesser influence in the central and north regions, matching the longitudinal gradient observed in tree rings. This study raises questions about the extent of historical contamination from the industrial site and demonstrates the potential usefulness of tree ring dendrochemistry for identifying historical sources of atmospheric Hg exposure.
Audit of rabies post-exposure prophylaxis in England and Wales in 1990 and 2000.
Hossain, J; Crowcroft, N S; Lea, G; Brown, D; Mortimer, P P
2004-06-01
The objectives were to compare rabies post-exposure prophylaxis issued by the Public Health Laboratory Service (PHLS) in 1990 and in 2000, to evaluate their appropriateness, and to make recommendations for future issue of rabies post-exposure prophylaxis in England and Wales. The method was to review all rabies vaccine and immunoglobulin issues by PHLS in 1990 and 2000 with evaluation against Department of Health recommendations. The PHLS issued prophylaxis to 656 people in 1990 and 295 people in 2000. The fall is attributable to control measures in Western Europe leading to a lower risk of exposure in countries in the region. Vaccine was still issued for exposures in countries with a category of 'no risk' (15 individuals) including rabies immunoglobulin in six cases. Immunoglobulin was frequently not issued for exposures in high-risk countries but the reasons were not always evident from the information provided; in many cases treatment had probably been started abroad. Delay before contacting the PHLS fell between 1990 and 2000 (p = 0.003). Dogs continue to be the most common animal exposure reported, and their rabies status is generally unknown. The most frequent site of bite was the leg. Prophylaxis was issued for exposure to some animals which have never been known to transmit rabies. Successful control measures in Europe have reduced the need for rabies prophylaxis in UK residents who travel abroad. More detailed information should be collected in future on aspects such as pre-exposure vaccination and treatment started abroad to facilitate future audit of appropriateness of treatment. A repeat audit should be carried out to evaluate the impact of a death from European Bat Lyssavirus 2 infection in a UK bat handler in November 2002.
Evidence for the Risks and Consequences of Adolescent Cannabis Exposure.
Levine, Amir; Clemenza, Kelly; Rynn, Moira; Lieberman, Jeffrey
2017-03-01
This review of the scientific literature examines the potential adult sequelae of exposure to cannabis and related synthetic cannabinoids in adolescence. We examine the four neuropsychiatric outcomes that are likely most vulnerable to alteration by early cannabinoid use, as identified within both the clinical and preclinical research: cognition, emotional functioning, risk for psychosis, and addiction. A literature search was conducted through PubMed, PsychInfo, and Google Scholar with no publication date restrictions. The search terms used were "adolescent" and "adult," and either "cannabis," "marijuana," "delta-9-tetra-hydrocannabinol," or "cannabinoid," which was then crossed with one or more of the following terms: "deficit," "impairment," "alteration," "long-term," "persistent," "development," "maturation," and "pubescent." The majority of the clinical and preclinical data point to a strong correlation between adolescent cannabinoid exposure and persistent, adverse neuropsychiatric outcomes in adulthood. Although the literature supports the hypothesis that adolescent cannabis use is connected to impaired cognition and mental health in adults, it does not conclusively demonstrate that cannabis consumption alone is sufficient to cause these deficits in humans. The animal literature, however, clearly indicates that adolescent-onset exposure to cannabinoids can catalyze molecular processes that lead to persistent functional deficits in adulthood, deficits that are not found to follow adult-onset exposure and that model some of the adverse outcomes reported in humans among adult populations of early-onset cannabis users. Based on the data in the current literature, a strong association is found between early, frequent, and heavy adolescent cannabis exposure and poor cognitive and psychiatric outcomes in adulthood, yet definite conclusions cannot yet be made as to whether cannabis use alone has a negative impact on the human adolescent brain. Future research will require animal models and longitudinal studies to be carefully designed with a focus on integrating assessments of molecular, structural, and behavioral outcomes in order to elucidate the full range of potential adverse and long-term consequences of cannabinoid exposure in adolescence. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water.
Ryan, P B; Huet, N; MacIntosh, D L
2000-08-01
Arsenic, cadmium, and lead have been associated with various forms of cancer, nephrotoxicity, central nervous system effects, and cardiovascular disease in humans. Drinking water is a well-recognized pathway of exposure to these metals. To improve understanding of the temporal dimension of exposure to As, Cd, and Pb in drinking water, we obtained 381 samples of tap and/or tap/filtered water and self-reported rates of drinking water consumption from 73 members of a stratified random sample in Maryland. Data were collected at approximately 2-month intervals from September 1995 through September 1996. Concentrations of As (range < 0.2-13.8 microg/L) and Pb (< 0.1-13.4 microg/L) were within the ranges reported for the United States, as were the rates of drinking water consumption (median < 0.1-4.1 L/day). Cd was present at a detectable level in only 8.1% of the water samples. Mean log-transformed concentrations and exposures for As and Pb varied significantly among sampling cycles and among respondents, as did rates of drinking water consumption, according to a generalized linear model that accounted for potential correlation among repeated measures from the same respondent. We used the intraclass correlation coefficient of reliability to attribute the total variance observed for each exposure metric to between-person and within-person variability. Between-person variability was estimated to account for 67, 81, and 55% of the total variance in drinking water consumption, As exposure (micrograms per day), and Pb exposure (micrograms per day), respectively. We discuss these results with respect to their implications for future exposure assessment research, quantitative risk assessment, and environmental epidemiology.
Assessment of urinary metals following exposure to a large vegetative fire, New Mexico, 2000.
Wolfe, Mitchell I; Mott, Joshua A; Voorhees, Ronald E; Sewell, C Mack; Paschal, Dan; Wood, Charles M; McKinney, Patrick E; Redd, Stephen
2004-03-01
In May 2000, a vegetative fire burned 47,000 acres in northern New Mexico, including 7500 acres of land administered by the Los Alamos National Laboratory. We evaluated potential human exposures from the fire. We surveyed two populations (firefighters and the general population) in four cities for urine heavy metal concentrations. Reference concentrations were based on the Third National Health and Nutrition Examination Survey (NHANES III). Multivariate linear regression assessed the association of urinary metal concentrations with smoke exposure. We also performed isotopic analysis of uranium and cesium on a subset of specimens. A total of 92 firefighters and 135 nonfirefighters participated. In both populations, urinary nickel, cesium, chromium, and uranium concentrations were greater than expected compared with NHANES III reference values. No values required immediate medical follow-up. Regression analysis demonstrated that for National Guard members, arsenic and cadmium levels were significantly related to smoke exposure, and for firefighters, cesium and arsenic levels were significantly related to exposure; however, only for cesium in National Guard members was this association in the positive direction. Isotopic analysis demonstrated that the cesium and uranium were naturally occurring. Some people had spot urine metal concentrations above nationally derived reference values, and values for some metals were associated with smoke exposure. These associations had little public health or clinical importance. Studies of exposures resulting from vegetative fires are difficult, and careful consideration should be given to the technical and communication processes at the outset of a fire exposure investigation. Recommendations for future investigations include testing as soon as possible during or after a fire, and early clinical consultation with a medical toxicologist.
Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management
Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua
2011-01-01
Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667
Maternal Interpersonal Trauma and Child Social-Emotional Development: An Intergenerational Effect.
Folger, Alonzo T; Putnam, Karen T; Putnam, Frank W; Peugh, James L; Eismann, Emily A; Sa, Ting; Shapiro, Robert A; Van Ginkel, Judith B; Ammerman, Robert T
2017-03-01
Evidence suggests that maternal interpersonal trauma can adversely affect offspring health, but little is known about potential transmission pathways. We investigated whether interpersonal trauma exposure had direct and indirect associations with offspring social-emotional development at 12-months of age in an at-risk, home visited population. A retrospective cohort study was conducted of 1172 mother-child dyads who participated in a multi-site, early childhood home visiting program. Children were born January 2007 to June 2010 and data were collected at enrolment (prenatal/birth) through 12-months of age. Multivariable path analyses were used to examine the relationship between maternal interpersonal trauma, subsequent psychosocial mediators (maternal depressive symptoms, social support, and home environment), and the outcome of child social-emotional development measured with the Ages and Stages Questionnaire: Social-Emotional (ASQ:SE). Maternal interpersonal trauma was characterized as any previous exposure, the level of exposure, and type (e.g. abuse) of exposure. The prevalence of maternal interpersonal trauma exposure was 69.1%, and exposures ranged from 1 type (19.3%) to 7 types (2.3%). Interpersonal trauma was associated with a 3.6 point (95% confidence interval 1.8, 5.4) higher ASQ:SE score among offspring and indicated greater developmental risk. An estimated 23.4% of the total effect was mediated by increased maternal depressive symptoms and lower social support. Differential effects were observed by the level and type of interpersonal trauma exposure. Maternal interpersonal trauma exposures can negatively impact child social-emotional development, acting in part through maternal psychosocial factors. Future research is needed to further elucidate the mechanisms of intergenerational risk. © 2017 John Wiley & Sons Ltd.
The performance of thermal control coatings on LDEF and implications to future spacecraft
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.
1993-01-01
The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.
Climate change and rising heat: population health implications for working people in Australia.
Hanna, Elizabeth G; Kjellstrom, Tord; Bennett, Charmian; Dear, Keith
2011-03-01
The rapid rise in extreme heat events in Australia recently is already taking a health toll. Climate change scenarios predict increases in the frequency and intensity of extreme heat events in the future, and population health may be significantly compromised for people who cannot reduce their heat exposure. Exposure to extreme heat presents a health hazard to all who are physically active, particularly outdoor workers and indoor workers with minimal access to cooling systems while working. At air temperatures close to (or beyond) the core body temperature of 37°C, body cooling via sweating is essential, and this mechanism is hampered by high air humidity. Heat exposure among elite athletes and the military has been investigated, whereas the impacts on workers remain largely unexplored, particularly in relation to future climate change. Workers span all age groups and diverse levels of fitness and health status, including people with higher than "normal" sensitivity to heat. In a hotter world, workers are likely to experience more heat stress and find it increasingly difficult to maintain productivity. Modeling of future climate change in Australia shows a substantial increase in the number of very hot days (>35°C) across the country. In this article, the authors characterize the health risks associated with heat exposure on working people and discuss future exposure risks as temperatures rise. Progress toward developing occupational health and safety guidelines for heat in Australia are summarized.
Effects of silver nanoparticles on the liver and hepatocytes in vitro.
Gaiser, Birgit K; Hirn, Stephanie; Kermanizadeh, Ali; Kanase, Nilesh; Fytianos, Kleanthis; Wenk, Alexander; Haberl, Nadine; Brunelli, Andrea; Kreyling, Wolfgang G; Stone, Vicki
2013-02-01
With the increasing use and incorporation of nanoparticles (NPs) into consumer products, screening for potential toxicity is necessary to ensure customer safety. NPs have been shown to translocate to the bloodstream following inhalation and ingestion, and such studies demonstrate that the liver is an important organ for accumulation. Silver (Ag) NPs are highly relevant for human exposure due to their use in food contact materials, dietary supplements, and antibacterial wound treatments. Due to the large number of different NPs already used in various products and being developed for new applications, it is essential that relevant, quick, and cheap methods of in vitro risk assessment suitable for these new materials are established. Therefore, this study used a simple hepatocytes model combined with an in vivo injection model to simulate the passage of a small amount of NPs into the bloodstream following exposure, e.g., via ingestion or inhalation, and examined the potential of Ag NPs of 20 nm diameter to cause toxicity, inflammation, and oxidative stress in the liver following in vivo exposures of female Wistar rats via iv injection to 50 μg of NPs and in vitro exposures using the human hepatocyte cell line C3A. We found that Ag NPs were highly cytotoxic to hepatocytes (LC(50) lactate dehydrogenase: 2.5 μg/cm(2)) and affected hepatocyte homeostasis by reducing albumin release. At sublethal concentrations with normal cell or tissue morphology, Ag NPs were detected in cytoplasm and nuclei of hepatocytes. We observed similar effects of Ag NPs on inflammatory mediator expression in vitro and in vivo with increase of interleukin-8 (IL-8)/macrophage inflammatory protein 2, IL-1RI, and tumor necrosis factor-α expression in both models and increased IL-8 protein release in vitro. This article presents evidence of the potential toxicity and inflammogenic potential of Ag NPs in the liver following ingestion. In addition, the similarities between in vitro and in vivo responses are striking and encouraging for future reduction, refinement, and replacement of animal studies by the use of hepatocyte cell lines in particle risk assessment.
Cumulative stress restricts niche filling potential of habitat-forming kelps in a future climate.
King, Nathan G; Wilcockson, David C; Webster, Richard; Smale, Dan A; Hoelters, Laura S; Moore, Pippa J
2018-02-01
Climate change is driving range contractions and local population extinctions across the globe. When this affects ecosystem engineers the vacant niches left behind are likely to alter the wider ecosystem unless a similar species can fulfil them.Here, we explore the stress physiology of two coexisting kelps undergoing opposing range shifts in the Northeast Atlantic and discuss what differences in stress physiology may mean for future niche filling.We used chlorophyll florescence ( F v /F m ) and differentiation of the heat shock response (HSR) to determine the capacity of the expanding kelp , Laminaria ochroleuca , to move into the higher shore position of the retreating kelp, Laminaria digitata . We applied both single and consecutive exposures to immersed and emersed high and low temperature treatments, replicating low tide exposures experienced in summer and winter.No interspecific differences in HSR were observed which was surprising given the species' different biogeographic distributions. However, chlorophyll florescence revealed clear differences between species with L. ochroleuca better equipped to tolerate high immersed temperatures but showed little capacity to tolerate frosts or high emersion temperatures.Many patterns observed were only apparent after consecutive exposures. Such cumulative effects have largely been overlooked in tolerance experiments on intertidal organisms despite being more representative of the stress experienced in natural habitats. We therefore suggest future experiments incorporate consecutive stress into their design.Climate change is predicted to result in fewer ground frosts and increased summer temperatures. Therefore, L. ochroleuca may be released from its summer cold limit in winter but still be prevented from moving up the shore due to desiccation in the summer. Laminaria ochroleuca will, however, likely be able to move into tidal pools. Therefore, only partial niche filling by L. ochroleuca will be possible in this system as climate change advances. A plain language summary is available for this article.
Continental-scale assessment of risk to the Australian odonata from climate change.
Bush, Alex A; Nipperess, David A; Duursma, Daisy E; Theischinger, Gunther; Turak, Eren; Hughes, Lesley
2014-01-01
Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56-69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3-17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species.
Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change
Bush, Alex A.; Nipperess, David A.; Duursma, Daisy E.; Theischinger, Gunther; Turak, Eren; Hughes, Lesley
2014-01-01
Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56–69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3–17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species. PMID:24551197
Challenges associated with projecting urbanization-induced heat-related mortality.
Hondula, David M; Georgescu, Matei; Balling, Robert C
2014-08-15
Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables. Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983-2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (-95%) to an increase of 339 deaths per year (+359%). Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making. Copyright © 2014 Elsevier B.V. All rights reserved.
Secondhand tobacco exposure is associated with nonalcoholic fatty liver disease in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Connie; Rountree, Carl B.; Department of Pediatrics, Bon Secour St. Mary's Hospital, 5801 Bremo Rd, Richmond, VA 23226
Background: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease in children in the United States, and prevalence rates are rising. Smoking is associated with NAFLD, but the association of secondhand smoke exposure with NAFLD is unknown. Aims: To investigate the association of secondhand tobacco exposure with NAFLD in children. Methods: We surveyed parents/guardians of 304 children aged 3–12 years who had received an abdominal ultrasound at Penn State Hershey Medical Center. The survey addressed demographics, medical history, secondhand tobacco exposure, activity level, screen viewing time and other environmental exposures. A pediatric radiologist and sonographer reviewed themore » ultrasounds to grade the presence of bight liver compatible with NAFLD. We conducted logistic regression analysis to assess the association of secondhand tobacco exposure and NAFLD. Results: 54% of eligible potential participants responded to the survey. Fatty liver was present in 3% of the children. Increasing child age was associated with increased odds of NAFLD (OR 1.63 95% CI 1.1, 2.4). Reported child obesity was associated with increased odds of NAFLD (OR 44.5 95% CI 5.3, 371.7). The rate of NAFLD was higher in the smoke exposed group (6.7% vs. 1.7%). For every extra pack per day smoked at home, the odds of a child having NAFLD increased 1.8 times (AOR 1.8, 95% CI 1.2, 2.8), and any exposure increased a child's odds of NAFLD four-fold (AOR 4.0, 95% CI 1.02, 15.8). Conclusion: We found an association of secondhand smoke exposure and NAFLD in children. This may represent an area for future prevention efforts. - Highlights: • We evaluated the relation of tobacco exposure with nonalcoholic fatty liver disease. • Tobacco smoke exposure was associated with nonalcoholic fatty liver disease. • Tobacco smoke exposure may be an addressable risk factor.« less
Guarnieri, Michael; Diaz, Esperanza; Pope, Daniel; Eisen, Ellen A; Mann, Jennifer; Smith, Kirk R; Smith-Sivertsen, Tone; Bruce, Nigel G; Balmes, John R
2015-11-01
COPD is the third most frequent cause of death globally, with much of this burden attributable to household biomass smoke exposure in developing countries. As biomass smoke exposure is also associated with cardiovascular disease, lower respiratory infection, lung cancer, and cataracts, it presents an important target for public health intervention. Lung function in Guatemalan women exposed to wood smoke from open fires was measured throughout the Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) stove intervention trial and continued during the Chronic Respiratory Effects of Early Childhood Exposure to Respirable Particulate Matter (CRECER) cohort study. In RESPIRE, early stove households received a chimney woodstove at the beginning of the 18-month trial, and delayed stove households received a stove at trial completion. Personal exposure to wood smoke was assessed with exhaled breath carbon monoxide (CO) and personal CO tubes. Change in lung function between intervention groups and as a function of wood smoke exposure was assessed using random effects models. Of 306 women participating in both studies, acceptable spirometry was collected in 129 early stove and 136 delayed stove households (n = 265), with a mean follow-up of 5.6 years. Despite reduced wood smoke exposures in early stove households, there were no significant differences in any of the measured spirometric variables during the study period (FEV1, FVC, FEV1/FVC ratio, and annual change) after adjustment for confounding. In these young Guatemalan women, there was no association between lung function and early randomization to a chimney stove or personal wood smoke exposure. Future stove intervention trials should incorporate cleaner stoves, longer follow-up, or potentially susceptible groups to identify meaningful differences in lung function.
Braverman, Marc T.; Aarø, Leif Edvard
2004-01-01
Objectives. We examined the extent to which adolescents in Norway have been exposed to tobacco marketing despite an existing ban, and whether exposure is related to their current smoking or expectations they will smoke in the future. Methods. Questionnaires were administered to nationally representative systematic samples of Norwegian youths aged 13 to 15 years in 1990 (n = 4282) and 1995 (n = 4065). Results. About half in each cohort reported exposure to marketing. Youths reporting exposure were significantly more likely to be current smokers and to expect to be smokers at 20 years of age, after control for important social influence predictors. Conclusions. Adolescents’ current smoking and future smoking expectations are linked to marketing exposure even in limited settings, suggesting the need for comprehensive controls to eliminate the function of marketing in promoting adolescent smoking. PMID:15226148
Ecstasy Exposure & Gender: Examining Components of Verbal Memory Functioning
Price, Jenessa S.; Shear, Paula; Lisdahl, Krista M.
2014-01-01
Objective Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables. Method Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18–35; 48 ecstasy and 17 marijuana users; 0–2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview. Results Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users. Conclusion Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed. PMID:25545890
Turner, Hugo C; Baussano, Iacopo; Garnett, Geoff P
2013-01-01
Recent trials have indicated that women with prior exposure to Human papillomavirus (HPV) subtypes 16/18 receive protection against reinfection from the HPV vaccines. However, many of the original models investigating the cost effectiveness of different vaccination strategies for the protection of cervical cancer assumed, based on the trial results at that time, that these women received no protection. We developed a deterministic, dynamic transmission model that incorporates the vaccine-induced protection of women with prior exposure to HPV. The model was used to estimate the cost effectiveness of progressively extending a vaccination programme using the bivalent vaccine to older age groups both with and without protection of women with prior exposure. We did this under a range of assumptions on the level of natural immunity. Our modelling projections indicate that including the protection of women with prior HPV exposure can have a profound effect on the cost effectiveness of vaccinating adults. The impact of this protection is inversely related to the level of natural immunity. Our results indicate that adult vaccination strategies should potentially be reassessed, and that it is important to include the protection of non-naive women previously infected with HPV in future studies. Furthermore, they also highlight the need for a more thorough investigation of this protection.
Setting prudent public health policy for electromagnetic field exposures.
Carpenter, David O; Sage, Cindy
2008-01-01
Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.
Advances on a Decision Analytic Approach to Exposure-Based Chemical Prioritization.
Wood, Matthew D; Plourde, Kenton; Larkin, Sabrina; Egeghy, Peter P; Williams, Antony J; Zemba, Valerie; Linkov, Igor; Vallero, Daniel A
2018-05-11
The volume and variety of manufactured chemicals is increasing, although little is known about the risks associated with the frequency and extent of human exposure to most chemicals. The EPA and the recent signing of the Lautenberg Act have both signaled the need for high-throughput methods to characterize and screen chemicals based on exposure potential, such that more comprehensive toxicity research can be informed. Prior work of Mitchell et al. using multicriteria decision analysis tools to prioritize chemicals for further research is enhanced here, resulting in a high-level chemical prioritization tool for risk-based screening. Reliable exposure information is a key gap in currently available engineering analytics to support predictive environmental and health risk assessments. An elicitation with 32 experts informed relative prioritization of risks from chemical properties and human use factors, and the values for each chemical associated with each metric were approximated with data from EPA's CP_CAT database. Three different versions of the model were evaluated using distinct weight profiles, resulting in three different ranked chemical prioritizations with only a small degree of variation across weight profiles. Future work will aim to include greater input from human factors experts and better define qualitative metrics. © 2018 Society for Risk Analysis.