Sample records for potential mechanism involves

  1. A theoretical study of the molecular mechanism of the GAPDH Trypanosoma cruzi enzyme involving iodoacetate inhibitor

    NASA Astrophysics Data System (ADS)

    Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum

    2011-10-01

    The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.

  2. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  3. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures

    PubMed Central

    Gao, Yunfang; Arfat, Yasir; Wang, Huiping; Goswami, Nandu

    2018-01-01

    Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives. PMID:29615929

  4. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    PubMed

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.

  5. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    PubMed

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  6. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  7. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.

    PubMed

    McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.

  8. Transcriptome of American Oysters, Crassostrea virginica, in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

    PubMed Central

    McDowell, Ian C.; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E.; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance. PMID:25122115

  9. Potentiation of antimicrobial photodynamic inactivation by inorganic salts.

    PubMed

    Hamblin, Michael R

    2017-11-01

    Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.

  10. Mechanism of action of substance P in guinea-pig ileum longitudinal smooth muscle: a re-evaluation.

    PubMed Central

    Hall, J M; Morton, I K

    1990-01-01

    1. A proposed mechanism of contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in membrane K+ permeability (PK) has been re-examined. 2. Potentiation of responses to substance P by the K+ channel blocker tetraethylammonium (TEA) was originally proposed as evidence for a mechanism of action of substance P involving a decrease in PK. Potentiation was confirmed; however this was found not to be specific to substance P since a similar potentiation of responses was seen with agonists not thought to act via a decrease in PK. 3. Antagonism of contractile responses to substance P by noradrenaline was similarly confirmed. However, this antagonism was found to represent a non-specific functional interaction through the inhibitory actions of beta-adrenoceptors rather than the proposed specific interaction with an increase in PK by noradrenaline which is normally alpha 1-adrenoceptor mediated. 4. Experiments were made measuring 86Rb efflux, in depolarized guinea-pig ileum longitudinal smooth muscle, to estimate PK. These studies confirmed a reported decrease in PK with TEA, but failed to detect the previously reported decrease with substance P. 5. These results, although not disproving a suggested mechanism of direct contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in PK, do throw doubt on either the evidence, or its interpretation, as proposed by the original authors in support of such a mechanism. PMID:1712846

  11. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  12. ROFA INCREASES CASPASE-3 ACTIVITY IN HUMAN ALVEOLAR MACRAPHAGE

    EPA Science Inventory

    Exposure to air pollution particles produces pulmonary inflammation and injury, but the mechanisms of this injury are unclear. Apoptosis, involving activation of caspases, may be one potential mechanism. In this study, we hypothesized that ROFA, a constituent of air pollution...

  13. Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    EPA Science Inventory

    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMPs) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure i...

  14. A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze.

    PubMed

    Korte, S Mechiel; De Boer, Sietse F

    2003-02-28

    Fear (i.e., decreased percentage time spent on open-arm exploration) in the elevated plus-maze can be potentiated by prior inescapable stressor exposure, but not by escapable stress. The use of fear-potentiated plus-maze behaviour has several advantages as compared to more traditional animal models of anxiety. (a) In contrast to the traditional (spontaneous) elevated plus-maze, which measures innate fear of open spaces, fear-potentiated plus-maze behaviour reflects an enhanced anxiety state (allostatic state). This "state anxiety" can be defined as an unpleasant emotional arousal in face of threatening demands or dangers. A cognitive appraisal of threat is a prerequisite for the experience of this type of emotion. (b) Depending on the stressor used (e.g., fear of shock, predator odour, swim stress, restraint, social defeat, predator stress (cat)), this enhanced anxiety state can last from 90 min to 3 weeks. Stress effects are more severe when rats are isolated in comparison to group housing. (c) Drugs can be administered in the absence of the original stressor and after stressor exposure. As a consequence, retrieval mechanisms are not affected by drug treatment. (d) Fear-potentiated plus-maze behaviour is sensitive to proven/putative anxiolytics and anxiogenics which act via mechanisms related to the benzodiazepine-gamma-aminobutyric acid receptor, but it is also sensitive to corticotropin-releasing receptor antagonists and glucocorticoid receptor antagonists and serotonin receptor agonists/antagonists complex (high predictive validity). (e) Fear-potentiated plus-maze behaviour is very robust, and experiments can easily be replicated in other labs. (f) Fear-potentiated plus-maze behaviour can be measured both in males and females. (g) Neural mechanisms involved in contextual fear conditioning, fear potentiation and state anxiety can be studied.Thus, fear-potentiated plus-maze behaviour may be a valuable measure in the understanding of neural mechanisms involved in the development of anxiety disorders and in the search for novel anxiolytics. Finally, the involvement of corticotropin-releasing factor and corticosteroid-corticotropin-releasing factor interactions in the production of fear-potentiated plus-maze behaviour are discussed.

  15. The potential role of neuropathic mechanisms in dry eye syndromes.

    PubMed

    Mcmonnies, Charles W

    Dry eye syndromes can involve both nociceptive and neuropathic symptoms. Nociceptive symptoms are the normal physiological responses to noxious stimuli. Neuropathic symptoms are caused by a lesion or disease of the somatosensory nervous system and can be the result of hypersensitisation of peripheral or central corneal and conjunctival somatosensory nerves. For example, inflammation could induce neuroplastic peripheral sensitisation of the ocular surface or lid wiper and exacerbate nociceptive symptoms. Neuropathic symptoms may explain the incommensurate relation between signs and symptoms in some dry eye syndromes although absence of signs of a dry eye syndrome may also be a consequence of inappropriate methods used when examining for them. Involvement of neuropathic mechanisms may also help explain dry eye symptoms which occur in association with reduced corneal sensitivity. This review includes a discussion of the potential for ocular symptoms involving neuropathic mechanisms to contribute to psychosocial problems such as depression, stress, anxiety and sleep disorders as well as for these types of psychosocial problems to contribute to neuropathic mechanisms and dry eye syndromes. Failure to consider the possibility that neuropathic mechanisms can contribute to dry eye syndromes may reduce accuracy of diagnosis and the suitability of treatment provided. Dry eye symptoms in the absence of commensurate evidence of tear dysfunction, and unsatisfactory response to tear dysfunction therapies should prompt consideration of neuropathic mechanisms being involved. Symptoms which persist after local anaesthetic instillation are more likely to be neuropathic in origin. Reducing inflammation may help limit any associated neuroplastic hypersensitivity. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  16. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories.

    PubMed

    Hardt, Oliver; Nader, Karim; Wang, Yu-Tian

    2014-01-05

    The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.

  17. A Fresh Look at Potential Mechanisms of Change in Applied Relaxation for Generalized Anxiety Disorder: A Case Series

    ERIC Educational Resources Information Center

    Hayes-Skelton, Sarah A.; Usmani, Aisha; Lee, Jonathan K.; Roemer, Lizabeth; Orsillo, Susan M.

    2012-01-01

    Applied relaxation (AR), which involves noticing early signs of anxiety and responding with a relaxation response, is an empirically supported treatment for generalized anxiety disorder (GAD). However, research on hypothesized mechanisms of AR (e.g., reduced muscle tension) has been mixed, making it likely that additional mechanisms are…

  18. Bioinformatic prediction of leader genes in human periodontitis.

    PubMed

    Covani, Ugo; Marconcini, Simone; Giacomelli, Luca; Sivozhelevov, Victor; Barone, Antonio; Nicolini, Claudio

    2008-10-01

    Genes involved in different biologic processes form complex interaction networks. However, only a few have a high number of interactions with the other genes in the network. In previous bioinformatics and experimental studies concerning the T lymphocyte cell cycle, these genes were identified and termed "leader genes." In this work, genes involved in human periodontitis were tentatively identified and ranked according to their number of interactions to obtain a preliminary, broader view of molecular mechanisms of periodontitis and plan targeted experimentation. Genes were identified with interrelated queries of several databases. The interactions among these genes were mapped and given a significance score. The weighted number of links (weighted sum of scores for every interaction in which the given gene is involved) was calculated for each gene. Genes were clustered according to this parameter. The genes in the highest cluster were termed leader genes. Sixty-one genes involved or potentially involved in periodontitis were identified. Only five were identified as leader genes, whereas 12 others were ranked in an immediately lower cluster. For 10 of 17 genes there is evidence of involvement in periodontitis; seven new genes that are potentially involved in this disease were identified. The involvement in periodontitis has been completely established for only two leader genes. We applied a validated bioinformatics algorithm to increase our knowledge of molecular mechanisms of periodontitis. Even with the limitations of this ab initio analysis, this theoretical study can suggest ad hoc experimentation targeted on significant genes and, therefore, simpler than mass-scale molecular genomics. Moreover, the identification of leader genes might suggest new potential risk factors and therapeutic targets.

  19. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  20. The neuroprotection of cannabidiol against MPP⁺-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.

    PubMed

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo

    2015-12-25

    Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Evolutionary significance of osmoregulatory mechanisms in cyanobacteria

    NASA Technical Reports Server (NTRS)

    Yopp, J. H.; Pavlicek, J. H.; Sibley, M. H.

    1986-01-01

    Physiological processes of all life forms on this planet are intrinsically related to their intracellular water potential. The overall goal was the elucidation of the mechanism(s) whereby the first oxygenic phtoautotrophs (the cyanobacteria) adjust their water potential to that of a changing external water potential (that is, osmoregulate). Osmoregulation is achieved by intracellular adjustment of inorganic and/or organic solutes (osmolytes) involving specific biochemical mechanisms. Structural and biochemical evolution within the cyanobacteria is believed completed (and fixed in present day forms) by the end of the Precambrain eon. Therefore, research using cyanobacteria of all three structural types (unicellular, filamentous, and branched), each grown in the photoautotrophic (PA), photoheterotrophic (PG), and chemotrophic (CH) modes of nutrition, should provide insight into the origin and evolution of the photosynthetically related osmoregulatory mechanisms of eukaryotic organisms. The chloroplasts of these organisms are phylogenetically related to the cyanobacteria.

  2. Anti-neuroinflammatory Potential of Natural Products in Attenuation of Alzheimer's Disease

    PubMed Central

    Shal, Bushra; Ding, Wei; Ali, Hussain; Kim, Yeong S.; Khan, Salman

    2018-01-01

    Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder associated with dementia and cognitive impairment most common in elderly population. Various pathophysiological mechanisms have been proposed by numerous researcher, although, exact mechanism is not yet elucidated. Several studies have been indicated that neuroinflammation associated with deposition of amyloid- beta (Aβ) in brain is a major hallmark toward the pathology of neurodegenerative diseases. So, there is a need to unravel the link of inflammatory process in neurodegeneration. Increased microglial activation, expression of cytokines, reactive oxygen species (ROS), and nuclear factor kappa B (NF-κB) participate in inflammatory process of AD. This review mainly concentrates on involvement of neuroinflammation and the molecular mechanisms adapted by various natural compounds, phytochemicals and herbal formulations in various signaling pathways involved in neuroprotection. Currently, pharmacologically active natural products, having anti-neuroinflammatory potential are being focused which makes them potential candidate to cure AD. A number of preclinical and clinical trials have been done on nutritional and botanical agents. Analysis of anti-inflammatory and neuroprotective phytochemicals such as terpenoids, phenolic derivatives, alkaloids, glycosides, and steroidal saponins displays therapeutic potential toward amelioration and prevention of devastating neurodegeneration observed in AD. PMID:29896105

  3. Different brain mechanisms between stereotype activation and application: evidence from an ERP study.

    PubMed

    Jia, Lei; Dickter, Cheryl L; Luo, Junlong; Xiao, Xiao; Yang, Qun; Lei, Ming; Qiu, Jiang; Zhang, Qinglin

    2012-01-01

    Stereotyping involves two processes in which first, social stereotypes are activated (stereotype activation), and then, stereotypes are applied to given targets (stereotype application). Previous behavioral studies have suggested that these two processes are independent of each other and may have different mechanisms. As few psychophysiological studies have given an integrated account of these stages in stereotyping so far, this study utilized a trait categorization task in which event-related potentials (ERPs) were used to explore the brain mechanisms associated with the processes of stereotype activation and its application. The behavioral (reaction time) and electrophysiological data showed that stereotype activation and application were elicited respectively in an affective valence identification subtask and in a semantic content judgment subtask. The electrophysiological results indicated that the categorization processes involved in stereotype activation to quickly identify stereotypic and nonstereotypic information were quite different from those involved in the application. During the process of stereotype activation, a P2 and N2 effect was observed, indicating that stereotype activation might be facilitated by an early attentional bias. Also, a late positive potential (LPP) was elicited, suggesting that social expectancy violation might be involved. During the process of the stereotype application, electrophysiological data showed a P2 and P3 effect, indicating that stereotype application might be related to the rapid social knowledge identification in semantic representation and thus may be associated with an updating of existing stereotypic contents or a motivation to resolve the inconsistent information. This research strongly suggested that different mechanisms are involved in the stereotype activation and application processes.

  4. Simultaneous measurement of mechanical responses and transepithelial potential difference and resistance, in guinea-pig isolated, perfused trachea using a novel apparatus: pharmacological characterization.

    PubMed

    Jing, Yi; Dowdy, Janet A; Van Scott, Michael R; Fedan, Jeffrey S

    2008-11-19

    The isolated, perfused trachea preparation has been used to compare reactivity of the intact airway in response to differential exposure of the mucosal (intraluminal) and serosal (extraluminal) surfaces to contractile and relaxant agonists and other agents, and to gain insight into the modulatory role of the epithelium and the pathways involved. The apparatus has also been configured for simultaneous measurement of transepithelial potential difference and changes in tracheal diameter, thereby providing parallel observations of epithelial and smooth muscle function and reactivity to drugs. The transepithelial potential difference is a product of transepithelial resistance and short circuit current, and the present study describes a novel isolated, perfused tracheal apparatus which allows simultaneous measurement of transepithelial potential difference, transepithelial resistance and mechanical responses of the smooth muscle. The apparatus was validated using well-known ion transport inhibitors [intraluminal amiloride and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB), extraluminal ouabain and bumetanide], bronchoactive agonists (extraluminal methacholine, histamine and terbutaline), and osmolytes (intraluminal d-mannitol and NaCl) to induce epithelium-derived relaxing factor-mediated relaxations. This apparatus will facilitate investigation of interactions between the epithelium and smooth muscle in airways that retain their in situ structure, and signaling mechanisms potentially involved in the regulation of airway smooth muscle tone.

  5. Potential involvement of Aspergillus flavus laccases in peanut invasion at low water potential

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus (Link) accumulates aflatoxins in peanuts, mainly affecting immature kernels during drought. Peanut invasion by A. flavus induces synthesis of phytoalexins, mostly stilbenoids, as a plant defense mechanism. Fungal laccases are often related to pathogenicity, and among other subst...

  6. Mechanisms involved in the transport of mercuric ions in target tissues

    PubMed Central

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  7. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications.

    PubMed

    Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J

    2017-10-20

    The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.

  8. Exploring Hypotheses and Rationale for Causes of Infantile Colic

    PubMed Central

    Camilleri, Michael; Park, Seon-Young; Scarpato, Elena; Staiano, Annamaria

    2016-01-01

    Background Infantile colic is a frequent problem in neonates and infants. This review addresses current management including the results for nutrient modifications, soy-based formulas, and prebiotics, probiotics and synbiotics. Purpose Given the evidence that there is still an unmet clinical need, as current treatments are incompletely efficacious, we have examined the evidence around three hypothetical mechanisms that could potentially be involved in etiopathogenesis of infantile colic: immaturity of bile acid mechanisms that alter intraluminal and absorptive mechanisms, immaturity in motility and alterations in the microbiome. Understanding these potential mechanisms may lead to the introduction of diagnostic procedures that should enhance the selection or individualization of therapy for infantile colic. PMID:27647578

  9. 1α,25-Dihydroxyvitamin D3-3β-bromoacetate, a potential cancer therapeutic agent: synthesis and molecular mechanism of action

    PubMed Central

    Ray, Rahul; Lambert, James R.

    2011-01-01

    Synthesis of 1α,25-dihydroxyvitamin D3-3β-bromoacetate (1,25(OH)2D3-3-BE), a potential anti-cancer agent is presented. We also report that mechanism of action of 1,25(OH)2D3-3-BE may involve reduction of its catabolism, as evidenced by the reduced and delayed expression of 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) gene in cellular assays. PMID:21392983

  10. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress.

    PubMed

    Graziani, Manuela; Sarti, Paolo; Arese, Marzia; Magnifico, Maria Chiara; Badiani, Aldo; Saso, Luciano

    2017-01-01

    Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.

  11. Nutrition and parturition date effects on elk: potential implications for research and management.

    Treesearch

    John G. Cook; Bruce K. Johnson; Rachel C. Cook; Robert A. Riggs; Tim DelCurto; Larry D. Bryant; Larry L. Irwin

    2004-01-01

    Understanding and managing those mechanisms that affect population dynamics comprise, perhaps, the most fundamental aspect of wildlife management (Caughley 1977). Biologists generally categorize these mechanisms as either top-down (predator-driven) or bottom-up (habitat- or animal-density driven). Bottom-up influences involve imbalances between increasing animal...

  12. Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization.

    PubMed

    Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2010-10-01

    Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.

  13. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma

    PubMed Central

    Mehra, Mrigaya; Chauhan, Ranjit

    2017-01-01

    Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non–protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far. PMID:29147078

  14. Sickle red cell-endothelium interactions.

    PubMed

    Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A

    2009-01-01

    Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.

  15. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions

    PubMed Central

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A.; Decker, William; Manjili, Masoud H.; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth P.; Brown, Dustin G.; Lowe, Leroy; Lyerly, H.Kim

    2015-01-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. PMID:26002081

  16. Spinal cord potentials in traumatic paraplegia and quadriplegia.

    PubMed Central

    Sedgwick, E M; el-Negamy, E; Frankel, H

    1980-01-01

    Cortical, cervical and lumbar somatosensory evoked potentials were recorded following median and tibial nerve stimulation in patients with traumatic paraplegia and quadriplegia. The isolated cord was able to produce normal potentials even during spinal shock if the vertical extent of the lesion did not involve the generator mechanisms. The cervical potentials showed subtle changes in paraplegia at Th5 levels and below. In high cervical lesions the early cervical potentials may still be present but the later potentials were absent or, in partial lesions, delayed. PMID:7420105

  17. [Signaling mechanisms involved in resolution of inflammation].

    PubMed

    Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel

    2014-01-01

    Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.

  18. A Fresh Look at Potential Mechanisms of Change in Applied Relaxation for Generalized Anxiety Disorder: A Case Series

    PubMed Central

    Hayes-Skelton, Sarah A.; Usmani, Aisha; Lee, Jonathan K.; Roemer, Lizabeth; Orsillo, Susan M.

    2013-01-01

    Applied Relaxation (AR), which involves noticing early signs of anxiety and responding with a relaxation response, is an empirically supported treatment for Generalized Anxiety Disorder (GAD). However, research on hypothesized mechanisms of AR (e.g., reduced muscle tension) has been mixed, making it likely that additional mechanisms are contributing to the efficacy of AR. Stemming from more recent conceptualizations of GAD, it is hypothesized that mindfulness, decentering, and acceptance may be potential mechanisms of change in AR. Outcome, mechanism data, and case descriptions from three individuals diagnosed with GAD who received 16 weeks of AR as part of a larger randomized controlled trial are presented to demonstrate the ways that AR may lead to clinical improvement through mindfulness, decentering, and acceptance. PMID:23888107

  19. Parent involvement and student academic performance: a multiple mediational analysis.

    PubMed

    Topor, David R; Keane, Susan P; Shelton, Terri L; Calkins, Susan D

    2010-01-01

    Parent involvement in a child's education is consistently found to be positively associated with a child's academic performance. However, there has been little investigation of the mechanisms that explain this association. The present study examines two potential mechanisms of this association: the child's perception of cognitive competence and the quality of the student-teacher relationship. This study used a sample of 158 seven-year-old participants, their mothers, and their teachers. Results indicated a statistically significant association between parent involvement and a child's academic performance, over and above the impact of the child's intelligence. A multiple mediation model indicated that the child's perception of cognitive competence fully mediated the relation between parent involvement and the child's performance on a standardized achievement test. The quality of the student-teacher relationship fully mediated the relation between parent involvement and teacher ratings of the child's classroom academic performance. Limitations, future research directions, and implications for public policy initiatives are discussed.

  20. Brain Dynamics of Word Familiarization in 20-Month-Olds: Effects of Productive Vocabulary Size

    ERIC Educational Resources Information Center

    Torkildsen, Janne von Koss; Hansen, Hanna Friis; Svangstu, Janne Mari; Smith, Lars; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus

    2009-01-01

    The present study investigated the brain mechanisms involved during young children's receptive familiarization with new words, and whether the dynamics of these mechanisms are related to the child's productive vocabulary size. To this end, we recorded event-related potentials (ERPs) from 20-month-old children in a pseudoword repetition task.…

  1. Using Malus sieversii Ledeb., the wild apple progenitor of Malus H domestica Borkh., to identify genes contributing to water use efficiency and potential drought resistance

    USDA-ARS?s Scientific Manuscript database

    Dehydration is a feature of many abiotic stresses, but is more often an agricultural threat in its own right. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular biological responses. These mechanisms are complex and involve vari...

  2. Enabling novel planetary and terrestrial mechanisms using electroactive materials at the JPL's NDEAA Lab

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh

    2004-01-01

    Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).

  3. Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism.

    PubMed

    Gao, Heqi; Zhai, Mingming; Wang, Pan; Zhang, Xuhui; Cai, Jing; Chen, Xiaofei; Shen, Guanghao; Luo, Erping; Jing, Da

    2017-07-01

    Osteoporosis is a skeletal metabolic disease characterized by reduced bone mass and a high susceptibility to fractures, in which osteoblasts and osteoclasts are highly involved in the abnormal bone remodeling processes. Recently, low‑magnitude, high‑frequency whole‑body vibration has been demonstrated to significantly reduce osteopenia experimentally and clinically. However, the underlying mechanism regarding how osteoblastic activity is altered when bone tissues adapt to mechanical vibration remains elusive. The current study systematically investigated the effect and potential molecular signaling mechanisms in mediating the effects of mechanical vibration (0.5 gn, 45 Hz) on primary osteoblasts in vitro. The results of the present study demonstrated that low‑level mechanical stimulation promoted osteoblastic proliferation and extracellular matrix mineralization. In addition, it was also revealed that mechanical vibration induced improved cytoskeleton arrangement in primary osteoblasts. Furthermore, mechanical vibration resulted in significantly increased gene expression of alkaline phosphatase, bone morphogenetic protein 2 and osteoprotegerin, and suppressed sclerostin gene expression, as determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses. Mechanical vibration was observed to upregulate gene and protein expression levels of osteogenesis‑associated biomarkers, including osteocalcin and Runt‑related transcription factor 2. In addition, RT‑qPCR and western blotting analysis demonstrated that mechanical vibration promoted gene and protein expression of canonical Wnt signaling genes, including Wnt3a, low‑density lipoprotein receptor‑related protein 6 and β‑catenin. In conclusion, the present study demonstrated that mechanical vibration stimulates osteoblastic activities and may function through a potential canonical Wnt signaling‑associated mechanism. These findings provided novel information that improves the understanding of the molecular mechanisms involved in osteoblastic activities in response to mechanical vibration, which may facilitate the scientific application of mechanical vibration for the treatment of osteoporosis in the clinic.

  4. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  5. Cocoa and cardiovascular health.

    PubMed

    Corti, Roberto; Flammer, Andreas J; Hollenberg, Norman K; Lüscher, Thomas F

    2009-03-17

    Epidemiological data demonstrate that regular dietary intake of plant-derived foods and beverages reduces the risk of coronary heart disease and stroke. Among many ingredients, cocoa might be an important mediator. Indeed, recent research demonstrates a beneficial effect of cocoa on blood pressure, insulin resistance, and vascular and platelet function. Although still debated, a range of potential mechanisms through which cocoa might exert its benefits on cardiovascular health have been proposed, including activation of nitric oxide and antioxidant and antiinflammatory effects. This review summarizes the available data on the cardiovascular effects of cocoa, outlines potential mechanisms involved in the response to cocoa, and highlights the potential clinical implications associated with its consumption.

  6. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    PubMed

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-05

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Biofluid mechanics--an interdisciplinary research area of the future.

    PubMed

    Liepsch, Dieter

    2006-01-01

    Biofluid mechanics is a complex field that focuses on blood flow and the circulation. Clinical applications include bypass and anastomosis surgery, and the development of artificial heart valves and vessels, stents, vein and dialysis shunts. Biofluid mechanics is also involved in diagnostic and therapeutic measures, including CT and MRI, and ultrasound. The study of biofluid mechanics involves measuring blood flow, pressure, pulse wave, velocity distribution, the elasticity of the vessel wall, the flow behavior of blood to minimize complications in vessel,- neuro-, and heart surgery. Biofluid mechanics influence the lungs and circulatory system, the blood flow and micro-circulation; lymph flow, and artificial organs. Flow studies in arterial models can be done without invasive techniques on patients or animals. The results of fluid mechanic studies have shown that in the addition to basic biology, an understanding of the forces and movement on the cells is essential. Because biofluid mechanics allows for the detection of the smallest flow changes, it has an enormous potential for future cell research. Some of these will be discussed.

  8. Adrenergic modulation of hepatotoxicity.

    PubMed

    Roberts, S M; DeMott, R P; James, R C

    1997-01-01

    Summaries of the interactions caused by altering adrenoreceptor activity in conjunction with the administration of selected hepatotoxicants are provided in Table 2 and Fig. 1. These hepatotoxicants can be divided into two groups, one whose toxicity is increased by adrenergic agonist drugs (group I) and the other whose toxicity is decreased by adrenergic antagonists (group II). Group I includes carbon tetrachloride, acetaminophen, and methylphenidate. Perhaps the most remarkable aspect these chemicals have in common is the striking potentiation that occurs with cotreatment with certain adrenergic agonist drugs. For each of these, cotreatment with the appropriate adrenergic agent can result in massive hepatocellular necrosis from an otherwise nontoxic dose. In terms of the specific adrenoreceptors involved and mechanisms of potentiation, however, they have little in common. Potentiation of carbon tetrachloride hepatotoxicity appears to be mediated by alpha(2)-adrenoceptor stimulation, acetaminophen is potentiated by alpha(1)-adrenoreceptor agonists, and methylphenidate responds to beta(2)-adrenoreceptor stimulation. Studies of the potentiation of carbon tetrachloride and acetaminophen agree that the timing of adrenergic stimulation relative to the hepatotoxicant dose is critically important to the interaction but markedly different for these two toxicants. Acetaminophen was potentiated only when the adrenergic drug was administered as a 3-h pretreatment. This is apparently a consequence of a mechanism of potentiation that involves adrenergic depression of hepatic glutathione content and a requirement that peak effects on glutathione of both the adrenergic agent and acetaminophen be coincident. The mechanism of potentiation of carbon tetrachloride hepatotoxicity is uncertain but clearly does not involve hepatic glutathione content. In contrast to acetaminophen, adrenergic effects must occur within a time window a few hours after the carbon tetrachloride dose for potentiation to occur. The importance of dose timing has not been evaluated for adrenergic potentiation of methylphenidate hepatotoxicity, but it is clear that this interaction is based on yet a third mechanism. While only three hepatotoxicants of the group I type have been examined in detail, the diversity of receptor types and mechanisms involved suggest that this phenomenon may be relevant for a wide variety of hepatotoxic drugs and chemicals. This interaction is also of interest because factors or events that lead to increased adrenergic stimulation are common in everyday life. Most over-the-counter cold and allergy preparations contain sympathomimetic drugs, and many prescription drugs produce adrenergic effects as either an extension of the intended therapeutic effect or as a side effect. Stress and some disease states can also lead to significant increases in peripheral adrenergic activity, creating the potential for increased susceptibility to hepatic injury from exposure to certain drugs or chemicals. Cocaine and bromobenzene represent group II, chemicals whose hepatotoxicity is diminished by cotreatment with adrenergic antagonist drugs. In the case of cocaine, adrenergic antagonist cotreatment was capable of reducing serum alanine aminotransferase activities by approximately 50%. For bromobenzene, the protection afforded by adrenergic antagonist cotreatment was more profound, with minimal hepatic lesions resulting from doses of bromobenzene that otherwise produced lethal hepatic necrosis. For the chemicals in group II, experimental observations are consistent with a phenomenon in which adrenergic potentiation of toxicity is supplied by the hepatotoxicant itself. Both cocaine and bromobenzene, in hepatotoxic doses increase endogenous catecholamine levels. When the effects of the elevated catecholamines are removed with the appropriate adrenergic antagonist, much lower toxicity (presumably due only to the direct hepatotoxic effects of the drug or chemical) is obse

  9. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    PubMed

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  10. Coping with Stress During Aging: The Importance of a Resilient Brain.

    PubMed

    Sampedro-Piquero, P; Alvarez-Suarez, P; Begega, A

    2018-03-05

    Resilience is the ability to achieve a positive outcome when we are in the face of adversity. It supposes an active resistance to adversity by coping mechanisms in which genetic, molecular, neural and environmental factors are involved. Resilience has been usually studied in early ages and few is known about it during aging. In this review, we will address the age-related changes in the brain mechanisms involved in regulating the stress response. Furthermore, using the EE paradigm, we analyse the resilient potential of this intervention and its neurobiological basis. In this case, we will focus on identifying the characteristics of a resilient brain (modifications in HPA structure and function, neurogenesis, specific neuron types, glia, neurotrophic factors, nitric oxide synthase or microRNAs, among others). The evidence suggests that a healthy lifestyle has a crucial role to promote a resilient brain during aging. Along with the behavioral changes described, a better regulation of HPA axis, enhanced levels of postmitotic type-3 cells or changes in GABAergic neurotransmission are some of the brain mechanisms involved in resilience. Future research should identify different biomarkers that increase the resistance to develop mood disorders and based on this knowledge, develop new potential therapeutic targets. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.

    Treesearch

    D.R. Woodruff; K.A. McCulloh; J.M. Warren; F.C. Meinzer; B.L. Gartner

    2007-01-01

    We investigated the mechanisms involved in the regulation of stomatal closure in Douglas-fir and evaluated the potential compensatory adjustments in response to increasing tree height. Stomatal closure was initiated at values of leaf water potential corresponding to nearly complete loss of leaf hydraulic conductance. Cryogenic scanning electron microscopic images...

  12. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders

    PubMed Central

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-01-01

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects. PMID:23108553

  13. Implicit and Explicit Mechanisms of Word Learning in a Narrative Context: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Batterink, Laura; Neville, Helen

    2011-01-01

    The vast majority of word meanings are learned simply by extracting them from context rather than by rote memorization or explicit instruction. Although this skill is remarkable, little is known about the brain mechanisms involved. In the present study, ERPs were recorded as participants read stories in which pseudowords were presented multiple…

  14. Analogical Reasoning as a Mechanism in Knowledge Acquisition: A Developmental Perspective. Technical Report No. 438.

    ERIC Educational Resources Information Center

    Vosniadou, Stella

    Analogical reasoning is one mechanism that has been recognized as having the potential of bringing prior knowledge to bear on the acquisition of new information. Analogical reasoning involves the identification and transfer of structural information from a known system to a new and relatively unknown system. The productive use of analogy is often…

  15. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    PubMed

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  16. Neuromodulatory treatments for chronic pain: efficacy and mechanisms

    PubMed Central

    Jensen, Mark P.; Day, Melissa A.; Miró, Jordi

    2017-01-01

    Chronic pain is common, and the available treatments do not provide adequate relief for most patients. Neuromodulatory interventions that modify brain processes underlying the experience of pain have the potential to provide substantial relief for some of these patients. The purpose of this Review is to summarize the state of knowledge regarding the efficacy and mechanisms of noninvasive neuromodulatory treatments for chronic pain. The findings provide support for the efficacy and positive side-effect profile of hypnosis, and limited evidence for the potential efficacy of meditation training, noninvasive electrical stimulation procedures, and neurofeedback procedures. Mechanisms research indicates that hypnosis influences multiple neurophysiological processes involved in the experience of pain. Evidence also indicates that mindfulness meditation has both immediate and long-term effects on cortical structures and activity involved in attention, emotional responding and pain. Less is known about the mechanisms of other neuromodulatory treatments. On the basis of the data discussed in this Review, training in the use of self-hypnosis might be considered a viable ‘first-line’ approach to treat chronic pain. More-definitive research regarding the benefits and costs of meditation training, noninvasive brain stimulation and neurofeedback is needed before these treatments can be recommended for the treatment of chronic pain. PMID:24535464

  17. Neuromodulatory treatments for chronic pain: efficacy and mechanisms.

    PubMed

    Jensen, Mark P; Day, Melissa A; Miró, Jordi

    2014-03-01

    Chronic pain is common, and the available treatments do not provide adequate relief for most patients. Neuromodulatory interventions that modify brain processes underlying the experience of pain have the potential to provide substantial relief for some of these patients. The purpose of this Review is to summarize the state of knowledge regarding the efficacy and mechanisms of noninvasive neuromodulatory treatments for chronic pain. The findings provide support for the efficacy and positive side-effect profile of hypnosis, and limited evidence for the potential efficacy of meditation training, noninvasive electrical stimulation procedures, and neurofeedback procedures. Mechanisms research indicates that hypnosis influences multiple neurophysiological processes involved in the experience of pain. Evidence also indicates that mindfulness meditation has both immediate and long-term effects on cortical structures and activity involved in attention, emotional responding and pain. Less is known about the mechanisms of other neuromodulatory treatments. On the basis of the data discussed in this Review, training in the use of self-hypnosis might be considered a viable 'first-line' approach to treat chronic pain. More-definitive research regarding the benefits and costs of meditation training, noninvasive brain stimulation and neurofeedback is needed before these treatments can be recommended for the treatment of chronic pain.

  18. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  19. Influence of magnetic pressure on stellar structure: A Mechanism for solar variability

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Endal, A. S.

    1980-01-01

    A physical mechanism is proposed that couples the Sun's dynamo magnetic field to its gravitational potential energy. The mechanism involves the isotropic field pressure resulting in a lifting force on the convective envelope, thereby raising its potential energy. Decay of the field due to solar activity allows the envelop to subside and releases this energy, which can augment the otherwise steady solar luminosity. Equations are developed and applied to the Sun for several field configurations. The best estimate model suggests that uniform luminosity variations as large as 0.02% for half a sunspot cycle may occur. Brief temporal variations or the rotation of spatial structures could allow larger excursions in the energy released.

  20. Explaining reaction mechanisms using the dual descriptor: a complementary tool to the molecular electrostatic potential.

    PubMed

    Martínez-Araya, Jorge Ignacio

    2013-07-01

    The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.

  1. Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor.

    PubMed

    Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M

    1997-09-01

    Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.

  2. Parental Aspirations for Their Children's Educational Attainment and the Realisation of Universal Primary Education (UPE) in Kenya: Evidence from Slum and Non-Slum Residences

    ERIC Educational Resources Information Center

    Oketch, Moses; Mutisya, Maurice; Sagwe, Jackline

    2012-01-01

    There is a sound research base attesting to the importance of parental involvement and to the many potential benefits it can offer for children's education. This study sought to examine differences in parental aspirations (as a mechanism of parental involvement in their children's education) for their children's educational attainment between slum…

  3. Pathogenesis of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Sarah; Orrell, Richard W

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) or motor neuron disease is a rapidly progressive neurodegenerative disorder. The primary involvement is of motor neurons in the brain, spinal cord and peripherally. There is secondary weakness of muscles and primary involvement of other brain regions, especially involving cognition. Peer-reviewed journal articles and reviews. PubMed.gov The pathogenesis of ALS remains largely unknown. There are a wide range of potential mechanisms related to neurodegeneration. An increasing number of genetic factors are recognized. There remains controversy, or lack of knowledge, in explaining how cellular events manifest as the complex human disease. There is controversy as to how well cellular and animal models of disease relate to the human disease. Large-scale international collaborative genetic epidemiological studies are replacing local studies. Therapies related to pathogenesis remain elusive, with the greatest advances to date relating to provision of care (including multidisciplinary management) and supportive care (nutrition and respiratory support). The identification of C9orf72 hexanucleotide repeats as the most frequent genetic background to ALS, and the association with frontotemporal dementia, gives the potential of a genetic background against which to study other risk factors, triggers and pathogenic mechanisms, and to develop potential therapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Galectin-3 as a Potential Target to Prevent Cancer Metastasis

    PubMed Central

    Ahmed, Hafiz; AlSadek, Dina M. M.

    2015-01-01

    Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395

  5. Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae

    PubMed Central

    O’Connor, Sean Timothy Francis; Lan, Jiaqi; North, Matthew; Loguinov, Alexandre; Zhang, Luoping; Smith, Martyn T.; Gu, April Z.; Vulpe, Chris

    2012-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous, potent, and complete carcinogen resulting from incomplete organic combustion. BaP can form DNA adducts but other mechanisms may play a role in toxicity. We used a functional toxicology approach in S. cerevisiae to assess the genetic requirements for cellular resistance to BaP. In addition, we examined translational activities of key genes involved in various stress response pathways. We identified multiple genes and processes involved in modulating BaP toxicity in yeast which support DNA damage as a primary mechanism of toxicity, but also identify other potential toxicity pathways. Gene ontology enrichment analysis indicated that DNA damage and repair as well as redox homeostasis and oxidative stress are key processes in cellular response to BaP suggesting a similar mode of action of BaP in yeast and mammals. Interestingly, toxicant export is also implicated as a potential novel modulator of cellular susceptibility. In particular, we identified several transporters with human orthologs (solute carrier family 22) which may play a role in mammalian systems. PMID:23403841

  6. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    ERIC Educational Resources Information Center

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  7. Stretch-activated TRPV2 channels: Role in mediating cardiopathies.

    PubMed

    Aguettaz, Elizabeth; Bois, Patrick; Cognard, Christian; Sebille, Stéphane

    2017-11-01

    Transient receptor potential vanilloid type 2, TRPV2, is a calcium-permeable cation channel belonging to the TRPV channel family. Although this channel has been first characterized as a noxious heat sensor, its mechanosensor property recently gained importance in various physiological functions. TRPV2 has been described as a stretch-mediated channel and a regulator of calcium homeostasis in several cell types and has been shown to be involved in the stretch-dependent responses in cardiomyocytes. Hence, several studies in the last years support the idea that TRPV2 play a key role in the function and structure of the heart, being involved in the cardiac compensatory mechanisms in response to pathologic or exercise-induced stress. We present here an overview of the current literature and concepts of TRPV2 channels involvement (i) in the mechanical coupling mechanisms in heart and (ii) in the mechanisms that lead to cardiomyopathies. All these studies lead us to think that TRPV2 may also be an important cardiac drug target based on its major physiological roles in heart. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A common biological mechanism in cancer and Alzheimer’s disease?

    PubMed Central

    Behrens, Maria I; Lendon, Corinne; Roe, Catherine M.

    2009-01-01

    Cancer and Alzheimer’s disease (AD) are two common disorders for which the final pathophysiological mechanism is not yet clearly defined. In a prospective longitudinal study we have previously shown an inverse association between AD and cancer, such that the rate of developing cancer in general with time was significantly slower in participants with AD, while participants with a history of cancer had a slower rate of developing AD. In cancer, cell regulation mechanisms are disrupted with augmentation of cell survival and/or proliferation, whereas conversely, AD is associated with increased neuronal death, either caused by, or concomitant with, beta amyloid (Aβ) and tau deposition. The possibility that perturbations of mechanisms involved in cell survival/death regulation could be involved in both disorders is discussed. Genetic polymorphisms, DNA methylation or other mechanisms that induce changes in activity of molecules with key roles in determining the decision to “repair and live”- or “die” could be involved in the pathogenesis of the two disorders. As examples, the role of p53, Pin1 and the Wnt signaling pathway are discussed as potential candidates that, speculatively, may explain inverse associations between AD and cancer. PMID:19519301

  9. Parent involvement and student academic performance: A multiple mediational analysis

    PubMed Central

    Topor, David R.; Keane, Susan P.; Shelton, Terri L.; Calkins, Susan D.

    2011-01-01

    Parent involvement in a child's education is consistently found to be positively associated with a child's academic performance. However, there has been little investigation of the mechanisms that explain this association. The present study examines two potential mechanisms of this association: the child's perception of cognitive competence and the quality of the student-teacher relationship. This study used a sample of 158 seven-year old participants, their mothers, and their teachers. Results indicated a statistically significant association between parent involvement and a child's academic performance, over and above the impact of the child's intelligence. A multiple mediation model indicated that the child's perception of cognitive competence fully mediated the relation between parent involvement and the child's performance on a standardized achievement test. The quality of the student-teacher relationship fully mediated the relation between parent involvement and teacher ratings of the child's classroom academic performance. Limitations, future research directions, and implications for public policy initiatives were discussed. PMID:20603757

  10. Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization*

    PubMed Central

    Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y.; Chung, Man-Kyo

    2013-01-01

    Multiple Ca2+-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca2+, although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys155, both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli. PMID:24174527

  11. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants.

    PubMed

    Lämke, Jörn; Bäurle, Isabel

    2017-06-27

    Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.

  12. Axonal conduction block as a novel mechanism of prepulse inhibition

    PubMed Central

    Lee, A. H.; Megalou, E. V.; Wang, J.; Frost, W.N.

    2012-01-01

    In prepulse inhibition (PPI), the startle response to a strong, unexpected stimulus is diminished if shortly preceded by the onset of a different stimulus. Because deficits in this inhibitory gating process are a hallmark feature of schizophrenia and certain other psychiatric disorders, the mechanisms underlying PPI are of significant interest. We previously used the invertebrate model system Tritonia diomedea to identify the first cellular mechanism for PPI–presynaptic inhibition of transmitter release from the afferent neurons (S-cells) mediating the startle response. Here we report the involvement of a second, more powerful PPI mechanism in Tritonia: prepulse-elicited conduction block of action potentials traveling in the startle pathway caused by identified inhibitory interneurons activated by the prepulse. This example of axo-axonic conduction block–neurons in one pathway inhibiting the propagation of action potentials in another–represents a novel and potent mechanism of sensory gating in prepulse inhibition. PMID:23115164

  13. Diabetic Neuropathy: Update on Pathophysiological Mechanism and the Possible Involvement of Glutamate Pathways.

    PubMed

    Hussain, Nadia; Adrian, Thomas E

    2017-01-01

    Diabetic neuropathy is a common complication of diabetes. It adversely affects the lives of most diabetics. It is the leading cause of non-traumatic limb amputation. Diabetic autonomic neuropathy can target any system and increases morbidity and mortality. Treatment begins with adequate glycemic control but despite this, many patients go on to develop neuropathy which suggests there are additional and unidentified, as yet, pathological mechanisms in place. Although several theories exist, the exact mechanisms are not yet established. Disease modifying treatment requires a more complete understanding of the mechanisms of disease. Pathways Involved: This review discusses the potential pathological mechanisms of diabetic neuropathy, including the polyol pathway, hexosamine pathway, protein kinase C, advanced glycation end product formation, polyADP ribose polymerase, and the role of oxidative stress, inflammation, growth factors and lipid abnormalities. Finally it focuses on how possible changes in glutamate signaling pathways fit into the current theories. Insights into the mechanisms involving gene expression in diabetic neuropathy can help pinpoint genes with altered expression. This will help in the development of novel alternative therapeutic strategies to significantly slow the progression of neuropathy in susceptible individuals and perhaps even prevention. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ocular surgical models for immune and angiogenic responses

    PubMed Central

    Inomata, Takenori; Mashaghi, Alireza; Di Zazzo, Antonio; Dana, Reza

    2015-01-01

    Corneal transplantation serves as a reproducible and simple surgical model to study mechanisms regulating immunity and angiogenesis. The simplicity of the model allows for systematic analysis of different mechanisms involved in immune and angiogenic privilege and their failures. This protocol describes how to induce neovessels and inflammation in an actively regulated avascular and immune-privileged site. This involves placing intra-stromal corneal sutures for two weeks, disrupting the privileges, and performing corneal transplantation subsequently. Privileged and non-privileged recipient responses to donor cornea can be compared to identify key immunological mechanisms that underlie angiogenesis and graft rejection. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and is a valuable tool to elucidate molecular mechanisms mediating acceptance or failure of corneal graft. The model could be used to assess the potential of therapeutic molecules to enhance graft survival in vivo. PMID:26550579

  16. Cell Signaling Experiments Driven by Optical Manipulation

    PubMed Central

    Difato, Francesco; Pinato, Giulietta; Cojoc, Dan

    2013-01-01

    Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758

  17. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective

    PubMed Central

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2010-01-01

    The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed. PMID:20609371

  18. DFT studies on the mechanism of the reaction of C2H5S with NO2

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun

    The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero-point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R ? C2H5SONO (IM1 and IM2) ? P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t-HONO) is subdominant product energetically.

  19. Abdominal aortic aneurysm: novel mechanisms and therapies.

    PubMed

    Davis, Frank M; Rateri, Debra L; Daugherty, Alan

    2015-11-01

    Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, matrix metalloproteinase (MMP)-3, TGFBR2, and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β, and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight into the roles of microRNAs in regulating many pathological pathways in AAA development. Several large clinical trials are ongoing, seeking to translate preclinical findings into therapeutic options. Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight into the development of a medical treatment for this disease.

  20. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.

    PubMed

    Tintignac, Lionel A; Brenner, Hans-Rudolf; Rüegg, Markus A

    2015-07-01

    The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia. Copyright © 2015 the American Physiological Society.

  1. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions.

    PubMed

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A; Decker, William; Manjili, Masoud H; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H; Lowe, Leroy; Lyerly, H Kim

    2015-06-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Chromobacterium violaceum: important insights for virulence and biotechnological potential by exoproteomic studies.

    PubMed

    Ciprandi, Alessandra; da Silva, Wanderson Marques; Santos, Agenor Valadares; de Castro Pimenta, Adriano Monteiro; Carepo, Marta Sofia Peixe; Schneider, Maria Paula Cruz; Azevedo, Vasco; Silva, Artur

    2013-07-01

    Chromobacterium violaceum is a beta-proteobacterium with high biotechnological potential, found in tropical environments. This bacterium causes opportunistic infections in both humans and animals, that can spread throughout several tissues, quickly leading to the death of the host. Genomic studies identified potential mechanisms of pathogenicity but no further studies were done to confirm the expression of these systems. In this study 36 unique protein entries were identified in databank from a two-dimensional profile of C. violaceum secreted proteins. Chromobacterium violaceum exoproteomic preliminary studies confirmed the production of proteins identified as virulence factors (such as a collagenase, flagellum proteins, metallopeptidases, and toxins), allowing us to better understand its pathogenicity mechanisms. Biotechnologically interesting proteins (such as chitinase and chitosanase) were also identified among the secreted proteins, as well as proteins involved in the transport and capture of amino acids, carbohydrates, and oxidative stress protection. Overall, the secreted proteins identified provide us important insights on pathogenicity mechanisms, biotechnological potential, and environment adaptation of C. violaceum.

  3. miRNA expression in control and FSHD fetal human muscle biopsies.

    PubMed

    Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.

  4. Avoiding plagiarism in academic writing.

    PubMed

    Anderson, Irene

    Plagiarism means taking the work of another and presenting it as one's own, resulting in potential upset for the original author and disrepute for the professions involved. This article aims to explore the issue of plagiarism and some mechanisms for detection and avoidance.

  5. Obesity/Type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response

    PubMed Central

    Ackerman, Jessica E.; Geary, Michael B.; Orner, Caitlin A.; Bawany, Fatima

    2017-01-01

    Type II Diabetes (T2DM) dramatically impairs the tendon healing response, resulting in decreased collagen organization and mechanics relative to non-diabetic tendons. Despite this burden, there remains a paucity of information regarding the mechanisms that govern impaired healing of diabetic tendons. Mice were placed on either a high fat diet (T2DM) or low fat diet (lean) and underwent flexor tendon transection and repair surgery. Healing was assessed via mechanical testing, histology and changes in gene expression associated with collagen synthesis, matrix remodeling, and macrophage polarization. Obese/diabetic tendons healed with increased scar formation and impaired mechanical properties. Consistent with this, prolonged and excess expression of extracellular matrix (ECM) components were observed in obese/T2DM tendons. Macrophages are involved in both inflammatory and matrix deposition processes during healing. Obese/T2DM tendons healed with increased expression of markers of pro-inflammatory M1 macrophages, and elevated and prolonged expression of M2 macrophages markers that are involved in ECM deposition. Here we demonstrate that tendons from obese/diabetic mice heal with increased scar formation and increased M2 polarization, identifying excess M2 macrophage activity and matrix synthesis as a potential mechanism of the fibrotic healing phenotype observed in T2DM tendons, and as such a potential target to improve tendon healing in T2DM. PMID:28686669

  6. Underlying Mechanisms of Cooperativity, Input Specificity, and Associativity of Long-Term Potentiation Through a Positive Feedback of Local Protein Synthesis.

    PubMed

    Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi

    2018-01-01

    Long-term potentiation (LTP) is a specific form of activity-dependent synaptic plasticity that is a leading mechanism of learning and memory in mammals. The properties of cooperativity, input specificity, and associativity are essential for LTP; however, the underlying mechanisms are unclear. Here, based on experimentally observed phenomena, we introduce a computational model of synaptic plasticity in a pyramidal cell to explore the mechanisms responsible for the cooperativity, input specificity, and associativity of LTP. The model is based on molecular processes involved in synaptic plasticity and integrates gene expression involved in the regulation of neuronal activity. In the model, we introduce a local positive feedback loop of protein synthesis at each synapse, which is essential for bimodal response and synapse specificity. Bifurcation analysis of the local positive feedback loop of brain-derived neurotrophic factor (BDNF) signaling illustrates the existence of bistability, which is the basis of LTP induction. The local bifurcation diagram provides guidance for the realization of LTP, and the projection of whole system trajectories onto the two-parameter bifurcation diagram confirms the predictions obtained from bifurcation analysis. Moreover, model analysis shows that pre- and postsynaptic components are required to achieve the three properties of LTP. This study provides insights into the mechanisms underlying the cooperativity, input specificity, and associativity of LTP, and the further construction of neural networks for learning and memory.

  7. A new method for registration of kinesthetic evoked potentials for studies of proprioceptive sensitivity in normal subjects and patients with organic lesions in the brain.

    PubMed

    Gordeev, S A; Voronin, S G

    2015-01-01

    The proprioceptive sensitivity of healthy volunteers and convalescents after acute cerebrovascular episodes was studied by a new neurophysiological method for registration of kinesthetic evoked potentials emerging in response to passive 50(o) bending of the hand in the wrist joint with the angular acceleration of 350 rad/sec(2). Kinesthetic evoked potentials were recorded above the somatosensory cortex projection areas in the hemispheres contra- and ipsilateral to the stimulated limb. The patients exhibited significantly longer latencies and lesser amplitudes of the early components of response in the involved hemisphere in comparison with normal subjects. The method for registration of the kinesthetic evoked potentials allows a more detailed study of the mechanisms of kinesthetic sensitivity in health and in organic involvement of the brain.

  8. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention.

    PubMed

    Weaver, Scott C

    2013-08-01

    Arthropod-borne viruses (arboviruses) mainly infect people via direct spillover from enzootic cycles. However, dengue, chikungunya, and yellow fever viruses have repeatedly initiated urban transmission cycles involving human amplification and peridomestic mosquito vectors to cause major epidemics. Here, I review these urban emergences and potential strategies for their prevention and control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Forever young: Mechanisms of natural anoxia tolerance and potential links to longevity

    PubMed Central

    Krivoruchko, Anastasia

    2010-01-01

    While mammals cannot survive oxygen deprivation for more than a few minutes without sustaining severe organ damage, some animals have mastered anaerobic life. Freshwater turtles belonging to the Trachemys and Chrysemys genera are the champion facultative anaerobes of the vertebrate world, often surviving without oxygen for many weeks at a time. The physiological and biochemical mechanisms that underlie anoxia tolerance in turtles include profound metabolic rate depression, post-translational modification of proteins, strong antioxidant defenses, activation of specific stress-responsive transcription factors, and enhanced expression of cyto-protective proteins. Turtles are also known for their incredible longevity and display characteristics of “negligible senescence.” We propose that the robust stress-tolerance mechanisms that permit long term anaerobiosis by turtles may also support the longevity of these animals. Many of the mechanisms involved in natural anoxia tolerance, such as hypometabolism or the induction of various protective proteins/pathways, have been shown to play important roles in mammalian oxygen-related diseases and improved understanding of how cells survive without oxygen could aid in the understanding and treatment of various pathological conditions that involve hypoxia or oxidative stress. In the present review we discuss the recent advances made in understanding the molecular nature of anoxia tolerance in turtles and the potential links between this tolerance and longevity. PMID:20716943

  10. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia

    PubMed Central

    Javitt, Daniel C.; Freedman, Robert

    2015-01-01

    Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496

  11. Electromagnetic finite elements based on a four-potential variational principle

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1991-01-01

    Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.

  12. Role of NFkappaB in an animal model of complex regional pain syndrome-type I (CRPS-I).

    PubMed

    de Mos, Marissa; Laferrière, André; Millecamps, Magali; Pilkington, Mercedes; Sturkenboom, Miriam C J M; Huygen, Frank J P M; Coderre, Terence J

    2009-11-01

    NFkappaB is involved in several pathogenic mechanisms that are believed to underlie the complex regional pain syndrome (CRPS), including ischemia, inflammation and sensitization. Chronic postischemia pain (CPIP) has been developed as an animal model that mimics the symptoms of CRPS-I. The possible involvement of NFkappaB in CRPS-I was studied using CPIP rats. Under sodium pentobarbital anesthesia, a tourniquet was placed around the rat left ankle joint, producing 3 hours of ischemia, followed by rapid reperfusion (IR injury). NFkappaB was measured in nuclear extracts of muscle and spinal cord tissue using ELISA. Moreover, the anti-allodynic (mechanical and cold) effect was tested for systemic, intrathecal, or intraplantar treatment with the NFkappaB inhibitor pyrrolidine dithiocarbamate (PDTC). At 2 and 48 hours after IR injury, NFkappaB was elevated in muscle and spinal cord of CPIP rats compared to shams. At 7 days, NFkappaB levels were normalized in muscle, but still elevated in spinal cord tissue. Systemic PDTC treatment relieved mechanical and cold allodynia in a dose-dependent manner, lasting for at least 3 hours. Intrathecal-but not intraplantar-administration also relieved mechanical allodynia. The results suggest that muscle and spinal NFkappaB plays a role in the pathogenesis of CPIP and potentially of human CRPS. Using the CPIP model, we demonstrate that NFkappaB is involved in the development of allodynia after a physical injury (ischemia and reperfusion) without direct nerve trauma. Since CPIP animals exhibit many features of human CRPS-I, this observation indicates a potential role for NFkappaB in human CRPS.

  13. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    PubMed Central

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is concluded that the inhibitory response to nerve stimulation and extract in the BRP may involve several ionic species. However, unlike that in gastrointestinal muscles the NANC response in the BRP is accompanied by an increased membrane resistance and does not primarily involve K+. The underlying mechanisms for the inhibitory response to both NANC nerve stimulation and inhibitory extract appear to be similar, compatible with the view that the latter may contain the inhibitory transmitter released from these nerves in this tissue. PMID:4027462

  14. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

    PubMed Central

    Paris, Lambert; Marc, Isabelle; Charlot, Benoit; Dumas, Michel; Valmier, Jean; Bardin, Fabrice

    2017-01-01

    This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved. PMID:29082085

  15. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System.

    PubMed

    Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P

    2017-07-01

    A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.

  16. Injuries to Pregnant Occupants in Automotive Crashes

    PubMed Central

    Klinich, Kathleen DeSantis; Schneider, Lawrence W.; Moore, Jamie L.; Pearlman, Mark D.

    1998-01-01

    Injuries unique to pregnant occupants involved in motor-vehicle crashes include placental abruption, uterine rupture or laceration, and direct fetal injury. The mechanisms and characteristics of these injuries are discussed using examples from a literature review and from recent investigations of crashes involving pregnant occupants. In addition, a review of the relationship between the pregnant driver and automotive restraints and the steering wheel illustrates how injury potential may differ from the non-pregnant occupant.

  17. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.

    PubMed

    Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio

    2016-11-01

    Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.

  18. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr; Koraichi, Farah; Videmann, Bernadette

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as amore » potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.« less

  19. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis.

    PubMed

    Señarís, Rosa; Ordás, Purificación; Reimúndez, Alfonso; Viana, Félix

    2018-05-01

    Body temperature regulation is a fundamental homeostatic function in homeothermic animals. It is governed by the central nervous system that integrates temperature signals from internal body structures and the skin and provides efferent responses to adjust heat-exchange rates with the environment. Thermoregulation has a major influence on energy balance by regulating food intake as well as heat production and energy expenditure. Surprisingly, although almost 50% of our energy expenditure is dedicated to maintaining homeothermy, very little is yet known about the molecular aspects and the neural wiring involved in the intimate interrelationship between these two critical homeostatic systems. Some non-selective cation channels of the transient receptor potential (TRP) family work as molecular thermal sensors in sensory neurons and other cells. In this review, we discuss recent advances in our understanding of the basic mechanisms responsible for thermoregulation in the cold. We have focused our attention on the role of two cold-activated TRP channels (transient receptor potential melastatin 8 and transient receptor potential ankyrin 1) in body temperature regulation as well as their impact on energy balance and metabolism. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis, including the involvement of thermosensitive TRPs, may uncover additional mechanisms underlying the pathogenesis of obesity and its metabolic consequences in humans, opening new strategies for the diagnosis, treatment, and prevention of this disease.

  20. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    PubMed Central

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  1. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats.

    PubMed

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-06-10

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.

  2. Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.

    PubMed

    Khavrutskii, Ilja V; Smith, Jason B; Wallqvist, Anders

    2013-10-28

    Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.

  3. Review article: pathogenesis and clinical manifestations of gastrointestinal involvement In systemic sclerosis

    PubMed Central

    Kumar, Sumit; Singh, Jagmohan; Rattan, Satish; DiMarino, Anthony J; Cohen, Sidney; Jimenez, Sergio A.

    2017-01-01

    SUMMARY Background Gastrointestinal tract involvement is a common cause of debilitating symptoms in patients with systemic sclerosis. There are no disease modifying therapies for this condition and the treatment remains symptomatic, largely owing to the lack of a clear understanding of its pathogenesis. Aim To investigate novel aspects of the pathogenesis of gastrointestinal involvement in systemic sclerosis To summarize existing knowledge regarding the cardinal clinical gastrointestinal manifestations of systemic sclerosis and its pathogenesis, emphasizing recent investigations that may be valuable in identifying potentially novel therapeutic targets. Methods Electronic (Pubmed/Medline) and manual Google search Results The gastrointestinal tract is the most common internal organ involved in systemic sclerosis. Any part of the gastrointestinal tract from the mouth to the anus can be affected. There is substantial variability in clinical manifestations and disease course and symptoms are non-specific and overlapping for a particular anatomical site. Gastrointestinal involvement can occur in the in the absence of cutaneous disease. Up to 8% of systemic sclerosis patients develop severe gastrointestinal tract symptoms. This subset of patients display increased mortality with only 15% survival at 9 years. Dysmotiity of the gastrointestinal tract causes the majority of symptoms. Recent investigations have identified a novel mechanism in the pathogenesis of gastrointestinal tract dysmotility mediated by functional anti-muscarinic receptor autoantibodies. Conclusion Despite extensive investigation the pathogenesis of gastrointestinal involvement in systemic sclerosis remains elusive. Although treatment currently remains symptomatic, an improved understanding of novel pathogenic mechanisms may allow the development of potentially highly effective approaches including intravenous immunoglobulin and microRNA based therapeutic interventions. PMID:28185291

  4. Redox reaction characteristics of riboflavin: a fluorescence spectroelectrochemical analysis and density functional theory calculation.

    PubMed

    Chen, Wei; Chen, Jie-Jie; Lu, Rui; Qian, Chen; Li, Wen-Wei; Yu, Han-Qing

    2014-08-01

    Riboflavin (RF), the primary redox active component of flavin, is involved in many redox processes in biogeochemical systems. Despite of its wide distribution and important roles in environmental remediation, its redox behaviors and reaction mechanisms in hydrophobic sites remain unclear yet. In this study, spectroelectrochemical analysis and density functional theory (DFT) calculation were integrated to explore the redox behaviors of RF in dimethyl sulfoxide (DMSO), which was used to create a hydrophobic environment. Specifically, cyclic voltafluorometry (CVF) and derivative cyclic voltafluorometry (DCVF) were employed to track the RF concentration changing profiles. It was found that the reduction contained a series of proton-coupled electron transfers dependent of potential driving force. In addition to the electron transfer-chemical reaction-electron transfer process, a disproportionation (DISP1) process was also identified to be involved in the reduction. The redox potential and free energy of each step obtained from the DFT calculations further confirmed the mechanisms proposed based on the experimental results. The combination of experimental and theoretical approaches yields a deep insight into the characteristics of RF in environmental remediation and better understanding about the proton-coupled electron transfer mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The Role of Binding Site on the Mechanical Unfolding Mechanism of Ubiquitin

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Yoon, Gwonchan; Tao, Weiwei; Eom, Kilho; Park, Harold S.

    2015-03-01

    We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.

  6. Modulation of Immune Response by Organophosphorus Pesticides: Fishes as a Potential Model in Immunotoxicology

    PubMed Central

    Díaz-Resendiz, K. J. G.; Toledo-Ibarra, G. A.; Girón-Pérez, M. I.

    2015-01-01

    Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed. PMID:25973431

  7. Blunted activation of NF-{kappa}B and NF-{kappa}B-dependent gene expression by geranylgeranylacetone: Involvement of unfolded protein response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro

    2008-01-04

    Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA.more » Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.« less

  8. O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate.

    PubMed

    Schoenfeld, Joshua D; Sibenaller, Zita A; Mapuskar, Kranti A; Wagner, Brett A; Cramer-Morales, Kimberly L; Furqan, Muhammad; Sandhu, Sonia; Carlisle, Thomas L; Smith, Mark C; Abu Hejleh, Taher; Berg, Daniel J; Zhang, Jun; Keech, John; Parekh, Kalpaj R; Bhatia, Sudershan; Monga, Varun; Bodeker, Kellie L; Ahmann, Logan; Vollstedt, Sandy; Brown, Heather; Shanahan Kauffman, Erin P; Schall, Mary E; Hohl, Ray J; Clamon, Gerald H; Greenlee, Jeremy D; Howard, Matthew A; Schultz, Michael K; Smith, Brian J; Riley, Dennis P; Domann, Frederick E; Cullen, Joseph J; Buettner, Garry R; Buatti, John M; Spitz, Douglas R; Allen, Bryan G

    2017-04-10

    Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H 2 O 2 ; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O 2 ⋅- and H 2 O 2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H 2 O 2 . In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1.

    PubMed

    Muñoz, Antonio Jesús; Espínola, Francisco; Ruiz, Encarnación

    2017-05-05

    This study investigated the potential ability of Klebsiella sp. 3S1 to remove silver cations from aqueous solutions. The selected strain is a ubiquitous bacterium selected from among several microorganisms that had been isolated from wastewaters. To optimise the operating conditions in the biosorption process, a Rotatable Central Composite Experimental Design was developed establishing pH, temperature and biomass concentration as independent variables. Interaction mechanisms involved were analysed through kinetic and equilibrium studies. The experimental results suit pseudo-second order kinetics with two biosorption stages, being the first almost instantly. The Langmuir equilibrium model predicted a maximum capacity of biosorption (q) of 114.1mg Ag/g biomass. The study of the mechanisms involved in the biosorption was completed by employing advanced techniques which revealed that both bacterium-surface interactions and intracellular bioaccumulation participate in silver removal from aqueous solutions. The ability of Klebsiella sp. 3S1 to form silver chloride nanoparticles with interesting potential applications was also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Education on invasive mechanical ventilation involving intensive care nurses: a systematic review.

    PubMed

    Guilhermino, Michelle C; Inder, Kerry J; Sundin, Deborah

    2018-03-26

    Intensive care unit nurses are critical for managing mechanical ventilation. Continuing education is essential in building and maintaining nurses' knowledge and skills, potentially improving patient outcomes. The aim of this study was to determine whether continuing education programmes on invasive mechanical ventilation involving intensive care unit nurses are effective in improving patient outcomes. Five electronic databases were searched from 2001 to 2016 using keywords such as mechanical ventilation, nursing and education. Inclusion criteria were invasive mechanical ventilation continuing education programmes that involved nurses and measured patient outcomes. Primary outcomes were intensive care unit mortality and in-hospital mortality. Secondary outcomes included hospital and intensive care unit length of stay, length of intubation, failed weaning trials, re-intubation incidence, ventilation-associated pneumonia rate and lung-protective ventilator strategies. Studies were excluded if they excluded nurses, patients were ventilated for less than 24 h, the education content focused on protocol implementation or oral care exclusively or the outcomes were participant satisfaction. Quality was assessed by two reviewers using an education intervention critical appraisal worksheet and a risk of bias assessment tool. Data were extracted independently by two reviewers and analysed narratively due to heterogeneity. Twelve studies met the inclusion criteria for full review: 11 pre- and post-intervention observational and 1 quasi-experimental design. Studies reported statistically significant reductions in hospital length of stay, length of intubation, ventilator-associated pneumonia rates, failed weaning trials and improvements in lung-protective ventilation compliance. Non-statistically significant results were reported for in-hospital and intensive care unit mortality, re-intubation and intensive care unit length of stay. Limited evidence of the effectiveness of continuing education programmes on mechanical ventilation involving nurses in improving patient outcomes exists. Comprehensive continuing education is required. Well-designed trials are required to confirm that comprehensive continuing education involving intensive care nurses about mechanical ventilation improves patient outcomes. © 2018 British Association of Critical Care Nurses.

  11. Mechanical Stimulation Induces mTOR Signaling via an ERK-Independent Mechanism: Implications for a Direct Activation of mTOR by Phosphatidic Acid

    PubMed Central

    You, Jae Sung; Frey, John W.; Hornberger, Troy A.

    2012-01-01

    Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA) may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70s6k T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis. PMID:23077579

  12. Potentiation of oxycodone antinociception in mice by agmatine and BMS182874 via an imidazoline I2 receptor-mediated mechanism.

    PubMed

    Bhalla, Shaifali; Ali, Izna; Lee, Hyaera; Andurkar, Shridhar V; Gulati, Anil

    2013-01-01

    The potentiation of oxycodone antinociception by BMS182874 (endothelin-A (ET(A)) receptor antagonist) and agmatine (imidazoline receptor/α(2)-adrenoceptor agonist) is well-documented. It is also known that imidazoline receptors but not α(2)-adrenoceptors are involved in potentiation of oxycodone antinociception by agmatine and BMS182874 in mice. However, the involvement of specific imidazoline receptor subtypes (I(1), I(2), or both) in this interaction is not clearly understood. The present study was conducted to determine the involvement of imidazoline I(1) and I(2) receptors in agmatine- and BMS182874-induced potentiation of oxycodone antinociception in mice. Antinociceptive (tail flick and hot-plate) latencies were determined in male Swiss Webster mice treated with oxycodone, agmatine, BMS182874, and combined administration of oxycodone with agmatine or BMS182874. Efaroxan (imidazoline I(1) receptor antagonist) and BU224 (imidazoline I(2) receptor antagonist) were used to determine the involvement of I(1) and I(2) imidazoline receptors, respectively. Oxycodone produced significant antinociceptive response in mice which was not affected by efaroxan but was blocked by BU224. Agmatine-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. Similarly, BMS182874-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. This is the first report demonstrating that BMS182874- or agmatine-induced enhancement of oxycodone antinociception is blocked by BU224 but not by efaroxan. We conclude that imidazoline I(2) receptors but not imidazoline I(1) receptors are involved in BMS182874- and agmatine-induced potentiation of oxycodone antinociception in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Involvement of peripheral mechanism in the verapamil-induced potentiation of morphine analgesia in mice.

    PubMed

    Shimizu, Norifumi; Kishioka, Shiroh; Maeda, Takehiko; Fukazawa, Yohji; Dake, Yoshihiro; Yamamoto, Chizuko; Ozaki, Masanobu; Yamamoto, Hiroyuki

    2004-08-01

    Morphine's analgesic actions are thought to be mediated through both the central and peripheral nervous systems. L-type calcium channel blockers have been reported to potentiate the analgesic effects of morphine, but the locus of this interaction is not known. In this experiment, we examined the site of verapamil-induced potentiation of morphine analgesia in mice using the quaternary opioid receptor antagonist naloxone-methiodide (NLX-M). Subcutaneous injections of morphine increased locomotor activity and serum corticosterone level, which are mediated by the central nervous system. These central effects were not antagonized by 0.1 mg/kg of NLX-M, whereas this dose of NLX-M partially antagonized the analgesic effect of morphine. Treatment with verapamil potentiated morphine analgesia in a dose-dependent manner. The verapamil-induced potentiation of morphine analgesia was abolished by pretreatment with NLX-M (0.1 and 1 mg/kg). These findings suggest that peripheral mechanisms partially contribute to morphine analgesia and mediate the potentiation of morphine analgesia by verapamil.

  14. New perspectives of curcumin in cancer prevention

    PubMed Central

    Park, Wungki; Amin, A.R.M Ruhul; Chen, Zhuo Georgia; Shin, Dong M.

    2013-01-01

    Numerous natural compounds have been extensively investigated for their potential for cancer prevention over decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nevertheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here we review the potential of curcumin in cancer prevention, its molecular targets, and action mechanisms. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. PMID:23466484

  15. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    PubMed

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  16. Abdominal Aortic Aneurysm: Novel Mechanisms and Therapies

    PubMed Central

    Davis, Frank M.; Rateri, Debra L.; Daugherty, Alan

    2015-01-01

    Purpose of review Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. Recent Findings An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, MMP3, TGFβR2 and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Recent preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight for roles of microRNAs to regulate many pathological pathways in AAA development. Several large clinical trials are ongoing seeking to translate preclinical findings into therapeutic options. Summary Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight for the development of a medical treatment for this disease. PMID:26352243

  17. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review

    PubMed Central

    Kim, Jeansok J.; Jung, Min Whan

    2015-01-01

    Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular–molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex–amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity. PMID:16120461

  18. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.

    PubMed

    Ramírez-Barrantes, Ricardo; Córdova, Claudio; Gatica, Sebastian; Rodriguez, Belén; Lozano, Carlo; Marchant, Ivanny; Echeverria, Cesar; Simon, Felipe; Olivero, Pablo

    2018-01-01

    The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca 2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca 2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca 2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca 2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  19. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata).

    PubMed

    Huang, Mengjun; Fang, Yang; Liu, Yang; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Ma, Xinrong; He, Kaize; Zhao, Hai

    2015-09-15

    Duckweed (Landoltia punctata) has the potential to remediate wastewater and accumulate enormous amounts of starch for bioethanol production. Using systematical screening, we determined that the highest biomass and starch percentage of duckweed was obtained after uniconazole application. Uniconazole contributes to starch accumulation of duckweed, but the molecular mechanism is still unclear. To elucidate the mechanisms of high starch accumulation, in the study, the responses of L. punctata to uniconazole were investigated using a quantitative proteomic approach combined with physiological and biochemical analysis. A total of 3327 proteins were identified. Among these identified proteins, a large number of enzymes involved in endogenous hormone synthetic and starch metabolic pathways were affected. Notably, most of the enzymes involved in abscisic acid (ABA) biosynthesis showed up-regulated expression, which was consistent with the content variation. The increased endogenous ABA may up-regulate expression of ADP-glucose pyrophosphorylase to promote starch biosynthesis. Importantly, the expression levels of several key enzymes in the starch biosynthetic pathway were up-regulated, which supported the enzymatic assay results and may explain why there is increased starch accumulation. These generated data linked uniconazole with changes in expression of enzymes involved in hormone biosynthesis and starch metabolic pathways and elucidated the effect of hormones on starch accumulation. Thus, this study not only provided insights into the molecular mechanisms of uniconazole-induced hormone variation and starch accumulation but also highlighted the potential for duckweed to be feedstock for biofuel as well as for sewage treatment.

  20. Secondary Electrons as an Energy Source for Life

    NASA Astrophysics Data System (ADS)

    Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.

  1. Lysosomes Integrate Metabolic-Inflammatory Cross-talk in Primary Macrophage Inflammasome Activation*

    PubMed Central

    Weber, Kassandra; Schilling, Joel D.

    2014-01-01

    Macrophage dysfunction and inflammasome activation have been implicated in the pathogenesis of diabetes and its complications. Prolonged inflammation and impaired healing are hallmarks of the diabetic response to tissue injury, and excessive inflammasome activation has been associated in these phenotypes. However, the mechanisms that regulate the inflammasome in response to lipid metabolic and inflammatory stress are incompletely understood. We have shown previously that IL-1β secretion is induced in primary macrophages exposed to the dietary saturated fatty acid palmitate in combination with LPS. In this study, we sought to unravel the mechanisms underlying the activation of this lipotoxic inflammasome. We demonstrate that palmitate-loaded primary macrophages challenged with LPS activate the NLRP3 inflammasome through a mechanism that involves the lysosome. Interestingly, the lysosome was involved in both the regulation of pro-IL-1β levels and its subsequent cleavage/release. The lysosomal protease cathepsin B was required for IL-1β release but not pro-IL-1β production. In contrast, disrupting lysosomal calcium regulation decreased IL-1β release by reducing pro-IL-1β levels. The calcium pathway involved the calcium-activated phosphatase calcineurin, which stabilized IL-1β mRNA. Our findings provide evidence that the lysosome plays a key role in both the priming and assembly phases of the lipostoxic inflammasome. These findings have potential relevance to the hyperinflammatory phenotypes observed in diabetics during tissue damage or infection and identify lysosomes and calcineurin as potential therapeutic targets. PMID:24532802

  2. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  3. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    PubMed

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Expression of Bcl-2 in canine osteosarcoma

    PubMed Central

    Piro, F.; Leonardi, L.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignancy of bone. It is responsible for 80-85% of the primary bone tumors affecting dogs and it is characterized by aggressive and invasive behavior, with a high metastatic potential. Several studies on cancer and related tumorigenesis, show an involvement of the mechanisms of programmed cell death and cell survival. Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different cases of spontaneous canine osteosarcoma and the related preliminary results are described. We found Bcl-2 activity was increased in OS tissue compared to normal bone tissue. These results suggested that Bcl-2 activity may play an important role in the formation of OS and as a diagnostic for neoplastic activity. However, further research is needed to confirm the role of Bcl-2 activity in OS in canines. PMID:26623359

  5. Neurophysiological mechanisms involved in language learning in adults

    PubMed Central

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-01-01

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished. PMID:19933142

  6. Phantom auditory perception (tinnitus): mechanisms of generation and perception.

    PubMed

    Jastreboff, P J

    1990-08-01

    Phantom auditory perception--tinnitus--is a symptom of many pathologies. Although there are a number of theories postulating certain mechanisms of its generation, none have been proven yet. This paper analyses the phenomenon of tinnitus from the point of view of general neurophysiology. Existing theories and their extrapolation are presented, together with some new potential mechanisms of tinnitus generation, encompassing the involvement of calcium and calcium channels in cochlear function, with implications for malfunction and aging of the auditory and vestibular systems. It is hypothesized that most tinnitus results from the perception of abnormal activity, defined as activity which cannot be induced by any combination of external sounds. Moreover, it is hypothesized that signal recognition and classification circuits, working on holographic or neuronal network-like representation, are involved in the perception of tinnitus and are subject to plastic modification. Furthermore, it is proposed that all levels of the nervous system, to varying degrees, are involved in tinnitus manifestation. These concepts are used to unravel the inexplicable, unique features of tinnitus and its masking. Some clinical implications of these theories are suggested.

  7. Multiple Sclerosis: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    Miljković, Djordje; Spasojević, Ivan

    2013-01-01

    Abstract The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy. Antioxid. Redox Signal. 19, 2286–2334. PMID:23473637

  8. The mechanisms of cachexia underlying muscle dysfunction in COPD.

    PubMed

    Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J

    2013-05-01

    Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.

  9. Transport of BMAA into Neurons and Astrocytes by System xc.

    PubMed

    Albano, Rebecca; Lobner, Doug

    2018-01-01

    The study of the mechanism of β-N-methylamino-L-alanine (BMAA) neurotoxicity originally focused on its effects at the N-methyl-D-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects on the cystine/glutamate antiporter (system x c -) were involved in the toxicity. The effects on system x c - are of particular interest. System x c - mediates the transport of cystine into the cell in exchange for releasing glutamate into the extracellular fluid. By releasing glutamate, system x c - can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported into the cells by system x c -. We now present direct evidence that BMAA is transported into both astrocytes and neurons through system x c -. The fact that BMAA is transported by system x c - also provides a mechanism for BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding.

  10. Potential role of pectate lyase and Ca(2+) in the increase in strawberry fruit firmness induced by short-term treatment with high-pressure CO2.

    PubMed

    Wang, Mao Hua; Kim, Jin Gook; Ahn, Sun Eun; Lee, Ah Youn; Bae, Tae Min; Kim, Deu Re; Hwang, Yong Soo

    2014-04-01

    Postharvest treatment with high-pressure CO2 helps to control decay and increase firmness in strawberries. Increases in firmness occurred through modification of calcium binding to cell wall. However, the mechanism(s) involved in Ca(2+) migration to pectic polymers and other physiological events associated with the maintenance of increased firmness are not clearly understood. The focus of this study was to find potential mechanism(s) that are associated with calcium movement, increases in firmness, or maintenance of firmness in strawberry fruit after high-pressure CO2 treatment. An increase in firmness was induced by high-pressure CO2 treatment, but not by high-pressure N2 treatment. This indicates that CO2 stimulates a change in firmness. The increase in firmness induced by high-pressure CO2 seems to involve calcium efflux. Using membrane Ca(2+) -dependent ATPase inhibitors sodium vanadate (250 μM) and erythrosin B (100 μM) delayed both the increase in firmness and calcium binding to wall polymers. Exogenous application of CaCl2 (10 mM) enhanced the firmness increase of fruit slices only when they were exposed to high-pressure CO2 . The activity of pectate lyase was downregulated by CO2 treatment, but β-galactosidase activity was not affected. The increase in strawberry firmness induced by high-pressure CO2 treatment primarily involves the efflux of calcium ions and their binding to wall polymers. These physiological changes are not induced by an anaerobic environment. The downregulation of wall-modifying enzymes, such as pectate lyase, appeared to contribute to the maintenance of firmness that was induced by high-pressure CO2 treatment. © 2014 Institute of Food Technologists®

  11. Proteomics approaches advance our understanding of plant self-incompatibility response.

    PubMed

    Sankaranarayanan, Subramanian; Jamshed, Muhammad; Samuel, Marcus A

    2013-11-01

    Self-incompatibility (SI) in plants is a genetic mechanism that prevents self-fertilization and promotes out-crossing needed to maintain genetic diversity. SI has been classified into two broad categories: the gametophytic self-incompatibility (GSI) and the sporophytic self-incompatibility (SSI) based on the genetic mechanisms involved in 'self' pollen rejection. Recent proteomic approaches to identify potential candidates involved in SI have shed light onto a number of previously unidentified mechanisms required for SI response. SI proteome research has progressed from the use of isoelectric focusing in early days to the latest third-generation technique of comparative isobaric tag for relative and absolute quantitation (iTRAQ) used in recent times. We will focus on the proteome-based approaches used to study self-incompatibility (GSI and SSI), recent developments in the field of incompatibility research with emphasis on SSI and future prospects of using proteomic approaches to study self-incompatibility.

  12. New Mechanism for Explaing LENR and Certain forms of Technological and Natural Catastrophes

    NASA Astrophysics Data System (ADS)

    Gareev, Fangil

    2008-03-01

    We proposed a new mechanism for low energy nuclear reactions (LENR): cooperative resonance processes involving the whole the system - nuclei + atoms + condensed matter can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of a redistribution of internal energy of the whole system. The lack of financial support and ignorance by mainstream physicists has resulted in the LENR field not being accepted. We postulate that LENR can lead to catastrophes, potentially including, the runaway evcnt involving the reactor at the Chernobyl Nuclear Power Plant, the explosion of the twin towers during the 11 September 2001 World Trade Center collapse, in New York, the explosion of transformers in Moscow, catastrophes of submarines, and other phenomena associated with a cooperative resonance synchronization mechanism.

  13. Mechanisms of Hydrocephalus after Neonatal and Adult Intraventricular Hemorrhage

    PubMed Central

    Strahle, Jennifer; Garton, Hugh J.L.; Maher, Cormac O.; Muraszko, Karin M.; Keep, Richard F.; Xi, Guohua

    2013-01-01

    Intraventricular hemorrhage (IVH) is a cause of significant morbidity and mortality and is an independent predictor of a worse outcome in intracerebral hemorrhage (ICH) and germinal matrix hemorrhage (GMH). IVH may result in both injuries to the brain as well as hydrocephalus. This paper reviews evidence on the mechanisms and potential treatments for IVH-induced hydrocephalus. One frequently cited theory to explain hydrocephalus after IVH involves obliteration of the arachnoid villi by microthrombi with subsequent inflammation and fibrosis causing CSF outflow obstruction. Although there is some evidence to support this theory, there may be other mechanisms involved, which contribute to the development of hydrocephalus. It is also unclear whether the causes of acute and chronic hydrocephalus after hemorrhage occur via different mechanisms; mechanical obstruction by blood in the former, and inflammation and fibrosis in the latter. Management of IVH and strategies for prevention of brain injury and hydrocephalus are areas requiring further study. A better understanding of the pathogenesis of hydrocephalus after IVH, may lead to improved strategies to prevent and treat post-hemorrhagic hydrocephalus. PMID:23976902

  14. Maintaining K+ balance on the low-Na+, high-K+ diet

    PubMed Central

    Cornelius, Ryan J.; Wang, Bangchen; Wang-France, Jun

    2016-01-01

    A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the “Western” high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances. PMID:26739887

  15. Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation

    PubMed Central

    CIMAROSTI, HELENA; HENLEY, JEREMY M.

    2012-01-01

    It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060

  16. Transcriptome Profiling of Radish (Raphanus sativus L.) Root and Identification of Genes Involved in Response to Lead (Pb) Stress with Next Generation Sequencing

    PubMed Central

    Wang, Yan; Xu, Liang; Chen, Yinglong; Shen, Hong; Gong, Yiqin; Limera, Cecilia; Liu, Liwang

    2013-01-01

    Lead (Pb), one of the most toxic heavy metals, can be absorbed and accumulated by plant roots and then enter the food chain resulting in potential health risks for human beings. The radish (Raphanus sativus L.) is an important root vegetable crop with fleshy taproots as the edible parts. Little is known about the mechanism by which radishes respond to Pb stress at the molecular level. In this study, Next Generation Sequencing (NGS)–based RNA-seq technology was employed to characterize the de novo transcriptome of radish roots and identify differentially expressed genes (DEGs) during Pb stress. A total of 68,940 assembled unique transcripts including 33,337 unigenes were obtained from radish root cDNA samples. Based on the assembled de novo transcriptome, 4,614 DEGs were detected between the two libraries of untreated (CK) and Pb-treated (Pb1000) roots. Gene Ontology (GO) and pathway enrichment analysis revealed that upregulated DEGs under Pb stress are predominately involved in defense responses in cell walls and glutathione metabolism-related processes, while downregulated DEGs were mainly involved in carbohydrate metabolism-related pathways. The expression patterns of 22 selected genes were validated by quantitative real-time PCR, and the results were highly accordant with the Solexa analysis. Furthermore, many candidate genes, which were involved in defense and detoxification mechanisms including signaling protein kinases, transcription factors, metal transporters and chelate compound biosynthesis related enzymes, were successfully identified in response to heavy metal Pb. Identification of potential DEGs involved in responses to Pb stress significantly reflected alterations in major biological processes and metabolic pathways. The molecular basis of the response to Pb stress in radishes was comprehensively characterized. Useful information and new insights were provided for investigating the molecular regulation mechanism of heavy metal Pb accumulation and tolerance in root vegetable crops. PMID:23840502

  17. Habitat fragmentation and interspecific competition: Implications for lynx conservation [Chapter 4

    Treesearch

    Steven W. Buskirk

    2000-01-01

    Habitat fragmentation and interspecific competition are two important forces that potentially affect lynx populations. Fragmentation operates by various mechanisms, including direct habitat loss, vehicle collisions and behavioral disturbance from roads, and changes in landscape features such as edges. Competition takes two forms: Exploitation competition involves...

  18. Teaching Anatomically-Sound Turnout

    ERIC Educational Resources Information Center

    Daniels, Kathryn

    2007-01-01

    Turnout is a vital element of many dance techniques. Aesthetically, turnout is used to fulfill artistic goals related to body line and design. Mechanically, it increases the potential range of movement in certain leg gestures and facilitates movements sideways through space. Turnout involves external rotation of the femur along its long axis in…

  19. Genetic instability in budding and fission yeast—sources and mechanisms

    PubMed Central

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-01-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. PMID:26109598

  20. Genetic instability in budding and fission yeast-sources and mechanisms.

    PubMed

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-11-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. © FEMS 2015.

  1. Behçet's syndrome pathophysiology and potential therapeutic targets.

    PubMed

    Emmi, Giacomo; Silvestri, Elena; Squatrito, Danilo; D'Elios, Mario Milco; Ciucciarelli, Lucia; Prisco, Domenico; Emmi, Lorenzo

    2014-04-01

    Behçet syndrome is a systemic inflammatory disorder characterized by multiorgan involvement such as oral and genital ulcers, uveitis, skin lesions as well as by less frequent, but often more severe, central nervous system and vascular manifestations. The pathogenetic mechanisms are still incompletely known; however the interaction between a specific genetic background and environmental or infectious factors certainly contributes to the immune dysregulation that characterizes this disease. The discovery of new immunological pathways in Behçet syndrome pathogenesis may help us to set up new treatments. In this review, we will focus our attention on the possible mechanisms underlying Behçet syndrome pathogenesis and their potential role as novel therapeutic targets.

  2. Body habitus in heart failure: understanding the mechanisms and clinical significance of the obesity paradox.

    PubMed

    Parto, Parham; Lavie, Carl J; Arena, Ross; Bond, Samantha; Popovic, Dejana; Ventura, Hector O

    2016-11-01

    The prevalence of obesity among adults and children worldwide has reached epic proportions and has become a major independent risk factor for the development of heart failure (HF), in addition to a contributor of hypertension and cardiovascular disease. The implications of obesity in the development of HF involve adverse effects on cardiac structure and function. Despite all of this, in the setting of chronic HF, excess body mass is associated with improved clinical outcomes, demonstrating the presence of an obesity paradox. In this review, we will discuss the gender differences, global application, potential mechanisms and role of interventions based on fitness and purposeful weight loss as potential therapeutic strategies.

  3. Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus

    PubMed Central

    Jo, Jihoon; Hogg, Ellen L.; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L.; Kim, Kyungjin; Whitcomb, Daniel J.; Lightman, Stafford L.

    2013-01-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+-permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation. PMID:24271563

  4. Role of Inflammation in Human Fatigue: Relevance of Multidimensional Assessments and Potential Neuronal Mechanisms

    PubMed Central

    Karshikoff, Bianka; Sundelin, Tina; Lasselin, Julie

    2017-01-01

    Fatigue is a highly disabling symptom in various medical conditions. While inflammation has been suggested as a potential contributor to the development of fatigue, underlying mechanisms remain poorly understood. In this review, we propose that a better assessment of central fatigue, taking into account its multidimensional features, could help elucidate the role and mechanisms of inflammation in fatigue development. A description of the features of central fatigue is provided, and the current evidence describing the association between inflammation and fatigue in various medical conditions is reviewed. Additionally, the effect of inflammation on specific neuronal processes that may be involved in distinct fatigue dimensions is described. We suggest that the multidimensional aspects of fatigue should be assessed in future studies of inflammation-induced fatigue and that this would benefit the development of effective therapeutic interventions. PMID:28163706

  5. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  6. Scrambled eggs: mechanical forces as ecological factors in early development.

    PubMed

    Moore, Steven W

    2003-01-01

    Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.

  7. Potential Impact of miR-137 and Its Targets in Schizophrenia

    PubMed Central

    Wright, Carrie; Turner, Jessica A.; Calhoun, Vince D.; Perrone-Bizzozero, Nora

    2013-01-01

    The significant impact of microRNAs (miRNAs) on disease pathology is becoming increasingly evident. These small non-coding RNAs have the ability to post-transcriptionally silence the expression of thousands of genes. Therefore, dysregulation of even a single miRNA could confer a large polygenic effect. Schizophrenia is a genetically complex illness thought to involve multiple genes each contributing a small risk. Large genome-wide association studies identified miR-137, a miRNA shown to be involved in neuronal maturation, as one of the top risk genes. To assess the potential mechanism of impact of miR-137 in this disorder and identify its targets, we used a combination of literature searches, ingenuity pathway analysis (IPA), and freely accessible bioinformatics resources. Using TargetScan and the schizophrenia gene resource (SZGR) database, we found that in addition to CSMD1, C10orf26, CACNA1C, TCF4, and ZNF804A, five schizophrenia risk genes whose transcripts are also validated miR-137 targets, there are other schizophrenia-associated genes that may be targets of miR-137, including ERBB4, GABRA1, GRIN2A, GRM5, GSK3B, NRG2, and HTR2C. IPA analyses of all the potential targets identified several nervous system (NS) functions as the top canonical pathways including synaptic long-term potentiation, a process implicated in learning and memory mechanisms and recently shown to be altered in patients with schizophrenia. Among the subset of targets involved in NS development and function, the top scoring pathways were ephrin receptor signaling and axonal guidance, processes that are critical for proper circuitry formation and were shown to be disrupted in schizophrenia. These results suggest that miR-137 may indeed play a substantial role in the genetic etiology of schizophrenia by regulating networks involved in neural development and brain function. PMID:23637704

  8. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  9. Towards the production of salt-tolerant crops.

    PubMed

    Barkla, B J; Vera-Estrella, R; Pantoja, O

    1999-01-01

    Crop production is affected by numerous environmental factors, with soil salinity and drought having the most detrimental effects. Attempts to improve yield under stress conditions by plant breeding have been unsuccessful, primarily due to the multigenic origin of the adaptive responses. The transfer of genes through genetic engineering of crop plants appears more feasible. Important adaptive mechanisms targeted for potential gene transfer would be the tonoplast Na+/H+ antiport, compatible solute synthesis and, regulation of water channel activity and expression, mechanisms involved in cellular osmoregulation. In this review we discuss recent advances in our understanding of these adaptive mechanisms.

  10. Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala

    PubMed Central

    Maren, Stephen

    2014-01-01

    Considerable research indicates that long-term synaptic plasticity in the amygdala underlies the acquisition of emotional memories, including those learned during Pavlovian fear conditioning. Much less is known about the synaptic mechanisms involved in other forms of associative learning, including extinction, that update fear memories. Extinction learning might reverse conditioning-related changes (e.g., depotentiation) or induce plasticity at inhibitory synapses (e.g., long-term potentiation) to suppress conditioned fear responses. Either mechanism must account for fear recovery phenomena after extinction, as well as savings of extinction after fear recovery. PMID:25312830

  11. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    PubMed Central

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  12. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments.

    PubMed

    Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K

    2003-03-19

    The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.

  13. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    PubMed

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    PubMed Central

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  15. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  16. CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules.

    PubMed

    Constantin, Alina; Dumitrescu, Madalina; Mihai Corotchi, Maria Cristina; Jianu, Dana; Simionescu, Maya

    2017-01-01

    CO 2 laser has a beneficial effect on stem cells by mechanisms that are not clearly elucidated. We hypothesize that the effect of fractional CO 2 laser on human adipose-derived stem cells (ADSC) could be due to changes in redox homeostasis and secretion of factors contributing to cellular proliferation and angiogenic potential. ADSC incubated in medium containing 0.5 or 10 % FBS were exposed to a single irradiation of a 10,600-nm fractional CO 2 laser; non-irradiated ADSC were used as control. Viability/proliferation of ADSC was assessed by MTT assay; the intracellular reactive oxygen species (ROS) levels and the mitochondrial membrane potential (∆Ψ m ) were determined with DCFH-DA and JC-1 fluorescent probes, respectively. Molecules secreted by ADSC in the medium were determined by ELISA assay, and their capacity to support endothelial tube-like formation by the Matrigel assay. The results showed that compared to controls, ADSC kept in low FBS medium and irradiated with CO 2 laser at 9 W exhibited: (a) increased proliferation (∼20 %), (b) transient increase of mitochondrial ROS and the capacity to restore Δψ m after rotenone induced depolarization, and (c) augmented secretion in the conditioned medium of MMP-2 (twofold), MMP-9 (eightfold), VEGF (twofold), and adiponectin (∼50 %) that have the capacity to support angiogenesis of endothelial progenitor cells. In conclusion, the mechanisms underlying the benefic effect of CO 2 laser on ADSC are the activation of the redox pathways which increases cell proliferation and enhances secretion of angiogenic molecules. These results explain, in part, the mechanisms involved in the increased regenerative potential of CO 2 laser-exposed ADSC that could be exploited for clinical applications.

  17. Treatment of ballism and pseudobulbar affect with sertraline.

    PubMed

    Okun, M S; Riestra, A R; Nadeau, S E

    2001-10-01

    The pathogenesis of ballism is uncertain and may involve more than one mechanism; treatment is not always efficacious. To provide evidence of a nondopaminergic mechanism and the potential for a prompt and nearly complete response to a serotonergic agent. Report of 2 separate trials of sertraline hydrochloride in a single patient. Complete remission of symptoms within 48 hours of each drug trial. Sertraline may offer an alternative with a better adverse effect profile than dopamine receptor blockers in the treatment of patients with ballism.

  18. Computational analysis of axonal transport: a novel assessment of neurotoxicity, neuronal development and functions.

    PubMed

    Goshima, Yoshio; Hida, Tomonobu; Gotoh, Toshiyuki

    2012-01-01

    Axonal transport plays a crucial role in neuronal morphogenesis, survival and function. Despite its importance, however, the molecular mechanisms of axonal transport remain mostly unknown because a simple and quantitative assay system for monitoring this cellular process has been lacking. In order to better characterize the mechanisms involved in axonal transport, we formulate a novel computer-assisted monitoring system of axonal transport. Potential uses of this system and implications for future studies will be discussed.

  19. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N -acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  20. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  1. Increasing quality of life in pulmonary arterial hypertension: is there a role for nutrition?

    PubMed

    Vinke, Paulien; Jansen, Suzanne M; Witkamp, Renger F; van Norren, Klaske

    2018-06-16

    Pulmonary arterial hypertension (PAH) is a progressive disease primarily affecting the pulmonary vasculature and heart. PAH patients suffer from exercise intolerance and fatigue, negatively affecting their quality of life. This review summarizes current insights in the pathophysiological mechanisms underlying PAH. It zooms in on the potential involvement of nutritional status and micronutrient deficiencies on PAH exercise intolerance and fatigue, also summarizing the potential benefits of exercise and nutritional interventions. Pubmed/Medline, Scopus, and Web of Science were searched for publications on pathophysiological mechanisms of PAH negatively affecting physical activity potential and nutritional status, and for potential effects of interventions involving exercise or nutritional measures known to improve exercise intolerance. Pathophysiological processes that contribute to exercise intolerance and impaired quality of life of PAH patients include right ventricular dysfunction, inflammation, skeletal muscle alterations, and dysfunctional energy metabolism. PAH-related nutritional deficiencies and metabolic alterations have been linked to fatigue, exercise intolerance, and endothelial dysfunction. Available evidence suggests that exercise interventions can be effective in PAH patients to improve exercise tolerance and decrease fatigue. By contrast, knowledge on the prevalence of micronutrient deficiencies and the possible effects of nutritional interventions in PAH patients is limited. Although data on nutritional status and micronutrient deficiencies in PAH are scarce, the available knowledge, including that from adjacent fields, suggests that nutritional intervention to correct deficiencies and metabolic alterations may contribute to a reduction of disease burden.

  2. Mechanisms of epileptogenesis in pediatric epileptic syndromes: Rasmussen encephalitis, infantile spasms, and febrile infection-related epilepsy syndrome (FIRES).

    PubMed

    Pardo, Carlos A; Nabbout, Rima; Galanopoulou, Aristea S

    2014-04-01

    The mechanisms of epileptogenesis in pediatric epileptic syndromes are diverse, and may involve disturbances of neurodevelopmental trajectories, synaptic homeostasis, and cortical connectivity, which may occur during brain development, early infancy, or childhood. Although genetic or structural/metabolic factors are frequently associated with age-specific epileptic syndromes, such as infantile spasms and West syndrome, other syndromes may be determined by the effect of immunopathogenic mechanisms or energy-dependent processes in response to environmental challenges, such as infections or fever in normally-developed children during early or late childhood. Immune-mediated mechanisms have been suggested in selected pediatric epileptic syndromes in which acute and rapidly progressive encephalopathies preceded by fever and/or infections, such as febrile infection-related epilepsy syndrome, or in chronic progressive encephalopathies, such as Rasmussen encephalitis. A definite involvement of adaptive and innate immune mechanisms driven by cytotoxic CD8(+) T lymphocytes and neuroglial responses has been demonstrated in Rasmussen encephalitis, although the triggering factor of these responses remains unknown. Although the beneficial response to steroids and adrenocorticotropic hormone of infantile spasms, or preceding fever or infection in FIRES, may support a potential role of neuroinflammation as pathogenic factor, no definite demonstration of such involvement has been achieved, and genetic or metabolic factors are suspected. A major challenge for the future is discovering pathogenic mechanisms and etiological factors that facilitate the introduction of novel targets for drug intervention aimed at interfering with the disease mechanisms, therefore providing putative disease-modifying treatments in these pediatric epileptic syndromes.

  3. Social Cognition and the Evolution of Language: Constructing Cognitive Phylogenies

    PubMed Central

    Fitch, W. Tecumseh; Huber, Ludwig; Bugnyar, Thomas

    2015-01-01

    Human language and social cognition are closely linked: advanced social cognition is necessary for children to acquire language, and language allows forms of social understanding (and, more broadly, culture) that would otherwise be impossible. Both “language” and “social cognition” are complex constructs, involving many independent cognitive mechanisms, and the comparative approach provides a powerful route to understanding the evolution of such mechanisms. We provide a broad comparative review of mechanisms underlying social intelligence in vertebrates, with the goal of determining which human mechanisms are broadly shared, which have evolved in parallel in other clades, and which, potentially, are uniquely developed in our species. We emphasize the importance of convergent evolution for testing hypotheses about neural mechanisms and their evolution. PMID:20346756

  4. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  5. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    PubMed

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  6. An update on gain-of-function mutations in primary immunodeficiency diseases.

    PubMed

    Jhamnani, Rekha D; Rosenzweig, Sergio D

    2017-12-01

    Most primary immunodeficiencies described since 1952 were associated with loss-of-function defects. With the advent and popularization of unbiased next-generation sequencing diagnostic approaches followed by functional validation techniques, many gain-of-function mutations leading to immunodeficiency have also been identified. This review highlights the updates on pathophysiology mechanisms and new therapeutic approaches involving primary immunodeficiencies because of gain-of-function mutations. The more recent developments related to gain-of-function primary immunodeficiencies mostly involving increased infection susceptibility but also immune dysregulation and autoimmunity, were reviewed. Updates regarding pathophysiology mechanisms, different mutation types, clinical features, laboratory markers, current and potential new treatments on patients with caspase recruitment domain family member 11, signal transducer and activator of transcription 1, signal transducer and activator of transcription 3, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic 110, phosphatidylinositol-4,5-biphosphate 3-kinase regulatory subunit 1, chemokine C-X-C motif receptor 4, sterile α motif domain containing 9-like, and nuclear factor κ-B subunit 2 gain-of-function mutations are reviewed for each disease. With the identification of gain-of-function mutations as a cause of immunodeficiency, new genetic pathophysiology mechanisms unveiled and new-targeted therapeutic approaches can be explored as potential rescue treatments for these diseases.

  7. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Plasticity-Related PKMζ Signaling in the Insular Cortex Is Involved in the Modulation of Neuropathic Pain after Nerve Injury

    PubMed Central

    Han, Jeongsoo; Kwon, Minjee; Cha, Myeounghoon; Tanioka, Motomasa; Hong, Seong-Karp; Bai, Sun Joon; Lee, Bae Hwan

    2015-01-01

    The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ), has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC) of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ) injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ), and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain. PMID:26457205

  9. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers

    PubMed Central

    Brozmanova, M.; Mazurova, L.; Ru, F.; Tatar, M.; Hu, Y.; Yu, S.

    2015-01-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10–60 mmHg) in a concentration-dependent fashion (1–100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  10. Epigenetic mechanisms in heart development and disease.

    PubMed

    Martinez, Shannalee R; Gay, Maresha S; Zhang, Lubo

    2015-07-01

    Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy

    PubMed Central

    Palmar, Jim; Nava, Manuel; Tomey, Daniel; Garicano, Carlos

    2018-01-01

    Purpose of Review Describing the diverse molecular mechanisms (particularly immunological) involved in the death of the pancreatic beta cell in type 1 and type 2 diabetes mellitus. Recent Findings Beta cell death is the final event in a series of mechanisms that, up to date, have not been entirely clarified; it represents the pathophysiological mechanism in the natural history of diabetes mellitus. These mechanisms are not limited to an apoptotic process only, which is characteristic of the immune-mediated insulitis in type 1 diabetes mellitus. They also include the action of proinflammatory cytokines, the production of reactive oxygen species, DNA fragmentation (typical of necroptosis in type 1 diabetic patients), excessive production of islet amyloid polypeptide with the consequent endoplasmic reticulum stress, disruption in autophagy mechanisms, and protein complex formation, such as the inflammasome, capable of increasing oxidative stress produced by mitochondrial damage. Summary Necroptosis, autophagy, and pyroptosis are molecular mechanisms that modulate the survival of the pancreatic beta cell, demonstrating the importance of the immune system in glucolipotoxicity processes and the potential role for immunometabolism as another component of what once known as the “ominous octet.” PMID:29670917

  12. Lubrication of space systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1994-01-01

    NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.

  13. d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology.

    PubMed

    De Gregorio, Danilo; Comai, Stefano; Posa, Luca; Gobbi, Gabriella

    2016-11-23

    d-Lysergic Acid Diethylamide (LSD) is known for its hallucinogenic properties and psychotic-like symptoms, especially at high doses. It is indeed used as a pharmacological model of psychosis in preclinical research. The goal of this review was to understand the mechanism of action of psychotic-like effects of LSD. We searched Pubmed, Web of Science, Scopus, Google Scholar and articles' reference lists for preclinical studies regarding the mechanism of action involved in the psychotic-like effects induced by LSD. LSD's mechanism of action is pleiotropic, primarily mediated by the serotonergic system in the Dorsal Raphe, binding the 5-HT 2A receptor as a partial agonist and 5-HT 1A as an agonist. LSD also modulates the Ventral Tegmental Area, at higher doses, by stimulating dopamine D₂, Trace Amine Associate receptor 1 (TAAR₁) and 5-HT 2A . More studies clarifying the mechanism of action of the psychotic-like symptoms or psychosis induced by LSD in humans are needed. LSD's effects are mediated by a pleiotropic mechanism involving serotonergic, dopaminergic, and glutamatergic neurotransmission. Thus, the LSD-induced psychosis is a useful model to test the therapeutic efficacy of potential novel antipsychotic drugs, particularly drugs with dual serotonergic and dopaminergic (DA) mechanism or acting on TAAR₁ receptors.

  14. d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology

    PubMed Central

    De Gregorio, Danilo; Comai, Stefano; Posa, Luca; Gobbi, Gabriella

    2016-01-01

    d-Lysergic Acid Diethylamide (LSD) is known for its hallucinogenic properties and psychotic-like symptoms, especially at high doses. It is indeed used as a pharmacological model of psychosis in preclinical research. The goal of this review was to understand the mechanism of action of psychotic-like effects of LSD. We searched Pubmed, Web of Science, Scopus, Google Scholar and articles’ reference lists for preclinical studies regarding the mechanism of action involved in the psychotic-like effects induced by LSD. LSD’s mechanism of action is pleiotropic, primarily mediated by the serotonergic system in the Dorsal Raphe, binding the 5-HT2A receptor as a partial agonist and 5-HT1A as an agonist. LSD also modulates the Ventral Tegmental Area, at higher doses, by stimulating dopamine D2, Trace Amine Associate receptor 1 (TAAR1) and 5-HT2A. More studies clarifying the mechanism of action of the psychotic-like symptoms or psychosis induced by LSD in humans are needed. LSD’s effects are mediated by a pleiotropic mechanism involving serotonergic, dopaminergic, and glutamatergic neurotransmission. Thus, the LSD-induced psychosis is a useful model to test the therapeutic efficacy of potential novel antipsychotic drugs, particularly drugs with dual serotonergic and dopaminergic (DA) mechanism or acting on TAAR1 receptors. PMID:27886063

  15. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress.

    PubMed

    Natarajan, Sathish Kumar; Muthukrishnan, Ezhumalai; Khalimonchuk, Oleh; Mott, Justin L; Becker, Donald F

    2017-07-01

    Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ 1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.

    PubMed

    Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A

    2018-04-30

    Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.

  17. Do Friends Always Help Your Studies? Mediating Processes between Social Relations and Academic Motivation

    ERIC Educational Resources Information Center

    Li, Manyu; Frieze, Irene Hanson; Nokes-Malach, Timothy J.; Cheong, Jeewon

    2013-01-01

    Previous studies suggest that social relations can increase one's motivation to learn in school. However, other evidence showed that having more friends may also distract from one's academic involvement. To understand the mechanisms behind this apparent contradiction, this study identified and tested the effects of a potentially important positive…

  18. CHARACTERIZATION OF THE IN VITRO KINETIC INTERACTION OF CHLORPYRIFOS-OXON WITH RAT SALIVARY CHOLINESTERASE: A POTENTIAL BIOMONITORING MATRIX. (R828608)

    EPA Science Inventory

    The primary mechanism of action for organophosphorus (OP) insecticides such as chlorpyrifos (CPF) involves the inhibition of acetylcholinesterase (AChE) by their active oxon metabolites resulting in a wide range of neurotoxic effects. These oxons also inhibit other cholinester...

  19. 33 CFR 154.1035 - Specific requirements for facilities that could reasonably be expected to cause significant and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spill management team member within the organizational structure described in paragraph (b)(3)(iii) of... discharge, potential discharge, or emergency involving the following equipment and scenarios: (A) Failure of manifold, mechanical loading arm, other transfer equipment, or hoses, as appropriate; (B) Tank overfill; (C...

  20. A Pollutant Transformation Laboratory Exercise for Environmental Chemistry: The Reduction of Nitrobenzenes by Anaerobic Solutions of Humic Acid

    ERIC Educational Resources Information Center

    Dunnivant, Frank M.; Reynolds, Mark-Cody

    2007-01-01

    The laboratory experiment, which acts as a capstone, integrated lecture-laboratory exercise involving solution preparation, pH buffers, [E[subscript]H] (reduction potential) buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis is presented. The students completing the lecture and laboratory exercises could gain a…

  1. Generation of action potentials in a mathematical model of corticotrophs.

    PubMed Central

    LeBeau, A P; Robson, A B; McKinnon, A E; Donald, R A; Sneyd, J

    1997-01-01

    Corticotropin-releasing hormone (CRH) is an important regulator of adrenocorticotropin (ACTH) secretion from pituitary corticotroph cells. The intracellular signaling system that underlies this process involves modulation of voltage-sensitive Ca2+ channel activity, which leads to the generation of Ca2+ action potentials and influx of Ca2+. However, the mechanisms by which Ca2+ channel activity is modulated in corticotrophs are not currently known. We investigated this process in a Hodgkin-Huxley-type mathematical model of corticotroph plasma membrane electrical responses. We found that an increase in the L-type Ca2+ current was sufficient to generate action potentials from a previously resting state of the model. The increase in the L-type current could be elicited by either a shift in the voltage dependence of the current toward more negative potentials, or by an increase in the conductance of the current. Although either of these mechanisms is potentially responsible for the generation of action potentials, previous experimental evidence favors the former mechanism, with the magnitude of the shift required being consistent with the experimental findings. The model also shows that the T-type Ca2+ current plays a role in setting the excitability of the plasma membrane, but does not appear to contribute in a dynamic manner to action potential generation. Inhibition of a K+ conductance that is active at rest also affects the excitability of the plasma membrane. PMID:9284294

  2. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    PubMed

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  3. Neurobiological correlates of social functioning in autism.

    PubMed

    Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael

    2010-08-01

    Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Unconscious emotion: A cognitive neuroscientific perspective.

    PubMed

    Smith, Ryan; Lane, Richard D

    2016-10-01

    While psychiatry and clinical psychology have long discussed the topic of unconscious emotion, and its potentially explanatory role in psychopathology, this topic has only recently begun to receive attention within cognitive neuroscience. In contrast, neuroscientific research on conscious vs. unconscious processes within perception, memory, decision-making, and cognitive control has seen considerable advances in the last two decades. In this article, we extrapolate from this work, as well as from recent neural models of emotion processing, to outline multiple plausible neuro-cognitive mechanisms that may be able to explain why various aspects of one's own emotional reactions can remain unconscious in specific circumstances. While some of these mechanisms involve top-down or motivated factors, others instead arise due to bottom-up processing deficits. Finally, we discuss potential implications that these different mechanisms may have for therapeutic intervention, as well as how they might be tested in future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Massage therapy: understanding the mechanisms of action on blood pressure. A scoping review.

    PubMed

    Nelson, Nicole L

    2015-10-01

    Massage therapy (MT) has shown potential in reducing blood pressure (BP); however, the psychophysiological pathways and structures involved in this outcome are unclear. The aims of this scoping review were twofold. (1) To summarize the current knowledge of the mechanisms of action of MT on BP. (2) To highlight the research gaps and challenges that researchers must overcome to further elucidate how MT attenuates BP. A scoping review was conducted to examine the evidence regarding the mechanisms of action of MT on BP. This review included the thematic analysis of 27 publications that considered the influence of MT on BP. Based on this analysis, six potential BP mediating pathways were identified Current theories suggest that MT exerts sympatholytic effects through physiologic and psychological mechanisms, improves hypothalamus-pituitary-adrenocortical axis function, and increases in blood flow, which, in turn, may improve endothelial function. Future study is needed, using more scientifically rigorous methodology, to fully elucidate the mechanism of action of MT. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  6. The evidence for and against different modes of tumour cell extravasation in the lung: diapedesis, capillary destruction, necroptosis, and endothelialization.

    PubMed

    Paku, Sándor; Laszlo, Viktoria; Dezso, Katalin; Nagy, Peter; Hoda, Mir Alireza; Klepetko, Walter; Renyi-Vamos, Ferenc; Timar, Jozsef; Reynolds, Andrew R; Dome, Balazs

    2017-03-01

    The development of lung metastasis is a significant negative prognostic factor for cancer patients. The extravasation phase of lung metastasis involves interactions of tumour cells with the pulmonary endothelium. These interactions may have broad biological and medical significance, with potential clinical implications ranging from the discovery of lung metastasis biomarkers to the identification of targets for intervention in preventing lung metastases. Because of the potential significance, the mechanisms of tumour cell extravasation require cautious, systematic studies. Here, we discuss the literature pertaining to the proposed mechanisms of extravasation and critically compare a recently proposed mechanism (tumour cell-induced endothelial necroptosis) with the already described extravasation mechanisms in the lung. We also provide novel data that may help to explain the underlying physiological basis for endothelialization as a mechanism of tumour cell extravasation in the lung. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    PubMed Central

    Pitman, Stephanie; Cho, Kyu Hong

    2015-01-01

    The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described. PMID:26694351

  8. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    PubMed

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  9. Involvement of PUMA in pericyte migration induced by methamphetamine.

    PubMed

    Zhang, Yanhong; Zhang, Yuan; Bai, Ying; Chao, Jie; Hu, Gang; Chen, Xufeng; Yao, Honghong

    2017-07-01

    Mounting evidence indicates that methamphetamine causes blood-brain barrier damage, with emphasis on endothelial cells. The role of pericytes in methamphetamine-induced BBB damage remains unknown. Our study demonstrated that methamphetamine increased the migration of pericytes from the endothelial basement membrane. However, the detailed mechanisms underlying this process remain poorly understood. Thus, we examined the molecular mechanisms involved in methamphetamine-induced pericyte migration. The results showed that exposure of C3H/10T1/2 cells and HBVPs to methamphetamine increased PUMA expression via activation of the sigma-1 receptor, MAPK and Akt/PI3K pathways. Moreover, methamphetamine treatment resulted in the increased migration of C3H/10T1/2 cells and HBVPs. Knockdown of PUMA in pericytes transduced with PUMA siRNA attenuated the methamphetamine-induced increase in cell migration through attenuation of integrin and tyrosine kinase mechanisms, implicating a role of PUMA in the migration of C3H/10T1/2 cells and HBVPs. This study has demonstrated that methamphetamine-mediated pericytes migration involves PUMA up-regulation. Thus, targeted studies of PUMA could provide insights to facilitate the development of a potential therapeutic approach for alleviation of methamphetamine-induced pericyte migration. Copyright © 2017. Published by Elsevier Inc.

  10. Role of HCA₂ (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin.

    PubMed

    Hanson, Julien; Gille, Andreas; Offermanns, Stefan

    2012-10-01

    Nicotinic acid (NA) and fumaric acid esters (FAE) such as monomethyl fumarate or dimethyl fumarate are drugs that elicit a cutaneous reaction called flushing as a side effect. NA is used to reduce progression of atherosclerosis through its anti-dyslipidemic activity and lipid-independent mechanisms involving immune cells, whereas FAE are used to treat psoriasis via largely unknown mechanisms. Both, NA and FAE, induce flushing by the activation of the G-protein-coupled receptor (GPCR) Hydroxy-carboxylic acid receptor 2 (HCA₂, GPR109A) in cells of the epidermis. While the wanted effects of NA are at least in part also mediated by HCA₂, it is currently not clear whether this receptor is also involved in the anti-psoriatic effects of FAE. The HCA₂-mediated flushing response to these drugs involves the formation of prostaglandins D₂ and E₂ by Langerhans cells and keratinocytes via COX-1 in Langerhans cells and COX-2 in keratinocytes. This review summarizes recent progress in the understanding of the mechanisms underlying HCA₂-mediated flushing, describes strategies to mitigate it and discusses the potential link between flushing, HCA₂ and the anti-psoriatic effects of FAE. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Alternative Derivations of the Statistical Mechanical Distribution Laws

    PubMed Central

    Wall, Frederick T.

    1971-01-01

    A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems. PMID:16578712

  12. Alternative derivations of the statistical mechanical distribution laws.

    PubMed

    Wall, F T

    1971-08-01

    A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.

  13. [Dark or white chocolate? Cocoa and cardiovascular health].

    PubMed

    Corti, Roberto; Perdrix, Jean; Flammer, Andreas J; Noll, Georg

    2010-03-10

    Epidemiological data show that a regular dietary intake of plant-derived foods reduces the risk of cardiovascular disease. Recent research indeed demonstrates interesting data about cocoa consumption, with high concentrations of polyphenols, and beneficial effects on blood pressure, insulin resistance and platelet function. Although still debated, a range of potential mechanisms through which cocoa might exert their benefits on cardiovascular health have been suggested: activation of nitric oxide, antioxidant, anti-inflammatory, anti-platelet effects, which might in turn improve endothelial function, lipid levels, blood pressure and insulin resistance. This article reviews available data about the effects of the consumption of cocoa and different types of chocolate on cardiovascular health, and outlines potential mechanisms involved on the basis of recent studies.

  14. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family

    PubMed Central

    Marreiros, Bruno C.; Sena, Filipa V.; Sousa, Filipe M.; Oliveira, A. Sofia F.; Soares, Cláudio M.; Batista, Ana P.; Pereira, Manuela M.

    2017-01-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains. These proteins contribute indirectly to the establishment of the transmembrane difference of electrochemical potential by catalyzing the reduction of quinone by oxidation of NAD(P)H. NDH-2s are widespread enzymes being present in the three domains of life. In this work, we explored the catalytic mechanism of NDH-2 by investigating the common elements of all NDH-2s, based on the rationale that conservation of such elements reflects their structural/functional importance. We observed conserved sequence motifs and structural elements among 1762 NDH-2s. We identified two proton pathways possibly involved in the protonation of the quinone. Our results led us to propose the first catalytic mechanism for NDH-2 family, in which a conserved glutamate residue, E172 (in NDH-2 from Staphylococcus aureus) plays a key role in proton transfer to the quinone pocket. This catalytic mechanism may also be extended to the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, such as sulfide:quinone oxidoreductases. PMID:28181562

  15. Identification and mechanism of formation of potentially genotoxic metabolites of tamoxifen: study by LC-MS/MS.

    PubMed

    Lim, C K; Yuan, Z X; Jones, R M; White, I N; Smith, L L

    1997-06-01

    On-line high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI MS) and tandem mass spectrometry (MS/MS) have been applied to the study of tamoxifen metabolism in liver microsomes and to the identification of potentially genotoxic metabolites. The results showed that the hydroxylated derivatives, including 4-hydroxytamoxifen and alpha-hydroxytamoxifen are detoxication metabolites, while arene oxides, their free radical precursors or metabolic intermediates, are the most probable species involved in DNA-adduct formation.

  16. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  17. Alternative Splicing in the Hippo Pathway—Implications for Disease and Potential Therapeutic Targets

    PubMed Central

    Porazinski, Sean; Ladomery, Michael

    2018-01-01

    Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets. PMID:29534050

  18. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  19. A neuronal mechanism of propofol-induced central respiratory depression in newborn rats.

    PubMed

    Kashiwagi, Masanori; Okada, Yasumasa; Kuwana, Shun-Ichi; Sakuraba, Shigeki; Ochiai, Ryoichi; Takeda, Junzo

    2004-07-01

    The neural mechanisms of propofol-induced central respiratory depression remain poorly understood. In the present study, we studied these mechanisms and the involvement of gamma-aminobutyric acid (GABA)A receptors in propofol-induced central respiratory depression. The brainstem and the cervical spinal cord of 1- to 4-day-old rats were isolated, and preparations were maintained in vitro with oxygenated artificial cerebrospinal fluid. Rhythmic inspiratory burst activity was recorded from the C4 spinal ventral root. The activity of respiratory neurons in the ventrolateral medulla was recorded using a perforated patch-clamp technique. We found that bath-applied propofol decreased C4 inspiratory burst rate, which could be reversed by the administration of a GABAA antagonist, bicuculline. Propofol caused resting membrane potentials to hyperpolarize and suppressed the firing of action potentials in preinspiratory and expiratory neurons. In contrast, propofol had little effect on resting membrane potentials and action potential firing in inspiratory neurons. Our findings suggest that the depressive effects of propofol are, at least in part, mediated by the agonistic action of propofol on GABAA receptors. It is likely that the GABAA receptor-mediated hyperpolarization of preinspiratory neurons serves as the neuronal basis of propofol-induced respiratory depression in the newborn rat.

  20. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,R.; Clark, S.; Weeks, A.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less

  1. Evolution of sfbI Encoding Streptococcal Fibronectin-Binding Protein I: Horizontal Genetic Transfer and Gene Mosaic Structure

    PubMed Central

    Towers, Rebecca J.; Fagan, Peter K.; Talay, Susanne R.; Currie, Bart J.; Sriprakash, Kadaba S.; Walker, Mark J.; Chhatwal, Gursharan S.

    2003-01-01

    Streptococcal fibronectin-binding protein is an important virulence factor involved in colonization and invasion of epithelial cells and tissues by Streptococcus pyogenes. In order to investigate the mechanisms involved in the evolution of sfbI, the sfbI genes from 54 strains were sequenced. Thirty-four distinct alleles were identified. Three principal mechanisms appear to have been involved in the evolution of sfbI. The amino-terminal aromatic amino acid-rich domain is the most variable region and is apparently generated by intergenic recombination of horizontally acquired DNA cassettes, resulting in a genetic mosaic in this region. Two distinct and divergent sequence types that shared only 61 to 70% identity were identified in the central proline-rich region, while variation at the 3′ end of the gene is due to deletion or duplication of defined repeat units. Potential antigenic and functional variabilities in SfbI imply significant selective pressure in vivo with direct implications for the microbial pathogenesis of S. pyogenes. PMID:14662917

  2. Involvement of the nitric oxide in melatonin-mediated protection against injury.

    PubMed

    Fan, Wenguo; He, Yifan; Guan, Xiaoyan; Gu, Wenzhen; Wu, Zhi; Zhu, Xiao; Huang, Fang; He, Hongwen

    2018-05-01

    Melatonin is a hormone mainly synthesized by the pineal gland in vertebrates and known well as an endogenous regulator of circadian and seasonal rhythms. It has been demonstrated that melatonin is involved in many physiological and pathophysiological processes showing antioxidant, anti-apoptotic and anti-inflammatory properties. Nitric oxide (NO) is a free radical gas in the biological system, which is produced by nitric oxide synthase (NOS) family. NO acts as a biological mediator and plays important roles in different systems in humans. The NO/NOS system exerts a broad spectrum of signaling functions. Accumulating evidence has clearly revealed that melatonin regulates NO/NOS system through multiple mechanisms that may influence physiological and pathophysiological processes. This article reviews the latest evidence for the effects of melatonin on NO/NOS regulation in different organs and disease conditions, the potential cellular mechanisms by which melatonin is involved in organ protection are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    PubMed Central

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  4. Elastic electron-deuteron scattering within a relativistic potential model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhlov, N. A., E-mail: nikolakhokhlov@yandex.ru; Vakulyuk, A. A.

    Elastic electron-deuteron scattering was considered in the point form of relativistic quantum mechanics. Observables of this process and the dependence of the deuteron form factors on the 4-momentum transfer Q up to 8 fm{sup −1} were calculated. The nucleon-nucleon potentials used in the calculations included the Nijmegen potentials NijmI and NijmII, the Bonn potential CD-Bonn, and the Moscow potential involving forbidden states. A parametrization of the nucleon form factors that complies with present-day experimental results was used as input data. The results of the calculations that employ all of the above potential types describe experimental data at least up tomore » Q ≈ 5 fm{sup −}1.« less

  5. The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.

    PubMed

    Berry, Mark D

    2011-07-01

    2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.

  6. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting

    PubMed Central

    Yau, Suk-yu; Li, Ang; So, Kwok-Fai

    2015-01-01

    Adult hippocampal neurogenesis is a process involving the continuous generation of newborn neurons in the hippocampus of adult animals. Mounting evidence has suggested that hippocampal neurogenesis contributes to some forms of hippocampus-dependent learning and memory; however, the detailed mechanism concerning how this small number of newborn neurons could affect learning and memory remains unclear. In this review, we discuss the relationship between adult-born neurons and learning and memory, with a highlight on recently discovered potential roles of neurogenesis in pattern separation and forgetting. PMID:26380120

  7. The electrical potential difference through the foot epithelium of the snail Achatina achatina, Lameere during mechanical and chemical stimulation.

    PubMed

    Tyrakowski, Tomasz; Hołyńska, Iga; Lampka, Magdalena; Kaczorowski, Piotr

    2006-01-01

    An important electrophysiological variable--the transepithelial potential difference reflects the electrogenic transepithelial ion currents, which are produced and modified by ion transport processes in polarized cells of epithelium. These processes result from coordinated function of transporters in apical and basolateral cell membranes and have been observed in all epithelial tissues studied so far. The experiments were performed on isolated specimens of snail foot. In the experiments, the baseline transepithelial electrical potential difference--PD, changes of transepithelial difference during mechanical stimulation--dPD and the transepithelial resistance were measured with an Ussing apparatus. A total of 60 samples of foot ventral surface of 28 snails were studied. The transepithelial electrical potential difference of isolated foot ranged from -6.0 to 10.0 mV under different experimental conditions. Mechanical stimulation of foot ventral surface caused changes of electrogenic ion transport, observed as transient hyperpolarization (electrical potential difference became more positive). When the transepithelial electrical potential difference decreased during stimulation, the reaction was described as depolarization. When amiloride and bumetanide were added to the stimulating fluid so that the sodium and chloride ion transport pathways were inhibited, prolonged depolarization occurred. Under the influence of different stimuli: mechanical (gentle rinsing), chemical (changes of ion concentrations) and pharmacological (application of ion inhibitors), transient changes of potential difference (dPD) were evoked, ranging from about -0.7 to almost 2.0 mV. Changes in transepithelial potential difference of the pedal surface of the snail's foot related to these physiological stimuli are probably involved in the locomotion of the animal and are under control of the part of the nervous system in which tachykinin related peptides (TRP) act as transmitters.

  8. Pharmacological potential of cerium oxidenanoparticles

    NASA Astrophysics Data System (ADS)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  9. Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications.

    PubMed

    Nánási, Péter P; Magyar, János; Varró, András; Ördög, Balázs

    2017-10-01

    Beat-to-beat variability of cardiac action potential duration (short-term variability, SV) is a common feature of various cardiac preparations, including the human heart. Although it is believed to be one of the best arrhythmia predictors, the underlying mechanisms are not fully understood at present. The magnitude of SV is basically determined by the intensity of cell-to-cell coupling in multicellular preparations and by the duration of the action potential (APD). To compensate for the APD-dependent nature of SV, the concept of relative SV (RSV) has been introduced by normalizing the changes of SV to the concomitant changes in APD. RSV is reduced by I Ca , I Kr , and I Ks while increased by I Na , suggesting that ion currents involved in the negative feedback regulation of APD tend to keep RSV at a low level. RSV is also influenced by intracellular calcium concentration and tissue redox potential. The clinical implications of APD variability is discussed in detail.

  10. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  11. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    PubMed

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death.

    PubMed

    Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos

    2018-05-01

    Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in clinical settings. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Curcumin Modulates the NMDA Receptor Subunit Composition Through a Mechanism Involving CaMKII and Ser/Thr Protein Phosphatases.

    PubMed

    Mallozzi, Cinzia; Parravano, Mariacristina; Gaddini, Lucia; Villa, Marika; Pricci, Flavia; Malchiodi-Albedi, Fiorella; Matteucci, Andrea

    2018-05-30

    Curcumin is one of the major compounds contained in turmeric, the powdered rhizome of Curcuma longa. Results obtained in various experimental models indicate that curcumin has the potential to treat a large variety of neuronal diseases. Excitotoxicity, the toxicity due to pathological glutamate receptors stimulation, has been considered to be involved in several ocular pathologies including ischemia, glaucoma, and diabetic retinopathy. The NMDA receptor (NMDAR), a heteromeric ligand-gated ion channel, is composed of GluN1 and GluN2 subunits. There are four GluN2 subunits (GluN2A-D), which are major determinants of the functional properties of NMDARs. It is widely accepted that GluN2B has a pivotal role in excitotoxicity while the role of GluN2A remains controversial. We previously demonstrated that curcumin is neuroprotective against NMDA-induced excitotoxicity with a mechanism involving an increase of GluN2A subunit activity. In this paper, we investigate the mechanisms involved in curcumin-induced GluN2A increase in retinal cultures. Our results show that curcumin treatment activated CaMKII with a time-course that paralleled those of GluN2A increase. Moreover, KN-93, a CaMKII inhibitor, was able to block the effect of curcumin on GluN2A expression. Finally, in our experimental model, curcumin reduced ser/thr phosphatases activity. Using okadaic acid, a specific PP1 and PP2A blocker, we observed an increase in GluN2A levels in cultures. The ability of okadaic acid to mimic the effect of curcumin on GluN2A expression suggests that curcumin might regulate GluN2A expression through a phosphatase-dependent mechanism. In conclusion, our findings indicate curcumin modulation of CaMKII and/or ser/thr phosphatases activities as a mechanism involved in GluN2A expression and neuroprotection against excitotoxicity.

  14. Epigenetic changes in headache.

    PubMed

    Cámara, M S; Martín Bujanda, M; Mendioroz Iriarte, M

    2017-12-23

    Multiple factors, including both genetic and environmental mechanisms, appear to play a role in the aetiology of headache. An interesting area of study is the possible involvement of epigenetic mechanisms in headache development and the transformation to chronic headache, and the potential role of these factors as a therapeutic target. We performed a literature review of the involvement of different epigenetic mechanisms in headache, mainly using the Medline/PubMed database. To this end, we used the following English search terms: headache, migraine, epigenetics, DNA methylation, histones, non-coding RNA, and miRNA. A total of 15 English-language publications related to the above terms were obtained. There is limited but consistent evidence of the relationship between epigenetics and headache; it is therefore essential to continue research of epigenetic changes in headache. This may help to understand the pathophysiology of headache and even to identify candidate biomarkers and new, more effective, therapeutic targets. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. To Use or Not to Use Metformin in Cerebral Ischemia: A Review of the Application of Metformin in Stroke Rodents

    PubMed Central

    2017-01-01

    Ischemic strokes are major causes of death and disability. Searching for potential therapeutic strategies to prevent and treat stroke is necessary, given the increase in overall life expectancy. Epidemiological reports indicate that metformin is an oral antidiabetic medication that can reduce the incidence of ischemic events in patients with diabetes mellitus. Its mechanism of action has not been elucidated, but metformin pleiotropic effects involve actions in addition to glycemic control. AMPK activation has been described as one of the pharmacological mechanisms that explain the action of metformin and that lead to neuroprotective effects. Most experiments done in the cerebral ischemia model, via middle cerebral artery occlusion in rodents (MCAO), had positive results favoring metformin's neuroprotective role and involve several cellular pathways like oxidative stress, endothelial nitric oxide synthase activation, activation of angiogenesis and neurogenesis, autophagia, and apoptosis. We will review the pharmacological properties of metformin and its possible mechanisms that lead to neuroprotection in cerebral ischemia. PMID:28634570

  16. Associative Learning in Invertebrates

    PubMed Central

    Hawkins, Robert D.; Byrne, John H.

    2015-01-01

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron–motor neuron (SN–MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219

  17. The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity

    PubMed Central

    2014-01-01

    Bisphenol A (BPA) is a monomer found in commonly used consumer plastic goods. Although much attention in recent years has been placed on BPA's impact as an endocrine disruptor, it also appears to activate many immune pathways involved in both autoimmune disease development and autoimmune reactivity provocation. The current scientific literature is void of research papers linking BPA directly to human or animal onset of autoimmunity. This paper explores the impact of BPA on immune reactivity and the potential roles these mechanisms may have on the development or provocation of autoimmune diseases. Potential mechanisms by which BPA may be a contributing risk factor to autoimmune disease development and progression include its impact on hyperprolactinemia, estrogenic immune signaling, cytochrome P450 enzyme disruption, immune signal transduction pathway alteration, cytokine polarization, aryl hydrocarbon activation of Th-17 receptors, molecular mimicry, macrophage activation, lipopolysaccharide activation, and immunoglobulin pathophysiology. In this paper a review of these known autoimmune triggering mechanisms will be correlated with BPA exposure, thereby suggesting that BPA has a role in the pathogenesis of autoimmunity. PMID:24804084

  18. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases

    PubMed Central

    Li, Sha; Cheung, Fan

    2018-01-01

    Liver disease, involving a wide range of liver pathologies from fatty liver, hepatitis, and fibrosis to cirrhosis and hepatocellular carcinoma, is a serious health problem worldwide. In recent years, many natural foods and herbs with abundant phytochemicals have been proposed as health supplementation for patients with hepatic disorders. As an important category of phytochemicals, natural polyphenols have attracted increasing attention as potential agents for the prevention and treatment of liver diseases. The striking capacities in remitting oxidative stress, lipid metabolism, insulin resistance, and inflammation put polyphenols in the spotlight for the therapies of liver diseases. It has been reported that many polyphenols from a wide range of foods and herbs exert therapeutic effects on liver injuries via complicated mechanisms. Therefore, it is necessary to have a systematical review to sort out current researches to help better understand the potentials of polyphenols in liver diseases. In this review, we aim to summarize and update the existing evidence of natural polyphenols in the treatment of various liver diseases by in vitro, in vivo, and clinical studies, while special attention is paid to the action mechanisms. PMID:29507653

  19. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro

    PubMed Central

    ZHANG, XIANJIAO; TANG, XU; LIU, HANQIANG; LI, LIANXIANG; HOU, QIAN; GAO, JIANMIN

    2012-01-01

    Baicalin has been demonstrated to exert anticancer effects mainly through induction of tumor cell apoptosis and cell cycle arrest. However, the precise mechanisms underlying its anticancer role remain to be elucidated. In the present study, we investigated whether autophagy was involved in the anticancer activity of baicalin in the human hepatocellular carcinoma (HCC) cell line SMMC-7721 and the possible molecular mechanisms. Our data showed that the viability of SMMC-7721 cells was significantly inhibited by baicalin in a dose- and time-dependent manner. Alongside apoptosis, autophagy was also induced by baicalin dose- and time-dependently with the involvement of the autophagy-associated protein Beclin 1. Moreover, we demonstrated that cell death induced by baicalin was significantly inhibited by the apoptosis inhibitor z-DEVD-fmk or the autophagy inhibitor 3-MA, respectively. In addition, we found that CD147, a key molecule related both to apoptosis and autophagy, was markedly downregulated at the protein level in SMMC-7721 cells treated with baicalin. Collectively, this is the first study to suggest that baicalin induces autophagic cell death in SMMC-7721 cells, which involves the downregulation of CD147. Our study reveals a new mechanism for the anticancer effects of baicalin and puts forward a potential crucial role of CD147 in baicalin-induced cancer cell death. PMID:22200845

  20. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    PubMed Central

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  1. Rhizoma Smilacis Glabrae inhibits pathogen-induced upper genital tract inflammation in rats through suppression of NF-κB pathway.

    PubMed

    Zou, Wei; Zhou, Hougang; Hu, Jian; Zhang, Li; Tang, Qiue; Wen, Xiaoke; Xiao, Zuoqi; Wang, Wei

    2017-04-18

    Rhizoma Smilacis Glabrae (RSG) is traditionally used to treat gynecological disease, which is simply recorded in Chinese Pharmacopoeia. However, whether it has effect on upper genital tract inflammation (UGTI) is unclear. To evaluate the pharmacological effect of RSG on UGTI in rats and analyze its phytochemistry characteristics. The substances in RSG extract was qualified by LC-Q-TOF-MS method, and 11 substances were further quantified. The RSG extract, at dose of 241, 482 (clinical dose) and 964mg/kg/day, was orally administered to UGTI rats whose upper genital tracts were multi-infected with pathogens. Infiltrations of neutrophil and lymphocyte and productions of IL-1β, IL-6, CXCL-1, MCP-1, RANTES, PGE2, COX-2, NF-κB p65 and IκB-α in upper genital tract were examined to evaluate the effects of RSG and its potential mechanism. A total of 77 substances were detected in RSG extract, with 50 substances putatively identified, most of which were flavonoids, phenolic acids and phenylpropanoids. The quantification analysis showed flavonoid had a relative high amount. In pharmacological study, RSG extract suppressed infiltrations of inflammatory cells, reduced over-productions of factors involved in inflammation and pelvic pain. A potential mechanism of these effects was blocking NF-κB signal pathway. The RSG extract exhibited anti-inflammatory effect on UGTI, with a potential mechanism of blocking the activation of NF-κB signal pathway. The effect may be involved in the presence of substances, such as flavonoids and phenolic acids. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications

    PubMed Central

    Ardura, Juan Antonio; Corton, Marta; Fernández-Fernández, Beatriz; Aguilera, Oscar; Gomez-Guerrero, Carmen; Mas, Sebastián; Moreno, Juan Antonio; Ruiz-Ortega, Marta; Sanz, Ana Belen; Sanchez-Niño, Maria Dolores; Rojo, Federico; Vivanco, Fernando; Esbrit, Pedro; Ayuso, Carmen; Alvarez-Llamas, Gloria; Egido, Jesús; García-Foncillas, Jesús; Ortiz, Alberto

    2017-01-01

    Worldwide deaths from diabetes mellitus (DM) and colorectal cancer increased by 90% and 57%, respectively, over the past 20 years. The risk of colorectal cancer was estimated to be 27% higher in patients with type 2 DM than in non-diabetic controls. However, there are potential confounders, information from lower income countries is scarce, across the globe there is no correlation between DM prevalence and colorectal cancer incidence and the association has evolved over time, suggesting the impact of additional environmental factors. The clinical relevance of these associations depends on understanding the mechanism involved. Although evidence is limited, insulin use has been associated with increased and metformin with decreased incidence of colorectal cancer. In addition, colorectal cancer shares some cellular and molecular pathways with diabetes target organ damage, exemplified by diabetic kidney disease. These include epithelial cell injury, activation of inflammation and Wnt/β-catenin pathways and iron homeostasis defects, among others. Indeed, some drugs have undergone clinical trials for both cancer and diabetic kidney disease. Genome-wide association studies have identified diabetes-associated genes (e.g. TCF7L2) that may also contribute to colorectal cancer. We review the epidemiological evidence, potential pathophysiological mechanisms and therapeutic implications of the association between DM and colorectal cancer. Further studies should clarify the worldwide association between DM and colorectal cancer, strengthen the biological plausibility of a cause-and-effect relationship through characterization of the molecular pathways involved, search for specific molecular signatures of colorectal cancer under diabetic conditions, and eventually explore DM-specific strategies to prevent or treat colorectal cancer. PMID:28060743

  3. Finite-temperature mechanical instability in disordered lattices.

    PubMed

    Zhang, Leyou; Mao, Xiaoming

    2016-02-01

    Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T=0. We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G∼T(1/2), whereas the square lattice shows G∼T(2/3). We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.

  4. Heterogeneity of reward mechanisms.

    PubMed

    Lajtha, A; Sershen, H

    2010-06-01

    The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.

  5. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)

  6. Translating Principles of Neural Plasticity into Research on Speech Motor Control Recovery and Rehabilitation

    ERIC Educational Resources Information Center

    Ludlow, Christy L.; Hoit, Jeannette; Kent, Raymond; Ramig, Lorraine O.; Shrivastav, Rahul; Strand, Edythe; Yorkston, Kathryn; Sapienza, Christine M.

    2008-01-01

    Purpose: To review the principles of neural plasticity and make recommendations for research on the neural bases for rehabilitation of neurogenic speech disorders. Method: A working group in speech motor control and disorders developed this report, which examines the potential relevance of basic research on the brain mechanisms involved in neural…

  7. The Sequence of Study Changes What Information Is Attended to, Encoded, and Remembered during Category Learning

    ERIC Educational Resources Information Center

    Carvalho, Paulo F.; Goldstone, Robert L.

    2017-01-01

    The sequence of study influences how we learn. Previous research has identified different sequences as potentially beneficial for learning in different contexts and with different materials. Here we investigate the mechanisms involved in inductive category learning that give rise to these sequencing effects. Across 3 experiments we show evidence…

  8. The potential of breeding for enhanced inducibility in Pinus pinaster and Pinus radiata

    Treesearch

    Rafael Zas; Alejandro Solla; Xoaquin Moreira; Luis Sampedro

    2012-01-01

    Most resistance mechanisms against pests and pathogens in pine trees involve the production of chemical defenses. These defenses are not cost free and the production of secondary metabolisms is generally inversely related with other plant fitness correlates, such as growth. The existence of these negative genetic correlations imposes an important obstacle for breeding...

  9. Epileptogenesis: can the science of epigenetics give us answers?

    PubMed

    Lubin, Farah D

    2012-05-01

    Epigenetic mechanisms are regulatory processes that control gene expression changes involved in multiple aspects of neuronal function, including central nervous system development, synaptic plasticity, and memory. Recent evidence indicates that dysregulation of epigenetic mechanisms occurs in several human epilepsy syndromes. Despite this discovery of a potential role for epigenetic mechanisms in epilepsy, few studies have fully explored their contribution to the process of epilepsy development known as epileptogenesis. The purpose of this article is to discuss recent findings suggesting that the process of epileptogenesis may alter the epigenetic landscape, affecting the gene expression patterns observed in epilepsy. Future studies focused on a better characterization of these aberrant epigenetic mechanisms hold the promise of revealing novel treatment options for the prevention and even the reversal of epilepsy.

  10. Gene expression analysis of bud and leaf color in tea.

    PubMed

    Wei, Kang; Zhang, Yazhen; Wu, Liyun; Li, Hailin; Ruan, Li; Bai, Peixian; Zhang, Chengcai; Zhang, Fen; Xu, Liyi; Wang, Liyuan; Cheng, Hao

    2016-10-01

    Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. In vivo transgenic bioassays and assessment of the carcinogenic potential of pharmaceuticals.

    PubMed Central

    Contrera, J F; DeGeorge, J J

    1998-01-01

    There is general agreement in the scientific community on the need to improve carcinogenicity testing and the assessment of human carcinogenic risk and to incorporate more information on mechanisms and modes of action into the risk assessment process. Advances in molecular biology have identified a growing number of genes such as protooncogenes and tumor-suppressor genes that are highly conserved across species and are associated with a wide variety of human and animal cancers. In vivo transgenic rodent models incorporating such mechanisms are used to identify mechanisms involved in tumor formation and as selective tests for carcinogens. Transgenic methods can be considered an extension of genetic manipulation by selective breeding, which long has been employed in science and agriculture. The use of two rodent species in carcinogenicity testing is especially important for identifying transspecies carcinogens. The capacity of a substance to induce neoplasia across species suggests that the mechanism(s) involved in the induction of the neoplasia are conserved and therefore may have significance for humans. Based on available information there is sufficient experience with some in vivo transgenic rodent carcinogenicity models to support their application as complementary second species studies in conjunction with a single 2-year rodent carcinogenicity study. The optional substitution of a second 2-year rodent carcinogenicity study with an alternative study such as an in vivo transgenic carcinogenicity study is part of the International Conference on Harmonization guidance S1B: Testing for Carcinogenicity of Pharmaceuticals. This guidance is intended to be flexible enough to accommodate a wide range of possible carcinogenicity assessment models currently under consideration or models that may be developed in the future. The use of an in vivo transgenic mouse model in place of a second 2-year mouse study will improve the assessment of carcinogenic risk by contributing insights into the mechanisms of tumorigenesis and potential human relevance not available from a standard 2-year bioassay. It is envisioned that this will stimulate the further development of more efficient and relevant methods for identifying and assessing potential human carcinogenic risk, which will benefit public health. PMID:9539006

  12. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis†

    PubMed Central

    Lu, Xuequan; Zhang, Huaning; Tonge, Peter J.; Tan, Derek S.

    2008-01-01

    Menaquinone (vitamin K2) is an essential component of the electron transfer chain in many pathogens, including Mycobacterium tuberculosis and Staphylococcus aureus, and menaquinone biosynthesis is a potential target for antibiotic drug discovery. We report herein a series of mechanism-based inhibitors of MenE, an acyl-CoA synthetase that catalyzes adenylation and thioesterification of o-succinylbenzoic acid (OSB) during menaquinone biosynthesis. The most potent compound inhibits MenE with an IC50 value of 5.7 μM. PMID:18762421

  13. Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui

    2014-03-01

    The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.

  14. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  15. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  16. Recent Advances in Synthetic Bioelastomers

    PubMed Central

    Shi, Rui; Chen, Dafu; Liu, Quanyong; Wu, Yan; Xu, Xiaochuan; Zhang, Liqun; Tian, Wei

    2009-01-01

    This article reviews the degradability of chemically synthesized bioelastomers, mainly designed for soft tissue repair. These bioelastomers involve biodegradable polyurethanes, polyphosphazenes, linear and crosslinked poly(ether/ester)s, poly(ε-caprolactone) copolymers, poly(1,3-trimethylene carbonate) and their copolymers, poly(polyol sebacate)s, poly(diol-citrates) and poly(ester amide)s. The in vitro and in vivo degradation mechanisms and impact factors influencing degradation behaviors are discussed. In addition, the molecular designs, synthesis methods, structure properties, mechanical properties, biocompatibility and potential applications of these bioelastomers were also presented. PMID:20057942

  17. Positioning of patients with acute respiratory distress syndrome: combining prone and upright makes sense.

    PubMed

    Richard, Jean-Christophe M; Lefebvre, Jean-Claude

    2011-01-01

    Positional strategies have been proposed for mechanically ventilated patients with acute respiratory distress syndrome. Despite different physiological mechanisms involved, oxygenation improvement has been demonstrated with both prone and upright positions. In the previous issue of Critical Care, Robak and colleagues reported the first study evaluating the short-term effects of combining prone and upright positioning. The combined positioning enhanced the response rate in terms of oxygenation. Other benefits, such as a reduction in ventilator-associated pneumonia and better enteral feeding tolerance, can potentially be expected.

  18. Chinese herbs as immunomodulators and potential disease-modifying antirheumatic drugs in autoimmune disorders.

    PubMed

    Ho, Ling-Jun; Lai, Jenn-Haung

    2004-04-01

    Autoimmune diseases are a group of illnesses with multiple organ involvement. The prototype of this group of disorders is rheumatoid arthritis (RA) that aside from systemic organ involvement mainly presents with progressive destruction of many joints. Both activation and defective apoptosis of immune effector cells like T and B lymphocytes and macrophages play critical roles in the pathogenesis of autoimmune disorders. Current therapy for autoimmune diseases recommends a combination of several disease-modifying antirheumatic drugs (DMARDs) that preserve different immunomodulatory mechanisms. Because of limited success in prevention of RA joint destruction for currently available DMARDs, the development of more effective and less toxic DMARDs has been one of the major goals for pharmaceutical companies. The introduction of leflunomide and anti-tumor necrosis factor alpha therapies to the market recently serves as examples. In this context, the experience from ancient Chinese medicine gives an alternative consideration looking for potential DMARDs. Two commonly prescribed Chinese antirheumatic herbs are Tripterygium wilfordii hook f (TWHf) and tetrandrine (Tet) that preserve both anti-inflammatory and immunosuppressive effects. Importantly, the TWHf- or Tet-mediated immunomodulatory mechanisms are evidently different from the known DMARDs. The synergistic effects have also been demonstrated between these two Chinese antirheumatic herbs and DMARDs like FK506, cyclosporin and possibly chloroquine. Another potential Chinese herb for this consideration is Ginkgo biloba. This review summarizes evidence-based in vivo and in vitro studies on Chinese herbs as immunomodulators and potential DMARDs.

  19. How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient.

    PubMed

    Blomberg, Margareta R A; Siegbahn, Per E M

    2015-03-01

    Experiments have shown that the A-family cytochrome c oxidases pump four protons per oxygen molecule, also at a high electrochemical gradient. This has been considered a puzzle, since two of the reduction potentials involved, Cu(II) and Fe(III), were estimated from experiments to be too low to afford proton pumping at a high gradient. The present quantum mechanical study (using hybrid density functional theory) suggests a solution to this puzzle. First, the calculations show that the charge compensated Cu(II) potential for CuB is actually much higher than estimated from experiment, of the same order as the reduction potentials for the tyrosyl radical and the ferryl group, which are also involved in the catalytic cycle. The reason for the discrepancy between theory and experiment is the very large uncertainty in the experimental observations used to estimate the equilibrium potentials, mainly caused by the lack of methods for direct determination of reduced CuB. Second, the calculations show that a high energy metastable state, labeled EH, is involved during catalytic turnover. The EH state mixes the low reduction potential of Fe(III) in heme a3 with another, higher potential, here suggested to be that of the tyrosyl radical, resulting in enough exergonicity to allow proton pumping at a high gradient. In contrast, the corresponding metastable oxidized state, OH, is not significantly higher in energy than the resting state, O. Finally, to secure the involvement of the high energy EH state it is suggested that only one proton is taken up via the K-channel during catalytic turnover. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  1. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  2. Contributions of Neutrophils to Resolution of Mucosal Inflammation

    PubMed Central

    Colgan, Sean P.; Ehrentraut, Stefan F.; Glover, Louise E.; Kominsky, Douglas J.; Campbell, Eric L.

    2014-01-01

    Neutrophil (PMN) recruitment from the blood stream into surrounding tissues involves a regulated series of events central to acute responses in host defense. Accumulation of PMN within mucosal tissues have historically been considered pathognomonic features of both acute and chronic inflammatory conditions. Historically PMNs have been deemed necessary but detrimental when recruited, given the potential for tissue damage that results from a variety of mechanisms. Recent work, however, has altered our preconcieved notions of PMN contributions to inflammatory processes. In particular, significant evidence implicates a central role for the PMN in triggering inflammatory resolution. Such mechanisms involve both metabolic and biochemical crosstalk pathways during the intimate interactions of PMN with other cell types at inflammatory sites. Here, we highlight several recent examples of how PMN coordinate the resolution of ongoing inflammation, with a particular focus on the gastrointestinal mucosa. PMID:22968707

  3. Organic nitrates: past, present and future.

    PubMed

    França-Silva, Maria S; Balarini, Camille M; Cruz, Josiane C; Khan, Barkat A; Rampelotto, Pabulo H; Braga, Valdir A

    2014-09-24

    Nitric oxide (NO) is one of the most important vasodilator molecules produced by the endothelium. It has already been established that NO/cGMP signaling pathway deficiencies are involved in the pathophysiological mechanisms of many cardiovascular diseases. In this context, the development of NO-releasing drugs for therapeutic use appears to be an effective alternative to replace the deficient endogenous NO and mimic the role of this molecule in the body. Organic nitrates represent the oldest class of NO donors that have been clinically used. Considering that tolerance can occur when these drugs are applied chronically, the search for new compounds of this class with lower tolerance potential is increasing. Here, we briefly discuss the mechanisms involved in nitrate tolerance and highlight some achievements from our group in the development of new organic nitrates and their preclinical application in cardiovascular disorders.

  4. Proteomic analysis of honeybee (Apis mellifera L.) pupae head development.

    PubMed

    Zheng, Aijuan; Li, Jianke; Begna, Desalegn; Fang, Yu; Feng, Mao; Song, Feifei

    2011-01-01

    The honeybee pupae development influences its future adult condition as well as honey and royal jelly productions. However, the molecular mechanism that regulates honeybee pupae head metamorphosis is still poorly understood. To further our understand of the associated molecular mechanism, we investigated the protein change of the honeybee pupae head at 5 time-points using 2-D electrophoresis, mass spectrometry, bioinformatics, quantitative real-time polymerase chain reaction and Western blot analysis. Accordingly, 58 protein spots altered their expression across the 5 time points (13-20 days), of which 36 proteins involved in the head organogenesis were upregulated during early stages (13-17 days). However, 22 proteins involved in regulating the pupae head neuron and gland development were upregulated at later developmental stages (19-20 days). Also, the functional enrichment analysis further suggests that proteins related to carbohydrate metabolism and energy production, development, cytoskeleton and protein folding were highly involved in the generation of organs and development of honeybee pupal head. Furthermore, the constructed protein interaction network predicted 33 proteins acting as key nodes of honeybee pupae head growth of which 9 and 4 proteins were validated at gene and protein levels, respectively. In this study, we uncovered potential protein species involved in the formation of honeybee pupae head development along with their specific temporal requirements. This first proteomic result allows deeper understanding of the proteome profile changes during honeybee pupae head development and provides important potential candidate proteins for future reverse genetic research on honeybee pupae head development to improve the performance of related organs.

  5. Role of platelet-activating factor in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1998-06-01

    In rat brain stem slices, we investigated the role of platelet activating factor (PAF) in long-term potentiation (LTP) induced in the ventral part of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferent. The synaptosomal PAF receptor antagonist, BN-52021 was administered before and after HFS. BN-52021 did not modify the vestibular potentials under basal conditions, but it reduced the magnitude of potentiation induced by HFS, which completely developed after the drug wash-out. The same effect was obtained by using CV-62091, a more potent PAF antagonist at microsomal binding sites, but with concentrations higher than those of BN-52021. By contrast both BN-52021 and CV-6209 had no effect on the potentiation once induced. This demonstrates that PAF is involved in the induction but not in the maintenance of vestibular long-term effect through activation of synaptosomal PAF receptors. In addition, we analyzed the effect of the PAF analogue, 1-O-hexadecyl-2-O- (methylcarbamyl)-sn-glycero-3-phosphocoline (MC-PAF) and the inactive PAF metabolite, 1-O-hexadecyl-sn-glycero-3-phosphocoline (Lyso-PAF) on vestibular responses. Our results show that MC-PAF, but not Lyso-PAF induced potentiation. This potentiation was prevented by D,L-2-amino 5-phosphonopentanoic acid, suggesting an involvement of N-methyl-D-aspartate receptors. Furthermore, under BN-52021 and CV-6209, the MC-PAF potentiation was reduced or abolished. The dose-effect curve of MC-PAF showed a shift to the right greater under BN-52021 than under CV-6209, confirming the main dependence of MC-PAF potentiation on the activation of synaptosomal PAF receptors. Our results suggest that PAF can be released in the MVN after the activation of postsynaptic mechanisms triggering LTP, and it may act as a retrograde messenger which activates the presynaptic mechanisms facilitating synaptic plasticity.

  6. Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict.

    PubMed

    Hell, Franz; Taylor, Paul C J; Mehrkens, Jan H; Bötzel, Kai

    2018-05-01

    Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials

    NASA Astrophysics Data System (ADS)

    Trifale, Ninad T.

    A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.

  8. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes.

    PubMed

    Lence, Emilio; van der Kamp, Marc W; González-Bello, Concepción; Mulholland, Adrian J

    2018-05-16

    Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.

  9. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Nevels, Michael; Dobner, Thomas

    2007-01-01

    The last 50 yr of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells and athymic nude mice.

  10. Cell transformation by human adenoviruses.

    PubMed

    Endter, C; Dobner, T

    2004-01-01

    The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.

  11. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  12. Potential role for microRNA in regulating hypoxia-induced metabolic suppression in jumbo squids.

    PubMed

    Hadj-Moussa, Hanane; Logan, Samantha M; Seibel, Brad A; Storey, Kenneth B

    2018-05-02

    At night, Humboldt squid (Dosidicus gigas) rise to the ocean's surface to feed, but come morning, they descend into the ocean's oxygen minimum zone where they can avoid predators but must deal with severe hypoxia, high pressure, and very cold water. To survive this extreme environment, squid use various adaptations to enter a hypometabolic state characterized by metabolic rate suppression by 35-52%, relative to normoxic conditions. The molecular mechanisms facilitating this metabolic flexibility have yet to be elucidated in hypometabolic squid. Herein, we report the first investigation of the role of microRNAs, a rapid and reversible post-transcriptional master regulator of virtually all biological functions, in cephalopods. We examined expression levels of 39 highly-conserved invertebrate microRNAs in D. gigas brain, mantle muscle, and branchial heart, comparing hypoxic and normoxic conditions. Hypoxia-inducible microRNAs are potentially involved in facilitating neuroprotection, anti-apoptosis, and regenerative mechanisms in brain; inhibiting apoptosis and cell proliferation while conserving energy in heart; and limiting damage by reactive oxygen species and apoptosis in muscle. Rather than orchestrate global metabolic rate depression, the majority of hypoxia-inducible microRNAs identified are involved in promoting cytoprotective mechanisms, suggesting a regulatory role for microRNA in hypoxic marine invertebrates that sets the stage for mechanistic analyses. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. 60-Day chronic exposure to low concentrations of HgCl2 impairs sperm quality: hormonal imbalance and oxidative stress as potential routes for reproductive dysfunction in rats.

    PubMed

    Martinez, Caroline S; Torres, João Guilherme D; Peçanha, Franck M; Anselmo-Franci, Janete A; Vassallo, Dalton V; Salaices, Mercedes; Alonso, María J; Wiggers, Giulia A

    2014-01-01

    Mercury is a toxic and bio-accumulative heavy metal of global concern. While good deals of research have been conducted on the toxic effects of mercury, little is known about the mechanisms involved in the pathogenesis of male reproductive dysfunction induced by mercury. Therefore, the purpose of this study was to assess the effects and underlying mechanisms of chronic mercury exposure at low levels on male reproductive system of rats. Three-month-old male Wistar rats were divided into two groups and treated for 60 days with saline (i.m., Control) and HgCl2 (i.m. 1st dose: 4.6 µg/kg, subsequent doses 0.07 µg/kg/day). We analyzed sperm parameters, hormonal levels and biomarkers of oxidative stress in testis, epididymis, prostate and vas deferens. Mercury treatment decreased daily sperm production, count and motility and increased head and tail morphologic abnormalities. Moreover, mercury treatment decreased luteinizing hormone levels, increased lipid peroxidation on testis and decreased antioxidant enzymes activities (superoxide dismutase and catalase) on reproductive organs. Our data demonstrate that 60-day chronic exposure to low concentrations of HgCl2 impairs sperm quality and promotes hormonal imbalance. The raised oxidative stress seems to be a potential mechanism involved on male reproductive toxicity by mercury.

  14. Unsolved Mysteries in NLR Biology

    PubMed Central

    Lupfer, Christopher; Kanneganti, Thirumala-Devi

    2013-01-01

    NOD-like receptors (NLRs) are a class of cytoplasmic pattern-recognition receptors. Although most NLRs play some role in immunity, their functions range from regulating antigen presentation (NLRC5, CIITA) to pathogen/damage sensing (NLRP1, NLRP3, NLRC1/2, NLRC4) to suppression or modulation of inflammation (NLRC3, NLRP6, NLRP12, NLRX1). However, NLRP2, NLRP5, and NLRP7 are also involved in non-immune pathways such as embryonic development. In this review, we highlight some of the least well-understood aspects of NLRs, including the mechanisms by which they sense pathogens or damage. NLRP3 recognizes a diverse range of stimuli and numerous publications have presented potential unifying models for NLRP3 activation, but no single mechanism proposed thus far appears to account for all possible NLRP3 activators. Additionally, NLRC3, NLRP6, and NLRP12 inhibit NF-κB activation, but whether direct ligand sensing is a requirement for this function is not known. Herein, we review the various mechanisms of sensing and activation proposed for NLRP3 and other inflammasome activators. We also discuss the role of NLRC3, NLRP6, NLRP12, and NLRX1 as inhibitors and how they are activated and function in their roles to limit inflammation. Finally, we present an overview of the emerging roles that NLRP2, NLRP5, and NLRP7 play during embryonic development and postulate on the potential pathways involved. PMID:24062750

  15. Involvement of transient receptor potential vanilloid 2 in intra-oral incisional pain.

    PubMed

    Urata, K; Shinoda, M; Ikutame, D; Iinuma, T; Iwata, K

    2018-03-05

    To examine whether transient receptor potential vanilloid 2 (TRPV2) contributes to the changes in intra-oral thermal and mechanical sensitivity following the incision of buccal mucosa. Buccal mucosal pain threshold was measured after the incision. Changes in the number of TRPV2-immunoreactive (IR) trigeminal ganglion (TG) neurons which innervate the whisker pad skin and buccal mucosa, changes in the number of isolectin B4-negative/isolectin B4-positive TRPV2-IR TG neurons which innervate the whisker pad skin and the buccal mucosa, and the effect of peripheral TRPV2 antagonism on the pain threshold of incisional whisker pad skin and buccal mucosa were examined after these injuries. Buccal mucosal pain hypersensitivities were induced on day 3 following the incision. The total number of TRPV2-IR TG neurons and the number of isolectin B4-negative TRPV2-IR TG neurons which innervate the whisker pad skin and buccal mucosa were increased. Buccal mucosal TRPV2 antagonism completely suppressed the heat and mechanical hypersensitivities, but not cold hypersensitivity. TRPV2 antagonist administration to the incisional whisker pad skin only partially suppressed pain hypersensitivities. The increased expression of TRPV2 in peptidergic TG neurons innervating the incisional buccal mucosa is predominantly involved in buccal mucosal heat hyperalgesia and mechanical allodynia following buccal mucosal incision. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Arsenic-induced malignant transformation of human keratinocytes: Involvement of Nrf2

    PubMed Central

    Pi, Jingbo; Diwan, Bhalchandra A.; Sun, Yang; Liu, Jie; Qu, Wei; He, Yuying; Styblo, Miroslav; Waalkes, Michael P.

    2009-01-01

    Arsenic is a well-known human skin carcinogen but the underlying mechanisms of carcinogenesis are unclear. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism, and emerging data suggest that constitutive activation of Nrf2 contributes to malignant phenotype. In the present study when an immortalized, non-tumorigenic human keratinocyte cell line (HaCaT) was continuously exposed to environmentally relevant level of inorganic arsenite (100 nM) for 28 weeks, malignant transformation occurred as evidenced by the formation of highly aggressive squamous cell carcinoma after inoculation into nude mice. To investigate the mechanisms involved, a broad array of biomarkers for transformation were assessed in these arsenic-transformed cells (termed As-TM). In addition to increased secretion of matrix metalloproteinase-9 (MMP-9), a set of markers for squamous differentiation and skin keratinization, including keratin-1, keratin-10, involucrin, and loricrin, were significantly elevated in As-TM cells. Furthermore, As-TM cells showed increased intracellular glutathione, elevated expression of Nrf2 and its target genes, as well as generalized apoptotic resistance. In contrast to increased basal Nrf2 activity in As-TM cells, a diminished Nrf2-mediated antioxidant response induced by acute exposure to high dose of arsenite or tert-butyl hydroxyquinone occurred. The findings that multiple biomarkers for malignant transformation observed in As-TM cells, including MMP-9 and cytokeratins, are potentially regulated by Nrf2 suggest constitutive Nrf2 activation may be involved in arsenic carcinogenesis of skin. The weakened Nrf2 activation in response to oxidative stressors observed in As-TM cells, coupled with acquired apoptotic resistance, would potentially have increased the likelihood of transmittable oxidative DNA damage and fixation of mutational/DNA damage events. PMID:18572023

  17. Prevalence and sport-related predictors of disturbed eating attitudes and behaviors: Moderating effects of sex and age.

    PubMed

    Lanfranchi, M-C; Maïano, C; Morin, A J S; Therme, P

    2014-08-01

    Very few studies examined the prevalence and sport-related predictors of disturbed eating attitudes and behaviors (DEABs) among adolescents involved in sport practice, and their results are mixed and inconclusive. These inconsistencies are most likely due to their methodological heterogeneity and to the fact that none of these studies took into consideration the potentially relevant characteristics of the sport practice context. This study attempts to answer this limitation among French adolescents not involved or involved in various sports contexts defined based on their organization, leanness-centration, and competitive level. Participants were 335 adolescents involved in sport practice, and 435 adolescents not involved in any form of regular sport practice. The DEABs were measured using the Eating Attitudes Test-26. Global results do not showed any significant association between the status of the participants and DEAB. However, these results drastically changed when we considered the potential moderating role of sex and age on these relations. Indeed, sports involvement in general, and involvement in leanness and competitive sports were found to exert sex- and age-differentiated effects on the risks of presenting clinically significant levels of DEAB. This study suggests the importance of monitoring, preventive, and early intervention mechanisms within the context of practice, particularly for adolescent girls. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Heme and blood-feeding parasites: friends or foes?

    PubMed Central

    2010-01-01

    Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification. PMID:21087517

  19. Antitumorigenic targets of cannabinoids - current status and implications.

    PubMed

    Ramer, Robert; Hinz, Burkhard

    2016-10-01

    Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.

  20. Therapeutic targets and new directions for antibodies developed for ovarian cancer

    PubMed Central

    Bax, Heather J.; Josephs, Debra H.; Pellizzari, Giulia; Spicer, James F.; Montes, Ana; Karagiannis, Sophia N.

    2016-01-01

    ABSTRACT Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential. PMID:27494775

  1. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Dongquan; Stueckle, Todd A.; Luanpitpong, Sudjit; Rojanasakul, Yon; Lu, Yongju; Wang, Liying

    2015-01-01

    A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells. Although the potential role of p53 in the transformation process was identified, the underlying mechanisms of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified, which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated immune responses were among the major changes of biological function. Our findings shed light on potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential.

  2. Transcriptome Analysis of the Hepatopancreas in the Pacific White Shrimp (Litopenaeus vannamei) under Acute Ammonia Stress

    PubMed Central

    Lu, Xia; Kong, Jie; Luan, Sheng; Dai, Ping; Meng, Xianhong; Cao, Baoxiang; Luo, Kun

    2016-01-01

    In the practical farming of Litopenaeus vannamei, the intensive culture system and environmental pollution usually results in a high concentration of ammonia, which usually brings large detrimental effects to shrimp, such as increasing the susceptibility to pathogens, reducing growth, decreasing osmoregulatory capacity, increasing the molting frequency, and even causing high mortality. However, little information is available on the molecular mechanisms of the detrimental effects of ammonia stress in shrimp. In this study, we performed comparative transcriptome analysis between ammonia-challenged and control groups from the same family of L. vannamei to identify the key genes and pathways response to ammonia stress. The comparative transcriptome analysis identified 136 significantly differentially expressed genes that have high homologies with the known proteins in aquatic species, among which 94 genes are reported potentially related to immune function, and the rest of the genes are involved in apoptosis, growth, molting, and osmoregulation. Fourteen GO terms and 6 KEGG pathways were identified to be significantly changed by ammonia stress. In these GO terms, 13 genes have been studied in aquatic species, and 11 of them were reported potentially involved in immune defense and two genes were related to molting. In the significantly changed KEGG pathways, all the 7 significantly changed genes have been reported in shrimp, and four of them were potentially involved in immune defense and the other three were related to molting, defending toxicity, and osmoregulation, respectively. In addition, majority of the significantly changed genes involved in nitrogen metabolisms that play an important role in reducing ammonia toxicity failed to perform the protection function. The present results have supplied molecular level support for the previous founding of the detrimental effects of ammonia stress in shrimp, which is a prerequisite for better understanding the molecular mechanism of the immunosuppression from ammonia stress. PMID:27760162

  3. Transcriptome Analysis of the Hepatopancreas in the Pacific White Shrimp (Litopenaeus vannamei) under Acute Ammonia Stress.

    PubMed

    Lu, Xia; Kong, Jie; Luan, Sheng; Dai, Ping; Meng, Xianhong; Cao, Baoxiang; Luo, Kun

    2016-01-01

    In the practical farming of Litopenaeus vannamei, the intensive culture system and environmental pollution usually results in a high concentration of ammonia, which usually brings large detrimental effects to shrimp, such as increasing the susceptibility to pathogens, reducing growth, decreasing osmoregulatory capacity, increasing the molting frequency, and even causing high mortality. However, little information is available on the molecular mechanisms of the detrimental effects of ammonia stress in shrimp. In this study, we performed comparative transcriptome analysis between ammonia-challenged and control groups from the same family of L. vannamei to identify the key genes and pathways response to ammonia stress. The comparative transcriptome analysis identified 136 significantly differentially expressed genes that have high homologies with the known proteins in aquatic species, among which 94 genes are reported potentially related to immune function, and the rest of the genes are involved in apoptosis, growth, molting, and osmoregulation. Fourteen GO terms and 6 KEGG pathways were identified to be significantly changed by ammonia stress. In these GO terms, 13 genes have been studied in aquatic species, and 11 of them were reported potentially involved in immune defense and two genes were related to molting. In the significantly changed KEGG pathways, all the 7 significantly changed genes have been reported in shrimp, and four of them were potentially involved in immune defense and the other three were related to molting, defending toxicity, and osmoregulation, respectively. In addition, majority of the significantly changed genes involved in nitrogen metabolisms that play an important role in reducing ammonia toxicity failed to perform the protection function. The present results have supplied molecular level support for the previous founding of the detrimental effects of ammonia stress in shrimp, which is a prerequisite for better understanding the molecular mechanism of the immunosuppression from ammonia stress.

  4. Potential mechanisms linking probiotics to diabetes: a narrative review of the literature.

    PubMed

    Miraghajani, Maryam; Dehsoukhteh, Somayeh Shahraki; Rafie, Nahid; Hamedani, Sahar Golpour; Sabihi, Sima; Ghiasvand, Reza

    2017-01-01

    Some studies have suggested a wide range of possible mechanisms through which probiotics may play a role in diabetes prevention and treatment. However, the underlying mechanisms are not fully understood. We conducted this study to review the potential mechanisms suggested for the effect of probiotics in diabetes. Narrative review conducted at the Food Security Research Center of Isfahan. A search in the electronic databases MEDLINE (PubMed), Cochrane Library, Web of Science and Google scholar was performed up to October 2016. The initial search yielded 1214 reports. After removing duplicates, 704 titles and abstracts were screened. Finally, out of 83 full-text articles that were reviewed for eligibility, 30 articles were included in the final analysis. The anti-diabetic mechanisms for probiotics reported encompass intraluminal and direct effects on the intestinal mucosa and microbiota (n = 13), anti-inflammatory and immunomodulatory effects (n = 10), antioxidative effects (n = 5), effects on endoplasmic reticulum (ER) stress and expression of genes involved in glucose homeostasis and insulin resistance (n = 6), with some studies pointing to more than one mechanism. The results may throw some light on the capacity of probiotics as a novel approach towards controlling diabetes. However, further human studies are warranted to elucidate and confirm the potential role of probiotics in diabetes prevention and treatment. Also, it needs to be ascertained whether the effectiveness of probiotics in diabetes prevention and treatment is dependent on the strain of the microorganisms.

  5. Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges.

    PubMed

    Yu, Miao; Chen, Liangkai; Peng, Zhao; Nüssler, Andreas K; Wu, Qinghua; Liu, Liegang; Yang, Wei

    2017-06-01

    Deoxynivalenol (DON) is a toxic fungal secondary metabolite produced by molds of the Fusarium genus, and it is known to cause a spectrum of diseases both in humans and animals, such as emesis, diarrhea, anorexia, immunotoxicity, hematological disorders, impairment of maternal reproduction, and fetal development. The recently revealed teratogenic potential of DON has received much attention. In various animal models, it has been shown that DON led to skeletal deformities of the fetus. However, the underlying mechanisms are not yet fully understood, and toxicological data are also scarce. Several animal research studies highlight the potential link between morphological abnormalities and changes of autophagy in the reproductive system. Because autophagy is involved in fetal development, maintenance of placental function, and bone remodeling, this mechanism has become a high priority for future research. The general aim of the present review is to deliver a comprehensive overview of the current state of knowledge of DON-induced reproductive toxicity in different animal models and to provide some prospective ideas for further research. The focus of the current review is to summarize toxic and negative effects of DON exposure on the reproductive system and the potential underlying molecular mechanisms in various animal models. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry.

    PubMed

    Kubannek, F; Schröder, U; Krewer, U

    2018-06-01

    In this work we employ differential electrochemical mass spectrometry (DEMS) in combination with static and dynamic electrochemical techniques for the study of metabolic processes of electrochemically active bacteria. CO 2 production during acetate oxidation by electrode respiring bacteria was measured, in-vivo and online with a sensitivity of 6.5 ⋅ 10 -13 mol/s. The correlation of ion current and electrical current provides insight into the interaction of metabolic processes and extra-cellular electron transfer. In low-turnover CVs, two competing potential dependent electron transfer mechanisms were observed and formal potentials of two redox systems that are involved in complete oxidation of acetate to CO 2 were determined. By balancing charge and carbon flows during dynamic measurements, two significant storage mechanisms in electrochemically active bacteria were identified: 1) a charge storage mechanism that allows substrate oxidation to proceed at a constant rate despite of external current flowing in cathodic direction. 2) a carbon storage mechanism that allows the biofilm to take up acetate at an unchanged rate at very low potentials even though the oxidation to CO 2 stops. These storage capabilities allow a limited decoupling of electrical current and CO 2 production rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs].

    PubMed

    Berila, N; Subík, J

    2010-04-01

    Treatment of not only bacterial but also fungal infections is currently a growing concern. A major reason is the acquisition of multidrug resistance in both prokaryotic and human cells. The multidrug resistance phenotype is a cellular response to the presence of cytotoxic substances in the environment. The basic mechanism of multidrug resistance is overexpression of the membrane proteins involved in the extrusion of toxic substances outside the cell. The resistance mechanism based on the efflux of inhibitors as a result of the overproduction of transport proteins was also observed in some plant and animal pathogens and human tumour cells. The phenomenon of multidrug resistance associated with an excessive and long-term use of antifungals, in particular of azole derivatives, was also confirmed in the yeast Candida glabrata which is becoming a growing concern for health care professionals. Reduced susceptibility to azole derivatives in particular, a high potential for adapting to stressors, and multiple mechanisms of resistance to structurally and functionally unrelated antifungal drugs make the species C. glabrata a potential threat to hospital patients.

  8. MECHANISMS INVOLVED IN THE ASSOCIATION BETWEEN PERIDONTAL DISEASES AND CARDIOVASCULAR DISEASE

    PubMed Central

    Teles, Ricardo; Wang, Cun-Yu

    2012-01-01

    It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This “inflammation hypothesis” raises the possibility that, through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article are to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk. PMID:21223455

  9. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    PubMed

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value < 0.001). G-proteins and mitogen activated protein kinases are considered crucial for signal transduction mechanism. Results of qRT-PCR of 20 genes further validated the sequencing data. Further, variations in gene expression among Duddingtonia flagrans and A. conoides showed septicity of nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  10. Potential Mechanisms of Cancer Prevention by Weight Control

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Wang, Weiqun

    Weight control via dietary caloric restriction and/or physical activity has been demonstrated in animal models for cancer prevention. However, the underlying mechanisms are not fully understood. Body weight loss due to negative energy balance significantly reduces some metabolic growth factors and endocrinal hormones such as IGF-1, leptin, and adiponectin, but enhances glucocorticoids, that may be associated with anti-cancer mechanisms. In this review, we summarized the recent studies related to weight control and growth factors. The potential molecular targets focused on those growth factors- and hormones-dependent cellular signaling pathways are further discussed. It appears that multiple factors and multiple signaling cascades, especially for Ras-MAPK-proliferation and PI3K-Akt-anti-apoptosis, could be involved in response to weight change by dietary calorie restriction and/or exercise training. Considering prevalence of obesity or overweight that becomes apparent over the world, understanding the underlying mechanisms among weight control, endocrine change and cancer risk is critically important. Future studies using "-omics" technologies will be warrant for a broader and deeper mechanistic information regarding cancer prevention by weight control.

  11. The active site of hydroxynitrile lyase from Prunus amygdalus: Modeling studies provide new insights into the mechanism of cyanogenesis

    PubMed Central

    Dreveny, Ingrid; Kratky, Christoph; Gruber, Karl

    2002-01-01

    The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction—the enantiospecific formation of α-hydroxynitriles—is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C–C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. PMID:11790839

  12. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    NASA Technical Reports Server (NTRS)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  13. Action of bradykinin potentiating factor (BPF) and dimercaprol (BAL) on the responses to bradykinin of isolated preparations of rat intestines.

    PubMed

    Camargo, A; Ferreira, S H

    1971-06-01

    BPF and BAL inhibited kininase activity of homogenates of rat intestine. However, BFP potentiated and BAL inhibited the contractions induced by bradykinin on rat isolated duodenum (low calcium solution) and terminal ileum (normal calcium solution). Neither BPF nor BAL affects the relaxation induced by bradykinin of rat duodenum bathed in normal Tyrode. These results suggest that two different types of pharmacological receptor are involved in the action of bradykinin on rat intestine, and that other factors besides the inhibition of agonist destruction participate in the mechanism of potentiation of kinin action by BPF.

  14. Action of bradykinin potentiating factor (BPF) and dimercaprol (BAL) on the responses to bradykinin of isolated preparations of rat intestines

    PubMed Central

    Camargo, A.; Ferreira, S. H.

    1971-01-01

    BPF and BAL inhibited kininase activity of homogenates of rat intestine. However, BFP potentiated and BAL inhibited the contractions induced by bradykinin on rat isolated duodenum (low calcium solution) and terminal ileum (normal calcium solution). Neither BPF nor BAL affects the relaxation induced by bradykinin of rat duodenum bathed in normal Tyrode. These results suggest that two different types of pharmacological receptor are involved in the action of bradykinin on rat intestine, and that other factors besides the inhibition of agonist destruction participate in the mechanism of potentiation of kinin action by BPF. PMID:5091164

  15. Retinoic Acid Receptor-Related Orphan Receptors: Critical Roles in Tumorigenesis

    PubMed Central

    Fan, Jinshuo; Lv, Zhilei; Yang, Guanghai; Liao, Ting ting; Xu, Juanjuan; Wu, Feng; Huang, Qi; Guo, Mengfei; Hu, Guorong; Zhou, Mei; Duan, Limin; Liu, Shuqing; Jin, Yang

    2018-01-01

    Retinoic acid receptor-related orphan receptors (RORs) include RORα (NR1F1), RORβ (NR1F2), and RORγ (NR1F3). These receptors are reported to activate transcription through ligand-dependent interactions with co-regulators and are involved in the development of secondary lymphoid tissues, autoimmune diseases, inflammatory diseases, the circadian rhythm, and metabolism homeostasis. Researches on RORs contributing to cancer-related processes have been growing, and they provide evidence that RORs are likely to be considered as potential therapeutic targets in many cancers. RORα has been identified as a potential therapeutic target for breast cancer and has been investigated in melanoma, colorectal colon cancer, and gastric cancer. RORβ is mainly expressed in the central nervous system, but it has also been studied in pharyngeal cancer, uterine leiomyosarcoma, and colorectal cancer, in addition to neuroblastoma, and recent studies suggest that RORγ is involved in various cancers, including lymphoma, melanoma, and lung cancer. Some studies found RORγ to be upregulated in cancer tissues compared with normal tissues, while others indicated the opposite results. With respect to the mechanisms of RORs in cancer, previous studies on the regulatory mechanisms of RORs in cancer were mostly focused on immune cells and cytokines, but lately there have been investigations concentrating on RORs themselves. Thus, this review summarizes reports on the regulation of RORs in cancer and highlights potential therapeutic targets in cancer. PMID:29904382

  16. Mechanism for transient migration of xenon in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.

    2011-04-11

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO{sub 2} nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediatedmore » diffusion on the uranium sublattice.« less

  17. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    PubMed

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flego, S.P.; Plastino, A.; Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  19. Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas-exchange and peroxidase activity in Arabidopsis thaliana L

    USDA-ARS?s Scientific Manuscript database

    Ozone uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to ozone were compar...

  20. Transient abnormal Q waves during exercise electrocardiography

    PubMed Central

    Alameddine, F F; Zafari, A M

    2004-01-01

    Myocardial ischaemia during exercise electrocardiography is usually manifested by ST segment depression or elevation. Transient abnormal Q waves are rare, as Q waves indicate an old myocardial infarction. The case of a patient with exercise induced transient abnormal Q waves is reported. The potential mechanisms involved in the development of such an abnormality and its clinical implications are discussed. PMID:14676264

  1. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    ERIC Educational Resources Information Center

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…

  2. From detection monitoring to evaluation monitoring - a case study involving crown dieback in northern white-cedar

    Treesearch

    KaDonna Randolph; William Bechtold; Randall Morin; Stanley Zarnoch

    2009-01-01

    The Forest Inventory and Analysis (FIA) Phase 3 plot network is a crucial part of the U.S. Forest Health Monitoring program's detection monitoring system, where select indicators are monitored for signals that may indicate deteriorating forest health. When a negative signal is identified, evaluation monitoring provides a mechanism whereby a potential problem can...

  3. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus

    Treesearch

    Harshavardhan Doddapaneni; Venkataramanan Subramanian; Bolei Fu; Dan Cullen

    2013-01-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three...

  4. The new drugs and the sea: The phenomenon of narco-terrorism.

    PubMed

    Santacroce, Rita; Bosio, Elisabetta; Scioneri, Valentina; Mignone, Mara

    2018-01-01

    Use of psychoactive substances and drug trafficking for funding purposes is a well-known practice acted by terrorist groups. Europe appears to be more and more involved in this mechanism, as both an active and passive element, and increased attention should be payed to this phenomenon by potentially interested actors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events: limits and potential for biological control.

    PubMed

    Chouvenc, Thomas; Su, Nan-Yao

    2010-08-01

    The use of entomopathogens for biological control of subterranean termites (Rhinotermitidae) has attracted attention in the past four decades, and several laboratory studies have shown promising results with fungal agents. This approach was based on the concept of classical biological control with the use of a virulent agent that can self-replicate in a termite nest and be transmitted among individuals, resulting in an epizootic to kill the entire colony. However, the absence of positive results in field studies challenged the potential of fungal pathogens as a realistic approach for subterranean termite control, and the relationship between fungi and subterranean termites remains poorly understood. A multimodal approach of the currently identified defense mechanisms allowed us to show that subterranean termites have the ability to prevent an epizootic from occurring. The defense mechanisms involved in such resistance are reviewed and documented. Finally, the interactions among three major defense mechanisms (grooming, cellular encapsulation, and gut antifungal activity) were analyzed, and it is suggested that these mechanisms act synergistically to produce an efficient defense against the infection of the fungus at the individual and group level so as to protect the colony from epizootics.

  6. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    PubMed

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  7. Prevention of food allergies.

    PubMed

    Bellanti, J A

    1984-12-01

    Any rational approach to the prevention of food allergies must be based on the diversity of mechanisms which are involved in their pathogenesis. In addition to the IgE-mediated disorders which appear to be responsible for the largest number of cases, other immunologic (e.g., immune complex) and non-immunologic (e.g., enzymatic deficiencies) mechanisms appear to be involved. A preventive program should begin with a recognition that a potential problem exists and the identification of the individual at risk. This is accomplished by a careful documentation of IgE or other allergic reactivity in the individual or in family members. The prevention of intrauterine or postnatal sensitization is achieved by reduction in antigen transfer to the infant by maternal avoidance of potentially allergic foods in the last trimester and during lactation and by a restrictive infant diet. During the first years of infancy the encouragement of breast-feeding provides the dual benefit of eliminating one of the most common sensitizing food antigens, i.e., cow's milk protein, and providing passive s-IgA. The use of appropriate pharmacologic agents, e.g., cromolyn, may be yet another valuable adjunct in the prevention of food allergy.

  8. The Involvement of Mitochondrial Membrane Potential in Cross-Resistance Between Radiation and Docetaxel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Yoshikazu; Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai; Roudkenar, Mehryar Habibi

    2016-11-01

    Purpose: To understand the molecular mechanisms underlying cancer cell radioresistance, clinically relevant radioresistant (CRR) cells that continue to proliferate during exposure to 2 Gy/day X-rays for more than 30 days were established. A modified high-density survival assay for anticancer drug screening revealed that CRR cells were resistant to an antimicrotubule agent, docetaxel (DTX). The involvement of reactive oxygen species (ROS) from mitochondria (mtROS) in the cross-resistance to X-rays and DTX was studied. Methods and Materials: Sensitivity to anticancer agents was determined by a modified high-density cell survival or water-soluble tetrazolium salt assay. DTX-induced mtROS generation was determined by MitoSOX redmore » staining. JC-1 staining was used to visualize mitochondrial membrane potential. DTX-induced DNA double-strand breaks were determined by γ-H2AX staining. To obtain mitochondrial DNA-lacking (ρ{sup 0}) cells, the cells were cultured for 3 to 4 weeks in medium containing ethidium bromide. Results: Treatment with DTX increased mtROS in parental cells but not in CRR cells. DTX induced DNA double-strand breaks in parental cells. The mitochondrial membrane potential of CRR cells was lower in CRR cells than in parental cells. Depletion of mtDNA induced DTX resistance in parental cells. Treatment with dimethyl sulfoxide also induced DTX resistance in parental cells. Conclusions: The mitochondrial dysfunction observed in CRR cells contributes to X-ray and DTX cross-resistance. The activation of oxidative phosphorylation in CRR cells may represent an effective approach to overcome radioresistant cancers. In general, the overexpression of β-tubulin or multidrug efflux pumps is thought to be involved in DTX resistance. In the present study, we discovered another DTX resistant mechanism by investigating CRR cells.« less

  9. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  10. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  11. Type 4 cardiorenal syndrome.

    PubMed

    Pinheiro da Silva, Ana Luísa; Vaz da Silva, Manuel Joaquim

    2016-11-01

    The Acute Dialysis Quality Initiative consensus conference proposed a classification of cardiorenal syndrome (CRS), aiming for a better delineation of each subtype. Although the exact pathophysiology of type 4 CRS is not completely understood, the mechanisms involved are probably multifactorial. There is growing evidence that oxidative stress is a major connector in the development and progression of type 4 CRS. Giving its complexity, poor prognosis and increasing incidence, type 4 CRS is becoming a significant public health problem. Patients with chronic kidney disease are particularly predisposed to cardiac dysfunction, due to the high prevalence of traditional cardiovascular risk factors in this population, but the contribution of risk factors specific to chronic kidney disease should also be taken into account. Much remains to be elucidated about type 4 CRS: despite progress over the last decade, there are still significant questions regarding its pathophysiology and there is as yet no specific therapy. A better understanding of the mechanisms involved may provide potential targets for intervention. The present review will provide a brief description of the definition, epidemiology, diagnosis, prognosis, biomarkers and management strategies of type 4 CRS, and the pathophysiological mechanisms and risk factors presumably involved in its development will be particularly highlighted. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    PubMed

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Mechanical exposure among general practice dentists in Sweden and possible implications of rationalisation.

    PubMed

    Jonker, D; Rolander, B; Balogh, I; Sandsjö, L; Ekberg, K; Winkel, J

    2011-10-01

    The present study investigates the dental work in terms of time distribution and mechanical exposure in value-adding work (VAW) and non-VAW. Further rationalisation of dental work would typically involve an increase in the proportion of VAW. Information on mechanical exposure within the classes of VAW and non-VAW may be used to predict possible implications of rationalisation. Sixteen dentists were investigated. Using a data logger, postures and movements were continuously recorded for each subject during the 4 h of work, which included the 45 min of video recording. Time distribution and mechanical exposure for the six different work activities identified were evaluated from the video recordings, using a loss analysis technique. VAW, which comprised 54% of the total working time, generally implied significantly more constrained mechanical exposures as compared with non-VAW. The results suggest that future rationalisation of dental work, involving a reduction of non-VAW, may increase the risk of developing musculoskeletal disorders. Statement of Relevance: The present study illustrates the potential effects of rationalisation on biomechanical exposures for dentists. The results highlight the significance of integrating ergonomic issues into the rationalisation process in dentistry in addition to ordinary workstation and tool design improvements performed by ergonomists.

  14. Epigenetic regulation of inflammation in stroke

    PubMed Central

    Ng, Gavin Yong-Quan; Yun-An, Lim; Sobey, Christopher G.; Dheen, Thameem; Fann, David Yang-Wei; Arumugam, Thiruma V.

    2018-01-01

    Despite extensive research, treatments for clinical stroke are still limited only to the administration of tissue plasminogen activator and the recent introduction of mechanical thrombectomy, which can be used in only a limited proportion of patients due to time constraints. A plethora of inflammatory events occur during stroke, arising in part due to the body’s immune response to brain injury. Neuroinflammation contributes significantly to neuronal cell death and the development of functional impairment and death in stroke patients. Therefore, elucidating the molecular and cellular mechanisms underlying inflammatory damage following stroke injury will be essential for the development of useful therapies. Research findings increasingly point to the likelihood that epigenetic mechanisms play a role in the pathophysiology of stroke. Epigenetics involves the differential regulation of gene expression, including those involved in brain inflammation and remodelling after stroke. Hence, it is conceivable that epigenetic mechanisms may contribute to differential interindividual vulnerability and injury responses to cerebral ischaemia. In this review, we summarize recent findings on the emerging role of epigenetics in the regulation of neuroinflammation in stroke. We also discuss potential epigenetic targets that may be assessed for the development of stroke therapies. PMID:29774056

  15. Genetics of addictive behavior: the example of nicotine dependence.

    PubMed

    Gorwood, Philip; Le Strat, Yann; Ramoz, Nicolas

    2017-09-01

    The majority of addictive disorders have a significant heritability-roughly around 50%. Surprisingly, the most convincing association (a nicotinic acetylcholine receptor CHRNA5-A3-B4 gene cluster in nicotine dependence), with a unique attributable risk of 14%, was detected through a genome-wide association study (GWAS) on lung cancer, although lung cancer has a low heritability. We propose some explanations of this finding, potentially helping to understand how a GWAS strategy can be successful. Many endophenotypes were also assessed as potentially modulating the effect of nicotine, indirectly facilitating the development of nicotine dependence. Challenging the involved phenotype led to the demonstration that other potentially overlapping disorders, such as schizophrenia and Parkinson disease, could also be involved, and further modulated by parent monitoring or the existence of a smoking partner. Such a complex mechanism of action is compatible with a gene-environment interaction, most clearly explained by epigenetic factors, especially as such factors were shown to be, at least partly, genetically driven.

  16. Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells.

    PubMed

    Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie

    2005-07-01

    Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.

  17. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.

    PubMed

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Foster, Neil

    2014-01-01

    The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed.

  18. [Effects of optical radiation in ocular structures].

    PubMed

    Pascu, Ruxandra Angela

    2007-01-01

    The eye and the skin are organs that are particularly vulnerable to external aggression, such as electromagnetic radiation- meaning ultraviolet radiation, visible radiation (especially blue light) and infrared radiation. The three mechanisms involved are: the photo-thermic mechanism, the photochemical mechanism and the photomechanical mechanism. The effects of such exposures can be either temporary or permanent, if inadequate protection occurs. Today, there are enough data so that special protection measures can be taken concerning the potential damage of optical radiation. Among those, we mention artificial implants or sun glasses containing UV filters or surgical gestures that can be taken to protect the eye against the surgical light. Ultimately, the effects of optical radiation upon the eye are related to being well informed about the risks of uncontrolled exposure and the protection measures against it.

  19. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-01

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  20. Acupuncture, psyche and the placebo response.

    PubMed

    Enck, Paul; Klosterhalfen, Sibylle; Zipfel, Stephan

    2010-10-28

    With growing use of acupuncture treatment in various clinical conditions, the question has been posed whether the reported effects reflect specific mechanisms of acupuncture or whether they represent placebo responses, as they often are similar in effect size and resemble similarities to placebo analgesia and its mechanisms. We reviewed the available literature for different placebos (sham procedures) used to control the acupuncture effects, for moderators and potential biases in respective clinical trials, and for central and peripheral mechanisms involved that would allow differentiation of placebo effects from acupuncture and sham acupuncture effects. While the evidence is still limited, it seems that biological differences exist between a placebo response, e.g. in placebo analgesia, and analgesic response during acupunture that does not occur with sham acupuncture. It seems advisable that clinical trials should include potential biomarkers of acupuncture, e.g. measures of the autonomic nervous system function to verify that acupuncture and sham acupuncture are different despite similar clinical effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions

    NASA Astrophysics Data System (ADS)

    Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.

    2016-10-01

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  2. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA).

    PubMed

    Roth, Christian L; Sathyanarayana, Sheela

    2012-06-01

    Signaling peptides produced in peripheral tissues such as gut, adipose tissue, and pancreas communicate with brain centers, such as hypothalamus and hindbrain to manage energy homeostasis. These regulatory mechanisms of energy intake and storage have evolved during long periods of hunger in the evolution of man to protect the species from extinction. It is now clear that these circuitries are influenced by prenatal and postnatal environmental factors including endocrine disruptive chemicals. Hypothalamic appetite regulatory systems develop and mature in utero and early infancy, and involve signaling pathways that are important also for the regulation of puberty onset. Recent studies in humans and animals have shown that metabolic pathways involved in regulation of growth, body weight gain and sexual maturation are largely affected by epigenetic programming that can impact both current and future generations. In particular, intrauterine and early infantile developmental phases of high plasticity are susceptible to factors that affect metabolic programming that therefore, affect metabolic function throughout life. In children born small for gestational age, poor nutritional conditions during gestation can modify metabolic systems to adapt to expectations of chronic undernutrition. These children are potentially poorly equipped to cope with energy-dense diets and are possibly programmed to store as much energy as possible, leading to later obesity, metabolic syndrome, disturbed regulation of normal puberty and early onset of cardiovascular disease. Most cases of disturbed energy balance are likely a result of a combination of genetics, epigenetics and environment. This review will discuss potential mechanisms linking intrauterine growth retardation with changes in growth, energy homeostasis and sexual maturation.

  3. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions.

    PubMed

    Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J

    2016-10-07

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  4. Relaxant effect of Lippia origanoides essential oil in guinea-pig trachea smooth muscle involves potassium channels and soluble guanylyl cyclase.

    PubMed

    Menezes, Pedro Modesto Nascimento; Brito, Mariana Coelho; de Paiva, Gabriela Olinda; Dos Santos, Carine Oliveira; de Oliveira, Lenaldo Muniz; de Araújo Ribeiro, Luciano Augusto; de Lima, Julianeli Tolentino; Lucchese, Angélica Maria; Silva, Fabrício Souza

    2018-06-28

    Lippia origanoides H.B.K. is an aromatic species used in folk medicine to treat respiratory diseases, including asthma. The aim of this work was to evaluate the relaxing potential and mechanism of action of the L. origanoides (LOO) essential oil in isolated guinea-pig trachea. Leaves from L. origanoides were collected at experimental fields under organic cultivation, at the Forest Garden of Universidade Estadual de Feira de Santana. Essential oil was extracted by hydrodistillation, analyzed by GC/FID and GC/MS and the volatile constituents were identified. Spasmolytic activity and relaxant mechanism of LOO were assayed in isolated guinea-pig trachea contracted with histamine, carbachol or hyperpolarizing KCl. Chemical analysis revealed the presence of carvacrol (53.89%) as major constituent. LOO relaxed isolated guinea-pig trachea pre-contracted with KCl 60 mM [EC 50 = 30.02 μg/mL], histamine 1 µM [EC 50 = 9.28 μg/mL] or carbachol 1 µM [EC 50 = 51.80 μg/mL]. The pre-incubation of glibenclamide, CsCl, propranolol, indomethacin, hexamethonium, aminophylline or L-NAME in histamine-induced contractions did not alter significantly the relaxant effect of LOO. However, the presence of 4-aminopyridine, tetraethylammonium or methylene blue reduced LOO effect, while the presence of dexamethasone or atropine potentialized the LOO relaxant effect. LOO pre-incubation inhibited carbachol-evoked contractions, with this effect potentialized in the presence of sodium nitroprusside and blocked in the presence of ODQ. The relaxant mechanism of LOO on the tracheal smooth muscle possibly involves stimulating of soluble guanylyl cyclase with consequent activation of the voltage-gated and Ca 2+ -activated K + channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations.

    PubMed

    Yang, Longhua; Skjevik, Åge A; Han Du, Wen-Ge; Noodleman, Louis; Walker, Ross C; Götz, Andreas W

    2016-09-01

    Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A connectionist modeling study of the neural mechanisms underlying pain's ability to reorient attention.

    PubMed

    Dowman, Robert; Ritz, Benjamin; Fowler, Kathleen

    2016-08-01

    Connectionist modeling was used to investigate the brain mechanisms responsible for pain's ability to shift attention away from another stimulus modality and toward itself. Different connectionist model architectures were used to simulate the different possible brain mechanisms underlying this attentional bias, where nodes in the model simulated the brain areas thought to mediate the attentional bias, and the connections between the nodes simulated the interactions between the brain areas. Mathematical optimization techniques were used to find the model parameters, such as connection strengths, that produced the best quantitative fits of reaction time and event-related potential data obtained in our previous work. Of the several architectures tested, two produced excellent quantitative fits of the experimental data. One involved an unexpected pain stimulus activating somatic threat detectors in the dorsal posterior insula. This threat detector activity was monitored by the medial prefrontal cortex, which in turn evoked a phasic response in the locus coeruleus. The locus coeruleus phasic response resulted in a facilitation of the cortical areas involved in decision and response processes time-locked to the painful stimulus. The second architecture involved the presence of pain causing an increase in general arousal. The increase in arousal was mediated by locus coeruleus tonic activity, which facilitated responses in the cortical areas mediating the sensory, decision, and response processes involved in the task. These two neural network architectures generated competing predictions that can be tested in future studies.

  7. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds

    PubMed Central

    Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang

    2017-01-01

    Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development. PMID:28771592

  8. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds.

    PubMed

    Zhu, Chunhong; Song, Weitao; Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang

    2017-01-01

    Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.

  9. [Medical certification in workers involved in logging and wood-processing].

    PubMed

    Romankow, Jacek

    2007-01-01

    Activities involved in forestry and woodworking industry are associated with workers being exposed to numerous environmental and technology-related factors that are detrimental to their health. Such hazards include working in changeable climatic conditions, in the vicinity of heavy equipment, exposure to noise, chainsaw vibrations, enforced body positioning, hard physical work, the effect of exhaust gases, potential effects of biological factors, including epizootic diseases. Wood processing involves performing mechanical activities employing tools and machines, as well as processes utilizing various chemical substances. Forestry and woodworking industry workers may deal both with timber and with wood products. In medical certification, the following issues are of significance: work in the vicinity of rotational elements, noise, effects of chemicals or biological factors, including carcinogenic substances. For this reason, the procedures involved in medical examinations of such workers are complex.

  10. Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules

    PubMed Central

    Zaytsev, Anatoly V.; Grishchuk, Ekaterina L.

    2015-01-01

    Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore–MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore–MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10−1–10−2 per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms. PMID:26424798

  11. Antinociceptive activity of Riparin II from Aniba riparia: Further elucidation of the possible mechanisms.

    PubMed

    Rodrigues de Carvalho, Alyne Mara; Vasconcelos, Leonardo Freire; Moura Rocha, Nayrton Flávio; Vasconcelos Rios, Emiliano Ricardo; Dias, Marília Leite; Maria de França Fonteles, Marta; Gaspar, Danielle Macêdo; Barbosa Filho, José Maria; Chavez Gutierrez, Stanley Juan; Florenço de Sousa, Francisca Cléa

    2018-05-01

    Riparin II (RipII) has an anti-inflammatory activity potentially due its ability to decrease TNF-α and IL-1β production and its histamine antagonism. The objective of this study was to evaluate the role of RipII in the pain process and the possible antinociceptive mechanisms involved, using classic models of nociception. Male Swiss mice were used in the assays. Determinate the acute toxicity according to the OECD 425 test guideline. The models used were the acetic acid-, formalin-, hot plate and glutamate-induced nociception. For evaluation of antinociceptive effect, the involvement of TRPV1, TRPA1, TRPM8, ASICS, Bradykinin, PKC and PKA were performed using the paw licking using agonists. The acute toxicity study did not detect any clinical signs or changes in behavior or mortality. RipII, administered orally (25 and 50 mg/kg) caused a reduction of nociception induced by acetic acid, formalin (on the second phase) and glutamate. In the investigation of antinociceptive mechanism, we used capsaicin (2.2 μg/paw), cinnamaldehyde (10 nmol/paw), menthol (1.2 μmol/paw), ASICS (2% acetic acid, pH 1.98) and bradykinin (10 μg/paw). The results showed that TRPV1, TRPA1, TRPM8, ASICS and bradykinin play a role in the antinociceptive effect of RipII. The results also showed that PKA is involved too. These data demonstrate that RipII has a low or not toxicity and produced an important antinociceptive effect through mechanisms that probably involve an interaction, at least in part, TRPV1, TRPA1, TRPM8, ASICS, bradykinin and PKA participate in the RipII's antinociceptive effect. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Heart failure gene therapy: closer to reality. Professor Walter Koch speaks to Christine Forder, commissioning editor.

    PubMed

    Koch, Walter J

    2009-03-01

    Professor Walter Koch is currently a Director at the Center for Translational Medicine and Vice Chairman for Research in the Department of Medicine at Jefferson Medical College, Thomas Jefferson University, PA, USA. Professor Koch started his career as a Research Associate at the Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA. His work is based around heart failure and the molecular mechanisms involved in the regulation of signaling through cardiovascular adrenergic receptors, the study of G-proteincoupled receptor function and signaling, and heart failure gene therapy. His current studies are investigating into the use of novel viral-mediated myocardial gene delivery for use in congestive heart failure, with an aim at developing reproducible surgical means of gene therapy. He is also involved in research to understand novel molecular signaling mechanisms responsible for reversible cardiac injury and potential repair.

  13. Prenatal programing: at the intersection of maternal stress and immune activation.

    PubMed

    Howerton, Christopher L; Bale, Tracy L

    2012-08-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Prenatal programing: At the intersection of maternal stress and immune activation

    PubMed Central

    Howerton, Christopher L.; Bale, Tracy L.

    2013-01-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. PMID:22465455

  15. Clinical and Biochemical Manifestations of Depression: Relation to the Neurobiology of Stress

    PubMed Central

    Gold, Phillip W.; Machado-Vieira, Rodrigo; Pavlatou, Maria G.

    2015-01-01

    Major depressive disorder (MDD) is a chronic, recurrent, and severe psychiatric disorder with high mortality and medical comorbidities. Stress-related pathways have been directly involved in the pathophysiology and treatment of MDD. The present paper provides an overview on the stress system as a model to understand key pathophysiological paradigms in MDD. These mechanisms involve behavioral, cognitive, and systemic manifestations and are also associated with the mechanisms of action of effective antidepressants. Aspects such as depression subtypes, inflammation, insulin resistance, oxidative stress, and prothrombotic states in critical brain circuits and periphery are critically appraised. Finally, new strategies for approaching treatment-resistant major depression and potential adverse effects associated with this complex and intricate network are highlighted. The authors used PubMed as the database for this review. Each author extracted relevant data and assessed the methodological quality of each study. PMID:25878903

  16. Dystonia.

    PubMed

    De Pablo-Fernandez, Eduardo; Warner, Thomas T

    2017-09-01

    Dystonia is a clinically heterogeneous group of hyperkinetic movement disorders. Recent advances have provided a better understanding of these conditions with significant clinical impact. Peer reviewed journals and reviews. PubMed.gov. A recent consensus classification, including the assessment of phenomenology and identification of the dystonia syndromes, has provided a helpful tool for the clinical assessment. New forms of monogenic dystonia have been recently identified. Despite recent advances in the understanding of dystonia, treatment remains symptomatic in most patients. Recent advances in genetics have provided a better understanding of the potential pathogenic mechanisms involved in dystonia. Deep brain stimulation has shown to improve focal and combined forms of dystonia and its indications are constantly expanding. Growing understanding of the disease mechanisms involved will allow the development of targeted and disease-modifying therapies in the future. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. [Chronic stress and epigenetics. Relation between academic sciences and theology].

    PubMed

    Simon, Kornél

    2012-04-08

    The author gives a short account on the principles of Selye's stress theory, and discusses similarities and dissimilarities of acute and chronic stress. Both the external, and the internal environment, as well as the psycho-mental status are involved in the notion of the environment. Basic principles of epigenetics are reviewed: interaction between environment and genes, neuroendocrine and enzymatic mechanisms involved in silencing and activation of genes, notions of phenotypic plasticity, and epigenetic reprogramming are discussed. Epigenetic mechanisms of interrelation between pathological clinical states (diseases) and the characteristic phenotypes, causative role of psycho-mental status in evoking pathological somatic alterations, and the potential therapeutic consequences are briefly discussed. The etiological role of chronic, civilization stress in producing the worldwide increment of cardiovascular morbidity is cited, argumentation and criticism of the current therapeutical practice is discussed. The author concludes that recent advances in epigenetic knowledge seem to solve the controversy between the academic and theological sciences.

  18. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  19. Food Antioxidants: Chemical Insights at the Molecular Level.

    PubMed

    Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino

    2016-01-01

    In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.

  20. Intravenous Immunoglobulin in the Management of Lupus Nephritis

    PubMed Central

    Wenderfer, Scott E.; Thacker, Trisha

    2012-01-01

    The occurrence of nephritis in patients with systemic lupus erythematosus is associated with increased morbidity and mortality. The pathogenesis of lupus nephritis is complex, involving innate and adaptive cellular and humoral immune responses. Autoantibodies in particular have been shown to be critical in the initiation and progression of renal injury, via interactions with both Fc-receptors and complement. One approach in the management of patients with lupus nephritis has been the use of intravenous immunoglobulin. This therapy has shown benefit in the setting of many forms of autoantibody-mediated injury; however, the mechanisms of efficacy are not fully understood. In this paper, the data supporting the use of immunoglobulin therapy in lupus nephritis will be evaluated. In addition, the potential mechanisms of action will be discussed with respect to the known involvement of complement and Fc-receptors in the kidney parenchyma. Results are provocative and warrant additional clinical trials. PMID:23056926

  1. Head trauma in sport and neurodegenerative disease: an issue whose time has come?

    PubMed

    Pearce, Neil; Gallo, Valentina; McElvenny, Damien

    2015-03-01

    A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.

  3. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Wu, Xinwei; Xia, Xingzhou; Xiao, Xinglong; Wu, Hui

    2017-10-01

    Cronobacter sakazakii is a foodborne pathogen throughout the world and survives extremely desiccation stress. However, the molecular basis involved in desiccation resistance of C. sakazakii is still unknown. In this study, the potential desiccation resistance factors of C. sakazakii ATCC 29544 were determined using iTRAQ-based quantitative proteomic analysis. A total of 2775 proteins were identified by iTRAQ, of which 233 showed a different protein expression between control group and desiccation stress group. Among these 233 proteins identified as desiccation resistance proteins, there were 146 proteins downregulated and 87 proteins upregulated. According to the comprehensive proteome coverage analysis, C. sakazakii increased its resistance to desiccation by reducing the gene involved with unnecessary survival functions such as those used for virulence, adhesion, invasion and flagella assembly, while increasing gene expression of genes used in withstanding osmotic stress such as those genes involved in trehalose and betaine uptake. However, the mechanism involved in amino acid metabolism in an osmotic stress response, including the producing of γ-aminobutyric acid in C. sakazakii is still uncertain. This is the first report to determine the potential desiccation resistant factors of C. sakazakii at the proteomic levels. Copyright © 2017. Published by Elsevier Ltd.

  4. Disturbances of stem circumnutations evoked by wound-induced variation potentials in Helianthus annuus L.

    PubMed

    Stolarz, Maria; Dziubińska, Halina; Krupa, Maciej; Buda, Agnieszka; Trebacz, Kazimierz; Zawadzki, Tadeusz

    2003-01-01

    The relationship between evoked electrical activity and stem movements in three-week old sunflowers was demonstrated. Electrical potential changes (recorded by Ag/AgCl extracellular electrodes) and time-lapse images (from a top view camera) were recorded and analyzed. A heat stimulus applied to the tip of one of the second pair of leaves evoked a variation potential, transmitted basipetally along one side of the stem. After stimulation, disturbances of circumnutations occurred. They included: changes in the period, disorders in the elliptical shape, and, in some cases, reversion of direction (of movement). We suggest that asymmetrically propagated variation potential induces asymmetric stem shrinking and bending, which strongly disturbs circumnutations. Our results confirm the involvement of electrical potential changes in the mechanism of stem nutations.

  5. Metallurgy: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A technology utilization program is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Discussion is restricted to the effects of hydrogen on a variety of metal alloys, and the mechanical properties of some recently developed alloys. Hydrogen at both low and high pressure is shown to have adverse effects on alloys such as ultrahigh-strength steels, irradiated steels, columbium, inconel alloys, titanium alloys, and certain stainless steels. The mechanical and physical properties of a wide range of alloys, their performance at elevated temperatures, and some of the processes involved in their development are also considered.

  6. Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia

    PubMed Central

    Matsumoto, Rae R.; Seminerio, Michael J.; Turner, Ryan C.; Robson, Matthew J.; Nguyen, Linda; Miller, Diane B.; O’Callaghan, James P.

    2015-01-01

    Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine. PMID:24836729

  7. On the Free Energy That Drove Primordial Anabolism

    PubMed Central

    Kaufmann, Michael

    2009-01-01

    A key problem in understanding the origin of life is to explain the mechanism(s) that led to the spontaneous assembly of molecular building blocks that ultimately resulted in the appearance of macromolecular structures as they are known in modern biochemistry today. An indispensable thermodynamic prerequisite for such a primordial anabolism is the mechanistic coupling to processes that supplied the free energy required. Here I review different sources of free energy and discuss the potential of each form having been involved in the very first anabolic reactions that were fundamental to increase molecular complexity and thus were essential for life. PMID:19468343

  8. αCGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors

    PubMed Central

    Devesa, Isabel; Ferrándiz-Huertas, Clotilde; Mathivanan, Sakthikumar; Wolf, Christoph; Luján, Rafael; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2014-01-01

    Proalgesic sensitization of peripheral nociceptors in painful syndromes is a complex molecular process poorly understood that involves mobilization of thermosensory receptors to the neuronal surface. However, whether recruitment of vesicular thermoTRP channels is a general mechanism underlying sensitization of all nociceptor types or is subtype-specific remains controversial. We report that sensitization-induced Ca2+-dependent exocytotic insertion of transient receptor potential vanilloid 1 (TRPV1) receptors to the neuronal plasma membrane is a mechanism specifically used by peptidergic nociceptors to potentiate their excitability. Notably, we found that TRPV1 is present in large dense-core vesicles (LDCVs) that were mobilized to the neuronal surface in response to a sensitizing insult. Deletion or silencing of calcitonin-gene–related peptide alpha (αCGRP) gene expression drastically reduced proalgesic TRPV1 potentiation in peptidergic nociceptors by abrogating its Ca2+-dependent exocytotic recruitment. These findings uncover a context-dependent molecular mechanism of TRPV1 algesic sensitization and a previously unrecognized role of αCGRP in LDCV mobilization in peptidergic nociceptors. Furthermore, these results imply that concurrent secretion of neuropeptides and channels in peptidergic C-type nociceptors facilitates a rapid modulation of pain signaling. PMID:25489075

  9. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.

  11. Selective inhibition of extracellular oxidants liberated from human neutrophils--A new mechanism potentially involved in the anti-inflammatory activity of hydroxychloroquine.

    PubMed

    Jančinová, Viera; Pažoureková, Silvia; Lucová, Marianna; Perečko, Tomáš; Mihalová, Danica; Bauerová, Katarína; Nosáľ, Radomír; Drábiková, Katarína

    2015-09-01

    Hydroxychloroquine is used in the therapy of rheumatoid arthritis or lupus erythematosus. Although these diseases are often accompanied by activation of neutrophils, there are still few data relating to the impact of hydroxychloroquine on these cells. We investigated the effect of orally administered hydroxychloroquine on neutrophil oxidative burst in rats with adjuvant arthritis. In human neutrophils, extra- and intracellular formation of oxidants, mobilisation of intracellular calcium and the phosphorylation of proteins regulating NADPH oxidase assembly were analysed. Administration of hydroxychloroquine decreased the concentration of oxidants in blood of arthritic rats. The inhibition was comparable with the reference drug methotrexate, yet it was not accompanied by a reduction in neutrophil count. When both drugs were co-applied, the effect became more pronounced. In isolated human neutrophils, treatment with hydroxychloroquine resulted in reduced mobilisation of intracellular calcium, diminished concentration of external oxidants and in decreased phosphorylation of Ca(2+)-dependent protein kinase C isoforms PKCα and PKCβII, which regulate activation of NADPH oxidase on plasma membrane. On the other hand, no reduction was observed in intracellular oxidants or in the phosphorylation of p40(phox) and PKCδ, two proteins directing the oxidase assembly to intracellular membranes. Hydroxychloroquine reduced neutrophil-derived oxidants potentially involved in tissue damage and protected those capable to suppress inflammation. The observed effects may represent a new mechanism involved in the anti-inflammatory activity of this drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress

    PubMed Central

    Yanitch, Aymeric; Brereton, Nicholas J. B.; Gonzalez, Emmanuel; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2017-01-01

    Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production. PMID:28702037

  13. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less

  14. Update on the mechanism of action of antiepileptic drugs.

    PubMed

    Meldrum, B S

    1996-01-01

    Novel antiepileptic drugs (AEDs) are thought to act on voltage-sensitive ion channels, on inhibitory neurotransmission or on excitatory neurotransmission. Two successful examples of rational AED design that potentiate GABA-mediated inhibition are vigabatrin (VGB) by irreversible inhibition of GABA-transaminase, and tiagabine (TGB) by blocking GABA uptake. Lamotrigine (LTG) prolongs inactivation of voltage-dependent sodium channels. The anticonvulsant action of remacemide (RCM) is probably largely due to blockade of NMDA receptors and prolonged inactivation of sodium channels induced by its desglycinated metabolite. Felbamate (FBM) apparently blocks NMDA receptors, potentiates GABA-mediated responses, blocks L-type calcium channels, and possibly also prolongs sodium channel inactivation. Similarly, topiramate (TPM) has multiple probable sites of action, including sodium channels, GABA receptors, and glutamate (AMPA) receptors. Gabapentin (GBP) apparently has a completely novel type of action, probably involving potentiation of GABA-mediated inhibition and possibly also inactivation of sodium channels. The therapeutic advantages of the novel AEDs are as yet only partially explained by our present understanding of their mechanisms of action.

  15. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate.

    PubMed

    Lin, Wen-Ying; Sohma, Yoshiro; Hwang, Tzyh-Chang

    2016-09-01

    Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB's effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug-drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate

    PubMed Central

    Lin, Wen-Ying; Sohma, Yoshiro

    2016-01-01

    Cystic fibrosis (CF) is caused by loss-of-function mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a phosphorylation-activated but ATP-gated chloride channel. Previous studies suggested that VX-770 [ivacaftor, N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide], a CFTR potentiator now used in clinics, increases the open probability of CFTR by shifting the gating conformational changes to favor the open channel configuration. Recently the chloride channel blocker and CFTR potentiator 5-nitro-2-(3-phenylpropylamino) benzoate (NPPB) has been reported to enhance CFTR activity by a mechanism that exploits the ATP hydrolysis-driven, nonequilibrium gating mechanism unique to CFTR. Surprisingly however, NPPB increased the activity of nonhydrolytic G551D-CFTR, the third most common disease-associated mutation. Here, we further investigated the mechanism of NPPB’s effects on CFTR gating by assessing its interaction with well-studied VX-770. Interestingly, once G551D-CFTR was maximally potentiated by VX-770, NPPB further increased its activity. However, quantitative analysis of this drug–drug interaction suggests that this pharmacologic synergism is not due to independent actions of NPPB and VX-770 on CFTR gating; instead, our data support a dependent mechanism involving two distinct binding sites. This latter idea is further supported by the observation that the locked-open time of a hydrolysis-deficient mutant K1250A was shortened by NPPB but prolonged by VX-770. In addition, the effectiveness of NPPB, but not of VX-770, was greatly diminished in a mutant whose second nucleotide-binding domain was completely removed. Interpreting these results under the framework of current understanding of CFTR gating not only reveals insights into the mechanism of action for different CFTR potentiators but also brings us one step forward to a more complete schematic for CFTR gating. PMID:27413118

  17. Translating clinical science into effective therapies.

    PubMed

    Thase, Michael E

    2014-05-01

    Identifying a patient with treatment-resistant depression involves ensuring that at least 2 evidence-based antidepressant trials from two different pharmacologic classes have been undertaken and determining their impact on patients' symptoms, functioning, quality-of-life and social relationships as outcomes. When assessing depressive symptoms throughout the course of treatment, clinical judgment should be supplemented by using standardized tools such as the 9-item Patient Health Questionnaire (PHQ-9) and the Quick Inventory of Depressive Symptomatology (QIDS). Adjunctive treatment strategies preserve the benefits of first-line antidepressants in partial responders and potentially enhance the initial antidepressant's effect through complementary mechanisms of action. Novel "multimodal" pharmacotherapies with diverse potentially beneficial mechanisms of action are in development, which have varying degrees of activity across multiple monoamine systems including those regulated by serotonin, dopamine, and glutamate. © Copyright 2014 Physicians Postgraduate Press, Inc.

  18. Quantum mechanics on phase space and the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Vianna, J. D. M.

    2017-04-01

    Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.

  19. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

    DOE PAGES

    Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric; ...

    2016-08-15

    How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less

  20. Microhydraulic transducer technology for actuation and power generation

    NASA Astrophysics Data System (ADS)

    Hagood, Nesbitt W.; Roberts, David C.; Saggere, Laxminarayana; Breuer, Kenneth S.; Chen, Kuo-Shen; Carretero, Jorge A.; Li, Hanqing; Mlcak, Richard; Pulitzer, Seward W.; Schmidt, Martin A.; Spearing, S. Mark; Su, Yu-Hsuan

    2000-06-01

    The paper introduces a novel transducer technology, called the solid-state micro-hydraulic transducer, currently under development at MIT. The new technology is enabled through integration of micromachining technology, piezoelectrics, and microhydraulic concepts. These micro-hydraulic transducers are capable of bi-directional electromechanical energy conversion, i.e., they can operate as both an actuator that supplies high mechanical force in response to electrical input and an energy generator that transduces electrical energy from mechanical energy in the environment. These transducers are capable of transducing energy at very high specific power output in the order of 1 kW/kg, and thus, they have the potential to enable many novel applications. The concept, the design, and the potential applications of the transducers are presented. Present efforts towards the development of these transducers, and the challenges involved therein, are also discussed.

  1. Aging and bone loss: new insights for the clinician

    PubMed Central

    Demontiero, Oddom; Vidal, Christopher

    2012-01-01

    It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone. PMID:22870496

  2. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric

    How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less

  3. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843.

    PubMed

    Shao, Jihai; He, Yaxian; Li, Fan; Zhang, Huiling; Chen, Anwei; Luo, Si; Gu, Ji-Dong

    2016-01-01

    Oleamide, a fatty acid derivative, shows inhibitory effect against the bloom-forming cyanobacterium Microcystis aeruginosa. The EC50 of oleamide on the growth of M. aeruginosa NIES-843 was 8.60 ± 1.20 mg/L. In order to elucidate the possible mechanism of toxicity of oleamide against M. aeruginosa, chlorophyll fluorescence transient, cellular ultrastructure, fatty acids composition and the transcription of the mcyB gene involved in microcystins synthesis were studied. The results of chlorophyll fluorescence transient showed that oleamide could destruct the electron accepting side of the photosystem II of M. aeruginosa NIES-843. Cellular ultrastructure examination indicated that the destruction of fatty acid constituents, the distortion of thylakoid membrane and the loss of integrity of cell membrane were associated with oleamide treatment and concentration. The damage of cellular membrane increased the release of microcystins from intact cells into the medium. Results presented in this study provide new information on the possible mechanisms involved and potential utilization of oleamide as an algicide in cyanobacterial bloom control.

  4. Targeting Metastasis with Snake Toxins: Molecular Mechanisms

    PubMed Central

    Urra, Félix A.

    2017-01-01

    Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network. PMID:29189742

  5. Mineralogical signatures of stone formation mechanisms.

    PubMed

    Gower, Laurie B; Amos, Fairland F; Khan, Saeed R

    2010-08-01

    The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical 'signatures' suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall's plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and 'cements', and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.

  6. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  7. Lactobacillus acidophilus—Rutin Interplay Investigated by Proteomics

    PubMed Central

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus. PMID:26544973

  8. Lactobacillus acidophilus-Rutin Interplay Investigated by Proteomics.

    PubMed

    Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna

    2015-01-01

    Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus.

  9. The potential mechanism of Bursal-derived BPP-II on the antibody production and avian pre-B cell.

    PubMed

    Feng, Xiuli; Cao, Ruibing; Zhou, Bin; Liu, Qingtao; Liu, Ke; Liu, Xiaodong; Zhang, Yuanpeng; Gu, Jinyan; Miao, Denian; Chen, Puyan

    2013-03-01

    The bursa of Fabricius is critical for the normal development of the B lymphocytes responsible for antibody production. However, the mechanism of the bursal-derived bioactive factor on B cell development is little reported. In this paper, chicks were immunized with BPP-II and AIV vaccine or AIV antigen, and antibody and IL-4 production were detected. The results showed that BPP-II played strongly inducing roles on the humoral immune responses. To investigate the gene expression at transcriptional level, avian pre-B lymphocyte DT40 cells were treated with BPP-II, and were analyzed with the gene microarray. The results proved that BPP-II treatment regulated 11 pathways, in which homologous recombination is a vital mechanism which is involved in antibody Ig gene conversion and diversification during B cell development. These results suggested Bursal-derived biological active factor BPP-II might be involved in the antibody production processes and B cell development, which is vital to the humoral central immune organ, the bursa of Fabricius. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    PubMed

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  11. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    PubMed

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan

    2008-03-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  13. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum.

    PubMed

    Block, I; Briegleb, W

    1989-01-01

    Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the 0g-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to 0g, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca(++)-storage. So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand--this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.

  14. Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Yan; Zhao, Guiye; Li, Yushun; Mo, Ning; Zhang, Jie; Liang, Yan

    2017-01-01

    Sex differentiation of flower buds is an important developmental process that directly affects fruit yield of cucumber ( Cucumis sativus L.). Plant hormones, such as gibberellins (GAs) and ethylene can promote development of male and female flowers, respectively, however, the regulatory mechanisms of GA-induced male flower formation and potential involvement of ethylene in this process still remain unknown. In this study, to unravel the genes and gene networks involved in GA-regulated cucumber sexual development, we performed high throughout RNA-Seq analyses that compared the transcriptomes of shoot tips between GA 3 treated and untreated gynoecious cucumber plants. Results showed that GA 3 application markedly induced male flowers but decreased ethylene production in shoot tips. Furthermore, the transcript levels of M ( CsACS2 ) gene, ethylene receptor CsETR1 and some ethylene-responsive transcription factors were dramatically changed after GA 3 treatment, suggesting a potential involvement of ethylene in GA-regulated sex expression of cucumber. Interestingly, GA 3 down-regulated transcript of a C-class floral homeotic gene, CAG2 , indicating that GA may also influence cucumber sex determination through an ethylene-independent process. These results suggest a novel model for hormone-mediated sex differentiation and provide a theoretical basis for further dissection of the regulatory mechanism of male flower formation in cucumber. Statement: We reveal that GA can regulate sex expression of cucumber via an ethylene-dependent manner, and the M ( CsACS2 ), CsETR1 , and ERFs are probably involved in this process. Moreover, CAG2 , a C-class floral homeotic gene, may also participate in GA-modulated cucumber sex determination, but this pathway is ethylene-independent.

  15. A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva.

    PubMed

    Weinstein, Nathan; Ortiz-Gutiérrez, Elizabeth; Muñoz, Stalin; Rosenblueth, David A; Álvarez-Buylla, Elena R; Mendoza, Luis

    2015-03-13

    There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.

  16. Redox sensing: Orthogonal control in cell cycle and apoptosis signaling

    PubMed Central

    Jones, Dean P.

    2010-01-01

    Living systems have three major types of cell signaling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion gating mechanisms. Development of integrated systems biology descriptions of cell signaling require conceptual models incorporating all three. Recent advances in redox biology show that thiol/disulfide redox systems are regulated under dynamic, non-equilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials among subcellular compartments. The present article uses these observations as a basis to distinguish “redox-sensing” mechanisms, which are more global biologic redox control mechanisms, from “redox signaling”, which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signaling use sulfur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signaling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion gating and redox-signaling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signaling proteins. Effects mediated through Cys residues not directly involved in signaling means redox-sensing control can be orthogonal to the signaling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signaling mechanisms. Recent findings that thiol/disulfide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression. PMID:20964735

  17. An Evaluative Review of Hemispheric Learning Potential

    DTIC Science & Technology

    1985-10-01

    suggests that the name response (Aa) involves different mechanisms than the physically identical match (AA) (Posner & Mitchell, 1967). Furthermore, the...probably not Important In tasks employing suprathreshold stimulation . Benton and his colleagues used an electromechanical device to stimulate the...back of the hand. Three points lying In a straight line were stimulated In quick succession, and the subject’s task was to indicate from among four

  18. Complete Genome Sequences of Two Bacillus pumilus Strains from Cuatrociénegas, Coahuila, Mexico

    PubMed Central

    Alcaraz, Luis D.; Aguilar-Salinas, Bernardo; Islas, Africa

    2018-01-01

    ABSTRACT We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions. PMID:29700165

  19. A structural equation modelling approach to explore the role of B vitamins and immune markers in lung cancer risk.

    PubMed

    Baltar, Valéria Troncoso; Xun, Wei W; Johansson, Mattias; Ferrari, Pietro; Chuang, Shu-Chun; Relton, Caroline; Ueland, Per Magne; Midttun, Øivind; Slimani, Nadia; Jenab, Mazda; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; Kaaks, Rudolf; Rohrmann, Sabine; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, Bas; Boshuizen, Hendriek; van Gils, Carla H; Onland-Moret, N Charlotte; Agudo, Antonio; Barricarte, Aurelio; Navarro, Carmen; Rodríguez, Laudina; Castaño, José Maria Huerta; Larrañaga, Nerea; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E; Crowe, Francesca; Gallo, Valentina; Norat, Teresa; Krogh, Vittorio; Masala, Giovanna; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Rasmuson, Torgny; Hallmans, Göran; Roswall, Nina; Tjønneland, Anne; Riboli, Elio; Brennan, Paul; Vineis, Paolo

    2013-08-01

    The one-carbon metabolism (OCM) is considered key in maintaining DNA integrity and regulating gene expression, and may be involved in the process of carcinogenesis. Several B-vitamins and amino acids have been implicated in lung cancer risk, via the OCM directly as well as immune system activation. However it is unclear whether these factors act independently or through complex mechanisms. The current study applies structural equations modelling (SEM) to further disentangle the mechanisms involved in lung carcinogenesis. SEM allows simultaneous estimation of linear relations where a variable can be the outcome in one equation and the predictor in another, as well as allowing estimation using latent variables (factors estimated by correlation matrix). A large number of biomarkers have been analysed from 891 lung cancer cases and 1,747 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Four putative mechanisms in the OCM and immunity were investigated in relation to lung cancer risk: methionine-homocysteine metabolism, folate cycle, transsulfuration, and mechanisms involved in inflammation and immune activation, all adjusted for tobacco exposure. The hypothesized SEM model confirmed a direct and protective effect for factors representing methionine-homocysteine metabolism (p = 0.020) and immune activation (p = 0.021), and an indirect protective effect of folate cycle (p = 0.019), after adjustment for tobacco smoking. In conclusion, our results show that in the investigation of the involvement of the OCM, the folate cycle and immune system in lung carcinogenesis, it is important to consider complex pathways (by applying SEM) rather than the effects of single vitamins or nutrients (e.g. using traditional multiple regression). In our study SEM were able to suggest a greater role of the methionine-homocysteine metabolism and immune activation over other potential mechanisms.

  20. Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.).

    PubMed

    Guo, Jinju; Wang, Peng; Cheng, Qing; Sun, Limin; Wang, Hongyu; Wang, Yutong; Kao, Lina; Li, Yanan; Qiu, Tuoyu; Yang, Wencai; Shen, Huolin

    2017-09-25

    Although cytoplasmic male sterility (CMS) is widely used for developing pepper hybrids, its molecular mechanism remains unclear. In this study, we used a high-throughput proteomics method called label-free to compare protein abundance across a pepper CMS line (A-line) and its isogenic maintainer line (B-line). Data are available via ProteomeXchange with identifier PXD006104. Approximately 324 differentially abundant protein species were identified and quantified; among which, 47 were up-accumulated and 140 were down-accumulated in the A-line; additionally, 75 and 62 protein species were specifically accumulated in the A-line and B-line, respectively. Protein species involved in pollen exine formation, pyruvate metabolic processes, the tricarboxylic acid cycle, the mitochondrial electron transport chain, and oxidative stress response were observed to be differentially accumulated between A-line and B-line, suggesting their potential roles in the regulation of pepper pollen abortion. Based on our data, we proposed a potential regulatory network for pepper CMS that unifies these processes. Artificial emasculation is a major obstacle in pepper hybrid breeding for its high labor cost and poor seed purity. While the use of cytoplasmic male sterility (CMS) in hybrid system is seriously frustrated because a long time is needed to cultivate male sterility line and its isogenic restore line. Transgenic technology is an effective and rapid method to obtain male sterility lines and its widely application has very important significance in speeding up breeding process in pepper. Although numerous studies have been conducted to select the genes related to male sterility, the molecular mechanism of cytoplasmic male sterility in pepper remains unknown. In this study, we used the high-throughput proteomic method called "label-free", coupled with liquid chromatography-quadrupole mass spectrometry (LC-MS/MS), to perform a novel comparison of expression profiles in a CMS pepper line and its maintainer line. Based on our results, we proposed a potential regulated protein network involved in pollen development as a novel mechanism of pepper CMS. Copyright © 2017. Published by Elsevier B.V.

  1. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes

    PubMed Central

    Assaha, Dekoum V. M.; Ueda, Akihiro; Saneoka, Hirofumi; Al-Yahyai, Rashid; Yaish, Mahmoud W.

    2017-01-01

    Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity) and post-translational modifications (phosphorylation) account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM) potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1 expression and activity in the stele, and haem oxygenase involvement in stabilizing membrane potential by activating H+-ATPase activity, favorable for K+ uptake through HAK/AKT1, have been shown and are discussed. PMID:28769821

  2. Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome.

    PubMed

    Henderson, William R; Chen, Lu; Amato, Marcelo B P; Brochard, Laurent J

    2017-10-01

    Acute respiratory distress syndrome is a multifactorial lung injury that continues to be associated with high levels of morbidity and mortality. Mechanical ventilation, although lifesaving, is associated with new iatrogenic injury. Current best practice involves the use of small Vt, low plateau and driving pressures, and high levels of positive end-expiratory pressure. Collectively, these interventions are termed "lung-protective ventilation." Recent investigations suggest that individualized measurements of pulmonary mechanical variables rather than population-based ventilation prescriptions may be used to set the ventilator with the potential to improve outcomes beyond those achieved with standard lung protective ventilation. This review outlines the measurement and application of clinically applicable pulmonary mechanical concepts, such as plateau pressures, driving pressure, transpulmonary pressures, stress index, and measurement of strain. In addition, the concept of the "baby lung" and the utility of dynamic in addition to static measures of pulmonary mechanical variables are discussed.

  3. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses

    PubMed Central

    Won, Hyejung; Mah, Won; Kim, Eunjoon

    2013-01-01

    Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment. PMID:23935565

  4. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung.

    PubMed

    Mayo, P; Volpicelli, G; Lerolle, N; Schreiber, A; Doelken, P; Vieillard-Baron, A

    2016-07-01

    On a regular basis, the intensivist encounters the patient who is difficult to wean from mechanical ventilatory support. The causes for failure to wean from mechanical ventilatory support are often multifactorial and involve a complex interplay between cardiac and pulmonary dysfunction. A potential application of point of care ultrasonography relates to its utility in the process of weaning the patient from mechanical ventilatory support. This article reviews some applications of ultrasonography that may be relevant to the process of weaning from mechanical ventilatory support. The authors have divided these applications of ultrasonography into four separate categories: the assessment of cardiac, diaphragmatic, and lung function; and the identification of pleural effusion; which can all be evaluated with ultrasonography during a dynamic process in which the intensivist is uniquely positioned to use ultrasonography at the point of care. Ultrasonography may have useful application during the weaning process from mechanical ventilatory support.

  5. Prevalence and proposed mechanisms of chronic low back pain in baseball: part i

    PubMed Central

    Wasser, Joseph G.; Zaremski, Jason L.; Herman, Daniel C.; Vincent, Heather K.

    2017-01-01

    The prevalence of low back pain (LBP) among active baseball players ranges between 3 and 15%. The execution of baseball-specific manoeuvres, such as pitching or batting, may be related to the onset of LBP. These baseball motions are complex and require appropriate activation of the core musculature to produce a well-timed motion with forces minimized at the extremities. The spine, core and back musculature are involved with acceleration and deceleration of rotational motions. This narrative review synopsizes the available evidence of the prevalence of and mechanical factors underlying LBP in the baseball population. Possible mechanical mechanisms linking baseball play to LBP include aberrant motion, improper timing, high lumbar stress due to mechanical loading and lumbopelvic strength deficits. Potential clinical implications relating to these possible mechanical mechanisms will also be highlighted. The state of the evidence suggests that there are deficits in understanding the role of baseball motion and playing history in the development of spine conditions. PMID:28128007

  6. Prevalence and proposed mechanisms of chronic low back pain in baseball: part i.

    PubMed

    Wasser, Joseph G; Zaremski, Jason L; Herman, Daniel C; Vincent, Heather K

    2017-01-01

    The prevalence of low back pain (LBP) among active baseball players ranges between 3 and 15%. The execution of baseball-specific manoeuvres, such as pitching or batting, may be related to the onset of LBP. These baseball motions are complex and require appropriate activation of the core musculature to produce a well-timed motion with forces minimized at the extremities. The spine, core and back musculature are involved with acceleration and deceleration of rotational motions. This narrative review synopsizes the available evidence of the prevalence of and mechanical factors underlying LBP in the baseball population. Possible mechanical mechanisms linking baseball play to LBP include aberrant motion, improper timing, high lumbar stress due to mechanical loading and lumbopelvic strength deficits. Potential clinical implications relating to these possible mechanical mechanisms will also be highlighted. The state of the evidence suggests that there are deficits in understanding the role of baseball motion and playing history in the development of spine conditions.

  7. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    PubMed Central

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  8. Recent advances in the pathophysiology of arterial hypertension: potential implications for clinical practice.

    PubMed

    Hering, Dagmara; Trzebski, Andrzej; Narkiewicz, Krzysztof

    2017-03-01

    Hypertension remains a major and growing public health problem associated with the greatest global rate of cardiovascular morbidity and mortality. Although numerous factors contribute to poor control of blood pressure (BP) and to pseudoresistance (eg, unawareness, lifestyle habits, nonadherence to medication, insufficient treatment, drug‑induced hypertension, undiagnosed secondary causes), true resistant hypertension (RH) is reported in 10.1% of patients treated for elevated BP. While the mechanisms underlying RH remain complex and not entirely understood, sympathetic activation involved in the pathophysiology of hypertension, disease progression, and adverse complications is further augmented in patients with drug‑resistant hypertension. The well‑established contribution of neurogenic component of hypertension has led to the introduction of new alternative therapies aimed specifically at modulating central and neural reflexes mechanisms involved in BP control. Although clinical benefits of lowering BP with renal denervation, baroreflex activation therapy, carotid body denervation, central arteriovenous anastomosis, and deep brain stimulation have advanced our knowledge on uncontrolled hypertension, the variable BP response has prompted extensive ongoing research to define predictors of treatment effectiveness and further investigation of pathophysiology of RH. Very recently, research on the role of vasopressinergic neurons, masked tachycardia, and impaired brain neural activity has provided novel insights into hypertension. This review briefly summarizes the role of the centrally mediated sympathetic nervous system in hypertension, the therapeutic strategies that distinctively target impaired neural reflex mechanisms, and potential implications for future clinical research and therapies.

  9. Reduced local field potential power in the medial prefrontal cortex by noxious stimuli.

    PubMed

    Li, Ai-Ling; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-10-01

    Nociceptive signals produced by noxious stimuli at the periphery reach the brain through ascending pathways. These signals are processed by various brain areas and lead to activity changes in those areas. The medial prefrontal cortex (mPFC) is involved in higher cognitive functions and emotional processing. It receives projections from brain areas involved in nociception. In this study, we investigated how nociceptive input from the periphery changes the local field potential (LFP) activity in the mPFC. Three different types of noxious stimuli were applied to the hind paw contralateral to the LFP recording site. They were transcutaneous electrical stimulations, mechanical stimuli and a chemical stimulus (formalin injection). High intensity transcutaneous stimulations (10V to 50V) and noxious mechanical stimulus (pinch) significantly reduced the LFP power during the stimulating period (p<0.05), but not the low intensity subcutaneous stimulations (0.1V to 5V) and other innocuous mechanical stimuli (brush and pressure). More frequency bands were inhibited with increased intensity of transcutaneous electrical stimulation, and almost all frequency bands were inhibited by stimulations at or higher than 30v. Pinch significantly reduced the power for beta band and formalin injection significantly reduced the power of alpha and beta band. Our data demonstrated the noxious stimuli-induced reduction of LFP power in the mPFC, which indicates the active processing of nociceptive information by the mPFC. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  11. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine

    PubMed Central

    Marashly, Eyad T.; Bohlega, Saeed A.

    2017-01-01

    With the huge negative impact of neurological disorders on patient’s life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson’s disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients in the future. PMID:28775706

  12. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  13. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels

    PubMed Central

    Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron

    2016-01-01

    In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581

  14. Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter.

    PubMed

    Mehta, Dharmini C; Short, Jennifer L; Nicolazzo, Joseph A

    2013-12-02

    Memantine (MEM) is prescribed in mono and combination therapies for treating the symptoms of moderate to severe Alzheimer's disease (AD). Despite MEM being widely prescribed with other AD and non-AD medicines, very little is known about its mechanism of transport across the blood-brain barrier (BBB), and whether the nature of this transport lends MEM to a potential for drug-drug interactions at the BBB. Therefore, the purpose of this study was to characterize the mechanisms facilitating MEM brain uptake in Swiss Outbred mice using an in situ transcardiac perfusion technique, and identify the putative transporter involved in MEM disposition into the brain. Following transcardiac perfusion of MEM with increasing concentrations, the brain uptake of MEM was observed to be saturable. Furthermore, MEM brain uptake was reduced (up to 55%) by various cationic transporter inhibitors (amantadine, quinine, tetraethylammonium, choline and carnitine) and was dependent on extracellular pH, while being independent of membrane depolarization and the presence of Na(+) in the perfusate. In addition, MEM brain uptake was observed to be sensitive to changes in intracellular pH, hence, likely to be driven by H(+)/MEM antiport mechanisms. Taken together, these findings implicate the involvement of an organic cation transporter regulated by proton antiport mechanisms in the transport of MEM across the mouse BBB, possibly the organic cation/carnitine transporter, OCTN1. These studies also clearly demonstrate the brain uptake of MEM is significantly reduced by other cationic compounds, highlighting the need to consider the possibility of drug interactions with MEM at the BBB, potentially leading to reduced brain uptake and, therefore, altered efficacy of MEM when used in patients on multidrug regimens.

  15. Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents.

    PubMed

    Rossato, Mateus Fortes; Rigo, Flavia Karine; Oliveira, Sara Marchesan; Guerra, Gustavo Petri; Silva, Cássia Regina; Cunha, Thiago Mattar; Gomez, Marcus Vinícius; Ferreira, Juliano; Trevisan, Gabriela

    2018-06-05

    The clinical use of paclitaxel as a chemotherapeutic agent is limited by the severe acute and chronic hypersensitivity caused when it is administered via intraperitoneal or intravenous routes. Thus far, evidence has suggested that transient receptor potential vanilloid-1 (TRPV1) has a key role in the chronic neuropathy induced by paclitaxel. Despite this, the role of TRPV1 in paclitaxel -related acute nociception, especially the development of visceral nociception, has not been evaluated. Thus, the goal of this study was to evaluate the participation of TRPV1 in a model of acute nociception induced by paclitaxel in rats and mice. A single intraperitoneal (i.p.) paclitaxel administration (1 mg/kg, i.p.) produced an immediate visceral nociception response 1 h after administration, caused mechanical and heat hypersensitivity, and diminished burrowing behaviour 24 h after administration. These nociceptive responses were reduced by SB-366791 treatment (0.5 mg/kg, i.p., a TRPV1 antagonist). In addition, TRPV1-positive sensory fibre ablation (using resiniferatoxin, 200 µg/kg, s.c.) reduced visceral nociception and mechanical or heat hypersensitivity caused by paclitaxel injection. Similarly, TRPV1 deficient mice showed a pronounced reduction in mechanical allodynia to paclitaxel acute injection and did not develop heat hypersensitivity. Moreover, 24 h after its injection, paclitaxel induced chemical hypersensitivity to capsaicin (a TRPV1 agonist, 0.01 nmol/site) and increased TRPV1 immunoreactivity in the dorsal root ganglion and sciatic nerve. In conclusion, TRPV1 is involved in mechanical and heat hypersensitivity and spontaneous-pain behaviour induced 24 h after a single paclitaxel injection. This receptor is also involved in visceral nociception induced immediately after paclitaxel administration. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Biological Evaluation in Vitro and in Silico of Azetidin-2-one Derivatives as Potential Anticancer Agents.

    PubMed

    Olazaran, Fabián E; Rivera, Gildardo; Pérez-Vázquez, Alondra M; Morales-Reyes, Cynthia M; Segura-Cabrera, Aldo; Balderas-Rentería, Isaías

    2017-01-12

    Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [ N -( p -methoxy-phenyl)-2-( p -methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site.

  17. Biological Evaluation in Vitro and in Silico of Azetidin-2-one Derivatives as Potential Anticancer Agents

    PubMed Central

    2016-01-01

    Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [N-(p-methoxy-phenyl)-2-(p-methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site. PMID:28105271

  18. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change.

    PubMed

    Zhu, Yefei; Wang, Chunlei; Chen, Xiaowu; Guan, Guijun

    2016-07-01

    We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.

  19. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  20. A genuinely discontinuous approach for multiphase EHD problems

    NASA Astrophysics Data System (ADS)

    Natarajan, Mahesh; Desjardins, Olivier

    2017-11-01

    Electrohydrodynamics (EHD) involves solving the Poisson equation for the electric field potential. For multiphase flows, although the electric field potential is a continuous quantity, due to the discontinuity in the electric permittivity between the phases, additional jump conditions at the interface, for the normal and tangential components of the electric field need to be satisfied. All approaches till date either ignore the jump conditions, or involve simplifying assumptions, and hence yield unconvincing results even for simple test problems. In the present work, we develop a genuinely discontinuous approach for the Poisson equation for multiphase flows using a Finite Volume Unsplit Volume of Fluid method. The governing equation and the jump conditions without assumptions are used to develop the method, and its efficiency is demonstrated by comparison of the numerical results with canonical test problems having exact solutions. Postdoctoral Associate, Department of Mechanical and Aerospace Engineering.

  1. The natural compound codonolactone impairs tumor induced angiogenesis by downregulating BMP signaling in endothelial cells.

    PubMed

    Wang, Shan; Cai, Rui; Ma, Junchao; Liu, Ting; Ke, Xiaoqin; Lu, Hong; Fu, Jianjiang

    2015-10-15

    Angiogenesis, the recruitment of new blood vessels, was demonstrated that is an essential component of the growth of a tumor beyond a certain size and the metastatic pathway. The potential use of angiogenesis-based agents, such as those involving natural and synthetic inhibitors as anticancer drugs is currently under intense investigation. In this study, the anti-angiogenic properties of codonolactone (CLT), a sesquiterpene lactone from Atractylodes lancea, were examined in endothelial cells. Our published study reported that CLT shows significant anti-metastatic properties in vitro and in vivo. In order to determine whether angiogenic-involved mechanisms contribute to the anti-metastatic effects of CLT, we checked the anti-angiogenic properties of CLT and its potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and EA.hy 926 cells were involved in this study. Immunofluorescence assay for cells and immunohistochemistry assay for tissues were used to check the expression of angiogenic markers. In vitro migration and invasion of endothelial cells treated with and without CLT were analyzed. Protein expressions were measured by Western blot analysis. For MMPs activity assay, fluorescence resonance energy transfer-based MMPs activity assay and gelatin zymography assay were involved in this study. Here we demonstrated that CLT exhibited inhibition on cancer cell induced angiogenesis in vivo, and direct inhibited migration and invasion of endothelial cells in vitro. Moreover, we observed that the down-regulation of MMPs and VEGF-VEGFR2 was involved in the anti-angiogenic effects of CLT. Data from Western blotting showed that, in endothelial cells, CLT reduced Runx2 activation and BMP signaling. Our findings demonstrated that CLT impaired the development of angiogenesis both in vitro and in vivo by direct inhibition on endothelial cells. These inhibitory effects were depended on its ability to interference with BMP signaling in endothelial cells, which may cause inhibition of MMPs expression and VEGF secretion by down-regulating Runx2 activation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Mechanisms for the Reduction of Actinides and Tc(VII) in Geobacter sulfurreducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, Jonathan R.

    2004-06-01

    The mechanism of the reduction of U(VI) and Cr(VI) has now been studied in detail. Cr(VI) is reduced by one-electron transfer reactions to Cr(III), via a cell-bound Cr(V) intermediate identified by EPR spectroscopy. Studies with a cytochrome c7 mutant demonstrate that the electron transfer chain includes this protein which may be the terminal reductase for Cr(VI). Potential mechanisms of inhibition of Cr(III) precipitation, involving complex formation with organic acids commonly used as electron donors for metal reduction in the subsurface have also been identified. We have also initiated a collaboration with computational chemists led by Prof Ian Hillier in Manchester,more » to model metal binding to cytochrome c7, and subsequent electron transfer from the enzyme to the metal quantum mechanically.« less

  3. Advances in mechanisms of asthma, allergy, and immunology in 2011.

    PubMed

    Boyce, Joshua A; Bochner, Bruce; Finkelman, Fred D; Rothenberg, Marc E

    2012-02-01

    2011 was marked by rapid progress in the identification of basic mechanisms of allergic disease and the translation of these mechanisms into human cell systems. Studies published in the Journal of Allergy and Clinical Immunology this year provided new insights into the molecular determinants of allergenicity, as well as the environmental, cellular, and genetic factors involved in sensitization to allergens. Several articles focused on mechanisms of allergen immunotherapy and the development of novel strategies to achieve tolerance to allergens. Additional studies identified substantial contributions from T(H)17-type cells and cytokines to human disease pathogenesis. Finally, new therapeutic applications of anti-IgE were identified. The highlights of these studies and their potential clinical implications are summarized in this review. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Field signature for apparently superluminal particle motion

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  5. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    2015-07-01

    Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.

  6. Organic solar cells: understanding the role of Förster resonance energy transfer.

    PubMed

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  7. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes

    PubMed Central

    Branco, Sara; Bi, Ke; Liao, Hui-Ling; Gladieux, Pierre; Badouin, Hélène; Ellison, Christopher E.; Nguyen, Nhu H.; Vilgalys, Rytas; Peay, Kabir G.; Taylor, John W.; Bruns, Thomas D.

    2016-01-01

    Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation. PMID:27761941

  8. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host.

    PubMed

    Xi, Zhiyong; Gavotte, Laurent; Xie, Yan; Dobson, Stephen L

    2008-01-02

    Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia infected cell cultures as an appropriate model for predicting in vivo host/Wolbachia interactions.

  10. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host

    PubMed Central

    Xi, Zhiyong; Gavotte, Laurent; Xie, Yan; Dobson, Stephen L

    2008-01-01

    Background Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Results Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Conclusion Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia infected cell cultures as an appropriate model for predicting in vivo host/Wolbachia interactions. PMID:18171476

  11. Gravitational forces and moments on spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, T. R.; Likins, P. W.

    1975-01-01

    The solution of problems of attitude dynamics of spacecraft and the influence of gravitational forces and moments is examined. Arguments are presented based on Newton's law of gravitation, and employing the methods of Newtonian (vectorial) mechanics, with minimal recourse to the classical concepts of potential theory. The necessary ideas were developed and relationships were established to permit the representation of gravitational forces and moments exerted on bodies in space by other bodies, both in terms involving the mass distribution properties of the bodies, and in terms of vector operations on those scalar functions classically described as gravitational potential functions.

  12. Closing in on chemical bonds by opening up relativity theory.

    PubMed

    Whitney, Cynthia K

    2008-03-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.

  13. Polymeric membrane systems of potential use for battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  14. Leggett-Garg tests of macrorealism for bosonic systems including double-well Bose-Einstein condensates and atom interferometers

    NASA Astrophysics Data System (ADS)

    Rosales-Zárate, L.; Opanchuk, B.; He, Q. Y.; Reid, M. D.

    2018-04-01

    We construct quantifiable generalizations of Leggett-Garg tests for macro- and mesoscopic realism and noninvasive measurability that apply when not all outcomes of measurement can be identified as arising from one of two macroscopically distinguishable states. We show how quantum mechanics predicts a negation of the Leggett-Garg premises for strategies involving ideal negative-result, weak, and minimally invasive ("nonclumsy") projective measurements on dynamical entangled systems, as might be realized with Bose-Einstein condensates in a double-well potential, path-entangled NOON states, and atom interferometers. Potential loopholes associated with each strategy are discussed.

  15. TRPM channels phosphorylation as a potential bridge between old signals and novel regulatory mechanisms of insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2013-03-01

    Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.

  16. The Hippo pathway: regulators and regulations

    PubMed Central

    Yu, Fa-Xing; Guan, Kun-Liang

    2013-01-01

    Control of cell number is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation or organ degeneration. The Hippo pathway in both Drosophila and mammals regulates cell number by modulating cell proliferation, cell death, and cell differentiation. Recently, numerous upstream components involved in the Hippo pathway have been identified, such as cell polarity, mechanotransduction, and G-protein-coupled receptor (GPCR) signaling. Actin cytoskeleton or cellular tension appears to be the master mediator that integrates and transmits upstream signals to the core Hippo signaling cascade. Here, we review regulatory mechanisms of the Hippo pathway and discuss potential implications involved in different physiological and pathological conditions. PMID:23431053

  17. Differential calcium dependence in basal and forskolin-potentiated spontaneous transmitter release in basolateral amygdala neurons.

    PubMed

    Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi

    2012-10-31

    Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  19. Determination of the “NiOOH” charge and discharge mechanisms at ideal activity

    DOE PAGES

    Merrill, Matthew; Worsley, Marcus; Wittstock, Arne; ...

    2014-01-24

    Here, optimization of electrodeposition conditions produced Ni(OH) 2 deposits chargeable up to 1.84 ± 0.02 e – per Ni on and the resulting nickel oxide/hydroxide active material could subsequently deliver 1.58 ± 0.02 e – per Ni ion (462 mA h/g) over a potential range <0.2 V. The ability of the “NiOOH” active material to deliver an approximately ideal charge and discharge facilitated a coulometric and thermodynamic analysis through which the charge/discharge mechanisms were determined from known enthalpies of formation. The (dis)charge states were confirmed with in situ Raman spectroscopy. The mechanisms were additionally evaluated with respect to pH andmore » potential dependence, charge quantities, hysteresis, and fluoride ion partial inhibition of the charge mechanism. The results indicate that the “NiOOH” (dis)charges as a solid-state system with mechanisms consistent with known nickel and oxygen redox reactions. A defect chemistry mechanism known for the LiNiO 2 system also occurs for “NiOOH” to cause both high activity and hysteresis. Similar to other cation insertion nickel oxides, the activity of the “NiOOH” mechanism is predominantly due to oxygen redox activity and does not involve the Ni4 + oxidation state. The “NiOOH” was produced from cathodic electrodeposition of Ni(OH) 2 from nickel nitrate solutions onto highly oriented pyrolytic graphite at ideal electrodeposition current efficiencies and the deposition mechanism was also characterized.« less

  20. Chloride equilibrium potential in salamander cones

    PubMed Central

    Thoreson, Wallace B; Bryson, Eric J

    2004-01-01

    Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca). PMID:15579212

  1. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats.

    PubMed

    Soto-Moyano, Rubén; Burgos, Héctor; Flores, Francisco; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Pérez, Hernán; Hernández, Paula; Hernández, Alejandro

    2006-10-01

    Melatonin has been shown to inhibit long-term potentiation (LTP) in hippocampal slices of rats. Since LTP may be one of the main mechanisms by which memory traces are encoded and stored in the central nervous system, it is possible that melatonin could modulate cognitive performance by interfering with the cellular and/or molecular mechanisms involved in LTP. We investigated in rats the effects of intraperitoneally-administered melatonin (0.1, 1 and 10 mg/kg), its saline-ethanol solvent, or saline alone, on the acquisition of visuo-spatial memory as well as on the ability of the cerebral cortex to develop LTP in vivo. Visuo-spatial performance was assessed daily in rats, for 10 days, in an 8-arm radial maze, 30 min after they received a single daily dose of melatonin. Visual cortex LTP was determined in sodium pentobarbital anesthetized rats (65 mg/kg i.p.), by potentiating transcallosal evoked responses with a tetanizing train (312 Hz, 500 ms duration) 30 min after administration of a single dose of melatonin. Results showed that melatonin impaired visuo-spatial performance in rats, as revealed by the greater number of errors committed and time spent to solve the task in the radial maze. Melatonin also prevented the induction of neocortical LTP. It is concluded that melatonin, at the doses utilized in this study, could alter some forms of neocortical plasticity involved in short- and long-term visuo-spatial memories in rats.

  2. Degradation of S-nitrosocysteine in vascular tissue homogenates: role of divalent ions.

    PubMed

    Kostka, P; Xu, B; Skiles, E H

    1999-04-01

    The objective of the study was to inquire about the mechanism(s) involved in the catabolism of S-nitrosothiols by vascular tissue under in vitro conditions. Incubations of S-nitrosocysteine (CYSNO) or S-nitrosoglutathione (GSNO) with homogenates isolated from porcine aortic smooth muscle resulted in only a marginal depletion of S-nitrosothiols from the reaction mixtures, which became statistically significant at relatively high concentrations of homogenate (> or =300 microg of protein/ml). Degradation of CYSNO (but not GSNO) was found to be potentiated several-fold by millimolar concentrations of either Mg2+ or Ca2+ ions. Under such conditions, the degradation of CYSNO was significantly suppressed by the removal of proteins by ultrafiltration (>80% inhibition) and eliminated completely by the alkylation of thiol groups with 1 mM N-ethylmaleimide. The potentiating effect of divalent ions on the degradation of CYSNO was insensitive to 0.1 mM neocuproine (selective chelator of Cu+ ions), although it was enhanced in the presence of 0.1 mM o-phenanthroline (selective chelator of Fe2+ ions). It is concluded that the degradation of CYSNO by tissue homogenate involves the interaction with protein-bound sulfhydryl groups, which is stimulated by Mg2+ or Ca2+ ions. The potentiating effect of o-phenanthroline suggests that the liberation of the nitrosonium moiety in such a process may be accompanied by its transfer to sulfur center(s) by transient formation of dinitrosyl-iron complexes.

  3. BMI-1, a promising therapeutic target for human cancer

    PubMed Central

    WANG, MIN-CONG; LI, CHUN-LI; CUI, JIE; JIAO, MIN; WU, TAO; JING, LI; NAN, KE-JUN

    2015-01-01

    BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types. PMID:26622537

  4. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue Department Malaysia can use the end result of this study in preparation for the land and forest fires in the future.

  5. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells.

    PubMed

    Cheng, Tao; Goddard, William A; An, Qi; Xiao, Hai; Merinov, Boris; Morozov, Sergey

    2017-01-25

    The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e - water formation is: first, *OOH formation; second, *OOH reduction to H 2 O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.

  6. Characterization of Apoptosis Induced by Emodin and Related Regulatory Mechanisms in Human Neuroblastoma Cells

    PubMed Central

    Huang, Fu-Jen; Hsuuw, Yan-Der; Chan, Wen-Hsiung

    2013-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Recent studies have shown that emodin can induce or prevent cell apoptosis, although the precise molecular mechanisms underlying these effects are unknown. Experiments from the current study revealed that emodin (10–20 μM) induces apoptotic processes in the human neuroblastoma cell line, IMR-32, but exerts no injury effects at treatment doses below 10 μM. Treatment with emodin at concentrations of 10–20 μM led to a direct increase in the reactive oxygen species (ROS) content in IMR-32 cells, along with significant elevation of cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. Pretreatment with nitric oxide (NO) scavengers suppressed the apoptotic biochemical changes induced by 20 μM emodin, and attenuated emodin-induced p53 and p21 expression involved in apoptotic signaling. Our results collectively indicate that emodin at concentrations of 10–20 μM triggers apoptosis of IMR-32 cells via a mechanism involving both ROS and NO. Based on the collective results, we propose a model for an emodin-triggered apoptotic signaling cascade that sequentially involves ROS, Ca2+, NO, p53, caspase-9 and caspase-3. PMID:24113589

  7. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    PubMed

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Potentiation of Paclitaxel-Induced Pain Syndrome in Mice by Angiotensin I Converting Enzyme Inhibition and Involvement of Kinins.

    PubMed

    Brusco, Indiara; Silva, Cássia Regina; Trevisan, Gabriela; de Campos Velho Gewehr, Camila; Rigo, Flávia Karine; La Rocca Tamiozzo, Lidia; Rossato, Mateus Fortes; Tonello, Raquel; Dalmolin, Gerusa Duarte; de Almeida Cabrini, Daniela; Gomez, Marcus Vinícius; Ferreira, Juliano; Oliveira, Sara Marchesan

    2017-12-01

    Paclitaxel is a chemotherapeutic agent used to treat solid tumours. However, it causes an acute and neuropathic pain syndrome that limits its use. Among the mechanisms involved in neuropathic pain caused by paclitaxel is activation of kinin receptors. Angiotensin converting enzyme (ACE) inhibitors can enhance kinin receptor signalling. The goal of this study was to evaluate the role of kinins on paclitaxel-associated acute pain syndromes (P-APS) and the effect of ACE inhibition on P-APS and paclitaxel-associated chronic peripheral neuropathy (P-CPN) in mice. Herein, we show that paclitaxel caused mechanical allodynia and spontaneous nociceptive behaviour that was reduced by antagonists of kinin receptors B 1 (DALBk and SSR240612) and B 2 (Hoe140 and FR173657). Moreover, enalapril (an ACE inhibitor) enhanced the mechanical allodynia induced by a low dose of paclitaxel. Likewise, paclitaxel injection inhibited ACE activity and increased the expressions of B 1 and B 2 receptors and bradykinin-related peptides levels in peripheral tissue. Together, our data support the involvement of kinin receptors in the P-APS and suggest kinin receptor antagonists to treat this syndrome. Because hypertension is the most frequent comorbidity affecting cancer patients, treatment of hypertension with ACE inhibitors in patients undergoing paclitaxel chemotherapy should be reviewed, since this could enhance the P-APS and P-CPN.

  9. Signal Enhancement and Suppression During Visual-Spatial Selective Attention

    PubMed Central

    Couperus, J. W.; Mangun, G.R.

    2010-01-01

    Selective attention involves the relative enhancement of relevant versus irrelevant stimuli. However, whether this relative enhancement involves primarily enhancement of attended stimuli, or suppression of irrelevant stimuli, remains controversial. Moreover, if both enhancement and suppression are involved, whether they result from a single mechanism or separate mechanisms during attentional control or selection is not known. In two experiments using a spatial cuing paradigm with task-relevant targets and irrelevant distractors, target and distracter processing was examined as a function of distractor expectancy. Additionally, in the second study the interaction of perceptual load and distractor expectancy was explored. In both experiments, distractors were either validly cued (70%) or invalidly cued (30%) in order to examine the effects of distractor expectancy on attentional control as well as target and distractor processing. The effects of distractor expectancy were assessed using event-related potentials recorded during the cue-to-target period (preparatory attention) and in response to the task-relevant target stimuli (selective stimulus processing). Analyses of distractor-present displays (anticipated versus unanticipated), showed modulations in brain activity during both the preparatory period and during target processing. The pattern of brain responses suggest both facilitation of attended targets and suppression of unattended distractors. These findings provide evidence for a two-process model of visual spatial selective attention, where one mechanism (facilitation) influences relevant stimuli and another (suppression) acts to filter distracting stimuli. PMID:20807513

  10. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  11. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms.

    PubMed

    Biasetti, Jacopo; Spazzini, Pier Giorgio; Swedenborg, Jesper; Gasser, T Christian

    2012-01-01

    Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.

  12. Controls on project proponents and environmental impact assessment effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortolano, L.

    The degree of effectiveness of environmental impact assessment (EIA) for particular projects is associated with the existence of mechanisms of organizational control. Five dimensions of EIA effectiveness are considered: procedural compliance, completeness of EIA documents, methods to assess impacts, influence on project decisions, and weight given to environmental factors. Six mechanisms of control are introduced and illustrated by programs and projects in several countries. Experience in the Philippines under President Marcos demonstrates that procedural control in the form of EIA regulations, when used without other control mechanisms, will lead at most to token compliance. Judicial control, as practiced in themore » US, yields high procedural compliance. Evaluative control can yield effective EIA, but some systems based on this form of control treat only a small fraction of the major projects proposed. Both control exerted by development assistance organizations and control by professionals have great potential for yielding effective EIA, but that potential has not been fully realized. Control exerted directly by citizens or agencies not otherwise involved in EIA is uncommon, but cases from Taiwan demonstrate that those controls can be significant. An understanding of relationships between control mechanisms and EIA effectiveness is useful in designing EIA policies and programs.« less

  13. Using virtual reality to investigate psychological processes and mechanisms associated with the onset and maintenance of psychosis: a systematic review.

    PubMed

    Valmaggia, Lucia R; Day, Fern; Rus-Calafell, Mar

    2016-07-01

    In the last decade researchers have embraced virtual reality to explore the psychological processes and mechanisms that are involved in the onset and maintenance of psychosis. A systematic review was conducted to synthesise the evidence of using virtual reality to investigate these mechanisms. Web of Science, PsycINFO, Embase, and Medline were searched. Reference lists of collected papers were also visually inspected to locate any relevant cited journal articles. In total 6001 articles were potentially eligible for inclusion; of these, 16 studies were included in the review. The review identified studies investigating the effect of interpersonal sensitivity, childhood bullying victimisation, physical assault, perceived ethnic discrimination, social defeat, population density and ethnic density on the real-time appraisal of VR social situations. Further studies demonstrated the potential of VR to investigate paranoid ideation, anomalous experiences, self-confidence, self-comparison, physiological activation and behavioural response. The reviewed studies suggest that VR can be used to investigate psychological processes and mechanisms associated with psychosis. Implications for further experimental research, as well as for assessment and clinical practise are discussed. The present review has been registered in the PROSPERO register: CRD42016038085.

  14. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  15. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  16. Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.

  17. Mechanical-Kinetic Modeling of a Molecular Walker from a Modular Design Principle

    NASA Astrophysics Data System (ADS)

    Hou, Ruizheng; Loh, Iong Ying; Li, Hongrong; Wang, Zhisong

    2017-02-01

    Artificial molecular walkers beyond burnt-bridge designs are complex nanomachines that potentially replicate biological walkers in mechanisms and functionalities. Improving the man-made walkers up to performance for widespread applications remains difficult, largely because their biomimetic design principles involve entangled kinetic and mechanical effects to complicate the link between a walker's construction and ultimate performance. Here, a synergic mechanical-kinetic model is developed for a recently reported DNA bipedal walker, which is based on a modular design principle, potentially enabling many directional walkers driven by a length-switching engine. The model reproduces the experimental data of the walker, and identifies its performance-limiting factors. The model also captures features common to the underlying design principle, including counterintuitive performance-construction relations that are explained by detailed balance, entropy production, and bias cancellation. While indicating a low directional fidelity for the present walker, the model suggests the possibility of improving the fidelity above 90% by a more powerful engine, which may be an improved version of the present engine or an entirely new engine motif, thanks to the flexible design principle. The model is readily adaptable to aid these experimental developments towards high-performance molecular walkers.

  18. Mechanisms of insecticide resistance in field populations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico.

    PubMed

    Flores, Adriana E; Grajales, Jaime Salomon; Salas, Ildefonso Fernandez; Garcia, Gustavo Ponce; Becerra, Ma Haydee Loaiza; Lozano, Saul; Brogdon, William G; Black, William C; Beaty, Barry

    2006-12-01

    Potential insecticide-resistance mechanisms were studied with the use of biochemical assays in Aedes aegypti (L.) collected from 5 municipalities representing the north part of Quintana Roo: Benito Juarez, Cozumel, Isla Mujeres, Lazaro Cardenas, and Solidaridad. The activities of alpha and beta esterases, mixed-function oxidases (MFO), glutathione-S-transferase (GST), acethylcholinesterase (AChE), and insensitive acethylcholinesterase (iAChE) were assayed in microplates. Three replicates were performed for each enzyme and 60 males and 60 females were analyzed in each population. The New Orleans (NO) susceptible strain of Ae. aegypti was used as a susceptible reference and the threshold criteria for each enzyme were the highest NO absorbance values. In none of the 6 tests were absorbance values correlated in males and females. alpha esterases were elevated in Benito Juarez, Cozumel females and in Lazaro Cardenas males and females. beta esterases were elevated in Benito Juarez, Cozumel females and in Cozumel and Lazaro Cardenas males. Elevated esterases suggest potential insecticide-resistance mechanisms against organophosphate, carbamate, and some pyrethroid insecticides. Slightly elevated levels of MFOs appeared in Lazaro Cardenas females and in Cozumel, Isla Mujeres, and Solidaridad males. Mechanisms involving iAChE or GST were not apparent.

  19. Formation of Polychlorinated Biphenyls on Secondary Copper Production Fly Ash: Mechanistic Aspects and Correlation to Other Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoxu; Liu, Guorui; Wang, Mei; Zheng, Minghui

    2015-09-01

    Emission of unintentionally formed polychlorinated biphenyls (PCBs) from industrial thermal processes is a global issue. Because the production and use of technical PCB mixtures has been banned, industrial thermal processes have become increasingly important sources of PCBs. Among these processes, secondary copper smelting is an important PCB source in China. In the present study, the potential for fly ash-mediated formation of PCBs in the secondary copper industry, and the mechanisms involved, were studied in laboratory thermochemical experiments. The total PCB concentrations were 37-70 times higher than the initial concentrations. Thermochemical reactions on the fly ash amplified the potential toxic equivalents of PCBs. The formation of PCBs over time and the effect of temperature were investigated. Based on analyses of PCB homologue profiles with different reaction conditions, a chlorination mechanism was proposed for forming PCBs in addition to a de novo synthesis mechanism. The chlorination pathway was supported by close correlations between each pair of adjacent homologue groups. Formation of PCBs and multiple persistent organic pollutants, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated naphthalenes, occurred during the tests, indicating that these compounds may share similar formation mechanisms.

  20. The influence of action observation on action execution: Dissociating the contribution of action on perception, perception on action, and resolving conflict.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2017-04-01

    For more than 15 years, motor interference paradigms have been used to investigate the influence of action observation on action execution. Most research on so-called automatic imitation has focused on variables that play a modulating role or investigated potential confounding factors. Interestingly, furthermore, a number of functional magnetic resonance imaging (fMRI) studies have tried to shed light on the functional mechanisms and neural correlates involved in imitation inhibition. However, these fMRI studies, presumably due to poor temporal resolution, have primarily focused on high-level processes and have neglected the potential role of low-level motor and perceptual processes. In the current EEG study, we therefore aimed to disentangle the influence of low-level perceptual and motoric mechanisms from high-level cognitive mechanisms. We focused on potential congruency differences in the visual N190 - a component related to the processing of biological motion, the Readiness Potential - a component related to motor preparation, and the high-level P3 component. Interestingly, we detected congruency effects in each of these components, suggesting that the interference effect in an automatic imitation paradigm is not only related to high-level processes such as self-other distinction but also to more low-level influences of perception on action and action on perception. Moreover, we documented relationships of the neural effects with (autistic) behavior.

  1. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  2. Active Components of Ginger Potentiate β-Agonist–Induced Relaxation of Airway Smooth Muscle by Modulating Cytoskeletal Regulatory Proteins

    PubMed Central

    Zhang, Yi; Xu, Carrie; Wakita, Ryo; Emala, Charles W.

    2014-01-01

    β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist–induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C–potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist–induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms through complementary intracellular pathways. PMID:23962082

  3. Review: Role of chemistry, mechanics, and transport on well integrity in CO 2 storage environments

    DOE PAGES

    Carroll, Susan A.; Carey, William J.; Dzombak, David; ...

    2016-03-22

    Among the various risks associated with CO 2 storage in deep geologic formations, wells are important potential pathways for fluid leaks and groundwater contamination. Injection of CO 2 will perturb the storage reservoir and any wells that penetrate the CO 2 or pressure footprints are potential pathways for leakage of CO 2 and/or reservoir brine. Well leakage is of particular concern for regions with a long history of oil and gas exploration because they are top candidates for geologic CO 2storage sites. This review explores in detail the ability of wells to retain their integrity against leakage with careful examinationmore » of the coupled physical and chemical processes involved. Understanding time-dependent leakage is complicated by the changes in fluid flow, solute transport, chemical reactions, and mechanical stresses over decade or longer time frames for site operations and monitoring. Almost all studies of the potential for well leakage have been laboratory based, as there are limited data on field-scale leakage. When leakage occurs by diffusion only, laboratory experiments show that while CO 2 and CO 2-saturated brine react with cement and casing, the rate of degradation is transport-limited and alteration of cement and casing properties is low. When a leakage path is already present due to cement shrinkage or fracturing, gaps along interfaces (e.g. casing/cement or cement/rock), or casing failures, chemical and mechanical alteration have the potential to decrease or increase leakage risks. Laboratory experiments and numerical simulations have shown that mineral precipitation or closure of strain-induced fractures can seal a leak pathway over time or conversely open pathways depending on flow-rate, chemistry, and the stress state. Experiments with steel/cement and cement/rock interfaces have indicated that protective mechanisms such as metal passivation, chemical alteration, mechanical deformation, and pore clogging can also help mitigate leakage. The specific rate and nature of alteration depends on the cement, brine, and injected fluid compositions. For example, the presence of co-injected gases (e.g. O 2, H 2S, and SO 2) and pozzolan amendments (fly ash) to cement influences the rate and the nature of cement reactions. A more complete understanding of the coupled physical-chemical mechanisms involved with sealing and opening of leakage pathways is needed. An important challenge is to take empirically based chemical, mechanical, and transport models reviewed here and assess leakage risk for carbon storage at the field scale. Furthermore, field observations to accompany laboratory and modeling studies are critical to validating understanding of leakage risk. Long-term risk at the field scale is an area of active research made difficult by the large variability of material types (cement, geologic material, casing), field conditions (pressure, temperature, gradient in potential, residence time), and leaking fluid composition (CO 2, co-injected gases, brine). Of particular interest are the circumstances when sealing and other protective mechanisms are likely to be effective, when they are likely to fail, and the zone of uncertainty between these two extremes.« less

  4. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process

    PubMed Central

    2014-01-01

    Background The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. Results Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). Conclusions Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality. PMID:24649854

  5. Human cloning: can it be made safe?

    PubMed

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  6. Molecular cellular mechanisms of peptide regulation of melatonin synthesis in pinealocyte culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Kvetnoy, I M; Kvetnaia, T V; Polyakova, V O; Korf, H-W

    2012-06-01

    The effects of epithalone and vilone peptides on the synthesis of melatonin and factors involved in this process, arylalkylamine-N-acetyltransferase (AANAT) enzyme and pCREB transcription protein, were studied in rat pinealocyte culture. Epithalone stimulated AANAT and pCREB synthesis and increased melatonin level in culture medium. Simultaneous addition of norepinephrine and peptides into the culture potentiated the expression of AANAT and pCREB.

  7. Potential Chemical Systems for Intramolecular Cycloaddition Cures

    DTIC Science & Technology

    1979-05-01

    allowed electrocyclic photochemical ring closure of stilbene to dihydrophenanthrene is well known (Reference 12). The presence of an oxidant , e.g...CH (c) R 3 0 00 > 0 I I (42) The keto-diynes 36 follow a uniform reaction pathway with chlorotris- ( triphenylphosphine )rhodium[I] to yield the...Irradiation of 36b similarly gives 49. The mechanism proposed for the photochemical reaction involves an initial formation of the reactive cyclobutadiene by

  8. Complete Genome Sequences of Two Bacillus pumilus Strains from Cuatrociénegas, Coahuila, Mexico.

    PubMed

    Zarza, Eugenia; Alcaraz, Luis D; Aguilar-Salinas, Bernardo; Islas, Africa; Olmedo-Álvarez, Gabriela

    2018-04-26

    We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions. Copyright © 2018 Zarza et al.

  9. Oxytocin reactivity during intergroup conflict in wild chimpanzees.

    PubMed

    Samuni, Liran; Preis, Anna; Mundry, Roger; Deschner, Tobias; Crockford, Catherine; Wittig, Roman M

    2017-01-10

    Intergroup conflict is evident throughout the history of our species, ubiquitous across human societies, and considered crucial for the evolution of humans' large-scale cooperative nature. Like humans, chimpanzee societies exhibit intragroup coordination and coalitionary support during violent intergroup conflicts. In both species, cooperation among group members is essential for individuals to gain access to benefits from engaging in intergroup conflict. Studies suggest that a contributive mechanism regulating in-group cooperation during intergroup conflicts in humans involves the neuropeptide hormone oxytocin, known to influence trust, coordination, and social cognition, although evidence from natural settings is lacking. Here, applying a noninvasive method, we investigate oxytocinergic system involvement during natural intergroup conflicts in wild chimpanzees. We found that chimpanzees of both sexes had significantly higher urinary oxytocin levels immediately before and during intergroup conflict compared with controls. Also, elevated hormone levels were linked with greater cohesion during intergroup conflicts, rather than with the level of potential threat posed by rival groups, intragroup affiliative social interactions, or coordinated behavior alone. Thus, the oxytocinergic system, potentially engendering cohesion and cooperation when facing an out-group threat, may not be uniquely human but rather a mechanism with evolutionary roots shared by our last common ancestor with chimpanzees, likely expediting fitness gains during intergroup conflict.

  10. GSTM3 and GSTP1: novel players driving tumor progression in cervical cancer.

    PubMed

    Checa-Rojas, Alberto; Delgadillo-Silva, Luis Fernando; Velasco-Herrera, Martín Del Castillo; Andrade-Domínguez, Andrés; Gil, Jeovanis; Santillán, Orlando; Lozano, Luis; Toledo-Leyva, Alfredo; Ramírez-Torres, Alberto; Talamas-Rohana, Patricia; Encarnación-Guevara, Sergio

    2018-04-24

    The molecular processes and proteomic markers leading to tumor progression (TP) in cervical cancer (CC) are either unknown or only partially understood. TP affects metabolic and regulatory mechanisms that can be identified as proteomic changes. To identify which proteins are differentially expressed and to understand the mechanisms of cancer progression, we analyzed the dynamics of the tumor proteome in CC cell lines. This analysis revealed two proteins that are up-regulated during TP, GSTM3 and GSTP1. These proteins are involved in cell maintenance, cell survival and the cellular stress response via the NF-κB and MAP kinase pathways during TP. Furthermore, GSTM3 and GSTP1 knockdown showed that evasion of apoptosis was affected, and tumor proliferation was significantly reduced. Our data indicate the critical role of GST proteins in the regulation and progression of cervical cancer cells. Hence, we suggest GSTM3 and GSTP1 as novel biomarkers and potential therapeutic targets for treating cervical cancer. CC is particularly hazardous in the advanced stages, and there are few therapeutic strategies specifically targeting these stages. We performed analyses on CC tumor proteome dynamics and identified GSTM3 and GSTP1 as novel potential therapeutic targets. Knockdown of these proteins showed that they are involved in cell survival, cell proliferation and cellular evasion of apoptosis.

  11. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference.

    PubMed

    Zhu, Beibei; Li, Xiangyu; Chen, Huan; Wang, Hongjuan; Zhu, Xinchao; Hou, Hongwei; Hu, Qingyuan

    2017-05-13

    Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Involvement of HDAC1 and HDAC3 in the Pathology of Polyglutamine Disorders: Therapeutic Implications for Selective HDAC1/HDAC3 Inhibitors

    PubMed Central

    Thomas, Elizabeth A.

    2014-01-01

    Histone deacetylases (HDACs) enzymes, which affect the acetylation status of histones and other important cellular proteins, have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Emerging studies have demonstrated that different types of HDAC inhibitors show beneficial effects in various experimental models of neurological disorders. HDAC enzymes comprise a large family of proteins, with18 HDAC enzymes currently identified in humans. Hence, an important question for HDAC inhibitor therapeutics is which HDAC enzyme(s) is/are important for the amelioration of disease phenotypes, as it has become clear that individual HDAC enzymes play different biological roles in the brain. This review will discuss evidence supporting the involvement of HDAC1 and HDAC3 in polyglutamine disorders, including Huntington’s disease, and the use of HDAC1- and HDAC3-selective HDAC inhibitors as therapeutic intervention for these disorders. Further, while HDAC inhibitors are known alter chromatin structure resulting in changes in gene transcription, understanding the exact mechanisms responsible for the preclinical efficacy of these compounds remains a challenge. The potential chromatin-related and non-chromatin-related mechanisms of action of selective HDAC inhibitors will also be discussed. PMID:24865773

  13. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.

    PubMed

    Qazi, Talal Jamil; Quan, Zhenzhen; Mir, Asif; Qing, Hong

    2018-02-01

    Research over the years has shown that causes of Alzheimer's disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer's disease (AD), late-onset Alzheimer's disease (LOAD), familial Alzheimer's disease (FAD), and autosomal dominant Alzheimer's disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.

  14. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection.

    PubMed

    Fioramonti, Xavier; Chrétien, Chloé; Leloup, Corinne; Pénicaud, Luc

    2017-01-01

    The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (K ATP ) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  15. Oxytocin reactivity during intergroup conflict in wild chimpanzees

    PubMed Central

    Samuni, Liran; Preis, Anna; Mundry, Roger; Deschner, Tobias; Crockford, Catherine; Wittig, Roman M.

    2017-01-01

    Intergroup conflict is evident throughout the history of our species, ubiquitous across human societies, and considered crucial for the evolution of humans’ large-scale cooperative nature. Like humans, chimpanzee societies exhibit intragroup coordination and coalitionary support during violent intergroup conflicts. In both species, cooperation among group members is essential for individuals to gain access to benefits from engaging in intergroup conflict. Studies suggest that a contributive mechanism regulating in-group cooperation during intergroup conflicts in humans involves the neuropeptide hormone oxytocin, known to influence trust, coordination, and social cognition, although evidence from natural settings is lacking. Here, applying a noninvasive method, we investigate oxytocinergic system involvement during natural intergroup conflicts in wild chimpanzees. We found that chimpanzees of both sexes had significantly higher urinary oxytocin levels immediately before and during intergroup conflict compared with controls. Also, elevated hormone levels were linked with greater cohesion during intergroup conflicts, rather than with the level of potential threat posed by rival groups, intragroup affiliative social interactions, or coordinated behavior alone. Thus, the oxytocinergic system, potentially engendering cohesion and cooperation when facing an out-group threat, may not be uniquely human but rather a mechanism with evolutionary roots shared by our last common ancestor with chimpanzees, likely expediting fitness gains during intergroup conflict. PMID:28028227

  16. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex

    PubMed Central

    Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.

    2015-01-01

    The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348

  17. Slope streaks on Mars: A new “wet” mechanism

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2009-06-01

    Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This "wet" mechanism has a number of appealing advantages in comparison to the widely accepted "dry" granular flow mechanism. Potential tests for the "wet" mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation.

  18. Bone and Skeletal Muscle: Key Players in Mechanotransduction and Potential Overlapping Mechanisms

    PubMed Central

    Goodman, Craig A.; Hornberger, Troy A.; Robling, Alexander G.

    2015-01-01

    The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists. PMID:26453495

  19. Laser-assisted manufacturing of super-insulation materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David

    2017-02-01

    Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.

  20. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology.

    PubMed

    Data-Franco, João; Singh, Ajeet; Popovic, Dina; Ashton, Melanie; Berk, Michael; Vieta, Eduard; Figueira, M L; Dean, Olivia M

    2017-01-04

    Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236

  2. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong, E-mail: austhudong@126.com; Wu, Jing, E-mail: wujing8008@126.com; Wang, Wan

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domainmore » and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.« less

  3. New mechanisms and perspectives in nicotine withdrawal

    PubMed Central

    Jackson, K.J.; Muldoon, P.P.; De Biasi, M.; Damaj, M.I.

    2014-01-01

    Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. PMID:25433149

  4. General Theory of Aerodynamic Instability and the Mechanism of Flutter

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1979-01-01

    The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.

  5. From the baker to the bedside: yeast models of Parkinson's disease

    PubMed Central

    Menezes, Regina; Tenreiro, Sandra; Macedo, Diana; Santos, Cláudia N.; Outeiro, Tiago F.

    2015-01-01

    The baker’s yeast Saccharomyces cerevisiae has been extensively explored for our understanding of fundamental cell biology processes highly conserved in the eukaryotic kingdom. In this context, they have proven invaluable in the study of complex mechanisms such as those involved in a variety of human disorders. Here, we first provide a brief historical perspective on the emergence of yeast as an experimental model and on how the field evolved to exploit the potential of the model for tackling the intricacies of various human diseases. In particular, we focus on existing yeast models of the molecular underpinnings of Parkinson’s disease (PD), focusing primarily on the central role of protein quality control systems. Finally, we compile and discuss the major discoveries derived from these studies, highlighting their far-reaching impact on the elucidation of PD-associated mechanisms as well as in the identification of candidate therapeutic targets and compounds with therapeutic potential. PMID:28357302

  6. High-Content Functional Screening of AEG-1 and AKR1C2 for the Promotion of Metastasis in Liver Cancer.

    PubMed

    Li, Cong; Wu, Xia; Zhang, Wei; Li, Jia; Liu, Huawei; Hao, Ming; Wang, Junsong; Zhang, Honghai; Yang, Gengxia; Hao, Meijun; Sheng, Shoupeng; Sun, Yu; Long, Jiang; Li, Juan; Zhuang, Fengfeng; Hu, Caixia; Li, Li; Zheng, Jiasheng

    2016-01-01

    Liver cancer is one of the most lethal cancer types in humans, but our understanding of the molecular mechanisms underlying this process remains insufficient. Here, we conducted high-content screening of the potential genes involved in liver cancer metastasis, which we selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, based on the SAMcell method and RNA interference technology. We identified two powerful genes in the liver cancer metastasis process, AEG-1 and AKR1C2, both of which proved to be positive regulators in promoting metastasis in liver cancer. Further clinical results verified their roles in liver cancer. In summary, these findings could provide new insight into the liver cancer mechanism and potentially therapeutic novel targets for liver cancer therapies in the future. © 2015 Society for Laboratory Automation and Screening.

  7. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer.

    PubMed

    Darband, Saber G; Kaviani, Mojtaba; Yousefi, Bahman; Sadighparvar, Shirin; Pakdel, Firouz G; Attari, Javad A; Mohebbi, Iraj; Naderi, Somayeh; Majidinia, Maryam

    2018-04-16

    Recently, an intense attention has been paid to the application of natural compounds as a novel therapeutic strategy for cancer treatment. Quercetin, a natural flavonol present in many commonly consumed food items, is widely demonstrated to exert inhibitory effects on cancer progression through various mechanisms. Since there is a strong association with diets containing abundant vegetables, fruits, and grains, and significant decline in the risk of colon cancer, accumulation studies have focused on the anticancer potential of quercetin in colorectal cancer. Cell cycle arrest, increase in apoptosis, antioxidant replication, modulation of estrogen receptors, regulation of signaling pathways, inhibition of and metastasis and angiogenesis are among various mechanisms underlying the chemo-preventive effects of quercetin in colorectal cancer. This review covers various therapeutic interactions of Quercetin as to how targets cellular involved in cancer treatment. © 2018 Wiley Periodicals, Inc.

  8. Theoretical survey of the reaction between osmium and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-05-01

    The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  9. T-type α1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts

    PubMed Central

    Bijlenga, Philippe; Liu, Jian-Hui; Espinos, Estelle; Haenggeli, Charles-Antoine; Fischer-Lougheed, Jacqueline; Bader, Charles R.; Bernheim, Laurent

    2000-01-01

    Mechanisms underlying Ca2+ signaling during human myoblast terminal differentiation were studied using cell cultures. We found that T-type Ca2+ channels (T-channels) are expressed in myoblasts just before fusion. Their inhibition by amiloride or Ni2+ suppresses fusion and prevents an intracellular Ca2+ concentration increase normally observed at the onset of fusion. The use of antisense oligonucleotides indicates that the functional T-channels are formed by α1H subunits. At hyperpolarized potentials, these channels allow a window current sufficient to increase [Ca2+]i. As hyperpolarization is a prerequisite to myoblast fusion, we conclude that the Ca2+ signal required for fusion is produced when the resting potential enters the T-channel window. A similar mechanism could operate in other cell types of which differentiation implicates membrane hyperpolarization. PMID:10861024

  10. Potential Molecular Mechanisms on the Role of the Sigma-1 Receptor in the Action of Cocaine and Methamphetamine

    PubMed Central

    Yasui, Yuko; Su, Tsung-Ping

    2016-01-01

    The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum membrane protein that involves a wide range of physiological functions. The Sig-1R has been shown to bind psychostimulants including cocaine and methamphetamine (METH) and thus has been implicated in the actions of those psychostimulants. For example, it has been demonstrated that the Sig-1R antagonists mitigate certain behavioral and cellular effects of psychostimulants including hyperactivity and neurotoxicity. Thus, the Sig-1R has become a potential therapeutic target of medication development against drug abuse that differs from traditional monoamine-related strategies. In this review, we will focus on the molecular mechanisms of the Sig-1R and discuss in such a manner with a hope to further understand or unveil unexplored relations between the Sig-1R and the actions of cocaine and METH, particularly in the context of cellular biological relevance. PMID:27088037

  11. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  12. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina.

    PubMed

    Warren, Ted J; Van Hook, Matthew J; Supuran, Claudiu T; Thoreson, Wallace B

    2016-11-15

    In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral-inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre-surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision. The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown. Our results indicate that Na + -H + exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light-evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane. In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. Lateral-inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light-evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround-evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na + /H + exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na + was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans-membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina

    PubMed Central

    Warren, Ted J.; Van Hook, Matthew J.; Supuran, Claudiu T.

    2016-01-01

    Key points In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral‐inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre‐surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision.The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown.Our results indicate that Na+–H+ exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light‐evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane.In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. Abstract Lateral‐inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light‐evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround‐evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na+/H+ exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na+ was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans‐membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4′‐diisothiocyano‐2,2′‐stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane. PMID:27345444

  14. RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome.

    PubMed

    Corley, Susan M; Canales, Cesar P; Carmona-Mora, Paulina; Mendoza-Reinosa, Veronica; Beverdam, Annemiek; Hardeman, Edna C; Wilkins, Marc R; Palmer, Stephen J

    2016-06-13

    Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.

  15. Epigenetic mechanisms of memory formation and reconsolidation.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2014-11-01

    Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies

    PubMed Central

    Poroca, Diogo R.; Pelis, Ryan M.; Chappe, Valérie M.

    2017-01-01

    The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter’s syndrome (types 3 and 4), Dent’s disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models. PMID:28386229

  17. Epigenetic Mechanisms of Memory Formation and Reconsolidation

    PubMed Central

    Jarome, Timothy J.; Lubin, Farah D.

    2014-01-01

    Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation. PMID:25130533

  18. Lipoic acid protects gastric mucosa from ethanol-induced injury in rat through a mechanism involving aldehyde dehydrogenase 2 activation.

    PubMed

    Li, Jia-Hui; Ju, Gui-Xia; Jiang, Jun-Lin; Li, Nian-Sheng; Peng, Jun; Luo, Xiu-Ju

    2016-11-01

    Numerous studies demonstrate that reactive aldehydes are highly toxic and aldehyde dehydrogenase 2 (ALDH2)-mediated detoxification of reactive aldehydes is thought as an endogenous protective mechanism against reactive aldehydes-induced cell injury. This study aims to explore whether lipoic acid, a potential ALDH2 activator, is able to protect gastric mucosa from ethanol-induced injury through a mechanism involving clearance of reactive aldehydes. The rats received 60% of acidified ethanol through intragastric administration and held for 1 h to establish a mucosal injury model. Lipoic acid (10 or 30 mg/kg) or Alda-1 (a positive control, 10 mg/kg) was given 45 min before the ethanol treatment. The gastric tissues were collected for analysis of gastric ulcer index, cellular apoptosis, 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) contents, and ALDH2 activity. The results showed that acute administration of ethanol led to an increase in gastric ulcer index, cellular apoptosis, 4-HNE and MDA contents concomitant with a decrease in ALDH2 activity; these phenomena were reversed by lipoic acid or Alda-1. The gastric protection of lipoic acid was attenuated in the presence of ALDH2 inhibitor. Based on these observations, we conclude that lipoic acid exerts the beneficial effects on ethanol-induced injury through a mechanism involving, at least in part, ALDH2 activation. As a dietary supplement or a medicine already in some countries, lipoic acid can be used to treat the ethanol - induced gastric mucosal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Spinal gap junctions: potential involvement in pain facilitation.

    PubMed

    Spataro, Leah E; Sloane, Evan M; Milligan, Erin D; Wieseler-Frank, Julie; Schoeniger, Diana; Jekich, Brian M; Barrientos, Ruth M; Maier, Steven F; Watkins, Linda R

    2004-09-01

    Glia are now recognized as important contributors in pathological pain creation and maintenance. Spinal cord glia exhibit extensive gap junctional connectivity, raising the possibility that glia are involved in the contralateral spread of excitation resulting in mirror image pain. In the present experiments, the gap junction decoupler carbenoxolone was administered intrathecally after induction of neuropathic pain in response to sciatic nerve inflammation (sciatic inflammatory neuropathy) or partial nerve injury (chronic constriction injury). In both neuropathic pain models, a low dose of carbenoxolone reversed mirror image mechanical allodynia, while leaving ipsilateral mechanical allodynia unaffected. Ipsilateral thermal hyperalgesia was briefly attenuated. Critically, blockade of mechanical allodynia and thermal hyperalgesia was not observed in response to intrathecal glycyrrhizic acid, a compound similar to carbenoxolone in all respects but it does not decouple gap junctions. Thus, blockade of mechanical allodynia and thermal hyperalgesia by carbenoxolone does appear to reflect an effect on gap junctions. Examination of carbenoxolone's effects on intrathecal human immunodeficiency virus type 1 gp120 showed that blockade of pain facilitation might result, at least in part, via suppression of interleukin-1 and, in turn, interleukin-6. These data provide the first suggestion that spread of excitation via gap junctions might contribute importantly to inflammatory and traumatic neuropathic pain. The current studies provide evidence for involvement of gap junctions in spinal cord pain facilitation. Intrathecal carbenoxolone, a gap junction decoupler, reversed neuropathy-induced mirror image pain and intrathecal gp120-induced allodynia. In addition, it decreased gp120-induced proinflammatory cytokines. This suggests gap junction activation might lead to proinflammatory cytokine release by distantly activated glia.

  20. Constitutive polymorphic cyanogenesis in the Australian rainforest tree, Ryparosa kurrangii (Achariaceae).

    PubMed

    Webber, Bruce L; Miller, Rebecca E; Woodrow, Ian E

    2007-08-01

    Cyanogenesis, the liberation of volatile hydrogen cyanide from endogenous cyanide-containing compounds, is a proven plant defence mechanism and the particular cyanogens involved have taxonomic utility. The cyclopentenoncyanhydrin glycoside gynocardin was the only cyanogen isolated from foliar tissue of the rare Australian rainforest tree, Ryparosa kurrangii (Achariaceae). Mechanical damage simulating foliar herbivory did not induce a significant increase in the expression of cyanogenesis over a 24h period, indicating cyanogenic herbivore defence in R. kurrangii is constitutive. The cyanogenic potential of mature leaves was quantitatively polymorphic between trees in a natural population, ranging from 0.54 to 4.77 mg CN g(-1) dry wt leaf tissue.

  1. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Mukhopadyay, K.; Yadev, J.; Varadan, V. K.

    2003-10-01

    Coiled carbon nanotubes exhibit excellent mechanical and electrical properties because of the combination of coil morphology and properties of nanotubes. They could have potential novel applications in nanocomposites and nano-electronic devices as well as nano-electromechanical systems. In this work, synthesis of regularly coiled carbon nanotubes is presented. It involves pyrolysis of hydrocarbon gas over metal/support catalyst by both thermal filament and microwave catalytic chemical vapor deposition methods. Scanning electron microscopy and transmission electron microscopy were performed to observe the coil morphology and nanostructure of coiled nanotubes. The growth mechanism and structural and electrical properties of coiled carbon nanotubes are also discussed.

  2. Running Injuries: The Infrapatellar Fat Pad and Plica Injuries.

    PubMed

    McConnell, Jenny

    2016-02-01

    When considering knee pain in runners, clinicians differentiate sources of symptoms and determine their cause. Knee problems arise when a runner increases the amount/frequency of the loading through the lower limb. The way the loading is distributed through the knee determines which tissues are abnormally loaded. Knee problems cannot be considered in isolation, requiring a thorough investigation of static and dynamic lower limb mechanics, and footwear and surfaces. This article examines potential sources of knee pain and explores the role of the infrapatellar fat pad and synovial plica in the mechanics of the knee and its involvement in knee symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines

    PubMed Central

    2011-01-01

    The peripheral nociceptor is an important target of pain therapy because many pathological conditions such as inflammation excite and sensitize peripheral nociceptors. Numerous ion channels and receptors for inflammatory mediators were identified in nociceptors that are involved in neuronal excitation and sensitization, and new targets, beyond prostaglandins and cytokines, emerged for pain therapy. This review addresses mechanisms of nociception and focuses on molecules that are currently favored as new targets in drug development or that are already targeted by new compounds at the stage of clinical trials - namely the transient receptor potential V1 receptor, nerve growth factor, and voltage-gated sodium channels - or both. PMID:21542894

  4. Rheology and Seismic Potential of Experimentally-Deformed Natural Serpentinites

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Hilairet, N.; Wang, Y.; Yu, T.; Ferrand, T. P.; Schubnel, A.

    2016-12-01

    The origin of intermediate-depth earthquakes, which occur at depths of 60-300 km along subducting slabs, remains somehow enigmatic. In the pressure and temperature conditions involved, rocks should indeed deform in a ductile fashion. One, or more, mechanism is therefore responsible for mechanical instabilities. Dehydration embrittlement, due to serpentine breakdown, was long considered a good candidate. However, in recent years, experimental studies have challenged this theory, by showing that deformation and faulting of serpentinites, related to dehydration, occurs in a stable and aseismic way (Chernak and Hirth, 2011; Gasc et al., 2011). In order to assess the seismic potential of serpentinites, high pressure deformation experiments were carried out on natural samples, during which micro-seismicity was monitored by recording Acoustic Emissions (AE's). Deformation was performed at pressures of 3-5 GPa, using a Deformation-DIA device, and over a wide range of temperatures, both within and outside antigorite's stability field. The results show that, below 400 C, serpentinite deformation involves aseismic semi-brittle mechanisms, even in cases where strain localization is observed. At high temperature (i.e., above 600 C), despite conditions propitious to dehydration embrittlement (i.e., with fast strain rates and reaction kinetics), joint deformation and dehydration leads to ductile shear, without generation of AE's. On the other hand, a brittle temperature window, centered at ca. 500 C, is evidenced. In this latter case, AE's are consistently collected upon deformation and faulting with extremely sharp strain localization is observed. This brittle field may therefore be a source of seismicity in subducting slabs at mantle pressures. However, analysis of the acoustic signal shows that it is relatively orders of magnitude weaker than its real-earth counterparts, which suggests that other mechanisms are responsible for larger intermediate-depth earthquakes. In fact, recent results on samples composed of antigorite and olivine mixtures (Ferrand et al., under review), show that mechanical instabilities develop upon antigorite dehydration, thus suggesting that the largest intermediate-depth earthquakes arise in partly hydrated peridotites.

  5. Negative induced mood influences word production: An event-related potentials study with a covert picture naming task.

    PubMed

    Hinojosa, J A; Fernández-Folgueiras, U; Albert, J; Santaniello, G; Pozo, M A; Capilla, A

    2017-01-27

    The present event-related potentials (ERPs) study investigated the effects of mood on phonological encoding processes involved in word generation. For this purpose, negative, positive and neutral affective states were induced in participants during three different recording sessions using short film clips. After the mood induction procedure, participants performed a covert picture naming task in which they searched letters. The negative compared to the neutral mood condition elicited more negative amplitudes in a component peaking around 290ms. Furthermore, results from source localization analyses suggested that this activity was potentially generated in the left prefrontal cortex. In contrast, no differences were found in the comparison between positive and neutral moods. Overall, current data suggest that processes involved in the retrieval of phonological information during speech generation are impaired when participants are in a negative mood. The mechanisms underlying these effects were discussed in relation to linguistic and attentional processes, as well as in terms of the use of heuristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    PubMed

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  7. Vitamin D and diabetes mellitus: Causal or casual association?

    PubMed

    Grammatiki, M; Rapti, E; Karras, S; Ajjan, R A; Kotsa, Kalliopi

    2017-06-01

    The incidence of both type 2 and type 1 diabetes mellitus has been increasing worldwide. Vitamin D deficiency, or the awareness of its prevalence, has also been increasing. Vitamin D may have a role in the pathogenic mechanisms predisposing to type 2 diabetes by modulating insulin resistance and/or pancreatic β-cell function. Vitamin D status or elements involved in its activation or transport may also be involved in the development of type 1 diabetes mellitus through immunomodulatory role . Based on these observations a potential association between vitamin D and diabetes has been hypothesized. In this review we discuss up to date evidence linking vitamin D with the development of diabetes. Moreover, the role of vitamin D supplementation in the prevention of both types of diabetes is analysed together with its role in improving glycemic control in diabetic patients. We also address the potential role of vitamin D deficiency in the development of macro- and microvascular complications in diabetes. Finally, we provide recommendation for Vitamin D therapy in diabetes in view of current evidence and highlight areas for potential future research in this area.

  8. The electrochemistry of "solid/water" interfaces involved in PEM-H2O reactors: part I. The "Pt/water" interfaces.

    PubMed

    Wang, Qiang; Cha, Chuan-Sin; Lu, Juntao; Zhuang, Lin

    2009-01-28

    The nature and properties of Pt surfaces in contact with pure water in PEM-H2O reactors were mimetically studied by employing CV measurements with microelectrode techniques. These "Pt/water" interfaces were found to be electrochemically polarizable, and the local interfacial potential relative to reversible hydrogen electrode (RHE) potential in pure water is numerically the same as the potential value measured against a RHE in contact with PEM as the reference electrode. However, the structural parameters of the electric double layer at the "Pt/water" interfaces can be quite different from those at the "Pt/PEM" interfaces, and the kinetics of electrode processes could be seriously affected by the structure of electric double layer in pure water media. Besides, there is active diffusional flow of intermediates of electrode reactions between the "Pt/water" and the "Pt/PEM" interfaces, thus facilitating the active involvement of the "Pt/water" interfaces in the current-generation mechanism of PEM fuel cells and other types of PEM-H2O reactors.

  9. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    PubMed

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  10. Animal models of cannabinoid reward

    PubMed Central

    Panlilio, Leigh V; Justinova, Zuzana; Goldberg, Steven R

    2010-01-01

    The endogenous cannabinoid system is involved in numerous physiological and neuropsychological functions. Medications that target this system hold promise for the treatment of a wide variety of disorders. However, as reward is one of the most prominent of these functions, medications that activate this system must be evaluated for abuse potential. Meanwhile, cannabis is already being used chronically by millions of people, many of whom eventually seek treatment for cannabis dependence. Therefore, there is a need for procedures that can be used to: (i) better understand the mechanisms of cannabinoid reward; (ii) evaluate the abuse potential of new medications; and (iii) evaluate the effectiveness of medications developed for treating cannabis dependence. Animal models of cannabinoid reward provide a means of accomplishing these goals. In this review, we briefly describe and evaluate these models, their advantages and their shortcomings. Special emphasis is placed on intravenous cannabinoid self-administration in squirrel monkeys, a valid, reliable and flexible model that we have developed over the past decade. Although the conditions under which cannabinoid drugs have rewarding effects may be more restricted than with other drugs of abuse such as cocaine and heroin, work with these models indicates that cannabinoid reward involves similar brain mechanisms and produces the same kinds of reward-related behaviour. By continuing to use these animal models as tools in the development of new medications, it should be possible to take advantage of the potential benefits provided by the endocannabinoid system while minimizing its potential for harm. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590560

  11. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    PubMed

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  12. Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala.

    PubMed

    Hong, Ingie; Song, Beomjong; Lee, Sukwon; Kim, Jihye; Kim, Jeongyeon; Choi, Sukwoo

    2009-12-03

    The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long-term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning-induced potentiation at cortical input synapses onto the LA (C-LA synapses). Fear conditioning induced a significant potentiation of excitatory postsynaptic currents at C-LA synapses compared with naïve and unpaired controls, whereas extinction apparently reversed this potentiation. Paired-pulse low-frequency stimulation (pp-LFS) induced synaptic depression in the C-LA pathway of fear-conditioned rats, but not in naïve or unpaired controls, indicating that the pp-LFS-induced depression is specific to associative learning-induced changes (pp-LFS-induced depotentiation(ex vivo)). Importantly, extinction occluded pp-LFS-induced depotentiation(ex vivo), suggesting that extinction shares some mechanisms with the depotentiation. pp-LFS-induced depotentiation(ex vivo) required NMDA receptor (NMDAR) activity, consistent with a previous finding that blockade of amygdala NMDARs impaired fear extinction. In addition, pp-LFS-induced depotentiation(ex vivo) required activity of group II metabotropic glutamate receptors (mGluRs), known to be present at presynaptic terminals, but not AMPAR internalization, consistent with a presynaptic mechanism for pp-LFS-induced depotentiation(ex vivo). This result is in contrast with another form of ex vivo depotentiation in the thalamic pathway that requires both group I mGluR activity and AMPAR internalization. We thus suggest that extinction of conditioned fear involves a distinct form of depotentiation at C-LA synapses, which depends upon both NMDARs and group II mGluRs.

  13. Identification of novel biomarker and therapeutic target candidates for acute intracerebral hemorrhage by quantitative plasma proteomics.

    PubMed

    Li, Guo-Chun; Zhang, Lina; Yu, Ming; Jia, Haiyu; Tian, Ting; Wang, Junqin; Wang, Fuqiang; Zhou, Ling

    2017-01-01

    The systematic mechanisms of acute intracerebral hemorrhage are still unknown and unverified, although many recent researches have indicated the secondary insults. This study was aimed to disclose the pathological mechanism and identify novel biomarker and therapeutic target candidates by plasma proteome. Patients with AICH (n = 8) who demographically matched healthy controls (n = 4) were prospectively enrolled, and their plasma samples were obtained. The TMT-LC-MS/MS-based proteomics approach was used to quantify the differential proteome across plasma samples, and the results were analyzed by Ingenuity Pathway Analysis to explore canonical pathways and the relationship involved in the uploaded data. Compared with healthy controls, there were 31 differentially expressed proteins in the ICH group ( P  < 0.05), of which 21 proteins increased while 10 proteins decreased in abundance. These proteins are involved in 21 canonical pathways. One network with high confidence level was selected by the function network analysis, in which 23 proteins, P38MAPK and NFκB signaling pathways participated. Upstream regulator analysis found two regulators, IL6 and TNF, with an activation z -score. Seven biomarker candidates: APCS, FGB, LBP, MGMT, IGFBP2, LYZ, and APOA4 were found. Six candidate proteins were selected to assess the validity of the results by subsequent Western blotting analysis. Our analysis provided several intriguing pathways involved in ICH, like LXR/RXR activation, acute phase response signaling, and production of NO and ROS in macrophages pathways. The three upstream regulators: IL-6, TNF, LPS, and seven biomarker candidates: APCS, APOA4, FGB, IGFBP2, LBP, LYZ, and MGMT were uncovered. LPS, APOA4, IGFBP2, LBP, LYZ, and MGMT are novel potential biomarkers in ICH development. The identified proteins and pathways provide new perspectives to the potential pathological mechanism and therapeutic targets underlying ICH.

  14. Obesity and the reproductive system disorders: epigenetics as a potential bridge.

    PubMed

    Crujeiras, Ana B; Casanueva, Felipe F

    2015-01-01

    Obesity and overweight are significantly involved in several reproductive pathologies contributing to infertility in men and women. In addition, several cancers of the reproductive system, such as endometrial, ovarian, breast, testicular and prostate cancers, are strongly influenced by obesity. However, the molecular mechanisms involved in the association between obesity and reproductive disorders remain unclear. Our proposal is to review the current scientific evidence regarding the effect of obesity-related factors as the core of the collective mechanisms directly and indirectly involved in the relationship between obesity and reproductive disorders, with a special and original focus on the effect of the obesity state microenvironment on the epigenetic profile as a reversible mechanistic link between obesity and the reproductive disorders. A PubMed search was performed using keywords related to obesity and adipose-related factors and epigenetics and associated with keywords related to reproduction. Full-text articles and abstracts in the English language published prior to 31 December 2013 were reviewed. The obesity state notably contributes to a reproductive dysfunction in both men and women, ranging from infertility to oncological outcomes. Several epidemiological and experimental studies demonstrate that factors secreted by the adipose tissue and gut in an obesity state can directly induce reproductive disturbances. Relevantly, these same factors are able to alter the epigenetic regulation of genes, a dynamic and reversible mechanism by which the organism responds to environmental pressures critical to the reproductive function. This review outlines the evidence showing that the association between the reproductive pathologies and obesity is not inevitable but is potentially preventable and reversible. The epigenetic marks related to obesity could constitute a therapeutic target for the reproductive disorders associated with obesity. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. 5-lipoxygenase activation is involved in the mechanisms of chronic hepatic injury in a rat model of chronic aluminum overload exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Shaoshan

    We previously confirmed that rats overloaded with aluminum exhibited hepatic function damage and increased susceptibility to hepatic inflammation. However, the mechanism of liver toxicity by chronic aluminum overload is poorly understood. In this study, we investigated changes in the 5-lipoxygenase (5-LO) signaling pathway and its effect on liver injury in aluminum-overloaded rats. A rat hepatic injury model of chronic aluminum injury was established via the intragastric administration of aluminum gluconate (Al{sup 3+} 200 mg/kg per day, 5 days a week for 20 weeks). The 5-LO inhibitor, caffeic acid (10 and 30 mg/kg), was intragastrically administered 1 h after aluminum administration.more » Hematoxylin and eosin staining was used to visualize pathological changes in rat liver tissue. A series of biochemical indicators were measured with biochemistry assay or ELISAs. Immunochemistry and RT-PCR methods were used to detect 5-LO protein and mRNA expression in the liver, respectively. Caffeic acid administration protected livers against histopathological injury, decreased plasma ALT, AST, and ALP levels, decreased TNF-α, IL-6, IL-1β and LTs levels, increased the reactive oxygen species content, and down-regulated the mRNA and protein expressions of 5-LO in aluminum overloaded rats. Our results indicate that 5-lipoxygenase activation is mechanistically involved in chronic hepatic injury in a rat model of chronic aluminum overload exposure and that the 5-LO signaling pathway, which associated with inflammation and oxidative stress, is a potential therapeutic target for chronic non-infection liver diseases. - Highlights: • 5-LO signaling contributes to mechanisms of hepatotoxicity of aluminum overload. • Oxidative and inflammatory reaction involve in chonic aluminum hepatotoxicity. • 5-LO inhibitor has a protective effect on aluminum-overload liver injury. • 5-LO signaling is a potential therapeutic target for non-infection liver diseases.« less

  16. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms.

    PubMed

    Zhang, Yifan; Xu, Jingwei; Zhang, Kun; Yang, Wei; Li, Bingjin

    2018-01-01

    Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet. Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Data was obtained from the websites including Web of Science, Medline, Pubmed, Scopus, based on these keywords: "Ketogenic diet" and "epilepsy". As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Potential Roles of Stevia rebaudiana Bertoni in Abrogating Insulin Resistance and Diabetes: A Review

    PubMed Central

    Mohd-Radzman, Nabilatul Hani; Ismail, W. I. W.; Adam, Zainah; Jaapar, Siti Safura; Adam, Aishah

    2013-01-01

    Insulin resistance is a key factor in metabolic disorders like hyperglycemia and hyperinsulinemia, which are promoted by obesity and may later lead to Type II diabetes mellitus. In recent years, researchers have identified links between insulin resistance and many noncommunicable illnesses other than diabetes. Hence, studying insulin resistance is of particular importance in unravelling the pathways employed by such diseases. In this review, mechanisms involving free fatty acids, adipocytokines such as TNFα and PPARγ and serine kinases like JNK and IKKβ, asserted to be responsible in the development of insulin resistance, will be discussed. Suggested mechanisms for actions in normal and disrupted states were also visualised in several manually constructed diagrams to capture an overall view of the insulin-signalling pathway and its related components. The underlying constituents of medicinal significance found in the Stevia rebaudiana Bertoni plant (among other plants that potentiate antihyperglycemic activities) were explored in further depth. Understanding these factors and their mechanisms may be essential for comprehending the progression of insulin resistance towards the development of diabetes mellitus. PMID:24324517

  18. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    PubMed

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  19. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions.

    PubMed

    Wong, Christopher X; Ganesan, Anand N; Selvanayagam, Joseph B

    2017-05-01

    Obesity is increasingly recognized as a major modifiable determinant of atrial fibrillation (AF). Although body mass index and other clinical measures are useful indications of general adiposity, much recent interest has focused on epicardial fat, a distinct adipose tissue depot that can be readily assessed using non-invasive imaging techniques. A growing body of data from epidemiological and clinical studies has demonstrated that epicardial fat is consistently associated with the presence, severity, and recurrence of AF across a range of clinical settings. Evidence from basic science and translational studies has also suggested that arrhythmogenic mechanisms may involve adipocyte infiltration, pro-fibrotic, and pro-inflammatory paracrine effects, oxidative stress, and other pathways. Despite these advances, however, significant uncertainty exists and many questions remain unanswered. In this article, we review our present understanding of epicardial fat, including its classification and quantification, existing evidence implicating its role in AF, potential mechanisms, implications for clinicians, and future directions for research. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  20. Hepatic ischemia-reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow and hepatocyte damage.

    PubMed

    Nieuwenhuijs, Vincent B; De Bruijn, Menno T; Padbury, Robert T A; Barritt, Gregory J

    2006-06-01

    Liver resection and liver transplantation have been successful in the treatment of liver tumors and end-stage liver disease. This success has led to an expansion in the pool of patients potentially treatable by liver surgery and, in the case of transplantation, to a shortage of liver donors. At present, there are significant numbers of potential candidates for liver resection and liver donation who have fatty livers, are aged, or have livers damaged by chemotherapy. All of these are at high risk for ischemic reperfusion (IR) injury. The aims of this review are to assess current knowledge of the clinical effectiveness of ischemic preconditioning and intermittent ischemia in reducing IR damage in liver surgery; to evaluate the use of bile flow as a sensitive indicator of IR liver damage; and to analyze the molecular mechanisms, especially intracellular Ca2+, involved in IR injury and ischemic preconditioning. It is concluded that bile flow is a sensitive indicator of IR injury. Together with reactive oxygen species (ROS) and other extracellular and intracellular signaling molecules, intracellular Ca2+ in hepatocytes plays a key role in the normal regulation of bile flow and in IR-induced injury and cell death. Ischemic preconditioning is an effective strategy to reduce IR injury but there is considerable scope for improvement, especially in patients with fatty and aged livers. The development of effective new strategies to reduce IR injury will depend on improved understanding of the molecular mechanisms involved, especially by gaining a better perspective of the relative importance of the various intrahepatocyte signaling pathways involved.

  1. Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer's disease.

    PubMed

    Sultana, Rukhsana; Banks, William A; Butterfield, D Allan

    2010-02-15

    Alzheimer's disease (AD) is the most common form of dementia and is pathologically characterized by senile plaques, neurofibrillary tangles, synaptic disruption and loss, and progressive neuronal deficits. The exact mechanism(s) of AD pathogenesis largely remain unknown. With advances in technology diagnosis of a pre-AD stage referred to as amnestic mild cognitive impairment (MCI) has become possible. Amnestic MCI is characterized clinically by memory deficit, but normal activities of daily living and no dementia. In the present study, compared to controls, we observed in hippocampus from subjects with MCI a significantly decreased level of PSD95, a key synaptic protein, and also decreased levels of two proteins associated with PSD95, the N-methyl-D-aspartate receptor, subunit 2A (NR2A) and the low-density lipoprotein receptor-1 (LRP1). PSD95 and NR2A are involved in long-term potentiation, a key component of memory formation, and LRP1 is involved in efflux of amyloid beta-peptide (1-42). Abeta (1-42) conceivably is critical to the pathogenesis of MCI and AD, including the oxidative stress under which brain in both conditions exist. The data obtained from the current study suggest a possible involvement of these proteins in synaptic alterations, apoptosis and consequent decrements in learning and memory associated with the progression of MCI to AD. Copyright 2009 Wiley-Liss, Inc.

  2. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, R. S.; Redfern, P. C.; Greeley, J.

    2011-03-28

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less

  3. Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey P.

    2011-04-21

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less

  4. Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey

    2011-03-28

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large,more » about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.« less

  5. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies.

    PubMed

    Pedrini, Nicolás

    2018-06-01

    Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations.

    PubMed

    Prieto-Moure, Beatriz; Lloris-Carsí, José M; Barrios-Pitarque, Carlos; Toledo-Pereyra, Luis-H; Lajara-Romance, José María; Berda-Antolí, M; Lloris-Cejalvo, J M; Cejalvo-Lapeña, Dolores

    2016-08-01

    Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.

  7. The osteoblastic niche in the context of multiple myeloma.

    PubMed

    Toscani, Denise; Bolzoni, Marina; Accardi, Fabrizio; Aversa, Franco; Giuliani, Nicola

    2015-01-01

    The osteoblastic niche has a critical role in the regulation of hemopoietic stem cell (HSC) quiescence and self-renewal and in the support of hematopoiesis. Several mechanisms are involved in the crosstalk between stem cells and osteoblasts, including soluble cytokines, adhesion molecules, and signal pathways such as the wingless-Int (Wnt), Notch, and parathyroid hormone pathways. According to the most recent evidence, there is an overlap between osteoblastic and perivascular niches that affects HSC function involving mesenchymal stromal and endothelial cells and a gradient of oxygen regulated by hypoxia inducible factor (HIF)-1α. Derived from plasma cells, multiple myeloma (MM) is a hematopoietic malignancy characterized by a peculiar dependency on the bone microenvironment. Quiescent MM cells may reside in the osteoblastic niche for protection from apoptotic stimuli; in turn, MM cells suppress osteoblast formation and function, leading to impairment of bone formation and the development of osteolytic lesions. Several recent studies have investigated the mechanisms involved in the relationship between osteoblasts and MM cells and identified potential therapeutic targets in the osteoblastic niche, including the HIF-1α, Runx2, and Wnt (both canonical and noncanonical) signaling pathways. © 2014 New York Academy of Sciences.

  8. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.

    PubMed

    Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-08-19

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  9. Thalamic alexia with agraphia

    PubMed Central

    de Gobbi Porto, Fábio Henrique; d'Ávila Freitas, Maria Isabel; de Oliveira, Maira Okada; Lucato, Leandro Tavares; Orsini, Marco; de Menezes, Sara Lúcia Silveira; Magaldi, Regina Miksian; Porto, Cláudia Sellitto; Dozzi Brucki, Sonia Maria; Nitrini, Ricardo

    2012-01-01

    Alexia with agraphia is defined as an acquired impairment affecting reading and writing ability. It can be associated with aphasia, but can also occur as an isolated entity. This impairment has classically been associated with a left angular gyrus lesion In the present study, we describe a case involving a patient who developed alexia with agraphia and other cognitive deficits after a thalamic hemorrhage. In addition, we discuss potential mechanisms of this cortical dysfunction syndrome caused by subcortical injury. We examined a patient who presented with alexia with agraphia and other cognitive deficits due to a hemorrhage in the left thalamus. Neuropsychological evaluation showed attention, executive function, arithmetic and memory impairments. In addition, language tests revealed severe alexia with agraphia in the absence of aphasia. Imaging studies disclosed an old thalamic hemorrhage involving the anterior, dorsomedial and pulvinar nuclei. Tractography revealed asymmetric thalamocortical radiations in the parietal region (left

  10. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH 3-to-N 2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed N Oad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurringmore » prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N 2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  11. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE PAGES

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; ...

    2016-01-12

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH 3-to-N 2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed N Oad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurringmore » prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N 2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  12. THE GOOD, THE BAD, AND THE TOXIC: APPROACHING HORMESIS IN DAPHNIA MAGNA EXPOSED TO AN ENERGETIC COMPOUND

    PubMed Central

    Stanley, Jacob K.; Perkins, Edward J.; Habib, Tanwir; Sims, Jerre G.; Chappell, Pornsawan; Escalon, B. Lynn; Wilbanks, Mitchell; Garcia-Reyero, Natàlia

    2014-01-01

    A hormetic response is characterized by an opposite effect in small and large doses of chemical exposure, often resulting in seemingly beneficial effects at low doses. Here, we examined the potential mechanisms underlying the hormetic response of Daphnia magna to the energetic trinitrotoluene (TNT). Daphnia magna were exposed to TNT for 21 days and a significant increase in adult length and number of neonates was identified at low concentrations (0.002 – 0.22 mg/L TNT) while toxic effects were identified at high concentrations (0.97 mg/L TNT and above). Microarray analysis of D. magna exposed to 0.004, 0.12, and 1.85 mg/L TNT identified effects on lipid metabolism as a potential mechanism underlying hormetic effects. Lipidomic analysis of exposed D. magna supported the hypothesis that TNT exposure affected lipid and fatty acid metabolism, showing that hormetic effects could be related to changes in polyunsaturated fatty acids known to be involved in Daphnia growth and reproduction. Our results show that Daphnia exposed to low levels of TNT presented hormetic growth and reproduction enhancement while higher TNT concentrations had an opposite effect. Our results also show how a systems approach can help elucidate potential mechanisms of action and adverse outcomes. PMID:23898970

  13. GABAergic circuits control input-spike coupling in the piriform cortex.

    PubMed

    Luna, Victor M; Schoppa, Nathan E

    2008-08-27

    Odor coding in mammals is widely believed to involve synchronized gamma frequency (30-70 Hz) oscillations in the first processing structure, the olfactory bulb. How such inputs are read in downstream cortical structures however is not known. Here we used patch-clamp recordings in rat piriform cortex slices to examine cellular mechanisms that shape how the cortex integrates inputs from bulb mitral cells. Electrical stimulation of mitral cell axons in the lateral olfactory tract (LOT) resulted in excitation of pyramidal cells (PCs), which was followed approximately 10 ms later by inhibition that was highly reproducible between trials in its onset time. This inhibition was somatic in origin and appeared to be driven through a feedforward mechanism, wherein GABAergic interneurons were directly excited by mitral cell axons. The precise inhibition affected action potential firing in PCs in two distinct ways. First, by abruptly terminating PC excitation, it limited the PC response to each EPSP to exactly one, precisely timed action potential. In addition, inhibition limited the summation of EPSPs across time, such that PCs fired action potentials in strong preference for synchronized inputs arriving in a time window of <5 ms. Both mechanisms would help ensure that PCs respond faithfully and selectively to mitral cell inputs arriving as a synchronized gamma frequency pattern.

  14. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    PubMed

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  15. Bistable metamaterial for switching and cascading elastic vibrations

    PubMed Central

    Foehr, André; Daraio, Chiara

    2017-01-01

    The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663

  16. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    PubMed

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  17. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  18. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms.

    PubMed

    Lund, Marianne N; Ray, Colin A

    2017-06-14

    Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.

  19. Chinese Herbal Medicine as a Potential Treatment of Abdominal Aortic Aneurysm

    PubMed Central

    Seto, Sai Wang; Chang, Dennis; Kiat, Hosen; Wang, Ning; Bensoussan, Alan

    2018-01-01

    Abdominal aortic aneurysm (AAA) is an irreversible condition where the abdominal aorta is dilated leading to potentially fatal consequence of aortic rupture. Multiple mechanisms are involved in the development and progression of AAA, including chronic inflammation, oxidative stress, vascular smooth muscle (VSMC) apoptosis, immune cell infiltration and extracellular matrix (ECM) degradation. Currently surgical therapies, including minimally invasive endovascular aneurysm repair (EVAR), are the only viable interventions for AAAs. However, these treatments are not appropriate for the majority of AAAs, which measure <50 mm. Substantial effort has been invested to identify and develop pharmaceutical treatments such as statins and doxycycline for this potentially lethal condition but these interventions failed to offer a cure or to retard the progression of AAA. Chinese herbal medicine (CHM) has been used for the management of cardiovascular diseases for thousands of years in China and other Asian countries. The unique multi-component and multi-target property of CHMs makes it a potentially ideal therapy for multifactorial diseases such as AAA. In this review, we review the current scientific evidence to support the use of CHMs for the treatment of AAA. Mechanisms of action underlying the effects of CHMs on AAA are also discussed. PMID:29732374

  20. Chinese Herbal Medicine as a Potential Treatment of Abdominal Aortic Aneurysm.

    PubMed

    Seto, Sai Wang; Chang, Dennis; Kiat, Hosen; Wang, Ning; Bensoussan, Alan

    2018-01-01

    Abdominal aortic aneurysm (AAA) is an irreversible condition where the abdominal aorta is dilated leading to potentially fatal consequence of aortic rupture. Multiple mechanisms are involved in the development and progression of AAA, including chronic inflammation, oxidative stress, vascular smooth muscle (VSMC) apoptosis, immune cell infiltration and extracellular matrix (ECM) degradation. Currently surgical therapies, including minimally invasive endovascular aneurysm repair (EVAR), are the only viable interventions for AAAs. However, these treatments are not appropriate for the majority of AAAs, which measure <50 mm. Substantial effort has been invested to identify and develop pharmaceutical treatments such as statins and doxycycline for this potentially lethal condition but these interventions failed to offer a cure or to retard the progression of AAA. Chinese herbal medicine (CHM) has been used for the management of cardiovascular diseases for thousands of years in China and other Asian countries. The unique multi-component and multi-target property of CHMs makes it a potentially ideal therapy for multifactorial diseases such as AAA. In this review, we review the current scientific evidence to support the use of CHMs for the treatment of AAA. Mechanisms of action underlying the effects of CHMs on AAA are also discussed.

Top