Sample records for potential large rapid

  1. Interleukin-4 activates large-conductance, calciumactivated potassium (BKCa) channels in human airway smooth muscle cells

    PubMed Central

    Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark

    2014-01-01

    Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443

  2. Nick Grue | NREL

    Science.gov Websites

    geospatial data analysis using parallel processing High performance computing Renewable resource technical potential and supply curve analysis Spatial database utilization Rapid analysis of large geospatial datasets energy and geospatial analysis products Research Interests Rapid, web-based renewable resource analysis

  3. Detecting Change in Landscape Greenness over Large Areas: An Example for New Mexico, USA

    EPA Science Inventory

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can potentially detect large-scale, slow changes (e.g., climate change), as well as more local and rapid changes (e.g., fire, land development). A useful indicator for detecting change i...

  4. Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures

    NASA Technical Reports Server (NTRS)

    Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.

  5. Assessing carbon dynamics in semiarid ecosystems : Balancing potential gains with potential large rapid losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breshears, D. D.; Ebinger, M. H.; Unkefer, P. J.

    Photosynthesis and respiration are the largest fluxes into and out of the biosphere (Molles 1999). Consequently, small changes in these fluxes can potentially produce large changes in the storage of carbon in the biosphere. Terrestrial carbon fluxes account for more than half of the carbon transferred between the atmosphere and the earth's surface (about 120 GigaTons/year), and current stores of carbon in terrestrial ecosystem are estimated at 2060 GigaTons. Increasing attention is being focused on the role of managing and sequestering carbon in the terrestrial biosphere as a means for addressing global climate change (IGBP, 1998; U.S. Department of Energy,more » 1999). Terrestrial ecosystems are widely recognized as a major biological scrubber for atmosphereic CO{sub 2} and their ability to finction as such can be increased significantly over the next 25 years through careful manipulation. The potential for terrestrial carbon gains has been the subject of much attention (Dixon et al., 1994; Masera et al. 1997; Cao and Woodward, 1998; DeLucia et al. 1999). In contrast to other strategies for reducing net carbon emissions, terrestrial sequestration has the potential for rapid implementation. Strategies that focus on soil carbon are likely to be effective because in addition to being a storage pool of carbon, soil carbon also improves site productivity through improving soil quality (e.g., water retention and nutrient availability). The carbon pool in soils is immense and highly dynamic. The flux of carbon into and out of soils is one of the largest uncertainties in the total mass balance of global carbon (NRC, 1999; La1 et al., 1998; Cambardella, 1998). Reducing these uncertainties is key to developing carbon sequestration strategies. Soil carbon pools have been greatly depleted over recent centuries, and there is potential to increase storage of carbon in these soils through effective land management. Whereas carbon in vegetation can be managed directly through land use, carbon in soils generally must be managed indirectly through manipulation of vegetation and nutrients. Land management as well as climate changes have the potential to increase soil carbon, but also could trigger large soil carbon losses. Recently, the importance of accounting for countervailing losses in assessing potential amounts of terrestrial carbon that can be sequestered has been highlighted (Schlesinger, 1999; Walker et al., 1999). Realistic assessment of terrestrial carbon sequestration strategies must consider net results of an applied strategy, not simply projected carbon gains. In addition, large, rapid losses of carbon resulting from carbon management strategies could exacerbate the global warming rather than mitigating it. Such potential losses include rapid loss of carbon in vegetation due to fire and rapid loss of soil carbon triggered by reductions in ground cover (e.g., fire, drought). Therefore, strategies for terrestrial carbon sequestration must determine how to increase terrestrial carbon while minimizing the risk of large-scale catastrophic losses. Our objectives in this paper are to (1) highlight approaches that are being considered in terms of terrestrial carbon sequestration, (2) highlight case studies for which large losses of carbon may occur, and (3) suggest future directions and application for terrestrial carbon sequestration.« less

  6. A field guide for rapid assessment of post-wildfire recovery potential in sagebrush and pinon-juniper ecosystems in the Great Basin: Evaluating resilience to disturbance and resistance to invasive annual grasses and predicting vegetation response

    Treesearch

    Richard F. Miller; Jeanne C. Chambers; Mike Pellant

    2015-01-01

    This field guide provides a framework for rapidly evaluating post-fire resilience to disturbance, or recovery potential, and resistance to invasive annual grasses, and for determining the need and suitability of the burned area for seeding. The framework identifies six primary components that largely determine resilience to disturbance, resistance to invasive grasses,...

  7. Quantitative Assessment of Neurite Outgrowth in PC12 Cells

    EPA Science Inventory

    In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity. In order to identify potential developmental neurotoxicants, assessment of critical neurodevelopmental processes such as neuronal differenti...

  8. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

    DOE PAGES

    Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric; ...

    2016-08-15

    How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less

  9. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric

    How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less

  10. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  11. Collapse of axion stars

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present inmore » the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.« less

  12. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Treesearch

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  13. Neuronal models for evaluation of proliferation in vitro using high content screening

    EPA Science Inventory

    In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity (hazard identification). In order to identify potential developmental neurotoxicants, a battery of in vitro tests for neurodevelopmental proc...

  14. Rapid Analysis of Pharmacology for Infectious Diseases

    PubMed Central

    Hopkins, Andrew L; Bickerton, G. Richard; Carruthers, Ian M; Boyer, Stephen K; Rubin, Harvey; Overington, John P

    2011-01-01

    Pandemic, epidemic and endemic infectious diseases are united by a common problem: how do we rapidly and cost-effectively identify potential pharmacological interventions to treat infections? Given the large number of emerging and neglected infectious diseases and the fact that they disproportionately afflict the poorest members of the global society, new ways of thinking are required to develop high productivity discovery systems that can be applied to a large number of pathogens. The growing availability of parasite genome data provides the basis for developing methods to prioritize, a priori potential drug targets and analyze the pharmacological landscape of an infectious disease. Thus the overall objective of infectious disease informatics is to enable the rapid generation of plausible, novel medical hypotheses of test-able pharmacological experiments, by uncovering undiscovered relationships in the wealth of biomedical literature and databases that were collected for other purposes. In particular our goal is to identify potential drug targets present in a pathogen genome and prioritize which pharmacological experiments are most likely to discover drug-like lead compounds rapidly against a pathogen (i.e. which specific compounds and drug targets should be screened, in which assays and where they can be sourced). An integral part of the challenge is the development and integration of methods to predict druggability, essentiality, synthetic lethality and polypharmocology in pathogen genomes, while simultaneously integrating the inevitable issues of chemical tractability and the potential for acquired drug resistance from the start. PMID:21401504

  15. High-fidelity large area nano-patterning of silicon with femtosecond light sheet

    NASA Astrophysics Data System (ADS)

    Sidhu, Mehra S.; Munjal, Pooja; Singh, Kamal P.

    2018-01-01

    We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.

  16. Use of High-Throughput Cell-Based and Model Organism Assays for Understanding the Potential Toxicity of Engineered Nanomaterials

    EPA Science Inventory

    The rapidly expanding field of nanotechnology is introducing a large number and diversity of engineered nanomaterials into research and commerce with concordant uncertainty regarding the potential adverse health and ecological effects. With costs and time of traditional animal to...

  17. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast, the large mutational target hypothesis places genomic architecture and a larger allelic pool at the forefront of rapid evolutionary change, particularly in genetic systems that are polygenic and regulatory in nature. Genomic data from brain and neural tissues in mammals as well as a preliminary survey of neurogenic genes from comparative genomic data support this hypothesis while rejecting both positive and relaxed selection on proteins or higher mutation rates. In mammals and invertebrates, neurogenic genes harbor larger protein-coding regions and possess a richer regulatory repertoire of miRNA targets and transcription factor binding sites. Overall, neurogenic genes cover a disproportionately large genomic fraction, providing a sizeable substrate for evolutionary, genetic, and molecular mechanisms to act upon. Readily available comparative and functional genomic data provide unexplored opportunities to test whether a distinct neurogenomic architecture can promote rapid behavioral change via several mechanisms unique to large genes, and which components of this large footprint are uniquely metazoan. The large mutational target hypothesis highlights the eminent roles of mutation and functional genomic architecture in generating rapid developmental and evolutionary change. It has broad implications on our understanding of the genetics of complex adaptive traits such as behavior by focusing on the importance of mutational input, from SNPs to alternative transcripts to transposable elements, on driving evolutionary rates of functional systems. Such functional divergence has important implications in promoting behavioral isolation across short- and long-term timescales. Due to genome-scaled polygenic adaptation, the large target effect also contributes to our inability to identify adapted behavioral candidate genes. The presence of large neurogenic genes, particularly in the mammalian brain and other neural tissues, further offers emerging insight into the etiology of neurodevelopmental and neurodegenerative diseases. The well-known correlation between neurological spectrum disorders in children and paternal age may simply be a direct result of aging fathers accumulating mutations across these large neurodevelopmental genes. The large mutational target hypothesis can also explain the rapid evolution of other functional systems covering a large genomic fraction such as male fertility and its preferential association with hybrid male sterility among closely related taxa. Overall, a focus on mutational potential may increase our power in understanding the genetic basis of complex phenotypes such as behavior while filling a general gap in understanding their evolution.

  18. Rapid intraplate strain accumulation in the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  19. The biophysical basis and clinical applications of rheoencephalography.

    DOT National Transportation Integrated Search

    1967-05-01

    A method for screening large populations for asymptomatic but potentially incapacitating cerebrovascular disease has obvious application in aviation medicine. Rheoencephalography (REG), a simple, rapid and innocuous method of studying the cranial cir...

  20. Probing the Boundaries of Orthology: The Unanticipated Rapid Evolution of Drosophila centrosomin

    PubMed Central

    Eisman, Robert C.; Kaufman, Thomas C.

    2013-01-01

    The rapid evolution of essential developmental genes and their protein products is both intriguing and problematic. The rapid evolution of gene products with simple protein folds and a lack of well-characterized functional domains typically result in a low discovery rate of orthologous genes. Additionally, in the absence of orthologs it is difficult to study the processes and mechanisms underlying rapid evolution. In this study, we have investigated the rapid evolution of centrosomin (cnn), an essential gene encoding centrosomal protein isoforms required during syncytial development in Drosophila melanogaster. Until recently the rapid divergence of cnn made identification of orthologs difficult and questionable because Cnn violates many of the assumptions underlying models for protein evolution. To overcome these limitations, we have identified a group of insect orthologs and present conserved features likely to be required for the functions attributed to cnn in D. melanogaster. We also show that the rapid divergence of Cnn isoforms is apparently due to frequent coding sequence indels and an accelerated rate of intronic additions and eliminations. These changes appear to be buffered by multi-exon and multi-reading frame maximum potential ORFs, simple protein folds, and the splicing machinery. These buffering features also occur in other genes in Drosophila and may help prevent potentially deleterious mutations due to indels in genes with large coding exons and exon-dense regions separated by small introns. This work promises to be useful for future investigations of cnn and potentially other rapidly evolving genes and proteins. PMID:23749319

  1. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Treesearch

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  2. Treatment of anemia in chronic kidney disease: known, unknown, and both.

    PubMed

    Foley, Robert N

    2011-01-01

    Erythropoiesis is a rapidly evolving research arena and several mechanistic insights show therapeutic promise. In contrast with the rapid advance of mechanistic science, optimal management of anemia in patients with chronic kidney disease remains a difficult and polarizing issue. Although several large hemoglobin target trials have been performed, optimal treatment targets remain elusive, because none of the large trials to date have unequivocally identified differences in primary outcome rates or death rates, and because other reported outcomes indicate the potential for harm (rates of stroke, early requirement for dialysis, and vascular access thrombosis) and benefit (reductions in transfusion requirements and fatigue).

  3. Deployment Threats to Rapid Deployment Forces

    DTIC Science & Technology

    1982-12-01

    may take two weeks. The same process occurs in people who move rapidly from a time zone in which they are well-adapted to a time zone that is hours...travel is a complex process involving change and transition. Some of these changes are small and apparently insignificant, others loom large in their... process of depart- ing is not innocuous. It must be viewed as a personsal transition that may have a significant potential for stress production

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazillian, Morgan; Pedersen, Ascha Lychett; Pless, Jacuelyn

    Shale gas resource potential in China is assessed to be large, and its development could have wide-ranging economic, environmental, and energy security implications. Although commercial scale shale gas development has not yet begun in China, it holds the potential to change the global energy landscape. Chinese decision-makers are wrestling with the challenges associated with bringing the potential to reality: geologic complexity; infrastructure and logistical difficulties; technological, institutional, social and market development issues; and environmental impacts, including greenhouse gas emissions, impacts on water availability and quality, and air pollution. This paper briefly examines the current situation and outlook for shale gasmore » in China, and explores existing and potential avenues for international cooperation. We find that despite some barriers to large-scale development, Chinese shale gas production has the potential to grow rapidly over the medium-term.« less

  5. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  6. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    PubMed

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. High Throughput Exposure Estimation Using NHANES Data (SOT)

    EPA Science Inventory

    In the ExpoCast project, high throughput (HT) exposure models enable rapid screening of large numbers of chemicals for exposure potential. Evaluation of these models requires empirical exposure data and due to the paucity of human metabolism/exposure data such evaluations includ...

  8. Water resources of the Grand Rapids area, Michigan

    USGS Publications Warehouse

    Stramel, G.J.; Wisler, C.O.; Laird, L.B.

    1954-01-01

    The Grand Rapids area, Michigan, has three sources from which to obtain its water supply: Lake Michigan, the Grand River and its tributaries, and ground water. Each of the first two and possibly the third is capable of supplying the entire needs of the area.This area is now obtaining a part of its supply from each of these sources. Of the average use of 50 mgd (million gallons per day) during 1951, Lake Michigan supplied 29 mgd; the Grand River and its tributaries supplied 1 mgd; and ground water supplied 20 mgd.Lake Michigan offers a practically unlimited source of potable water. However, the cost of delivery to the Grand Rapids area presents an economic problem in the further development of this source. Even without storage the Grand River can provide an adequate supply for the city of Grand Rapids. The present average use of the city of Grand Rapids is about 30 mgd and the maximum use is about 60 mgd, while the average flow of the Grand River is 2, 495 mgd or 3, 860 cfs (cubic feet per second) and the minimum daily flow recorded is 246 mgd. The quality and temperature of water in the Grand River is less desirable than Lake Michigan water. However, with proper treatment its chemical quality can be made entirely satisfactory.The city of Grand Rapids is actively engaged in a study that will lead to the expansion of its present water-supply facilities to meet the expected growth in population in Grand Rapids and its environs.Ground-water aquifers in the area are a large potential source of supply. The Grand Rapids area is underlain by glacial material containing a moderately hard to very hard water of varying chemical composition but suitable for most uses. The glacial outwash and lacustrine deposits bordering principal streams afford the greatest potential for the development of large supplies of potable ground water. Below the glacial drift, bedrock formations contain water that is extremely hard and moderately to highly mineralized. Thus the major sources of usable ground water are the glacial drift and some parts of the bedrock. Wherever the bedrock yields large quantities of water, the water is generally of inferior quality. Any development should be preceded by test drilling and careful hydrologic and geologic studies of the area under consideration and chemical analysis of the water found.

  9. Abrupt tectonics and rapid slab detachment with grain damage

    PubMed Central

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-01-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  10. Abrupt tectonics and rapid slab detachment with grain damage.

    PubMed

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-03

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound.

  11. Should soil testing services measure soil biological activity

    USDA-ARS?s Scientific Manuscript database

    Health of agricultural soils depends largely on conservation management to promote soil organic C accumulation. Total soil organic C changes slowly, but active fractions are more dynamic. A key indicator of healthy soil is potential biological activity, which could be measured rapidly with soil te...

  12. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation.

    PubMed

    Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong

    2011-12-06

    In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society

  13. Rapid effective trace-back capability value: a case study of foot-and-mouth in the Texas High Plains.

    PubMed

    Hagerman, Amy D; Ward, Michael P; Anderson, David P; Looney, J Chris; McCarl, Bruce A

    2013-07-01

    In this study our aim was to value the benefits of rapid effective trace-back capability-based on a livestock identification system - in the event of a foot and mouth disease (FMD) outbreak. We simulated an FMD outbreak in the Texas High Plains, an area of high livestock concentration, beginning in a large feedlot. Disease spread was simulated under different time dependent animal tracing scenarios. In the specific scenario modeled (incursion of FMD within a large feedlot, detection within 14 days and 90% effective tracing), simulation suggested that control costs of the outbreak significantly increase if tracing does not occur until day 10 as compared to the baseline of tracing on day 2. In addition, control costs are significantly increased if effectiveness were to drop to 30% as compared to the baseline of 90%. Results suggest potential benefits from rapid effective tracing in terms of reducing government control costs; however, a variety of other scenarios need to be explored before determining in which situations rapid effective trace-back capability is beneficial. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects

    PubMed Central

    Browne, Christopher; Bishop, Julius; Yang, Yunzhi

    2014-01-01

    The induced membrane has been widely used in the treatment of large bone defects but continues to be limited by a relatively lengthy healing process and a requisite two stage surgical procedure. Here we report the development and characterization of a synthetic biomimetic induced membrane (BIM) consisting of an inner highly pre-vascularized cell sheet and an outer osteogenic layer using cell sheet engineering. The pre-vascularized inner layer was formed by seeding human umbilical vein endothelial cells (HUVECs) on a cell sheet comprised of a layer of undifferentiated human bone marrow-derived mesenchymal stem cells (hMSCs). The outer osteogenic layer was formed by inducing osteogenic differentiation of hMSCs. In vitro results indicated the undifferentiated hMSCs cell sheet facilitated the alignment of HUVECs and significantly promoted the formation of vascular-like networks. Furthermore, seeded HUVECs rearranged the extracellular matrix produced by hMSCs sheet. After subcutaneously implantation, the composite constructs showed rapid vascularization and anastomosis with the host vascular system, forming functional blood vessels in vivo. Osteogenic potential of the BIM was evidenced by immunohistochemistry staining of osteocalcin, tartrate-resistant acid phosphatase (TRAP) staining, and alizarin red staining. In summary, the synthetic BIM showed rapid vascularization, significant anastomoses, and osteogenic potential in vivo. This synthetic BIM has the potential for treatment of large bone defects in the absence of infection. PMID:24747351

  15. Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth

    EPA Science Inventory

    In vitro models may be useful for the rapid toxicological screening of large numbers of chemicals for their potential to produce toxicity. Such screening could facilitate prioritization of resources needed for in vivo toxicity testing towards those chemicals most likely to resul...

  16. Scalable Method to Produce Biodegradable Nanoparticles that Rapidly Penetrate Human Mucus

    PubMed Central

    Xu, Qingguo; Boylan, Nicholas J.; Cai, Shutian; Miao, Bolong; Patel, Himatkumar; Hanes, Justin

    2013-01-01

    Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrohilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration. PMID:23751567

  17. Oxidation catalysis by polyoxometalates fundamental electron-transfer phenomena

    Treesearch

    Yurii V. Geletii; Rajai H. Atalla; Alan J. Bailey; Laurent Delannoy; Craig L. Hill; Ira A. Weinstock

    2002-01-01

    Early transition-metal oxygen-anion clusters (polyoxometalates, POMs) are a large and rapidly growing class of versatile and tunable oxidation catalysts. All key molecular properties of these clusters (composition, size, shape, charge density, reduction potential, solubility, etc.) can be systematically altered, and the clusters themselves can serve as tunable ligands...

  18. DEVELOPMENT OF AN OBJECTIVE AND QUANTIFIABLE TERATOLOGICAL SCREEN FOR USE IN ZEBRAFISH LARVAE.

    EPA Science Inventory

    To address EPA’s need to prioritize large numbers of chemicals for testing, a rapid, cost-effective in vivo screen for potential developmental toxicity using an alternative vertebrate species (zebrafish;Danio rerio) has been developed. A component of that screen is the observatio...

  19. Thriving through Recession: Higher Education in a down Economy

    ERIC Educational Resources Information Center

    Goodman, Roger

    2009-01-01

    The constant flow of alarming economic and business news, rapidly declining endowments and potential disruption to the student-loan industry have all beaten down optimism about higher education's financial and strategic outlook. Universities large and small have announced budget cuts, layoffs, salary freezes, capital spending slowdowns and other…

  20. A NATIONAL AGENDA ON THE ENVIRONMENT AND THE AGING

    EPA Science Inventory

    By 2030, the number of older Americans is expected to double to 70 million largely as a result of the aging of the baby boomers. The rapid growth in the number of older Americans has many public health implications, including the need to better understand the potential risks p...

  1. Pyrrolizidine alkaloids: Potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease

    USDA-ARS?s Scientific Manuscript database

    Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute...

  2. Rapid assessment of target species: Byssate bivalves in a large tropical port.

    PubMed

    Minchin, Dan; Olenin, Sergej; Liu, Ta-Kang; Cheng, Muhan; Huang, Sheng-Chih

    2016-11-15

    Rapid assessment sampling for target species is a fast cost-effective method aimed at determining the presence, abundance and distribution of alien and native harmful aquatic organisms and pathogens that may have been introduced by shipping. In this study, the method was applied within a large tropical port expected to have a high species diversity. The port of Kaohsiung was sampled for bivalve molluscan species that attach using a byssus. Such species, due to their biological traits, are spread by ships to ports worldwide. We estimated the abundance and distribution range of one dreissenid (Mytilopsis sallei) and four mytilids (Brachidontes variabilis, Arcuatula senhousa, Mytilus galloprovincialis, Perna viridis) known to be successful invaders and identified as potential pests, or high-risk harmful native or non-native species. We conclude that a rapid assessment of their abundance and distribution within a port, and its vicinity, is efficient and can provide sufficient information for decision making by port managers where IMO port exemptions may be sought. Copyright © 2016. Published by Elsevier Ltd.

  3. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae.

    PubMed

    Mösta, Philipp; Ott, Christian D; Radice, David; Roberts, Luke F; Schnetter, Erik; Haas, Roland

    2015-12-17

    Magnetohydrodynamic turbulence is important in many high-energy astrophysical systems, where instabilities can amplify the local magnetic field over very short timescales. Specifically, the magnetorotational instability and dynamo action have been suggested as a mechanism for the growth of magnetar-strength magnetic fields (of 10(15) gauss and above) and for powering the explosion of a rotating massive star. Such stars are candidate progenitors of type Ic-bl hypernovae, which make up all supernovae that are connected to long γ-ray bursts. The magnetorotational instability has been studied with local high-resolution shearing-box simulations in three dimensions, and with global two-dimensional simulations, but it is not known whether turbulence driven by this instability can result in the creation of a large-scale, ordered and dynamically relevant field. Here we report results from global, three-dimensional, general-relativistic magnetohydrodynamic turbulence simulations. We show that hydromagnetic turbulence in rapidly rotating protoneutron stars produces an inverse cascade of energy. We find a large-scale, ordered toroidal field that is consistent with the formation of bipolar magnetorotationally driven outflows. Our results demonstrate that rapidly rotating massive stars are plausible progenitors for both type Ic-bl supernovae and long γ-ray bursts, and provide a viable mechanism for the formation of magnetars. Moreover, our findings suggest that rapidly rotating massive stars might lie behind potentially magnetar-powered superluminous supernovae.

  4. Benefits and applications of interdisciplinary digital tools for environmental meta-reviews and analyses

    NASA Astrophysics Data System (ADS)

    Grubert, Emily; Siders, Anne

    2016-09-01

    Digitally-aided reviews of large bodies of text-based information, such as academic literature, are growing in capability but are not yet common in environmental fields. Environmental sciences and studies can benefit from application of digital tools to create comprehensive, replicable, interdisciplinary reviews that provide rapid, up-to-date, and policy-relevant reports of existing work. This work reviews the potential for applications of computational text mining and analysis tools originating in the humanities to environmental science and policy questions. Two process-oriented case studies of digitally-aided environmental literature reviews and meta-analyses illustrate potential benefits and limitations. A medium-sized, medium-resolution review (∼8000 journal abstracts and titles) focuses on topic modeling as a rapid way to identify thematic changes over time. A small, high-resolution review (∼300 full text journal articles) combines collocation and network analysis with manual coding to synthesize and question empirical field work. We note that even small digitally-aided analyses are close to the upper limit of what can be done manually. Established computational methods developed in humanities disciplines and refined by humanities and social science scholars to interrogate large bodies of textual data are applicable and useful in environmental sciences but have not yet been widely applied. Two case studies provide evidence that digital tools can enhance insight. Two major conclusions emerge. First, digital tools enable scholars to engage large literatures rapidly and, in some cases, more comprehensively than is possible manually. Digital tools can confirm manually identified patterns or identify additional patterns visible only at a large scale. Second, digital tools allow for more replicable and transparent conclusions to be drawn from literature reviews and meta-analyses. The methodological subfields of digital humanities and computational social sciences will likely continue to create innovative tools for analyzing large bodies of text, providing opportunities for interdisciplinary collaboration with the environmental fields.

  5. Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Wang, Yongjia; Li, Qingfeng; Liu, Ling

    2018-03-01

    Based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the pion potentials obtained from the in-medium dispersion relation of the Δ -hole model and from the modified phenomenological approach are further introduced. Both the rapidity y0 and transverse-velocity ut 0 dependence of directed v1 and elliptic v2 flows of π+ and π- charged mesons produced from Au+Au collisions at two beam energies of 1.0 and 1.5 GeV/nucleon and within a large centrality region of 0

  6. A Framework for Linking High-Throughput Modeling and Measurement Efforts to Advance 21st Century Exposure Science

    EPA Science Inventory

    The past five years have witnessed a rapid shift in the exposure science and toxicology communities towards high-throughput (HT) analyses of chemicals as potential stressors of human and ecological health. Modeling efforts have largely led the charge in the exposure science field...

  7. Differentiating high priority pathway-based toxicity from non-specific effects in high throughput toxicity data: A foundation for prioritizing AOP development.

    EPA Science Inventory

    The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of...

  8. "Teacher" the Forgotten Component of the IEP.

    ERIC Educational Resources Information Center

    Roddy, Eugene A.

    The problems of teachers as they deal with the rapid changes brought about by Public Law 94-142 (Education for All Handicapped Children Act) and other legislation have largely been ignored. The teaching profession is considered one of the most potentially stressful occupations in the world (along with air traffic controllers and surgeons). While…

  9. Invasive forest pest surveillance: survey development and reliability

    Treesearch

    John W. Coulston; Frank H. Koch; William D. Smith; Frank J. Sapio

    2008-01-01

    Worldwide, a large number of potential pest species are introduced to locations outside their native ranges; under the best possible prevention scheme, some are likely to establish one or more localized populations. A comprehensive early detection and rapid-response protocol calls for surveillance to determine if a pest has invaded additional locations outsides its...

  10. Direct and rapid determination of cotton maturity by FT-Mid-IR technique

    USDA-ARS?s Scientific Manuscript database

    FT-mid-IR (FT-MIR) spectra of seed and lint cottons were collected to explore the potential for the discrimination of immature cottons from mature ones and also for the determination of actual cotton maturity. Spectral features of immature and mature cottons revealed large differences in the 1200-90...

  11. Student Engagement in Very Large Classes: The Teachers' Perspective

    ERIC Educational Resources Information Center

    Exeter, Daniel J.; Ameratunga, Shanthi; Ratima, Matiu; Morton, Susan; Dickson, Martin; Hsu, Dennis; Jackson, Rod

    2010-01-01

    The rapid growth in the student population observed in higher education over the past 10-15 years in some countries has coincided with an increased recognition of student engagement and its value in developing knowledge. Active learning approaches have the potential to promote student engagement with lectures, but this becomes more challenging as…

  12. Pleural effusion leading to right atrial collapse.

    PubMed

    Khouzam, Rami N; Yusuf, Jawwad

    2014-01-01

    Rapid accumulation of pericardial fluid can lead to tamponade, resulting in cardiac chambers' collapse, which can lead to hemodynamic and clinical instability, potentially needing emergent pericardiocentesis. Pleural effusion should also be considered as a potential, if rare, cause of cardiac chambers' collapse and possibly cardiac tamponade. This phenomenon has clinical implications because hemodynamically unstable patients with moderate to large pleural effusion may actually need thoracentesis instead of massive volume resuscitation, inotropic agents, or pericardiocentesis. Copyright © 2013 Wiley Periodicals, Inc.

  13. Examination of the Potential of Structure-from-Motion (SfM) Photogrammetry and Terrestrial Laser Scanning (TLS) for Rapid Nondestructive Field Measurement of Grass Biomass

    NASA Astrophysics Data System (ADS)

    Cooper, S. D.; Roy, D. P.; Sathyachandran, S. K.

    2016-12-01

    Quantifying the above ground biomass of grasslands is needed for a number of applications including monitoring grass productivity, wildlife habitat, carbon storage, and fuel bed characteristics. Destructive biomass measurements, although highly accurate, are time consuming and are not easily undertaken on a repeat basis or over large areas. A number of non-destructive techniques have been developed that relate vegetation structural properties to above ground biomass. Conventionally, the disc pasture meter is used for rapid grass biomass estimation and uses the settling height of a disk placed on the grass and allometry. Structure-from-Motion (SfM) photogrammetry and Terrestrial Laser Scanning (TLS) are two technologies that have the potential to yield highly precise three-dimensional (3D) structural measurements of vegetation quite rapidly. Recent advances in computing and data acquisition technologies have led to the successful application of TLS and SfM in woody biomass estimation, but application in grassland systems remains largely untested. The Canopy Biomass Lidar (CBL) is one such advance and is a highly portable and relatively inexpensive TLS unit allowing for rapid and widespread data collection. We investigated the efficacy of a CBL unit as well as SfM in allometric estimation of grassland biomass from volumetric measurements derived from these two technologies, both separately and through the merging of the two independently generated 3D point clouds. The results are compared to biomass estimation from a pasture disc meter. Best use practices for grassland applications of these technologies are also presented.

  14. Suitability of rapid energy magnitude determinations for emergency response purposes

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs <= +/-0.3 magnitude units (m.u.) from the respective Me values published by the USGS. However, larger discrepancies (up to 0.8 m.u.) may occur for strike-slip events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original definition of magnitude scales, which does not apply a priori mechanism corrections to measured amplitudes, also since reliable fault-plane solutions are hardly available within 10-15 min after the earthquake origin time. Notable is that our uncorrected Me data show a better linear correlation and less scatter with respect to Mw than Me of the USGS. Finally, by analysing the recordings of representative recent pairs of strong and great earthquakes, we emphasize the importance of combining Mw and Me in the rapid characterization of the seismic source. They are related to different aspects of the source and may differ occasionally even more than 1 m.u. This highlights the usefulness and importance of providing these two magnitude estimates together for a better assessment of an earthquake's shaking potential and/or tsunamigenic potential.

  15. Remote coral reefs can sustain high growth potential and may match future sea-level trends

    PubMed Central

    Perry, Chris T.; Murphy, Gary N.; Graham, Nicholas A. J.; Wilson, Shaun K.; Januchowski-Hartley, Fraser A.; East, Holly K.

    2015-01-01

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m−2 yr−1). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr−1) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100. PMID:26669758

  16. Remote coral reefs can sustain high growth potential and may match future sea-level trends.

    PubMed

    Perry, Chris T; Murphy, Gary N; Graham, Nicholas A J; Wilson, Shaun K; Januchowski-Hartley, Fraser A; East, Holly K

    2015-12-16

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m(-2) yr(-1)). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr(-1)) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100.

  17. Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2012-03-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in fresh tissue, without the processing that is required for conventional pathology. Previously, basal cell carcinoma margins were detected by mosaicing of confocal images of 12 x 12 mm2 of excised tissue from Mohs surgery. This mosaicing took 9 minutes. Recently we reported the initial feasibility of a faster approach called "strip mosaicing" on 10 x 10 mm2 of tissue that was demonstrated in 3 minutes. In this paper we report further advances in instrumentation and software. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Thus, strip mosaicing confocal microscopy may serve as an adjunct to pathology for imaging tumor margins to guide surgery.

  18. Intranasal delivery: physicochemical and therapeutic aspects.

    PubMed

    Costantino, Henry R; Illum, Lisbeth; Brandt, Gordon; Johnson, Paul H; Quay, Steven C

    2007-06-07

    Interest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers. The current review provides an in-depth discussion of therapeutic aspects of IN delivery including consideration of the intended indication, regimen, and patient population, as well as physicochemical properties of the drug itself. Case examples are provided to illustrate the utility of IN dosing. It is anticipated that the present review will prove useful for formulation scientists considering IN delivery as a delivery route.

  19. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  20. Rapid magnetic reconnection caused by finite amplitude fluctuations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Lamkin, S. L.

    1985-01-01

    The nonlinear dynamics of the magnetohydrodynamic sheet pinch have been investigated as an unforced initial value problem for large scale Reynolds numbers up to 1000. Reconnection is triggered by adding to the sheet pinch a small but finite level of broadband random perturbations. Effects of turbulence in the solutions include the production of reconnected magnetic islands at rates that are insensitive to resistivity at early times. This is explained by noting that electric field fluctuations near the X point produce irregularities in the vector potential, sometimes taking the form of 'magnetic bubbles', which allow rapid change of field topology.

  1. Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol

    Treesearch

    Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan

    2017-01-01

    Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...

  2. Potential for stable flies and house flies (Diptera: Muscidae) to transmit Rift Valley fever virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF), a disease of ruminants and humans, has been responsible for large outbreaks in Africa that have resulted in hundreds of thousands of human infections and major economic disruption due to loss of livestock and to trade restrictions. As indicated by the rapid spread of West N...

  3. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.

    Treesearch

    WHENDEE L. SILVER; ANDREW W. THOMPSON; MEGAN E . MCGRODDY; RUTH K. VARNER; JADSON D. DIAS; HUDSON SILVA; CRILL PATRICK M.; MICHAEL KELLER

    2005-01-01

    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root...

  4. Method for establishing the presence of salmonella bacteria in eggs

    DOEpatents

    Johnston, Roger G.; Sinha, Dipen N.

    1995-01-01

    Measurement of the acoustical resonances in eggs is shown to provide a rapid, noninvasive technique for establishing the presence of Salmonella bacteria. The technique is also sensitive to yolk puncture, shell cracks, and may be sensitive to other yolk properties and to egg freshness. Remote characterization, potentially useful for characterizing large numbers of eggs, has been demonstrated.

  5. Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity

    EPA Science Inventory

    The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and pote...

  6. Knowledge of, and Attitudes towards Health-Related Biotechnology Applications amongst Australian Year 10 High School Students

    ERIC Educational Resources Information Center

    van Lieshout, Emile; Dawson, Vaille

    2016-01-01

    Modern biotechnology has a large and rapidly increasing impact on society. New advances in genetics, stem cells and other areas hold great potential for human health but also presenting socioscientific issues that commonly divide public opinion. While knowledge is necessary to develop informed opinions about biotechnology, they may also be…

  7. Modeling large-scale winter recreation terrain selection with implications for recreation management and wildlife

    Treesearch

    Lucretia E. Olson; John R. Squires; Elizabeth K. Roberts; Aubrey D. Miller; Jacob S. Ivan; Mark Hebblewhite

    2017-01-01

    Winter recreation is a rapidly growing activity, and advances in technology make it possible for increasing numbers of people to access remote backcountry terrain. Increased winter recreation may lead to more frequent conflict between recreationists, as well as greater potential disturbance to wildlife. To better understand the environmental characteristics favored by...

  8. Projected status of the Pacific walrus (Odobenus rosmarus divergens) in the twenty-first century

    Treesearch

    Chadwick V. Jay; Bruce G. Marcot; David C. Douglas

    2011-01-01

    Extensive and rapid losses of sea ice in the Arctic have raised conservation concerns for the Pacific walrus (Odobenus rosmarus divergens), a large pinniped inhabiting arctic and subarctic continental shelf waters of the Chukchi and Bering seas. We developed a Bayesian network model to integrate potential effects of changing environmental...

  9. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    NASA Technical Reports Server (NTRS)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  10. Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response.

    PubMed

    Verslues, Paul E

    2017-01-01

    Drought and low water potential induce large increases in Abscisic Acid (ABA ) content of plant tissue. This increased ABA content is essential to regulate downstream stress resistance responses; however, the mechanisms regulating ABA accumulation are incompletely known. Thus, the ability to accurately quantify ABA at high throughput and low cost is important for plant stress research. We have combined and modified several previously published protocols to establish a rapid ABA analysis protocol using gas chromatography-tandem mass spectrometry (GC-MS/MS). Derivatization of ABA is performed with (trimethylsilyl)-diazomethane rather than the harder to prepare diazomethane. Sensitivity of the analysis is sufficient that small samples of low water potential treated Arabidopsis thaliana seedlings can be routinely analyzed in reverse genetic studies of putative stress regulators as well as studies of natural variation in ABA accumulation.

  11. Novel Algorithms Enabling Rapid, Real-Time Earthquake Monitoring and Tsunami Early Warning Worldwide

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Michelini, A.

    2012-12-01

    We have introduced recently new methods to determine rapidly the tsunami potential and magnitude of large earthquakes (e.g., Lomax and Michelini, 2009ab, 2011, 2012). To validate these methods we have implemented them along with other new algorithms within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it, http://early-est.alomax.net). Early-est is a lightweight software package for real-time earthquake monitoring (including phase picking, phase association and event detection, location, magnitude determination, first-motion mechanism determination, ...), and for tsunami early warning based on discriminants for earthquake tsunami potential. In a simulation using archived broadband seismograms for the devastating M9, 2011 Tohoku earthquake and tsunami, Early-est determines: the epicenter within 3 min after the event origin time, discriminants showing very high tsunami potential within 5-7 min, and magnitude Mwpd(RT) 9.0-9.2 and a correct shallow-thrusting mechanism within 8 min. Real-time monitoring with Early-est givess similar results for most large earthquakes using currently available, real-time seismogram data. Here we summarize some of the key algorithms within Early-est that enable rapid, real-time earthquake monitoring and tsunami early warning worldwide: >>> FilterPicker - a general purpose, broad-band, phase detector and picker (http://alomax.net/FilterPicker); >>> Robust, simultaneous association and location using a probabilistic, global-search; >>> Period-duration discriminants TdT0 and TdT50Ex for tsunami potential available within 5 min; >>> Mwpd(RT) magnitude for very large earthquakes available within 10 min; >>> Waveform P polarities determined on broad-band displacement traces, focal mechanisms obtained with the HASH program (Hardebeck and Shearer, 2002); >>> SeisGramWeb - a portable-device ready seismogram viewer using web-services in a browser (http://alomax.net/webtools/sgweb/info.html). References (see also: http://alomax.net/pub_list.html): Lomax, A. and A. Michelini (2012), Tsunami early warning within 5 minutes, Pure and Applied Geophysics, 169, nnn-nnn, doi: 10.1007/s00024-012-0512-6. Lomax, A. and A. Michelini (2011), Tsunami early warning using earthquake rupture duration and P-wave dominant period: the importance of length and depth of faulting, Geophys. J. Int., 185, 283-291, doi: 10.1111/j.1365-246X.2010.04916.x. Lomax, A. and A. Michelini (2009b), Tsunami early warning using earthquake rupture duration, Geophys. Res. Lett., 36, L09306, doi:10.1029/2009GL037223. Lomax, A. and A. Michelini (2009a), Mwpd: A Duration-Amplitude Procedure for Rapid Determination of Earthquake Magnitude and Tsunamigenic Potential from P Waveforms, Geophys. J. Int.,176, 200-214, doi:10.1111/j.1365-246X.2008.03974.x

  12. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.

    PubMed

    Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph

    2017-06-01

    Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons

    PubMed Central

    Kim, Yujin; Hsu, Ching-Lung; Cembrowski, Mark S; Mensh, Brett D; Spruston, Nelson

    2015-01-01

    Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.06414.001 PMID:26247712

  14. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited tomore » provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.« less

  15. Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank.

    PubMed

    Collier, James H; Lesk, Arthur M; Garcia de la Banda, Maria; Konagurthu, Arun S

    2012-07-01

    Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80,500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super.

  16. The radiation asymmetry in MGI rapid shutdown on J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Tong, Ruihai; Chen, Zhongyong; Huang, Duwei; Cheng, Zhifeng; Zhang, Xiaolong; Zhuang, Ge; J-TEXT Team

    2017-10-01

    Disruptions, the sudden termination of tokamak fusion plasmas by instabilities, have the potential to cause severe material wall damage to large tokamaks like ITER. The mitigation of disruption damage is an essential part of any fusion reactor system. Massive gas injection (MGI) rapid shutdown is a technique in which large amounts of noble gas are injected into the plasma in order to safely radiate the plasma energy evenly over the entire plasma-facing first wall. However, the radiated energy during the thermal quench (TQ) in massive gas injection (MGI) induced disruptions is found toroidal asymmetric, and the degrees of asymmetry correlate with the gas penetration and MGI induced magnetohydrodynamics (MHD) activities. A toroidal and poloidal array of ultraviolet photodiodes (AXUV) has been developed to investigate the radiation asymmetry on J-TEXT tokamak. Together with the upgraded mirnov probe arrays, the relation between MGI triggered MHD activities with radiation asymmetry is studied.

  17. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2011-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  18. Dumbo heavy lifter aircraft

    NASA Technical Reports Server (NTRS)

    Riester, Peter; Ellis, Colleen; Wagner, Michael; Orren, Scott; Smith, Byron; Skelly, Michael; Zgraggen, Craig; Webber, Matt

    1992-01-01

    The world is rapidly changing from one with two military superpowers, with which most countries were aligned, to one with many smaller military powers. In this environment, the United States cannot depend on the availability of operating bases from which to respond to crises requiring military intervention. Several studies (e.g. the SAB Global Reach, Global Power Study) have indicated an increased need to be able to rapidly transport large numbers of troops and equipment from the continental United States to potential trouble spots throughout the world. To this end, a request for proposals (RFP) for the concept design of a large aircraft capable of 'projecting' a significant military force without reliance on surface transportation was developed. These design requirements are: minimum payload of 400,000 pounds at 2.5 g maneuver load factor; minimum unfueled range of 6,000 nautical miles; and aircraft must operate from existing domestic air bases and use existing airbases or sites of opportunity at the destination.

  19. Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.

    1999-01-01

    One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.

  20. Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced 'Ohi'a (Metrosideros polymorpha) mortality in a tropical wet forest, Hawai'i Island, USA

    USDA-ARS?s Scientific Manuscript database

    Pests or pathogens that affect trees have the potential to fundamentally alter forest composition, structure and function. Throughout the last six years, large areas of otherwise healthy 'ohi'a (Metrosideros polymorpha) trees have been dying rapidly (typically within weeks) in lowland tropical wet f...

  1. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion

    Treesearch

    Matthew Warren; Kristell Hergoualc' h; J. Boone Kauffman; Daniel Murdiyarso; Randall Kolka

    2017-01-01

    Background: A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth...

  2. Critical assessment and ramifications of a purported marine trophic cascade

    NASA Astrophysics Data System (ADS)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  3. Critical assessment and ramifications of a purported marine trophic cascade

    USGS Publications Warehouse

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  4. Critical assessment and ramifications of a purported marine trophic cascade

    PubMed Central

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  5. Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation.

    PubMed

    Ostroff, Linnaea E; Watson, Deborah J; Cao, Guan; Parker, Patrick H; Smith, Heather; Harris, Kristen M

    2018-06-01

    Hippocampal long-term potentiation (LTP) is a cellular memory mechanism. For LTP to endure, new protein synthesis is required immediately after induction and some of these proteins must be delivered to specific, presumably potentiated, synapses. Local synthesis in dendrites could rapidly provide new proteins to synapses, but the spatial distribution of translation following induction of LTP is not known. Here, we quantified polyribosomes, the sites of local protein synthesis, in CA1 stratum radiatum dendrites and spines from postnatal day 15 rats. Hippocampal slices were rapidly fixed at 5, 30, or 120 min after LTP induction by theta-burst stimulation (TBS). Dendrites were reconstructed through serial section electron microscopy from comparable regions near the TBS or control electrodes in the same slice, and in unstimulated hippocampus that was perfusion-fixed in vivo. At 5 min after induction of LTP, polyribosomes were elevated in dendritic shafts and spines, especially near spine bases and in spine heads. At 30 min, polyribosomes remained elevated only in spine bases. At 120 min, both spine bases and spine necks had elevated polyribosomes. Polyribosomes accumulated in spines with larger synapses at 5 and 30 min, but not at 120 min. Small spines, meanwhile, proliferated dramatically by 120 min, but these largely lacked polyribosomes. The number of ribosomes per polyribosome is variable and may reflect differences in translation regulation. In dendritic spines, but not shafts, there were fewer ribosomes per polyribosome in the slice conditions relative to in vivo, but this recovered transiently in the 5 min LTP condition. Overall, our data show that LTP induces a rapid, transient upregulation of large polyribosomes in larger spines, and a persistent upregulation of small polyribosomes in the bases and necks of small spines. This is consistent with local translation supporting enlargement of potentiated synapses within minutes of LTP induction. © 2018 Wiley Periodicals, Inc.

  6. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    PubMed Central

    Gao, Yang; Hassett, Daniel J.; Choi, Seokheun

    2017-01-01

    Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria. PMID:28798914

  7. Local and synoptic controls on rapid supraglacial lake drainage in West Greenland

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Banwell, Alison; Arnold, Neil; Willis, Ian

    2016-04-01

    Many supraglacial lakes within the ablation zone of the Greenland Ice Sheet (GrIS) are known to drain rapidly (in <1 day) in the mid- to late melt season, delivering large meltwater pulses to the subglacial drainage system, thus affecting basal water pressures and ice-sheet dynamics. Although it is now generally recognised that rapid lake drainage is caused by hydrofracture, the precise controls on hydrofracture initiation remain poorly understood: they may be linked to a local critical water-volume threshold, or they may be associated with synoptic-scale factors, such as ice thickness, driving stresses, ice velocities and strain rates. A combination of the local water-volume threshold and one or more synoptic-scale factors may explain the overall patterns of rapid lake drainage, but this requires verification using targeted field- and remotely-based studies that cover large areas of the GrIS and span long timescales. Here, we investigate a range of potential controls on rapid supraglacial lake drainage in the land-terminating Paakitsoq region of the ice sheet, northeast of Jakobshavn Isbræ, for the 2014 melt season. We have analysed daily 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in order to calculate lake areas, depths and volumes, and have developed an automatic lake-tracking algorithm to determine the dates on which all rapid lake drainage events occur. For each rapidly draining lake, the water volumes immediately prior to drainage are compared with other local factors, notably lake-filling rate and ice thickness, and with a variety of synoptic-scale features, such as slope angles, driving stresses, surface velocities, surface strain rates and the incidence of nearby lake-drainage events. We present the outcomes of our statistical analysis to elicit the statistically significant controls on hydrofracture beneath supraglacial lakes.

  8. v-src induces clonal sarcomas and rapid metastasis following transduction with a replication-defective retrovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoker, A.W.; Sieweke, M.H.

    1989-12-01

    v-src is an effective carcinogen when expressed from Rous sarcoma virus (RSV) in vivo. Whereas RSV tumors require sustained oncogene expression, their growth is largely a balance between viral recruitment of tissues and host immune destruction of infected cells. The authors have therefore examined the tumorigenic potential of v-src in the absence of viral recruitment and viral antigen expression. v-src was introduced with high efficiency into chicken wing web tissues using replication-defective (rd) retroviral vectors. Clonal sarcomas were induced rapidly, and furthermore, v-src potentiated metastatic progression in {approx} 0.1%-1% of tumor clones with unexpectedly short latency. rd vectors proved effectivemore » not only in transducing v-src into tissues but also as insertional markers of tumor clonality. The rd vector present in most primary and metastatic tumors was a highly truncated form of RSV derived by viral transmission of spliced v-src mRNA; this vector should thus avoid viral recruitment and host anti-viral immune reaction through its complete lack of viral structural genes. Under such conditions v-src maintains strong carcinogenicity in vivo when restricted to clonal tumor growth and can confer rapid metastatic potential on a discrete subset of tumor clones.« less

  9. Fast hyper-spectral imaging of cytological samples in the mid-infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Lindsay, Ian; Nallala, Jayakrupakar; Moselund, Peter

    2017-02-01

    A prototype mid-infrared spectral imaging system for rapid assessment of cells for cytological diagnosis is reported. Based on a fibre optic super-continuum source that has large spectral brightness and is coupled in to an acousto-optic tuneable filter that can rapidly scan over a set of wavelengths that are chosen to give a high level of selectivity for a specific skin disease. The system has the potential to collect an image cube of 100 wavelengths and 300k pixels in 2 seconds so that cells on living people could be analysed. The system has been evaluated with colon cells over 2700- 3100 cm-1.

  10. Needleless connectors substantially reduce flow of crystalloid and red blood cells during rapid infusion.

    PubMed

    Lehn, Robert A; Gross, Jeffrey B; McIsaac, Joseph H; Gipson, Keith E

    2015-04-01

    Although needleless connectors (NC) are frequently used in the perioperative setting, the potential of modern NCs to slow delivery of IV fluids has not been thoroughly studied. We examined flow characteristics of 5 NC models during pressurized delivery of crystalloid and banked red blood cells from a Level 1 warmer through various IV catheters. Crystalloid flow rates were reduced by 29% to 85% from control in catheters >18 gauge, while red blood cell flow reductions ranged from 22% to 76% in these catheters (all P < 0.0050). We suggest that practitioners consider eliminating NCs when large IV catheters are inserted for rapid fluid administration.

  11. Detecting rapid mass movements using electrical self-potential measurements

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our results indicate that electrical self-potential measurements can observe rapid mass movements when the movement is large and fast enough to disturb the fluid pressure field significantly.

  12. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less

  13. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-10-01

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) ``hot spots'' created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10-7 M and 10-5 M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06001j

  14. Rapid counterclockwise shift rotation in air traffic control: effects on sleep and night work.

    PubMed

    Signal, T Leigh; Gander, Philippa H

    2007-09-01

    In Air Traffic Control, counterclockwise rapidly rotating shift schedules are often employed but may result in significant sleep loss. This has potential consequences for performance, particularly if a night shift is worked. As part of a large-scale field study, the pattern of sleep across a 4-d counterclockwise, rapidly rotating schedule (afternoon, day, morning, night shift) was documented and relationships between prior sleep and performance during the night shift were investigated. There were 28 controllers who completed 4 periods of data collection which included 2 d before and 2 d after a 4-d shift cycle. Sleep was recorded using an actigraph and sleep diary, and performance on each night shift was measured three times using the Psychomotor Vigilance Task. Across the work week, sleep duration decreased largely due to earlier rise times associated with shift start times moving backward. In the short turn-around between the morning and night shift, 90% of controllers slept for an average of 2.2 h. Improved performance on the night shift was related only to longer periods of sleep the night prior. This study demonstrates that a 4-d counterclockwise, rapidly rotating schedule results in a progressive reduction in sleep and consequently the rapid accumulation of a sleep debt. To help maintain their performance on the night shift, it is recommended that controllers attempt to obtain at least 6 h sleep the night before a night shift. It is also recommended that ATC providers educate their workforce about this issue.

  15. Global population trends and policy options.

    PubMed

    Ezeh, Alex C; Bongaarts, John; Mberu, Blessing

    2012-07-14

    Rapid population growth is a threat to wellbeing in the poorest countries, whereas very low fertility increasingly threatens the future welfare of many developed countries. The mapping of global trends in population growth from 2005-10 shows four distinct patterns. Most of the poorest countries, especially in sub-Saharan Africa, are characterised by rapid growth of more than 2% per year. Moderate annual growth of 1-2% is concentrated in large countries, such as India and Indonesia, and across north Africa and western Latin America. Whereas most advanced-economy countries and large middle-income countries, such as China and Brazil, are characterised by low or no growth (0-1% per year), most of eastern Europe, Japan, and a few western European countries are characterised by population decline. Countries with rapid growth face adverse social, economic, and environmental pressures, whereas those with low or negative growth face rapid population ageing, unsustainable burdens on public pensions and health-care systems, and slow economic growth. Countries with rapid growth should consider the implementation of voluntary family planning programmes as their main policy option to reduce the high unmet need for contraception, unwanted pregnancies, and probirth reproductive norms. In countries with low or negative growth, policies to address ageing and very low fertility are still evolving. Further research into the potential effect of demographic policies on other social systems, social groups, and fertility decisions and trends is therefore recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Development of a rapid and sensitive HPLC method for the identification and quantification of cavoxin and cavoxone in Phoma cava culture filtrates.

    PubMed

    Masi, Marco; Moeini, Seyed Arash; Boari, Angela; Cimmino, Alessio; Vurro, Maurizio; Evidente, Antonio

    2018-07-01

    Cavoxin is a tetrasubstituted phytotoxic chalcone and cavoxone is the corresponding chroman-4-one, both produced in vitro by Phoma cava, a fungus isolated from chestnut. Cavoxin showed biofungicide potential against fungal species responsible for food moulding. Therefore, cavoxin has potential to be incorporated into biopolymer to generate 'intelligent food packaging'. To reach this objective, large-scale production of cavoxin by P. cava fermentation needs to be optimized. A rapid and efficient method for cavoxin analysis, as well as of cavoxone, in the fungal culture filtrates and the corresponding organic extracts is the first experimental step. Thus, a HPLC method was developed and applied to quantify cavoxin and cavoxone production in two different fungal culture conditions. The analysis proved that cavoxin production in stirred culture filtrates is significantly higher than in static ones.

  17. Role of Retinopathy of Prematurity (ROP) Tertiary Centers of Excellence in Capacity-building.

    PubMed

    Rani, Padmaja Kumari; Balakrishnanan, D; Padhi, T R; Jalali, Subhadra

    2016-11-07

    Tertiary Centres of Excellence in India have been at the forefront of the efforts against Retinopathy of Prematurity (ROP) - associated blindness. The epidemic of blindness from ROP; however, has now spread rapidly into large parts of interiors of developing countries due to improved newborn care facilities. Due to their knowledge and experience of more than a decade, these centres of excellence, both from child care and Ophthalmology care, now need to come forward in substantial measures and need to be supported by funds and programs so that concerns of neonatal eye-health, training, screening, prevention and treatment can get integrated and embedded into newborn critical care and health programs. This will protect newborn preterm survivors from losing the potentially good vision that they are born with, reduce the rapidly rising blindness epidemic, and also protect staff from potential high-value litigations.

  18. Suzaku Observations of 4U 1957+11: Potentially the Most Rapidly Spinning Black Hole in (the Halo of) the Galaxy

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Pottschmidt, Katja; Schulz, Norbert; Maitra, Dipankar; Miller, Jon

    2011-01-01

    We present three Suzaku observations of the black hole candidate 4U 1957+11 (V 1408 Aql) - a source that exhibits some of. the simplest and cleanest examples of soft, disk-dominated spectra. 4U 1957+ II also presents among the. highest peak temperatures found from disk-dominated spectra. Such temperatures may be associated with rapid black hole spin. The 4U 1957+11 spectra also require a very low normalization, which can be explained by a combination of small inner disk radius and a large distance (> 10 kpc) which places 4U 1957+ 11 well into the Galactic halo. We perform Joint fits to the Suzaku spectra with both relativistic and Comptonized disk models. Assuming a low mass black hole and the nearest distance (3 Stellar Mass, 10 kpc), the dimensionless spin parameter a* = Jc/GM(sup 2)> or approx. 0.9. Higher masses and farther distances yield a* approx. = 1. Similar conclusions are reached with Comptonization models; they imply a combination of small inner disk radii (or, equivalently, rapid spin) and large distance. Low spin cannot be recovered unless 4U 1957+11 is a low mass black hole that is at the unusually large distance of > or approx.40 kpc. We speculate whether the suggested maximal spin is related to how the system came to reside in the halo.

  19. Reconciling tensor and scalar observables in G-inflation

    NASA Astrophysics Data System (ADS)

    Ramírez, Héctor; Passaglia, Samuel; Motohashi, Hayato; Hu, Wayne; Mena, Olga

    2018-04-01

    The simple m2phi2 potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index ns. Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt αs that can be of order ns‑1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on |αs| place a lower bound of rgtrsim 0.005 and, conversely, a given r places a lower bound on |αs|, both of which are potentially observable with next generation CMB and large scale structure surveys.

  20. Global warming of salmon and trout rivers in the northwestern U.S.: Road to ruin or path through purgatory?

    Treesearch

    Daniel J. Isaak; Charles H. Luce; Dona L. Horan; Gwynne Chandler; Sherry Wollrab; David E. Nagel

    2018-01-01

    Large rivers constitute small portions of drainage networks but provide important migratory habitats and fisheries for salmon and trout when and where temperatures are sufficiently cold. Management and conservation of cold‐water fishes in the current era of rapid climate change requires knowing how riverine thermal environments are evolving and the potential for...

  1. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.

    PubMed

    Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan

    2018-01-01

    Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min -1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    PubMed Central

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-01-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films. PMID:26515670

  3. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.

    PubMed

    Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji

    2007-01-01

    Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.

  4. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  5. Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts.

    PubMed

    Wadhwa, Renu; Konar, Arpita; Kaul, Sunil C

    2016-05-01

    Rapidly increasing aging population and environmental stressors are the two main global concerns of the modern society. These have brought in light rapidly increasing incidence of a variety of pathological conditions including brain tumors, neurodegenerative & neuropsychiatric disorders, and new challenges for their treatment. The overlapping symptoms, complex etiology and lack of full understanding of the brain structure and function to-date further complicate these tasks. On the other hand, several herbal reagents with a long history of their use have been asserted to possess neurodifferentiation, neuroregenerative and neuroprotective potentials, and hence been recommended as supplement to enhance and maintain brain health and function. Although they have been claimed to function by holistic approach resulting in maintaining body homeostasis and brain health, there are not enough laboratory studies in support to these and mechanism(s) of such beneficial activities remain largely undefined. One such herb is Ashwagandha, also called "Queen of Ayurveda" for its popular use in Indian traditional home medicine because of its extensive benefits including anticancer, anti-stress and remedial potential for aging and neurodegenerative pathologies. However, active principles and underlying mechanism(s) of action remain largely unknown. Here we provide a review on the effects of Ashwagandha extracts and active principles, and underlying molecular mechanism(s) for brain pathologies. We highlight our findings on the nootropic potential of Ashwagandha leaves. The effects of Ashwagandha leaf extracts are multidimensional ranging from differentiation of neuroblastoma and glioma cells, reversal of Alzheimer and Parkinson's pathologies, protection against environmental neurotoxins and enhancement of memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    PubMed

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  7. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods

    PubMed Central

    Grzesik, Peter; Voorhies, Alexander A.; Alperovich, Nina; MacMath, Derek; Najera, Claudia D.; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N.; Montague, Michael G.; Friedman, Robert M.; Desai, Prashant J.

    2017-01-01

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats. PMID:28928148

  8. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Kumar, Vinay

    2017-04-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  9. Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier.

    PubMed

    Estes, L D; Searchinger, T; Spiegel, M; Tian, D; Sichinga, S; Mwale, M; Kehoe, L; Kuemmerle, T; Berven, A; Chaney, N; Sheffield, J; Wood, E F; Caylor, K K

    2016-09-19

    Rapidly rising populations and likely increases in incomes in sub-Saharan Africa make tens of millions of hectares of cropland expansion nearly inevitable, even with large increases in crop yields. Much of that expansion is likely to occur in higher rainfall savannas, with substantial costs to biodiversity and carbon storage. Zambia presents an acute example of this challenge, with an expected tripling of population by 2050, good potential to expand maize and soya bean production, and large areas of relatively undisturbed miombo woodland and associated habitat types of high biodiversity value. Here, we present a new model designed to explore the potential for targeting agricultural expansion in ways that achieve quantitatively optimal trade-offs between competing economic and environmental objectives: total converted land area (the reciprocal of potential yield); carbon loss, biodiversity loss and transportation costs. To allow different interests to find potential compromises, users can apply varying weights to examine the effects of their subjective preferences on the spatial allocation of new cropland and its costs. We find that small compromises from the objective to convert the highest yielding areas permit large savings in transportation costs, and the carbon and biodiversity impacts resulting from savannah conversion. For example, transferring just 30% of weight from a yield-maximizing objective equally between carbon and biodiversity protection objectives would increase total cropland area by just 2.7%, but result in avoided costs of 27-47% for carbon, biodiversity and transportation. Compromise solutions tend to focus agricultural expansion along existing transportation corridors and in already disturbed areas. Used appropriately, this type of model could help countries find agricultural expansion alternatives and related infrastructure and land use policies that help achieve production targets while helping to conserve Africa's rapidly transforming savannahs.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  10. Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier

    PubMed Central

    Searchinger, T.; Spiegel, M.; Tian, D.; Sichinga, S.; Mwale, M.; Kehoe, L.; Kuemmerle, T.; Berven, A.; Chaney, N.; Sheffield, J.; Wood, E. F.; Caylor, K. K.

    2016-01-01

    Rapidly rising populations and likely increases in incomes in sub-Saharan Africa make tens of millions of hectares of cropland expansion nearly inevitable, even with large increases in crop yields. Much of that expansion is likely to occur in higher rainfall savannas, with substantial costs to biodiversity and carbon storage. Zambia presents an acute example of this challenge, with an expected tripling of population by 2050, good potential to expand maize and soya bean production, and large areas of relatively undisturbed miombo woodland and associated habitat types of high biodiversity value. Here, we present a new model designed to explore the potential for targeting agricultural expansion in ways that achieve quantitatively optimal trade-offs between competing economic and environmental objectives: total converted land area (the reciprocal of potential yield); carbon loss, biodiversity loss and transportation costs. To allow different interests to find potential compromises, users can apply varying weights to examine the effects of their subjective preferences on the spatial allocation of new cropland and its costs. We find that small compromises from the objective to convert the highest yielding areas permit large savings in transportation costs, and the carbon and biodiversity impacts resulting from savannah conversion. For example, transferring just 30% of weight from a yield-maximizing objective equally between carbon and biodiversity protection objectives would increase total cropland area by just 2.7%, but result in avoided costs of 27–47% for carbon, biodiversity and transportation. Compromise solutions tend to focus agricultural expansion along existing transportation corridors and in already disturbed areas. Used appropriately, this type of model could help countries find agricultural expansion alternatives and related infrastructure and land use policies that help achieve production targets while helping to conserve Africa's rapidly transforming savannahs. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502381

  11. Indexcov: fast coverage quality control for whole-genome sequencing.

    PubMed

    Pedersen, Brent S; Collins, Ryan L; Talkowski, Michael E; Quinlan, Aaron R

    2017-11-01

    The BAM and CRAM formats provide a supplementary linear index that facilitates rapid access to sequence alignments in arbitrary genomic regions. Comparing consecutive entries in a BAM or CRAM index allows one to infer the number of alignment records per genomic region for use as an effective proxy of sequence depth in each genomic region. Based on these properties, we have developed indexcov, an efficient estimator of whole-genome sequencing coverage to rapidly identify samples with aberrant coverage profiles, reveal large-scale chromosomal anomalies, recognize potential batch effects, and infer the sex of a sample. Indexcov is available at https://github.com/brentp/goleft under the MIT license. © The Authors 2017. Published by Oxford University Press.

  12. Potential Analysis of Rainfall-induced Sediment Disaster

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Wen; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Tsai, Kuang-Jung; Chue, Yung-Sheng

    2014-05-01

    Most of the mountain regions in Taiwan are sedimentary and metamorphic rocks which are fragile and highly weathered. Severe erosion occurs due to intensive rainfall and rapid flow, the erosion is even worsen by frequent earthquakes and severely affects the stability of hillsides. Rivers are short and steep in Taiwan with large runoff differences in wet and dry seasons. Discharges respond rapidly with rainfall intensity and flood flows usually carry large amount of sediment. Because of the highly growth in economics and social change, the development in the slope land is inevitable in Taiwan. However, sediment disasters occur frequently in high and precipitous region during typhoon. To make the execution of the regulation of slope land development more efficiency, construction of evaluation model for sediment potential is very important. In this study, the Genetic Adaptive Neural Network (GANN) was implemented in texture analysis techniques for the classification of satellite images of research region before and after typhoon or extreme rainfall and to obtain surface information and hazard log data. By using GANN weight analysis, factors, levels and probabilities of disaster of the research areas are presented. Then, through geographic information system the disaster potential map is plotted to distinguish high potential regions from low potential regions. Finally, the evaluation processes for sediment disaster after rainfall due to slope land use are established. In this research, the automatic image classification and evaluation modules for sediment disaster after rainfall due to slope land disturbance and natural environment are established in MATLAB to avoid complexity and time of computation. After implementation of texture analysis techniques, the results show that the values of overall accuracy and coefficient of agreement of the time-saving image classification for different time periods are at intermediate-high level and above. The results of GANN show that the weight of building density is the largest in all slope land disturbance factors, followed by road density, orchard density, baren land density, vegetation density, and farmland density. The weight of geology is the largest in all natural environment factors, followed by slope roughness, slope, and elevation. Overlaying the locations of large sediment disaster in the past on the potential map predicted by GANN, we found that most damage areas were in the region with medium-high or high potential of landslide. Therefore, the proposed potential model of sediment disaster can be used in practice.

  13. Top quark forward-backward asymmetry and same-sign top quark pairs.

    PubMed

    Berger, Edmond L; Cao, Qing-Hong; Chen, Chuan-Ren; Li, Chong Sheng; Zhang, Hao

    2011-05-20

    The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a nonuniversal Z' model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the Z' to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tt and ttj production in early LHC experiments at 7-8 TeV and conclude that if no tt signal is observed with 1 fb⁻¹ of integrated luminosity, then a nonuniversal Z' alone cannot explain the Tevatron forward-backward asymmetry.

  14. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops.

    PubMed

    Douglas, Margaret R; Tooker, John F

    2015-04-21

    Neonicotinoids are the most widely used class of insecticides worldwide, but patterns of their use in the U.S. are poorly documented, constraining attempts to understand their role in pest management and potential nontarget effects. We synthesized publicly available data to estimate and interpret trends in neonicotinoid use since their introduction in 1994, with a special focus on seed treatments, a major use not captured by the national pesticide-use survey. Neonicotinoid use increased rapidly between 2003 and 2011, as seed-applied products were introduced in field crops, marking an unprecedented shift toward large-scale, preemptive insecticide use: 34-44% of soybeans and 79-100% of maize hectares were treated in 2011. This finding contradicts recent analyses, which concluded that insecticides are used today on fewer maize hectares than a decade or two ago. If current trends continue, neonicotinoid use will increase further through application to more hectares of soybean and other crop species and escalation of per-seed rates. Alternatively, our results, and other recent analyses, suggest that carefully targeted efforts could considerably reduce neonicotinoid use in field crops without yield declines or economic harm to farmers, reducing the potential for pest resistance, nontarget pest outbreaks, environmental contamination, and harm to wildlife, including pollinator species.

  15. Digital disruption ?syndromes.

    PubMed

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and operational forms of digital disruption which lead us to propose some digital disruption 'syndromes'. The definition and management of these 'syndromes' are discussed in detail. What are the implications for practitioners? Minimising the temporary effects of digital disruption in hospitals requires an understanding that these digital 'syndromes' are to be expected and actively managed during large-scale transformation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fincke, J.R.; Swank, W.D.; Haggard, D.C.

    This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF{sub 6}, Ar, He, and H{sub 2}. The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F{sub 2} to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogenmore » which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF{sub 6} to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value.« less

  17. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    PubMed

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  18. Dual roles for hepatic lectin receptors in the clearance of chilled platelets.

    PubMed

    Rumjantseva, Viktoria; Grewal, Prabhjit K; Wandall, Hans H; Josefsson, Emma C; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D; Hartwig, John H; Hoffmeister, Karin M

    2009-11-01

    Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.

  19. Can solar power deliver?

    PubMed

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  20. Microcolumnar and polycrystalline growth of LaBr3:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Nagarkar, V. V.; Miller, S.; Sia, R.; Gaysinskiy, V.

    2011-05-01

    While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.

  1. The electric field structure of auroral arcs as determined from barium plasma injection experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1981-01-01

    Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.

  2. Flexible Redistribution in Cognitive Networks.

    PubMed

    Hartwigsen, Gesa

    2018-06-15

    Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A field study on the effects of digital billboards on glance behavior during highway driving.

    PubMed

    Belyusar, Daniel; Reimer, Bryan; Mehler, Bruce; Coughlin, Joseph F

    2016-03-01

    Developments in lighting technologies have allowed more dynamic digital billboards in locations visible from the roadway. Decades of laboratory research have shown that rapidly changing or moving stimuli presented in peripheral vision tends to 'capture' covert attention. We report naturalistic glance and driving behavior of a large sample of drivers who were exposed to two digital billboards on a segment of highway largely free from extraneous signage. Results show a significant shift in the number and length of glances toward the billboards and an increased percentage of time glancing off road in their presence. Findings were particularly evident at the time the billboards transitioned between advertisements. Since rapidly changing stimuli are difficult to ignore, the planned increase in episodically changing digital displays near the roadway may be argued to be a potential safety concern. The impact of digital billboards on driver safety and the need for continued research are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank

    PubMed Central

    Collier, James H.; Lesk, Arthur M.; Garcia de la Banda, Maria; Konagurthu, Arun S.

    2012-01-01

    Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80 500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super. PMID:22638586

  5. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  6. Thermoluminescence of Antarctic meteorites: A rapid screening technique for terrestrial age estimation, pairing studies and identification of specimens with unusual prefall histories

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Walker, R. M.

    1986-01-01

    Thermoluminescence (TL) is a promising technique for rapid screening of the large numbers of Antarctic meteorites, permitting identification of interesting specimens that can then be studied in detail by other, more definite techniques. Specifically, TL permits determination of rough terrestrial age, identification of potential paired groups and location of specimens with unusual pre-fall histories. Meteorites with long terrestrial ages are particularly valuable for studying transport and weathering mechanisms. Pairing studies are possible because TL variations among meteorites are large compared to variations within individual objects, especially for natural TL. Available TL data for several L3 fragments, three of which were paired by other techniques, are presented as an example of the use of TL parameters in pairing studies. Additional TL measurements, specifically a blind test, are recommended to satisfactorily establish the reliability of this pairing property. The TL measurements also identify fragments with unusual pre-fall histories, such an near-Sun orbits.

  7. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.

    PubMed

    Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J

    2013-03-01

    Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.

  8. Rapid soil organic carbon re-accumulation after bamboo invasion on recovering landslide scars in a subtropical forest ecosystem of Taiwan

    NASA Astrophysics Data System (ADS)

    Zehetner, Franz; Schomakers, Jasmin; Jien, Shih-Hao; Lin, Zan Liang; Chen, Ting-Chien; Hseu, Zeng-Yei; Lee, Tsung-Yu; Huang, -Chuan, Jr.; Lee, Li-Chin; Mentler, Axel; Hein, Thomas

    2016-04-01

    Typhoon-induced landslides occasionally strip parts of the landscape off its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC). The resulting landslide scars remain low in OC and vulnerable for re-activation for several years until closed vegetation is re-established. In the subtropical mountains of Taiwan and in other parts of the world, bamboo species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, we investigated a chronosequence with 5 different sites on former landslide scars in the Alishan area in Central Taiwan, ranging in age from 6 to 53 years post disturbance. The younger landslide scars were colonized by Miscanthus giganteus, while after approx. 15 to 20 years of succession, bamboo (Phyllostachys) species were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an old-growth Cryptomeria japonica forest stand in the same area. Humic acids were extracted from the newly formed soils of the recovering landslide scars and analyzed for molecular characteristics. Biomass carbon accumulated rapidly in bamboo stands but was significantly lower compared to the old-growth coniferous forest. However, soil OC stocks on the recovering landslide scars approached the levels of the old-growth forest after only few decades of succession. Similarly, humic acid characteristics (obtained from fluorescence and NMR spectroscopy) rapidly changed in the early phase of succession but seemed to stabilize during the later phase of landslide recovery. Our results demonstrate the high potential of bamboo for below-ground OC sequestration and storage, and show that the fresh OC inputs are rapidly converted to humic substances under subtropical conditions.

  9. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Kai; Kim, Donghoe; Whitaker, James B

    Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemicalmore » routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.« less

  10. Opportunities for development of advanced large cargo aircraft

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    A critical review of the history, current state of the art, and future prospects for cargo aircraft systems indicates that three of the major advantages of air cargo are rapid delivery, ability to bridge geographical boundaries, and capability to provide a flexible market response. Foreseeable advances in large aircraft development offer even greater profit potential by increasing the payload ton-miles per pound of fuel. Intermodal containers and handling systems and computerized control and billing may be key ingredients. Details of a NASA program for large aircraft systems technology are outlined, which includes systems studies, research and technology investigations, and determination of the need for critical flight experiments. Innovative advanced technologies and configuration concepts are discussed. Numerous illustrations supplement the text.

  11. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less

  12. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-06-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  13. Rapid Earthquake Magnitude Estimation for Early Warning Applications

    NASA Astrophysics Data System (ADS)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego

    2017-04-01

    Earthquake magnitude is a concise metric that provides invaluable information about the destructive potential of a seismic event. Rapid estimation of magnitude for earthquake and tsunami early warning purposes requires reliance on near-field instrumentation. For large magnitude events, ground motions can exceed the dynamic range of near-field broadband seismic instrumentation (clipping). Strong motion accelerometers are designed with low gains to better capture strong shaking. Estimating earthquake magnitude rapidly from near-source strong-motion data requires integration of acceleration waveforms to displacement. However, integration amplifies small errors, creating unphysical drift that must be eliminated with a high pass filter. The loss of the long period information due to filtering is an impediment to magnitude estimation in real-time; the relation between ground motion measured with strong-motion instrumentation and magnitude saturates, leading to underestimation of earthquake magnitude. Using station displacements from Global Navigation Satellite System (GNSS) observations, we can supplement the high frequency information recorded by traditional seismic systems with long-period observations to better inform rapid response. Unlike seismic-only instrumentation, ground motions measured with GNSS scale with magnitude without saturation [Crowell et al., 2013; Melgar et al., 2015]. We refine the current magnitude scaling relations using peak ground displacement (PGD) by adding a large GNSS dataset of earthquakes in Japan. Because it does not suffer from saturation, GNSS alone has significant advantages over seismic-only instrumentation for rapid magnitude estimation of large events. The earthquake's magnitude can be estimated within 2-3 minutes of earthquake onset time [Melgar et al., 2013]. We demonstrate that seismogeodesy, the optimal combination of GNSS and seismic data at collocated stations, provides the added benefit of improving the sensitivity of displacement time series compared to GNSS alone. This not only means that ground motion can be detected at farther stations, but also that smaller seismic arrivals (i.e. P-waves) become visible in the displacement time series. P-wave amplitude (Pd) has been examined as an early indicator of earthquake magnitude. Relations between Pd and magnitude using seismic-only instrumentation appear to suffer from saturation, while the combination of GNSS and seismic data has been demonstrated to eliminate saturation [Meier et al., 2016, Crowell et al., 2013]. We create seismogeodetic displacements by combining the GNSS dataset with Japanese KiK-net and K-net accelerometer data to explore the potential of seismogeodesy for magnitude scaling with several seconds of data using P-wave amplitude.

  14. Evaluation of the Specificity and Sensitivity of a Potential Rapid Influenza Screening System

    DTIC Science & Technology

    2013-01-01

    Linder JA, Singer DE , Stafford RS. Association between antibiotic prescribing and visit duration in adults with upper respiratory tract infections. Clin...collected from emergency department patients presenting with influenza-like symptoms at a large military academic hospital and on de -identified nasal swabs...in the United States (Franck and Smith, 2010; Linder et al., 2003). For instance, in a national ambulatory network study of 52,135 upper respiratory

  15. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  16. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Toxicokinetics of ethers used as fuel oxygenates.

    PubMed

    Dekant, W; Bernauer, U; Rosner, E; Amberg, A

    2001-10-15

    The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.

  18. Toxicogenomics in regulatory ecotoxicology

    USGS Publications Warehouse

    Ankley, Gerald T.; Daston, George P.; Degitz, Sigmund J.; Denslow, Nancy D.; Hoke, Robert A.; Kennedy, Sean W.; Miracle, Ann L.; Perkins, Edward J.; Snape, Jason; Tillitt, Donald E.; Tyler, Charles R.; Versteeg, Donald

    2006-01-01

    Recently, we have witnessed an explosion of different genomic approaches that, through a combination of advanced biological, instrumental, and bioinformatic techniques, can yield a previously unparalleled amount of data concerning the molecular and biochemical status of organisms. Fueled partially by large, well-publicized efforts such as the Human Genome Project, genomic research has become a rapidly growing topical area in multiple biological disciplines. Since 1999, when the term “toxicogenomics” was coined to describe the application of genomics to toxicology (1), a rapid increase in publications on the topic has occurred (Figure 1). The potential utility of toxicogenomics in toxicological research and regulatory activities has been the subject of scientific discussions and, as with any new technology, has evoked a wide range of opinion (2–6).

  19. Surface-enhanced Raman scattering spectroscopy characterization and identification of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chen, Yud-Ren; Nou, Xiangwu; Chao, Kaunglin

    2007-09-01

    Rapid and routine identification of foodborne bacteria are considerably important, because of bio- / agro- terrorism threats, public health concerns, and economic loss. Conventional, PCR, and immunoassay methods for the detection of bacteria are generally time-consuming, chemical reagent necessary and multi-step procedures. Fast microbial detection requires minimal sample preparation, permits the routine analysis of large numbers of samples with negligible reagent costs, and is easy to operate. Therefore, we have developed silver colloidal nanoparticle based surface-enhanced Raman scattering (SERS) spectroscopy as a potential tool for the rapid and routine detection of E. coli and L. monocytogenes. This study presents the further results of our examination on S. typhimonium, one of the most commonly outbreak bacteria, for the characteristic bands and subsequent identification.

  20. Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.

    PubMed

    Vialpando, Monica; Martens, Johan A; Van den Mooter, Guy

    2011-08-01

    The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.

  1. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles

    PubMed Central

    Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra

    2011-01-01

    Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773

  2. Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview

    PubMed Central

    Cinti, Stefano; Volpe, Giulia; Piermarini, Silvia; Delibato, Elisabetta; Palleschi, Giuseppe

    2017-01-01

    Salmonella has represented the most common and primary cause of food poisoning in many countries for at least over 100 years. Its detection is still primarily based on traditional microbiological culture methods which are labor-intensive, extremely time consuming, and not suitable for testing a large number of samples. Accordingly, great efforts to develop rapid, sensitive and specific methods, easy to use, and suitable for multi-sample analysis, have been made and continue. Biosensor-based technology has all the potentialities to meet these requirements. In this paper, we review the features of the electrochemical immunosensors, genosensors, aptasensors and phagosensors developed in the last five years for Salmonella detection, focusing on the critical aspects of their application in food analysis. PMID:28820458

  3. Economically Sustainable Scaling of Photovoltaics to Meet Climate Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Needleman, David Berney; Poindexter, Jeremy R.; Kurchin, Rachel C.

    To meet climate goals, photovoltaics (PV) deployment will have to grow rapidly over the next fifteen years. We identify two barriers to this growth: scale-up of manufacturing capacity and the cost of PV module production. We explore several technoeconomic approaches to overcoming these barriers and identify deep reductions in the capital intensity (capex) of PV module manufacturing and large increases in module efficiency as the most promising routes to rapid deployment. Given the lag inherent in rolling out new technology, we explore an approach where growth is fueled by debt or subsidies in the short-term and technological advances in themore » medium term. Finally, we analyze the current capex structure of crystalline silicon PV module manufacturing to identify potential savings.« less

  4. A review of rapid prototyping (RP) techniques in the medical and biomedical sector.

    PubMed

    Webb, P A

    2000-01-01

    The evolution of rapid prototyping (RP) technology is briefly discussed, and the application of RP technologies to the medical sector is reviewed. Although the use of RP technology has been slow arriving in the medical arena, the potential of the technique is seen to be widespread. Various uses of the technology within surgical planning, prosthesis development and bioengineering are discussed. Some possible drawbacks are noted in some applications, owing to the poor resolution of CT slice data in comparison with that available on RP machines, but overall, the methods are seen to be beneficial in all areas, with one early report suggesting large improvements in measurement and diagnostic accuracy as a result of using RP models.

  5. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    DOE PAGES

    Barnard, John J.; Schenkel, Thomas

    2017-11-15

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  6. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, John J.; Schenkel, Thomas

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  8. Streak Imaging Flow Cytometer for Rare Cell Analysis.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham

    2017-01-01

    There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.

  9. A rapid analytical method to quantify complex organohalogen contaminant mixtures in large samples of high lipid mammalian tissues.

    PubMed

    Desforges, Jean-Pierre; Eulaers, Igor; Periard, Luke; Sonne, Christian; Dietz, Rune; Letcher, Robert J

    2017-06-01

    In vitro investigations of the health impact of individual chemical compounds have traditionally been used in risk assessments. However, humans and wildlife are exposed to a plethora of potentially harmful chemicals, including organohalogen contaminants (OHCs). An alternative exposure approach to individual or simple mixtures of synthetic OHCs is to isolate the complex mixture present in free-ranging wildlife, often non-destructively sampled from lipid rich adipose. High concentration stock volumes required for in vitro investigations do, however, pose a great analytical challenge to extract sufficient amounts of complex OHC cocktails. Here we describe a novel method to easily, rapidly and efficiently extract an environmentally accumulated and therefore relevant contaminant cocktail from large (10-50 g) marine mammal blubber samples. We demonstrate that lipid freeze-filtration with acetonitrile removes up to 97% of blubber lipids, with minimal effect on the efficiency of OHC recovery. Sample extracts after freeze-filtration were further processed to remove residual trace lipids via high-pressure gel permeation chromatography and solid phase extraction. Average recoveries of OHCs from triplicate analysis of killer whale (Orcinus orca), polar bear (Ursus maritimus) and pilot whale (Globicephala spp.) blubber standard reference material (NIST SRM-1945) ranged from 68 to 80%, 54-92% and 58-145%, respectively, for 13 C-enriched internal standards of six polychlorinated biphenyl congeners, 16 organochlorine pesticides and four brominated flame retardants. This approach to rapidly generate OHC mixtures shows great potential for experimental exposures using complex contaminant mixtures, research or monitoring driven contaminant quantification in biological samples, as well as the untargeted identification of emerging contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders.

    PubMed

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal

    2009-07-24

    Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.

  11. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders

    PubMed Central

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal

    2009-01-01

    Background Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. Results At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. Conclusion While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain. PMID:19630983

  12. Open inflation in the landscape

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Linde, Andrei; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro

    2011-08-01

    The open inflation scenario is attracting a renewed interest in the context of the string landscape. Since there are a large number of metastable de Sitter vacua in the string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally, which leads to a natural realization of open inflation. Although the deviation of Ω0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large-angle CMB anisotropies can be significant for tensor-type perturbation in the open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. On the other hand, if such a rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. Furthermore, the amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, although even the dominant quadrupole component is suppressed by the factor (1-Ω0)2, one can construct some models in which the deviation of Ω0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning the structure of the string theory potentials and the duration of the last stage of inflation.

  13. Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Stavrianakou, M.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Kim, C. O.; Kim, T. Y.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; Van Hook, M.; Hubbard, B.; Lockman, W.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. S.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.; ZEUS Collaboration

    1994-11-01

    Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 269 GeV for the range Q2 ≥ 10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap eents compared to the events without a large rapidity gap.

  14. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    PubMed Central

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  15. Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies

    NASA Astrophysics Data System (ADS)

    Giardiello, Marco; Liptrott, Neill J.; McDonald, Tom O.; Moss, Darren; Siccardi, Marco; Martin, Phil; Smith, Darren; Gurjar, Rohan; Rannard, Steve P.; Owen, Andrew

    2016-10-01

    Considerable scope exists to vary the physical and chemical properties of nanoparticles, with subsequent impact on biological interactions; however, no accelerated process to access large nanoparticle material space is currently available, hampering the development of new nanomedicines. In particular, no clinically available nanotherapies exist for HIV populations and conventional paediatric HIV medicines are poorly available; one current paediatric formulation utilizes high ethanol concentrations to solubilize lopinavir, a poorly soluble antiretroviral. Here we apply accelerated nanomedicine discovery to generate a potential aqueous paediatric HIV nanotherapy, with clinical translation and regulatory approval for human evaluation. Our rapid small-scale screening approach yields large libraries of solid drug nanoparticles (160 individual components) targeting oral dose. Screening uses 1 mg of drug compound per library member and iterative pharmacological and chemical evaluation establishes potential candidates for progression through to clinical manufacture. The wide applicability of our strategy has implications for multiple therapy development programmes.

  16. Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, scalable, 3D biomaterial platform

    PubMed Central

    Adil, Maroof M.; Rodrigues, Gonçalo M. C.; Kulkarni, Rishikesh U.; Rao, Antara T.; Chernavsky, Nicole E.; Miller, Evan W.; Schaffer, David V.

    2017-01-01

    Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson’s Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research. PMID:28091566

  17. Exogenous Testosterone Rapidly Increases Aggressive Behavior in Dominant and Impulsive Men.

    PubMed

    Carré, Justin M; Geniole, Shawn N; Ortiz, Triana L; Bird, Brian M; Videto, Amber; Bonin, Pierre L

    2017-08-15

    Although traditional wisdom suggests that baseline levels of testosterone (T) promote aggressive behavior, decades of research have produced findings that have been largely weak and inconsistent. However, more recent experimental work suggests that exogenous administration of T rapidly potentiates amygdala and hypothalamus responses to angry facial expressions. Notably, these brain regions are rich in androgen receptors and play a key role in modulating aggressive behavior in animal models. The present experiment extends this work by examining whether acutely increasing T potentiates aggressive behavior in men. In a double-blind, placebo-controlled, between-subject design, healthy adult men (n = 121) were administered either T or placebo, and subsequently engaged in a well-validated decision-making game that measures aggressive behavior in response to social provocation. In light of prior correlational research, we also assessed the extent to which T's effects on aggressive behavior would depend on variability in trait dominance and/or trait self-control. Exogenous T on its own did not modulate aggressive behavior. However, T's effects on aggression were strongly influenced by variation in trait dominance and trait self-control. Specifically, T caused an increase in aggressive behavior, but only among men scoring relatively high in trait dominance or low in trait self-control. These findings are the first to demonstrate that T can rapidly (within 60 minutes) potentiate aggressive behavior, but only among men with dominant or impulsive personality styles. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Adaptive phenotypic response to climate enabled by epigenetics in a K-strategy species, the fish Leucoraja ocellata (Rajidae)

    PubMed Central

    Incarnato, Danny; Ward, Ben J.; van Oosterhout, Cock; Bradbury, Ian; Hanson, Mark; Bentzen, Paul

    2016-01-01

    The relative importance of genetic versus epigenetic changes in adaptive evolution is a hotly debated topic, with studies showing that some species appear to be able to adapt rapidly without significant genetic change. Epigenetic mechanisms may be particularly important for the evolutionary potential of species with long maturation times and low reproductive potential (‘K-strategists’), particularly when faced with rapidly changing environmental conditions. Here we study the transcriptome of two populations of the winter skate (Leucoraja ocellata), a typical ‘K-strategist’, in Atlantic Canada; an endemic population in the southern Gulf of St Lawrence and a large population on the Scotian Shelf. The endemic population has been able to adapt to a 10°C higher water temperature over short evolutionary time (7000 years), dramatically reducing its body size (by 45%) significantly below the minimum maturation size of Scotian Shelf and other populations of winter skate, as well as exhibiting other adaptations in life history and physiology. We demonstrate that the adaptive response to selection has an epigenetic basis, cataloguing 3653 changes in gene expression that may have enabled this species to rapidly respond to the novel environment. We argue that the epigenetic augmentation of species evolutionary potential (its regulation though gene expression) can enable K-strategists to survive and adapt to different environments, and this mechanism may be particularly important for the persistence of sharks, skates and rays in the light of future climate change. PMID:27853546

  19. Exploiting the Potential of Data Centers in the Smart Grid

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoying; Zhang, Yu-An; Liu, Xiaojing; Cao, Tengfei

    As the number of cloud computing data centers grows rapidly in recent years, from the perspective of smart grid, they are really large and noticeable electric load. In this paper, we focus on the important role and the potential of data centers as controllable loads in the smart grid. We reviewed relevant research in the area of letting data centers participate in the ancillary services market and demand response programs of the grid, and further investigate the possibility of exploiting the impact of data center placement on the grid. Various opportunities and challenges are summarized, which could provide more chances for researches to explore this field.

  20. Celecoxib:Nicotinamide Dissociation: Using Excipients to Capture the Cocrystal's Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remenar,J.; Peterson, M.; Stephens, P.

    2007-01-01

    The cocrystal of celecoxib and nicotinamide (Cel:Nic) was crystallized from chloroform in a 1:1 ratio, and the structure has been solved from powder X-ray diffraction data. The dissolution and solubility of Cel:Nic are medium dependent and can be attributed to differences in conversion of Cel:Nic to celecoxib polymorphs I and III (Cel-I and Cel-III). The presence of low concentrations of surfactants facilitates the rapid conversion of neat Cel:Nic to large aggregates of Cel-III that dissolve more slowly than commercial Cel-III into 1% SDS solution. In contrast, combinations of Cel:Nic with both 1-10% solid SDS and PVP wet rapidly and convertmore » to a mixture of amorphous celecoxib and a micron-sized crystalline celecoxib form IV (Cel-IV), which has recently been shown to be up to 4-fold more bioavailable than marketed Cel-III. More than 90% of the suspended material dissolves within 2 min at 37 C when transferred to 1% SDS solution. This example highlights the importance of exploring the form conversion of cocrystals in aqueous media prior to pharmacokinetic studies, and illustrates the potential of simple formulations to overcome the limitations caused by rapid dissociation of cocrystals and recrystallization of poorly soluble forms in aqueous media.« less

  1. Celecoxib: Nicotinamide Dissociateion: Using Excipients to Capture the Cocrystal's Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remenar,J.; Peterson, M.; Stephens, P.

    2007-01-01

    The cocrystal of celecoxib and nicotinamide (Cel:Nic) was crystallized from chloroform in a 1:1 ratio, and the structure has been solved from powder X-ray diffraction data. The dissolution and solubility of Cel:Nic are medium dependent and can be attributed to differences in conversion of Cel:Nic to celecoxib polymorphs I and III (Cel-I and Cel-III). The presence of low concentrations of surfactants facilitates the rapid conversion of neat Cel:Nic to large aggregates of Cel-III that dissolve more slowly than commercial Cel-III into 1% SDS solution. In contrast, combinations of Cel:Nic with both 1-10% solid SDS and PVP wet rapidly and convertmore » to a mixture of amorphous celecoxib and a micron-sized crystalline celecoxib form IV (Cel-IV), which has recently been shown to be up to 4-fold more bioavailable than marketed Cel-III. More than 90% of the suspended material dissolves within 2 min at 37 C when transferred to 1% SDS solution. This example highlights the importance of exploring the form conversion of cocrystals in aqueous media prior to pharmacokinetic studies, and illustrates the potential of simple formulations to overcome the limitations caused by rapid dissociation of cocrystals and recrystallization of poorly soluble forms in aqueous media.« less

  2. Selection history and epistatic interactions impact dynamics of adaptation to novel environmental stresses.

    PubMed

    Lagator, Mato; Colegrave, Nick; Neve, Paul

    2014-11-07

    In rapidly changing environments, selection history may impact the dynamics of adaptation. Mutations selected in one environment may result in pleiotropic fitness trade-offs in subsequent novel environments, slowing the rates of adaptation. Epistatic interactions between mutations selected in sequential stressful environments may slow or accelerate subsequent rates of adaptation, depending on the nature of that interaction. We explored the dynamics of adaptation during sequential exposure to herbicides with different modes of action in Chlamydomonas reinhardtii. Evolution of resistance to two of the herbicides was largely independent of selection history. For carbetamide, previous adaptation to other herbicide modes of action positively impacted the likelihood of adaptation to this herbicide. Furthermore, while adaptation to all individual herbicides was associated with pleiotropic fitness costs in stress-free environments, we observed that accumulation of resistance mechanisms was accompanied by a reduction in overall fitness costs. We suggest that antagonistic epistasis may be a driving mechanism that enables populations to more readily adapt in novel environments. These findings highlight the potential for sequences of xenobiotics to facilitate the rapid evolution of multiple-drug and -pesticide resistance, as well as the potential for epistatic interactions between adaptive mutations to facilitate evolutionary rescue in rapidly changing environments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip.

    PubMed

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 M w (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes.

  4. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    PubMed Central

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  5. International Conference on Hyperbolic Problems (2nd). Theory, Numerical Methods and Applications, 14-18 March 1988

    DTIC Science & Technology

    1988-01-01

    of this abstract got a spontaneous development of a transverse wave-strucure in a shock-oriented coordinate system without per- turbing the global ...We develop a formal asymptotic theory for hyperbolic conservation laws with large amplitude, rapidly varying initial data [1]. For small times, the...HUnefelderstr. 1-S, D-2800 Bremen 1 Today the most accurate and cost effective industrial codes used for aircraft design are based on full potential equations

  6. RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry.

    PubMed

    Kulka, Ulrike; Abend, Michael; Ainsbury, Elizabeth; Badie, Christophe; Barquinero, Joan Francesc; Barrios, Lleonard; Beinke, Christina; Bortolin, Emanuela; Cucu, Alexandra; De Amicis, Andrea; Domínguez, Inmaculada; Fattibene, Paola; Frøvig, Anne Marie; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Jaworska, Alicja; Kriehuber, Ralf; Lindholm, Carita; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Meschini, Roberta; Mörtl, Simone; Della Monaca, Sara; Monteiro Gil, Octávia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Patrono, Clarice; Piqueret-Stephan, Laure; Port, Matthias; Prieto, María Jesus; Quintens, Roel; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sáfrány, Géza; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Thierens, Hubert; Turai, Istvan; Trompier, François; Valente, Marco; Vaz, Pedro; Voisin, Philippe; Vral, Anne; Woda, Clemens; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.

  7. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    NASA Astrophysics Data System (ADS)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  8. Performance of Machine Learning Algorithms for Qualitative and Quantitative Prediction Drug Blockade of hERG1 channel.

    PubMed

    Wacker, Soren; Noskov, Sergei Yu

    2018-05-01

    Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost displays excellent performance with a coefficient of determination of up to R 2 ~0.8 for pIC 50 values in evaluation datasets, surpassing other metrics and approaches available in literature. Ultimately, the ML-based platform developed in our work is a scalable framework with automation potential to interact with other developing technologies in cardiotoxicity field, including high-throughput electrophysiology measurements delivering large datasets of profiled drugs, rapid synthesis and drug development via progress in synthetic biology.

  9. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change.

    PubMed

    Rödder, Dennis; Kielgast, Jos; Lötters, Stefan

    2010-11-01

    Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.

  10. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    PubMed Central

    Kominkova, Marketa; Heger, Zbynek; Zitka, Ondrej; Kynicky, Jindrich; Pohanka, Miroslav; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

    2014-01-01

    Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED). Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer) and potential changes (1,000, 1,100 and 1,200 mV) offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments. PMID:24499878

  11. Introducing ShakeMap to potential users in Puerto Rico using scenarios of damaging historical and probable earthquakes

    NASA Astrophysics Data System (ADS)

    Huerfano, V. A.; Cua, G.; von Hillebrandt, C.; Saffar, A.

    2007-12-01

    The island of Puerto Rico has a long history of damaging earthquakes. Major earthquakes from off-shore sources have affected Puerto Rico in 1520, 1615, 1670, 1751, 1787, 1867, and 1918 (Mueller et al, 2003; PRSN Catalogue). Recent trenching has also yielded evidence of possible M7.0 events inland (Prentice, 2000). The high seismic hazard, large population, high tsunami potential and relatively poor construction practice can result in a potentially devastating combination. Efficient emergency response in event of a large earthquake will be crucial to minimizing the loss of life and disruption of lifeline systems in Puerto Rico. The ShakeMap system (Wald et al, 2004) developed by the USGS to rapidly display and disseminate information about the geographical distribution of ground shaking (and hence potential damage) following a large earthquake has proven to be a vital tool for post earthquake emergency response efforts, and is being adopted/emulated in various seismically active regions worldwide. Implementing a robust ShakeMap system is among the top priorities of the Puerto Rico Seismic Network. However, the ultimate effectiveness of ShakeMap in post- earthquake response depends not only on its rapid availability, but also on the effective use of the information it provides. We developed ShakeMap scenarios of a suite of damaging historical and probable earthquakes that severely impact San Juan, Ponce, and Mayagüez, the 3 largest cities in Puerto Rico. Earthquake source parameters were obtained from McCann and Mercado (1998); and Huérfano (2004). For historical earthquakes that generated tsunamis, tsunami inundation maps were generated using the TIME method (Shuto, 1991). The ShakeMap ground shaking maps were presented to local and regional governmental and emergency response agencies at the 2007 Annual conference of the Puerto Rico Emergency Management and Disaster Administration in San Juan, PR, and at numerous other emergency management talks and training sessions. Economic losses are estimated using the ShakeMap scenario ground motions (Saffar, 2007). The calibration tasks necessary in generating these scenarios (developing Vs30 maps, attenuation relationships) complement the on-going efforts of the Puerto Rico Seismic Network to generate ShakeMaps in real-time.

  12. [Online publishing in the Internet age].

    PubMed

    Dørup, J G; Gylstorff, N H; Lous, J

    2000-10-16

    The availability of full text medical journal articles is rapidly increasing with the increased availability of the Internet. The potentials of the new technology present researchers, publishers, and librarians with new problems and challenges. Some resources are made available free of charge, whereas others are distributed as parts of large licences negotiated between publishers and consortia of research libraries. How can researchers maintain an overview of the constantly changing resources? How can libraries cope with tasks rapidly redefined by the technology? And how can publishers survive when production and distribution of literature information, including the handling of peer reviewing, might just as well be performed by the researchers themselves or their organisations? The present paper presents some of the resources available and discusses both national and international projects and activities that deal with these questions.

  13. Obliquity Variability of a Rapidly Rotating Early Venus and of the Potentially Habitable Exoplanets Kepler-62e and Kepler-62f

    NASA Astrophysics Data System (ADS)

    Lissauer, J. J.; Barnes, J. W.; Quarles, B.; Chambers, J.

    2017-12-01

    Venus currently rotates slowly, with its spin controlled by solid-body and atmospheric thermal tides. However, conditions may have been far different and more amenable to life 4 billion years ago, when the Sun was fainter and most of the carbon within Venus could have been in solid form, allowing for a low-mass atmosphere. Among the best candidates for habitability among known exoplanets are two planets within the optimistic habitable zone of their host star, Kepler-62 that are about 1.5 times the radius of Earth. We use numerical integrations to investigate how the obliquity would have varied on timescales as large as 1 Gyr for a hypothetical rapidly rotating Early Venus and for these two super-Earth size exoplanets.

  14. Why the US science and engineering workforce is aging rapidly.

    PubMed

    Blau, David M; Weinberg, Bruce A

    2017-04-11

    The science and engineering workforce has aged rapidly in recent years, both in absolute terms and relative to the workforce as a whole. This is a potential concern if the large number of older scientists crowds out younger scientists, making it difficult for them to establish independent careers. In addition, scientists are believed to be most creative earlier in their careers, so the aging of the workforce may slow the pace of scientific progress. We develop and simulate a demographic model, which shows that a substantial majority of recent aging is a result of the aging of the large baby boom cohort of scientists. However, changes in behavior have also played a significant role, in particular, a decline in the retirement rate of older scientists, induced in part by the elimination of mandatory retirement in universities in 1994. Furthermore, the age distribution of the scientific workforce is still adjusting. Current retirement rates and other determinants of employment in science imply a steady-state mean age 2.3 y higher than the 2008 level of 48.6.

  15. Quantitative NDE of Composite Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  16. Why the US science and engineering workforce is aging rapidly

    PubMed Central

    Blau, David M.

    2017-01-01

    The science and engineering workforce has aged rapidly in recent years, both in absolute terms and relative to the workforce as a whole. This is a potential concern if the large number of older scientists crowds out younger scientists, making it difficult for them to establish independent careers. In addition, scientists are believed to be most creative earlier in their careers, so the aging of the workforce may slow the pace of scientific progress. We develop and simulate a demographic model, which shows that a substantial majority of recent aging is a result of the aging of the large baby boom cohort of scientists. However, changes in behavior have also played a significant role, in particular, a decline in the retirement rate of older scientists, induced in part by the elimination of mandatory retirement in universities in 1994. Furthermore, the age distribution of the scientific workforce is still adjusting. Current retirement rates and other determinants of employment in science imply a steady-state mean age 2.3 y higher than the 2008 level of 48.6. PMID:28348239

  17. Deep Rapid Optical Follow-Up of Gravitational Wave Sources with the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Cowperthwaite, Philip

    2018-01-01

    The detection of an electromagnetic counterpart associated with a gravitational wave detection by the Advanced LIGO and VIRGO interferometers is one of the great observational challenges of our time. The large localization regions and potentially faint counterparts require the use of wide-field, large aperture telescopes. As a result, the Dark Energy Camera, a 3.3 sq deg CCD imager on the 4-m Blanco telescope at CTIO in Chile is the most powerful instrument for this task in the Southern Hemisphere. I will report on the results from our joint program between the community and members of the dark energy survey to conduct rapid and efficient follow-up of gravitational wave sources. This includes systematic searches for optical counterparts, as well as developing an understanding of contaminating sources on timescales not normally probed by traditional untargeted supernova surveys. I will additionally comment on the immense science gains to be made by a joint detection and discuss future prospects from the standpoint of both next generation wide-field telescopes and next generation gravitational wave detectors.

  18. Data-driven decision support for radiologists: re-using the National Lung Screening Trial dataset for pulmonary nodule management.

    PubMed

    Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L

    2015-02-01

    Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.

  19. Cascading and Parallelising Curvilinear Inertial Focusing Systems for High Volume, Wide Size Distribution, Separation and Concentration of Particles

    PubMed Central

    Miller, B.; Jimenez, M.; Bridle, H.

    2016-01-01

    Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244

  20. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  1. Temporal Precision of Neuronal Information in a Rapid Perceptual Judgment

    PubMed Central

    Ghose, Geoffrey M.; Harrison, Ian T.

    2009-01-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons. PMID:19109454

  2. Temporal precision of neuronal information in a rapid perceptual judgment.

    PubMed

    Ghose, Geoffrey M; Harrison, Ian T

    2009-03-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons.

  3. Analysis of P and Pdiff Coda Arrivals for Water Reverberations to Evaluate Shallow Slip Extent in Large Megathrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Rhode, A.; Lay, T.

    2017-12-01

    Determining the up-dip rupture extent of large megathrust ruptures is important for understanding their tsunami excitation, frictional properties of the shallow megathrust, and potential for separate tsunami earthquake occurrence. On land geodetic data have almost no resolution of the up-dip extent of faulting and teleseismic observations have limited resolution that is strongly influenced by typically poorly known shallow seismic velocity structure near the toe of the accretionary prism. The increase in ocean depth as slip on the megathrust approaches the trench has significant influence on the strength and azimuthal distribution of water reverberations in the far-field P wave coda. For broadband P waves from large earthquakes with dominant signal periods of about 10 s, water reverberations generated by shallow fault slip under deep water may persist for over a minute after the direct P phases have passed, giving a clear signal of slip near the trench. As the coda waves can be quickly evaluated following the P signal, recognition of slip extending to the trench and associated enhanced tsunamigenic potential could be achieved within a few minutes after the P arrival, potentially contributing to rapid tsunami hazard assessment. We examine the broadband P wave coda at distances from 80 to 120° for a large number of recent major and great earthquakes with independently determined slip distributions and known tsunami excitation to evaluate the prospect for rapidly constraining up-dip rupture extent of large megathrust earthquakes. Events known to have significant shallow slip, at least locally extending to the trench (e.g., 2016 Illapel, Chile; 2010 Maule, 2010 Mentawai) do have relatively enhanced coda levels at all azimuths, whereas events that do not rupture the shallow megathrust (e.g., 2007 Sumatra, 2014 Iquique, 2003 Hokkaido) do not. Some events with slip models lacking shallow slip show strong coda generation, raising questions about the up-dip resolution of slip of their finite-fault models, and others show strong azimuthal patterns in coda strength that suggest propagation from the slip zone to the deep near-trench environments is involved rather than slip near the trench. The various behaviors will be integrated into an assessment of this approach.

  4. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    PubMed Central

    Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-01-01

    Abstract. Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12  mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called “strip mosaicing,” which was demonstrated on a 10-×-10  mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10  mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5  cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery. PMID:23389736

  5. Increasing climate whiplash in 21st century California

    NASA Astrophysics Data System (ADS)

    Swain, D. L.; Langenbrunner, B.; Neelin, J. D.; Hall, A. D.

    2017-12-01

    Temperate "Mediterranean" climate regimes across the globe are particularly susceptible to wide swings between drought and flood—of which California's rapid transition from record multi-year dryness between 2012-2016 to extreme wetness during 2016-2017 provides a dramatic example. The wide-ranging human and environmental impacts of this recent "climate whiplash" event in a highly-populated, economically critical, and biodiverse region highlight the importance of understanding weather and climate extremes at both ends of the hydroclimatic spectrum. Previous studies have examined the potential contribution of anthropogenic warming to recent California extremes, but findings to date have been mixed and primarily drought-focused. Here, we use specific historical California flood and drought events as thresholds for quantifying long-term changes in precipitation extremes using a large ensemble of multi-decadal climate model simulations (CESM-LENS). We find that greenhouse gas emissions are already responsible for a detectable increase in both wet and dry extremes across portions of California, and that increasing 21st century "climate whiplash" will likely yield large increases in the frequency of both rapid "dry-to-wet" transitions and severe flood events over a wide range of timescales. This projected intensification of California's hydrological cycle would seriously challenge the region's existing water storage, conveyance, and flood control infrastructure—even absent large changes in mean precipitation.

  6. The Potential Wind Power Resource in Australia: A New Perspective

    PubMed Central

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222

  7. The potential wind power resource in Australia: a new perspective.

    PubMed

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  8. Exploiting OSPaN (Optical Solar Patrol Network) Data to Understand Large-Scale Solar Eruptions Impacting Space Weather

    DTIC Science & Technology

    2011-12-28

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...by CMEs; (2) the angular orientation of newly emerged magnetic flux on the solar surface relative to stable filaments plays a role in how rapidly the...potential of exploiting ISOON observations to increase our understanding of solar eruptions, a requirement for improved prediction and mitigation of space

  9. Safety consequences of local initiating events in an LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.

  10. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  11. Guidelines for guidelines.

    PubMed

    Amerling, Richard; Winchester, James F; Ronco, Claudio

    2007-01-01

    Practice guidelines are proliferating in medicine. In addition to methodological problems that cause guidelines to be outdated rapidly, they are plagued by conflicts of interest. They are largely consensus opinions of panels of experts, most of whom are supported by industry. Professional societies, health insurers, Centers for Medicare and Medicaid Services, and dialysis providers also benefit from guidelines. Little attention is paid to the potential for harm to patients, and to the profession of medicine, from the widespread use of guidelines. Copyright (c) 2007 S. Karger AG, Basel.

  12. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  13. Rapid Characterization of Large Earthquakes in Chile

    NASA Astrophysics Data System (ADS)

    Barrientos, S. E.; Team, C.

    2015-12-01

    Chile, along 3000 km of it 4200 km long coast, is regularly affected by very large earthquakes (up to magnitude 9.5) resulting from the convergence and subduction of the Nazca plate beneath the South American plate. These megathrust earthquakes exhibit long rupture regions reaching several hundreds of km with fault displacements of several tens of meters. Minimum delay characterization of these giant events to establish their rupture extent and slip distribution is of the utmost importance for rapid estimations of the shaking area and their corresponding tsunami-genic potential evaluation, particularly when there are only few minutes to warn the coastal population for immediate actions. The task of a rapid evaluation of large earthquakes is accomplished in Chile through a network of sensors being implemented by the National Seismological Center of the University of Chile. The network is mainly composed approximately by one hundred broad-band and strong motion instruments and 130 GNSS devices; all will be connected in real time. Forty units present an optional RTX capability, where satellite orbits and clock corrections are sent to the field device producing a 1-Hz stream at 4-cm level. Tests are being conducted to stream the real-time raw data to be later processed at the central facility. Hypocentral locations and magnitudes are estimated after few minutes by automatic processing software based on wave arrival; for magnitudes less than 7.0 the rapid estimation works within acceptable bounds. For larger events, we are currently developing automatic detectors and amplitude estimators of displacement coming out from the real time GNSS streams. This software has been tested for several cases showing that, for plate interface events, the minimum magnitude threshold detectability reaches values within 6.2 and 6.5 (1-2 cm coastal displacement), providing an excellent tool for earthquake early characterization from a tsunamigenic perspective.

  14. Predicting the propagation of concentration and saturation fronts in fixed-bed filters.

    PubMed

    Callery, O; Healy, M G

    2017-10-15

    The phenomenon of adsorption is widely exploited across a range of industries to remove contaminants from gases and liquids. Much recent research has focused on identifying low-cost adsorbents which have the potential to be used as alternatives to expensive industry standards like activated carbons. Evaluating these emerging adsorbents entails a considerable amount of labor intensive and costly testing and analysis. This study proposes a simple, low-cost method to rapidly assess the potential of novel media for potential use in large-scale adsorption filters. The filter media investigated in this study were low-cost adsorbents which have been found to be capable of removing dissolved phosphorus from solution, namely: i) aluminum drinking water treatment residual, and ii) crushed concrete. Data collected from multiple small-scale column tests was used to construct a model capable of describing and predicting the progression of adsorbent saturation and the associated effluent concentration breakthrough curves. This model was used to predict the performance of long-term, large-scale filter columns packed with the same media. The approach proved highly successful, and just 24-36 h of experimental data from the small-scale column experiments were found to provide sufficient information to predict the performance of the large-scale filters for up to three months. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid flood loss estimation for large scale floods in Germany

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Merz, Bruno

    2013-04-01

    Rapid evaluations of flood events are needed for efficient responses both in emergency management and financial appraisal. Beyond that, closely monitoring and documenting the formation and development of flood events and their impacts allows for an improved understanding and in depth analyses of the interplay between meteorological, hydrological, hydraulic and societal causes leading to flood damage. This contribution focuses on the development of a methodology for the rapid assessment of flood events. In the first place, the focus is on the prediction of damage to residential buildings caused by large scale floods in Germany. For this purpose an operational flood event analysis system is developed. This system has basic spatial thematic data available and supports data capturing about the current flood situation. This includes the retrieval of online gauge data and the integration of remote sensing data. Further, it provides functionalities to evaluate the current flood situation, to assess the hazard extent and intensity and to estimate the current flood impact using the flood loss estimation model FLEMOps+r. The operation of the flood event analysis system will be demonstrated for the past flood event from January 2011 with a focus on the Elbe/Saale region. On this grounds, further requirements and potential for improving the information basis as for instance by including hydrological and /or hydraulic model results as well as information from social sensors will be discussed.

  16. Using crowd sourcing to combat potentially illegal or dangerous UAV operations

    NASA Astrophysics Data System (ADS)

    Tapsall, Brooke T.

    2016-10-01

    The UAV (Unmanned Aerial Vehicles) industry is growing exponentially at a pace that policy makers, individual countries and law enforcement agencies are finding difficult to keep up. The UAV market is large, as such the amount of UAVs being operated in potentially dangerous situations is prevalent and rapidly increasing. Media is continually reporting `near-miss' incidents between UAVs and commercial aircraft, UAV breaching security in sensitive areas or invading public privacy. One major challenge for law enforcement agencies is gaining tangible evidence against potentially dangerous or illegal UAV operators due to the rapidity with which UAV operators are able to enter, fly and exit a scene before authorities can arrive or before they can be located. DroneALERT, an application available via the Airport-UAV.com website, allows users to capture potentially dangerous or illegal UAV activity using their mobile device as it the incident is occurring. A short online DroneALERT Incident Report (DIR) is produced, emailed to the user and the Airport-UAV.com custodians. The DIR can be used to aid authorities in their investigations. The DIR contains details such as images and videos, location, time, date of the incident, drone model, its distance and height. By analysing information from the DIR, photos or video, there is a high potential for law enforcement authorities to use this evidence to identify the type of UAV used, triangulate the location of the potential dangerous UAV and operator, create a timeline of events, potential areas of operator exit and to determine the legalities breached. All provides crucial evidence for identifying and prosecuting a UAV operator.

  17. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity

    PubMed Central

    Boudreau, Colton; Wee, Tse-Luen (Erika); Duh, Yan-Rung (Silvia); Couto, Melissa P.; Ardakani, Kimya H.; Brown, Claire M.

    2016-01-01

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity. PMID:27485088

  18. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.

    PubMed

    Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M

    2016-08-03

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.

  19. Dynamical Localization for Discrete and Continuous Random Schrödinger Operators

    NASA Astrophysics Data System (ADS)

    Germinet, F.; De Bièvre, S.

    We show for a large class of random Schrödinger operators Ho on and on that dynamical localization holds, i.e. that, with probability one, for a suitable energy interval I and for q a positive real, Here ψ is a function of sufficiently rapid decrease, and PI(Ho) is the spectral projector of Ho corresponding to the interval I. The result is obtained through the control of the decay of the eigenfunctions of Ho and covers, in the discrete case, the Anderson tight-binding model with Bernoulli potential (dimension ν = 1) or singular potential (ν > 1), and in the continuous case Anderson as well as random Landau Hamiltonians.

  20. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  1. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  2. Rapid and prodium iodide-compatible optical clearing method for brain tissue based on sugar/sugar-alcohol

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Qi, Yisong; Wang, Jianru; Feng, Wei; Xu, Jianyi; Zhu, Jingtan; Yao, Yingtao; Gong, Hui; Luo, Qingming; Zhu, Dan

    2016-08-01

    The developed optical clearing methods show great potential for imaging of large-volume tissues, but these methods present some nonnegligible limitations such as complexity of implementation and long incubation times. In this study, we tried to screen out rapid optical clearing agents by means of molecular dynamical simulation and experimental demonstration. According to the optical clearing potential of sugar and sugar-alcohol, we further evaluated the improvement in the optical clearing efficacy of mouse brain samples, imaging depth, fluorescence preservation, and linear deformation. The results showed that drops of sorbitol, sucrose, and fructose could quickly make the mouse brain sample transparent within 1 to 2 min, and induce about threefold enhancement in imaging depth. The former two could evidently enhance the fluorescence intensity of green fluorescent protein (GFP) and prodium iodide (PI) nuclear dye. Fructose could significantly increase the fluorescence intensity of PI, but slightly decrease the fluorescence intensity of GFP. Even though the three agents caused some shrinkage in samples, the contraction in horizontal and longitudinal directions are almost the same.

  3. An ecosystem services framework for multidisciplinary research in the Colorado River headwaters

    USGS Publications Warehouse

    Semmens, D.J.; Briggs, J.S.; Martin, D.A.

    2009-01-01

    A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can be updated and improved adaptively on an annual basis as tree mortality, climatic conditions, and management actions unfold. 

  4. Patterning via optical saturable transitions

    NASA Astrophysics Data System (ADS)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures <100nm. Even with a 193nm laser source and extremely complicated processing, patterns below ˜20nm are incredibly challenging to create. Sources with even shorter wavelengths can potentially be used. However, these tend be much more expensive and of much lower brightness, which in turn limits their patterning speed. Multi-photon reactions have been proposed to overcome the diffraction limit. However, these require very large intensities for modest gain in resolution. Moreover, the large intensities make it difficult to parallelize, thus limiting the patterning speed. In this dissertation, a novel nanopatterning technique using wavelength-selective small molecules that undergo single-photon reactions, enabling rapid top-down nanopatterning over large areas at low-light intensities, thereby allowing for the circumvention of the far-field diffraction barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  5. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products.

    PubMed

    Xing, Fuguo; Yao, Haibo; Liu, Yang; Dai, Xiaofeng; Brown, Robert L; Bhatnagar, Deepak

    2017-08-28

    Mycotoxins are the foremost naturally occurring contaminants of food products such as corn, peanuts, tree nuts, and wheat. As the secondary metabolites, mycotoxins are mainly synthesized by many species of the genera Aspergillus, Fusarium and Penicillium, and are considered highly toxic and carcinogenic to humans and animals. Most mycotoxins are detected and quantified by analytical chemistry-based methods. While mycotoxigenic fungi are usually identified and quantified by biological methods. However, these methods are time-consuming, laborious, costly, and inconsistent because of the variability of the grain-sampling process. It is desirable to develop rapid, non-destructive and efficient methods that objectively measure and evaluate mycotoxins and mycotoxigenic fungi in food. In recent years, some spectroscopy-based technologies such as hyperspectral imaging (HSI), Raman spectroscopy, and Fourier transform infrared spectroscopy have been extensively investigated for their potential use as tools for the detection, classification, and sorting of mycotoxins and toxigenic fungal contaminants in food. HSI integrates both spatial and spectral information for every pixel in an image, making it suitable for rapid detection of large quantities of samples and more heterogeneous samples and for in-line sorting in the food industry. In order to track the latest research developments in HSI, this paper gives a brief overview of the theories and fundamentals behind the technology and discusses its applications in the field of rapid detection and sorting of mycotoxins and toxigenic fungi in food products. Additionally, advantages and disadvantages of HSI are compared, and its potential use in commercial applications is reported.

  6. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings (1) highlight the large variability of MAR potential across the landscape, wherein the recharge capacity in select areas far exceeds recharge potential over most of the landscape, and (2) elucidate important physical processes that control MAR potential in alluvial aquifer systems.

  7. Rapid roll inflation with conformal coupling

    NASA Astrophysics Data System (ADS)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  8. Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets.

    PubMed

    Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M

    2017-09-01

    The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.

  9. [A study of complexity and power spectrum of cortical EEG and hippocampal potential in rats under different behavioral states].

    PubMed

    Feng, Zhou-yan; Zheng, Xiao-xiang

    2002-08-01

    Objective. To study the complexity and the power spectrum of cortical EEG and hippocampal potential in rats under waking and sleep states. Method. Cortical EEG and hippocampal potential were collected by implanted electrodes in freely moving rats. Algorithmic complexity (Kc), approximate entropy (ApEn), power spectral density (PSD) and gravity frequency of PSD of the potential waves were calculated. Result. The complexity of hippocampal potential was higher than that of cortical EEG under every state. The complexity of cortical EEG was lowest under the state of non rapid eye movement (NREM) sleep. The complexity of hippocampal potential was highest under waking state. The total power of both potentials in 0.5- 30 Hz frequency band showed their highest values under NREM state. Conclusion. The values of Kc and ApEn are closely related to the distributions of PSD. When there are evident peaks in PSD, the complexities of signals will decrease. The complexities may be used to distinguish the difference between cortical EEG and hippocampal potential, or large differences between the same kind of potentials under different behavioral states.

  10. Future energy system challenges for Africa: Insights from Integrated Assessment Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Paul; Nielsen, Jens; Calvin, Katherine V.

    Although Africa’s share in the global energy system is only small today, the ongoing population growth and economic development imply that this can change significantly. In this paper, we discuss long-term energy developments in Africa using the results of the LIMITS model inter-comparison study. The analysis focusses on the position of Africa in the wider global energy system and climate mitigation. The results show a considerable spread in model outcomes. Without specific climate policy, Africa’s share in global CO 2 emissions is projected to increase from around 1-4% today to 3-23% by 2100. In all models, emissions only start tomore » become really significant on a global scale after 2050. Furthermore, by 2030 still around 50% of total household energy use is supplied through traditional bio-energy, in contrast to existing ambitions from international organisations to provide access to modern energy for all. After 2050, the energy mix is projected to converge towards a global average energy mix with high shares of fossil fuels and electricity use. Finally, although the continent is now a large net exporter of oil and gas, towards 2050 it most likely needs most of its resources to meet its rapidly growing domestic demand. With respect to climate policy, the rapid expansion of the industrial and the power sector also create large mitigation potential and thereby the possibility to align the investment peak in the energy system with climate policy and potential revenues from international carbon trading.« less

  11. Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling.

    PubMed

    Hird, Sarah; Kubatko, Laura; Carstens, Bryan

    2010-11-01

    We describe a method for estimating species trees that relies on replicated subsampling of large data matrices. One application of this method is phylogeographic research, which has long depended on large datasets that sample intensively from the geographic range of the focal species; these datasets allow systematicists to identify cryptic diversity and understand how contemporary and historical landscape forces influence genetic diversity. However, analyzing any large dataset can be computationally difficult, particularly when newly developed methods for species tree estimation are used. Here we explore the use of replicated subsampling, a potential solution to the problem posed by large datasets, with both a simulation study and an empirical analysis. In the simulations, we sample different numbers of alleles and loci, estimate species trees using STEM, and compare the estimated to the actual species tree. Our results indicate that subsampling three alleles per species for eight loci nearly always results in an accurate species tree topology, even in cases where the species tree was characterized by extremely rapid divergence. Even more modest subsampling effort, for example one allele per species and two loci, was more likely than not (>50%) to identify the correct species tree topology, indicating that in nearly all cases, computing the majority-rule consensus tree from replicated subsampling provides a good estimate of topology. These results were supported by estimating the correct species tree topology and reasonable branch lengths for an empirical 10-locus great ape dataset. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    PubMed Central

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  13. Performance of a lateral flow immunochromatography test for the rapid diagnosis of active tuberculosis in a large multicentre study in areas with different clinical settings and tuberculosis exposure levels.

    PubMed

    Manga, Selene; Perales, Rocio; Reaño, Maria; D'Ambrosio, Lia; Migliori, Giovanni Battista; Amicosante, Massimo

    2016-11-01

    Tuberculosis (TB) continues to cause an outsized burden of morbidity and mortality worldwide, still missing efficient and largely accessible diagnostic tools determining an appropriate control of the disease. Serological tests have the potentially to impact TB diagnosis, in particular in extreme clinical settings. The diagnostic performances of the TB-XT HEMA EXPRESS (HEMA-EXPRESS) immunochromatographic rapid test for active TB diagnosis, based on use of multiple Mycobacterium tuberculosis (MTB) specific antigens, have been evaluated in a large study multicentre TB case-finding study, in populations with different exposure level to TB. A total of 1,386 subjects were enrolled in the six participating centres in Peru: 290 active-TB and 1,096 unaffected subjects. The TB prevalence (overall 20.5%) varied between 4.0% and 41.1% in the different study groups. Overall, the HEMA-EXPRESS test had 30.6% sensitivity (range 3.9-77.9%) and 84.6% specificity (range 51.6-97.3%). A significant inverse correlation between test accuracy (overall 73.5%, range 40.4-96.4%) and TB prevalence in the various study populations was observed (Pearson's r=-0.7985; P=0.05). HEMA-EXPRESS, is rapid and relatively inexpensive test suitable for routine use in TB diagnosis. In low TB prevalence conditions, test performance appears in line with WHO Target Product Profile for TB diagnostics. Performances appear suboptimal in high TB prevalence settings. Appropriate set-up in operative clinical settings has to be considered for novel serological tests for TB diagnosis, particularly for formats suitable for point-of-care use.

  14. On the Potential Uses of Static Offsets Derived From Low-Cost Community Instruments and Crowd-Sourcing for Earthquake Monitoring and Rapid Response

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Brooks, B. A.; Murray, J. R.; Iannucci, R. A.

    2013-12-01

    We explore the efficacy of low-cost community instruments (LCCIs) and crowd-sourcing to produce rapid estimates of earthquake magnitude and rupture characteristics which can be used for earthquake loss reduction such as issuing tsunami warnings and guiding rapid response efforts. Real-time high-rate GPS data are just beginning to be incorporated into earthquake early warning (EEW) systems. These data are showing promising utility including producing moment magnitude estimates which do not saturate for the largest earthquakes and determining the geometry and slip distribution of the earthquake rupture in real-time. However, building a network of scientific-quality real-time high-rate GPS stations requires substantial infrastructure investment which is not practicable in many parts of the world. To expand the benefits of real-time geodetic monitoring globally, we consider the potential of pseudorange-based GPS locations such as the real-time positioning done onboard cell phones or on LCCIs that could be distributed in the same way accelerometers are distributed as part of the Quake Catcher Network (QCN). While location information from LCCIs often have large uncertainties, their low cost means that large numbers of instruments can be deployed. A monitoring network that includes smartphones could collect data from potentially millions of instruments. These observations could be averaged together to substantially decrease errors associated with estimated earthquake source parameters. While these data will be inferior to data recorded by scientific-grade seismometers and GPS instruments, there are features of community-based data collection (and possibly analysis) that are very attractive. This approach creates a system where every user can host an instrument or download an application to their smartphone that both provides them with earthquake and tsunami warnings while also providing the data on which the warning system operates. This symbiosis helps to encourage people to both become users of the warning system and to contribute data to the system. Further, there is some potential to take advantage of the LCCI hosts' computing and communications resources to do some of the analysis required for the warning system. We will present examples of the type of data which might be observed by pseudorange-based positioning for both actual earthquakes and laboratory tests as well as performance tests of potential earthquake source modeling derived from pseudorange data. A highlight of these performance tests is a case study of the 2011 Mw 9 Tohoku-oki earthquake.

  15. Accelerated oral nanomedicine discovery from miniaturized screening to clinical production exemplified by paediatric HIV nanotherapies

    PubMed Central

    Giardiello, Marco; Liptrott, Neill J.; McDonald, Tom O.; Moss, Darren; Siccardi, Marco; Martin, Phil; Smith, Darren; Gurjar, Rohan; Rannard, Steve P.; Owen, Andrew

    2016-01-01

    Considerable scope exists to vary the physical and chemical properties of nanoparticles, with subsequent impact on biological interactions; however, no accelerated process to access large nanoparticle material space is currently available, hampering the development of new nanomedicines. In particular, no clinically available nanotherapies exist for HIV populations and conventional paediatric HIV medicines are poorly available; one current paediatric formulation utilizes high ethanol concentrations to solubilize lopinavir, a poorly soluble antiretroviral. Here we apply accelerated nanomedicine discovery to generate a potential aqueous paediatric HIV nanotherapy, with clinical translation and regulatory approval for human evaluation. Our rapid small-scale screening approach yields large libraries of solid drug nanoparticles (160 individual components) targeting oral dose. Screening uses 1 mg of drug compound per library member and iterative pharmacological and chemical evaluation establishes potential candidates for progression through to clinical manufacture. The wide applicability of our strategy has implications for multiple therapy development programmes. PMID:27767027

  16. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE PAGES

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; ...

    2017-02-21

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  17. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  18. Negative obstacle detection by thermal signature

    NASA Technical Reports Server (NTRS)

    Matthies, Larry; Rankin, A.

    2003-01-01

    Detecting negative obstacles (ditches, potholes, and other depressions) is one of the most difficult problems in perception for autonomous, off-road navigation. Past work has largely relied on range imagery, because that is based on the geometry of the obstacle, is largely insensitive to illumination variables, and because there have not been other reliable alternatives. However, the visible aspect of negative obstacles shrinks rapidly with range, making them impossible to detect in time to avoid them at high speed. To relive this problem, we show that the interiors of negative obstacles generally remain warmer than the surrounding terrain throughout the night, making thermal signature a stable property for night-time negative obstacle detection. Experimental results to date have achieved detection distances 45% greater by using thermal signature than by using range data alone. Thermal signature is the first known observable with potential to reveal a deep negative obstacle without actually seeing far into it. Modeling solar illumination has potential to extend the usefulness of thermal signature through daylight hours.

  19. RAPID ASSESSMENT OF POTENTIAL GROUND-WATER CONTAMINATION UNDER EMERGENCY RESPONSE CONDITIONS

    EPA Science Inventory

    Emergency response actions at chemical spills and abandoned hazardous waste sites often require rapid assessment of the potential for groundwater contamination by the chemical or waste compound. This manual provides a rapid assessment methodology for performing such an evaluation...

  20. Earthquake mechanism and seafloor deformation for tsunami generation

    USGS Publications Warehouse

    Geist, Eric L.; Oglesby, David D.; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude.

  1. Repair of a Large Main Pulmonary Artery Aneurysm in a 71-Year-Old Jehovah's Witness Patient

    PubMed Central

    Henn, Lucas W.; Esmailian, Fardad

    2013-01-01

    Pulmonary artery aneurysm is a rarely reported and poorly studied entity; most mentions in the literature are in case series and case reports. Cardiac surgery in Jehovah's Witness patients is occurring more frequently because of improved techniques of blood conservation. We report the repair of a large pulmonary artery aneurysm in a 71-year-old woman who was a Jehovah's Witness. Using total cardiopulmonary bypass, we replaced the main pulmonary artery and both branches with Gelweave tube-grafts, because the fragility of a homograft presented possible bleeding problems. The patient recovered rapidly, and her symptoms were greatly improved. We think that a patient's status as a Jehovah's Witness need not preclude potentially life-saving cardiac operations. PMID:23914038

  2. Repair of a large main pulmonary artery aneurysm in a 71-year-old Jehovah's Witness patient.

    PubMed

    Henn, Lucas W; Esmailian, Fardad

    2013-01-01

    Pulmonary artery aneurysm is a rarely reported and poorly studied entity; most mentions in the literature are in case series and case reports. Cardiac surgery in Jehovah's Witness patients is occurring more frequently because of improved techniques of blood conservation. We report the repair of a large pulmonary artery aneurysm in a 71-year-old woman who was a Jehovah's Witness. Using total cardiopulmonary bypass, we replaced the main pulmonary artery and both branches with Gelweave tube-grafts, because the fragility of a homograft presented possible bleeding problems. The patient recovered rapidly, and her symptoms were greatly improved. We think that a patient's status as a Jehovah's Witness need not preclude potentially life-saving cardiac operations.

  3. Research on the Application of Rapid Surveying and Mapping for Large Scare Topographic Map by Uav Aerial Photography System

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Song, Y.; Li, C.; Zeng, F.; Wang, F.

    2017-08-01

    Rapid acquisition and processing method of large scale topographic map data, which relies on the Unmanned Aerial Vehicle (UAV) low-altitude aerial photogrammetry system, is studied in this paper, elaborating the main work flow. Key technologies of UAV photograph mapping is also studied, developing a rapid mapping system based on electronic plate mapping system, thus changing the traditional mapping mode and greatly improving the efficiency of the mapping. Production test and achievement precision evaluation of Digital Orth photo Map (DOM), Digital Line Graphic (DLG) and other digital production were carried out combined with the city basic topographic map update project, which provides a new techniques for large scale rapid surveying and has obvious technical advantage and good application prospect.

  4. Rapid Screening of Natural Plant Extracts with Calcium Diacetate for Differential Effects Against Foodborne Pathogens and a Probiotic Bacterium.

    PubMed

    Colonna, William; Brehm-Stecher, Byron; Shetty, Kalidas; Pometto, Anthony

    2017-12-01

    This study focused on advancing a rapid turbidimetric bioassay to screen antimicrobials using specific cocktails of targeted foodborne bacterial pathogens. Specifically, to show the relevance of this rapid screening tool, the antimicrobial potential of generally recognized as safe calcium diacetate (DAX) and blends with cranberry (NC) and oregano (OX) natural extracts was evaluated. Furthermore, the same extracts were evaluated against beneficial lactic acid bacteria. The targeted foodborne pathogens evaluated were Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using optimized initial cocktails (∼10 8 colony-forming unit/mL) containing strains isolated from human food outbreaks. Of all extracts evaluated, 0.51% (w/v) DAX in ethanol was the most effective against all four pathogens. However, DAX when reduced to 0.26% and with added blends from ethanol extractions consisting of DAX:OX (3:1), slightly outperformed or was equal to same levels of DAX alone. Subculture of wells in which no growth occurred after 1 week indicated that all water and ethanol extracts were bacteriostatic against the pathogens tested. All the targeted antimicrobials had no effect on the probiotic organism Lactobacillus plantarum. The use of such rapid screening methods combined with the use of multistrain cocktails of targeted foodborne pathogens from outbreaks will allow rapid large-scale screening of antimicrobials and enable further detailed studies in targeted model food systems.

  5. Promising strategies for advancement in knowledge of suicide risk factors and prevention.

    PubMed

    Sareen, Jitender; Isaak, Corinne; Katz, Laurence Y; Bolton, James; Enns, Murray W; Stein, Murray B

    2014-09-01

    Suicide is an important public health problem. Although there have been advances in our knowledge of suicide, gaps remain in knowledge about suicide risk factors and prevention. Here, we discuss research pathways that have the potential to rapidly advance knowledge in suicide risk assessment and reduction of suicide deaths over the next decade. We provide a concise overview of the methodologic approaches that have the capacity to rapidly increase knowledge and change practice, which have been successful in past work in psychiatry and other areas of medicine. We suggest three specific pathways to advance knowledge of suicide risk factors and prevention. First, analysis of large-scale epidemiologic surveys and administrative data sets can advance the understanding of suicide. Second, given the low base rate of suicide, there is a need for networks/consortia of investigators in the field of suicide prevention. Such consortia have the capacity to analyze existing epidemiologic data sets, create multi-site cohort studies of high-risk groups to increase knowledge of biological and other risk factors, and create a platform for multi-site clinical trials. Third, partnerships with policymakers and researchers would facilitate careful scientific evaluation of policies and programs aimed at reducing suicide. Suicide intervention policies are often multifaceted, expensive, and rarely evaluated. Using quasi-experimental methods or sophisticated analytic strategies such as propensity score-matching techniques, the impact of large-scale interventions on suicide can be evaluated. Furthermore, such partnerships between policymakers and researchers can lead to the design and support of prospective RCTs (e.g., cluster randomized trials, stepped wedge designs, waiting list designs) in high-risk groups (e.g., people with a history of suicide attempts, multi-axial comorbidity, and offspring of people who have died by suicide). These research pathways could lead to rapid knowledge uptake between communities and have the strong potential to reduce suicide. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  6. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies.

    PubMed

    Burgisser, Alain; Bergantz, George W

    2011-03-10

    The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale. This duality calls for a mechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystal-rich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition of magmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.

  7. An assessment of the status and trends in satellite communications 1986-2000: An information document prepared for the Communications Subcommittee of the Space Applications Advisory Committee

    NASA Technical Reports Server (NTRS)

    Poley, W. A.; Stevens, G. H.; Stevenson, S. M.; Lekan, J.; Arth, C. H.; Hollansworth, J. E.; Miller, E. F.

    1986-01-01

    This is a response to a Space Applications Advisory Committee (SAAC) request for information about the status and trends in satellite communications, to be used to support efforts to conceive and recommend long range goals for NASA communications activities. Included in this document are assessments of: (1) the outlook for satellite communications, including current applications, potential future applications, and impact of the changing environment such as optical fiber networks, the Integrated Services Digital Network (ISDN) standard, and the rapidly growing market for Very Small Aperture Terminals (VSAT); (2) the restrictions imposed by our limited spectrum resource; and (3) technology needs indicated by future trends. Potential future systems discussed include: large powerful satellites for providing personal communications; VSAT compatible satellites with onboard switching and having voice capability; large satellites which offer a pervasive T1 network service (primarily for video-phone); and large geostationary communications facilities which support common use by several carriers. Also, discussion is included of NASA particular needs and possible future systems. Based on the mentioned system concepts, specific technology recommendations are provided for the time frames of now - 1993, 1994 - 2000, and 2000 - 2010.

  8. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  9. Large-Area Chemical and Biological Decontamination Using a High Energy Arc Lamp (HEAL) System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Smith, Rob R; Vass, Arpad Alexander

    2008-01-01

    Methods for quickly decontaminating large areas exposed to chemical and biological (CB) warfare agents can present significant logistical, manpower, and waste management challenges. Oak Ridge National Laboratory (ORNL) is pursuing an alternate method to decompose CB agents without the use of toxic chemicals or other potentially harmful substances. This process uses a high energy arc lamp (HEAL) system to photochemically decompose CB agents over large areas (12 m2). Preliminary tests indicate that more than 5 decades (99.999%) of an Anthrax spore simulant (Bacillus globigii) were killed in less than 7 seconds of exposure to the HEAL system. When combined withmore » a catalyst material (TiO2) the HEAL system was also effective against a chemical agent simulant, diisopropyl methyl phosphonate (DIMP). These results demonstrate the feasibility of a rapid, large-area chemical and biological decontamination method that does not require toxic or corrosive reagents or generate hazardous wastes.« less

  10. Large area optical mapping of surface contact angle.

    PubMed

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  11. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  12. Open Biomedical Engineering education in Africa.

    PubMed

    Ahluwalia, Arti; Atwine, Daniel; De Maria, Carmelo; Ibingira, Charles; Kipkorir, Emmauel; Kiros, Fasil; Madete, June; Mazzei, Daniele; Molyneux, Elisabeth; Moonga, Kando; Moshi, Mainen; Nzomo, Martin; Oduol, Vitalice; Okuonzi, John

    2015-08-01

    Despite the virtual revolution, the mainstream academic community in most countries remains largely ignorant of the potential of web-based teaching resources and of the expansion of open source software, hardware and rapid prototyping. In the context of Biomedical Engineering (BME), where human safety and wellbeing is paramount, a high level of supervision and quality control is required before open source concepts can be embraced by universities and integrated into the curriculum. In the meantime, students, more than their teachers, have become attuned to continuous streams of digital information, and teaching methods need to adapt rapidly by giving them the skills to filter meaningful information and by supporting collaboration and co-construction of knowledge using open, cloud and crowd based technology. In this paper we present our experience in bringing these concepts to university education in Africa, as a way of enabling rapid development and self-sufficiency in health care. We describe the three summer schools held in sub-Saharan Africa where both students and teachers embraced the philosophy of open BME education with enthusiasm, and discuss the advantages and disadvantages of opening education in this way in the developing and developed world.

  13. A Review of the Growth of the Fast Food Industry in China and Its Potential Impact on Obesity.

    PubMed

    Wang, Youfa; Wang, Liang; Xue, Hong; Qu, Weidong

    2016-11-09

    The fast-food (FF) industry and obesity rates have rapidly increased in China. This study examined the FF industry growth in China, key factors contributing to the growth, and the association between FF consumption (FFC) and obesity. We collected related data from multiple sources and conducted analysis including linear regression analysis on the increase in FF revenue. It was found that FF industry in China is large, with over two million FF facilities. Its total revenue (in million US$) increased from 10,464 in 1999 to 94,218 in 2013, and by 13% annually since 2008. Increased income, urbanization, busier lifestyle, speedy FF service, assurance of food safety, new brands and foods have stimulated demand for FF. Studies have linked FFC with obesity risk, including a few reporting a positive association between FFC and obesity in China. Rapid expansion of Western-style FF restaurants has also stimulated local FF industry growth. Government regulation and public health education need to address the health consequences of rapidly increasing FFC. Lessons learned in China will help other countries.

  14. A Review of the Growth of the Fast Food Industry in China and Its Potential Impact on Obesity

    PubMed Central

    Wang, Youfa; Wang, Liang; Xue, Hong; Qu, Weidong

    2016-01-01

    The fast-food (FF) industry and obesity rates have rapidly increased in China. This study examined the FF industry growth in China, key factors contributing to the growth, and the association between FF consumption (FFC) and obesity. We collected related data from multiple sources and conducted analysis including linear regression analysis on the increase in FF revenue. It was found that FF industry in China is large, with over two million FF facilities. Its total revenue (in million US$) increased from 10,464 in 1999 to 94,218 in 2013, and by 13% annually since 2008. Increased income, urbanization, busier lifestyle, speedy FF service, assurance of food safety, new brands and foods have stimulated demand for FF. Studies have linked FFC with obesity risk, including a few reporting a positive association between FFC and obesity in China. Rapid expansion of Western-style FF restaurants has also stimulated local FF industry growth. Government regulation and public health education need to address the health consequences of rapidly increasing FFC. Lessons learned in China will help other countries. PMID:27834887

  15. Development of a global slope dataset for estimation of landslide occurrence resulting from earthquakes

    USGS Publications Warehouse

    Verdin, Kristine L.; Godt, Jonathan W.; Funk, Christopher C.; Pedreros, Diego; Worstell, Bruce; Verdin, James

    2007-01-01

    Landslides resulting from earthquakes can cause widespread loss of life and damage to critical infrastructure. The U.S. Geological Survey (USGS) has developed an alarm system, PAGER (Prompt Assessment of Global Earthquakes for Response), that aims to provide timely information to emergency relief organizations on the impact of earthquakes. Landslides are responsible for many of the damaging effects following large earthquakes in mountainous regions, and thus data defining the topographic relief and slope are critical to the PAGER system. A new global topographic dataset was developed to aid in rapidly estimating landslide potential following large earthquakes. We used the remotely-sensed elevation data collected as part of the Shuttle Radar Topography Mission (SRTM) to generate a slope dataset with nearly global coverage. Slopes from the SRTM data, computed at 3-arc-second resolution, were summarized at 30-arc-second resolution, along with statistics developed to describe the distribution of slope within each 30-arc-second pixel. Because there are many small areas lacking SRTM data and the northern limit of the SRTM mission was lat 60?N., statistical methods referencing other elevation data were used to fill the voids within the dataset and to extrapolate the data north of 60?. The dataset will be used in the PAGER system to rapidly assess the susceptibility of areas to landsliding following large earthquakes.

  16. Real-Time Continuous Response Spectra Exceedance Calculation Displayed in a Web-Browser Enables Rapid and Robust Damage Evaluation by First Responders

    NASA Astrophysics Data System (ADS)

    Franke, M.; Skolnik, D. A.; Harvey, D.; Lindquist, K.

    2014-12-01

    A novel and robust approach is presented that provides near real-time earthquake alarms for critical structures at distributed locations and large facilities using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Details on the novel approach are presented along with an example implementation for a large energy company. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, an extension module based on the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Antelope is an environmental data collection software package from Boulder Real Time Technologies (BRTT) typically used for very large seismic networks and real-time seismic data analyses. The primary processing engine produces continuous time-dependent response spectra for incoming acceleration streams. It utilizes expanded floating-point data representations within object ring-buffer packets and waveform files in a relational database. This leads to a very fast method for computing response spectra for a large number of channels. A Python script evaluates these response spectra for exceedance of one or more specified spectral limits, reporting any such exceedances via alarm packets that are put in the object ring-buffer for use by any alarm processes that need them. The web-display subsystem allows alert dissemination, interactive exploration, and alarm cancellation via the WWW.

  17. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety

    PubMed Central

    Huang, Hui; Liu, Li; Ngadi, Michael O.

    2014-01-01

    Hyperspectral imaging which combines imaging and spectroscopic technology is rapidly gaining ground as a non-destructive, real-time detection tool for food quality and safety assessment. Hyperspectral imaging could be used to simultaneously obtain large amounts of spatial and spectral information on the objects being studied. This paper provides a comprehensive review on the recent development of hyperspectral imaging applications in food and food products. The potential and future work of hyperspectral imaging for food quality and safety control is also discussed. PMID:24759119

  18. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  19. Sphenoidal mucocele presenting as acute cranial nerve palsies

    PubMed Central

    Cheng, Clarissa S.M.; Sanjay, Srinivasan; Yip, Chee Chew; Yuen, Heng-Wai

    2012-01-01

    Sphenoidal sinus mucoceles are indolent lesions that, when sufficiently large, can compress on the optic canal or superior orbital fissure, rapidly causing loss of vision, optic neuropathy, ptosis, pain, ophthalmoplegia, and diplopia. We herein report a 72-year-old gentleman who presented acutely with Cranial Nerve II, III, and IV palsies secondary to a sphenoidal sinus mucocele that was confirmed on magnetic resonance imaging and successfully treated with endoscopic drainage. This cause of orbital apex syndrome is important for clinicians to know as early diagnosis and treatment is critical in recovering visual potential. PMID:23961035

  20. Applications of the CRISPR-Cas9 system in cancer biology

    PubMed Central

    Sánchez-Rivera, Francisco J.; Jacks, Tyler

    2015-01-01

    Preface The prokaryotic type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is rapidly revolutionizing the field of genetic engineering, allowing researchers to alter the genomes of a large variety of organisms with relative ease. Experimental approaches based on this versatile technology have the potential to transform the field of cancer genetics. Here we review current approaches based on CRISPR-Cas9 for functional studies of cancer genes, with emphasis on its applicability for the development of the next-generation models of human cancer. PMID:26040603

  1. A First-Order Estimate of Automated Mobility District Fuel Consumption and GHG Emission Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuche; Young, Stanley E; Gonder, Jeffrey D

    A first of its kind, this study develops a framework to quantify the fuel consumption and greenhouse gas emission impacts of an Automated Small Vehicle Transit system on a campus area. The results show that the automated mobility district system has the potential to reduce transportation system fuel consumption and greenhouse gas emissions, but the benefits are largely dependent on the operation and ridership of the personal rapid transit system. Our study calls for more research to understand the energy and environmental benefits of such a system.

  2. Acquisition and Processing of Information During States of Rapid Eye Movement (REM) Sleep and Slow-Wave Sleep

    DTIC Science & Technology

    1990-07-01

    sleep to favor one set of material in preference to others. This could apply to skill learning as well as declarative memory with considerable potential...not be advantageous for an organism to store a large number of specific memories , specific records of the many experiences of each day of its lifetime...be stored in real time in a sequential representation, as on a serial computer tape. Access to this "episodic" memory would be by serial order, by time

  3. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-01

    The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.

  4. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    PubMed Central

    Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng

    2017-01-01

    Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946

  5. Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.

    2010-09-01

    In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.

  6. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    NASA Astrophysics Data System (ADS)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  7. Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers.

    PubMed

    Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James

    2016-03-23

    There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.

  8. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM

    PubMed Central

    Richens, Jennifer H.; Barros, Teresa P.; Lucas, Eliana P.; Peel, Nina; Pinto, David Miguel Susano; Wainman, Alan; Raff, Jordan W.

    2015-01-01

    ABSTRACT Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM. PMID:26157019

  9. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM.

    PubMed

    Richens, Jennifer H; Barros, Teresa P; Lucas, Eliana P; Peel, Nina; Pinto, David Miguel Susano; Wainman, Alan; Raff, Jordan W

    2015-07-08

    Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM. © 2015. Published by The Company of Biologists Ltd.

  10. Fabrication of a large-area, flexible micro-pyramid PET film SERS substrate and its application in the detection of dye in herbal tea

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Huang, Meizhen; Chen, Jie; Kong, Lili; Wang, Keihui

    2018-05-01

    A simple method, based on a roll-to-roll ultraviolet micro-pyramid imprinting technique and a nanoparticle self-assembling process in aqueous solution, to fabricate a large-area, flexible surface-enhanced Raman scattering (SERS) polyethylene glycol terephthalate substrate is proposed. The SERS substrate is demonstrated to be of high sensitivity. The detection concentration of Rhodamine 6G (R6G) measured by a portable Raman spectrometer is down to 10-9 mol l-1. The relative standard deviation values of different spots and different substrates are less than 13%. In addition, the feasibility for rapid detection of dye in herbal tea based on this SERS substrate and a portable Raman spectrometer is investigated. Three industrial dyes are employed to simulate the dyeing process. It is presented that R6G of 4.8× {{10}-7} g ml-1, malachite green of 10-6 g ml-1 and Auramine O of 10-6 g ml-1 in herbal tea could be detected rapidly. The experimental results imply that this method could be potentially applied in the field of dyed herbal tea detection.

  11. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates.

    PubMed

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-11-21

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) "hot spots" created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10(-7) M and 10(-5) M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.

  12. Rapid forest recovery of carbon and water fluxes after a tropical firestorm

    NASA Astrophysics Data System (ADS)

    Brando, P. M.; Silverio, D. V.; Migliavacca, M.; Santos, C.; Kolle, O.; Balch, J.; Maracahipes, L.; Bustamante, M.; Coe, M. T.; Trumbore, S.

    2017-12-01

    Forest disturbances interact synergistically and drive potentially large and persistent degradation of ecosystem services in the tropics. Here we analyze multi-year measurements of carbon (C) and water (evapotranspiration; ET) fluxes in forests recovering from 7 years of prescribed fires. Located in southeast Amazonia, the experimental forest consisted of three 50-ha plots burned annually, triennially, or not at all between 2004-2010. During the subsequent seven-year recovery period from 2011 to present, tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70-94% along forest edges. While vegetation regrowth in the forest understory triggered partial canopy closure, light-demanding grasses covered roughly the same area in 2015 that they did in 2012. However, the spatial distribution of grasses drastically changed, while C4 grass species replaced C3 ones. Surprisingly, the observed alterations in forest structure and dynamics rendered minor or no changes in total C fluxes and ET, probably because plants in the burned forest increased light- and reduced ecosystem water-use efficiency. Hence, delayed post-fire mortality of large trees can reduce forest C stocks and create opportunities for the establishment of invasive grasses, Yet, post-fire vegetation growth can rapidly restore C uptake and ET by optimizing resources use. These results show that tropical forests can rapidly recover the capacity to cycle water and carbon following disturbances, but also that a full recovery of biomass and vegetation dominance may take many years or decades.

  13. Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community about the potential usefulness of rapid SAR and GPS-based information. We will present progress on our data system technology that enables rapid and reliable production of imagery, as well as lessons learned from our engagement with FEMA and others in the hazard response community on the important actionable information that they need.

  14. Implementation of Electronic Consent at a Biobank: An Opportunity for Precision Medicine Research

    PubMed Central

    Boutin, Natalie T.; Mathieu, Kathleen; Hoffnagle, Alison G.; Allen, Nicole L.; Castro, Victor M.; Morash, Megan; O’Rourke, P. Pearl; Hohmann, Elizabeth L.; Herring, Neil; Bry, Lynn; Slaugenhaupt, Susan A.; Karlson, Elizabeth W.; Weiss, Scott T.; Smoller, Jordan W.

    2016-01-01

    The purpose of this study is to characterize the potential benefits and challenges of electronic informed consent (eIC) as a strategy for rapidly expanding the reach of large biobanks while reducing costs and potentially enhancing participant engagement. The Partners HealthCare Biobank (Partners Biobank) implemented eIC tools and processes to complement traditional recruitment strategies in June 2014. Since then, the Partners Biobank has rigorously collected and tracked a variety of metrics relating to this novel recruitment method. From June 2014 through January 2016, the Partners Biobank sent email invitations to 184,387 patients at Massachusetts General Hospital and Brigham and Women’s Hospital. During the same time period, 7078 patients provided their consent via eIC. The rate of consent of emailed patients was 3.5%, and the rate of consent of patients who log into the eIC website at Partners Biobank was 30%. Banking of biospecimens linked to electronic health records has become a critical element of genomic research and a foundation for the NIH’s Precision Medicine Initiative (PMI). eIC is a feasible and potentially game-changing strategy for these large research studies that depend on patient recruitment. PMID:27294961

  15. [Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China.

    PubMed

    Chen, Xiao Ping; Chen, Wen Bo

    2016-05-01

    Large-scale ecological patches play an important role in regional biodiversity conservation. However, with the rapid progress of China's urbanization, human disturbance on the environment is becoming stronger. Large-scale ecological patches will degrade not only in quantity, but also in quality, threatening the connections among them due to isolation and seriously affecting the biodiversity protection. Taking Poyang Lake Eco-economic Zone as a case, this paper established the potential ecological corridors by minimum cost model and GIS technique taking the impacts of landscape types, slope and human disturbance into consideration. Then, based on gravity quantitative model, we analyzed the intensity of ecological interactions between patches, and the potential ecological corridors were divided into two classes for sake of protection. Finally, the important ecological nodes and breaking points were identified, and the structure of the potential ecological network was analyzed. The results showed that forest and cropland were the main landscape types of ecological corridor composition, interaction between ecological patches differed obviously and the structure of the composed regional ecological network was complex with high connectivity and closure. It might provide a scientific basis for the protection of biodiversity and ecological network optimization in Poyang Lake Eco-economic Zone.

  16. Evaluation of rapid dual-tracer 62Cu-PTSM + 62Cu-ATSM PET in dogs with spontaneously occurring tumors

    NASA Astrophysics Data System (ADS)

    Black, Noel F.; McJames, Scott; Rust, Thomas C.; Kadrmas, Dan J.

    2008-01-01

    We are developing methods for imaging multiple PET tracers in a single scan with staggered injections, where imaging measures for each tracer are separated and recovered using differences in tracer kinetics and radioactive decay. In this work, signal separation performance for rapid dual-tracer 62Cu-PTSM (blood flow) + 62Cu-ATSM (hypoxia) tumor imaging was evaluated in a large animal model. Four dogs with pre-existing tumors received a series of dynamic PET scans with 62Cu-PTSM and 62Cu-ATSM, permitting evaluation of a rapid dual-tracer protocol designed by previous simulation work. Several imaging measures were computed from the dual-tracer data and compared with those from separate, single-tracer imaging. Static imaging measures (e.g. SUV) for each tracer were accurately recovered from dual-tracer data. The wash-in (k1) and wash-out (k2) rate parameters for both tracers were likewise well recovered (r = 0.87-0.99), but k3 was not accurately recovered for PTSM (r = 0.19) and moderately well recovered for ATSM (r = 0.70). Some degree of bias was noted, however, which may potentially be overcome through further refinement of the signal separation algorithms. This work demonstrates that complementary information regarding tumor blood flow and hypoxia can be acquired by a single dual-tracer PET scan, and also that the signal separation procedure works effectively for real physiologic data with realistic levels of kinetic model mismatch. Rapid multi-tracer PET has the potential to improve tumor assessment for image-guide therapy and monitoring, and further investigation with these and other tracers is warranted.

  17. Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group.

    PubMed

    Grummer, Jared A; Morando, Mariana M; Avila, Luciano J; Sites, Jack W; Leaché, Adam D

    2018-08-01

    Rapid evolutionary radiations are difficult to resolve because divergence events are nearly synchronous and gene flow among nascent species can be high, resulting in a phylogenetic "bush". Large datasets composed of sequence loci from across the genome can potentially help resolve some of these difficult phylogenetic problems. A suitable test case is the Liolaemus fitzingerii species group of lizards, which includes twelve species that are broadly distributed in Argentinean Patagonia. The species in the group have had a complex evolutionary history that has led to high morphological variation and unstable taxonomy. We generated a sequence capture dataset for 28 ingroup individuals of 580 nuclear loci, alongside a mitogenomic dataset, to infer phylogenetic relationships among species in this group. Relationships among species were generally weakly supported with the nuclear data, and along with an inferred age of ∼2.6 million years old, indicate either rapid evolution, hybridization, incomplete lineage sorting, non-informative data, or a combination thereof. We inferred a signal of mito-nuclear discordance, indicating potential hybridization between L. melanops and L. martorii, and phylogenetic network analyses provided support for 5 reticulation events among species. Phasing the nuclear loci did not provide additional insight into relationships or suspected patterns of hybridization. Only one clade, composed of L. camarones, L. fitzingerii, and L. xanthoviridis was recovered across all analyses. Genomic datasets provide molecular systematists with new opportunities to resolve difficult phylogenetic problems, yet the lack of phylogenetic resolution in Patagonian Liolaemus is biologically meaningful and indicative of a recent and rapid evolutionary radiation. The phylogenetic relationships of the Liolaemus fitzingerii group may be best modeled as a reticulated network instead of a bifurcating phylogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Evaluation of Rapid Dual-Tracer 62Cu-PTSM + 62Cu-ATSM PET in Dogs with Spontaneously-Occurring Tumors

    PubMed Central

    Black, Noel F.; McJames, Scott; Rust, Thomas C.; Kadrmas, Dan J.

    2013-01-01

    We are developing methods for imaging multiple PET tracers in a single scan with staggered injections, where imaging measures for each tracer are separated and recovered using differences in tracer kinetics and radioactive decay. In this work, signal-separation performance for rapid dual-tracer 62Cu-PTSM (blood flow) + 62Cu-ATSM (hypoxia) tumor imaging was evaluated in a large animal model. Four dogs with pre-existing tumors received a series of dynamic PET scans with 62Cu-PTSM and 62Cu-ATSM, permitting evaluation of a rapid dual-tracer protocol designed by previous simulation work. Several imaging measures were computed from the dual-tracer data and compared with those from separate, single-tracer imaging. Static imaging measures (e.g. SUV) for each tracer were accurately recovered from dual-tracer data. The wash-in (k1) and wash-out (k2) rate parameters for both tracers were likewise well recovered (r = 0.87 – 0.99), but k3 was not accurately recovered for PTSM (r = 0.19) and moderately well recovered for ATSM (r = 0.70). Some degree of bias was noted, however, which may potentially be overcome through further refinement of the signal-separation algorithms. This work demonstrates that complementary information regarding tumor blood flow and hypoxia can be acquired by a single dual-tracer PET scan, and also that the signal-separation procedure works effectively for real physiologic data with realistic levels of kinetic model-mismatch. Rapid multi-tracer PET has the potential to improve tumor assessment for image-guide therapy and monitoring, and further investigation with these and other tracers is warranted. PMID:18182698

  19. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    PubMed

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  20. Rapid Detection and Subtyping of Human Influenza A Viruses and Reassortants by Pyrosequencing

    PubMed Central

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G.

    2011-01-01

    Background Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. Methodology/Principal Findings A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. Conclusions/Significance In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches. PMID:21886790

  1. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam.

    PubMed

    Chau, H T C; Kadokami, K; Duong, H T; Kong, L; Nguyen, T T; Nguyen, T Q; Ito, Y

    2018-03-01

    The rapid increase in the number and volume of chemical substances being used in modern society has been accompanied by a large number of potentially hazardous chemicals being found in environmental samples. In Vietnam, the monitoring of chemical substances is mainly limited to a small number of known pollutants in spite of rapid economic growth and urbanization, and there is an urgent need to examine a large number of chemicals to prevent impacts from expanding environmental pollution. However, it is difficult to analyze a large number of chemicals using existing methods, because they are time consuming and expensive. In the present study, we determined 1153 substances to grasp a pollution picture of microcontaminants in the aquatic environment. To achieve this objective, we have used two comprehensive analytical methods: (1) solid-phase extraction (SPE) and LC-TOF-MS analysis, and (2) SPE and GC-MS analysis. We collected 42 samples from northern (the Red River and Hanoi), central (Hue and Danang), and southern (Ho Chi Minh City and Saigon-Dongnai River) Vietnam. One hundred and sixty-five compounds were detected at least once. The compounds detected most frequently (>40 % samples) at μg/L concentrations were sterols (cholesterol, beta-sitosterol, stigmasterol, coprostanol), phthalates (bis(2-ethylhexyl) phthalate and di-n-butyl phthalate), and pharmaceutical and personal care products (caffeine, metformin). These contaminants were detected at almost the same detection frequency as in developed countries. The results reveal that surface waters in Vietnam, particularly in the center of large cities, are polluted by a large number of organic micropollutants, with households and business activities as the major sources. In addition, risk quotients (MEC/PNEC values) for nonylphenol, sulfamethoxazole, ampicillin, acetaminophen, erythromycin and clarithromycin were higher than 1, which indicates a possibility of adverse effects on aquatic ecosystems.

  2. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE PAGES

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew; ...

    2015-08-13

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  3. BactoGeNIE: a large-scale comparative genome visualization for big displays

    PubMed Central

    2015-01-01

    Background The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. Results In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE through a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. Conclusions BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics. PMID:26329021

  4. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  5. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines.

    PubMed

    Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H

    2018-06-11

    Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.

  6. Quantitative analysis of agricultural land use change in China

    NASA Astrophysics Data System (ADS)

    Chou, Jieming; Dong, Wenjie; Wang, Shuyu; Fu, Yuqing

    This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal-spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following; During 1949-2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country's eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980. Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China. From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.

  7. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  8. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  9. Gene discovery in Boophilus microplus, the cattle tick: the transcriptomes of ovaries, salivary glands, and hemocytes.

    PubMed

    Santos, Isabel K F de Miranda; Valenzuela, Jesus G; Ribeiro, José Marcos C; de Castro, Marilia; Costa, Juliana Nardelli; Costa, Ana Maria; da Silva, Edson Ramiro; Neto, Olavo Bilac Rego; Rocha, Clarisse; Daffre, Sirlei; Ferreira, Beatriz R; da Silva, João Santana; Szabó, Matias Pablo; Bechara, Gervasio Henrique

    2004-10-01

    The quest for new control strategies for ticks can profit from high throughput genomics. In order to identify genes that are involved in oogenesis and development, in defense, and in hematophagy, the transcriptomes of ovaries, hemocytes, and salivary glands from rapidly ingurgitating females, and of salivary glands from males of Boophilus microplus were PCR amplified, and the expressed sequence tags (EST) of random clones were mass sequenced. So far, more than 1,344 EST have been generated for these tissues, with approximately 30% novelty, depending on the the tissue studied. To date approximately 760 nucleotide sequences from B. microplus are deposited in the NCBI database. Mass sequencing of partial cDNAs of parasite genes can build up this scant database and rapidly generate a large quantity of useful information about potential targets for immunobiological or chemical control.

  10. Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells

    PubMed Central

    Chan, Chu-Fang; Kuo, Tzu-Wei; Weng, Ju-Yun; Lin, Yen-Chu; Chen, Ting-Yu; Cheng, Jen-Kun; Lien, Cheng-Chang

    2013-01-01

    Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba2+- and bupivacaine-sensitive background K+ conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K+ conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function. PMID:23940377

  11. Rapid Production of High-Purity Hydrogen Fuel through Microwave-Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals.

    PubMed

    Jie, Xiangyu; Gonzalez-Cortes, Sergio; Xiao, Tiancun; Wang, Jiale; Yao, Benzhen; Slocombe, Daniel R; Al-Megren, Hamid A; Dilworth, Jonathan R; Thomas, John M; Edwards, Peter P

    2017-08-14

    Hydrogen as an energy carrier promises a sustainable energy revolution. However, one of the greatest challenges for any future hydrogen economy is the necessity for large scale hydrogen production not involving concurrent CO 2 production. The high intrinsic hydrogen content of liquid-range alkane hydrocarbons (including diesel) offers a potential route to CO 2 -free hydrogen production through their catalytic deep dehydrogenation. We report here a means of rapidly liberating high-purity hydrogen by microwave-promoted catalytic dehydrogenation of liquid alkanes using Fe and Ni particles supported on silicon carbide. A H 2 production selectivity from all evolved gases of some 98 %, is achieved with less than a fraction of a percent of adventitious CO and CO 2 . The major co-product is solid, elemental carbon. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Predicting adverse hemodynamic events in critically ill patients.

    PubMed

    Yoon, Joo H; Pinsky, Michael R

    2018-06-01

    The art of predicting future hemodynamic instability in the critically ill has rapidly become a science with the advent of advanced analytical processed based on computer-driven machine learning techniques. How these methods have progressed beyond severity scoring systems to interface with decision-support is summarized. Data mining of large multidimensional clinical time-series databases using a variety of machine learning tools has led to our ability to identify alert artifact and filter it from bedside alarms, display real-time risk stratification at the bedside to aid in clinical decision-making and predict the subsequent development of cardiorespiratory insufficiency hours before these events occur. This fast evolving filed is primarily limited by linkage of high-quality granular to physiologic rationale across heterogeneous clinical care domains. Using advanced analytic tools to glean knowledge from clinical data streams is rapidly becoming a reality whose clinical impact potential is great.

  13. Cell-Free Optogenetic Gene Expression System.

    PubMed

    Jayaraman, Premkumar; Yeoh, Jing Wui; Jayaraman, Sudhaghar; Teh, Ai Ying; Zhang, Jingyun; Poh, Chueh Loo

    2018-04-20

    Optogenetic tools provide a new and efficient way to dynamically program gene expression with unmatched spatiotemporal precision. To date, their vast potential remains untapped in the field of cell-free synthetic biology, largely due to the lack of simple and efficient light-switchable systems. Here, to bridge the gap between cell-free systems and optogenetics, we studied our previously engineered one component-based blue light-inducible Escherichia coli promoter in a cell-free environment through experimental characterization and mathematical modeling. We achieved >10-fold dynamic expression and demonstrated rapid and reversible activation of the target gene to generate oscillatory response. The deterministic model developed was able to recapitulate the system behavior and helped to provide quantitative insights to optimize dynamic response. This in vitro optogenetic approach could be a powerful new high-throughput screening technology for rapid prototyping of complex biological networks in both space and time without the need for chemical induction.

  14. Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Tziaferi, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Gulmini, M.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-10-01

    We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy √{ s} = 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

  15. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.

    PubMed

    Hamblin, Graham D; Hariri, Amani A; Carneiro, Karina M M; Lau, Kai L; Cosa, Gonzalo; Sleiman, Hanadi F

    2013-04-23

    DNA nanotubes have great potential as nanoscale scaffolds for the organization of materials and the templation of nanowires and as drug delivery vehicles. Current methods for making DNA nanotubes either rely on a tile-based step-growth polymerization mechanism or use a large number of component strands and long annealing times. Step-growth polymerization gives little control over length, is sensitive to stoichiometry, and is slow to generate long products. Here, we present a design strategy for DNA nanotubes that uses an alternative, more controlled growth mechanism, while using just five unmodified component strands and a long enzymatically produced backbone. These tubes form rapidly at room temperature and have numerous, orthogonal sites available for the programmable incorporation of arrays of cargo along their length. As a proof-of-concept, cyanine dyes were organized into two distinct patterns by inclusion into these DNA nanotubes.

  16. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.

    PubMed

    Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju

    2018-05-29

    Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.

  17. Large-scale annotation of small-molecule libraries using public databases.

    PubMed

    Zhou, Yingyao; Zhou, Bin; Chen, Kaisheng; Yan, S Frank; King, Frederick J; Jiang, Shumei; Winzeler, Elizabeth A

    2007-01-01

    While many large publicly accessible databases provide excellent annotation for biological macromolecules, the same is not true for small chemical compounds. Commercial data sources also fail to encompass an annotation interface for large numbers of compounds and tend to be cost prohibitive to be widely available to biomedical researchers. Therefore, using annotation information for the selection of lead compounds from a modern day high-throughput screening (HTS) campaign presently occurs only under a very limited scale. The recent rapid expansion of the NIH PubChem database provides an opportunity to link existing biological databases with compound catalogs and provides relevant information that potentially could improve the information garnered from large-scale screening efforts. Using the 2.5 million compound collection at the Genomics Institute of the Novartis Research Foundation (GNF) as a model, we determined that approximately 4% of the library contained compounds with potential annotation in such databases as PubChem and the World Drug Index (WDI) as well as related databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and ChemIDplus. Furthermore, the exact structure match analysis showed 32% of GNF compounds can be linked to third party databases via PubChem. We also showed annotations such as MeSH (medical subject headings) terms can be applied to in-house HTS databases in identifying signature biological inhibition profiles of interest as well as expediting the assay validation process. The automated annotation of thousands of screening hits in batch is becoming feasible and has the potential to play an essential role in the hit-to-lead decision making process.

  18. Using C. elegans Forward and Reverse Genetics to Identify New Compounds with Anthelmintic Activity

    PubMed Central

    Mathew, Mark D.; Mathew, Neal D.; Miller, Angela; Simpson, Mike; Au, Vinci; Garland, Stephanie; Gestin, Marie; Edgley, Mark L.; Flibotte, Stephane; Balgi, Aruna; Chiang, Jennifer; Giaever, Guri; Dean, Pamela; Tung, Audrey; Roberge, Michel; Roskelley, Calvin; Forge, Tom; Nislow, Corey; Moerman, Donald

    2016-01-01

    Background The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. Methods/Principal findings Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. Conclusions/Significance The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides. PMID:27755544

  19. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  20. Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and to verify its ability to cool large areas or components in the 3 degrees Kelvin temperature range. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by simply applying power to both the capillary pump and the evaporator plate without pre-conditioning. It could adapt to a rapid heat load change and quickly reach a new steady state. Heat removal between 10 megawatts and 140 megawatts was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  1. Whole-exome sequencing for mutation detection in pediatric disorders of insulin secretion: Maturity onset diabetes of the young and congenital hyperinsulinism.

    PubMed

    Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L

    2018-06-01

    To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Projection display technologies for the new millennium

    NASA Astrophysics Data System (ADS)

    Kahn, Frederic J.

    2000-04-01

    Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.

  3. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    PubMed Central

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  4. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    PubMed

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  5. Fall classification by machine learning using mobile phones.

    PubMed

    Albert, Mark V; Kording, Konrad; Herrmann, Megan; Jayaraman, Arun

    2012-01-01

    Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls-left and right lateral, forward trips, and backward slips-while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.

  6. Turbulent Mixing in Gravity Currents with Transverse Shear

    NASA Astrophysics Data System (ADS)

    White, Brian; Helfrich, Karl; Scotti, Alberto

    2010-11-01

    A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.

  7. Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak

    1997-01-01

    Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.

  8. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2013-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very difficult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The first version of this tool was a serial code and the current version is a parallel code, which has greatly increased the analysis capabilities. This paper describes the new implementation of this analysis tool on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  9. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  10. A dielectrophoretic method of discrimination between normal oral epithelium, and oral and oropharyngeal cancer in a clinical setting.

    PubMed

    Graham, K A; Mulhall, H J; Labeed, F H; Lewis, M P; Hoettges, K F; Kalavrezos, N; McCaul, J; Liew, C; Porter, S; Fedele, S; Hughes, M P

    2015-08-07

    Despite the accessibility of the oral cavity to clinical examination, delays in diagnosis of oral and oropharyngeal carcinoma (OOPC) are observed in a large majority of patients, with negative impact on prognosis. Diagnostic aids might help detection and improve early diagnosis, but there remains little robust evidence supporting the use of any particular diagnostic technology at the moment. The aim of the present feasibility first-in-human study was to evaluate the preliminary diagnostic validity of a novel technology platform based on dielectrophoresis (DEP). DEP does not require labeling with antibodies or stains and it is an ideal tool for rapid analysis of cell properties. Cells from OOPC/dysplasia tissue and healthy oral mucosa were collected from 57 study participants via minimally-invasive brush biopsies and tested with a prototype DEP platform using median membrane midpoint frequency as main analysis parameter. Results indicate that the current DEP platform can discriminate between brush biopsy samples from cancerous and healthy oral tissue with a diagnostic sensitivity of 81.6% and a specificity of 81.0%. The present ex vivo results support the potential application of DEP testing for identification of OOPC. This result indicates that DEP has the potential to be developed into a low-cost, rapid platform as an assistive tool for the early identification of oral cancer in primary care; given the rapid, minimally-invasive and non-expensive nature of the test, dielectric characterization represents a promising platform for cost-effective early cancer detection.

  11. Water Quality Monitoring Using Tryptophan-like Fluorescence.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Urquhart, G.; Baker, A.; Ward, D.; Reynolds, D.; Carliell-Marquet, C.

    2006-12-01

    The Biochemical Oxygen Demand (BOD) test is recognised as being credible with over 90 years of application in water analysis. However it is easily affected by environmental constraints and requires the presence of a viable biological community. The BOD test takes 5-21 days and is laboratory based and so is unsuitable for rapid responses to potential pollution incidents. Analysis of fluorescence excitation emission matrices (EEM) of natural waters gives a rapid determination of the proportions of labile and refractory organic matter present. It facilitates a greater understanding of the oxygen depleting potential of organic matter in unfiltered samples in a shorter timescale than would be the case using BOD, the conventional water quality assessment method. The research presented assesses the relationship between 5-day BOD (BOD5) and the fluorescent amino acid tryptophan-like peak for a range of waters. The research is undertaken with a view to using fluorescence spectroscopy as an alternative to the BOD5 test for on-site monitoring or lab based, rapid indication of organic pollution in natural waters. A significant relationship is observed between the analytical parameters in line with the findings of previous research in which waste waters including synthetic sewage, and polluted surface waters were studied. This research demonstrates that for a large, variable data set tryptophan-like fluorescence is a strong indicator of BOD5 and may be used as a water quality monitoring tool particularly for high BOD5 samples.

  12. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  13. Schistosomiasis: Geospatial Surveillance and Response Systems in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Malone, John; Bergquist, Robert; Rinaldi, Laura; Xiao-nong, Zhou

    2016-10-01

    Geographic information system (GIS) and remote sensing (RS) from Earth-observing satellites offer opportunities for rapid assessment of areas endemic for vector-borne diseases including estimates of populations at risk and guidance to intervention strategies. This presentation deals with GIS and RS applications for the control of schistosomiasis in China and the Philippines. It includes large-scale risk mapping including identification of suitable habitats for Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Predictions of infection risk are discussed with reference to ecological transformations and the potential impact of climate change and the potential for long-term temperature increases in the North as well as the impact on rivers, lakes and water resource developments. Potential integration of geospatial mapping and modeling in schistosomiasis surveillance and response systems in Asia within Global Earth Observation System of Systems (GEOSS) guidelines in the health societal benefit area is discussed.

  14. Rapid Simultaneous Assessment of Riparian Shade and Buffer Width Using LiDAR Data

    NASA Astrophysics Data System (ADS)

    Seixas, G.; Beechie, T. J.; Kiffney, P.

    2016-12-01

    Riparian buffers perform a number of functions including provision of shade and wood recruitment to forested streams. Shade is a primary control on stream water temperature and recruitment of large wood is essential for the maintenance of key biological functions such as salmon and invertebrate habitat. Because temperature is a limiting factor for riverine primary production, many aquatic invertebrates, and endangered salmonid species, and because riparian forest structure has been modified by management practices for decades in many of the world's watersheds, rapid assessment of riparian shade and wood recruitment potential is critical for restoration decision-making. We introduce a new automated LiDAR-based method that simultaneously measures two key metrics of riparian vegetation condition—`view-to-sky' openness of the canopy and buffer width. If the height of historical mature trees in the area of interest is known or can be assumed, a change in view-to-sky angle due to land uses may be calculated. We apply the method to portions of the Chehalis River basin in southwestern Washington State, USA, an area of extensive logging and agriculture. We find a high level of modification to view-to-sky angle has occurred in urban and agricultural areas of the basin, whereas riparian shade is maintained by buffers in some regions of active logging. Buffers composed of trees large enough for wood recruitment have all but been eradicated from the basin. Due to the method's simplicity, ease of application and focus on deviation from natural conditions, it has the potential to be used effectively for river restoration planning at the watershed scale.

  15. Spectrally encoded confocal microscopy (SECM) for rapid assessment of breast excision specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brachtel, Elena F.; Johnson, Nicole B.; Huck, Amelia E.; Rice-Stitt, Travis L.; Vangel, Mark G.; Smith, Barbara L.; Tearney, Guillermo J.; Kang, DongKyun

    2016-03-01

    Unacceptably large percentage (20-40%) of breast cancer lumpectomy patients are required to undergo multiple surgeries when positive margins are found upon post-operative histologic assessment. If the margin status can be determined during surgery, surgeon can resect additional tissues to achieve tumor-free margin, which will reduce the need for additional surgeries. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to image the entire surgical margin within a short procedural time. Previously, SECM was shown to rapidly image a large area (10 mm by 10 mm) of human esophageal tissue within a short procedural time (15 seconds). When used in lumpectomy, SECM will be able to image the entire margin surface of ~30 cm2 in around 7.5 minutes. SECM images will then be used to determine margin status intra-operatively. In this paper, we present results from a study of testing accuracy of SECM for diagnosing malignant breast tissues. We have imaged freshly-excised breast specimens (N=46) with SECM. SECM images clearly visualized histomorphologic features associated with normal/benign and malignant breast tissues in a similar manner to histologic images. Diagnostic accuracy was tested by comparing SECM diagnoses made by three junior pathologists with corresponding histologic diagnoses made by a senior pathologist. SECM sensitivity and specificity were high, 0.91 and 0.93, respectively. Intra-observer agreement and inter-observer agreement were also high, 0.87 and 0.84, respectively. Results from this study showed that SECM has a potential to accurately determine margin status during breast cancer lumpectomy.

  16. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.

  17. GIANT CORONAL LOOPS DOMINATE THE QUIESCENT X-RAY EMISSION IN RAPIDLY ROTATING M STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Yadav, R.; Garraffo, C.

    2017-01-01

    Observations indicate that magnetic fields in rapidly rotating stars are very strong, on both small and large scales. What is the nature of the resulting corona? Here we seek to shed some light on this question. We use the results of an anelastic dynamo simulation of a rapidly rotating fully convective M star to drive a physics-based model for the stellar corona. We find that due to the several kilo Gauss large-scale magnetic fields at high latitudes, the corona, and its X-ray emission are dominated by star-size large hot loops, while the smaller, underlying colder loops are not visible muchmore » in the X-ray. Based on this result, we propose that, in rapidly rotating stars, emission from such coronal structures dominates the quiescent, cooler but saturated X-ray emission.« less

  18. Neural Correlates of Emotion Processing in Word Detection Task

    PubMed Central

    Zhao, Wenshuang; Chen, Liang; Zhou, Chunxia; Luo, Wenbo

    2018-01-01

    In our previous study, we have proposed a three-stage model of emotion processing; in the current study, we investigated whether the ERP component may be different when the emotional content of stimuli is task-irrelevant. In this study, a dual-target rapid serial visual presentation (RSVP) task was used to investigate how the emotional content of words modulates the time course of neural dynamics. Participants performed the task in which affectively positive, negative, and neutral adjectives were rapidly presented while event-related potentials (ERPs) were recorded from 18 undergraduates. The N170 component was enhanced for negative words relative to positive and neutral words. This indicates that automatic processing of negative information occurred at an early perceptual processing stage. In addition, later brain potentials such as the late positive potential (LPP) were only enhanced for positive words in the 480–580-ms post-stimulus window, while a relatively large amplitude signal was elicited by positive and negative words between 580 and 680 ms. These results indicate that different types of emotional content are processed distinctly at different time windows of the LPP, which is in contrast with the results of studies on task-relevant emotional processing. More generally, these findings suggest that a negativity bias to negative words remains to be found in emotion-irrelevant tasks, and that the LPP component reflects dynamic separation of emotion valence. PMID:29887824

  19. Effects of medicinal compounds on the differentiation of the eukaryotic microorganism dictyostelium discoideum: can this model be used as a screening test for reproductive toxicity in humans?

    PubMed

    Dannat, K; Tillner, J; Winckler, T; Weiss, M; Eger, K; Dingermann, T

    2003-03-01

    Dictyostelium discoideum is a single-cell, eukaryotic microorganism that can undergo multicellular development in order to produce dormant spores. We investigated the capacity of D. discoideum to be used as a rapid screening system for potential developmental toxicity of compounds under development as pharmaceuticals. We used a set of four transgenic D. discoideum strains that expressed a reporter gene under the control of promoters that are active at certain time periods and in distinct cell types during D. discoideum development. We found that teratogens such as valproic acid, tretinoin, or thalidomide interfered to various extents with D. discoideum development, and had different effects on prestalk and prespore cell-specific reporter gene expression. Phenytoin was inactive in this assay, which may point to limitations in metabolization of the compound in Dictyostelium required to exert developmental toxicity. D. discoideum cell culture is cheap and easy to handle compared to mammalian cell cultures or animal teratogenicity models. Although the Dictyostelium-based assay described in this report may not securely predict the teratogenic potential of these drugs in humans, this organism may be qualified for rapid large-scale screenings of synthetic compounds under development as new pharmaceuticals for their potential to interfere with developmental processes and thus help to reduce the amount of teratogenicity tests in animal models.

  20. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  1. Deep inelastic scattering events with a large rapidity gap at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heaterington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; west, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1994-11-01

    Evidence is presented using data taken with the H1 detector at HERA for a class of deep inelastic electron-proton scattering (DIS) events (5 < Q2 < 120 GeV 2) at low Bjorken- x (10 -4 < x < 10 -2) which have almost no hadronic energy flow in a large interval of pseudo-rapidity around the proton remnant direction and which cannot be attributed to our present understanding of DIS and fluctuations in final state hadronic fragmentation. From an integrated luminosity of 273 nb -1, 734 events, that is about 5% of the total DIS sample, have no energy deposition greater than 400 MeV forward of laboratory pseudo-rapidity ηmax = 1.8 up to the largest measurable pseudo-rapidity of about 3.65. Evidence that about 10% of observed rapidity gap events are exclusive vector meson electroproduction is presented. Good descriptions of the data are obtained using models based either on a vector meson dominance like picture, which includes a large fraction of inelastic virtual photon dissociation, or on deep inelastic electron-pomeron scattering in which the partonic sub-structure of the latter is resolved.

  2. Climate Change and Sea Level Rise: A Challenge to Science and Society

    NASA Astrophysics Data System (ADS)

    Plag, H.

    2009-12-01

    Society is challenged by the risk of an anticipated rise of coastal Local Sea Level (LSL) as a consequence of future global warming. Many low-lying and often subsiding and densely populated coastal areas are under risk of increased inundation, with potentially devastating consequences for the global economy, society, and environment. Faced with a trade-off between imposing the very high costs of coastal protection and adaptation upon today's national economies and leaving the costs of potential major disasters to future generations, governments and decision makers are in need of scientific support for the development of mitigation and adaptation strategies for the coastal zone. Low-frequency to secular changes in LSL are the result of many interacting Earth system processes. The complexity of the Earth system makes it difficult to predict Global Sea Level (GSL) rise and, even more so, LSL changes over the next 100 to 200 years. Humans have re-engineered the planet and changed major features of the Earth surface and the atmosphere, thus ruling out extrapolation of past and current changes into the future as a reasonable approach. The risk of rapid changes in ocean circulation and ice sheet mass balance introduces the possibility of unexpected changes. Therefore, science is challenged with understanding and constraining the full range of plausible future LSL trajectories and with providing useful support for informed decisions. In the face of largely unpredictable future sea level changes, monitoring of the relevant processes and development of a forecasting service on realistic time scales is crucial as decision support. Forecasting and "early warning" for LSL rise would have to aim at decadal time scales, giving coastal managers sufficient time to react if the onset of rapid changes would require an immediate response. The social, environmental, and economic risks associated with potentially large and rapid LSL changes are enormous. Therefore, in the light of the current uncertainties and the unpredictable nature of some of the forcing processes for LSL changes, the focus of scientific decision support may have to shift from projections of LSL trajectories on century time scales to the development of models and monitoring systems for a forecasting service on decadal time scales. The requirements for such a LSL forecasting service and the current obstacles will be discussed.

  3. Anthropogenic extinction of top carnivores and interspecific animal behaviour: implications of the rapid decoupling of a web involving wolves, bears, moose and ravens.

    PubMed Central

    Berger, J

    1999-01-01

    The recent extinction of grizzly bears (Ursus arctos) and wolves (Canis lupus) by humans from 95-99% of the contiguous USA and Mexico in less than 100 years has resulted in dramatically altered and expanded prey communities. Such rampant ecological change and putative ecological instability has not occurred in North American northern boreal zones. This geographical variation in the loss of large carnivores as a consequence of anthropogenic disturbance offers opportunities for examining the potential consequences of extinction on subtle but important ecological patterns involving behaviour and interspecific ecological interactions. In Alaska, where scavengers and large carnivores are associated with carcasses, field experiments involving sound playback simulations have demonstrated that at least one prey species, moose (Alces alces), is sensitive to the vocalizations of ravens (Corvus corax) and may rely on their cues to avoid predation. However, a similar relationship is absent on a predator-free island in Alaska's Cook Inlet and at two sites in the Jackson Hole region of the Rocky Mountains (USA) where grizzly bears and wolves have been extinct for 50-70 years. While prior study of birds and mammals has demonstrated that prey may retain predator recognition capabilities for thousands of years even after predation as a selective force has been relaxed, the results presented here establish that a desensitization in interspecific responsiveness can also occur in less than ten generations. These results affirm (i) a rapid decoupling in behaviour involving prey and scavengers as a consequence of anthropogenic-caused predator-prey disequilibriums, and (ii) subtle, community-level modifications in terrestrial ecosystems where large carnivores no longer exist. If knowledge about ecological and behavioural processes in extant systems is to be enhanced, the potential effects of recently extinct carnivores must be incorporated into current programmes. PMID:10629976

  4. Monitoring Forest Degradation for a Case Study in Cambodia: Comparison of Landsat 8 and Sentinel-2 Imagery

    NASA Astrophysics Data System (ADS)

    Langner, Andreas; Miettinen, Jukka; Stibig, Hans-Jurgen

    2016-08-01

    We use a Normalized Burned Ratio (NBR) differential approach for detecting forest canopy disturbance caused by selective logging in evergreen tropical moist forests of central Cambodia. The general disturbance pattern obtained from Landsat 8 (30 m) imagery is largely compatible to Sentinel-2 (10 m), showing good conformity to high resolution RapidEye reference data. However, the 10 m spatial resolution of Sentinel-2 provides notably higher spatial detail and purer pixel values, increasing the potential for detecting fine and subtle forest canopy changes as indicators for potential forest degradation. We can expect further improvement for detecting short-lived disturbance signals in tropical forest canopies due to an increased revisit frequency (5 days) after the Sentinel-2B launch.

  5. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.

    PubMed

    Yu, Jian

    2018-06-09

    With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO 2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO 2 , including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO 2 .

  6. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    PubMed Central

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  7. Advanced genetic tools for plant biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis ofmore » large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.« less

  8. Advanced genetic tools for plant biotechnology.

    PubMed

    Liu, Wusheng; Yuan, Joshua S; Stewart, C Neal

    2013-11-01

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  9. Progress In Fresnel-Köhler Concentrators

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan

    2011-12-01

    The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).

  10. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery.

    PubMed

    Trifiletti, Daniel M; Showalter, Timothy N

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of "big data," it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy.

  11. Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models.

    PubMed

    Zimmermann, Nils E R; Hannah, Daniel C; Rong, Ziqin; Liu, Miao; Ceder, Gerbrand; Haranczyk, Maciej; Persson, Kristin A

    2018-02-01

    We report on a scheme for estimating intercalant jump-diffusion barriers that are typically obtained from demanding density functional theory-nudged elastic band calculations. The key idea is to relax a chain of states in the field of the electrostatic potential that is averaged over a spherical volume using different finite-size ion models. For magnesium migrating in typical intercalation materials such as transition-metal oxides, we find that the optimal model is a relatively large shell. This data-driven result parallels typical assumptions made in models based on Onsager's reaction field theory to quantitatively estimate electrostatic solvent effects. Because of its efficiency, our potential of electrostatics-finite ion size (PfEFIS) barrier estimation scheme will enable rapid identification of materials with good ionic mobility.

  12. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries

    PubMed Central

    Ko, Minseong; Chae, Sujong; Cho, Jaephil

    2015-01-01

    Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems. PMID:27525208

  13. Evolutionary potential of marine phytoplankton under ocean acidification.

    PubMed

    Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A

    2014-01-01

    Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.

  14. Epidemic risk from cholera introductions into Mexico.

    PubMed

    Moore, Sean M; Shannon, Kerry L; Zelaya, Carla E; Azman, Andrew S; Lessler, Justin

    2014-02-21

    Stemming from the 2010 cholera outbreak in Haiti, cholera transmission in Hispaniola continues with over 40,000 cases in 2013. The presence of an ongoing cholera outbreak in the region poses substantial risks to countries throughout the Americas, particularly in areas with poor infrastructure. Since September 9, 2013 nearly 200 cholera cases have been reported in Mexico, as a result of introductions from Hispaniola or Cuba. There appear to have been multiple introductions into Mexico resulting in outbreaks of 2 to over 150 people. Using publicly available data, we attempt to estimate the reproductive number (R) of cholera in Mexico, and thereby assess the potential of continued introductions to establish a sustained epidemic. We estimate R for cholera in Mexico to be between 0.8 to 1.1, depending on the number of introductions, with the confidence intervals for the most plausible estimates crossing 1. These results suggest that the efficiency of cholera transmission in some regions of Mexico is near that necessary for a large epidemic. Intensive surveillance, evaluation of water and sanitation infrastructure, and planning for rapid response are warranted steps to avoid potential large epidemics in the region.

  15. Hearing in Whales and Dolphins: Relevance and Limitations.

    PubMed

    Pacini, Aude F; Nachtigall, Paul E

    2016-01-01

    Understanding the hearing of marine mammals has been a priority to quantify and mitigate the impact of anthropogenic sound on these apex predators. Yet our knowledge of cetacean hearing is still limited to a few dozen species, therefore compromising any attempt to design adaptive management strategies. The use of auditory evoked potentials allows scientists to rapidly and noninvasively obtain the hearing data of species rarely available in captivity. Unfortunately, many practical and ethical reasons still limit the availability of large whales, thus restricting the possibility to effectively ensure that anthropogenic sounds have minimum effects on these species. The example of a recent Blainville's beaked whale (Mesoplodon densirostris) audiogram collected after a stranding indicated, for instance, very specialized hearing between 40 and 50 kHz, which corresponded to the frequency-modulated upsweep signals used by this species during echolocation. The methods used during a stranding event are presented along with the major difficulties that have slowed down the scientific community in measuring the audition of large whales and the potential value in obtaining such results when successful.

  16. Patients without borders: understanding medical travel.

    PubMed

    Whittaker, Andrea; Manderson, Lenore; Cartwright, Elizabeth

    2010-10-01

    The rapidly growing medical travel industry has implications for the health systems of both sending and receiving countries. This article outlines the political economy of the industry and the potential opportunities and disadvantages it poses for access, equity, and the right to health. Although the trade carries economic benefits for countries receiving foreign medical patients, it comes at a cost to the provision of public health, through distortions in the health workforce and the development of two-tiered health systems. Inequalities and failures in the health systems of sending countries largely drive the need to travel for care.

  17. Zika Virus Infection.

    PubMed

    Shirley, Debbie-Ann T; Nataro, James P

    2017-08-01

    In less than 2 years since entry into the Americas, we have witnessed the emergent spread of Zika virus into large subsets of immunologically naïve human populations and then encountered the devastating effects of microcephaly and brain anomalies that can arise from in utero infection with the virus. Diagnostic evaluation and management of affected infants continues to evolve as our understanding of Zika virus rapidly advances. The development of a safe and effective vaccine holds the potential to attenuate the spread of infection and limit the impact of congenital infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    NASA Astrophysics Data System (ADS)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; Ahn, Y.; Tilka, J. A.

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  20. An advanced communications synthesizer

    NASA Astrophysics Data System (ADS)

    Scherer, Ernst F.

    1994-02-01

    With the proliferation of smaller and lower cost EHF terminals, the fast-hopping microwave synthesizer subsystem is rapidly becoming the limiting factor for further size and cost reduction. A new approach, based on a high-speed direct digital synthesizer (DDS) and a very fast voltage controlled oscillator (VCO) tracking loop, has yielded a highly integrable design with true low-cost potential. A frequency range of 1 to 20 GHz can be covered by a simple substitution of the VCO module. This advanced synthesizer realization promises a generic solution to a large class of synthesizer requirements, greatly facilitating standardization and promoting modular system concepts.

  1. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    NASA Astrophysics Data System (ADS)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  2. Comparative metabolism of 2-nitropropane in rats and chimpanzees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, W.F.; Coulston, F.; Korte, F.

    1983-01-01

    To obtain more information about the metabolic fate of 2-nitropropane (2-NP) in rats and to study the relevance of the findings for man, the authors investigated the metabolism of 2-NP in rats and chimpanzees. The results of this study show that 2-NP is eliminated largely by exhalation, while excretion in urine and feces are only minor pathways. Carbon dioxide, acetone and isopropanol are the major metabolites. Preliminary chromatographic results suggest different conjugates formed by rats and chimpanzees. 2-NP has little potential for accumulation; the lipid tissues, which can absorb it to considerable concentrations, are rapidly depleted.

  3. Characterizing Marine Soundscapes.

    PubMed

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.

  4. A terrestrial record of water isotopes reveals the Eocene-Oligoene transition in southern Argentina

    NASA Astrophysics Data System (ADS)

    Auerbach, D. J.; Hren, M. T.; Pacini, A.; Breen, P.

    2015-12-01

    The Eocene-Oligocene transition (EOT) from a greenhouse to icehouse climate state and the onset of large-scale Antarctic glaciation has been widely documented geochemically in both the marine realm (e.g., Zachos et al., 2001) and the terrestrial realm (e.g., Zanazzi et al., 2007). However, existing terrestrial records from Patagonia show negligible change in the water isotope record (Kohn et al., 2010; Kohn et al., 2015), despite the proximity of South America to Antarctica. Analyses of volcanic glasses from the Vera Member of the Sarmiento Formation in the well-dated (Dunn et al., 2013) sedimentary section at Gran Barranca allow us to reconstruct water isotope record in central Patagonia during the EOT. These data show a drop in precipitation δD of ~20‰ over ~100-200 kyr followed by a recovery of ~15‰ over the next 0.5-1.0 Myr. This pattern of a rapid shift and a more gradual recovery fits the shape and time scale of the marine record, although the magnitude of the isotopic excursion is different. Such a record could potentially be explained by large changes in source (seawater) δD, temperature, paleolatitude, or orographic effect. As the latter two possibilities are geologically improbable, these data suggest large, rapid climatic changes accompanying the EOT in Patagonia. If corroborated by other data, this would suggest that the evolution of hypsodonty in grazers in Patagonia was not driven by or sensitive to the global climate.

  5. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  6. Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Lau, William K M.; Liu, Chuntao

    2013-01-01

    This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.

  7. Turning back from the brink: Detecting an impending regime shift in time to avert it

    PubMed Central

    Biggs, Reinette; Carpenter, Stephen R.; Brock, William A.

    2009-01-01

    Ecological regime shifts are large, abrupt, long-lasting changes in ecosystems that often have considerable impacts on human economies and societies. Avoiding unintentional regime shifts is widely regarded as desirable, but prediction of ecological regime shifts is notoriously difficult. Recent research indicates that changes in ecological time series (e.g., increased variability and autocorrelation) could potentially serve as early warning indicators of impending shifts. A critical question, however, is whether such indicators provide sufficient warning to adapt management to avert regime shifts. We examine this question using a fisheries model, with regime shifts driven by angling (amenable to rapid reduction) or shoreline development (only gradual restoration is possible). The model represents key features of a broad class of ecological regime shifts. We find that if drivers can only be manipulated gradually management action is needed substantially before a regime shift to avert it; if drivers can be rapidly altered aversive action may be delayed until a shift is underway. Large increases in the indicators only occur once a regime shift is initiated, often too late for management to avert a shift. To improve usefulness in averting regime shifts, we suggest that research focus on defining critical indicator levels rather than detecting change in the indicators. Ideally, critical indicator levels should be related to switches in ecosystem attractors; we present a new spectral density ratio indicator to this end. Averting ecological regime shifts is also dependent on developing policy processes that enable society to respond more rapidly to information about impending regime shifts. PMID:19124774

  8. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    NASA Astrophysics Data System (ADS)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure of the rupture extent and dimensions, but not necessarily the strike. We found that using standard earthquake catalogs, such as the National Earthquake Information Center catalog, we can constrain the rupture extent, rupture direction, and in many cases the type of faulting, of the mainshock with the aftershocks that occur within the first hour after the mainshock. However, this data may not be currently available in near real-time. Since our results show that these early aftershock locations may be used to estimate first order rupture parameters for large global earthquakes, the near real-time availability of these data would be useful for fast earthquake damage assessment.

  9. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  10. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin-avidin binding interaction.

    PubMed

    Lei, Kin Fong; Yang, Shih-I; Tsai, Shiao-Wen; Hsu, Hsiao-Ting

    2015-03-01

    Efficient diagnosis is very important for the prevention and treatment of diseases. Rapid disease screening in ambulatory environment is one of the most pressing needs for disease control. Despite there are many methods to detect the results of immunoassays, quantitative measurement for rapid disease screening is still a great challenge for point-of-care applications. In this study, a fabrication method for depositing carbon nanotube bundles has been successfully developed for realization of functional paper-based microfluidic sensing device. Quantitative detection of label-free immunoassay, i.e., biotin-avidin binding interaction, was demonstrated by direct measurement of the current change of the biosensor after single application of the target analyte. Sensitivity of 0.33 μA/ng mL(-1) and minimal detectable analyte concentration of 25 ng/mL were achieved. The time necessary for the detection was 500 s which is a large reduction compared with the conventional immunoassay. Such paper-based biosensor has the benefits of portability, fast response, simple operation, and low cost and has the potential for the development of rapid disease screening devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    PubMed

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Rapid area change in pitch-up manoeuvres of small perching birds.

    PubMed

    Polet, D T; Rival, D E

    2015-10-26

    Rapid pitch-up has been highlighted as a mechanism to generate large lift and drag during landing manoeuvres. However, pitching rates had not been measured previously in perching birds, and so the direct applicability of computations and experiments to observed behaviour was not known. We measure pitch rates in a small, wild bird (the black-capped chickadee; Poecile atricapillus), and show that these rates are within the parameter range used in experiments. Pitching rates were characterized by the shape change number, a metric comparing the rate of frontal area increase to acceleration. Black-capped chickadees increase the shape change number during perching in direct proportion to their total kinetic and potential energy at the start of the manoeuvre. The linear relationship between dissipated energy and shape change number is in accordance with a simple analytical model developed for two-dimensional pitching and decelerating airfoils. Black-capped chickadees use a wing pitch-up manoeuvre during perching to dissipate energy quickly while maintaining lift and drag through rapid area change. It is suggested that similar pitch-and-decelerate manoeuvres could be used to aid in the controlled, precise landings of small manoeuvrable air vehicles.

  13. Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xi; Ouyang, Jing, E-mail: jingouyang@csu.edu.cn; Jin, Jiao

    2014-04-01

    Highlights: • Barium titanate oxides microcubes can be synthesized within 1 min. • Composite-hydroxides-mediated strategy provided a possible large scale production. • BST obtained in the strategy showed fairly good crystallinity and tetragonality. - Abstract: This paper reports the rapid synthesis of barium titanate (BaTiO{sub 3}, BTO) microcubes via composite-hydroxides-mediated reaction within 1 min. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) results confirmed both cubic and tetragonal lattices in the sample and the uniform microcubes with an average size of 1 μm. Ultraviolet–visible (UV–vis) spectrum indicated that the band gap of the BTO powder wasmore » 3.05 eV. Ferroelectric polarization vs. electric field (P–E) tests showed that the ferroelectric domains had formed in the as-synthesized BTO microcubes and sintered ceramics. BTO ceramics sintered at 1100 °C for 3 h showed fairly good tetragonality and possessed a maximum polarization of 0.21 μC/cm{sup 2}, indicating that the sintering temperature for the BTO powders prepared via this method was relatively low. The process and equipment reported herein provided a potential method for the rapid synthesis of titanate based perovskites.« less

  14. Rapid magnitude estimation from time-dependent displacement amplitude measured with seismogeodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Earthquake magnitude is a concise metric that illuminates the destructive potential of a seismic event. Rapid determination of earthquake magnitude is currently the main prerequisite for dissemination of a tsunami early warning, thus timely and automated calculation is of high importance. Seismic instrumentation experiences well-documented complications at long periods, making the accurate measurement of ground displacement in the near field unreliable. As a result, the relation between ground motion measured with seismic instrumentation and magnitude saturates, causing underestimation of the size of very large events. In the case of tsunamigenic earthquakes, magnitude underestimation in turn leads to a flawed tsunami inundation assessment, which limits the effectiveness of an early warning, in particular for local tsunamis. Global Navigation Satellite System (GNSS) instrumentation measures the displacement field directly, leading to more accurate magnitude estimates with near-field data. Unlike seismic-only instrumentation, near-field GNSS has been shown to provide an accurate magnitude estimate using the peak ground displacement (PGD) after just 2 minutes [Melgar et al., 2015]. However, GNSS alone is too noisy to detect the first seismic wave arrivals (P-waves), thus it cannot be as timely as a seismic system on its own. Using collocated seismic and geodetic instrumentation, we refine magnitude scaling relations by incorporating a large dataset of earthquakes in Japan. We demonstrate that consideration of the time-dependence of displacement amplitude with respect to P-wave arrival time reduces the time to convergence of the magnitude estimate. We present findings on the growth of events of large magnitude, and demonstrate time-dependent scaling relations that adapt to the amount of recorded data, starting with the P-wave arrival and continuing through PGD. We illustrate real-time, automated implementation of this method, and consider network improvements to advance rapid characterization of large events. Improvement of initial magnitude estimates through integration of geodetic and seismogeodetic observations is a top priority of an ongoing collaboration with NASA and NOAA's National and Pacific Tsunami Warning Centers (NOAA/NASA GNSS Tsunami Team).

  15. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    NASA Astrophysics Data System (ADS)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  16. Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method

    PubMed Central

    Li, Yunze; Ji, Deyang; Liu, Jie; Yao, Yifan; Fu, Xiaolong; Zhu, Weigang; Xu, Chunhui; Dong, Huanli; Li, Jingze; Hu, Wenping

    2015-01-01

    In this paper, we developed a new method to produce large-area single crystal arrays by using the organic semiconductor 9, 10-bis (phenylethynyl) anthracene (BPEA). This method involves an easy operation, is efficient, meets the demands of being low-cost and is independent of the substrate for large-area arrays fabrication. Based on these single crystal arrays, the organic field effect transistors exhibit the superior performance with the average mobility extracting from the saturation region of 0.2 cm2 V−1s−1 (the highest 0.47 cm2 V−1s−1) and on/off ratio exceeding 105. In addition, our single crystal arrays also show a very high photoswitch performance with an on/off current ratio up to 4.1 × 105, which is one of the highest values reported for organic materials. It is believed that this method provides a new way to fabricate single crystal arrays and has the potential for application to large area organic electronics. PMID:26282460

  17. Intra-cardiac Embolism of a Large Bone Cement Material after Percutaneous Vertebroplasty Removed through a Combination of an Endovascular Procedure and an Inferior Vena Cava Exploration: a Case Report.

    PubMed

    Park, Jin-Sung; Kim, Jaedong; Lee, Yonggu; Gwon, Jun-Gyo; Park, Ye-Soo

    2018-05-07

    Percutaneous vertebroplasty (PVP) is a minimally invasive surgical treatment for patients with osteoporotic vertebral compression fracture (OVCF) and can rapidly alleviate pain, improve mobility, and stabilize the vertebrae. However, it has the potential to cause complications such as cement embolism. A 55-year-old female presented with pain in the lumbar region as a chief complaint. PVP was performed after diagnosis of acute OVCFs at L4 and L5. No abnormal symptoms were reported after surgery, but a large cement embolism was observed in her right atrium and ventricle. After discussion in a multi-disciplinary team, the large cement embolism was successfully removed by a combination of endovascular procedure and an inferior vena cava exploration. Surgeons must consider the possibility of intra-cardiac cement embolism after PVP. A hybrid approach of an endovascular procedure and a vascular surgery may be a reasonable treatment option to minimize the surgical procedure in cases of a large intra-cardiac cement embolism.

  18. Suzaku Observations of 4U 1957+11: Potentially the Most Rapidly Spinning Black Hole in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nowak, Michael; Wilms, J.; Pottschmidt, K.; Schulz, N.; Miller, J.; Maitra, D.

    2011-09-01

    We present three Suzaku observations of the black hole candidate 4U1957+11 --- a source that exhibits some of the cleanest examples of disk-dominated spectra and presents among the highest peak temperatures found from such spectra. High temperatures may be associated with rapid black hole spin. These spectra also require a very low normalization, which can be explained by a combination of small inner disk radius, and large distance (>10 kpc), which places 4U1957+11 well into the Galactic halo. We perform joint fits to the Suzaku spectra with both relativistic and Comptonized disk models. Assuming a low mass black hole and the nearest distance (3 solar masses, 10 kpc), the dimensionless spin parameter a* > 0.9 Jc/GM2. Higher masses and farther distances yield a* 1. Similar conclusions are reached with Comptonization models. Low spin cannot be recovered unless 4U1957+11 is a low mass black hole that is at the unusually large distance of >40 kpc. We speculate whether the suggested maximal spin is related to how the system came to reside in the halo. This work was supported by NASA Grants NNX10AR94G and SV3-73016.

  19. Rapid Estimation of Tocopherol Content in Linseed and Sunflower Oils-Reactivity and Assay.

    PubMed

    Prevc, Tjaša; Levart, Alenka; Cigić, Irena Kralj; Salobir, Janez; Ulrih, Nataša Poklar; Cigić, Blaž

    2015-08-13

    The reactivity of tocopherols with 2,2-diphenyl-1-picrylhydrazyl (DPPH) was studied in model systems in order to establish a method for quantifying vitamin E in plant oils. The method was optimized with respect to solvent composition of the assay medium, which has a large influence on the course of reaction of tocopherols with DPPH. The rate of reaction of α-tocopherol with DPPH is higher than that of γ-tocopherol in both protic and aprotic solvents. In ethyl acetate, routinely applied for the analysis of antioxidant potential (AOP) of plant oils, reactions of tocopherols with DPPH are slower and concentration of tocopherols in the assay has a large influence on their molar reactivity. In 2-propanol, however, two electrons are exchanged for both α- and γ-tocopherols, independent of their concentration. 2-propanol is not toxic and is fully compatible with polypropylene labware. The chromatographically determined content of tocopherols and their molar reactivity in the DPPH assay reveal that only tocopherols contribute to the AOP of sunflower oil, whereas the contribution of tocopherols to the AOP of linseed oil is 75%. The DPPH assay in 2-propanol can be applied for rapid and cheap estimation of vitamin E content in plant oils where tocopherols are major antioxidants.

  20. Explosive eruption of coal and basalt and the end-Permian mass extinction

    PubMed Central

    Ogden, Darcy E.; Sleep, Norman H.

    2012-01-01

    The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution. PMID:22184229

  1. Field characteristics of deposits from spatter-rich pyroclastic density currents at Summer Coon volcano, Colorado

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.

    2000-12-01

    The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.

  2. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic

    PubMed Central

    Driebe, Elizabeth M.; MacCannell, Duncan R.; Roe, Chandler; Lemmer, Darrin; de Man, Tom; Rasheed, J. Kamile; Engelthaler, David M.; Keim, Paul; Limbago, Brandi M.

    2015-01-01

    Multidrug-resistant Klebsiella pneumoniae producing the KPC carbapenemase have rapidly spread throughout the world, causing severe healthcare-associated infections with limited antimicrobial treatment options. Dissemination of KPC-producing K. pneumoniae is largely attributed to expansion of a single dominant strain, ST258. In this study, we explore phylogenetic relationships and evolution within ST258 and its clonal group, CG258, using whole genome sequence analysis of 167 isolates from 20 countries collected over 17 years. Our results show a common ST258 ancestor emerged from its diverse parental clonal group around 1995 and likely acquired bla KPC prior to dissemination. Over the past two decades, ST258 has remained highly clonal despite diversity in accessory elements and divergence in the capsule polysaccharide synthesis locus. Apart from the large recombination event that gave rise to ST258, few mutations set it apart from its clonal group. However, one mutation occurs in a global transcription regulator. Characterization of outer membrane protein sequences revealed a profile in ST258 that includes a truncated OmpK35 and modified OmpK37. Our work illuminates potential genomic contributors to the pathogenic success of ST258, helps us better understand the global dissemination of this strain, and identifies genetic markers unique to ST258. PMID:26196384

  3. Ensuring Adequate Health and Safety Information for Decision Makers during Large-Scale Chemical Releases

    NASA Astrophysics Data System (ADS)

    Petropoulos, Z.; Clavin, C.; Zuckerman, B.

    2015-12-01

    The 2014 4-Methylcyclohexanemethanol (MCHM) spill in the Elk River of West Virginia highlighted existing gaps in emergency planning for, and response to, large-scale chemical releases in the United States. The Emergency Planning and Community Right-to-Know Act requires that facilities with hazardous substances provide Material Safety Data Sheets (MSDSs), which contain health and safety information on the hazardous substances. The MSDS produced by Eastman Chemical Company, the manufacturer of MCHM, listed "no data available" for various human toxicity subcategories, such as reproductive toxicity and carcinogenicity. As a result of incomplete toxicity data, the public and media received conflicting messages on the safety of the contaminated water from government officials, industry, and the public health community. Two days after the governor lifted the ban on water use, the health department partially retracted the ban by warning pregnant women to continue avoiding the contaminated water, which the Centers for Disease Control and Prevention deemed safe three weeks later. The response in West Virginia represents a failure in risk communication and calls to question if government officials have sufficient information to support evidence-based decisions during future incidents. Research capabilities, like the National Science Foundation RAPID funding, can provide a solution to some of the data gaps, such as information on environmental fate in the case of the MCHM spill. In order to inform policy discussions on this issue, a methodology for assessing the outcomes of RAPID and similar National Institutes of Health grants in the context of emergency response is employed to examine the efficacy of research-based capabilities in enhancing public health decision making capacity. The results of this assessment highlight potential roles rapid scientific research can fill in ensuring adequate health and safety data is readily available for decision makers during large-scale chemical releases.

  4. Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks

    NASA Astrophysics Data System (ADS)

    Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.

    2016-12-01

    New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.

  5. A hybrid structure for the storage and manipulation of very large spatial data sets

    USGS Publications Warehouse

    Peuquet, Donna J.

    1982-01-01

    The map data input and output problem for geographic information systems is rapidly diminishing with the increasing availability of mass digitizing, direct spatial data capture and graphics hardware based on raster technology. Although a large number of efficient raster-based algorithms exist for performing a wide variety of common tasks on these data, there are a number of procedures which are more efficiently performed in vector mode or for which raster mode equivalents of current vector-based techniques have not yet been developed. This paper presents a hybrid spatial data structure, named the ?vaster' structure, which can utilize the advantages of both raster and vector structures while potentially eliminating, or greatly reducing, the need for raster-to-vector and vector-to-raster conversion. Other advantages of the vaster structure are also discussed.

  6. A good walk spoiled: on the disappearance of golf as an active sport in America.

    PubMed

    Puterbaugh, James S

    2011-07-01

    During the past 60 years, there has been a major transition in the way golf is played in America. Its potential as exercise largely has been negated by the increase in motorized golf cart usage to approximately two of every three rounds played in this country. Accidents in golf carts have increased rapidly, which, by making the sport more dangerous, will likely bring future regulations. Consequently, playing golf has gradually become more of a public health threat than a benefit. The motorized cart also has resulted in an almost doubling of the size of golf courses, which now occupy a large amount of the built environment designated for activity. These changes are a major loss to society, portend future problems, and call for the sport to reevaluate its current model.

  7. [Research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering].

    PubMed

    Zhang, Haifeng; Han, Dong

    2014-09-01

    To review the application and research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering. The original articles about in vivo bioreactor that can enhance vascularization of tissue engineered bone were extensively reviewed and analyzed. The in vivo bioreactor can be created by periosteum, muscle, muscularis membrane, and fascia flap as well as biomaterials. Using in vivo bioreactor can effectively promote the establishment of a microcirculation in the tissue engineered bones, especially for large bone defects. However, main correlative researches, currently, are focused on animal experiments, more clinical trials will be carried out in the future. With the rapid development of related technologies of bone tissue engineering, the use of in vivo bioreactor will to a large extent solve the bottleneck limitations and has the potential values for clinical application.

  8. Scheme for Entering Binary Data Into a Quantum Computer

    NASA Technical Reports Server (NTRS)

    Williams, Colin

    2005-01-01

    A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.

  9. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amountmore » of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.« less

  10. The need for health impact assessment in China: Potential benefits for public health and steps forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Liming, E-mail: lmwu@scdc.sh.c; Center for Environment and Population Health, Griffith University, Nathan 4111; Rutherford, Shannon

    2011-07-15

    Health impact assessment (HIA) is a useful tool to predict and estimate the potential health impact associated with programs, projects, and policies by comprehensively identifying relevant health determinants and their consequences. China is undergoing massive and rapid socio-economic changes leading to environment and population health challenges such as a large increase in non-communicable diseases, the emergence and re-emergence of infectious diseases, new health risks associated with environmental pollutants and escalating health inequality. These health issues are affected by multiple determinants which can be influenced by planned policies, programs, and projects. This paper discusses the needs for health impact assessment inmore » China in order to minimize the negative health consequences from projects, programs and policies associated with rapid social and economic development. It first describes the scope of China's current impact assessment system and points out its inadequacy in meeting the requirements of population health protection and promotion. It then analyses the potential use of HIA and why China needs to develop and apply HIA as a tool to identify potential health impacts of proposed programs, projects and policies so as to influence decision-making early in the planning process. Thus, the paper recommends the development of HIA as a useful tool in China to enhance decision-making for the protection and promotion of population health. For this to happen, the paper outlines steps necessary for the establishment and successful implementation of HIA in China: beginning with the establishment of a HIA framework, followed by workforce capacity building, methodology design, and intersectoral collaboration and stakeholder engagement.« less

  11. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  12. Large area mapping of soil moisture using the ESTAR passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Levine, D. M.; Swift, C. T.; Schmugge, T. J.

    1994-01-01

    Investigations designed to study land surface hydrologic-atmospheric interactions, showing the potential of L band passive microwave radiometry for measuring surface soil moisture over large areas, are discussed. Satisfying the data needs of these investigations requires the ability to map large areas rapidly. With aircraft systems this means a need for more beam positions over a wider swath on each flightline. For satellite systems the essential problem is resolution. Both of these needs are currently being addressed through the development and verification of Electronically Scanned Thinned Array Radiometer (ESTAR) technology. The ESTAR L band radiometer was evaluated for soil moisture mapping applications in two studies. The first was conducted over the semiarid rangeland Walnut Gulch watershed located in south eastern Arizona (U.S.). The second was performed in the subhumid Little Washita watershed in south west Oklahoma (U.S.). Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.

  13. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  14. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  15. Analysis on the University’s Network Security Level System in the Big Data Era

    NASA Astrophysics Data System (ADS)

    Li, Tianli

    2017-12-01

    The rapid development of science and technology, the continuous expansion of the scope of computer network applications, has gradually improved the social productive forces, has had a positive impact on the increase production efficiency and industrial scale of China's different industries. Combined with the actual application of computer network in the era of large data, we can see the existence of influencing factors such as network virus, hacker and other attack modes, threatening network security and posing a potential threat to the safe use of computer network in colleges and universities. In view of this unfavorable development situation, universities need to pay attention to the analysis of the situation of large data age, combined with the requirements of network security use, to build a reliable network space security system from the equipment, systems, data and other different levels. To avoid the security risks exist in the network. Based on this, this paper will analyze the hierarchical security system of cyberspace security in the era of large data.

  16. Impacts of Land Cover Changes on Climate over China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  17. Pathogenesis of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Sarah; Orrell, Richard W

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) or motor neuron disease is a rapidly progressive neurodegenerative disorder. The primary involvement is of motor neurons in the brain, spinal cord and peripherally. There is secondary weakness of muscles and primary involvement of other brain regions, especially involving cognition. Peer-reviewed journal articles and reviews. PubMed.gov The pathogenesis of ALS remains largely unknown. There are a wide range of potential mechanisms related to neurodegeneration. An increasing number of genetic factors are recognized. There remains controversy, or lack of knowledge, in explaining how cellular events manifest as the complex human disease. There is controversy as to how well cellular and animal models of disease relate to the human disease. Large-scale international collaborative genetic epidemiological studies are replacing local studies. Therapies related to pathogenesis remain elusive, with the greatest advances to date relating to provision of care (including multidisciplinary management) and supportive care (nutrition and respiratory support). The identification of C9orf72 hexanucleotide repeats as the most frequent genetic background to ALS, and the association with frontotemporal dementia, gives the potential of a genetic background against which to study other risk factors, triggers and pathogenic mechanisms, and to develop potential therapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. New type of hill-top inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O.; Department of Physics, Tomsk State University,Lenin Ave. 36, Tomsk 634050; Department of Physics and Astronomy, Pacific Institue for Theoretical Physics,University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1

    2016-01-20

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on themore » background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ϵ and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.« less

  19. New type of hill-top inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O.; Nesterov, D.V.; Kamenshchik, A.Yu., E-mail: barvin@td.lpi.ru, E-mail: Alexander.Kamenshchik@bo.infn.it, E-mail: nesterov@td.lpi.ru

    2016-01-01

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on themore » background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ε and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.« less

  20. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation

    PubMed Central

    Angelard, Caroline; Tanner, Colby J; Fontanillas, Pierre; Niculita-Hirzel, Hélène; Masclaux, Frédéric; Sanders, Ian R

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF. PMID:24030596

  1. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation.

    PubMed

    Angelard, Caroline; Tanner, Colby J; Fontanillas, Pierre; Niculita-Hirzel, Hélène; Masclaux, Frédéric; Sanders, Ian R

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF.

  2. Rapid Quantification of Melamine in Different Brands/Types of Milk Powders Using Standard Addition Net Analyte Signal and Near-Infrared Spectroscopy

    PubMed Central

    2016-01-01

    Multivariate calibration (MVC) and near-infrared (NIR) spectroscopy have demonstrated potential for rapid analysis of melamine in various dairy products. However, the practical application of ordinary MVC can be largely restricted because the prediction of a new sample from an uncalibrated batch would be subject to a significant bias due to matrix effect. In this study, the feasibility of using NIR spectroscopy and the standard addition (SA) net analyte signal (NAS) method (SANAS) for rapid quantification of melamine in different brands/types of milk powders was investigated. In SANAS, the NAS vector of melamine in an unknown sample as well as in a series of samples added with melamine standards was calculated and then the Euclidean norms of series standards were used to build a straightforward univariate regression model. The analysis results of 10 different brands/types of milk powders with melamine levels 0~0.12% (w/w) indicate that SANAS obtained accurate results with the root mean squared error of prediction (RMSEP) values ranging from 0.0012 to 0.0029. An additional advantage of NAS is to visualize and control the possible unwanted variations during standard addition. The proposed method will provide a practically useful tool for rapid and nondestructive quantification of melamine in different brands/types of milk powders. PMID:27525154

  3. Rapid immunochromatographic diagnosis and Rolling Back Malaria--experiences from an African control program.

    PubMed

    Durrheim, D N; Govere, J; la Grange, J J; Mabuza, A

    2001-01-01

    Malaria is a re-emerging disease in much of Africa. In response, the World Health Organization launched the Roll Back Malaria (RBM) initiative. One of six key principles adopted is the early detection of malaria cases. However, the importance of definitive diagnosis and potential value of field deployment of rapid malaria tests in RBM has been largely ignored. The Lowveld Region of Mpumalanga Province, South Africa, is home to a predominantly non-immune population, of approximately 850000 inhabitants, who are at risk of seasonal Plasmodium falciparum malaria. Malaria treatment in this area is usually only initiated on detection of malaria parasites in the peripheral bloodstream, as many other rickettsial and viral febrile illness mimic malaria. The malaria control programme traditionally relied on light microscopy of Giemsa-stained thick blood films for malaria diagnosis. This review summarizes operational research findings that led to the introduction of rapid malaria card tests for primary diagnosis of malaria throughout the Mpumalanga malaria area. Subsequent operational research and extensive experience over a four-year period since introducing the ICT Malaria Pf test appears to confirm the local appropriateness of this diagnostic modality. A laboratory is not required and clinic staff are empowered to make a prompt definitive diagnosis, limiting delays in initiating correct therapy. The simple, accurate and rapid non-microscopic means now available for diagnosing malaria could play an important role in Rolling Back Malaria in selected areas.

  4. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.

  5. Social media as an information source for rapid flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K.

    2015-12-01

    During and shortly after a disaster, data about the hazard and its consequences are scarce and not readily available. Information provided by eyewitnesses via social media is a valuable information source, which should be explored in a~more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eyewitnesses extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information, as well as to interpret and integrate the posts into mapping procedures in a timely manner. To support rapid inundation mapping we propose a methodology and develop "PostDistiller", a tool to filter geolocated posts from social media services which include links to photos. This spatial distributed contextualized in situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.

  6. Social media as an information source for rapid flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K.

    2015-07-01

    During and shortly after a disaster data about the hazard and its consequences are scarce and not readily available. Information provided by eye-witnesses via social media are a valuable information source, which should be explored in a more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eye-witnesses extracted from social media posts and its integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, for example areas affected by a flood can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information as well as their timely interpretation and integration in mapping procedures. To support rapid inundation mapping we propose a methodology and develop a tool to filter geo-located posts from social media services which include links to photos. This spatial distributed contextualized in-situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.

  7. Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection

    NASA Astrophysics Data System (ADS)

    McNichols, Roger J.; Gowda, Ashok; Bell, Brent A.; Johnigan, Richard M.; Calhoun, Karen H.; Motamedi, Massoud

    2001-06-01

    Oral squamous cell carcinoma is a disease which progresses through a number of well-defined morphological and biochemical changes. Optical coherence tomography (OCT) is a rapidly-evolving, non-invasive imaging modality which allows detailed probing of subsurface tissue structures with resolution on the order of microns. While this technique offers tremendous potential as a diagnostic tool for detection and characterization of oral cancer, OCT imaging is presently associated with a field of view on the order of millimeters, and acquisition time on the order of seconds. Thus, OCT's utility as a rapid cancer screening technique is presently limited. On the other hand, imaging of tissue autofluorescence provides a very rapid, high-throughput method for cancer screening. However, while autofluorescence measures may be sensitive to cancer, they are often non- specific and lead to a large number of false positives. In the present work, we have developed a fluorescence image guided optical coherence tomographic (FIG-OCT) probe in which tissue autofluorescence images are simultaneously used to guide OCT image acquisition of suspicious regions in real time. We have begun pre-clinical pilot studies with this instrument in a DMBA-induced model of oral cancer in the hamster cheek pouch. Initial results indicate that the FIG- OCT approach shows promise as a rapid and effective tool for screening of oral cancer.

  8. Rapid screening for inflammatory neuropathies by standardized clinical criteria

    PubMed Central

    Tramontozzi, Louis A.

    2016-01-01

    Abstract Background: Delay in recognition and treatment of inflammatory neuropathies increases morbidity and mortality. We have developed and standardized 3 clinical screening criteria that rapidly detect inflammatory neuropathies. Methods: We reviewed all patients with definite large fiber neuropathy in 2 different patient populations: 1 from a private neurology clinic and the other from a tertiary care center. Patients were divided into 2 groups: those with an inflammatory neuropathy and those with a noninflammatory neuropathy. We specifically noted the 3 key neuropathy characteristics: onset, distribution, and associated systemic features (ODS). We studied the sensitivity and specificity of ODS in differentiating between inflammatory and noninflammatory neuropathies. Results: A total of 206 patients were included: 51 from the private clinic and 155 from the tertiary care center. The sensitivity of using ODS in detecting an inflammatory neuropathy was 96% and the specificity was 85%. The positive predictive value of ODS was 0.8 and negative predictive value was 0.97. Conclusions: Rapid screening for inflammatory neuropathies by ODS clinical criteria is highly sensitive and has a high negative predictive value for noninflammatory neuropathies. ODS uses simple clinical criteria to rapidly screen for patients with a potentially treatable form of neuropathy and accelerate their diagnostic evaluation. Classification of evidence: This study provides Class IV evidence that 3 neuropathy characteristics—onset, distribution, and associated systemic features—accurately identify patients with inflammatory neuropathies. PMID:29443273

  9. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine.

    PubMed

    Sayah, Anousheh; Jay, Ann K; Toaff, Jacob S; Makariou, Erini V; Berkowitz, Frank

    2016-09-01

    Reducing lumbar spine MRI scanning time while retaining diagnostic accuracy can benefit patients and reduce health care costs. This study compares the effectiveness of a rapid lumbar MRI protocol using 3D T2-weighted sampling perfection with application-optimized contrast with different flip-angle evolutions (SPACE) sequences with a standard MRI protocol for evaluation of lumbar spondylosis. Two hundred fifty consecutive unenhanced lumbar MRI examinations performed at 1.5 T were retrospectively reviewed. Full, rapid, and complete versions of each examination were interpreted for spondylotic changes at each lumbar level, including herniations and neural compromise. The full examination consisted of sagittal T1-weighted, T2-weighted turbo spin-echo (TSE), and STIR sequences; and axial T1- and T2-weighted TSE sequences (time, 18 minutes 40 seconds). The rapid examination consisted of sagittal T1- and T2-weighted SPACE sequences, with axial SPACE reformations (time, 8 minutes 46 seconds). The complete examination consisted of the full examination plus the T2-weighted SPACE sequence. Sensitivities and specificities of the full and rapid examinations were calculated using the complete study as the reference standard. The rapid and full studies had sensitivities of 76.0% and 69.3%, with specificities of 97.2% and 97.9%, respectively, for all degenerative processes. Rapid and full sensitivities were 68.7% and 66.3% for disk herniation, 85.2% and 81.5% for canal compromise, 82.9% and 69.1% for lateral recess compromise, and 76.9% and 69.7% for foraminal compromise, respectively. Isotropic SPACE T2-weighted imaging provides high-quality imaging of lumbar spondylosis, with multiplanar reformatting capability. Our SPACE-based rapid protocol had sensitivities and specificities for herniations and neural compromise comparable to those of the protocol without SPACE. This protocol fits within a 15-minute slot, potentially reducing costs and discomfort for a large subgroup of patients.

  10. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly andmore » rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.« less

  11. Urbanization and Slum Formation

    PubMed Central

    Phua, Kai Hong

    2007-01-01

    The formation of slums need not be inevitable with rapid urbanization. Such an argument appears to be contradicted by evidence of large slum populations in a large number of developing countries and particularly in rapidly urbanizing regions like Asia. The evidence discussed suggests that city authorities faced with rapid urban development lack the capacity to cope with the diverse demands for infrastructural provision to meet economic and social needs. Not only are strategic planning and intervention major issues in agenda to manage rapid urbanization, but city governments are not effectively linking the economic development trajectory to implications for urban growth and, hence, housing needs. In the following discussion, a case study is presented in support of the argument that city governments have to first recognize and then act to establish the link that is crucial between economic development, urban growth, and housing. This is the agendum that has been largely neglected by city and national governments that have been narrowly focused on economic growth with the consequent proliferation of slum formation as a housing solution. PMID:17387618

  12. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-01

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis.The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis. Electronic supplementary information (ESI) available: The average particle size distribution of LPASN-1, LPASN-2 and LPASN-3; the wide-angle XRD pattern of LPASN-2/LPASN-3/LPASN-4; the catalytic properties of LPASN-PNIPAM at different temperatures (15 °C and 33 °C). See DOI: 10.1039/c5nr04123f

  13. Strategies of Coping with Effective Teaching and Learning in Large Classes in Secondary Schools in Kampala District

    ERIC Educational Resources Information Center

    Sekiwu, Denis

    2009-01-01

    This study examines strategies of coping with teaching and learning in large classes in secondary schools in Kampala district. With the rapid technological, economic and social growth being realized in Uganda, demand for education is increasing every other day. Education is an investment needed for rapid social change. The need for education, as a…

  14. Use of low-coverage, large-insert, short-read data for rapid and accurate generation of enhanced-quality draft Pseudomonas genome sequences.

    PubMed

    O'Brien, Heath E; Gong, Yunchen; Fung, Pauline; Wang, Pauline W; Guttman, David S

    2011-01-01

    Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.

  15. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  16. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2015-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  17. Rapid replacement of riparian rainforest habitat and the impacts on the meandering dynamics of the Kinabatangan River, Borneo

    NASA Astrophysics Data System (ADS)

    Horton, Alexander J.; Constantine, José A.

    2014-05-01

    Meandering rivers are defined by their nature to migrate, remobilising floodplain sediment and constructing new surfaces for riparian vegetation to colonise. The presence of riparian vegetation has long been known to limit the ability of rivers to erode riverbanks, but it has remained unclear the principal means by which vegetation provides this function. As a result, most models that predict meandering behaviour do not fully incorporate vegetation, thereby limiting their utility where forest is rapidly replaced. The problem is particularly acute along the Kinabatangan River of Sabah in Malaysian Borneo, where oil palm plantations are replacing one of the oldest riparian rainforests on the planet. The area of Sabah has seen rapid and extensive land use change in the last 40 years, as virgin rainforest has been systematically cleared for logging, and to make way for oil palm plantations. In the 18 years from 1990 to 2008, Sabah lost half of its intact rainforest, which equates to more than 1.85 million hectares. Using Landsat imagery dating back to 1973, we report here the impacts of this rapid land-use change on rates of meander migration on a 280-km reach of the Kinabatangan River. The river planform has been remarkably stable throughout the time period of study, but individual meanders show a rapid response to large discharge events, migrating over an order of magnitude faster than nearby reaches. Rapidly migrating meanders generally occur along portions of floodplain that have been artificially cleared of riparian vegetation, potentially resulting in significant increases in sediment load and within-channel bar development. A field campaign is planned to investigate the mechanisms by which riparian vegetation effect meander migration in these tropical regions.

  18. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  19. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    PubMed Central

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  20. Rapid intranasal delivery of chloramphenicol acetyltransferase in the active form to different brain regions as a model for enzyme therapy in the CNS.

    PubMed

    Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A

    2016-02-01

    The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.

  1. El Niño impact on mollusk biomineralization-implications for trace element proxy reconstructions and the paleo-archeological record.

    PubMed

    Pérez-Huerta, Alberto; Etayo-Cadavid, Miguel F; Andrus, C Fred T; Jeffries, Teresa E; Watkins, Clifton; Street, Shane C; Sandweiss, Daniel H

    2013-01-01

    Marine macroinvertebrates are ideal sentinel organisms to monitor rapid environmental changes associated with climatic phenomena. These organisms build up protective exoskeletons incrementally by biologically-controlled mineralization, which is deeply rooted in long-term evolutionary processes. Recent studies relating potential rapid environmental fluctuations to climate change, such as ocean acidification, suggest modifications on carbonate biominerals of marine invertebrates. However, the influence of known, and recurrent, climatic events on these biological processes during active mineralization is still insufficiently understood. Analysis of Peruvian cockles from the 1982-83 large magnitude El Niño event shows significant alterations of the chemico-structure of carbonate biominerals. Here, we show that bivalves modify the main biomineralization mechanism during the event to continue shell secretion. As a result, magnesium content increases to stabilize amorphous calcium carbonate (ACC), inducing a rise in Mg/Ca unrelated to the associated increase in sea-surface temperature. Analysis of variations in Sr/Ca also suggests that this proxy should not be used in these bivalves to detect the temperature anomaly, while Ba/Ca peaks are recorded in shells in response to an increase in productivity, or dissolved barium in seawater, after the event. Presented data contribute to a better understanding of the effects of abrupt climate change on shell biomineralization, while also offering an alternative view of bivalve elemental proxy reconstructions. Furthermore, biomineralization changes in mollusk shells can be used as a novel potential proxy to provide a more nuanced historical record of El Niño and similar rapid environmental change events.

  2. Diffusion of Water through Olivine and Clinopyroxene: Implications for Melt Inclusion Fidelity

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Lloyd, A. S.; Ferriss, E.

    2016-12-01

    The maximum H2O concentrations measured in olivine-hosted melt inclusions (MIs) from arc tephra fall within a narrow range of 3-5 wt%. A major question is whether this reflects parental water concentrations or diffusive exchange through the host crystal during storage and ascent. Laboratory experiments have shown that water can diffuse through 500 micron olivine in minutes to days at 1100°C. We have tested these predictions with a natural experiment using volatile (H2O, CO2, S) diffusion along melt embayments to constrain ascent rates during the 1974 eruption of Volcan Fuego to 5-8 minutes from 7 km depth [1]. Thus, olivine-hosted MIs may move from their storage region to the surface during some eruptions rapidly enough to retain almost all of their original water. Only the smallest MIs (< 30 microns) will lose any water during such fast ascent, even for the fastest diffusion mechanism through olivine. We have also assessed the potential for clinopyroxene (cpx) to retain water (as H+) during magma ascent. In the same 1974 Fuego deposits, cpx crystals show H-loss on their rims and even from their interiors. Such diffusive loss in 5-8 minutes requires rapid diffusion of H in cpx, comparable to olivine and melt, and consistent with our recent laboratory experiments dehydrating Fe-bearing cpx [2]. Although H-diffusion is dependent on the site occupancy, all sites may lose H rapidly in cpx with Mg# < 92.5. While cpx and olivine may lose H during ascent and degassing, olivine-hosted MIs stand a better chance of retaining water due to the very low partitioning of water in olivine (D 0.001). The most favorable conditions for faithful retention of parental water concentrations involve a) rapid ascent (< hr.) from H2O-undersaturated reservoirs (prior to major water degassing), b) minerals with low partition coefficients for water, c) large crystals (>500 microns) and large melt inclusions (>50 microns), and 4) rapid post-eruptive cooling (< 1min, clast sizes < 1 cm). The rapid diffusion of H through olivine and cpx presents a challenge to MI fidelity, but not necessarily if the above conditions are met. [1] Lloyd et al., 2014, JVGR. [2] Ferriss et al., 2016, AmMin.

  3. Rapidity and species dependence of particle production at large transverse momentum for d+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Guo, Y.; Gupta, N.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reinnarth, J.; Relyea, D.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; Toledo, A. Szanto De; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-11-01

    We determine rapidity asymmetry in the production of charged pions, protons, and antiprotons for large transverse momentum (pT) for d+Au collisions at sNN=200 GeV. The rapidity asymmetry is defined as the ratio of particle yields at backward rapidity (Au beam direction) to those at forward rapidity (d beam direction). The identified hadrons are measured in the rapidity regions |y|<0.5 and 0.5<|y|<1.0 for the pT range 2.5

  4. Sheared-flow induced confinement transition in a linear magnetized plasma

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  5. Herbivorous fishes, ecosystem function and mobile links on coral reefs

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bellwood, D. R.

    2014-06-01

    Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range-body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.

  6. 3' rapid amplification of cDNA ends (RACE) walking for rapid structural analysis of large transcripts.

    PubMed

    Ozawa, Tatsuhiko; Kondo, Masato; Isobe, Masaharu

    2004-01-01

    The 3' rapid amplification of cDNA ends (3' RACE) is widely used to isolate the cDNA of unknown 3' flanking sequences. However, the conventional 3' RACE often fails to amplify cDNA from a large transcript if there is a long distance between the 5' gene-specific primer and poly(A) stretch, since the conventional 3' RACE utilizes 3' oligo-dT-containing primer complementary to the poly(A) tail of mRNA at the first strand cDNA synthesis. To overcome this problem, we have developed an improved 3' RACE method suitable for the isolation of cDNA derived from very large transcripts. By using the oligonucleotide-containing random 9mer together with the GC-rich sequence for the suppression PCR technology at the first strand of cDNA synthesis, we have been able to amplify the cDNA from a very large transcript, such as the microtubule-actin crosslinking factor 1 (MACF1) gene, which codes a transcript of 20 kb in size. When there is no splicing variant, our highly specific amplification allows us to perform the direct sequencing of 3' RACE products without requiring cloning in bacterial hosts. Thus, this stepwise 3' RACE walking will help rapid characterization of the 3' structure of a gene, even when it encodes a very large transcript.

  7. Big and small: menisci in soil pores affect water pressures, dynamics of groundwater levels, and catchment-scale average matric potentials

    NASA Astrophysics Data System (ADS)

    de Rooij, G. H.

    2010-09-01

    Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.

  8. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  9. From CNTNAP2 to Early Expressive Language in Infancy: The Mediation Role of Rapid Auditory Processing.

    PubMed

    Riva, Valentina; Cantiani, Chiara; Benasich, April A; Molteni, Massimo; Piazza, Caterina; Giorda, Roberto; Dionne, Ginette; Marino, Cecilia

    2018-06-01

    Although it is clear that early language acquisition can be a target of CNTNAP2, the pathway between gene and language is still largely unknown. This research focused on the mediation role of rapid auditory processing (RAP). We tested RAP at 6 months of age by the use of event-related potentials, as a mediator between common variants of the CNTNAP2 gene (rs7794745 and rs2710102) and 20-month-old language outcome in a prospective longitudinal study of 96 Italian infants. The mediation model examines the hypothesis that language outcome is explained by a sequence of effects involving RAP and CNTNAP2. The ability to discriminate spectrotemporally complex auditory frequency changes at 6 months of age mediates the contribution of rs2710102 to expressive vocabulary at 20 months. The indirect effect revealed that rs2710102 C/C was associated with lower P3 amplitude in the right hemisphere, which, in turn, predicted poorer expressive vocabulary at 20 months of age. These findings add to a growing body of literature implicating RAP as a viable marker in genetic studies of language development. The results demonstrate a potential developmental cascade of effects, whereby CNTNAP2 drives RAP functioning that, in turn, contributes to early expressive outcome.

  10. Tear gas: an epidemiological and mechanistic reassessment

    PubMed Central

    Rothenberg, Craig; Achanta, Satyanarayana; Svendsen, Erik R.

    2016-01-01

    Deployments of tear gas and pepper spray have rapidly increased worldwide. Large amounts of tear gas have been used in densely populated cities, including Cairo, Istanbul, Rio de Janeiro, Manama (Bahrain), and Hong Kong. In the United States, tear gas was used extensively during recent riots in Ferguson, Missouri. Whereas tear gas deployment systems have rapidly improved—with aerial drone systems tested and requested by law enforcement—epidemiological and mechanistic research have lagged behind and have received little attention. Case studies and recent epidemiological studies revealed that tear gas agents can cause lung, cutaneous, and ocular injuries, with individuals affected by chronic morbidities at high risk for complications. Mechanistic studies identified the ion channels TRPV1 and TRPA1 as targets of capsaicin in pepper spray, and of the tear gas agents chloroacetophenone, CS, and CR. TRPV1 and TRPA1 localize to pain‐sensing peripheral sensory neurons and have been linked to acute and chronic pain, cough, asthma, lung injury, dermatitis, itch, and neurodegeneration. In animal models, transient receptor potential inhibitors show promising effects as potential countermeasures against tear gas injuries. On the basis of the available data, a reassessment of the health risks of tear gas exposures in the civilian population is advised, and development of new countermeasures is proposed. PMID:27391380

  11. GIS-based rapid-assessment of bighead carp Hypophthalmichthys nobilis (Richardson, 1845) suitability in reservoirs

    USGS Publications Warehouse

    Long, James M.; Liang, Yu; Shoup, Daniel E.; Dzialowski, Andrew R.; Bidwell, Joseph R.

    2014-01-01

    Broad-scale niche models are good for examining the potential for invasive species occurrences, but can fall short in providing managers with site-specific locations for monitoring. Using Oklahoma as an example, where invasive bighead carp (Hypophthalmichthys nobilis) are established in certain reservoirs, but predicted to be widely distributed based on broad-scale niche models, we cast bighead carp reproductive ecology in a site-specific geospatial framework to determine their potential establishment in additional reservoirs. Because bighead carp require large, long free-flowing rivers with suitable hydrology for reproduction but can persist in reservoirs, we considered reservoir tributaries with mean annual daily discharge ≥8.5 cubic meters per second (m3 /s) and quantified the length of their unimpeded portions. In contrast to published broad-scale niche models that identified nearly the entire state as susceptible to invasion, our site-specific models showed that few reservoirs in Oklahoma (N = 9) were suitable for bighead carp establishment. Moreover, this method was rapid and identified sites that could be prioritized for increased study or scrutiny. Our results highlight the importance of considering the environmental characteristics of individual sites, which is often the level at which management efforts are implemented when assessing susceptibility to invasion.

  12. Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni

    PubMed Central

    Gabriel, Edith; Leatherbarrow, Andrew J.H.; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Hart, C. Anthony; Diggle, Peter J.; Fearnhead, Paul

    2009-01-01

    Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue. PMID:19008526

  13. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    PubMed

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  14. Analysis of suspicious powders following the post 9/11 anthrax scare.

    PubMed

    Wills, Brandon; Leikin, Jerrold; Rhee, James; Saeedi, Bijan

    2008-06-01

    Following the 9/11 terrorist attacks, SET Environmental, Inc., a Chicago-based environmental and hazardous materials management company received a large number of suspicious powders for analysis. Samples of powders were submitted to SET for anthrax screening and/or unknown identification (UI). Anthrax screening was performed on-site using a ruggedized analytical pathogen identification device (R.A.P.I.D.) (Idaho Technologies, Salt Lake City, UT). UI was performed at SET headquarters (Wheeling, IL) utilizing a combination of wet chemistry techniques, infrared spectroscopy, and gas chromatography/mass spectroscopy. Turnaround time was approximately 2-3 hours for either anthrax or UI. Between October 10, 2001 and October 11, 2002, 161 samples were analyzed. Of these, 57 were for anthrax screening only, 78 were for anthrax and UI, and 26 were for UI only. Sources of suspicious powders included industries (66%), U.S. Postal Service (19%), law enforcement (9%), and municipalities (7%). There were 0/135 anthrax screens that were positive. There were no positive anthrax screens performed by SET in the Chicago area following the post-9/11 anthrax scare. The only potential biological or chemical warfare agent identified (cyanide) was provided by law enforcement. Rapid anthrax screening and identification of unknown substances at the scene are useful to prevent costly interruption of services and potential referral for medical evaluation.

  15. Rapid Removal of Atmospheric CO2 by Urban Soils.

    PubMed

    Washbourne, Carla-Leanne; Lopez-Capel, Elisa; Renforth, Phil; Ascough, Philippa L; Manning, David A C

    2015-05-05

    The measured calcium carbonate content of soils to a depth of 100 mm at a large urban development site has increased over 18 months at a rate that corresponds to the sequestration of 85 t of CO2/ha (8.5 kg of CO2 m(-2)) annually. This is a consequence of rapid weathering of calcium silicate and hydroxide minerals derived from the demolition of concrete structures, which releases Ca that combines with CO2 ultimately derived from the atmosphere, precipitating as calcite. Stable isotope data confirm an atmospheric origin for carbonate carbon, and 14C dating indicates the predominance of modern carbon in the pedogenic calcite. Trial pits show that carbonation extends to depths of ≥1 m. Work at other sites shows that the occurrence of pedogenic carbonates is widespread in artificially created urban soils containing Ca and Mg silicate minerals. Appropriate management of fewer than 12000 ha of urban land to maximize calcite precipitation has the potential to remove 1 million t of CO2 from the atmosphere annually. The maximal global potential is estimated to be approximately 700-1200 Mt of CO2 per year (representing 2.0-3.7% of total emissions from fossil fuel combustion) based on current rates of production of industry-derived Ca- and Mg-bearing materials.

  16. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  17. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples.

    PubMed

    Krõlov, Katrin; Frolova, Jekaterina; Tudoran, Oana; Suhorutsenko, Julia; Lehto, Taavi; Sibul, Hiljar; Mäger, Imre; Laanpere, Made; Tulp, Indrek; Langel, Ülo

    2014-01-01

    Chlamydia trachomatis is the most common sexually transmitted human pathogen. Infection results in minimal to no symptoms in approximately two-thirds of women and therefore often goes undiagnosed. C. trachomatis infections are a major public health concern because of the potential severe long-term consequences, including an increased risk of ectopic pregnancy, chronic pelvic pain, and infertility. To date, several point-of-care tests have been developed for C. trachomatis diagnostics. Although many of them are fast and specific, they lack the required sensitivity for large-scale application. We describe a rapid and sensitive form of detection directly from urine samples. The assay uses recombinase polymerase amplification and has a minimum detection limit of 5 to 12 pathogens per test. Furthermore, it enables detection within 20 minutes directly from urine samples without DNA purification before the amplification reaction. Initial analysis of the assay from clinical patient samples had a specificity of 100% (95% CI, 92%-100%) and a sensitivity of 83% (95% CI, 51%-97%). The whole procedure is fairly simple and does not require specific machinery, making it potentially applicable in point-of-care settings. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  18. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract

    NASA Astrophysics Data System (ADS)

    Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.

    2013-02-01

    A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.

  19. Polyphenols excreted in urine as biomarkers of total polyphenol intake.

    PubMed

    Medina-Remón, Alexander; Tresserra-Rimbau, Anna; Arranz, Sara; Estruch, Ramón; Lamuela-Raventos, Rosa M

    2012-11-01

    Nutritional biomarkers have several advantages in acquiring data for epidemiological and clinical studies over traditional dietary assessment tools, such as food frequency questionnaires. While food frequency questionnaires constitute a subjective methodology, biomarkers can provide a less biased and more accurate measure of specific nutritional intake. A precise estimation of polyphenol consumption requires blood or urine sample biomarkers, although their association is usually highly complex. This article reviews recent research on urinary polyphenols as potential biomarkers of polyphenol intake, focusing on clinical and epidemiological studies. We also report a potentially useful methodology to assess total polyphenols in urine samples, which allows a rapid, simultaneous determination of total phenols in a large number of samples. This methodology can be applied in studies evaluating the utility of urinary polyphenols as markers of polyphenol intake, bioavailability and accumulation in the body.

  20. Thoracic trauma.

    PubMed

    Kagan, K G

    1980-08-01

    The physiologic equilibrium of chest injury patients is frequently precarious, and mild stress during examination and treatment may precipitate acute decompensation and death. This is particularly true with the respiratory system, where the normally large respiratory reserve capacity may be rapidly lost. Accurate assessment of the nature of the thoracic injury and the severity of that injury must be determined in order to formulate a therapeutic plan. Many thoracic injuries, such as pneumothorax, pulmonary contusions, or rib fractures, will be self-limiting. Other conditions must be recognized for their potentially lethal nature and dealt with aggressively, and these include cardiac tamponade, tension pneumothorax, and esophageal perforation. By performing a systematic evaluation of the patient and confirming or denying the presence of all possible types of thoracic injury, the veterinarian may avoid overtreatment of self-limiting lesions and recognize and aggressively treat those with potentially fatal outcomes.

  1. Vulnerability of China's nearshore ecosystems under intensive mariculture development.

    PubMed

    Liu, Hui; Su, Jilan

    2017-04-01

    Rapid economic development and increasing population in China have exerted tremendous pressures on the coastal ecosystems. In addition to land-based pollutants and reclamation, fast expansion of large-scale intensive mariculture activities has also brought about additional effects. So far, the ecological impact of rapid mariculture development and its large-scale operations has not drawn enough attention. In this paper, the rapid development of mariculture in China is reviewed, China's effort in the application of ecological mariculture is examined, and the vulnerability of marine ecosystem to mariculture impact is evaluated through a number of examples. Removal or reduced large and forage fish, due to both habitat loss to reclamation/mariculture and overfishing for food or fishmeal, may have far-reaching effects on the coastal and shelf ecosystems in the long run. Large-scale intensive mariculture operations carry with them undesirable biological and biochemical characteristics, which may have consequences on natural ecosystems beyond normally perceived spatial and temporal boundaries. As our understanding of possible impacts of large-scale intensive mariculture is lagging far behind its development, much research is urgently needed.

  2. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  3. Development of polymer nano composite patterns using fused deposition modeling for rapid investment casting process

    NASA Astrophysics Data System (ADS)

    Vivek, Tiwary; Arunkumar, P.; Deshpande, A. S.; Vinayak, Malik; Kulkarni, R. M.; Asif, Angadi

    2018-04-01

    Conventional investment casting is one of the oldest and most economical manufacturing techniques to produce intricate and complex part geometries. However, investment casting is considered economical only if the volume of production is large. Design iterations and design optimisations in this technique proves to be very costly due to time and tooling cost for making dies for producing wax patterns. However, with the advent of Additive manufacturing technology, plastic patterns promise a very good potential to replace the wax patterns. This approach can be very useful for low volume production & lab requirements, since the cost and time required to incorporate the changes in the design is very low. This research paper discusses the steps involved for developing polymer nanocomposite filaments and checking its suitability for investment castings. The process parameters of the 3D printer machine are also optimized using the DOE technique to obtain mechanically stronger plastic patterns. The study is done to develop a framework for rapid investment casting for lab as well as industrial requirements.

  4. A Hybrid Approach for the Automated Finishing of Bacterial Genomes

    PubMed Central

    Robins, William P.; Chin, Chen-Shan; Webster, Dale; Paxinos, Ellen; Hsu, David; Ashby, Meredith; Wang, Susana; Peluso, Paul; Sebra, Robert; Sorenson, Jon; Bullard, James; Yen, Jackie; Valdovino, Marie; Mollova, Emilia; Luong, Khai; Lin, Steven; LaMay, Brianna; Joshi, Amruta; Rowe, Lori; Frace, Michael; Tarr, Cheryl L.; Turnsek, Maryann; Davis, Brigid M; Kasarskis, Andrew; Mekalanos, John J.; Waldor, Matthew K.; Schadt, Eric E.

    2013-01-01

    Dramatic improvements in DNA sequencing technology have revolutionized our ability to characterize most genomic diversity. However, accurate resolution of large structural events has remained challenging due to the comparatively shorter read lengths of second-generation technologies. Emerging third-generation sequencing technologies, which yield markedly increased read length on rapid time scales and for low cost, have the potential to address assembly limitations. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at > 99.9% accuracy. Complex regions with clinically significant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 reference we obtain 14 and 8 scaffolds greater than 1kb, respectively, correcting several errors in the underlying source data. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly. PMID:22750883

  5. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  6. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold.

    PubMed

    Wang, Xiaohong; Rijff, Boaz Lloyd; Khang, Gilson

    2017-05-01

    Multichannel scaffolds, formed by rapid prototyping technologies, retain a high potential for regenerative medicine and the manufacture of complex organs. This study aims to optimize several parameters for producing poly(lactic-co-glycolic acid) (PLGA) scaffolds by a low-temperature, deposition manufacturing, three-dimensional printing (3DP, or rapid prototyping) system. Concentration of the synthetic polymer solution, nozzle speed and extrusion rate were analysed and discussed. Polymer solution with a concentration of 12% w/v was determined as optimal for formation; large deviation of this figure failed to maintain the desired structure. The extrusion rate was also modified for better construct quality. Finally, several solid organ scaffolds, such as the liver, with proper wall thickness and intact contour were printed. This study gives basic instruction to design and fabricate scaffolds with de novo material systems, particularly by showing the approximation of variables for manufacturing multichannel PLGA scaffolds. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Water stress detection in the Amazon using radar

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  8. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  9. Structural Characterization of Sputtered Silicon Thin Films after Rapid Thermal Annealing for Active-Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    de Dieu Mugiraneza, Jean; Miyahira, Tomoyuki; Sakamoto, Akinori; Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Itoh, Taketsugu

    2010-12-01

    The microcrystalline phase obtained by adopting a two-step rapid thermal annealing (RTA) process for rf-sputtered silicon films deposited on thermally durable glass was characterized. The optical properties, surface morphology, and internal stress of the annealed Si films are investigated. As the thermally durable glass substrate allows heating of the deposited films at high temperatures, micro-polycrystalline silicon (micro-poly-Si) films of uniform grain size with a smooth surface and a low internal stress could be obtained after annealing at 750 °C. The thermal stress in the Si films was 100 times lower than that found in the films deposited on conventional glass. Uniform grains with an average grain size of 30 nm were observed by transmission electron microscopy (TEM) in the films annealed at 800 °C. These micro-poly-Si films have potential application for fabrication of uniform and reliable thin film transistors (TFTs) for large scale active-matrix organic light emitting diode (AMOLED) displays.

  10. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability

    PubMed Central

    Jones, R. S.; Mackintosh, A. N.; Norton, K. P.; Golledge, N. R.; Fogwill, C. J.; Kubik, P. W.; Christl, M.; Greenwood, S. L.

    2015-01-01

    Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to ‘marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558

  11. Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology.

    PubMed

    Zhang, Jing; Song, Yanlin; Xia, Fan; Zhu, Chenjing; Zhang, Yingying; Song, Wenpeng; Xu, Jianguo; Ma, Xuelei

    2017-09-01

    Frozen section is widely used for intraoperative pathological diagnosis (IOPD), which is essential for intraoperative decision making. However, frozen section suffers from some drawbacks, such as time consuming and high misdiagnosis rate. Recently, artificial intelligence (AI) with deep learning technology has shown bright future in medicine. We hypothesize that AI with deep learning technology could help IOPD, with a computer trained by a dataset of intraoperative lesion images. Evidences supporting our hypothesis included the successful use of AI with deep learning technology in diagnosing skin cancer, and the developed method of deep-learning algorithm. Large size of the training dataset is critical to increase the diagnostic accuracy. The performance of the trained machine could be tested by new images before clinical use. Real-time diagnosis, easy to use and potential high accuracy were the advantages of AI for IOPD. In sum, AI with deep learning technology is a promising method to help rapid and accurate IOPD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The use of computer-generated color graphic images for transient thermal analysis. [for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.

    1979-01-01

    Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.

  13. Integration and segregation of large-scale brain networks during short-term task automatization

    PubMed Central

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-01-01

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095

  14. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thwaites, D; Holloway, L; Bailey, M

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction andmore » mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions, improved treatment quality and potential practice changes. The early indications from the distributed learning and radiomics pilots strengthen this. Improved routine patient data quality should strengthen such rapid learning systems.« less

  15. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    PubMed Central

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous axonal and somatic recordings and computational simulations, we demonstrate that the initiation of action potentials in the axon initial segment followed by backpropagation of these spikes throughout the neuron results in a distortion of the relationship between the timing of synaptic and action potential events. In addition, this backpropagation also results in an unusually high rate of rise of membrane potential at the foot of the action potential. The distortion of the relationship between the amplitude time course of synaptic inputs and action potential output caused by spike back-propagation results in the appearance of high spike threshold variability at the level of the soma. At the point of spike initiation, the axon initial segment, threshold variability is considerably less. Our results indicate that spike generation in cortical neurons is largely as expected by Hodgkin—Huxley theory and is more precise than previously thought. PMID:18632930

  16. Intermittent blood pressure control: potential consequences for outcome.

    PubMed

    Leenen, F H

    1999-05-01

    Although both blood pressure (BP) and left ventricular (LV) mass at initial evaluation predict future cardiovascular risk, the actual BP and LV mass achieved over years of treatment more clearly relate to cardiovascular event rates. Intermittent compliance or noncompliance is the major reason for uncontrolled hypertension and presumably persistent LV hypertrophy. In general, drugs with rapid onset and short duration of action are not desirable because this profile may lead to large variations in BP lowering effect during actual drug intake and rapid disappearance of the antihypertensive effect with missed doses. In addition, intermittent compliance per se introduces the potential for adverse events. For drugs requiring several dose-titrations (e.g., alpha1-blockers), restarting at full doses may lead to excessive drug action and symptomatic hypotension. For other drugs (e.g., short acting beta-blockers or clonidine-like drugs), sudden discontinuation with intermittent compliance may lead to rebound-enhanced sympathetic responsiveness after one to two days, resulting not only in side effects, but also in adverse events, particularly in patients with (silent) coronary artery disease. The rapid onset, short acting dihydropyridines cause intermittent BP control at each dosing, particularly at higher doses. This intermittent control of BP is even more apparent at dosing intervals that are long relative to the duration of action. Thus, sympathetic activation and potential for adverse events can be anticipated at each dosing unless these drugs are being taken frequently at relatively low doses. For diuretics, angiotensin-converting enzyme inhibitors and angiotensin I receptor blockers, no adverse effects have been identified with intermittent compliance. Intermittent BP control is, in general, not an appropriate approach to the management of hypertension and introduces additional risks depending on the type of antihypertensive drug. In contrast, drugs with slow onset and long duration of action provide a more consistent effect during actual drug intake and a more persistent effect during short periods of noncompliance.

  17. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis

    PubMed Central

    Carranza-Rodríguez, Cristina; Pérez-Arellano, José Luis; Vicente, Belén; López-Abán, Julio; Muro, Antonio

    2015-01-01

    Background Urogenital schistosomiasis due to Schistosoma haematobium is a serious underestimated public health problem affecting 112 million people - particularly in sub-Saharan Africa. Microscopic examination of urine samples to detect parasite eggs still remains as definitive diagnosis. This work was focussed on developing a novel loop-mediated isothermal amplification (LAMP) assay for detection of S. haematobium DNA in human urine samples as a high-throughput, simple, accurate and affordable diagnostic tool to use in diagnosis of urogenital schistosomiasis. Methodology/Principal Findings A LAMP assay targeting a species specific sequence of S. haematobium ribosomal intergenic spacer was designed. The effectiveness of our LAMP was assessed in a number of patients´ urine samples with microscopy confirmed S. haematobium infection. For potentially large-scale application in field conditions, different DNA extraction methods, including a commercial kit, a modified NaOH extraction method and a rapid heating method were tested using small volumes of urine fractions (whole urine, supernatants and pellets). The heating of pellets from clinical samples was the most efficient method to obtain good-quality DNA detectable by LAMP. The detection limit of our LAMP was 1 fg/µL of S. haematobium DNA in urine samples. When testing all patients´ urine samples included in our study, diagnostic parameters for sensitivity and specificity were calculated for LAMP assay, 100% sensitivity (95% CI: 81.32%-100%) and 86.67% specificity (95% CI: 75.40%-94.05%), and also for microscopy detection of eggs in urine samples, 69.23% sensitivity (95% CI: 48.21% -85.63%) and 100% specificity (95% CI: 93.08%-100%). Conclusions/Significance We have developed and evaluated, for the first time, a LAMP assay for detection of S. haematobium DNA in heated pellets from patients´ urine samples using no complicated requirement procedure for DNA extraction. The procedure has been named the Rapid-Heat LAMPellet method and has the potential to be developed further as a field diagnostic tool for use in urogenital schistosomiasis-endemic areas. PMID:26230990

  18. Multiplex titration RT-PCR: rapid determination of gene expression patterns for a large number of genes

    NASA Technical Reports Server (NTRS)

    Nebenfuhr, A.; Lomax, T. L.

    1998-01-01

    We have developed an improved method for determination of gene expression levels with RT-PCR. The procedure is rapid and does not require extensive optimization or densitometric analysis. Since the detection of individual transcripts is PCR-based, small amounts of tissue samples are sufficient for the analysis of expression patterns in large gene families. Using this method, we were able to rapidly screen nine members of the Aux/IAA family of auxin-responsive genes and identify those genes which vary in message abundance in a tissue- and light-specific manner. While not offering the accuracy of conventional semi-quantitative or competitive RT-PCR, our method allows quick screening of large numbers of genes in a wide range of RNA samples with just a thermal cycler and standard gel analysis equipment.

  19. Perspectives on Chemopreventive and Therapeutic Potential of Curcumin Analogs in Medicinal Chemistry

    PubMed Central

    Padhye, S.; Chavan, D.; Pandey, S.; Deshpande, J.; Swamy, K.V.; Sarkar, F.H.

    2011-01-01

    Curcumin is a natural polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over past 50 years has indicated that this polyphenol is highly pleiotropic molecule capable of preventing and treating various cancers. The anticancer potential of Curcumin is severely affected by its limited systemic and target tissue bioavailability and rapid metabolism. In the present review article, we provide a summarized account of different drug delivery systems employed for tackling the problem of curcumin's bioavailability such as liposomes, phospholipid complexes and nanoparticles. Concomitantly we have reviewed the large volume of literature reports describing structural modifications of Curcumin and the anticancer potential of its analogs. Some of the difluorocurcumin analogs allowing longer circulation times and preferential accumulation in the pancreas seem to offer promising leads for conducting first in-depth animal studies and subsequently clinical trials for the use of these analogs for prevention of tumor progression and/or treatments of human malignancies. PMID:20370702

  20. A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability

    NASA Astrophysics Data System (ADS)

    Cang, Chunlei; Aranda, Kimberly; Ren, Dejian

    2014-09-01

    Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.

  1. RAPID POST-FIRE HYDROLOGIC WATERSHED ASSESSMENT USING THE AGWA GIS-BASED HYDROLOGIC MODELING TOOL

    EPA Science Inventory

    Rapid post-fire watershed assessment to identify potential trouble spots for erosion and flooding can potentially aid land managers and Burned Area Emergency Rehabilitation (BAER) teams in deploying mitigation and rehabilitation resources.

    These decisions are inherently co...

  2. Rapid Cost Assessment of Space Mission Concepts Through Application of Complexity-Based Cost Indices

    NASA Technical Reports Server (NTRS)

    Peterson, Craig E.; Cutts, James; Balint, Tibor; Hall, James B.

    2008-01-01

    This slide presentation reviews the development of a rapid cost assessment models for evaluation of exploration missions through the application of complexity based cost indices. In Fall of 2004, NASA began developing 13 documents, known as "strategic roadmaps," intended to outline a strategy for space exploration over the next 30 years. The Third Strategic Roadmap, The Strategic Roadmap for Solar System Exploration, focused on strategy for robotic exploration of the Solar System. Development of the Strategic Roadmap for Solar System Exploration led to the investigation of a large variety of missions. However, the necessity of planning around scientific inquiry and budgetary constraints made it necessary for the roadmap development team to evaluate potential missions not only for scientific return but also cost. Performing detailed cost studies for each of the large number of missions was impractical given the time constraints involved and lack of detailed mission studies; so a method of rapid cost assessment was developed by us to allow preliminary analysis. It has been noted that there is a strong correlation between complexity and cost and schedule of planetary missions. While these correlations were made after missions had been built and flown (successfully or otherwise), it seemed likely that a similar approach could provide at least some relative cost ranking. Cost estimation relationships (CERs) have been developed based on subsystem design choices. These CERs required more detailed information than available, forcing the team to adopt a more high level approach. Costing by analogy has been developed for small satellites, however, planetary exploration missions provide such varying spacecraft requirements that there is a lack of adequately comparable missions that can be used for analogy.

  3. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE PAGES

    Yim, Won Cheol; Cushman, John C.

    2017-07-22

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  4. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass.

    PubMed

    Pembleton, Luke W; Inch, Courtney; Baillie, Rebecca C; Drayton, Michelle C; Thakur, Preeti; Ogaji, Yvonne O; Spangenberg, German C; Forster, John W; Daetwyler, Hans D; Cogan, Noel O I

    2018-06-02

    Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.

  5. Impacts of future urban expansion on summer climate and heat-related human health in eastern China.

    PubMed

    Cao, Qian; Yu, Deyong; Georgescu, Matei; Wu, Jianguo; Wang, Wei

    2018-03-01

    China is the largest and most rapidly urbanizing nation in the world, and is projected to add an additional 200 million city dwellers by the end of 2030. While this rapid urbanization will lead to vast expansion of built-up areas, the possible climate effect and associated human health impact remain poorly understood. Using a coupled urban-atmospheric model, we first examine potential effects of three urban expansion scenarios to 2030 on summer climate in eastern China. Our simulations indicate extensive warming up to 5°C, 3°C, and 2°C in regard to low- (>0%), high- (>75%), and 100% probability urban growth scenarios, respectively. The partitioning of available energy largely explains the changes in 2-m air temperatures, and increased sensible heat flux with higher roughness length of the underlying urban surface is responsible for the increase of nighttime planetary boundary layer height. In the extreme case (the low-probability expansion pathway), the agglomeration of impervious surfaces substantially reduces low-level atmospheric moisture, consequently resulting in large-scale precipitation reduction. However, the effect of near-surface warming far exceeds that of moisture reduction and imposes non-negligible thermal loads on urban residents. Our study, using a scenario-based approach that accounts for the full range of urban growth uncertainty by 2030, helps better evaluate possible regional climate effects and associated human health outcomes in the most rapidly urbanizing areas of China, and has practical implications for the development of sustainable urban regions that are resilient to changes in both mean and extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Edwards, Bethanie R.; Reddy, Christopher M.; Camilli, Richard; Carmichael, Catherine A.; Longnecker, Krista; Van Mooy, Benjamin A. S.

    2011-07-01

    The Deepwater Horizon oil spill was one of the largest oil spills in history, and the fate of this oil within the Gulf of Mexico ecosystem remains to be fully understood. The goal of this study—conducted in mid-June of 2010, approximately two months after the oil spill began—was to understand the key role that microbes would play in the degradation of the oil in the offshore oligotrophic surface waters near the Deepwater Horizon site. As the utilization of organic carbon by bacteria in the surface waters of the Gulf had been previously shown to be phosphorus limited, we hypothesized that bacteria would be unable to rapidly utilize the oil released from the Macondo well. Although phosphate was scarce throughout the sampling region and microbes exhibited enzymatic signs of phosphate stress within the oil slick, microbial respiration within the slick was enhanced by approximately a factor of five. An incubation experiment to determine hydrocarbon degradation rates confirmed that a large fraction of this enhanced respiration was supported by hydrocarbon degradation. Extrapolating our observations to the entire area of the slick suggests that microbes had the potential to degrade a large fraction of the oil as it arrived at the surface from the well. These observations decidedly refuted our hypothesis. However, a concomitant increase in microbial abundance or biomass was not observed in the slick, suggesting that microbial growth was nutrient limited; incubations amended with nutrients showed rapid increases in cell number and biomass, which supported this conclusion. Our study shows that the dynamic microbial community of the Gulf of Mexico supported remarkable rates of oil respiration, despite a dearth of dissolved nutrients.

  7. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Won Cheol; Cushman, John C.

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  8. Efficient thermal diode with ballistic spacer

    NASA Astrophysics Data System (ADS)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  9. Deciphering the glycosaminoglycan code with the help of microarrays.

    PubMed

    de Paz, Jose L; Seeberger, Peter H

    2008-07-01

    Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences.

  10. A novel coumarin Schiff-base as a Ni(II) ion colorimetric sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lingyun; Ye, Decheng; Cao, Derong

    2012-05-01

    A novel coumarin Schiff base compound (L) prepared from 7-diethylaminocoumarin-3-aldehyde and 3-amino-7-hydroxycoumarin was synthesized and evaluated as a chemoselective Ni2+ sensor. Addition of Ni2+ to CH3CN solution of L resulted in a rapid color change from yellow to red together with a large red shift from 465 to 516 nm. Moreover, other common alkali-, alkaline earth-, transition- and rare earth metal ions induced no or minimal spectral changes. Experimental results indicated that L could be used as a potential Ni2+ colorimetric and naked-eye chemosensor in CH3CN solution.

  11. Applications of breath gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Poupart, Guy; Telser, Stefan; Ledochowski, Maximilian; Schmid, Alex; Mechtcheriakov, Sergei

    2004-12-01

    Volatile organic compounds (VOCs) in exhaled breath gas provide valuable information about the subjects' physiological and pathophysiological condition. Proton-transfer-reaction mass spectrometry (PTR-MS) allows rapid and online measurements of these substances. We present results of three studies illustrating the potential of breath gas analysis by PTR-MS in various contexts: long-time online monitoring of VOCs in sleeping subjects suggests that VOC profiles are related to sleep stages. Analysis of VOC concentrations in the breath of carbohydrate malabsorbers emphasizes the role played by bacteria in the gut. Finally, we demonstrate the large intra- and intersubject concentration variability of VOCs by considering one particular mass.

  12. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    NASA Technical Reports Server (NTRS)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  13. mRNA vaccines — a new era in vaccinology

    PubMed Central

    Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew

    2018-01-01

    mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use. PMID:29326426

  14. What has traditional Chinese medicine delivered for modern medicine?

    PubMed

    Wang, Jigang; Wong, Yin-Kwan; Liao, Fulong

    2018-05-11

    The field of Traditional Chinese Medicine (TCM) represents a vast and largely untapped resource for modern medicine. Exemplified by the success of the antimalarial artemisinin, the recent years have seen a rapid increase in the understanding and application of TCM-derived herbs and formulations for evidence-based therapy. In this review, we summarise and discuss the developmental history, clinical background and molecular basis of an action for several representative TCM-derived medicines, including artemisinin, arsenic trioxide, berberine and Salvia miltiorrhiza or Danshen. Through this, we highlight important examples of how TCM-derived medicines have already contributed to modern medicine, and discuss potential avenues for further research.

  15. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices

    DOE PAGES

    Park, J.; Ahn, Y.; Tilka, J. A.; ...

    2016-06-20

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  16. Life cycle economic and environmental implications of using nanocomposites in automobiles.

    PubMed

    Lloyd, Shannon M; Lave, Lester B

    2003-08-01

    By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay-polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.

  17. Improving agricultural knowledge management: The AgTrials experience

    PubMed Central

    Hyman, Glenn; Espinosa, Herlin; Camargo, Paola; Abreu, David; Devare, Medha; Arnaud, Elizabeth; Porter, Cheryl; Mwanzia, Leroy; Sonder, Kai; Traore, Sibiry

    2017-01-01

    Background: Opportunities to use data and information to address challenges in international agricultural research and development are expanding rapidly. The use of agricultural trial and evaluation data has enormous potential to improve crops and management practices. However, for a number of reasons, this potential has yet to be realized. This paper reports on the experience of the AgTrials initiative, an effort to build an online database of agricultural trials applying principles of interoperability and open access. Methods: Our analysis evaluates what worked and what did not work in the development of the AgTrials information resource. We analyzed data on our users and their interaction with the platform. We also surveyed our users to gauge their perceptions of the utility of the online database. Results: The study revealed barriers to participation and impediments to interaction, opportunities for improving agricultural knowledge management and a large potential for the use of trial and evaluation data.  Conclusions: Technical and logistical mechanisms for developing interoperable online databases are well advanced.  More effort will be needed to advance organizational and institutional work for these types of databases to realize their potential. PMID:28580127

  18. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    NASA Technical Reports Server (NTRS)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  19. DynamO: a free O(N) general event-driven molecular dynamics simulator.

    PubMed

    Bannerman, M N; Sargant, R; Lue, L

    2011-11-30

    Molecular dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package, which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10(6) particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo. Copyright © 2011 Wiley Periodicals, Inc.

  20. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA

    USGS Publications Warehouse

    Morton, R.A.; Bernier, J.C.; Barras, J.A.

    2006-01-01

    Analysis of remote images, elevation surveys, stratigraphic cross-sections, and hydrocarbon production data demonstrates that extensive areas of wetland loss in the northern Gulf Coast region of the United States were associated with large-volume fluid production from mature petroleum fields. Interior wetland losses at many sites in coastal Louisiana and Texas are attributed largely to accelerated land subsidence and fault reactivation induced by decreased reservoir pressures as a result of rapid or prolonged extraction of gas, oil, and associated brines. Evidence that moderately-deep hydrocarbon production has induced land-surface subsidence and reactivated faults that intersect the surface include: (1) close temporal and spatial correlation of fluid production with surficial changes including rapid subsidence of wetland sediments near producing fields, (2) measurable offsets of shallow strata across the zones of wetland loss, (3) large reductions in subsurface pressures where subsidence rates are high, (4) coincidence of orientation and direction of displacement between surface fault traces and faults that bound the reservoirs, and (5) accelerated subsidence rates near producing fields compared to subsidence rates in surrounding areas or compared to geological rates of subsidence. Based on historical trends, subsidence rates in the Gulf Coast region near producing fields most likely will decrease in the future because most petroleum fields are nearly depleted. Alternatively, continued extraction of conventional energy resources as well as potential production of alternative energy resources (geopressured-geothermal fluids) in the Gulf Coast region could increase subsidence and land losses and also contribute to inundation of areas of higher elevation. ?? Springer-Verlag 2006.

  1. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].

    PubMed

    Liu, Wei; Zhu, Wei-yun; Yao, Wen; Mao, Sheng-yong

    2007-06-01

    The distal mammalian gut harbors prodigiously abundant microbes, which provide unique metabolic traits to host. A lactate-utilizing, butyrate-producing bacterium, strain LB01, was isolated from adult swine feces by utilizing modified Hungate technique with rumen liquid-independent YCFA medium supplemented with lactate as the single carbon source. It was an obligate anaerobic, Gram positive bacterium, and could utilize glucose, fructose, maltose and lactate with a large amount of gas products. 16S rRNA sequence analysis revealed that it had the high similarity with members of the genus Megasphaera. The metabolic characteristics of strain LB01 was investigated by using in vitro fermentation system. Lactate at the concentration of 65 mmol/L in YCFA medium was rapidly consumed within 9 hours and was mainly converted to propionate and butyrate after 24h. As the level of acetate declined, the concentration of butyrate rose only in the presence of glucose, suggesting that butyrate could possibly be synthesized by the acetyl CoA: butyryl CoA transferase. When co-cultured with lactic acid bacteria strain K9, strain LB01 evidently reduced the concentration of lactate produced by strain K9 and decelerated the rapid pH drop, finally producing 12.11 mmol/L butyrate and 4.06 mmol/L propionate. The metabolic characteristics that strain LB01 efficiently converts toxic lactate and excessive acetate to butyrate can prevent lactate and acetate accumulation in the large intestine and maintain the slightly acidic environment of the large intestine, consequently revealing that stain LB01 could act as a potential probiotics.

  2. Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation

    PubMed Central

    Bock, Lars V.; Blau, Christian; Vaiana, Andrea C.; Grubmüller, Helmut

    2015-01-01

    During ribosomal translation, the two ribosomal subunits remain associated through intersubunit bridges, despite rapid large-scale intersubunit rotation. The absence of large barriers hindering rotation is a prerequisite for rapid rotation. Here, we investigate how such a flat free-energy landscape is achieved, in particular considering the large shifts the bridges undergo at the periphery. The dynamics and energetics of the intersubunit contact network are studied using molecular dynamics simulations of the prokaryotic ribosome in intermediate states of spontaneous translocation. Based on observed occupancies of intersubunit contacts, residues were grouped into clusters. In addition to the central contact clusters, peripheral clusters were found to maintain strong steady interactions by changing contacts in the course of rotation. The peripheral B1 bridges are stabilized by a changing contact pattern of charged residues that adapts to the rotational state. In contrast, steady strong interactions of the B4 bridge are ensured by the flexible helix H34 following the movement of protein S15. The tRNAs which span the subunits contribute to the intersubunit binding enthalpy to an almost constant degree, despite their different positions in the ribosome. These mechanisms keep the intersubunit interaction strong and steady during rotation, thereby preventing dissociation and enabling rapid rotation. PMID:26109353

  3. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Beard, Daniel A.

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  4. Collisionless relaxation in spiral galaxy models

    NASA Technical Reports Server (NTRS)

    Hohl, F.

    1974-01-01

    The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.

  5. Techniques for control of long-term reliability of complex integrated circuits. I - Reliability assurance by test vehicle qualification.

    NASA Technical Reports Server (NTRS)

    Van Vonno, N. W.

    1972-01-01

    Development of an alternate approach to the conventional methods of reliability assurance for large-scale integrated circuits. The product treated is a large-scale T squared L array designed for space applications. The concept used is that of qualification of product by evaluation of the basic processing used in fabricating the product, providing an insight into its potential reliability. Test vehicles are described which enable evaluation of device characteristics, surface condition, and various parameters of the two-level metallization system used. Evaluation of these test vehicles is performed on a lot qualification basis, with the lot consisting of one wafer. Assembled test vehicles are evaluated by high temperature stress at 300 C for short time durations. Stressing at these temperatures provides a rapid method of evaluation and permits a go/no go decision to be made on the wafer lot in a timely fashion.

  6. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  7. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs.

    PubMed

    Chao, Joshua T; Biggs, Manus J P; Pandit, Abhay S

    2014-11-01

    Biotemplating is a rapidly expanding subfield that utilizes nature-inspired systems and structures to create novel functional materials, and it is through these methods that the limitations of current engineering practices may be advanced. The diatom is an exceptional template for drug delivery applications, owing largely to its highly-ordered pores, large surface area, species-specific architecture, and flexibility for surface modifications. Diatoms have been studied in a wide range of biomedical applications and their potential as the next frontier of drug delivery has yet to be fully exploited. In this editorial, the authors aim to review the use of diatoms in the delivery of poorly water-soluble drugs as reported in the literature, discuss the progress and advancements that have been made thus far, identify the shortcomings and limitations in the field, and, lastly, present their expert opinion and convey the future outlook on biotemplating approaches for drug delivery.

  8. Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique

    NASA Astrophysics Data System (ADS)

    Monmeyran, Corentin; Crowe, Iain F.; Gwilliam, Russell M.; Heidelberger, Christopher; Napolitani, Enrico; Pastor, David; Gandhi, Hemi H.; Mazur, Eric; Michel, Jürgen; Agarwal, Anuradha M.; Kimerling, Lionel C.

    2018-04-01

    Co-doping with fluorine is a potentially promising method for defect passivation to increase the donor electrical activation in highly doped n-type germanium. However, regular high dose donor-fluorine co-implants, followed by conventional thermal treatment of the germanium, typically result in a dramatic loss of the fluorine, as a result of the extremely large diffusivity at elevated temperatures, partly mediated by the solid phase epitaxial regrowth. To circumvent this problem, we propose and experimentally demonstrate two non-amorphizing co-implantation methods; one involving consecutive, low dose fluorine implants, intertwined with rapid thermal annealing and the second, involving heating of the target wafer during implantation. Our study confirms that the fluorine solubility in germanium is defect-mediated and we reveal the extent to which both of these strategies can be effective in retaining large fractions of both the implanted fluorine and, critically, phosphorus donors.

  9. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories.

    PubMed

    Ji, Jun; Ling, Jeffrey; Jiang, Helen; Wen, Qiaojun; Whitin, John C; Tian, Lu; Cohen, Harvey J; Ling, Xuefeng B

    2013-03-23

    Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional peak differential analysis with the concurrent statistical tests based false discovery rate (FDR). "Turnkey" solutions are needed for biomarker investigations to rapidly process MS data sets to identify statistically significant peaks for subsequent validation. Here we present an efficient and effective solution, which provides experimental biologists easy access to "cloud" computing capabilities to analyze MS data. The web portal can be accessed at http://transmed.stanford.edu/ssa/. Presented web application supplies large scale MS data online uploading and analysis with a simple user interface. This bioinformatic tool will facilitate the discovery of the potential protein biomarkers using MS.

  10. Confronting Practical Problems for Initiation of On-line Hemodiafiltration Therapy.

    PubMed

    Kim, Yang Wook; Park, Sihyung

    2016-06-01

    Conventional hemodialysis, which is based on the diffusive transport of solutes, is the most widely used renal replacement therapy. It effectively removes small solutes such as urea and corrects fluid, electrolyte and acid-base imbalance. However, solute diffusion coefficients decreased rapidly as molecular size increased. Because of this, middle and large molecules are not removed effectively and clinical problem such as dialysis amyloidosis might occur. Online hemodiafiltration which is combined by diffusive and convective therapies can overcome such problems by removing effectively middle and large solutes. Online hemodiafiltration is safe, very effective, economically affordable, improving session tolerance and may improve the mortality superior to high flux hemodialysis. However, there might be some potential limitations for setting up online hemodiafiltaration. In this article, we review the uremic toxins associated with dialysis, definition of hemodiafiltration, indication and prescription of hemodiafiltration and the limitations of setting up hemodiafiltration.

  11. Electronics manufacturing and assembly in Japan

    NASA Technical Reports Server (NTRS)

    Kukowski, John A.; Boulton, William R.

    1995-01-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  12. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  13. Experimental evolution gone wild.

    PubMed

    Scheinin, M; Riebesell, U; Rynearson, T A; Lohbeck, K T; Collins, S

    2015-05-06

    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change.

  14. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  15. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  16. Toward a benchmark material in aerogel development

    NASA Astrophysics Data System (ADS)

    Sibille, Laurent; Cronise, Raymond J.; Noever, David A.; Hunt, Arlon J.

    1996-03-01

    Discovered in the thirties, aerogels constitute today the lightest solids known while exhibiting outstanding thermal and noise insulation properties in air and vacuum. In a far-reaching collaboration, the Space Science Laboratory at NASA Marshall Space Flight Center and the Microstructured Materials Group at Lawrence Berkeley National Laboratory are engaged in a two-fold research effort aiming at characterizing the microstructure of silica aerogels and the development of benchmark samples through the use of in-orbit microgravity environment. Absence of density-driven convection flows and sedimentation is sought to produce aerogel samples with narrow distribution of pore sizes, thus largely improving transparency of the material in the visible range. Furthermore, highly isotropic distribution of doping materials are attainable even in large gels grown in microgravity. Aerospace companies (cryogenic tanks insulation and high temperature insulation of space vehicles), insulation manufacturers (household and industrial applications) as well as pharmaceutical companies (biosensors) are potential end-users of this rapidly developing technology.

  17. Butyric acid in functional constipation.

    PubMed

    Pituch, Aleksandra; Walkowiak, Jarosław; Banaszkiewicz, Aleksandra

    2013-01-01

    Butyric acid, a short-chain fatty acid, is a major energy source for colonocytes. It occurs in small quantities in some foods, and in the human body, it is produced in the large intestine by intestinalkacteria. This production can be reduced in some cases, for which butyric acid supplementation may be useful. So far, the use of butyric acid in the treatment of gastrointestinal disorders has been limited because of its specific characteristics such as its rancid smell and rapid absorption in the upper gastrointestinal tract. In the Polish market, sodium butyrate has been recently made available, produced by the modern technology of microencapsulation, which allows the active substance to reach the small and large intestines, where butyrate easily dissociates into butyric acid. This article presents the potential beneficial mechanisms of action of butyric acid in defecation disorders, which are primarily associated with reductions in pain during defecation and inflammation in the gut, among others.

  18. Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise.

    PubMed

    Sanders, Christian J; Smoak, Joseph M; Waters, Mathew N; Sanders, Luciana M; Brandini, Nilva; Patchineelam, Sambasiva R

    2012-06-01

    Mangroves sediments contain large reservoirs of organic material (OM) as mangrove ecosystems produce large quantities and rapidly burial OM. Sediment accumulation rates of approximately 2.0 mm year(-1), based on (210)Pb(ex) dating, were estimated at the margin of two well-developed mangrove forest in southern Brazil. Regional data point to a relative sea level (RSL) rise of up to ∼4.0 mm year(-1). This RSL rise in turn, may directly influence the origin and quantity of organic matter (OM) deposited along mangrove sediments. Lithostratigraphic changes show that sand deposition is replacing the mud (<63 μm) fraction and OM content is decreasing in successively younger sediments. Sediment accumulation in coastal areas that are not keeping pace with sea level rise is potentially conducive to the observed shifts in particle size and OM content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Reuse of clinical data.

    PubMed

    Safran, C

    2014-08-15

    To provide an overview of the benefits of clinical data collected as a by-product of the care process, the potential problems with large aggregations of these data, the policy frameworks that have been formulated, and the major challenges in the coming years. This report summarizes some of the major observations from AMIA and IMIA conferences held on this admittedly broad topic from 2006 through 2013. This report also includes many unsupported opinions of the author. The benefits of aggregating larger and larger sets of routinely collected clinical data are well documented and of great societal benefit. These large data sets will probably never answer all possible clinical questions for methodological reasons. Non-traditional sources of health data that are patient-sources will pose new data science challenges. If we ever hope to have tools that can rapidly provide evidence for daily practice of medicine we need a science of health data perhaps modeled after the science of astronomy.

  20. Data warehousing methods and processing infrastructure for brain recovery research.

    PubMed

    Gee, T; Kenny, S; Price, C J; Seghier, M L; Small, S L; Leff, A P; Pacurar, A; Strother, S C

    2010-09-01

    In order to accelerate translational neuroscience with the goal of improving clinical care it has become important to support rapid accumulation and analysis of large, heterogeneous neuroimaging samples and their metadata from both normal control and patient groups. We propose a multi-centre, multinational approach to accelerate the data mining of large samples and facilitate data-led clinical translation of neuroimaging results in stroke. Such data-driven approaches are likely to have an early impact on clinically relevant brain recovery while we simultaneously pursue the much more challenging model-based approaches that depend on a deep understanding of the complex neural circuitry and physiological processes that support brain function and recovery. We present a brief overview of three (potentially converging) approaches to neuroimaging data warehousing and processing that aim to support these diverse methods for facilitating prediction of cognitive and behavioral recovery after stroke, or other types of brain injury or disease.

  1. Protein Folding Using a Vortex Fluidic Device.

    PubMed

    Britton, Joshua; Smith, Joshua N; Raston, Colin L; Weiss, Gregory A

    2017-01-01

    Essentially all biochemistry and most molecular biology experiments require recombinant proteins. However, large, hydrophobic proteins typically aggregate into insoluble and misfolded species, and are directed into inclusion bodies. Current techniques to fold proteins recovered from inclusion bodies rely on denaturation followed by dialysis or rapid dilution. Such approaches can be time consuming, wasteful, and inefficient. Here, we describe rapid protein folding using a vortex fluidic device (VFD). This process uses mechanical energy introduced into thin films to rapidly and efficiently fold proteins. With the VFD in continuous flow mode, large volumes of protein solution can be processed per day with 100-fold reductions in both folding times and buffer volumes.

  2. Water for the cities - The outlook

    USGS Publications Warehouse

    Schneider, William Joseph; Spieker, Andrew Maute

    1969-01-01

    Rapid expansion of urban areas, particularly in the large metropolitan complexes of the United States, is placing urban political entities in ever closer juxtaposition to each other. The large demand for water for each entity is resulting in competition for available sources and is rapidly reaching critical proportions. Increasing awareness of the role of water in our society further complicates this competition. Pollution abatement, recreation, wildlife conservation, and aesthetics are demands now recognized by both rural and urban areas. Future development of water resources must consider regional demands and resources. Only in this way can our reasonably abundant water resources meet the severe demands imposed by our rapidly expanding urban areas.

  3. Librarian of the Year 2009: Team Cedar Rapids

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    When flood came to Cedar Rapids city, the Cedar Rapids Public Library (CRPL), IA, lost 160,000 items including large parts of its adult and youth collections, magazines, newspapers, reference materials, CDs, and DVDs. Most of its public access computers were destroyed as was its computer lab and microfilm equipment. The automatic circulation and…

  4. Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation

    PubMed Central

    Allen, Craig D.; Breshears, David D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change. PMID:9843976

  5. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation

    USGS Publications Warehouse

    Allen, Craig D.; Breshears, David D.

    1998-01-01

    In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.

  6. Intrinsic and integrative properties of substantia nigra pars reticulata neurons

    PubMed Central

    Zhou, Fu-Ming; Lee, Christian R.

    2011-01-01

    The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active TRPC3 channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches −60 mV, a voltage-gated persistent sodium current (INaP) starts to activate, further depolarizing the membrane potential. At or slightly below −50 mV, the large transient voltage-activated sodium current (INaT) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of (INaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. INaT also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators including dopamine, serotonin, endocannabinoids, and H2O2. PMID:21839148

  7. Large projected increases in rain-on-snow flood potential over western North America

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Ikeda, K.; Barlage, M. J.; Lehner, F.; Liu, C.; Newman, A. J.; Prein, A. F.; Mizukami, N.; Gutmann, E. D.; Clark, M. P.; Rasmussen, R.

    2017-12-01

    In the western US and Canada, some of the largest annual flood events occur when warm storm systems drop substantial rainfall on extensive snow-cover. For example, last winter's Oroville dam crisis in California was exacerbated by rapid snowmelt during a rain-on-snow (ROS) event. We present an analysis of ROS events with flood-generating potential over western North America simulated at high-resolution by the Weather Research and Forecasting (WRF) model run for both a 13-year control time period and re-run with a `business-as-usual' future (2071-2100) climate scenario. Daily ROS with flood-generating potential is defined as rainfall of at least 10 mm per day falling on snowpack of at least 10 mm water equivalent, where the sum of rainfall and snowmelt contains at least 20% snowmelt. In a warmer climate, ROS is less frequent in regions where it is historically common, and more frequent elsewhere. This is evidenced by large simulated reductions in snow-cover and ROS frequency at lower elevations, particularly in warmer, coastal regions, and greater ROS frequency at middle elevations and in inland regions. The same trend is reflected in the annual-average ROS runoff volume (rainfall + snowmelt) aggregated to major watersheds; large reductions of 25-75% are projected for much of the U.S. Pacific Northwest, while large increases are simulated for the Colorado River basin, western Canada, and the higher elevations of the Sierra Nevada. In the warmer climate, snowmelt contributes substantially less to ROS runoff per unit rainfall, particularly in inland regions. The reduction in snowmelt contribution is due to a shift in ROS timing from warm spring events to cooler winter conditions and/or from warm, lower elevations to cool, higher elevations. However, the slower snowmelt is offset by an increase in rainfall intensity, maintaining the flood potential of ROS at or above historical levels. In fact, we report large projected increases in the intensity of extreme ROS events. The projected increases in ROS flood potential are highest in historically flood-prone mountain basins and the Canadian Prairies. Increases in extreme ROS event intensity, together with a greater proportion of precipitation falling as rain, have critical implications on the climate resilience of regional flood control systems.

  8. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge 4SbTe 5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  9. [Effect of endogenous H2S on platelet L-Arg transport].

    PubMed

    Duan, Wen-zhuo; Wang, Yi-peng; Gong, Hai-min

    2010-05-01

    To observe the effect of novel air neuromodulator H2S on platelet function of L-Arg transport for discussing H2S of effect on platelet function. Saturate H2S solution as donate made rat rich platelet plasma and pre-incubation rat platelet with different density of H2S. To measure the velocity of L-Arg transport in platelet by radioactivity technique. At different concentrations of H2S (6.25, 12.5, 25, 50, 100 micromol/L), the velocity of L-Arg transport was lower than that in control. H2S reduced rapidly the Vmax and velocity of L-Arg transport in platelet (P < 0.05) and this effect had no effect to Km. H2S can affect platelet function by changing rapidly platelet L-Arg transport system function.

  10. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment.

    PubMed

    Dilsizian, Steven E; Siegel, Eliot L

    2014-01-01

    Although advances in information technology in the past decade have come in quantum leaps in nearly every aspect of our lives, they seem to be coming at a slower pace in the field of medicine. However, the implementation of electronic health records (EHR) in hospitals is increasing rapidly, accelerated by the meaningful use initiatives associated with the Center for Medicare & Medicaid Services EHR Incentive Programs. The transition to electronic medical records and availability of patient data has been associated with increases in the volume and complexity of patient information, as well as an increase in medical alerts, with resulting "alert fatigue" and increased expectations for rapid and accurate diagnosis and treatment. Unfortunately, these increased demands on health care providers create greater risk for diagnostic and therapeutic errors. In the near future, artificial intelligence (AI)/machine learning will likely assist physicians with differential diagnosis of disease, treatment options suggestions, and recommendations, and, in the case of medical imaging, with cues in image interpretation. Mining and advanced analysis of "big data" in health care provide the potential not only to perform "in silico" research but also to provide "real time" diagnostic and (potentially) therapeutic recommendations based on empirical data. "On demand" access to high-performance computing and large health care databases will support and sustain our ability to achieve personalized medicine. The IBM Jeopardy! Challenge, which pitted the best all-time human players against the Watson computer, captured the imagination of millions of people across the world and demonstrated the potential to apply AI approaches to a wide variety of subject matter, including medicine. The combination of AI, big data, and massively parallel computing offers the potential to create a revolutionary way of practicing evidence-based, personalized medicine.

  11. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells

    PubMed Central

    Mathews Griner, Lesley A.; Guha, Rajarshi; Shinn, Paul; Young, Ryan M.; Keller, Jonathan M.; Liu, Dongbo; Goldlust, Ian S.; Yasgar, Adam; McKnight, Crystal; Boxer, Matthew B.; Duveau, Damien Y.; Jiang, Jian-Kang; Michael, Sam; Mierzwa, Tim; Huang, Wenwei; Walsh, Martin J.; Mott, Bryan T.; Patel, Paresma; Leister, William; Maloney, David J.; Leclair, Christopher A.; Rai, Ganesha; Jadhav, Ajit; Peyser, Brian D.; Austin, Christopher P.; Martin, Scott E.; Simeonov, Anton; Ferrer, Marc; Staudt, Louis M.; Thomas, Craig J.

    2014-01-01

    The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL. PMID:24469833

  12. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing.

    PubMed

    Kuroda, Akio; Alexandrov, Maxym; Nishimura, Tomoki; Ishida, Takenori

    2016-06-01

    A large number of peptides with binding affinity to various inorganic materials have been identified and used as linkers, catalysts, and building blocks in nanotechnology and nanobiotechnology. However, there have been few applications of material-binding peptides in the fluorescence microscopy-based biosensing (FM method) of environmental pollutants. A notable exception is the application of the FM method for the detection of asbestos, a dangerous industrial toxin that is still widely used in many developing countries. This review details the selection and isolation of asbestos-binding proteins and peptides with sufficient specificity to distinguish asbestos from a large variety of safer fibrous materials used as asbestos substitutes. High sensitivity to nanoscale asbestos fibers (30-35 nm in diameter) invisible under conventional phase contrast microscopy can be achieved. The FM method is the basis for developing an automated system for asbestos biosensing that can be used for on-site testing with a portable fluorescence microscope. In the future, the FM method could also become a useful tool for detecting other potentially hazardous nanomaterials in the environment. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  14. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    PubMed

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  15. Food: a new form of personalised (gut microbiome) medicine for chronic diseases?

    PubMed

    Pallister, Tess; Spector, Tim D

    2016-09-01

    Filling in the knowledge gaps between what we eat and the diseases we develop may lie in our guts, literally. The human large intestine houses the largest reservoir of microorganisms in or on the human body. With a 100-fold greater gene count than humans, the gut microbiome has huge potential to place a large metabolic burden (or advantage) on its host. The number of diverse gut microbial species is diminished in nearly all modern chronic conditions studied. The 'Western diet', rich in animal protein, fats and artificial additives, and lacking in fibre, beneficial microbes, plant phytochemicals, vitamins and minerals, is thought to drive these conditions by encouraging gut dysbiosis. Evidence from recent dietary intervention studies suggest adopting a plant-based, minimally processed high-fibre diet may rapidly reverse the effects of meat-based diets on the gut microbiome. However, recent work has shown that individual diet responses may be complicated by host genetics and the wide variation in the gut microbiome. Now that we measure genes and microbes more accurately, we are embarking on an exciting era of using both food and microbes as potential therapies. © The Royal Society of Medicine.

  16. A GIS-based methodology for selecting stormwater disconnection opportunities.

    PubMed

    Moore, S L; Stovin, V R; Wall, M; Ashley, R M

    2012-01-01

    The purpose of this paper is to introduce a geographic information system (GIS)-based decision support tool that assists the user to select not only areas where (retrofit) sustainable drainage systems (SuDS) could be implemented within a large catchment (>100 ha), but also to allow discrimination between suitable SuDS techniques based on their likely feasibility and effectiveness. The tool is applied to a case study catchment within London, UK, with the aim of increasing receiving water quality by reducing combined sewer overflow (CSO) spill frequency and volume. The key benefit of the tool presented is to allow rapid assessment of the retrofit SuDS potential of large catchments. It is not intended to replace detailed site investigations, but may help to direct attention to sites that have the greatest potential for retrofit SuDS implementation. Preliminary InfoWorks CS modelling of 'global disconnections' within the case study catchment, e.g. the removal of 50% of the total impervious area, showed that CSO spill volume could be reduced by 55 to 78% during a typical year. Using the disconnection hierarchy developed by the authors, the feasibility of retrofit SuDS deployment within the case study catchment is assessed, and the implications discussed.

  17. Assessing Glacial Lake Outburst Flood Hazard in the Nepal Himalayas using Satellite Imagery and Hydraulic Models

    NASA Astrophysics Data System (ADS)

    Rounce, D.; McKinney, D. C.

    2015-12-01

    The last half century has witnessed considerable glacier melt that has led to the formation of large glacial lakes. These glacial lakes typically form behind terminal moraines comprising loose boulders, debris, and soil, which are susceptible to fail and cause a glacial lake outburst flood (GLOF). These lakes also act as a heat sink that accelerates glacier melt and in many cases is accompanied by rapid areal expansion. As these glacial lakes continue to grow, their hazard also increases due to the increase in potential flood volume and the lakes' proximity to triggering events such as avalanches and landslides. Despite the large threat these lakes may pose to downstream communities, there are few detailed studies that combine satellite imagery with hydraulic models to present a holistic understanding of the GLOF hazard. The aim of this work is to assess the GLOF hazard of glacial lakes in Nepal using a holistic approach based on a combination of satellite imagery and hydraulic models. Imja Lake will be the primary focus of the modeling efforts, but the methods will be developed in a manner that is transferable to other potentially dangerous glacial lakes in Nepal.

  18. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less

  19. Validation of the Puumala virus rapid field test for bank voles in Germany.

    PubMed

    Reil, D; Imholt, C; Rosenfeld, U M; Drewes, S; Fischer, S; Heuser, E; Petraityte-Burneikiene, R; Ulrich, R G; Jacob, J

    2017-02-01

    Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Württemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.

  20. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.

    PubMed

    Savage, M K; Reed, D J

    1994-11-15

    Treatment of isolated mitochondria with calcium and inorganic phosphate induces inner membrane permeability that is thought to be mediated through a non-selective, calcium-dependent pore. The inner membrane permeability results in the rapid efflux of small matrix solutes such as glutathione and calcium, loss of coupled functions, and large amplitude swelling. We have identified conditions of permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing calcium and inorganic phosphate abolished large-amplitude swelling of mitochondria but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial glutathione and calcium. The release of both glutathione and calcium was inhibited by the addition of cyclosporin A, a potent inhibitor of permeability transition. Transmission electron microscopy analysis, combined with the glutathione and calcium release data, indicate that permeability transition can be observed in the absence of large-amplitude swelling. Permeability transition occurring both with and without large-amplitude swelling was accompanied by a collapse of the membrane potential. We conclude that cyclosporin A-sensitive permeability transition can occur without obvious morphological changes such as large-amplitude swelling. Monitoring the cyclosporin A-sensitive release of concentrated endogenous matrix solutes, such as GSH, may be a sensitive and useful indicator of permeability transition.

  1. NIH Director's Award Recognizes Rapid Response to Avert Potential Health Crisis | Frederick National Laboratory for Cancer Research

    Cancer.gov

    In July 2012, members of a multidisciplinary research team of both SAIC-Frederick and NCI Center for Cancer Research scientists were recognized with the NIH Director’s Award for their outstanding work to rapidly evaluate a potential threat to the n

  2. The potential for early and rapid pathogen detection within poultry processing through hyperspectral microscopy

    USDA-ARS?s Scientific Manuscript database

    The acquisition of hyperspectral microscopic images containing both spatial and spectral data has shown potential for the early and rapid optical classification of foodborne pathogens. A hyperspectral microscope with a metal halide light source and acousto-optical tunable filter (AOTF) collects 89 ...

  3. Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins

    PubMed Central

    Giacomelli, Michael G.; Yoshitake, Tadayuki; Cahill, Lucas C.; Vardeh, Hilde; Quintana, Liza M.; Faulkner-Jones, Beverly E.; Brooker, Jeff; Connolly, James L.; Fujimoto, James G.

    2018-01-01

    The ability to histologically assess surgical specimens in real-time is a long-standing challenge in cancer surgery, including applications such as breast conserving therapy (BCT). Up to 40% of women treated with BCT for breast cancer require a repeat surgery due to postoperative histological findings of close or positive surgical margins using conventional formalin fixed paraffin embedded histology. Imaging technologies such as nonlinear microscopy (NLM), combined with exogenous fluorophores can rapidly provide virtual H&E imaging of surgical specimens without requiring microtome sectioning, facilitating intraoperative assessment of margin status. However, the large volume of typical surgical excisions combined with the need for rapid assessment, make comprehensive cellular resolution margin assessment during surgery challenging. To address this limitation, we developed a multiscale, real-time microscope with variable magnification NLM and real-time, co-registered position display using a widefield white light imaging system. Margin assessment can be performed rapidly under operator guidance to image specific regions of interest located using widefield imaging. Using simulated surgical margins dissected from human breast excisions, we demonstrate that multi-centimeter margins can be comprehensively imaged at cellular resolution, enabling intraoperative margin assessment. These methods are consistent with pathology assessment performed using frozen section analysis (FSA), however NLM enables faster and more comprehensive assessment of surgical specimens because imaging can be performed without freezing and cryo-sectioning. Therefore, NLM methods have the potential to be applied to a wide range of intra-operative applications. PMID:29761001

  4. CFD Script for Rapid TPS Damage Assessment

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.

  5. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-07-01

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  6. A paper-based microbial fuel cell array for rapid and high-throughput screening of electricity-producing bacteria.

    PubMed

    Choi, Gihoon; Hassett, Daniel J; Choi, Seokheun

    2015-06-21

    There is a large global effort to improve microbial fuel cell (MFC) techniques and advance their translational potential toward practical, real-world applications. Significant boosts in MFC performance can be achieved with the development of new techniques in synthetic biology that can regulate microbial metabolic pathways or control their gene expression. For these new directions, a high-throughput and rapid screening tool for microbial biopower production is needed. In this work, a 48-well, paper-based sensing platform was developed for the high-throughput and rapid characterization of the electricity-producing capability of microbes. 48 spatially distinct wells of a sensor array were prepared by patterning 48 hydrophilic reservoirs on paper with hydrophobic wax boundaries. This paper-based platform exploited the ability of paper to quickly wick fluid and promoted bacterial attachment to the anode pads, resulting in instant current generation upon loading of the bacterial inoculum. We validated the utility of our MFC array by studying how strategic genetic modifications impacted the electrochemical activity of various Pseudomonas aeruginosa mutant strains. Within just 20 minutes, we successfully determined the electricity generation capacity of eight isogenic mutants of P. aeruginosa. These efforts demonstrate that our MFC array displays highly comparable performance characteristics and identifies genes in P. aeruginosa that can trigger a higher power density.

  7. Maternal and Fetal Pharmacokinetics of Oral Radiolabeled and Authentic Bisphenol A in the Rhesus Monkey

    PubMed Central

    VandeVoort, Catherine A.; Gerona, Roy R.; vom Saal, Frederick S.; Tarantal, Alice F.; Hunt, Patricia A.; Hillenweck, Anne; Zalko, Daniel

    2016-01-01

    The present study was conducted in pregnant rhesus monkeys to determine the rapidity and extent to which BPA reaches the fetal compartment following oral ingestion, and the 24-hr fate of BPA. To assess metabolism changes during the course of pregnancy, we compared BPA biotransformation during the second and third trimesters in the same animals, measuring the levels of sulfated, gluronidated, and free BPA in maternal serum, amniotic fluid, and fetal serum. All animals showed measurable unconjugated and conjugated BPA in the fetal compartment and slow clearance compared to maternal serum. There were higher levels of BPA-G in amniotic fluid at 150 days gestation compared to 100 days gestation, as well as higher levels of BPA-G than BPA-S. We also monitored 3H-BPA (and metabolites) in key tissues and excreta from a mother and fetus and from a non-pregnant female. The elimination of radioactivity was rapid, but residues were still detectable 24 hr after dosing in all tissues analyzed. These data suggest that, in primates, rapid maternal processing of BPA does not alleviate the risk of exposure to the developing fetus. This study elevates concerns about levels of current BPA human exposure from potentially a large number of unknown sources and the risks posed to developing fetuses. PMID:27930651

  8. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    PubMed

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  9. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    PubMed

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  10. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection.

    PubMed

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-04-18

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  11. Rapid, all dry microfabrication of three-dimensional Co3O4/Pt nanonetworks for high-performance microsupercapacitors.

    PubMed

    Ma, Xinyu; Feng, Shuxuan; He, Liang; Yan, Mengyu; Tian, Xiaocong; Li, Yanxi; Tang, Chunjuan; Hong, Xufeng; Mai, Liqiang

    2017-08-17

    On-chip electrochemical energy storage devices have attracted growing attention due to the decreasing size of electronic devices. Various approaches have been applied for constructing the microsupercapacitors. However, the microfabrication of high-performance microsupercapacitors by conventional and fully compatible semiconductor microfabrication technologies is still a critical challenge. Herein, unique three-dimensional (3D) Co 3 O 4 nanonetwork microelectrodes formed by the interconnection of Co 3 O 4 nanosheets are constructed by controllable physical vapor deposition combined with rapid thermal annealing. This construction process is an all dry and rapid (≤5 minutes) procedure. Afterward, by sputtering highly electrically conductive Pt nanoparticles on the microelectrodes, the 3D Co 3 O 4 /Pt nanonetworks based microsupercapacitor is fabricated, showing a high volume capacitance (35.7 F cm -3 ) at a scan rate of 20 mV s -1 due to the unique interconnected structures, high electrical conductivity and high surface area of the microelectrodes. This microfabrication process is also used to construct high-performance flexible microsupercapacitors, and it can be applied in the construction of wearable devices. The proposed strategy is completely compatible with the current semiconductor microfabrication and shows great potential in the applications of the large-scale integration of micro/nano and wearable devices.

  12. Assessing the effectiveness of scrub management at the landscape scale using rapid field assessment and remote sensing.

    PubMed

    Redhead, John; Cuevas-Gonzales, Maria; Smith, Geoffrey; Gerard, France; Pywell, Richard

    2012-04-30

    Controlling scrub encroachment is a major challenge for conservation management on chalk grasslands. However, direct comparisons of scrub removal methods have seldom been investigated, particularly at the landscape scale. Effective monitoring of grassland scrub is problematic as it requires simultaneous information on large scale patterns in scrub cover and fine-scale changes in the grassland community. This study addressed this by combining analysis of aerial imagery with rapid field surveys in order to compare the effectiveness of four scrub management strategies on Defence Training Estate Salisbury Plain, UK. Study plots were sited within areas undergoing management and in unmanaged controls. Controls showed dramatic increases in scrub cover, with encroachment of a mean 1096 m(2) per hectare over ten years. Whilst all management strategies were effective in reducing scrub encroachment, they differed in their ability to influence regeneration of scrub and grassland quality. There was a general trend, evident in both the floral community and scrub levels, of increased effectiveness with increasing management intensity. The dual methodology proved highly effective, allowing rapid collection of data over a range of variables and spatial scales unavailable to each method individually. The methodology thus demonstrates potential for a useful monitoring tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Semiquantitative Nucleic Acid Test with Simultaneous Isotachophoretic Extraction and Amplification.

    PubMed

    Bender, Andrew T; Borysiak, Mark D; Levenson, Amanda M; Lillis, Lorraine; Boyle, David S; Posner, Jonathan D

    2018-06-19

    Nucleic acid amplification tests (NAATs) provide high diagnostic accuracy for infectious diseases and quantitative results for monitoring viral infections. The majority of NAATs require complex equipment, cold chain dependent reagents, and skilled technicians to perform the tests. This largely confines NAATs to centralized laboratories and can significantly delay appropriate patient care. Low-cost, point-of-care (POC) NAATs are especially needed in low-resource settings to provide patients with diagnosis and treatment planning in a single visit to improve patient care. In this work, we present a rapid POC NAAT with integrated sample preparation and amplification using electrokinetics and paper substrates. We use simultaneous isotachophoresis (ITP) and recombinase polymerase amplification (RPA) to rapidly extract, amplify, and detect target nucleic acids from serum and whole blood in a paper-based format. We demonstrate simultaneous ITP and RPA can consistently detect 5 copies per reaction in buffer and 10 000 copies per milliliter of human serum with no intermediate user steps. We also show preliminary extraction and amplification of DNA from whole blood samples. Our test is rapid (results in less than 20 min) and made from low-cost materials, indicating its potential for detecting infectious diseases and monitoring viral infections at the POC in low resource settings.

  14. Initialization, Prediction and Diagnosis of the Rapid Intensification of Tropical Cyclones using the Australian Community Climate and Earth System Simulator, ACCESS

    DTIC Science & Technology

    2012-10-12

    structure on the evolving storm behaviour. 13 7. Large scale influences on Rapid Intensification and Extratropical Transition: RI and ET...assimilation techniques to better initialize and validate TC structures (including the intense inner core and storm asymmetries) consistent with the large...Without vortex specification, initial conditions usually contain a weak and misplaced circulation. Based on estimates of central pressure and storm size

  15. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  16. Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids.

    PubMed

    Barnes, Paul W; Tobler, Mark A; Keefover-Ring, Ken; Flint, Stephan D; Barkley, Anne E; Ryel, Ronald J; Lindroth, Richard L

    2016-01-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments. © 2015 John Wiley & Sons Ltd.

  17. Massive black hole factories: Supermassive and quasi-star formation in primordial halos

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad

    2013-10-01

    Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.

  18. Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns.

    PubMed

    Rothfels, Carl J; Larsson, Anders; Kuo, Li-Yaung; Korall, Petra; Chiou, Wen-Liang; Pryer, Kathleen M

    2012-05-01

    Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the "ancient rapid radiation" model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.

  19. Evaluation of "shotgun" proteomics for identification of biological threat agents in complex environmental matrixes: experimental simulations.

    PubMed

    Verberkmoes, Nathan C; Hervey, W Judson; Shah, Manesh; Land, Miriam; Hauser, Loren; Larimer, Frank W; Van Berkel, Gary J; Goeringer, Douglas E

    2005-02-01

    There is currently a great need for rapid detection and positive identification of biological threat agents, as well as microbial species in general, directly from complex environmental samples. This need is most urgent in the area of homeland security, but also extends into medical, environmental, and agricultural sciences. Mass-spectrometry-based analysis is one of the leading technologies in the field with a diversity of different methodologies for biothreat detection. Over the past few years, "shotgun"proteomics has become one method of choice for the rapid analysis of complex protein mixtures by mass spectrometry. Recently, it was demonstrated that this methodology is capable of distinguishing a target species against a large database of background species from a single-component sample or dual-component mixtures with relatively the same concentration. Here, we examine the potential of shotgun proteomics to analyze a target species in a background of four contaminant species. We tested the capability of a common commercial mass-spectrometry-based shotgun proteomics platform for the detection of the target species (Escherichia coli) at four different concentrations and four different time points of analysis. We also tested the effect of database size on positive identification of the four microbes used in this study by testing a small (13-species) database and a large (261-species) database. The results clearly indicated that this technology could easily identify the target species at 20% in the background mixture at a 60, 120, 180, or 240 min analysis time with the small database. The results also indicated that the target species could easily be identified at 20% or 6% but could not be identified at 0.6% or 0.06% in either a 240 min analysis or a 30 h analysis with the small database. The effects of the large database were severe on the target species where detection above the background at any concentration used in this study was impossible, though the three other microbes used in this study were clearly identified above the background when analyzed with the large database. This study points to the potential application of this technology for biological threat agent detection but highlights many areas of needed research before the technology will be useful in real world samples.

  20. MR-guided focused ultrasound robot for performing experiments on large animals

    NASA Astrophysics Data System (ADS)

    Mylonas, N.; Damianou, C.

    2011-09-01

    Introduction: In this paper an experimental MRI-guided focused ultrasound robot for large animals is presented. Materials and methods: A single element spherically focused transducer of 4 cm diameter, focusing at 10 cm and operating at 1 MHz was used. A positioning device was developed in order to scan the ultrasound transducer for performing MR-guided focused ultrasound experiments in large animals such as pig, sheep and dog. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, Acrylonitrile Butadiene Styrene (ABS) plastic, brass screws, and brass pulleys. The system is manufactured automatically using a rapid prototyping system. Results: The system was tested successfully in a number of animals for various tasks (creation of single lesions, creation of overlapping lesions, and MR compatibility). Conclusions: A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can be via a lateral or superior-inferior approach. This system has the potential to be marketed as a cost effective solution for performing experiments in small and large animals.

Top