Sample records for potential neuroprotective agents

  1. Putative neuroprotective agents in neuropsychiatric disorders.

    PubMed

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    1999-01-01

    The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved

  3. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  4. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  5. To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuroprotective agents?

    PubMed

    Hunter, A J; Mackay, K B; Rogers, D C

    1998-02-01

    A general consensus is being reached on the use of a combination of mortality and functional end-points in clinical trials of neuroprotective agents. However, to date, few preclinical studies have examined the effects of putative neuroprotective agents on functional outcome after ischaemia. The data described in this review show the importance of combining both histopathological and neurobehavioural studies when evaluating the neuroprotective efficacy of anti-ischaemic agents in animal models of cerebral ischaemia. Here, Jackie Hunter, Ken Mackay and Derek Rogers argue that measures of functional improvement in models of ischaemia should be incorporated to characterize further the neuroprotection afforded by a compound that could aid the selection of doses and end-point measures in early clinical trials.

  6. Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties.

    PubMed

    Chioua, Mourad; Sucunza, David; Soriano, Elena; Hadjipavlou-Litina, Dimitra; Alcázar, Alberto; Ayuso, Irene; Oset-Gasque, María Jesús; González, María Pilar; Monjas, Leticia; Rodríguez-Franco, María Isabel; Marco-Contelles, José; Samadi, Abdelouahid

    2012-01-12

    We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.

  7. Wine Polyphenols: Potential Agents in Neuroprotection

    PubMed Central

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  8. Wine polyphenols: potential agents in neuroprotection.

    PubMed

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  9. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine

    PubMed Central

    Marashly, Eyad T.; Bohlega, Saeed A.

    2017-01-01

    With the huge negative impact of neurological disorders on patient’s life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson’s disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients

  10. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review.

    PubMed

    Sowndhararajan, Kandhasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun

    2018-06-11

    Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.

  11. The therapeutic potential of the cannabinoids in neuroprotection.

    PubMed

    Grundy, Robert I

    2002-10-01

    After thousands of years of interest the last few decades have seen a huge increase in our knowledge of the cannabinoids and their mode of action. Their potential as medical therapeutics has long been known. However, very real concerns over their safety and efficacy have lead to caution and suspicion when applying the legislature of modern medicine to these compounds. The ability of this diverse family of compounds to modulate neurotransmission and act as anti-inflammatory and antioxidative agents has prompted researchers to investigate their potential as neuroprotective agents. Indeed, various cannabinoids rescue dying neurones in experimental forms of acute neuronal injury, such as cerebral ischaemia and traumatic brain injury. Cannabinoids also provide symptomatic relief in experimental models of chronic neurodegenerative diseases, such as multiple sclerosis and Huntington's disease. This preclinical evidence has provided the impetus for the launch of a number of clinical trials in various conditions of neurodegeneration and neuronal injury using compounds derived from the cannabis plant. Our understanding of cannabinoid neurobiology, however, must improve if we are to effectively exploit this system and take advantage of the numerous characteristics that make this group of compounds potential neuroprotective agents.

  12. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.

    PubMed

    Golime, RamaRao; Palit, Meehir; Acharya, J; Dubey, D K

    2018-05-01

    Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100β, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 μg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-β and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.

  13. Argon gas: a potential neuroprotectant and promising medical therapy

    PubMed Central

    2014-01-01

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741

  14. Neuroprotective effect of lidocaine: is there clinical potential?

    PubMed Central

    Leng, Tiandong; Gao, Xiuren; Dilger, James P; Lin, Jun

    2016-01-01

    Local anesthetic lidocaine has been shown to be protective in animal models of focal and global ischemia as well as in in vitro hypoxic models. Lidocaine has been tested in patients for its potential protective effect on postoperative cognitive dysfunction. This mini-review summarizes the laboratory and clinical evidences and discusses its clinical applications as neuroprotective agent. PMID:27186318

  15. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment. PMID:23691263

  16. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    PubMed Central

    Wu, Haijian; Niu, Huanjiang; Shao, Anwen; Wu, Cheng; Dixon, Brandon J.; Zhang, Jianmin; Yang, Shuxu; Wang, Yirong

    2015-01-01

    Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases. PMID:26378548

  17. Neuroprotective potential of high-dose biotin.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2017-11-01

    A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain

  18. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    PubMed Central

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  19. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data.

    PubMed

    Lauterbach, Edward C; Victoroff, Jeff; Coburn, Kerry L; Shillcutt, Samuel D; Doonan, Suzanne M; Mendez, Mario F

    2010-01-01

    This manuscript reviews the preclinical in vitro, ex vivo, and nonhuman in vivo effects of psychopharmacological agents in clinical use on cell physiology with a view toward identifying agents with neuroprotective properties in neurodegenerative disease. These agents are routinely used in the symptomatic treatment of neurodegenerative disease. Each agent is reviewed in terms of its effects on pathogenic proteins, proteasomal function, mitochondrial viability, mitochondrial function and metabolism, mitochondrial permeability transition pore development, cellular viability, and apoptosis. Effects on the metabolism of the neurodegenerative disease pathogenic proteins alpha-synuclein, beta-amyloid, and tau, including tau phosphorylation, are particularly addressed, with application to Alzheimer's and Parkinson's diseases. Limitations of the current data are detailed and predictive criteria for translational clinical neuroprotection are proposed and discussed. Drugs that warrant further study for neuroprotection in neurodegenerative disease include pramipexole, thioridazine, risperidone, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, fluoxetine, buspirone, clonazepam, diphenhydramine, and melatonin. Those with multiple neuroprotective mechanisms include pramipexole, thioridazine, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, clonazepam, and melatonin. Those best viewed circumspectly in neurodegenerative disease until clinical disease course outcomes data become available, include several antipsychotics, lithium, oxcarbazepine, valproate, several tricyclic antidepressants, certain SSRIs, diazepam, and possibly diphenhydramine. A search for clinical studies of neuroprotection revealed only a single study demonstrating putatively positive results for ropinirole. An agenda for research on potentially neuroprotective agent is provided.

  20. Design, synthesis and biological evaluation of LX2343 derivatives as neuroprotective agents for the treatment of Alzheimer's disease.

    PubMed

    Sun, Guanglong; Wang, Junwei; Guo, Xiaodan; Lei, Min; Zhang, Yinan; Wang, Xiachang; Shen, Xu; Hu, Lihong

    2018-02-10

    A series of LX2343 derivatives were designed, synthesized and evaluated as neuroprotective agents for Alzheimer's disease (AD) in vitro. Most of the compounds displayed potent neuroprotective activities. Especially for compound A6, exhibited a remarkable EC 50 value of 0.22 μM. Further investigation demonstrated that compound A6 can significantly reduce Aβ production and increase Aβ clearance, and alleviate Tau hyperphosphorylation. Most importantly, compound A6 could ameliorate learning and memory impairments in APP/PS1 transgenic mice. The present study evidently showed that compound A6 is a potent neuroprotective agent and might serve as a promising lead candidate for the treatment of Alzheimer's disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-30

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.

  2. The Neuroprotective Disease-Modifying Potential of Psychotropics in Parkinson's Disease

    PubMed Central

    Lauterbach, Edward C.; Fontenelle, Leonardo F.; Teixeira, Antonio L.

    2012-01-01

    Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF. PMID:22254151

  3. The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent.

    PubMed

    Nathan, Pradeep J; Lu, Kristy; Gray, M; Oliver, C

    2006-01-01

    L-theanine (N-ethyl-L-glutamine) or theanine is a major amino acid uniquely found in green tea. L-theanine has been historically reported as a relaxing agent, prompting scientific research on its pharmacology. Animal neurochemistry studies suggest that L-theanine increases brain serotonin, dopamine, GABA levels and has micromolar affinities for AMPA, Kainate and NMDA receptors. In addition has been shown to exert neuroprotective effects in animal models possibly through its antagonistic effects on group 1 metabotrophic glutamate receptors. Behavioural studies in animals suggest improvement in learning and memory. Overall, L-theanine displays a neuropharmacology suggestive of a possible neuroprotective and cognitive enhancing agent and warrants further investigation in animals and humans.

  4. Neuroprotective role of Agmatine in Neurological Diseases.

    PubMed

    Xu, Weilin; Gao, Liansheng; Li, Tao; Shao, Anwen; Zhang, Jianmin

    2017-08-08

    Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lack of efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Moreover, there has been numerous studies demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alzheimer's disease). The potential mechanism of agmatine -induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. In this review, we will introduce the neuroprotective effects of agmatine and the underlying mechanisms in the setting of neurological diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Combination of Neuroprotective and Regenerative Agents for AGE-Induced Retinal Degeneration: In Vitro Study

    PubMed Central

    Yamamoto, Shuichi

    2017-01-01

    To determine the most effective combination of neuroprotective and regenerative agents for cultured retinal neurons from advanced glycation end products- (AGEs-) induced degeneration, retinal explants of 7 adult Sprague-Dawley rats were three-dimensionally cultured in collagen gel and incubated in serum-free media and in 7 media; namely, AGEs, AGEs + 100 μM citicoline, AGEs + 10 ng/mL NT-4, AGEs + 100 μM TUDCA, AGEs + 100 μM citicoline + TUDCA (doublet), and AGEs + 100 μM citicoline + TUDCA + 10 ng/mL NT-4 (triplet) were examined. The number of regenerating neurites was counted after 7 days of culture, followed by performing TUNEL and DAPI staining. The ratio of TUNEL-positive cells to the number of DAPI-stained nuclei was calculated. Immunohistochemical examinations for the active form of caspase-9 and JNK were performed. All of the neuroprotectants increased the number of neurites and decreased the number of TUNEL-positive cells. However, the number of neurites was significantly higher, and the number of TUNEL-positive cells and caspase-9- and JNK-immunopositive cells was fewer in the retinas incubated with the combined three agents. Combination solutions containing citicoline, TUDCA, and NT-4 should be considered for neuroprotective and regenerative therapy for AGE-related retinal degeneration. PMID:28573143

  6. Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit

    PubMed Central

    Muehlschlegel, Susanne; Sims, John R.

    2009-01-01

    Background and aims Calcium plays a central role in neuronal function and injury. Dantrolene, an inhibitor of the ryanodine receptor, inhibits intracellular calcium release from the sarcoendoplasmic reticulum and might serve as novel agent for neuroprotection and other applications in the Neurointensive Care Unit. Methods We reviewed the available data of dantrolene as a potential neuroprotective agent through literature searches on Ovid, Pubmed and Google Scholar. Results Dantrolene provides neuroprotection in multiple in vitro models and some in vivo models of neural injury. Its efficacy has an early and narrow time-window of protection. We briefly summarize its other pharmacologic effects that may have potential applications for patients in the neurointensive care unit. Areas with the need for continued research are identified. Conclusion Targeted use of dantrolene in selected ICU disease models of anticipated neural injury, such as impending ischemia from vasospastic syndromes, might provided neuroprotection. PMID:18696266

  7. Synergistic neuroprotective therapies with hypothermia

    PubMed Central

    Cilio, Maria Roberta; Ferriero, Donna M.

    2010-01-01

    summary Neuroprotection is a major health care priority, given the enormous burden of human suffering and financial cost caused by perinatal brain damage. With the advent of hypothermia as therapy for term hypoxic–ischemic encephalopathy, there is hope for repair and protection of the brain after a profound neonatal insult. However, it is clear from the published clinical trials and animal studies that hypothermia alone will not provide complete protection or stimulate the repair that is necessary for normal neurodevelopmental outcome. This review critically discusses drugs used to treat seizures after hypoxia–ischemia in the neonate with attention to evidence of possible synergies for therapy. In addition, other agents such as xenon, N-acetylcysteine, erythropoietin, melatonin and cannabinoids are discussed as future potential therapeutic agents that might augment protection from hypothermia. Finally, compounds that might damage the developing brain or counteract the neuroprotective effects of hypothermia are discussed. PMID:20207600

  8. Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABAA receptor potentiation

    PubMed Central

    VandeVrede, Lawren; Tavassoli, Ehsan; Luo, Jia; Qin, Zhihui; Yue, Lan; Pepperberg, David R; Thatcher, Gregory R

    2014-01-01

    Background and Purpose: Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied. Experimental Approach: Eight MZs were selected from a novel library, of which two were studied in detail. Neuroprotection, glutamate release, intracellular calcium and response to GABA blockade by picrotoxin were measured in rat primary cortical cultures using four cellular models of neurodegeneration. GABA potentiation was assayed in oocytes expressing the α1β2γ2 GABAA receptor. Key Results: Neuroprotection against a range of insults was retained even with substantial chemical modification. Dependence on GABAA receptor activity was variable: at the extremes, neuroprotection by GN-28 was universally sensitive to picrotoxin, while GN-38 was largely insensitive. In parallel, effects on extracellular glutamate and intracellular calcium were associated with GABAA dependence. Consistent with these findings, GN-28 potentiated α1β2γ2 GABAA function, whereas GN-38 had a weak inhibitory effect. Neuroprotection against moderate dose oligomeric Aβ1–42 was also tolerant to structural changes. Conclusions and Implications: The results support the concept that CMZ does not contain a single pharmacophore, rather that broad-spectrum neuroprotection results from a GABAA-dependent mechanism represented by GN-28, combined with a mechanism represented in GN-38 that shows the least dependence on GABAA receptors. These findings allow further refinement of the neuroprotective pharmacophore and investigation into secondary mechanisms that will assist in identifying MZ-based compounds of use in treating neurodegeneration. PMID:24116891

  9. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon.

    PubMed

    Alam, Azeem; Suen, Ka Chun; Hana, Zac; Sanders, Robert D; Maze, Mervyn; Ma, Daqing

    Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review

    PubMed Central

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2017-01-01

    Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas. In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root. PMID:28452965

  11. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review.

    PubMed

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2017-04-28

    Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas . In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root.

  12. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  13. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    PubMed Central

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  14. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.

    PubMed

    Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun

    2012-11-09

    Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  15. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

    PubMed Central

    Ayaz, Muhammad; Sadiq, Abdul; Junaid, Muhammad; Ullah, Farhat; Subhan, Fazal; Ahmed, Jawad

    2017-01-01

    The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness. PMID:28611658

  16. Topiramate as a neuroprotective agent in a rat model of spinal cord injury.

    PubMed

    Narin, Firat; Hanalioglu, Sahin; Ustun, Huseyin; Kilinc, Kamer; Bilginer, Burcak

    2017-12-01

    Topiramate (TPM) is a widely used antiepileptic and antimigraine agent which has been shown to exert neuroprotective effects in various experimental traumatic brain injury and stroke models. However, its utility in spinal cord injury has not been studied extensively. Thus, we evaluated effects of TPM on secondary cellular injury mechanisms in an experimental rat model of traumatic spinal cord injury (SCI). After rat models of thoracic contusive SCI were established by free weight-drop method, TPM (40 mg/kg) was given at 12-hour intervals for four times orally. Post TPM treatment, malondialdehyde and protein carbonyl levels were significantly reduced and reduced glutathione levels were increased, while immunoreactivity for endothelial nitric oxide synthase, inducible nitric oxide synthase, and apoptotic peptidase activating factor 1 was diminished in SCI rats. In addition, TPM treatment improved the functional recovery of SCI rats. This study suggests that administration of TPM exerts neuroprotective effects on SCI.

  17. Evaluation of nicotine and cotinine analogs as potential neuroprotective agents for Alzheimer's disease.

    PubMed

    Gao, Jie; Adam, Bao-Ling; Terry, Alvin V

    2014-03-15

    The currently available therapies for Alzheimer's disease (AD) and related forms of dementia are limited by modest efficacy, adverse side effects, and the fact that they do not prevent the relentless progression of the illness. The purpose of the studies described here was to investigate the neuroprotective effects of the nicotine metabolite cotinine as well as a small series of cotinine and nicotine analogs (including stereoisomers) and to compare their effects to the four clinically prescribed AD therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells.

    PubMed

    Liang, Chang-Min; Weng, Shao-Ju; Tsai, Tung-Han; Li, I-Hsun; Lu, Pin-Hui; Ma, Kuo-Hsing; Tai, Ming-Cheng; Chen, Jiann-Torng; Cheng, Cheng-Yi; Huang, Yuahn-Sieh

    2014-10-01

    The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. L-MSCs can secrete various neurotrophic factors

  19. Balancing paediatric anaesthesia: preclinical insights into analgesia, hypnosis, neuroprotection, and neurotoxicity.

    PubMed

    Sanders, R D; Ma, D; Brooks, P; Maze, M

    2008-11-01

    Logistical and ethical reasons make conducting clinical research in paediatric practice difficult, and therefore safe and efficacious advances are dependent on good preclinical research. For example, notable advances have been made in preclinical studies of pain processing that correlate well with patient data. Other areas of paediatric anaesthetic research remain in their infancy including mechanisms of anaesthesia and anaesthetic neuroprotection and neurotoxicity. Animal data have identified the potential 'double-edged' sword of administering anaesthetic agents in the young; although these agents can be neuroprotective in certain circumstances, they can be neurotoxic in others. The potential for this toxicity must be balanced against the importance of providing adequate anaesthesia for which there can be no compromise. We review the current state of preclinical research in paediatric anaesthesia and identify areas which require further exploration in order to provide the foundations for well-conducted clinical trials.

  20. Furoxans (1,2,5-Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa

    2012-08-31

    Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO{sub 2}{sup -}, but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatmentmore » with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-{beta} peptide (A{beta}) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.« less

  1. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigations on 16-Arylideno Steroids as a New Class of Neuroprotective Agents for the Treatment of Alzheimer's and Parkinson's Diseases.

    PubMed

    Singh, Ranjit; Bansal, Ranju

    2017-01-18

    Neuroinflammatory mechanisms mediated by activated glial and cytokines (TNF-α, IL-1β) might contribute to neuronal degeneration leading to Alzheimer's (AD) and Parkinson's disease (PD). Lipopolysaccharide (LPS) is an inflammogen derived from the cell wall of Gram-negative bacteria, which promotes neuroinflammation and subsequent neurodegeneration. Dehydroepiandrosterone (DHEA) and testosterone have been reported as neuroprotective steroids useful for the treatment of various neurodegenerative disorders. In the present study, several 16-arylidene steroidal derivatives have been evaluated as neuroprotective agents in LPS-treated animal models. It was observed that 16-arylidene steroidal derivatives 1a-d and 6a-h considerably improve LPS-induced learning, memory, and movement deficits in animal models. Biochemical estimations of brain serum of treated animals revealed suppression of oxidative and nitrosative stress, acetylcholinesterase activity, and reduction in TNF-α levels, which were induced through LPS mediated neuroinflammatory mechanisms leading to neurodegeneration of brain. Of all the steroidal derivatives, 16-(4-pyridylidene) steroid 1c and its 4-aza analogue 6c were found to be the most active neuroprotective agents and produced effects comparable to standard drug celecoxib at a much lower dose and better than dexamethasone at the same dose in terms of behavioral, biochemical, and molecular aspects.

  3. Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide.

    PubMed

    Mahan, Vicki L

    2012-12-27

    Studies in animal models show that the primary mechanism by which heme-oxygenases impart beneficial effects is due to the gaseous molecule carbon monoxide (CO). Produced in humans mainly by the catabolism of heme by heme-oxygenase, CO is a neurotransmitter important for multiple neurologic functions and affects several intracellular pathways as a regulatory molecule. Exogenous administration of inhaled CO or carbon monoxide releasing molecules (CORM's) impart similar neurophysiological responses as the endogenous gas. Its' involvement in important neuronal functions suggests that regulation of CO synthesis and biochemical properties may be clinically relevant to neuroprotection and the key may be a change in metabolic substrate from glucose to lactate. Currently, the drug is under development as a therapeutic agent and safety studies in humans evaluating the safety and tolerability of inhaled doses of CO show no clinically important abnormalities, effects, or changes over time in laboratory safety variables. As an important therapeutic option, inhaled CO has entered clinical trials and its clinical role as a neuroprotective and neurotherapeutic agent has been suggested. In this article, we review the neuroprotective effects of endogenous CO and discuss exogenous CO as a neuroprotective and neurotherapeutic agent.

  4. Voltage-gated K+ channel modulators as neuroprotective agents.

    PubMed

    Leung, Yuk-Man

    2010-05-22

    A manifestation in neurodegeneration is apoptosis of neurons. Neurons undergoing apoptosis may lose a substantial amount of cytosolic K+ through a number of pathways including K+ efflux via voltage-gated K+ (Kv) channels. The consequent drop in cytosolic [K+] relieves inhibition of an array of pro-apoptotic enzymes such as caspases and nucleases. Blocking Kv channels has been known to prevent neuronal apoptosis by preventing K+ efflux. Some neural diseases such as epilepsy are caused by neuronal hyperexcitability, which eventually may lead to neuronal apoptosis. Reduction in activities of A-type Kv channels and Kv7 subfamily members is amongst the etiological causes of neuronal hyperexcitation; enhancing the opening of these channels may offer opportunities of remedy. This review discusses the potential uses of Kv channel modulators as neuroprotective drugs.

  5. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection

    PubMed Central

    2010-01-01

    In the past decade there has been a resurgence of interest in the clinical use of inert gases. In the present paper we review the use of inert gases as anesthetics and neuroprotectants, with particular attention to the clinical use of xenon. We discuss recent advances in understanding the molecular pharmacology of xenon and we highlight specific pharmacological targets that may mediate its actions as an anesthetic and neuroprotectant. We summarize recent in vitro and in vivo studies on the actions of helium and the other inert gases, and discuss their potential to be used as neuroprotective agents. PMID:20836899

  6. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  7. Recent Updates in Neuroprotective and Neuroregenerative Potential of Centella asiatica

    PubMed Central

    Lokanathan, Yogeswaran; Omar, Norazzila; Ahmad Puzi, Nur Nabilah; Saim, Aminuddin; Hj Idrus, Ruszymah

    2016-01-01

    Centella asiatica, locally well known in Malaysia as pegaga, is a traditional herb that has been used widely in Ayurvedic medicine, traditional Chinese medicine, and in the traditional medicine of other Southeast Asian countries including Malaysia. Although consumption of the plant is indicated for various illnesses, its potential neuroprotective properties have been well studied and documented. In addition to past studies, recent studies also discovered and/or reconfirmed that C. asiatica acts as an antioxidant, reducing the effect of oxidative stress in vitro and in vivo. At the in vitro level, C. asiatica promotes dendrite arborisation and elongation, and also protects the neurons from apoptosis. In vivo studies have shown that the whole extract and also individual compounds of C. asiatica have a protective effect against various neurological diseases. Most of the in vivo studies on neuroprotective effects have focused on Alzheimer’s disease, Parkinson’s disease, learning and memory enhancement, neurotoxicity and other mental illnesses such as depression and anxiety, and epilepsy. Recent studies have embarked on finding the molecular mechanism of neuroprotection by C. asiatica extract. However, the capability of C. asiatica in enhancing neuroregeneration has not been studied much and is limited to the regeneration of crushed sciatic nerves and protection from neuronal injury in hypoxia conditions. More studies are still needed to identify the compounds and the mechanism of action of C. asiatica that are particularly involved in neuroprotection and neuroregeneration. Furthermore, the extraction method, biochemical profile and dosage information of the C. asiatica extract need to be standardised to enhance the economic value of this traditional herb and to accelerate the entry of C. asiatica extracts into modern medicine. PMID:27540320

  8. Clematichinenoside Serves as a Neuroprotective Agent Against Ischemic Stroke: The Synergistic Action of ERK1/2 and cPKC Pathways

    PubMed Central

    Liu, Chao; Du, Qianming; Zhang, Xu; Tang, Zhichao; Ji, Hui; Li, Yunman

    2016-01-01

    There are numerous evidences suggesting that inhibition of apoptosis of neurons play a critical role in preventing the damage and even death of neurons after brain ischemia/reperfusion, which shows therapeutic potential for clinical treatment of brain injury induced by stroke. In this study, we aimed to investigate the neuroprotective effect of Clematichinenoside (AR) and its underlying mechanisms. MCAO mode was performed in rats and OGD/R model in primary cortical neurons to investigate the neuroprotective effect of AR. The rate of apoptotic cells was measured using TUNEL assay in cerebral cortex and flow cytometric assay in cortical neurons. Apoptosis-related proteins such as bcl-2, bcl-xl, and bax and the phosphorylation of ERK1/2, cPKC, p90RSK, and CREB in ischemic penumbra were assayed by western blot. Furthermore, we made a thorough inquiry about how these proteins play roles in the anti-apoptotic mechanism using targets-associated inhibitors step by step. The results revealed that AR could activate both ERK1/2 and cPKC which resulted in p90RSK phosphorylation and translocation into the nucleus. Moreover, CREB, a downstream target of p90RSK, was phosphorylated and then bound to cAMP-regulated enhancer (CRE) to activate apoptosis-related genes, and finally ameliorate ischemic stroke through preventing neuron death. In conclusion, these data strongly suggest that AR could be used as an effective neuroprotective agent to protect against ischemic stroke after cerebral I/R injury through regulating both ERK1/2 and cPKC mediated p90RSK/CREB apoptotic pathways. PMID:26793066

  9. Clinical trials for neuroprotection in ALS.

    PubMed

    Siciliano, G; Carlesi, C; Pasquali, L; Piazza, S; Pietracupa, S; Fornai, F; Ruggieri, S; Murri, L

    2010-07-01

    Owing to uncertainty on the pathogenic mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) riluzole remains the only available therapy, with only marginal effects on disease survival. Here we review some of the recent advances in the search for disease-modifying drugs for ALS based on their putative neuroprotective effetcs. A number of more or less established agents have recently been investigated also in ALS for their potential role in neuroprotection and relying on antiglutamatergic, antioxidant or antiapoptotic strategies. Among them Talampanel, beta-lactam antibiotics, Coenzyme Q10, and minocycline have been investigated. Progress has also been made in exploiting growth factors for the treatment of ALS, partly due to advances in developing effective delivery systems to the central nervous system. A number of new therapies have also been identified, including a novel class of compounds, such as heat-shock protein co-inducers, which upregulate cell stress responses, and agents promoting autophagy and mitochondriogenesis, such as lithium and rapamycin. More recently, alterations of mRNA processing were described as a pathogenic mechanism in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations. This knowledge is expected to improve our understanding of the pathogenetic mechanism in ALS and developing more effective therapies.

  10. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.

    PubMed

    Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  11. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR

    PubMed Central

    Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  12. Improved neuroprotective effects by combining Bacopa monnieri and Rosmarinus officinalis supercritical CO2 extracts.

    PubMed

    Ramachandran, Cheppail; Quirin, Karl-Werner; Escalon, Enrique; Melnick, Steven J

    2014-04-01

    Ethnobotanical evidence suggests that herbs such as brahmi (Bacopa monnieri) and rosemary (Rosmarinus officinalis) may possess antioxidant and neuroprotective properties. We compared the antioxidant and neuroprotective effects of supercritical extract of Bacopa monnieri and rosemary antioxidant extract obtained from Rosmarinus officinalis as well as their combination to examine the effects on human glial (U-87 MG) and embryonic mouse hypothalamus cells. Bacopa monnieri extract, rosemary antioxidant extract, and their combination (1:1) are not cytotoxic in both glial and embryonic mouse hypothalamus cell lines up to 200 μg/mL concentration. The combination of extracts of Bacopa monnieri + rosemary antioxidant has better antioxidant potential and antilipid peroxidation activity than either agent alone. Although the extract of Bacopa monnieri + rosemary antioxidant showed almost similar inhibition of phospho tau expression as Bacopa monnieri or rosemary antioxidant extract alone, the combination has better inhibitory effect on amyloid precursor protein synthesis and higher brain-derived neurotrophic factor production in hypothalamus cells than single agents. These results suggest that the extract of Bacopa monnieri + rosemary antioxidant is more neuroprotective than Bacopa monnieri or rosemary antioxidant extract.

  13. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models.

    PubMed

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H V

    2016-05-05

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine's ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease.

  14. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2016-06-01

    antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling seizure model and the tetanus toxin (Tx) model of epilepsy...neuroprotective and antiepileptogenic agent in three experimental models of epilepsy. The pilocarpine-induced model of status epilepticus (PILO) was...neuroprotection, seizures, status epilepticus OVERALL PROJECT SUMMARY: SS-31 was created by Dr. Szeto but the rights to the drug are controlled by Stealth

  15. [The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia].

    PubMed

    Bespalov, A G; Tregub, P P; Kulikov, V P; Pijanzin, A I; Belousov, A A

    2014-01-01

    Studied the role of VEGF, HSP-70 and S-100B in potentiating hypercapnia neuroprotective effect of hypoxia. Demonstrated that neuroprotective effects when exposed hypercapnic hypoxia-mediated protein synthesis increased S-100B, mainly due to the action of carbon dioxide, and not oxygen deficiency. Neuroprotective effects of HSP-70 due to hypoxia, but the combined effect of hypoxia and hypercapnia gives a significant increase in the synthesis of HSP-70 in comparison with the isolated effect of hypoxia. Vascularization activated equally as hypoxia and hypercapnia, without adding significant effects in combination. This suggests dominant effect hypercapnia, hypoxia compared in neuroprotection mechanisms related to protein S-100B, but not the protein VEGF, hypercapnia and potentiate the neuroprotective efficacy of hypoxia-related protein HSP-70.

  16. [Neuroprotective effects of curcumin].

    PubMed

    Li, Yong; Wang, Pengwen

    2009-12-01

    Traditionally, turmeric has been put to use as a food additive and herbal medicine in Asia. Curcumin is an active principle of the perennial herb curcuma longa (commonly known as turmeric). Recent evidence suggests that curcumin has activities with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and antiprotein-aggregate activities. In the current review, we provide the newly evidence for the potential role of curcumin in the neuroprotective effects of neurodegenerative diseases like Alzheimer's disease (AD).

  17. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.

    PubMed

    Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Tao, Yi; Leung, Alexander Kai-Man; Efferth, Thomas; Schröder, Sven

    2014-08-08

    The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action. Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2 h or 24 h followed by 2 h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted. Two hours of exposure to 100 µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100 µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR. Due to its neuroprotective properties CRE might be a potential

  18. Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia

    PubMed Central

    Ma, Qing; Cornelli, Umberto; Hanin, Israel; Jeske, Walter P.; Linhardt, Robert J.; Walenga, Jeanine M.; Fareed, Jawed; Lee, John M.

    2014-01-01

    Heparin is a glycosaminoglycan mixture currently used in prophylaxis and treatment of thrombosis. Heparin possesses non-anticoagulant properties, including modulation of various proteases, interactions with fibroblast growth factors, and anti-inflammatory actions. Senile dementia of Alzheimer’s type is accompanied by inflammatory responses contributing to irreversible changes in neuronal viability and brain function. Vascular factors are also involved in the pathogenesis of senile dementia. Inflammation, endogenous proteoglycans, and assembly of senile plagues and neurofibrillary tangles contribute directly and indirectly to further neuronal damage. Neuron salvage can be achieved by anti-inflammation and the competitive inhibition of proteoglycans accumulation. The complexity of the pathology of senile dementia provides numerous potential targets for therapeutic interventions designed to modulate inflammation and proteoglycan assembly. Heparin and related oligosaccharides are known to exhibit anti-inflammatory effects as well as inhibitory effects on proteoglycan assembly and may prove useful as neuroprotective agents. PMID:17504153

  19. Paramedic Initiation of Neuroprotective Agent Infusions: Successful Achievement of Target Blood Levels and Attained Level Effect on Clinical Outcomes in the FAST-MAG Pivotal Trial (Field Administration of Stroke Therapy - Magnesium).

    PubMed

    Shkirkova, Kristina; Starkman, Sidney; Sanossian, Nerses; Eckstein, Marc; Stratton, Samuel; Pratt, Frank; Conwit, Robin; Hamilton, Scott; Sharma, Latisha; Liebeskind, David; Restrepo, Lucas; Valdes-Sueiras, Miguel; Saver, Jeffrey L

    2017-07-01

    Paramedic use of fixed-size lumen, gravity-controlled tubing to initiate intravenous infusions in the field may allow rapid start of neuroprotective therapy for acute stroke. In a large, multicenter trial, we evaluated its efficacy in attaining target serum levels of candidate neuroprotective agent magnesium sulfate and the relation of achieved magnesium levels to outcome. The FAST-MAG phase 3 trial (Field Administration of Stroke Therapy - Magnesium) randomized 1700 patients within 2 hours of onset to paramedic-initiated, a 15-minute loading intravenous infusion of magnesium or placebo followed by a 24-hour maintenance dose. The drug delivery strategy included fixed-size lumen, gravity-controlled tubing for field drug administration, and a shrink-wrapped ambulance kit containing both the randomized field loading and hospital maintenance doses for seamless continuation. Among patient randomized to active treatment, magnesium levels in the first 72 hours were assessed 987 times in 572 patients. Mean patient age was 70 years (SD±14 years), and 45% were women. During the 24-hour period of active infusion, mean achieved serum level was 3.91 (±0.8), consistent with trial target. Mg levels were increased by older age, female sex, lower weight, height, body mass index, and estimated glomerular filtration rate, and higher blood urea nitrogen, hemoglobin, and higher hematocrit. Adjusted odds for clinical outcomes did not differ by achieved Mg level, including disability at 90 days, symptomatic hemorrhage, or death. Paramedic infusion initiation using gravity-controlled tubing permits rapid achievement of target serum levels of potential neuroprotective agents. The absence of association of clinical outcomes with achieved magnesium levels provides further evidence that magnesium is not biologically neuroprotective in acute stroke. © 2017 American Heart Association, Inc.

  20. Creatine for women in pregnancy for neuroprotection of the fetus.

    PubMed

    Dickinson, Hayley; Bain, Emily; Wilkinson, Dominic; Middleton, Philippa; Crowther, Caroline A; Walker, David W

    2014-12-19

    Creatine is an amino acid derivative and, when phosphorylated (phosphocreatine), is involved in replenishing adenosine triphosphate (ATP) via the creatine kinase reaction. Cells obtain creatine from a diet rich in fish, meat, or dairy and by endogenous synthesis from the amino acids arginine, glycine, and methionine in an approximate 50:50 ratio. Animal studies have shown that creatine may provide fetal neuroprotection when given to the mother through her diet in pregnancy. It is important to assess whether maternally administered creatine in human pregnancy (at times of known, suspected, or potential fetal compromise) may offer neuroprotection to the fetus and may accordingly reduce the risk of adverse neurodevelopmental outcomes, such as cerebral palsy and associated impairments and disabilities arising from fetal brain injury. To assess the effects of creatine when used for neuroprotection of the fetus. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2014). We planned to include all published, unpublished, and ongoing randomised trials and quasi-randomised trials. We planned to include studies reported as abstracts only as well as full-text manuscripts. Trials using a cross-over or cluster-randomised design were not eligible for inclusion.We planned to include trials comparing creatine given to women in pregnancy for fetal neuroprotection (regardless of the route, timing, dose, or duration of administration) with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of creatine. We identified no completed or ongoing randomised controlled trials. We found no randomised controlled trials for inclusion in this review. As we did not identify any randomised controlled trials for inclusion in this review, we are unable to comment on implications for practice. Although evidence from animal studies has supported a

  1. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID

  2. Modeling Emergence in Neuroprotective Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatorymore » networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.« less

  3. Identification of Potentially Neuroprotective Genes Upregulated by Neurotrophin Treatment of CA3 Neurons in the Injured Brain

    PubMed Central

    Malik, Saafan Z.; Motamedi, Shahab; Royo, Nicolas C.; LeBold, David

    2011-01-01

    Abstract Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI. PMID:21083427

  4. Neuroprotective effects of nicergoline in immortalized neurons.

    PubMed

    Sortino, M A; Battaglia, A; Pamparana, F; Carfagna, N; Post, C; Canonico, P L

    1999-03-05

    We studied the potential neuroprotective action of nicergoline in immortalized hypothalamic GT1-7 cells exposed to agents which deplete levels of reduced glutathione, thus causing oxidative stress and cell death. Treatment with diethylmaleate (1 mM), buthionine sulfoximine (500 microM) or menadione (10-50 microM) caused diffuse GT1-7 cell degeneration, as assessed by using either the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay or the fluorescent dyes fluorescein diacetate and propidium iodide. Pre- and/or co-exposure of the cells to nicergoline significantly prevented diethylmaleate- or buthionine sulfoximine-induced neuronal death, whereas nicergoline was ineffective against menadione-induced toxicity. This effect was concentration-dependent and was mimicked by the classical antioxidants idebenone and vitamin E, and did not depend on interference with protein kinase C. Interestingly, the antineurodegenerative activity of nicergoline and vitamin E or idebenone was not additive, suggesting that these compounds share some intracellular mechanism(s) responsible for their protective effects. In conclusion, the present data indicate that nicergoline has neuroprotective activity, possibly mediated by the antioxidant activity of the molecule, and give support to the potential use of nicergoline in the prevention and therapy of neurodegenerative diseases.

  5. Effect of Combination Therapy with Neuroprotective and Vasoprotective Agents on Cerebral Ischemia.

    PubMed

    Yang, Jiping; Yang, Bei; Xiu, Baoxin; Qi, Jinchong; Liu, Huaijun

    2018-05-01

    Because most tested drugs are active against only one of the damaging processes associated with stroke, other mechanisms may cause cellular death. Thus, a combination of protective agents targeting different pathophysiological mechanisms may obtain better effects than a single agent. The major objective of this study was to investigate the effect of combination therapy with vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) after controlled ischemic brain injury in rabbits. Animals were randomly assigned to one of the following groups: sham group, saline-treated control group or NGF+VEGF-treated group. Animals received an intracerebral microinjection of VEGF and NGF or saline at 5 or 8 hours after ischemia. The two specified time points of administration were greater than or equal to the existing therapeutic time window for monoterapy with VEGF or NGF alone (3 or 5 hours of ischemia). Infarct volume, water content, neurological deficits, neural cell apoptosis and the expression of caspase-3 and Bcl-2 were measured. Compared with saline-treated controls, the combination therapy of VEGF and NGF significantly reduced infarct volume, water content, neural cell apoptosis and the expression of caspase-3, up-regulated the expression of Bcl-2 and improved functional recovery (both p<0.01) when administered 5 or 8 hours after ischemia. The earlier the administration the better the neuroprotection. These results showed that the combination therapy with VEGF and NGF provided neuroprotective effects. In addition, the time window of combination treatment should be at least 8 hours after ischemia, which was wider than monotherapy. RÉSUMÉ: Les effets d'une polythérapie combinant agents neuro-protecteurs et agents vasoprotecteurs dans les cas d'ischémie cérébrale. Contexte:Étant donné que la plupart des médicaments préalablement testés tendent à n'agir contre seulement un des processus de dommage associés aux AVC, il est possible que d

  6. NEW STRATEGIES IN NEUROPROTECTION AND NEUROREPAIR

    PubMed Central

    Antonelli, Marta C.; Guillemin, Gilles J.; Raisman-Vozari, Rita; Del-Bel, Elaine A.; Aschner, Michael; Collins, Michael A.; Tizabi, Yousef; Moratalla, Rosario; West, Adrian K.

    2011-01-01

    There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop “Neuroprotection and Neurorepair: New Strategies” (Iguazu Falls, Misiones, Argentina, April 11–13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field. Topics discussed were i) metallothionein and other multipotent neuroprotective molecules; ii) oxidative stress and their signal mediated pathways in neuroregeneration; iii) neurotoxins in glial cells, and iv) drugs of abuse with neuroprotective effects. PMID:21861211

  7. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential

    PubMed Central

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as “Gotu Kola.” The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words “Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory” through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine. PMID:22666298

  8. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential.

    PubMed

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as "Gotu Kola." The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words "Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory" through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine.

  9. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  10. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  11. The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line

    PubMed Central

    2009-01-01

    Background N-acylethanolamines (NAEs) are lipids upregulated in response to cell and tissue injury and are involved in cytoprotection. Arachidonylethanolamide (AEA) is a well characterized NAE that is an endogenous ligand at cannabinoid and vanilloid receptors, but it exists in small quantities relative to other NAE types. The abundance of other NAE species, such as palmitoylethanolamine (PEA), together with their largely unknown function and receptors, has prompted us to examine the neuroprotective properties and mechanism of action of PEA. We hypothesized that PEA protects HT22 cells from oxidative stress and activates neuroprotective kinase signaling pathways. Results Indeed PEA protected HT22 cells from oxidative stress in part by mediating an increase in phosphorylated Akt (pAkt) and ERK1/2 immunoreactivity as well as pAkt nuclear translocation. These changes take place within a time frame consistent with neuroprotection. Furthermore, we determined that changes in pAkt immunoreactivity elicited by PEA were not mediated by activation of cannabinoid receptor type 2 (CB2), thus indicating a novel mechanism of action. These results establish a role for PEA as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases. Conclusions The results from this study reveal that PEA protects HT22 cells from oxidative stress and alters the localization and expression levels of kinases known to be involved in neuroprotection by a novel mechanism. Overall, these results identify PEA as a neuroprotectant with potential as a possible therapeutic agent in neurodegenerative diseases involving oxidative stress. PMID:20003317

  12. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.

    PubMed

    Figueira, Inês; Tavares, Lucélia; Jardim, Carolina; Costa, Inês; Terrasso, Ana P; Almeida, Andreia F; Govers, Coen; Mes, Jurriaan J; Gardner, Rui; Becker, Jörg D; McDougall, Gordon J; Stewart, Derek; Filipe, Augusto; Kim, Kwang S; Brites, Dora; Brito, Catarina; Brito, M Alexandra; Santos, Cláudia N

    2017-11-18

    Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MS n . BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.

  13. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).

    PubMed

    Singh, Neha Atulkumar; Mandal, Abul Kalam Azad; Khan, Zaved Ahmed

    2016-06-07

    Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.

  15. Neuroprotective effects of Lepidium meyenii (Maca).

    PubMed

    Pino-Figueroa, Alejandro; Nguyen, Diane; Maher, Timothy J

    2010-06-01

    The neuroprotective activity of the plant Lepidium meyenii (Maca) was studied in two experimental models: in vitro and in vivo. Crayfish neurons were pretreated with vehicle or the pentane extract from Maca, subjected to H(2)O(2), and their viability determined microscopically and chemically. A significant concentration-neuroprotective effect relationship was demonstrated. The pentane extract was then administered intravenously to rats prior to and following middle cerebral artery occlusion. While infarct volumes were decreased for the lower dose, higher doses increased infarct volumes compared to controls. These results suggest a potential application of Maca as a neuroprotectant.

  16. Neuroprotection as initial therapy in acute stroke. Third Report of an Ad Hoc Consensus Group Meeting. The European Ad Hoc Consensus Group.

    PubMed

    1998-01-01

    Although a considerable body of scientific data is now available on neuroprotection in acute ischaemic stroke, this field is not yet established in clinical practice. At its third meeting, the European Ad Hoc Consensus Group considered the potential for neuroprotection in acute stroke and the practical problems attendant on the existence of a very limited therapeutic window before irreversible brain damage occurs, and came to the following conclusions. NEUROPROTECTANTS IN CLINICAL DEVELOPMENT: Convincing clinical evidence for an efficacious neuroprotective treatment in acute stroke is still required. Caution should be exercised in interpreting and extrapolating experimental results to stroke patients, who are a very heterogeneous group. The limitations of the time windows and the outcome measures chosen in trials of acute stroke therapy have an important influence on the results. The overall distribution of functional outcomes provides more statistical information than the proportion above a threshold outcome value. Neurological outcome should also be assessed. Neuroprotectants should not be tested clinically in phase II or phase III trials in a time window that exceeds those determined in experimental studies. The harmful effects of a drug in humans may override its neuroprotective potential determined in animals. Agents that act at several different levels in the ischaemic cascade may be more effective than those with a single mechanism of action. CURRENT IN-HOSPITAL MANAGEMENT OF ACUTE STROKE: The four major physiological variables that must be monitored and managed are blood pressure, arterial blood gas levels, body temperature, and glycaemia. The effects of controlling these physiological variables have not been studied in prospective trials, though they may all contribute to the outcome of acute ischaemic stroke and affect the duration of the therapeutic window. Optimal physiological parameters are inherently neuroprotective. Trials of new agents for the

  17. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy

    PubMed Central

    Chen, Yi-Fan; Chen, Li-Hsien; Yeh, Yu-Min; Wu, Pei-Ying; Chen, Yih-Fung; Chang, Lian-Yun; Chang, Jang-Yang; Shen, Meng-Ru

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil. PMID:28349969

  18. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  19. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate.

    PubMed

    Harrison, Ian F; Anis, Hiba K; Dexter, David T

    2016-02-12

    Parkinson's disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Bivalent compound 17MN exerts neuroprotection through interaction at multiple sites in a cellular model of Alzheimer’s disease

    PubMed Central

    Liu, Kai; Chojnacki, Jeremy E.; Wade, Emily E.; Saathoff, John M.; Lesnefsky, Edward J.; Chen, Qun; Zhang, Shijun

    2016-01-01

    Multiple pathogenic factors have been suggested in playing a role in the development of Alzheimer’s disease (AD). The multifactorial nature of AD also suggests the potential use of compounds with polypharmacology as effective disease-modifying agents. Recently, we have developed a bivalent strategy to include cell membrane anchorage into the molecular design. Our results demonstrated that the bivalent compounds exhibited multifunctional properties and potent neuroprotection in a cellular AD model. Herein, we report the mechanistic exploration of one of the representative bivalent compounds, 17MN, in MC65 cells. Our results established that MC65 cells die through a necroptotic mechanism upon the removal of tetracycline (TC). Furthermore, we have shown that mitochondrial membrane potential (MMP) and cytosolic Ca2+ levels are increased upon removal of TC. Our bivalent compound 17MN can reverse such changes and protect MC65 cells from TC removal induced cytotoxicity. The results also suggest that 17MN may function between the Aβ species and RIPK1 in producing its neuroprotection. Colocalization studies employing a fluorescent analog of 17MN and confocal microscopy demonstrated the interactions of 17MN with both mitochondria and endoplasmic reticulum (ER), thus suggesting that 17MN exerts its neuroprotection via a multiple-site mechanism in MC65 cells. Collectively, these results strongly support our original design rationale of bivalent compounds and encourage further optimization of this bivalent strategy to develop more potent analogs as novel disease-modifying agents for AD. PMID:26401780

  1. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study.

    PubMed

    Kumar, Gaurav; Patnaik, Ranjana

    2016-07-01

    N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells

    NASA Astrophysics Data System (ADS)

    Piotrowski, Marek; Szczepanowicz, Krzysztof; Jantas, Danuta; Leśkiewicz, Monika; Lasoń, Władysław; Warszyński, Piotr

    2013-11-01

    The emulsion-core and polyelectrolyte-coated nanocapsules, designed as water-insoluble neuroprotective drug delivery system, were synthesized using layer-by-layer saturation method. The isopropyl myristate was used as oil phase and docusate sodium salt as emulsifier. For the polyelectrolyte shell preparation, synthetic polyelectrolytes, cationic (PDADMAC, PAH, and PLL) and anionic (PGA) were used. The particle size and zeta potential of nanocapsules were characterized by the dynamic light scattering. The average size of synthesized nanocapsules ranged from 80 to 100 nm. Zeta potential values ranged from less than approximately -30 mV for the polyanion layers to greater than approximately +30 mV for the polycation layers. Biocompatibilities of the synthesized nanocarriers were evaluated against SH-SY5Y human neuroblastoma cells using various biochemical assays. The results obtained show that synthesized nanocapsules coated with PLL and PGA were nontoxic to SH-SY5Y cells, and they were used as nanocarriers for model neuroprotective drug (a calpain inhibitor MDL 28170). The neuroprotective action of the encapsulated MDL 28170 against hydrogen peroxide-induced oxidative stress cytotoxicity was evaluated in the same cell line. The results showed that nanoencapsulated form of MDL 28170 were biocompatible and protected SH-SY5Y cells against the H2O2 (0.5 mM/24 h)-induced damage in 20-40 times lower concentrations than those of the same drug added directly to the culture medium. These data suggest that the nanoscale carriers of neuroprotective drugs might serve as novel promising therapeutic agents for oxidative stress-related neurodegenerative processes.

  3. The 2007 Feinberg lecture: a new road map for neuroprotection.

    PubMed

    Donnan, Geoffrey A

    2008-01-01

    There have now been numerous phase III trials of neuroprotection that have failed to live up to the expectations created by preclinical testing in animal models, the most recent of which was the second pivotal trial of the spin trap agent NXY-059. We have reached a stage at which research in this area should stop altogether or radical new approaches adopted. The purpose of this article is to review how we reached this stage and make recommendations for a new approach to neuroprotection research. The background to neuroprotection research is reviewed and its problems are highlighted based on the research of others and of our own research group. From this, a series of questions are posed that require answers if the field is to progress. A road map for future research is then proposed. The road map involves the following steps for putative neuroprotectants: (1) better proof of efficacy in animal models; (2) in vivo evidence of efficacy in human tissue using cell cultures or brain slices; (3) in vivo studies of their distribution in the normal and ischemic human brain, particularly focusing on the ischemic penumbra; (4) demonstration of efficacy in novel human models of cerebral ischemia; and (5) phase II and III clinical trails with penumbral selection using imaging techniques. The accumulated evidence suggests that neuroprotection failure in clinical trial is due to identifiable preclinical and clinical factors. Neuroprotection research should be pursued but with a very different and more rigorous approach.

  4. Neuroprotective potential of spermidine against rotenone induced Parkinson's disease in rats.

    PubMed

    Sharma, Sunaina; Kumar, Puneet; Deshmukh, Rahul

    2018-06-01

    Parkinson's disease is a leading hypokinetic disorder characterized by selective loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) region of mid-brain. Degeneration of dopaminergic neurons is considered to be due to oxidative stress, neuroinflammation, disturbed calcium homeostasis and glutamate excitotoxicity etc. Spermidine is a polyamine which counteracts age associated cell death by scavenging free radical formation, activates authophagic machinery by enhancing formation of autophagosome, and antagonizes NMDA receptor. In the current study we investigated the neuroprotective potential of spermidine against rotenone induced PD in rats. Rats were treated subcutaneously with rotenone 1.5 mg/kg daily for 28 days. Spermidine 5&10 mg/kg was administered orally 1 h prior to rotenone administration from 15 to 28. Rotenone caused significant reduction in motor functioning and elevated levels of oxidative stress markers and proinflammatory cytokines levels (IL-1β, IL6 and TNF-α). The neurochemical analysis revealed a significant decrease in serotonin, norepinephrine, dopamine and their metabolites accompanied by a significant loss of dopaminergic neurons in the SNpc following ROT injection. However, treatment with spermidine rescued DAergic neurons in SNpc and nerve terminals in the striatum following ROT insult. Spermidine treatment also attenuated oxidative stress, neuroinflammation and restored striatal neurochemistry. Results of our study suggest that spermidine has promising neuroprotective effect against degenerative changes in experimental PD, and the protective effects are mediated through its antioxidant and anti-inflammatory properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia.

    PubMed

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-06-10

    The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. In the present study, we systematically investigated expression of HPX in normal rat brain by immunofluorescent staining. The results showed that HPX was mainly expressed in vascular system and neurons, as well as in a small portion of astrocytes adjacent to the vessels in normal rat brain. Further, we determined the role of HPX in the process of focal cerebral ischemic injury and explored the effects of HPX treatment in a rat model of transient focal cerebral ischemia. After 2 h' middle cerebral artery occlusion (MCAO) followed by 24 h' reperfusion, the expression of HPX was increased in the neurons and astrocytes in the penumbra area, as demonstrated by immunohistochemistry and Western blot techniques. Intracerebroventricular injection of HPX at the onset of reperfusion dose-dependently reduced the infarct volumes and improved measurements of neurological function of the rat subjected to transient focal cerebral ischemia. The neuroprotective effects of HPX sustained for up to 7 days after experiments. Our study provides a new insight into the potential neuroprotective role of HPX as a contributing factor of endogenous protective mechanisms against focal cerebral ischemia injury, and HPX might be developed as a potential agent for treatment of ischemic stroke.

  6. Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury.

    PubMed

    Vasconcelos, Natália L; Gomes, Eduardo D; Oliveira, Eduarda P; Silva, Carlos J; Lima, Rui; Sousa, Nuno; Salgado, António J; Silva, Nuno A

    2016-08-01

    Damage to the spinal cord can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole and magnesium have been widely investigated as neuroprotective agents in animal models of spinal cord injury. As these drugs protect the injured spinal cord through different mechanisms, we aimed to investigate if their neuroprotective efficacy could be cumulative. This study aimed to investigate the neuroprotective efficacy of combined administration of riluzole and magnesium chloride in a contusive model of thoracic spinal cord injury. An in vivo experiment was set using female Wistar Han rats that underwent a thoracic spinal cord contusion (T8) using a weight drop method. An hour after injury, animals were randomly distributed to receive (1) saline, (2) riluzole (2.50 mg/kg), (3) magnesium chloride (24.18 mg/kg) in a polyethylene glycol formulation, or (4) a combined treatment (riluzole and magnesium). Subsequent treatments were given in four intraperitoneal injections (spaced 12 hours apart). The Basso, Beattie, and Bresnahan locomotor rating scale, an activity box test, and a swimming test were used to evaluate behavioral recovery over a 4-week period. Histologic analysis of the spinal cords was performed to measure the extent and volume of the lesion, axonal preservation, serotonergic and glutamatergic fiber sparing, motor neuron survival, and inflammation. Our results show that only the riluzole treatment significantly improved behavioral recovery up to 4 weeks after injury when compared with saline controls (6.2±1.8), with animals achieving weight-supported stepping (9.1±1.2). Riluzole also promoted tissue sparing with significant differences achieved from 200 to 600 µm (caudally to the lesion epicenter), and reduced lesion volume, with animals presenting a significantly smaller lesion (3.23±0.26 mm(3)) when compared with the saline-treated group (4.74±0.80 mm(3)), representing a 32% decrease in lesion volume

  7. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality.

    PubMed

    Ishida, Kazuyoshi; Berger, Miles; Nadler, Jacob; Warner, David S

    2014-01-01

    Anesthetics have been studied for nearly fifty years as potential neuroprotective compounds in both perioperative and resuscitation medicine. Although anesthetics present pharmacologic properties consistent with preservation of brain viability in the context of an ischemic insult, no anesthetic has been proven efficacious for neuroprotection in humans. After such effort, it could be concluded that anesthetics are simply not neuroprotective in humans. Moreover, pharmacologic neuroprotection with non-anesthetic drugs has also repeatedly failed to be demonstrated in human acute brain injury. Recent focus has been on rectification of promising preclinical neuroprotection data and subsequent failed clinical trials. This has led to consensus guidelines for the process of transferring purported therapeutics from bench to bedside. In this review we first examined the history of anesthetic neuroprotection research. Then, a systematic review was performed to identify major clinical trials of anesthetic neuroprotection. Both the preclinical neuroprotection portfolio cited to justify a clinical trial and the design and conduct of that clinical trial were evaluated using modern standards that include the Stroke Therapy Academic Industry Roundtable (STAIR) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. In publications intended to define anesthetic neuroprotection, we found overall poor quality of both preclinical efficacy analysis portfolios and clinical trial designs and conduct. Hence, using current translational research standards, it was not possible to conclude from existing data whether anesthetics ameliorate perioperative ischemic brain injury. Incorporation of advances in translational neuroprotection research conduct may provide a basis for more definitive and potentially successful clinical trials of anesthetics as neuroprotectants.

  8. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice.

    PubMed

    Long, Fang-Yi; Shi, Meng-Qi; Zhou, Hong-Jing; Liu, Dong-Ling; Sang, Na; Du, Jun-Rong

    2018-02-05

    Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Thrombolysis and neuroprotection in cerebral ischemia.

    PubMed

    Gutiérrez, M; Díez Tejedor, E; Alonso de Leciñana, M; Fuentes, B; Carceller, F; Roda, J M

    2006-01-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on society grows with the increase in the incidence of stroke. The term brain attack was introduced to describe the acute presentation of stroke and emphasize the need for urgent action to remedy the situation. Though a large number of therapeutic agents, like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or are being evaluated, there is still a large gap between the benefits of these agents and the properties of an ideal drug for stroke. So far, only thrombolysis with rtPA within a 3-hour time window has been shown to improve the outcome of patients with ischemic stroke. Understanding the mechanisms of injury and neuroprotection in these diseases is important to target news sites for treating ischemia. Better evaluation of the drugs and increased similarity between the results of animal experimentation and in the clinical setting requires critical assessment of the selection of animal models and the parameters to be evaluated. Our laboratory has employed a rat embolic stroke model to investigate the combination of rtPA with citicoline as compared to monotherapy alone and investigated whether neuroprotection should be provided before or after thrombolysis in order to achieve a greater reduction of ischemic brain damage. Copyright 2006 S. Karger AG, Basel.

  10. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease

    PubMed Central

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Abul Khair, Salema B; Haque, M Emdadul

    2015-01-01

    Parkinson’s disease (PD) is a chronic, progressive, and the second most common form of neurodegenerative disorders. In order to explore novel agents for the treatment of PD, in the current study, we have evaluated the neuroprotective efficacy of ferulic acid (FA) using rotenone (ROT)-induced rat model of PD. ROT was administered 2.5 mg/kg body weight to male Wistar rats for 4 weeks to induce the PD. Since PD is progressive and chronic in nature, the paradigm for evaluating FA was based on chronic administration for 4 weeks at the dose of 50 mg/kg, 30 minutes prior to ROT administration. ROT administration caused significant reduction in endogenous antioxidants such as superoxide dismutase, catalase, and glutathione. ROT challenge-induced lipid peroxidation evidenced by increased malondialdehyde following perturbation of antioxidant defense. Apart from oxidative stress, ROT also activated proinflammatory cytokines and enhanced inflammatory mediators such as cyclooxygenase-2 and inducible nitric oxide synthase. The immunofluorescence analysis revealed a significant increase in the number of activated microglia and astrocytes accompanied by a significant loss of dopamine (DA) neurons in the substantia nigra pars compacta area upon ROT injection. However, treatment with FA rescued DA neurons in substantia nigra pars compacta area and nerve terminals in the striatum from the ROT insult. FA treatment also restored antioxidant enzymes, prevented depletion of glutathione, and inhibited lipid peroxidation. Following treatment with FA, the inflammatory mediators such as cyclooxygenase-2 and inducible nitric oxide synthase and proinflammatory cytokines were also reduced. Further, the results were supported by a remarkable reduction of Iba-1 and GFAP hyperactivity clearly suggests attenuation of microglial and astrocytic activation. Results of our study suggest that FA has promising neuroprotective effect against degenerative changes in PD, and the protective effects are

  11. Dietary Supplementations as Neuroprotective Therapies: Focus on NT-020 Diet Benefits in a Rat Model of Stroke

    PubMed Central

    Kaneko, Yuji; Cortes, Lourdes; Sanberg, Cyndy; Acosta, Sandra; Bickford, Paula C.; Borlongan, Cesar V.

    2012-01-01

    Stroke remains the number one cause of disability in the adult population. Despite scientific progress in our understanding of stroke pathology, only one treatment (tissue plasminogen activator or tPA) is able to afford benefits but to less than 3% of ischemic stroke patients. The development of experimental dietary supplement therapeutics designed to stimulate endogenous mechanisms that confer neuroprotection is likely to open new avenues for exploring stroke therapies. The present review article evaluates the recent literature supporting the benefits of dietary supplementation for the therapy of ischemic stroke. This article focuses on discussing the medical benefits of NT-020 as an adjunct agent for stroke therapy. Based on our preliminary data, a pre-stroke treatment with dietary supplementation promotes neuroprotection by decreasing inflammation and enhancing neurogenesis. However, we recognize that a pre-stroke treatment holds weak clinical relevance. Thus, the main goal of this article is to provide information about recent data that support the assumption of natural compounds as neuroprotective and to evaluate the therapeutic effects of a dietary supplement called NT-020 as in a stroke model. We focus on a systematic assessment of practical treatment parameters so that NT-020 and other dietary supplementations can be developed as an adjunct agent for the prevention or treatment of chronic diseases. We offer rationale for determining the optimal dosage, therapeutic window, and mechanism of action of NT-020 as a dietary supplement to produce neuroprotection when administered immediately after stroke onset. We highlight our long-standing principle in championing both translational and basic science approaches in an effort to fully reveal the therapeutic potential of NT-020 as dietary supplementation in the treatment of stroke. We envision dietary supplementation as an adjunct therapy for stroke at acute, subacute, and even chronic periods. PMID:22837703

  12. Neuroprotection trek--the next generation: the measurement is the message.

    PubMed

    Andrews, Russell J

    2005-08-01

    Animal trials of many pharmacological neuroprotective agents have been quite successful, whereas trials in humans have been uniformly disappointing. A major difference between laboratory research in animals and clinical research in humans is the amount and/or quality of data obtained. The goal of this presentation is to argue that when clinical studies consist of more valid, objective data--that is, as our measurement capabilities in clinical research become as robust as they are in laboratory research--we are likely to gain new insights into both (1) injury to the nervous system and (2) neuroprotective treatment strategies. Technological advances (in data acquisition and analysis)--often novel even in the laboratory--will be the "scale" that will enable progress in measurement. As examples of such technological advances, two projects initiated at NASA Ames Research Center are cited. The NASA Smart Probe Project, with the goal of combining multiple microsensors and neural networks for real-time tissue identification (e.g., for tumor detection), has recently moved into the clinical realm, with a prototype being used to diagnose breast cancer in women "on the spot". The NASA Nanoelectrode Array Project has fabricated nanoscale devices that can simultaneously monitor electrical activity and neurotransmitter concentrations, while providing electrical stimulation focally and precisely (and potentially in a closed-loop fashion based on the input from the nanosensors). The large amounts of data that such techniques can acquire and analyze--separated spatially and temporally throughout the nervous system, if necessary--will provide insights not only into neuroprotective strategies, but also into the workings of the nervous system itself.

  13. Neuroprotective properties of epoetin alfa.

    PubMed

    Cerami, Anthony; Brines, Michael; Ghezzi, Pietro; Cerami, Carla; Itri, Loretta M

    2002-01-01

    Erythropoietin and its receptor function as primary mediators of the normal physiological response to hypoxia. Erythropoietin is recognized for its central role in erythropoiesis, but studies in which recombinant human erythropoietin (epoetin alfa) is injected directly into ischaemic rodent brain show that erythropoietin also mediates neuroprotection. Abundant expression of the erythropoietin receptor has been observed at brain capillaries, which could provide a route for circulating erythropoietin to enter the brain. In confirmation of this hypothesis, systemic administration of epoetin alfa before or up to 6 h after focal brain ischaemia reduced injury by 50-75%. Epoetin alfa also limited the extent of concussive brain injury, the immune damage in experimental autoimmune encephalomyelitis and excitotoxicity induced by kainate. Thus, systemically administered epoetin alfa in animal models has neuroprotective effects, demonstrating its potential use after brain injury, trauma and multiple sclerosis. It is evident that erythropoietin has biological activities in addition to increasing red cell mass. Given the excellent safety profile of epoetin alfa, clinical trials evaluating systemically administered epoetin alfa as a general neuroprotective treatment are warranted.

  14. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools.

    PubMed

    Nafissi, Nafiseh; Foldvari, Marianna

    2015-01-01

    Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.

  15. Medical management of Parkinson's disease: focus on neuroprotection.

    PubMed

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-06-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson's disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.

  16. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    PubMed

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  17. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy

    PubMed Central

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  18. Early neuroprotection after cardiac arrest.

    PubMed

    Dell'anna, Antonio M; Scolletta, Sabino; Donadello, Katia; Taccone, Fabio S

    2014-06-01

    Many efforts have been made in the last decades to improve outcome in patients who are successfully resuscitated from sudden cardiac arrest. Despite some advances, postanoxic encephalopathy remains the most common cause of death among those patients and several investigations have focused on early neuroprotection in this setting. Therapeutic hypothermia is the only strategy able to provide effective neuroprotection in clinical practice. Experimental studies showed that therapeutic hypothermia was even more effective when it was started immediately after the ischemic event. In human studies, the use of prehospital hypothermia was able to reduce the time to target temperature but did not result in higher survival rate or neurological recovery in patients with out-of-hospital cardiac arrest, when compared with standard in-hospital therapeutic hypothermia. Thus, intra-arrest hypothermia (i.e., initiated during cardiopulmonary resuscitation) may be a valid alternative to improve the effectiveness of therapeutic hypothermia in this setting; however, more clinical data are needed to demonstrate any potential benefit of such intervention on neurological outcome. Together with cooling, early hemodynamic optimization should be considered to improve cerebral perfusion in cardiac arrest patients and minimize any secondary brain injury. Nevertheless, only scarce data are available on the impact of early hemodynamic optimization on the development of organ dysfunction and neurological recovery in such patients. Some new protective strategies, including inhaled gases (i.e., xenon, argon, nitric oxide) and intravenous drugs (i.e., erythropoietin) are emerging in experimental studies as promising tools to improve neuroprotection, especially when combined with therapeutic hypothermia. Early cooling may contribute to enhance neuroprotection after cardiac arrest. Hemodynamic optimization is mandatory to avoid cerebral hypoperfusion in this setting. The combination of such

  19. Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides.

    PubMed

    Reglodi, Dora; Renaud, Justine; Tamas, Andrea; Tizabi, Yousef; Socías, Sergio B; Del-Bel, Elaine; Raisman-Vozari, Rita

    2017-08-01

    Parkinson's disease is a progressive neurodegenerative disorder characterized by the degeneration of midbrain nigral dopaminergic neurons. Although its etiology remains unknown, the pathological role of several factors has been highlighted, namely oxidative stress, neuroinflammation, protein misfolding, and mitochondrial dysfunction, in addition to genetic predispositions. The current therapy is mainly symptomatic with l-DOPA aiming to replace dopamine. Novel therapeutic approaches are being investigated with the intention of influencing pathways leading to neuronal death and dysfunction. The present review summarizes three novel approaches, the use of which is promising in pre-clinical studies. Polyphenols have been shown to possess neuroprotective properties on account of their well-established antioxidative and anti-inflammatory actions but also due to their influence on protein misfolding and mitochondrial homeostasis. Within the amazing ancillary effects of antibiotics, their neuroprotective properties against neurodegenerative and neuroinflammatory processes are of great interest for the development of effective therapies against Parkinson's disease. Experimental evidence supports the potential of antibiotics as neuroprotective agents, being useful not only to prevent the formation of toxic α-synuclein oligomers but also to ameliorate mitochondrial dysfunction and neuroinflammation. Neuropeptides offer another approach with their diverse effects in the nervous system. Among them, pituitary adenylate cyclase-activating polypeptide, a member of the secretin/glucagon superfamily, has several advantageous effects in models of neurodegeneration, namely anti-apoptotic, anti-inflammatory and antioxidant actions, the combination of which offers a potent protective effect in dopaminergic neurons. Owing to their pleiotropic modes of action, these novel therapeutic candidates have potential in tackling the multidimensional features of Parkinson's disease. Copyright

  20. Estrogen receptors and ischemic neuroprotection: who, what, where, and when?

    PubMed

    Schreihofer, Derek A; Ma, Yulin

    2013-06-13

    Estrogens, particularly 17β-estradiol (E2), are powerful neuroprotective agents in animal models of cerebral ischemia. Loss of endogenous E2 in women at menopause or after surgical oopherectomy leads to an increase risk of stroke, neurodegenerative disease, and cognitive decline. However, several clinical trials found detrimental effects of E2 therapy after menopause, including increased stroke risk and dementia. Recent animal and human studies now support the "critical period" hypothesis for E2 neuroprotection whereby E2 therapy must begin soon after the loss of endogenous E2 production to have a beneficial effect. Although a wide array of mechanisms has been proposed for estradiol (E2)-dependent neuroprotection in cerebral ischemia and neurodegenerative disease, most of these mechanisms involve interactions of E2 with one of its cognate receptors, estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), or the G protein-coupled estrogen receptor (GPER). However, these receptors are not uniformly distributed throughout the brain, across different cell types, and within cellular compartments. Such differences likely play a role in the ability of E2 and ER selective ligands to protect the brain from ischemia. This review examines the changes in ER expression and location that may underlie the loss of E2 neuroprotection seen with aging and long-term estrogen deprivation (LTED). Recent results suggest that the loss of ERα that accompanies aging and LTED plays an important role in the loss of E2-dependent neuroprotection. This article is part of a Special Issue entitled Hormone Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. [Pay attention to the secondary optic neuropathy and the safe appropriate applications of optic neuroprotection].

    PubMed

    Zhong, Y

    2016-12-11

    Secondary optic neuropathy of optic nerve abnormalities is the leading cause of persistent visual impairment. Previous ocular neuroprotection studies have proved that the nerve growth factor and other agents are of significant in the preservation of optic nerve axon and retinal ganglion cells. However, finding novel safe and effective approach as well as the appropriate applications of optic neuroprotection should be highly emphasized and would be very helpful in the treatment of optic neuropathy. (Chin J Ophthalmol, 2016, 52: 881 - 884) .

  2. STATINS MORE THAN CHOLESTEROL LOWERING AGENTS IN ALZHEIMER DISEASE: THEIR PLEIOTROPIC FUNCTIONS AS POTENTIAL THERAPEUTIC TARGETS

    PubMed Central

    Barone, Eugenio; Domenico, Fabio Di; Butterfield, D. Allan

    2013-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative ad nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin. PMID:24231510

  3. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson's disease.

    PubMed

    Huleatt, Paul B; Khoo, Mui Ling; Chua, Yi Yuan; Tan, Tiong Wei; Liew, Rou Shen; Balogh, Balázs; Deme, Ruth; Gölöncsér, Flóra; Magyar, Kalman; Sheela, David P; Ho, Han Kiat; Sperlágh, Beáta; Mátyus, Péter; Chai, Christina L L

    2015-02-12

    To develop novel neuroprotective agents, a library of novel arylalkenylpropargylamines was synthesized and tested for inhibitory activities against monoamine oxidases. From this, a number of highly potent and selective monoamine oxidase B inhibitors were identified. Selected compounds were also tested for neuroprotection in in vitro studies with PC-12 cells treated with 6-OHDA and rotenone, respectively. It was observed that some of the compounds tested yielded a marked increase in survival in PC-12 cells treated with the neurotoxins. This indicates that these propargylamines are able to confer protection against the effects of the toxins and may also be considered as novel disease-modifying anti-Parkinsonian agents, which are much needed for the therapy of Parkinson's disease.

  4. Combination of mild hypothermia with neuroprotectants has greater neuroprotective effects during oxygen-glucose deprivation and reoxygenation-mediated neuronal injury

    PubMed Central

    Gao, Xiao-Ya; Huang, Jian-Ou; Hu, Ya-Fang; Gu, Yong; Zhu, Shu-Zhen; Huang, Kai-Bin; Chen, Jin-Yu; Pan, Su-Yue

    2014-01-01

    Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury. PMID:25404538

  5. Progranulin as a biomarker and potential therapeutic agent.

    PubMed

    Abella, Vanessa; Pino, Jesús; Scotece, Morena; Conde, Javier; Lago, Francisca; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste

    2017-10-01

    Progranulin is a cysteine-rich secreted protein with diverse pleiotropic actions and participates in several processes, such as inflammation or tumorigenesis. Progranulin was first identified as a growth factor and, recently, it was characterised as an adipokine implicated in obesity, insulin resistance and rheumatic disease. At a central level, progranulin acts as a neurotropic and neuroprotective factor and protects from neural degeneration. In this review, we summarise the most recent research advances concerning the potential role of progranulin as a therapeutic target and biomarker in cancer, neurodegenerative and inflammatory diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential.

    PubMed

    Souza, Ricardo Basto; Frota, Annyta Fernandes; Silva, Joana; Alves, Celso; Neugebauer, Agnieszka Zofia; Pinteus, Susete; Rodrigues, José Ariévilo Gurgel; Cordeiro, Edna Maria Silva; de Almeida, Raimundo Rafael; Pedrosa, Rui; Benevides, Norma Maria Barros

    2018-06-01

    This study assessed the antioxidant, antimicrobial, anticancer and neuroprotective activities of the kappa(k)-carrageenan isolated from the red alga Hypnea musciformis (Hm-SP). The chemical spectrum of the k-carrageenan from Hm-SP was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Hm-SP revealed an antibacterial and antifungal action against Staphylococcus aureus and Candida albicans, respectively. Hm-SP did not promoted cytotoxic effects against Human breast cancer (MCF-7) and Human neuroblastoma (SH-SY5Y) cell-lines. However, it was observed a significant reduction of the cellular proliferation capacity in these cancer cells in presence of the Hm-SP. Furthermore, Hm-SP showed neuroprotective activity in 6-hydroxydopamine-induced neurotoxicity on SH-SY5Y cells by modulation of the mitochondria transmembrane potential and reducing Caspase 3 activity. In addition, Hm-SP demonstrates low antioxidant potential and did not induce significant cytotoxic effects or changes in the cell proliferation on Balb/c 3T3 mouse fibroblast cell-line. In summary, our data suggest that Hm-SP shows antimicrobial, anticancer and neuprotective activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Medical Management of Parkinson’s Disease: Focus on Neuroprotection

    PubMed Central

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-01-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson’s disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy. PMID:22131943

  8. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease.

    PubMed

    Francardo, Veronica; Schmitz, Yvonne; Sulzer, David; Cenci, M Angela

    2017-12-01

    Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease. Copyright © 2017. Published by Elsevier Inc.

  9. Pharmacological treatment of laser eye injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1996-04-01

    Many retinal injuries result in an irreversible neuronal loss, which can not yet be reduced by pharmacological methods. To determine whether glutamate-receptor blockers can serve as neuroprotective agents in the retina, as they do in the central nervous system, we examined the effects of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Immediately and 8 h after argon laser retinal photocoagulation, rats were treated with intraperitoneal injections of MK-801 (3 mg/kg) or saline. After 3, 20 or 60 days the animals were sacrificed and their retinal lesions were evaluated histologically and morphometrically. Photoreceptor cell loss, both immediately and up to 2 months after laser irradiation, was significantly smaller in MK-801-treated rats than controls. MK-801 exhibits neuroprotective property in the retina. This points to the involvement of glutamate in the laser-induced retinal neuronal damage. Glutamate-receptor blockers should be further investigated for therapy of retinal diseases characterized by neuronal cell destruction.

  10. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer's disease.

    PubMed

    Chen, Ziwei; Digiacomo, Maria; Tu, Yalin; Gu, Qiong; Wang, Shengnan; Yang, Xiaohong; Chu, Jiaqi; Chen, Qiuhe; Han, Yifan; Chen, Jingkao; Nesi, Giulia; Sestito, Simona; Macchia, Marco; Rapposelli, Simona; Pi, Rongbiao

    2017-01-05

    A series of rivastigmine-caffeic acid and rivastigmine-ferulic acid hybrids were designed, synthesized, and evaluated as multifunctional agents for Alzheimer's disease (AD) in vitro. The new compounds exerted antioxidant neuroprotective properties and good cholinesterases (ChE) inhibitory activities. Some of them also inhibited amyloid protein (Aβ) aggregation. In particular, compound 5 emerged as promising drug candidates endowed with neuroprotective potential, ChE inhibitory, Aβ self-aggregation inhibitory and copper chelation properties. These data suggest that compound 5 offers an attractive starting point for further lead optimization in the drug-discovery process against AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease.

    PubMed

    Weinreb, Orly; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H

    2016-07-01

    Alzheimer's disease (AD) is accepted nowadays as a complex neurodegenerative disorder with multifaceted cerebral pathologies, including extracellular deposition of amyloid β peptide-containing plaques, intracellular neurofibrillary tangles, progressive loss of cholinergic neurons, metal dyshomeostasis, mitochondrial dysfunction, neuroinflammation, glutamate excitoxicity, oxidative stress and increased MAO enzyme activity. This may explain why it is currently widely accepted that a more effective therapy for AD would result from the use of multifunctional drugs, which may affect more than one brain target involved in the disease pathology. The current review will discuss the potential benefits of novel multimodal neuroprotective, brain permeable drugs, recently developed by Youdim and collaborators, as a valuable therapeutic approach for AD treatment. The pharmacological and neuroprotective properties of these multitarget-directed ligands, which target MAO enzymes, the cholinergic system, iron accumulation and amyloid β peptide generation/aggregation are described, with a special emphasis on their potential therapeutic value for ageing and AD-associated cognitive functions. This review is conceived as a tribute to the broad neuropharmacology work of Professor Moussa Youdim, Professor Emeritus in the Faculty of Medicine and Director of Eve Topf Center of Excellence in Technion-Israel Institute of Technology, and Chief Scientific Officer of ABITAL Pharma Pipeline Ltd., at the occasion of his 75th birthday. This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc. © 2015 The British Pharmacological Society.

  12. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    PubMed

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  13. A Military-Centered Approach to Neuroprotection for Traumatic Brain Injury

    PubMed Central

    Shear, Deborah A.; Tortella, Frank C.

    2013-01-01

    Studies in animals show that many compounds and therapeutics have the potential to greatly reduce the morbidity and post-injury clinical sequela for soldiers experiencing TBI. However, to date there are no FDA approved drugs for the treatment of TBI. In fact, expert opinion suggests that combination therapies will be necessary to treat any stage of TBI recovery. Our approach to this research effort is to conduct comprehensive pre-clinical neuroprotection studies in military-relevant animal models of TBI using the most promising neuroprotective agents. In addition, emerging efforts incorporating novel treatment strategies such as stem cell based therapies and alternative therapeutic approaches will be discussed. The development of a non-surgical, non-invasive brain injury therapeutic clearly addresses a major, unresolved medical problem for the Combat Casualty Care Research Program. Since drug discovery is too expensive to be pursued by DOD in the TBI arena, this effort capitalizes on partnerships with the Private Sector (Pharmaceutical Companies) and academic collaborations (Operation Brain Trauma Therapy Consortium) to study therapies already under advanced development. Candidate therapies selected for research include drugs that are aimed at reducing the acute and delayed effects of the traumatic incident, stem cell therapies aimed at brain repair, and selective brain cooling to stabilize cerebral metabolism. Each of these efforts can also focus on combination therapies targeting multiple mechanisms of neuronal injury. PMID:23781213

  14. Comparison of Nootropic and Neuroprotective Features of Aryl-Substituted Analogs of Gamma-Aminobutyric Acid.

    PubMed

    Tyurenkov, I N; Borodkina, L E; Bagmetova, V V; Berestovitskaya, V M; Vasil'eva, O S

    2016-02-01

    GABA analogs containing phenyl (phenibut) or para-chlorophenyl (baclofen) substituents demonstrated nootropic activity in a dose of 20 mg/kg: they improved passive avoidance conditioning, decelerated its natural extinction, and exerted antiamnestic effect on the models of amnesia provoked by scopolamine or electroshock. Tolyl-containing GABA analog (tolibut, 20 mg/kg) exhibited antiamnestic activity only on the model of electroshock-induced amnesia. Baclofen and, to a lesser extent, tolibut alleviated seizures provoked by electroshock, i.e. both agents exerted anticonvulsant effect. All examined GABA aryl derivatives demonstrated neuroprotective properties on the maximum electroshock model: they shortened the duration of coma and shortened the period of spontaneous motor activity recovery. In addition, these agents decreased the severity of passive avoidance amnesia and behavioral deficit in the open field test in rats exposed to electroshock. The greatest neuroprotective properties were exhibited by phenyl-containing GABA analog phenibut.

  15. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes.

    PubMed

    Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming

    2014-01-01

    Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.

  16. Dimethyl Sulfoxide Damages Mitochondrial Integrity and Membrane Potential in Cultured Astrocytes

    PubMed Central

    Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming

    2014-01-01

    Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO. PMID:25238609

  17. Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants

    PubMed Central

    Hampson, A. J.; Grimaldi, M.; Axelrod, J.; Wink, D.

    1998-01-01

    The neuroprotective actions of cannabidiol and other cannabinoids were examined in rat cortical neuron cultures exposed to toxic levels of the excitatory neurotransmitter glutamate. Glutamate toxicity was reduced by both cannabidiol, a nonpsychoactive constituent of marijuana, and the psychotropic cannabinoid (−)Δ9-tetrahydrocannabinol (THC). Cannabinoids protected equally well against neurotoxicity mediated by N-methyl-d-aspartate receptors, 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid receptors, or kainate receptors. N-methyl-d-aspartate receptor-induced toxicity has been shown to be calcium dependent; this study demonstrates that 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid/kainate receptor-type neurotoxicity is also calcium-dependent, partly mediated by voltage sensitive calcium channels. The neuroprotection observed with cannabidiol and THC was unaffected by cannabinoid receptor antagonist, indicating it to be cannabinoid receptor independent. Previous studies have shown that glutamate toxicity may be prevented by antioxidants. Cannabidiol, THC and several synthetic cannabinoids all were demonstrated to be antioxidants by cyclic voltametry. Cannabidiol and THC also were shown to prevent hydroperoxide-induced oxidative damage as well as or better than other antioxidants in a chemical (Fenton reaction) system and neuronal cultures. Cannabidiol was more protective against glutamate neurotoxicity than either ascorbate or α-tocopherol, indicating it to be a potent antioxidant. These data also suggest that the naturally occurring, nonpsychotropic cannabinoid, cannabidiol, may be a potentially useful therapeutic agent for the treatment of oxidative neurological disorders such as cerebral ischemia. PMID:9653176

  18. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin.

    PubMed

    Waseem, Mohammad; Parvez, Suhel

    2016-03-01

    Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.

  19. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    PubMed

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  1. Oxaloacetate: a novel neuroprotective for acute ischemic stroke.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Castillo, José

    2012-02-01

    It is well established that glutamate acts as an important mediator of neuronal degeneration during cerebral ischemia. Different kind of glutamate antagonists have been used to reduce the deleterious effects of glutamate. However, their preclinical success failed to translate into practical treatments. Far from the classical use of glutamate antagonists employed so far, the systemic administration of oxaloacetate represents a novel neuroprotective strategy to minimize the deleterious effect of glutamate in the brain tissue after ischemic stroke. The neuroprotective effect of oxaloacetate is based on the capacity of this molecule to reduce the brain and blood glutamate levels as a result of the activation of the blood-resident enzyme glutamate-oxaloacetate transaminase. Here we review the recent experimental and clinical results where it is demonstrated the potential applicability of oxaloacetate as a novel and powerful neuroprotective treatment against ischemic stroke. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands

    PubMed Central

    Pala, Daniele; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Flammini, Lisa; Barocelli, Elisabetta; Lucini, Valeria; Scaglione, Francesco; Bartolucci, Silvia; Bedini, Annalida; Rivara, Silvia; Spadoni, Gilberto

    2014-01-01

    Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies. PMID:25222552

  3. Neuroprotection for the new millennium. Matchmaking pharmacology and technology

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    2001-01-01

    A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.

  4. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    PubMed

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  5. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia.

    PubMed

    Chen, Zheng-Zhen; Yang, Dan-Dan; Zhao, Zhan; Yan, Hui; Ji, Juan; Sun, Xiu-Lan

    2016-04-01

    Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neuroprotective Effects and Mechanisms of Action of Multifunctional Agents Targeting Free Radicals, Monoamine Oxidase B and Cholinesterase in Parkinson's Disease Model.

    PubMed

    Liu, Zheng; Cai, Wei; Lang, Ming; Yan, Ruizuo; Li, Zhenshen; Zhang, Gaoxiao; Yu, Pei; Wang, Yuqiang; Sun, Yewei; Zhang, Zaijun

    2017-04-01

    Parkinson's disease (PD) is a complex neurodegenerative disorder with multifactorial pathologies, including progressive loss of dopaminergic (DA) neurons, oxidative stress, mitochondrial dysfunction, and increased monoamine oxidase (MAO) enzyme activity. There are currently only a few agents approved to ameliorate the symptoms of PD; however, no agent is able to reverse the progression of the disease. Due to the multifactorial pathologies, it is necessary to develop multifunctional agents that can affect more than one target involved in the disease pathology. We have designed and synthesized a series of new multifunctional anti-Parkinson's compounds which can protect cerebral granular neurons from 1-methyl-4-phenylpyridinium (MPP + ) insult, scavenge free radicals, and inhibit monoamine oxidase (MAO)/cholinesterase (ChE) activities. Among them, MT-20R exhibited the most potent MAO-B inhibition both in vitro and in vivo. We further investigated the neuroprotective effects of MT-20R using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. In vivo, MT-20R alleviated MPTP-induced motor deficits, raised the striatal contents of dopamine and its metabolites, and restored the expression of tyrosine hydroxylase (TH) and the number of TH-positive DA neurons in the substantia nigra. Additionally, MT-20R enhanced the expression of Bcl-2, decreased the expression of Bax and Caspase 3, and activated the AKT/Nrf2/HO-1 signaling pathway. These findings suggest that MT-20R may be a novel therapeutic candidate for treatment of PD.

  7. Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine.

    PubMed

    Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song

    2014-09-01

    There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.

  8. Synergistic Action of Flavonoids, Baicalein, and Daidzein in Estrogenic and Neuroprotective Effects: A Development of Potential Health Products and Therapeutic Drugs against Alzheimer's Disease

    PubMed Central

    Choi, Roy C. Y.; Zhu, Judy T. T.; Yung, Amanda W. Y.; Lee, Pinky S. C.; Xu, Sherry L.; Guo, Ava J. Y.; Zhu, Kevin Y.; Dong, Tina T. X.; Tsim, Karl W. K.

    2013-01-01

    Despite the classical hormonal effect, estrogen has been reported to mediate neuroprotection in the brain, which leads to the searching of estrogen-like substances for treating neurodegenerative diseases. Flavonoids, a group of natural compounds, are well known to possess estrogenic effects and used to substitute estrogen, that is, phytoestrogen. Flavonoid serves as one of the potential targets for the development of natural supplements and therapeutic drugs against different diseases. The neuroprotection activity of flavonoids was chosen for a possible development of anti-Alzheimer's drugs or food supplements. The estrogenic activity of two flavonoids, baicalein and daidzein, were demonstrated by their strong abilities in stimulating estrogen receptor phosphorylation and transcriptional activation of estrogen responsive element in MCF-7 breast cells. The neuroprotection effects of flavonoids against β-amyloid (Aβ) were revealed by their inhibition effects on in vitro Aβ aggregation and Aβ-induced cytotoxicity in PC12 neuronal cells. More importantly, the estrogenic and neuroprotective activities of individual flavonoid could be further enhanced by the cotreatment in the cultures. Taken together, this synergistic effect of baicalein and daidzein might serve as a method to improve the therapeutic efficacy of different flavonoids against Aβ, which might be crucial in developing those flavonoidsin treating Alzheimer's disease in the future. PMID:24058373

  9. The potential role of cotinine in the cognitive and neuroprotective actions of nicotine.

    PubMed

    Buccafusco, Jerry J; Terry, Alvin V

    2003-05-16

    Cotinine is a primary metabolite of nicotine that has been suggested in many studies in animals and in humans to exert measurable effects on aspects of on-going behavior or on cognitive function. Much of the interest in cotinine derives from its long pharmacological half-life (15-19 hours) relative to nicotine (2-3 hours). Despite decades of study focusing on nicotine as the predominant behaviorally active component of tobacco, there continue to be aspects of the pharmacology of the drug that have yet to be explained. For example, nicotine can evoke a protracted behavioral response, i.e., in great excess of the presence of the drug in the plasma. Also, there is often a striking differential between the potency for nicotine-induced behavioral responses in humans and animals, and its potency as a cholinergic agonist, neurochemically. One possibility that may explain one or more of these properties of nicotine is the presence of a long-lived bioactive metabolite or breakdown product of nicotine such as cotinine. Preliminary data in support of this hypothesis are consistent with the ability of cotinine to improve performance accuracy on delayed matching task by macaque monkeys, and in reversing apomorphine-induced deficits in prepulse inhibition of acoustic startle in rats. The drug also was shown to be as potent as nicotine in the ability to act as a cytoprotective agent in cells that express a neuronal cholinergic phenotype. This new appreciation for the role of cotinine in nicotine's actions, and as a pharmacological agent in its own right, particularly in aspects of cognitive function and for neuroprotection, ultimately may be applied towards the treatment of Alzheimer's disease and related disorders, and for various psychiatric syndromes.

  10. Neuroprotection in Hypoxic-Ischemic Brain Injury Targeting Glial Cells.

    PubMed

    Mucci, Sofia; Herrera, Maria Ines; Barreto, George E; Kolliker-Frers, Rodolfo; Capani, Francisco

    2017-01-01

    Brain injury constitutes a disabling health condition of several etiologies. One of the major causes of brain injury is hypoxia-ischemia. Until recently, pharmacological treatments were solely focused on neurons. In the last decades, glial cells started to be considered as alternative targets for neuroprotection. Novel treatments for hypoxia-ischemia intend to modulate reactive forms of glial cells, and/or potentiate their recovery response. In this review, we summarize these neuroprotective strategies in hypoxia-ischemia and discuss their mechanisms of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Combination of Zizyphus jujuba and silymarin showed better neuroprotective effect as compared to single agent in MCAo-induced focal cerebral ischemia in rats.

    PubMed

    Gupta, Sangeetha; Gupta, Yogendra Kumar

    2017-02-02

    Traditionally, Zizyphus jujuba is used for anticonvulsant, hypnotic-sedative, anxiolytic, tranquilizer, antioxidant and anti-inflammatory properties. Likewise silymarin is popularly used for its potent antioxidant and hepatoprotective effects. Stroke being a multifactorial disease with unsatisfactory treatment outcomes, necessitates development of multimodal therapeutic interventions. Thus, we evaluated the therapeutic benefits of herbal combination of Z. jujuba and silymarin in a focal cerebral ischemia model. To evaluate the neuroprotective potential of hydroalcoholic extract of Z. jujuba (HEZJ) fruit and silymarin alone and in combination in middle cerebral artery occlusion (MCAo) model of focal cerebral ischemia in rats. Male Wistar rats were pretreated with HEZJ (100, 250 and 500mg/kg, p.o.) or silymarin (250mg/kg, p.o.) for 3 days prior to induction of MCAo. Neurological deficit score, motor impairment and cerebral infarction were assessed 24h following MCAo. HEZJ (250mg/kg) co-administered with silymarin (250mg/kg) for 3 days prior to induction of MCAo was also evaluated for above parameters and oxidative stress. Malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) levels in the cortex, striatum and hippocampal brain regions were estimated 24h post MCAo. Pretreatment with HEZJ and silymarin reduced the neurological deficit score, motor impairment and cerebral infarction volume. HEZJ and silymarin pretreatment also ameliorated the oxidative stress in different brain regions, which was evident from increased SOD levels, decreased MDA and NO levels as compared to MCAo control rats. Interestingly neuroprotective efficacy was potentiated by pretreatment with HEZJ and silymarin combination. Pretreatment with HEZJ and silymarin combination was observed to have better neuroprotection mediated via amelioration of oxidative stress in the focal cerebral ischemia model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Neuroprotective effects of resveratrol in Alzheimer disease pathology.

    PubMed

    Rege, Shraddha D; Geetha, Thangiah; Griffin, Gerald D; Broderick, Tom L; Babu, Jeganathan Ramesh

    2014-01-01

    Alzheimer's disease is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4'-trihydroxy-trans-stilbene) when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogs aimed at increasing the bioavailability in plasma is also discussed.

  13. 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection.

    PubMed

    Ha, Sang Keun; Moon, Eunjung; Ju, Mi Sun; Kim, Dong Hyun; Ryu, Jong Hoon; Oh, Myung Sook; Kim, Sun Yeou

    2012-08-01

    Inflammatory processes in the central nervous system play an important role in a number of neurodegenerative diseases mediated by microglial activation, which results in neuronal cell death. Microglia act in immune surveillance and host defense while resting. When activated, they can be deleterious to neurons, even resulting in neurodegeneration. Therefore, the inhibition of microglial activation is considered a useful strategy in searching for neuroprotective agents. In this study, we investigated the effects of 6-shogaol, a pungent agent from Zingiber officinale Roscoe, on microglia activation in BV-2 and primary microglial cell cultures. 6-Shogaol significantly inhibited the release of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). The effect was better than that of 6-gingerol, wogonin, or N-monomethyl-l-arginine, agents previously reported to inhibit nitric oxide. 6-Shogaol exerted its anti-inflammatory effects by inhibiting the production of prostaglandin E(2) (PGE(2)) and proinflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and by downregulating cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) expression. In addition, 6-shogaol suppressed the microglial activation induced by LPS both in primary cortical neuron-glia culture and in an in vivo neuroinflammatory model. Moreover, 6-shogaol showed significant neuroprotective effects in vivo in transient global ischemia via the inhibition of microglia. These results suggest that 6-shogaol is an effective therapeutic agent for treating neurodegenerative diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Neuroprotective Effects of 17β-Estradiol against Thrombin-Induced Apoptosis in Primary Cultured Cortical Neurons.

    PubMed

    Bao, Lei; Zhou, Su; Zhao, Hui; Zu, Jie; He, Qianqian; Ye, Xinchun; Cui, Guiyun

    2015-01-01

    17β-estradiol (E2) is a powerful neuroprotective agent in the central nervous system; however, little is known about its effects on intracerebral hemorrhage. This study examined the effects of E2 on thrombin-induced apoptosis in vitro and investigated the potential mechanisms. Primary cultured cortical neurons were treated with E2 or vehicle and then the cells were exposed to thrombin. Neuronal apoptosis was assessed by flow cytometry. The phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and caspase-3 were assayed by western blot. Consequently, we found that E2 has significantly reduced the apoptosis in thrombin-treated neurons. E2 also exhibited a downregulation in the ratio of Bax/Bcl-2, caspase-3 and p-JNK. However, E2 had little effect on p-ERK1/2 proteins activation. Taken together, E2 has shown neuroprotective effects on thrombin-induced neuronal apoptosis, and the molecular mechanisms may correlate with the inhibition of the JNK signaling pathway. © 2015 S. Karger AG, Basel.

  15. Oral ‘hydrogen water' induces neuroprotective ghrelin secretion in mice

    PubMed Central

    Matsumoto, Akio; Yamafuji, Megumi; Tachibana, Tomoko; Nakabeppu, Yusaku; Noda, Mami; Nakaya, Haruaki

    2013-01-01

    The therapeutic potential of molecular hydrogen (H2) is emerging in a number of human diseases and in their animal models, including in particular Parkinson's disease (PD). H2 supplementation of drinking water has been shown to exert disease-modifying effects in PD patients and neuroprotective effects in experimental PD model mice. However, H2 supplementation does not result in detectable changes in striatal H2 levels, indicating an indirect effect. Here we show that H2 supplementation increases gastric expression of mRNA encoding ghrelin, a growth hormone secretagogue, and ghrelin secretion, which are antagonized by the β1-adrenoceptor blocker, atenolol. Strikingly, the neuroprotective effect of H2 water was abolished by either administration of the ghrelin receptor-antagonist, D-Lys3 GHRP-6, or atenolol. Thus, the neuroprotective effect of H2 in PD is mediated by enhanced production of ghrelin. Our findings point to potential, novel strategies for ameliorating pathophysiology in which a protective effect of H2 supplementation has been demonstrated. PMID:24253616

  16. Polyamine conjugation of curcumin analogues toward the discovery of mitochondria-directed neuroprotective agents.

    PubMed

    Simoni, Elena; Bergamini, Christian; Fato, Romana; Tarozzi, Andrea; Bains, Sandip; Motterlini, Roberto; Cavalli, Andrea; Bolognesi, Maria Laura; Minarini, Anna; Hrelia, Patrizia; Lenaz, Giorgio; Rosini, Michela; Melchiorre, Carlo

    2010-10-14

    Mitochondria-directed antioxidants 2-5 were designed by conjugating curcumin congeners with different polyamine motifs as vehicle tools. The conjugates emerged as efficient antioxidants in mitochondria and fibroblasts and also exerted a protecting role through heme oxygenase-1 activation. Notably, the insertion of a polyamine function into the curcumin-like moiety allowed an efficient intracellular uptake and mitochondria targeting. It also resulted in a significant decrease in the cytotoxicity effects. 2-5 are therefore promising molecules for neuroprotectant lead discovery.

  17. [Evolution of the neuroprotection concept].

    PubMed

    Ostrovskaia, R U

    2003-01-01

    Although the modern concept of neuroprotection has been formulated quite recently, the basis of this approach was laid about four decades ago when Zakusov initiated the study of mechanisms involved in the neuroprotector action of GABA shunt metabolites (in particular, alpha-hydroxybutyric acid and succinic semialdehyde) during hypoxia. It was suggested to consider these agents as a system of endogenous neuroprotectors. The interest of Zakusov in endogenous regulators (including oligopeptides) had stimulated research in this direction and gave impact to the investigations of A. P. Skoldinov and T. A. Gudasheva initiated in the early 1980s. Proceeding from the original concept of the possibility of imitation of the action of neurotropic agents by their structural-conformational oligopeptide analogs, a number of biologically active stable dipeptides were obtained, based on pyroglutamate and proline, and high specific bioaccessibility of these dipeptides for the brain was established. Our investigations showed that these compounds not only possess nootropic activity (in a dose 1000 times lower than that of piracetam), but produce a pronounced neuroprotector action as well. Most thoroughly studied in this respect were substituted acyl-prolyl dipeptides, in particular, the drug noopept exhibiting a combined neuroprotector effect both in vitro and in vivo. Noopept decreases the extent of necrotic damage caused by photoinduced thrombosis of cortical blood vessels. It was established that the neuroprotector effect of noopept is related to its action upon the well-known "triad", whereby the drug reduces neurotoxic effects of excess extracellular calcium, glutamate, and free radicals. Two additional components of the neuroprotector action of noopept are related to the antiinflammatory and antithrombotic activity. The prospects of using direct and indirect action upon neurotrophin system for neuroprotection purposes are considered. Taking into account common secondary

  18. Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism

    PubMed Central

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael

    2010-01-01

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neuroprotective as their caffeine and nicotine-containing counterparts and that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco are also evident in Drosophila models of Alzheimer's disease and polyglutamine disease. Finally, we report that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco require the cytoprotective transcription factor Nrf2 and that a known Nrf2 activator in coffee, cafestol, is also able to confer neuroprotection in our fly models of PD. Our findings indicate that coffee and tobacco contain Nrf2-activating compounds that may account for the reduced risk of PD among coffee and tobacco users. These compounds represent attractive candidates for therapeutic intervention in PD and perhaps other neurodegenerative diseases. PMID:20410106

  19. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons.

    PubMed

    Tárnok, K; Kiss, E; Luiten, P G M; Nyakas, C; Tihanyi, K; Schlett, K; Eisel, U L M

    2008-12-01

    Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.

  20. Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs

    PubMed Central

    Robinson, Ainsley M.; Miller, Sarah; Payne, Natalie; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira

    2015-01-01

    Background & Aims The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis. Methods At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs. Results MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome. Conclusion MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted

  1. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia

    PubMed Central

    Kalappa, Bopanna I; Sun, Fen; Johnson, Stephen R; Jin, Kunlin; Uteshev, Victor V

    2013-01-01

    Background and Purpose Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. Experimental Approach An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. Key Results Choline (20–200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg−1, s.c. and 1 mg·kg−1, i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg−1, i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. Conclusions and Implications PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting

  2. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro.

    PubMed

    Pogačnik, Lea; Pirc, Katja; Palmela, Inês; Skrt, Mihaela; Kim, Kwang S; Brites, Dora; Brito, Maria Alexandra; Ulrih, Nataša Poklar; Silva, Rui F M

    2016-11-15

    Natural food sources constitute a promising source of new compounds with neuroprotective properties, once they have the ability to reach the brain. Our aim was to evaluate the brain accessibility of quercetin, epigallocatechin gallate (EGCG) and cyanidin-3-glucoside (C3G) in relation to their neuroprotective capability. Primary cortical neuron cultures were exposed to oxidative insult in the absence and presence of the selected compounds, and neuroprotection was assessed through evaluation of apoptotic-like and necrotic-like cell death. The brain accessibility of selected compounds was assessed using an optimised human blood-brain barrier model. The blood-brain barrier model was crossed rapidly by EGCG and more slowly by C3G, but not by quercetin. EGCG protected against oxidation-induced neuronal necrotic-like cell death by ~40%, and apoptosis by ~30%. Both quercetin and C3G were less effective, since only the lowest quercetin concentration was protective, and C3G only prevented necrosis by ~37%. Quercetin, EGCG and C3G effectively inhibited α-synuclein fibrillation over the relevant timescale applied here. Overall, EGCG seems to be the most promising neuroprotective compound. Thus, inclusion of this polyphenol in the diet might provide an affordable means to reduce the impact of neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications

    PubMed Central

    Oh, Yoon Sin

    2016-01-01

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315

  4. miR-7-1 POTENTIATED ESTROGEN RECEPTOR AGONISTS FOR FUNCTIONAL NEUROPROTECTION IN VSC4.1 MOTONEURONS

    PubMed Central

    CHAKRABARTI, M.; BANIK, N. L.; RAY, S. K.

    2013-01-01

    Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI) insulted VSC4.1 motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using miRDB indicated that miR-7-1 could inhibit expression of L-type Ca2+ channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca2+/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI. PMID

  5. Insights into the molecular aspects of neuroprotective Bacoside A and Bacopaside I.

    PubMed

    Sekhar, Vini C; Viswanathan, Gayathri; Baby, Sabulal

    2018-04-19

    Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of the B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Neuroprotective effects of resveratrol in Alzheimer disease pathology

    PubMed Central

    Rege, Shraddha D.; Geetha, Thangiah; Griffin, Gerald D.; Broderick, Tom L.; Babu, Jeganathan Ramesh

    2014-01-01

    Alzheimer’s disease is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4′-trihydroxy-trans-stilbene) when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogs aimed at increasing the bioavailability in plasma is also discussed. PMID:25309423

  7. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease.

    PubMed

    Datla, K P; Christidou, M; Widmer, W W; Rooprai, H K; Dexter, D T

    2001-12-04

    Neuroprotective effects of a natural antioxidant tangeretin, a citrus flavonoid, were elucidated in the 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD), after bioavailability studies. Following the chronic oral administration (10 mg/kg/day for 28 days), significant levels of tangeretin were detected in the hypothalamus, striatum and hippocampus (3.88, 2.36 and 2.00 ng/mg, respectively). The levels in the liver and plasma were 0.59 ng/mg and 0.11 ng/ml respectively. Unilateral infusion of the dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA; 8 microg), onto medial forebrain bundle significantly reduced the number of tyrosine hydroxylase positive (TH+) cells in the substantia nigra and decreased striatal dopamine content in the vehicle treated rats. Sub-chronic treatment of the rats with high doses of tangeretin (20 mg/kg/day for 4 days; p.o.) before 6-OHDA lesioning markedly reduced the loss of both TH+ cells and striatal dopamine content. These studies, for the first time, give evidence that tangeretin crosses the blood-brain barrier. The significant protection of striato-nigral integrity and functionality by tangeretin suggests its potential use as a neuroprotective agent.

  8. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  9. On the horizon: possible neuroprotective role for glatiramer acetate.

    PubMed

    Kreitman, Rivka Riven; Blanchette, François

    2004-06-01

    Inflammation and neurodegeneration characterize the pathogenesis of multiple sclerosis (MS). Slow axonal degeneration, rather than acute inflammation, is considered the cause of chronic disability in MS. The signs of acute axonal damage and loss have been shown to occur early in the lesion development of patients with chronic MS and often correlate with demyelination and inflammation. While immune activity in the central nervous system has traditionally been considered to be a detrimental event in MS, recent studies have found that autoimmune T cells may play an important role in protecting neurons from the ongoing spreading damage. Neuroprotection in MS is a new and evolving concept, and many questions remain with regard to potential targets for therapeutic intervention. Preliminary studies, both in animals and in humans, have suggested that glatiramer acetate (GA) may confer neuroprotective activity in addition to bystander suppression. Additional research is needed to determine if these promising neuroprotective effects correlated with the long-term effect of GA in MS.

  10. Prehospital use of magnesium sulfate as neuroprotection in acute stroke.

    PubMed

    Saver, Jeffrey L; Starkman, Sidney; Eckstein, Marc; Stratton, Samuel J; Pratt, Franklin D; Hamilton, Scott; Conwit, Robin; Liebeskind, David S; Sung, Gene; Kramer, Ian; Moreau, Gary; Goldweber, Robert; Sanossian, Nerses

    2015-02-05

    Magnesium sulfate is neuroprotective in preclinical models of stroke and has shown signals of potential efficacy with an acceptable safety profile when delivered early after stroke onset in humans. Delayed initiation of neuroprotective agents has hindered earlier phase 3 trials of neuroprotective agents. We randomly assigned patients with suspected stroke to receive either intravenous magnesium sulfate or placebo, beginning within 2 hours after symptom onset. A loading dose was initiated by paramedics before the patient arrived at the hospital, and a 24-hour maintenance infusion was started on the patient's arrival at the hospital. The primary outcome was the degree of disability at 90 days, as measured by scores on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability). Among the 1700 enrolled patients (857 in the magnesium group and 843 in the placebo group), the mean (±SD) age was 69±13 years, 42.6% were women, and the mean pretreatment score on the Los Angeles Motor Scale of stroke severity (range, 0 to 10, with higher scores indicating greater motor deficits) was 3.7±1.3. The final diagnosis of the qualifying event was cerebral ischemia in 73.3% of patients, intracranial hemorrhage in 22.8%, and a stroke-mimicking condition in 3.9%. The median interval between the time the patient was last known to be free of stroke symptoms and the start of the study-drug infusion was 45 minutes (interquartile range, 35 to 62), and 74.3% of patients received the study-drug infusion within the first hour after symptom onset. There was no significant shift in the distribution of 90-day disability outcomes on the global modified Rankin scale between patients in the magnesium group and those in the placebo group (P=0.28 by the Cochran-Mantel-Haenszel test); mean scores at 90 days did not differ between the magnesium group and the placebo group (2.7 in each group, P=1.00). No significant between-group differences were noted with respect to

  11. Potential therapeutic agents derived from the cannabinoid nucleus.

    PubMed

    Pars, H G; Howes, J F

    1977-01-01

    Drugs derived from Cannabis sativa (Cannabinceae) were used until the 1940's for their stimulant and depressant effects for treating somatic and psychiatric illnesses. Renewed interest in marihuana research began in the 1970's and again pointed to the therapeutic potential of cannabinoids. Safer and more useful therapeutic agents may be generated from cannabinoids similarly to morphine, lysergic acid diethylamide, and cocaine which have structurally related analgesics, oxytoxics, and local anesthetics respectively. It has been shown that the C-ring in cannabinoids can be substituted with a variety of nitrogen and sulfur-containing rings without loss of CNS (central nervous system) activity. Cannabinoids have been shown to inhibit prostaglandin synthesis, intensify pressor effects of endogenous amines like norepinephrine, and enhance the stimulant effects of amphetamine. Cannabinoids' therapeutic potential lies in the areas of analgesics and anticonvulsants, and for use as a sedative-hypnotic, an antiglaucoma agent, an antiasthmatic agent, an antidiarrheal agent, and possibly as an anticancer and immunosuppressant agent.

  12. A Pharmacological Screening Approach for Discovery of Neuroprotective Compounds in Ischemic Stroke

    PubMed Central

    Beraki, Simret; Litrus, Lily; Soriano, Liza; Monbureau, Marie; To, Lillian K.; Braithwaite, Steven P.; Nikolich, Karoly; Urfer, Roman; Oksenberg, Donna; Shamloo, Mehrdad

    2013-01-01

    With the availability and ease of small molecule production and design continuing to improve, robust, high-throughput methods for screening are increasingly necessary to find pharmacologically relevant compounds amongst the masses of potential candidates. Here, we demonstrate that a primary oxygen glucose deprivation assay in primary cortical neurons followed by secondary assays (i.e. post-treatment protocol in organotypic hippocampal slice cultures and cortical neurons) can be used as a robust screen to identify neuroprotective compounds with potential therapeutic efficacy. In our screen about 50% of the compounds in a library of pharmacologically active compounds displayed some degree of neuroprotective activity if tested in a pre-treatment toxicity assay but just a few of these compounds, including Carbenoxolone, remained active when tested in a post-treatment protocol. When further examined, Carbenoxolone also led to a significant reduction in infarction size and neuronal damage in the ischemic penumbra when administered six hours post middle cerebral artery occlusion in rats. Pharmacological testing of Carbenoxolone-related compounds, acting by inhibition of 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD1), gave rise to similarly potent in vivo neuroprotection. This indicates that the increase of intracellular glucocorticoid levels mediated by 11β-HSD1 may be involved in the mechanism that exacerbates ischemic neuronal cell death, and inhibiting this enzyme could have potential therapeutic value for neuroprotective therapies in ischemic stroke and other neurodegenerative disorders associated with neuronal injury. PMID:23874920

  13. Nature-based molecules combined with rivastigmine: A symbiotic approach for the synthesis of new agents against Alzheimer's disease.

    PubMed

    Nesi, Giulia; Chen, Qiuhe; Sestito, Simona; Digiacomo, Maria; Yang, Xiaohong; Wang, Shengnan; Pi, Rongbiao; Rapposelli, Simona

    2017-12-01

    Starting from nature as original source, new potential agents with pleiotropic activities have been synthesized and evaluated as neuroprotective agents. In this work, novel nature-based hybrids, combining antioxidant motifs with rivastigmine, have been designed and synthesized. The biological results revealed that the new compounds inhibit both AChE and BuChE. In particular, lipoic acid hybrids LA1, LA2, LA3 resulted to be the most potent inhibitors of BuChE showing IC 50 values ranging from 340 to 378 nM. Analogously, all the compounds were able to inhibit the self β-amyloid 1-42 aggregation. The gallic acid hybrid GA2 as well as the 2-chromonecarboxylic acid hybrids CA1 and CA2 prevented the self-mediated Aβ aggregation with percentages of inhibition ranging from 53% to 59%. Finally, some of them also show potent neuroprotective effects against glutamate-induced cell death and low toxicity in HT22 cells. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Neuroprotective actions of the synthetic estrogen 17alpha-ethynylestradiol in the hippocampus.

    PubMed

    Picazo, Ofir; Becerril-Montes, Adriana; Huidobro-Perez, Delia; Garcia-Segura, Luis M

    2010-07-01

    17alpha-ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17beta-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 microg/rat) and high (10-100 microg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 microg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.

  15. Cyclopropyl glycine and proline-containing preparation noopept evoke two types of membrane potential responses in synaptoneurosomes.

    PubMed

    Lutsenko, V K; Vukolova, M N; Gudasheva, T A

    2003-06-01

    Proline, cyclo(Pro-Gly), and acyl-prolyl-containing dipeptide GVS-111 decreased synaptoneurosome membrane potential in a Ca2+-free medium. The efficiency of these preparations decreased in the following order: GVS>cyclo(Pro-Gly)>proline. Depolarization responses induced by endogenous nootropic agent cyclo(Pro-Gly) was dose-dependent and saturable; the threshold concentration of cyclo(Pro-Gly) was 10(-9) M. In a Ca2+-containing medium GVS and cyclo(Pro-Gly) induced both hyperpolarizing and depolarizing membrane responses of synaptoneurosomes. Possible mechanisms underlying changes in the membrane potential of synaptoneurosomes induced by nootropic agents are discussed. It was interesting whether modulation of electrogenesis can improve memory and potentiate the neuroprotective effect of the test nootropic agents.

  16. [The original novel nootropic and neuroprotective agent noopept].

    PubMed

    Ostrovskaia, R U; Gudasheva, T A; Voronina, T A; Seredenin, S B

    2002-01-01

    The paper describes pharmacological properties of the new nootropic drug noopept created using an original approach based on the imitation of a nonpeptide nootrope structure by means of the short-peptide design. In particular, the structure of pyracetam was designed using dipeptide nootropes. Experimental investigations of noopept (N-phenylacetyl-L-polyglycine ethyl ester) showed that the new drug exceeds pyracetam both with respect to the effective dose level (1000 times lower for noopept than for pyracetam) and in the spectrum of mnemotropic activity. In contrast to pyracetam facilitating only the early stages of the memory process, noopept positively influences the memory consolidation and retrieval steps as well. The new drug produces an additional selective anxiolytic action. The pronounced neuroprotective effect of noopept was demonstrated both in vivo (in cases of various forms of brain ischemia) and in vitro (on various neuronal models). The drug action is based on the antioxidant effect, the antiinflammatory action, and the ability to inhibit the neurotoxicity of excess calcium and glutamate, and to improve the blood rheology. It was established for the first time that the activity of noopept is retained both upon parenteral introduction and upon peroral administration, which is a principal advantage of this proline-containing dipeptide over other, more complex peptides. This property provided a basis for the development of a medicinal form of noopept for peroral usage. At present, noopept tablets (noopept 5 and 10 mg) are under clinical assessment as a means of treating cognitive deficiency of cerebrovascular and post-traumatic origin.

  17. Neuroprotective action and free radical scavenging activity of Guttiferone-A, a naturally occurring prenylated benzophenone.

    PubMed

    Nuñez-Figueredo, Y; García-Pupo, L; Ramírez-Sánchez, J; Alcántara-Isaac, Y; Cuesta-Rubio, O; Hernández, R D; Naal, Z; Curti, C; Pardo-Andreu, G L

    2012-12-01

    Reactive oxygen species (ROS) are important mediators in a number of neurodegenerative diseases and molecules capable of scavenging ROS may be a feasible strategy for protecting neuronal cells. We previously demonstrated a powerful iron-chelating action of Guttiferone-A (GA), a naturally occurring polyphenol, on oxidative stress injuries initiated by iron overload. Here we addressed the neuroprotective potential of GA in hydrogen peroxide and glutamate-induced injury on rat's primary culture of cortical neurons and PC12 cells, respectively, and antioxidant properties concerning scavenging and anti-lipoperoxidative activities in cell-free models. The decrease in cell viability induced by each of the toxins, assessed by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay, was significantly attenuated by GA. In addition, GA was found to be a potent antioxidant, as shown by (i) inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical reduction (EC50=20.0 μM), (ii) prevention against chemically or electrochemically generated superoxide radicals, (iii) inhibition of spontaneous brain lipid peroxidation and (iv) interference with the Fenton reaction. These results indicate that GA exerts neuroprotective effects against H2O2 or glutamate toxicity and its antioxidant activity, demonstrated in vitro, could be at least partly involved. They also suggest a promising potential for GA as a therapeutic agent against neurodegenerative diseases involving ROS and oxidative damage. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    PubMed

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  19. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats.

    PubMed

    Mostafa, Rasha E; Salama, Abeer A A; Abdel-Rahman, Rehab F; Ogaly, Hanan A

    2017-05-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that ultimately occurs as a complication of acute or chronic liver failure; accompanied by hyperammonemia. This study aimed to evaluate the potential of biopropolis as a hepato- and neuro-protective agent using thioacetamide (TAA)-induced acute HE in rats as a model. Sixty Wistar rats were divided into 5 groups: Group 1 (normal control) received only saline and paraffin oil. Group 2 (hepatotoxic control) received TAA (300 mg/kg, once). Groups 3, 4, and 5 received TAA followed by vitamin E (100 mg/kg) and biopropolis (100 and 200 mg/kg), respectively, daily for 30 days. Evidences of HE were clearly detected in TAA-hepatotoxic group including significant elevation in the serum level of ammonia, liver functions, increased oxidative stress in liver and brain, apoptotic DNA fragmentation and overexpression of iNOS gene in brain tissue. The findings for groups administered biopropolis, highlighted its efficacy as a hepato- and neuro-protectant through improving the liver functions, oxidative status and DNA fragmentation as well as suppressing the brain expression of iNOS gene. In conclusion, biopropolis, at a dose of 200 mg/kg per day protected against TAA-induced HE through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product.

  20. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

    PubMed

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M; Wang, Gelin; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.

  1. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease

    PubMed Central

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M.; Wang, Gelin; Williams, Noelle S.; Ready, Joseph M.; McKnight, Steven L.; Pieper, Andrew A.

    2012-01-01

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose–response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP+)-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP+ exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD. PMID:23027934

  2. MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons.

    PubMed

    Chakrabarti, M; Banik, N L; Ray, S K

    2014-01-03

    Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future

  3. Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Zhang, Wenri; Klaus, Judith; Young, Jennifer; Koerner, Ines; Sheldahl, Laird C.; Hurn, Patricia D.; Martínez-Murillo, Francisco; Alkayed, Nabil J.

    2006-09-01

    Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases. ischemia | stroke | estrogen

  4. Ventral tegmental area/substantia nigra and prefrontal cortex rodent organotypic brain slices as an integrated model to study the cellular changes induced by oxygen/glucose deprivation and reperfusion: effect of neuroprotective agents.

    PubMed

    Colombo, Laura; Parravicini, Chiara; Lecca, Davide; Dossi, Elena; Heine, Claudia; Cimino, Mauro; Wanke, Enzo; Illes, Peter; Franke, Heike; Abbracchio, Maria P

    2014-01-01

    Unveiling the roles of distinct cell types in brain response to insults is a partially unsolved challenge and a key issue for new neuroreparative approaches. In vivo models are not able to dissect the contribution of residential microglia and infiltrating blood-borne monocytes/macrophages, which are fundamentally undistinguishable; conversely, cultured cells lack original tissue anatomical and functional complexity, which profoundly alters reactivity. Here, we tested whether rodent organotypic co-cultures from mesencephalic ventral tegmental area/substantia nigra and prefrontal cortex (VTA/SN-PFC) represent a suitable model to study changes induced by oxygen/glucose deprivation and reperfusion (OGD/R). OGD/R induced cytotoxicity to both VTA/SN and PFC slices, with higher VTA/SN susceptibility. Neurons were highly affected, with astrocytes and oligodendrocytes undergoing very mild damage. Marked reactive astrogliosis was also evident. Notably, OGD/R triggered the activation of CD68-expressing microglia and increased expression of Ym1 and Arg1, two markers of "alternatively" activated beneficial microglia. Treatment with two well-known neuroprotective drugs, the anticonvulsant agent valproic acid and the purinergic P2-antagonist PPADS, prevented neuronal damage. Thus, VTA/SN-PFC cultures are an integrated model to investigate OGD/R-induced effects on distinct cells and easily screen neuroprotective agents. The model is particularly adequate to dissect the microglia phenotypic shift in the lack of a functional vascular compartment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury.

    PubMed

    Yin, Terry C; Britt, Jeremiah K; De Jesús-Cortés, Héctor; Lu, Yuan; Genova, Rachel M; Khan, Michael Z; Voorhees, Jaymie R; Shao, Jianqiang; Katzman, Aaron C; Huntington, Paula J; Wassink, Cassie; McDaniel, Latisha; Newell, Elizabeth A; Dutca, Laura M; Naidoo, Jacinth; Cui, Huxing; Bassuk, Alexander G; Harper, Matthew M; McKnight, Steven L; Ready, Joseph M; Pieper, Andrew A

    2014-09-25

    The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, 1 day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals 8 months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Hyun-Bok; Kim, Seong Yun; Cho, Kyung-Ok

    2011-12-01

    In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of 50µM glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

  7. Neuroprotective effect of interleukin-6 in a rat model of cerebral ischemia

    PubMed Central

    FENG, QILIN; WANG, YI; YANG, YINGDA

    2015-01-01

    Interleukin (IL)-6 is known to be a key cytokine in immune regulation in addition to serving crucial functions in various autoimmune diseases; however, the neuroprotective potential of IL-6 has not been fully investigated. The aim of the present study was to investigate the neuroprotective effects of the inflammatory cytokine IL-6 in a rat model of cerebral ischemia. Rat cerebral ischemia was induced by intraluminal middle cerebral artery occlusion. Following treatment with 500 or 50 ng IL-6, the infarct volumes and symptoms of neurological deficit were ameliorated. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining suggested that the IL-6 treatment reduced neuronal apoptosis in vivo, which was consistent with a lower percentage of annexin V- and caspase-3-positive cortical neurons. In addition, IL-6 in vitro induced the phosphorylation of signal transducer and activator of transcription (STAT) 3 and the expression of induced myeloid leukemia cell differentiation protein Mcl-1, but not the expression of B-cell lymphoma 2, suggesting the activation of the Janus kinase/STAT pathway by IL-6. IL-6 also appeared to be involved in the regulation of cytokine secretion and blood-brain barrier (BBB) integrity in cerebral ischemia. IL-6 downregulated a number of inflammatory cytokines, including tumor necrosis factor-α and IL-1β, as well as myeloperoxidase activity, indicating the accumulation of granulocytes in the ischemic brain tissue. IL-6 was also observed to support the integrity of the BBB by reducing Evans blue leakage in vivo and suppressing the expression of matrix metalloproteinase-9 in ischemic brain tissue. In conclusion, the results of the present study indicate that the neuroprotective effects of IL-6 in cerebral ischemia are the result of a range of processes, including the modulation of cell apoptosis, cytokine secretion and the integrity of the BBB. IL-6 could therefore be used as a therapeutic agent in clinical

  8. Multi-Targeting Andrographolide, a Novel NF-κB Inhibitor, as a Potential Therapeutic Agent for Stroke

    PubMed Central

    Yang, Chih-Hao; Yen, Ting-Lin; Hsu, Chia-Yuan; Thomas, Philip-Aloysius; Sheu, Joen-Rong; Jayakumar, Thanasekaran

    2017-01-01

    A key focus in the field of drug discovery has been motivated by the neuroprotection of natural compounds. Cerebral ischemia is a multifaceted pathological process with a series of mechanisms, and a perspective for the development of neuroprotectants from traditional herbal medicine or natural products is a promising treatment for this disease. Natural compounds with the effects of anti-oxidation, anti-inflammation, anti-apoptosis, and neurofunctional regulation exhibit therapeutic effects on experimental ischemic brain injury. Conferring to the pharmacological mechanisms underlying neuroprotection, a study found that androgapholide, a diterpene lactone compound, exhibits varying degrees of neuroprotective activities in both in vitro and in vivo experimental models of stroke. The neuroprotective mechanisms of andrographolide are suggested as: (I) increasing nuclear factor E2-related factor 2-heme oxygenase (Nrf2-HO-1) expression through p38-mitogen activated protein kinase (MAPK) regulation, (II) inducing cerebral endothelial cells (CEC) apoptosis and caspase-3 activation, (III) down regulating Bax, inducible nitric oxide synthase (iNOS), and (IV) inhibiting hydroxyl radical (OH−) formation, and activating transcription factor NF-κB signaling pathways. Recently, several researchers have also been trying to unveil the principal mechanisms involved in the neuroprotective effects of andrographolide. Therefore, this review aims to summarize an overview on the neuroprotective effects of andrographolide and exemplifies the essential mechanisms involved. This paper can provide information that andrographolide drug discovery may be a promising strategy for the development of a novel class of neuroprotective drug. PMID:28749412

  9. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  10. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins.

    PubMed

    Andrews, Russell J

    2003-05-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  11. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat.

    PubMed

    Knapp, L; Gellért, L; Kocsis, K; Kis, Z; Farkas, T; Vécsei, L; Toldi, J

    2015-01-01

    During an ischemic event, the well-regulated glutamate (Glu) homeostasis is disturbed, which gives rise to extremely high levels of this excitatory neurotransmitter in the brain tissues. It was earlier reported that the administration of oxaloacetate (OxAc) as a Glu scavenger reduces the Glu level in the brain by enhancing the brain-to-blood Glu efflux. Here, we studied the neuroprotective effect of OxAc administration in a new focal ischemic model in rats. Occlusion of the middle cerebral artery resulted in immediate reduction of the somatosensory-evoked responses (SERs), and the amplitudes remained at the reduced level throughout the whole ischemic period. On reperfusion, the SERs started to increase, but never reached the control level. OxAc proved to be protective, since the amplitudes started to recover even during the ischemia, and finally fully regained the control level. The findings of the histological measurements were in accordance with the electrophysiological data. After Fluoro Jade C staining, significantly fewer labeled cells were detected in the OxAc-treated group relative to the control. These results provide new evidence of the neuroprotective effect of OxAc against ischemic injury, which strengthens the likelihood of its future applicability as a novel neuroprotective agent for the treatment of ischemic stroke patients.

  12. Neuroprotection of Sex Steroids

    PubMed Central

    Liu, Mingyue; Kelley, Melissa H.; Herson, Paco S.; Hurn, Patricia D.

    2011-01-01

    Sex steroids are essential for reproduction and development in animals and humans, and sex steroids also play an important role in neuroprotection following brain injury. New data indicate that sex-specific responses to brain injury occur at the cellular and molecular levels. This review summarizes the current understanding of neuroprotection by sex steroids, particularly estrogen, androgen, and progesterone, based on both in vitro and in vivo studies. Better understanding of the role of sex steroids under physiological and pathological conditions will help us to develop novel effective therapeutic strategies for brain injury. PMID:20595940

  13. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection.

    PubMed

    Wen, Yi; Li, Wenjun; Poteet, Ethan C; Xie, Luokun; Tan, Cong; Yan, Liang-Jun; Ju, Xiaohua; Liu, Ran; Qian, Hai; Marvin, Marian A; Goldberg, Matthew S; She, Hua; Mao, Zixu; Simpkins, James W; Yang, Shao-Hua

    2011-05-06

    Neuroprotective strategies, including free radical scavengers, ion channel modulators, and anti-inflammatory agents, have been extensively explored in the last 2 decades for the treatment of neurological diseases. Unfortunately, none of the neuroprotectants has been proved effective in clinical trails. In the current study, we demonstrated that methylene blue (MB) functions as an alternative electron carrier, which accepts electrons from NADH and transfers them to cytochrome c and bypasses complex I/III blockage. A de novo synthesized MB derivative, with the redox center disabled by N-acetylation, had no effect on mitochondrial complex activities. MB increases cellular oxygen consumption rates and reduces anaerobic glycolysis in cultured neuronal cells. MB is protective against various insults in vitro at low nanomolar concentrations. Our data indicate that MB has a unique mechanism and is fundamentally different from traditional antioxidants. We examined the effects of MB in two animal models of neurological diseases. MB dramatically attenuates behavioral, neurochemical, and neuropathological impairment in a Parkinson disease model. Rotenone caused severe dopamine depletion in the striatum, which was almost completely rescued by MB. MB rescued the effects of rotenone on mitochondrial complex I-III inhibition and free radical overproduction. Rotenone induced a severe loss of nigral dopaminergic neurons, which was dramatically attenuated by MB. In addition, MB significantly reduced cerebral ischemia reperfusion damage in a transient focal cerebral ischemia model. The present study indicates that rerouting mitochondrial electron transfer by MB or similar molecules provides a novel strategy for neuroprotection against both chronic and acute neurological diseases involving mitochondrial dysfunction.

  14. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia-Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling.

    PubMed

    Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min

    2017-05-01

    Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.

  15. Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy

    PubMed Central

    Qin, Zhihui; Luo, Jia; VandeVrede, Lawren; Tavassoli, Ehsan; Fa’, Mauro; Teich, Andrew; Arancio, Ottavio; Thatcher, Gregory R. J.

    2012-01-01

    Learning and memory deficits in Alzheimer’s disease (AD) result from synaptic failure and neuronal loss, the latter caused in part by excitotoxicity and oxidative stress. A therapeutic approach is described, which uses NO-chimeras directed at restoration of both synaptic function and neuroprotection. 4-Methylthiazole (MZ) derivatives were synthesized, based upon a lead neuroprotective pharmacophore acting in part by GABAA receptor potentiation. MZ derivatives were assayed for protection of primary neurons against oxygen-glucose deprivation and excitotoxicity. Selected neuroprotective derivatives were incorporated into NO-chimera prodrugs, coined nomethiazoles. To provide proof of concept for the nomethiazole drug class, selected examples were assayed for: restoration of synaptic function in hippocampal slices from AD-transgenic mice; reversal of cognitive deficits; and, brain bioavailability of the prodrug and its neuroprotective MZ metabolite. Taken together the assay data suggest that these chimeric nomethiazoles may be of use in treatment of multiple components of neurodegenerative disorders, such as AD. PMID:22779770

  16. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  17. Mechanistic insight of bivalent compound 21MO as potential neuroprotectant for Alzheimer’s disease

    PubMed Central

    Saathoff, John M.; Liu, Kai; Chojnacki, Jeremy E.; He, Liu; Chen, Qun; Lesnefsky, Edward J.; Zhang, Shijun

    2016-01-01

    We have recently developed a bivalent strategy to provide novel compounds that potentially target multiple risk factors involved in the development of Alzheimer’s disease (AD). Our previous studies employing a bivalent compound with a shorter spacer (17MN) implicated that this compound can localize into mitochondria and endoplasmic reticulum (ER), thus interfering with the change of mitochondria membrane potential (ΔΨm) and Ca2+ levels in MC65 cells upon removal of tetracycline (TC). In this report, we examined the effects by a bivalent compound with a longer spacer (21MO) in MC65 cells. Our results demonstrated that 21MO suppressed the change of ΔΨm, possibly via interaction with the mitochondrial complex I in MC65 cells. Interestingly, 21MO did not show any effects on the Ca2+ level upon TC removal in MC65 cells. Our previous studies suggested that the mobilization of Ca2+ in MC65 cells, upon withdraw of TC, is originated from ER, so the results implicated that 21MO may preferentially interact with mitochondria in MC65 cells under the current experimental conditions. Collectively, the results suggest that bivalent compounds with varied spacer length and cell membrane anchor moiety may exhibit neuroprotective activities via different mechanisms of action. PMID:27023508

  18. Scaffold Hopping Toward Agomelatine: Novel 3, 4-Dihydroisoquinoline Compounds as Potential Antidepressant Agents

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ang, Wei; Long, Haiyue; Chang, Ying; Li, Zicheng; Zhou, Liangxue; Yang, Tao; Deng, Yong; Luo, Youfu

    2016-10-01

    A scaffold-hopping strategy toward Agomelatine based on in silico screening and knowledge analysis was employed to design novel antidepressant agents. A series of 3, 4-dihydroisoquinoline compounds were selected for chemical synthesis and biological assessment. Three compounds (6a-1, 6a-2, 6a-9) demonstrated protective effects on corticosterone-induced lesion of PC12 cells. Compound 6a-1 also displayed low inhibitory effects on the growth of HEK293 and L02 normal cells and it was further evaluated for its potential antidepressant effects in vivo. The forced swim test (FST) results revealed that compound 6a-1 remarkably reduced the immobility time of rats and the open field test (OFT) results indicated a better general locomotor activity of the rats treated with compound 6a-1 than those with Agomelatine or Fluoxetine. Mechanism studies implied that compound 6a-1 can significantly reduce PC12 cell apoptosis by up-regulation of GSH and down-regulation of ROS in corticosterone-induced lesion of PC12 cells. Meanwhile, the down-regulation of calcium ion concentration and up-regulation of BDNF level in PC12 cells may account for the neuroprotective effects. Furthermore, compound 6a-1 can increase cell survival and cell proliferation, promote cell maturation in the rat hippocampus after chronic treatment. The acute toxicity data in vivo indicated compound 6a-1 exhibited less hepatotoxicity than Agomelatine.

  19. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  20. Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Marco-Contelles, José; León, Rafael; de Los Ríos, Cristóbal; Guglietta, Antonio; Terencio, José; López, Manuela G; García, Antonio G; Villarroya, Mercedes

    2006-12-28

    In this work we describe the synthesis and biological evaluation of the tacrine-1,4-dihydropyridine (DHP) hybrids (3-11). These multipotent molecules are the result of the juxtaposition of an acetylcholinesterase inhibitor (AChEI) such as tacrine (1) and a 1,4-DHP such as nimodipine (2). Compounds 3-11 are very selective and potent AChEIs and show an excellent neuroprotective profile and a moderate Ca2+ channel blockade effect. Consequently, these molecules are new potential drugs for the treatment of Alzheimer's disease.

  1. Neuroprotection in glaucoma

    PubMed Central

    Vasudevan, Sushil K; Gupta, Viney; Crowston, Jonathan G

    2011-01-01

    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications. PMID:21150020

  2. Meta-Analysis of Creatine for Neuroprotection Against Parkinson's Disease.

    PubMed

    Attia; Ahmed, Hussien; Gadelkarim, Mohamed; Morsi, Mahmoud; Awad, Kamal; Elnenny, Mohamed; Ghanem, Esraa; El-Jaafary, Shaimaa; Negida, Ahmed

    2017-01-01

    Creatine is an antioxidant agent that showed neuroprotective effects in animal models of Parkinson's disease (PD). Creatine was selected by the National Institute of Neurological Disorders and Stroke as a possible disease modifying agent for Parkinson's disease. Therefore, many clinical trials evaluated the efficacy of creatine for patients with PD. The aim of this systematic review and meta-analysis is to synthesize evidence from published randomized controlled trials (RCTs) about the efficacy of Creatine for patients with PD. We followed PRISMA statement guidelines during the preparation of this systematic review and meta-analysis. A computer literature search for PubMed, EBSCO, web of science and Ovid Midline was carried out. We included RCTs comparing creatine with placebo in terms of motor functions and quality of life. Outcomes of total Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS I, UPDRS II, and UPDRS III were pooled as mean difference (MD) between two groups from baseline to the endpoint. Statistical heterogeneity was assessed by visual inspection of the forest plot and measured by chi-square and I square tests. Three RCTs (n=1935) were included in this study. The overall effect did not favor either of the two groups in terms of: UPDRS total score (MD 1.07, 95% CI [3.38 to 1.25], UPDRS III (MD 0.62, 95% CI [2.27 to 1.02]), UPDRS II (MD 0.03, 95% CI [0.81 to 0.86], or UPDRS I (MD 0.03, 95% CI [0.33 to 0.28]). Current evidence does not support the use of creatine for neuroprotection against PD. Future well-designed, randomized controlled trials are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation.

    PubMed

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B; Miguel, Célia; Santos, Cláudia N

    2013-10-28

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum's potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits.

  4. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation

    PubMed Central

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B.; Miguel, Célia; Santos, Cláudia N.

    2013-01-01

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum’s potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits. PMID:26784465

  5. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  6. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Screening for Cerebroprotective Agents Using an In Vivo Model of Cerebral Reversible Depolarization in Awake Rats

    DTIC Science & Technology

    2001-01-01

    next millennium. Roach RC, Wagner pathophysiology and therapy . Neurosci Biobehav Res 1987; 11: PD, Hackett PH, eds. New York: Kluwer Academic/Plenum 287...Medical 43. Anonymous. Neuroprotection as initial therapy in acute Publishers, 1989. stroke. Third report of an ad hoc consensus group meeting. The 19...metabolism during electroconvulsive treatment in relaxation. rotoxicity risk assessment. In: Neuroprotective agents, vol. 825. EEG-EMG Zeitschrift fur

  8. Estrogen-IGF-1 interactions in neuroprotection: Ischemic Stroke as a case study

    PubMed Central

    Sohrabji, Farida

    2014-01-01

    The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants. PMID:24882635

  9. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca(2+) Influx.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-07-11

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca(2+) influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca(2+) hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases.

  10. Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons.

    PubMed

    Rebai, Olfa; Belkhir, Manel; Sanchez-Gomez, María Victoria; Matute, Carlos; Fattouch, Sami; Amri, Mohamed

    2017-12-01

    The present study has been designed to explore the molecular mechanism and signaling pathway targets of chlorogenic acid (CGA) and its main hydrolysates, caffeic (CA) and quinic acid in the protective effect against glutamate-excitotoxicity. For this purpose 8-DIV cortical neurons in primary culture were exposed to 50 μM L-glutamic acid plus 10 µM glycine, with or without 10-100 μM tested compounds. Chlorogenic acid and caffeic acid via their antioxidant properties inhibited cell death induced by glutamate in dose depended manner. However, quinic acid slightly protects neurons at a higher dose. DCF, JC-1 and Ca 2+ sensitive fluorescent dye fura-2, were used to measure intracellular ROS accumulation, mitochondrial membrane potential integration and intracellular calcium concentration [Ca 2+ ] i . Results indicate that similarly, CGA acts as a protective agent against glutamate-induced cortical neurons injury by suppressing the accumulation of endogenous ROS and restore the mitochondrial membrane potential, activate the enzymatic antioxidant system by the increase levels of SOD activity and modulate the rise of intracellular calcium levels by increasing the rise of intracellular concentrations of Ca 2+ caused by glutamate overstimulation. PKC signaling cascade appear to be engaged in this protective mechanism. Interseling, CGA and CA also exhibit antiapoptotic properties against glutamate-induced cleaved activation of pro-caspases; caspase 1,8 and 9 and calpain (PD 150606,Calpeptin and MDL 28170).These data suggest that neuroprotective activity of CGA ester may occurs throught its hydrolysate,the caffeic acid and its interaction with intracellular molecules suggesting that CGA exert its neuroprotection via its caffeoly acid group that might potentially be used as a therapeutic agent in neurodegeneratives disorders associated with glutamate excitotoxicity.

  11. Neuroprotective properties of Valeriana officinalis extracts.

    PubMed

    Malva, João O; Santos, Sandra; Macedo, Tice

    2004-01-01

    Valeriana officinalis have been used in traditional medicine for its sedative, hypnotic, and anticonvulsant effects. There are several reports in the literature supporting a GABAergic mechanism of action for valerian. The rationale of the present work is based on the concept that by decreasing neuronal network excitability valerian consumption may contribute to neuroprotection. The aim of our investigation was to evaluate the neuroprotective effects of V. officinalis against the toxicity induced by amyloid beta peptide 25-35 Abeta(25-35). Cultured rat hippocampal neurons were exposed to Abeta(25-35) (25 microM) for 24-48 h, after which morphological and biochemical properties were evaluated. The neuronal injury evoked by Abeta, which includes a decrease in cell reducing capacity and associated neuronal degeneration, was prevented by valerian extract. Analysis of intracellular free calcium (Ca(2+)i) indicated that the neuroprotective mechanisms may involve the inhibition of excess influx of Ca2+ following neuronal injury. Moreover, membrane peroxidation in rat hippocampal synaptosomes was evaluated, and our data indicate that valerian extract partially inhibited ascorbate/iron-induced peroxidation. In conclusion we show evidence that the signalling pathways involving Ca(2+)i and the redox state of the cells may play a central role in the neuroprotective properties of V. officinalis extract against Abeta toxicity. The novelty of the findings of the present work, indicating neuroprotective properties of valerian against Abeta toxicity may, at the long-term, contribute to introduction of a new relevant use of valerian alcoholic extract to prevent neuronal degeneration in aging or neurodegenerative disorders.

  12. The role of potential agents in making spatial perspective taking social

    PubMed Central

    Clements-Stephens, Amy M.; Vasiljevic, Katarina; Murray, Alexandra J.; Shelton, Amy L.

    2013-01-01

    A striking relationship between visual spatial perspective taking (VSPT) and social skills has been demonstrated for perspective-taking tasks in which the target of the imagined or inferred perspective is a potential agent, suggesting that the presence of a potential agent may create a social context for the seemingly spatial task of imagining a novel visual perspective. In a series of studies, we set out to investigate how and when a target might be viewed as sufficiently agent-like to incur a social influence on VSPT performance. By varying the perceptual and conceptual features that defined the targets as potential agents, we find that even something as simple as suggesting animacy for a simple wooden block may be sufficient. More critically, we found that experience with one potential agent influenced the performance with subsequent targets, either by inducing or eliminating the influence of social skills on VSPT performance. These carryover effects suggest that the relationship between social skills and VSPT performance is mediated by a complex relationship that includes the task, the target, and the context in which that target is perceived. These findings highlight potential problems that arise when identifying a task as belonging exclusively to a single cognitive domain and stress instead the highly interactive nature of cognitive domains and their susceptibility to cross-domain individual differences. PMID:24046735

  13. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    PubMed Central

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (I K) dose-dependently in rat hippocampal neurons. The IC 50 value for inhibition of I K was 41.9±2.3 µM (Hill coefficient = 1.81±0.13, n = 6), whereas that for inhibition of I A was 307.9±38.5 µM (Hill coefficient = 1.37±0.08, n = 6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing I K than I A. Moreover, the inhibition of I K by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on I K, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(−) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I K. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I K , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734

  14. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer's agents: Design, synthesis and biological evaluation.

    PubMed

    Wang, Wenbao; Wang, Wei; Yao, Guodong; Ren, Qiang; Wang, Di; Wang, Zedan; Liu, Peng; Gao, Pinyi; Zhang, Yan; Wang, Shaojie; Song, Shaojiang

    2018-05-10

    Sarsasapogenin, an active ingredient in Rhizoma anemarrhenae, is a promising bioactive lead compound in the treatment of Alzheimer's disease. To search for more efficient anti-Alzheimer agents, a series of novel sarsasapogenin-triazolyl hybrids were designed, synthesized, and evaluated for their Aβ 1-42 aggregation inhibitory activities. Most of these new hybrids displayed potent Aβ 1-42 aggregation inhibition. In particular, the promising compounds 6j and 6o displayed a better ability to interrupt the formation of Aβ 1-42 fibrils than curcumin. Moreover, 6j and 6o exhibited moderate neuroprotective effects against H 2 O 2 -induced neurotoxicity in SH-SY5Y cells. To investigate whether 6j and 6o could improve cognitive deficits, we performed behavioral tests to examine the learning and memory impairments induced by intracerebroventricular injection of Aβ 1-42 (ICV-Aβ 1-42 ) in mice and TUNEL staining to observe neuronal apoptosis in the hippocampus. The results obtained indicated that oral treatment with 6j and 6o significantly ameliorated cognitive impairments in behavioral tests and TUNEL staining showed that 6j and 6o attenuated neuronal loss in the brain. Taken together, the results we obtained showed that the sarsasapogenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compounds 6j and 6o have the potential to be important lead compounds for further research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications.

    PubMed

    Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang

    2017-12-28

    Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  16. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells.

    PubMed

    Nataraj, Jagatheesan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed

    2017-07-01

    Parkinson's disease (PD) is a chronic neurodegenerative disease, manifested due to the loss of dopaminergic neurons, which ultimately leads to impaired movement in elderly populations. The pathogenesis of PD is associated with numerous factors including oxidative stress, mitochondrial dysfunction and apoptosis. There is no effective therapy available to cure or halt the progression of this disease still now. Asiatic acid (AA) is a triterpene extracted from Centella asiatica has been reported as an antioxidant and anti-inflammatory agent, that offers neuroprotection against glutamate toxicity. Therefore, in this study, we have investigated the effect of AA in a rotenone (an inhibitor of mitochondrial complex I) induced in vitro model of PD. Following the exposure of SH-SY5Y cells to rotenone, there was a marked overproduction of ROS, mitochondrial dysfunction (as indexed by the decrease in mitochondrial membrane potential) and apoptosis (Hoechst and dual staining, comet assay; expressions of pro-apoptotic and anti-apoptotic indices). Pre-treatment with AA reversed these changes might be due to its antioxidant, mitoprotective and anti-apoptotic properties. However further extensive studies on in vivo models of PD are warranted to prove AA neuroprotective effect before entering into the clinical trial.

  17. Phenytoin: neuroprotection or neurotoxicity?

    PubMed

    Keppel Hesselink, Jan M; Kopsky, David J

    2017-06-01

    Phenytoin is an 80-year young molecule and new indications are still emerging. The neuroprotective potential of phenytoin has been evaluated for decades. Recently, a positive phase II trial supported its further development in the treatment of optic neuritis in multiple sclerosis. In 1942, however, peripheral neuritis was first reported to be an adverse event of phenytoin, and since then a small but steady stream of publications discussed peripheral polyneuropathy as being a possible adverse event of phenytoin. We have reviewed the literature and concluded there is some supportive evidence for a reversible polyneuropathy after the oral use of phenytoin, though with no evidence for clear neurotoxicity on the level of peripheral nerves. This is probably due to the fact that the pharmacological effects of phenytoin, based on the stabilizing effect of the voltage-gated sodium channels, make impairment of nerve conduction in asymptomatic and symptomatic reversible polyneuropathies plausible. Clear toxically-induced phenytoin-related polyneuropathies, however, are extremely rare and are always related to high dose or high plasma levels of phenytoin, mostly developing during many years of therapy. We could only find one case of a probable reversible chronic phenytoin intoxication resulting in a biopsy proven axonal atrophy with secondary demyelination and signs of remyelination. All case series and case reports published are insufficient in detail to prove a clear causal relation between phenytoin intake and the induction of a peripheral polyneuropathy. Phenytoin does not lead to irreversible toxicity of the peripheral nerves and might, on the other hand, have neuroprotective properties.

  18. Adenosine A1 receptor: A neuroprotective target in light induced retinal degeneration.

    PubMed

    Soliño, Manuel; López, Ester María; Rey-Funes, Manuel; Loidl, César Fabián; Larrayoz, Ignacio M; Martínez, Alfredo; Girardi, Elena; López-Costa, Juan José

    2018-01-01

    Light induced retinal degeneration (LIRD) is a useful model that resembles human retinal degenerative diseases. The modulation of adenosine A1 receptor is neuroprotective in different models of retinal injury. The aim of this work was to evaluate the potential neuroprotective effect of the modulation of A1 receptor in LIRD. The eyes of rats intravitreally injected with N6-cyclopentyladenosine (CPA), an A1 agonist, which were later subjected to continuous illumination (CI) for 24 h, showed retinas with a lower number of apoptotic nuclei and a decrease of Glial Fibrillary Acidic Protein (GFAP) immunoreactive area than controls. Lower levels of activated Caspase 3 and GFAP were demonstrated by Western Blot (WB) in treated animals. Also a decrease of iNOS, TNFα and GFAP mRNA was demonstrated by RT-PCR. A decrease of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. Electroretinograms (ERG) showed higher amplitudes of a-wave, b-wave and oscillatory potentials after CI compared to controls. Conversely, the eyes of rats intravitreally injected with dipropylcyclopentylxanthine (DPCPX), an A1 antagonist, and subjected to CI for 24 h, showed retinas with a higher number of apoptotic nuclei and an increase of GFAP immunoreactive area compared to controls. Also, higher levels of activated Caspase 3 and GFAP were demonstrated by Western Blot. The mRNA levels of iNOS, nNOS and inflammatory cytokines (IL-1β and TNFα) were not modified by DPCPX treatment. An increase of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. ERG showed that the amplitudes of a-wave, b-wave, and oscillatory potentials after CI were similar to control values. A single pharmacological intervention prior illumination stress was able to swing retinal fate in opposite directions: CPA was neuroprotective, while DPCPX worsened retinal damage. In summary, A1 receptor agonism is a plausible neuroprotective strategy in LIRD.

  19. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  1. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  2. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  3. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria

    PubMed Central

    Feinberg, Konstantin; Kolaj, Adelaida; Wu, Chen; Grinshtein, Natalie; Krieger, Jonathan R.; Moran, Michael F.; Rubin, Lee L.

    2017-01-01

    Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug. PMID:28877995

  4. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?

    PubMed Central

    Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta

    2017-01-01

    Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD), Frontotemporal dementia (FTD) and Lewy body dementia (LBD). We will report evidences that the Brain Derived Neurotrophic Factor (BDNF), the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression. PMID:29249935

  5. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  6. Discovery, Synthesis, and Functional Characterization of a Novel Neuroprotective Natural Product from the Fruit of Alpinia oxyphylla for use in Parkinson's Disease Through LC/MS-Based Multivariate Data Analysis-Guided Fractionation.

    PubMed

    Li, Guohui; Zhang, Zaijun; Quan, Quan; Jiang, Renwang; Szeto, Samuel S W; Yuan, Shuai; Wong, Wing-Tak; Lam, Herman H C; Lee, Simon Ming-Yuen; Chu, Ivan K

    2016-08-05

    Herein we report the discovery of a novel lead compound, oxyphylla A [(R)-4-(2-hydroxy-5-methylphenyl)-5-methylhexanoic acid] (from the fruit of Alpinia oxyphylla), which functions as a neuroprotective agent against Parkinson's disease. To identify a shortlist of candidates from the extract of A. oxyphylla, we employed an integrated strategy combining liquid chromatography/mass spectrometry, bioactivity-guided fractionation, and chemometric analysis. The neuroprotective effects of the shortlisted candidates were validated prior to scaling up the finalized list of potential neuroprotective constituents for more detailed chemical and biological characterization. Oxyphylla A has promising neuroprotective effects: (i) it ameliorates in vitro chemical-induced primary neuronal cell damage and (ii) alleviates chemical-induced dopaminergic neuron loss and behavioral impairment in both zebrafish and mice in vivo. Quantitative proteomics analyses of oxyphylla A-treated primary cerebellar granule neurons that had been intoxicated with 1-methyl-4-phenylpyridinium revealed that oxyphylla A activates nuclear factor-erythroid 2-related factor 2 (NRF2)-a master redox switch-and triggers a cascade of antioxidative responses. These observations were verified independently through western blot analyses. Our integrated metabolomics, chemometrics, and pharmacological strategy led to the efficient discovery of novel bioactive ingredients from A. oxyphylla while avoiding the nontargeting, labor-intensive steps usually required for identification of bioactive compounds. Our successful development of a synthetic route toward oxyphylla A should lead to its availability on a large scale for further functional development and pathological studies.

  7. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats.

    PubMed

    Singh, Shamsher; Kumar, Puneet

    2017-02-01

    6-hydroxy dopamine (6-OHDA) is a neurotoxin which on intranigral administration produces severe nigrostriatal damage with motor and cognitive deficit in animals. Curcumin (CMN) in combination with bioenhancer piperine (PP) in 6-hydroxydopamine-induced Parkinsonian rats was used to investigate the antioxidant, neuromodulatory and neuroprotective mechanisms. Hemi-Parkinson's rat model was developed with intranigral infusion of 6-OHDA (8 μg/2 μl, once, unilaterally), treatment with CMN (25 and 50 mg/kg) and combination of PP (2.5 mg/kg) with CMN (25 mg/kg) was given daily for 21 days starting from the 7th day after 6-OHDA infusion. The behavioral (locomotor, grip strength, and narrow beam walk) parameters were studied on weekly basis. On 22nd day, isolated brain preparations were subjected to biochemical (lipid peroxidation, glutathione, and nitrite), neuroinflammatory (IL-1β, IL-6, and TNF- α), and neurochemical (DA, NE, 5- HT, GABA, Glutamate, DOPAC, HVA, and 5-HIAA) analysis. Oral administration of CMN had significantly prevented behavioral, neuroinflammatory, and neurochemical changes and preserved the antioxidant potential of the nigrostriatum in rats treated with 6-OHDA. In the present study, PP and CMN had afforded a better neuroprotective effect compared to alone treatment on behavior, biochemical, neuroinflammatory, and neurochemical parameters in rats.

  8. The Biochemical Basis of Hydroxymethylglutaryl-CoA Reductase Inhibitors as Neuroprotective Agents in Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Wong, George Kwok Chu; Poon, Wai Sang

    2010-01-01

    Aneurysmal subarachnoid hemorrhage (SAH) has the highest morbidity and mortality rates of all types of stroke. Many aneurysmal SAH patients continue to suffer from significant neurological morbidity and mortality directly related to delayed cerebral ischemia. Pilot clinical studies of the use of Hydroxymethylglutaryl-CoA Reductase Inhibitors (statins) in aneurysmal SAH patients have reported a reduction in delayed cerebral ischemia and better clinical outcomes. We review the biochemical effects of statins on endothelium vascular function, glutamate-mediated neurotoxicity, inflammatory changes, and oxidative injuries, with reference to their possible neuroprotective effects in aneurysmal SAH.

  9. Role of Methylene Blue in Trauma Neuroprotection and Neuropsychiatric Diseases.

    PubMed

    Batista-Filho, Mário Márcio Vasconcelos; Kandratavicius, Ludmyla; Nunes, Emerson Arcoverde; Tumas, Vitor; Colli, Benedicto O; Hallak, Jaime E C; Maia-de-Oliveira, João Paulo; Evora, Paulo Roberto B

    2016-01-01

    The prevalence of central nervous system trauma, neurodegenerative and psychiatric diseases has significantly increased in recent years. Most of these diseases show multifactorial causes and several progression mechanisms. The search for a medication which positively interferes in these mechanisms and thereby changes the course of these diseases is of great scientific interest. The aim of the present review is to assess current literature on the possible role of methylene blue (MB) in the central nervous system due to the increasing number of citations in spite of the few articles available on the subject which suggest growing interest in the protective effects of MB on the central nervous system. Searches were performed on PubMed and Thomson Reuters Web of Knowledge. Therefore, we provide an overview of existing articles concerning: 1) MB actions; 2) MB neuroprotection and cardiac arrest; 3) MB neuroprotection and degenerative brain diseases; 4) MB neuroprotection and psychiatric diseases. PubMed was chosen because it holds the highest number of articles on the subject, Thomson Reuters was chosen due to its functionality which evaluates citations through analytic graphs. We conclude that MB has a beneficial effect and acts through many mechanisms and pathways of the central nervous system, being a potential alternative for the treatment of many neurodegenerative and psychiatric diseases.

  10. Structure-activity relationship study of vitamin k derivatives yields highly potent neuroprotective agents.

    PubMed

    Josey, Benjamin J; Inks, Elizabeth S; Wen, Xuejun; Chou, C James

    2013-02-14

    Historically known for its role in blood coagulation and bone formation, vitamin K (VK) has begun to emerge as an important nutrient for brain function. While VK involvement in the brain has not been fully explored, it is well-known that oxidative stress plays a critical role in neurodegenerative diseases. It was recently reported that VK protects neurons and oligodendrocytes from oxidative injury and rescues Drosophila from mitochondrial defects associated with Parkinson's disease. In this study, we take a chemical approach to define the optimal and minimum pharmacophore responsible for the neuroprotective effects of VK. In doing so, we have developed a series of potent VK analogues with favorable drug characteristics that provide full protection at nanomolar concentrations in a well-defined model of neuronal oxidative stress. Additionally, we have characterized key cellular responses and biomarkers consistent with the compounds' ability to rescue cells from oxidative stress induced cell death.

  11. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies.

    PubMed

    Maalouf, Marwan; Rho, Jong M; Mattson, Mark P

    2009-03-01

    Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.

  12. Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A

    2010-02-03

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-06-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.

  14. Neuroprotective Mechanisms of Taurine against Ischemic Stroke.

    PubMed

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-06-03

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.

  15. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    PubMed Central

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429

  16. Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain.

    PubMed

    Rebai, Olfa; Belkhir, Manel; Boujelben, Adnen; Fattouch, Sami; Amri, Mohamed

    2017-04-01

    Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg -1 b.w.) or MALE (100 μg mL -1  kg -1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H 2 O 2 levels, maintain iron and Ca 2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.

  17. Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the brain has potential for preventing neuronal loss in neurodegenerative disorders. Choroid plexus (CP) epithelial cells secrete numerous neurotrophic factors, and encapsulated CP transplants are neuroprotective in models of stroke and Huntington's disease (HD). To date, all studies examining the neuroprotective potential of CP transplants have used cells isolated from young donor animals. Because the aging process significantly impacts the cytoarchitecture and function of the CP the following studies determined whether age-related impairments occur in its neuroprotective capacity. CP was isolated from either young (3-4 months) or aged (24 months) rats. In vitro, young CP epithelial cells secreted more VEGF and were metabolically more active than aged CP epithelial cells. Additionally, conditioned medium from cultured aged CP was less potent than young CP at enhancing the survival of serum-deprived neurons. Finally, encapsulated CP was tested in an animal model of HD. Cell-loaded or empty alginate capsules (control group) were transplanted unilaterally into the rat striatum. Seven days later, the animals received an injection of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Animals were tested for motor function 28 days later. In the control group, QA lesions severely impaired function of the contralateral forelimb. Implants of young CP were potently neuroprotective as rats receiving CP transplants were not significantly impaired when tested for motor function. In contrast, implants of CP from aged rats were only modestly effective and were much less potent than young CP transplants. These data are the first to directly link aging with diminished neuroprotective capacity of CP epithelial cells.

  18. Applications of Venom Proteins as Potential Anticancer agents.

    PubMed

    Ejaz, Samina; Hashmi, Fatima Bashir; Malik, Waqas Nazir; Ashraf, Muhammad; Nasim, Faiz Ul-Hassan; Iqbal, Muhammad

    2018-06-13

    Venoms, the secretions of venomous animals, are conventionally thought to be the source of toxic substances though the views about venoms in the recent era have been changed. Venoms are the proven source of many biologically and pharmacologically important useful molecules. Bioactive components present in different venoms are mainly proteins and peptides either enzymatic or non-enzymatic which have tremendous therapeutic potential and are being used for the treatment of variety of diseases including cancer. Many venoms proteins and peptides have been reported as potential anticancer agents. Venom proteins kill cancer cells through a variety of mechanisms which induce apoptosis and ultimately lead to cell death. Therefore, the understanding regarding sources and classification of venoms, biological role of venomous proteins, their anticancer potential and mechanisms to suppress/kill cancer cells needs to be addressed. The present review is an attempt to highlight the reported work and develop strategies to answer the key questions regarding the use of venomous proteins as therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. In Vitro Screening of Three Indian Medicinal Plants for Their Phytochemicals, Anticholinesterase, Antiglucosidase, Antioxidant, and Neuroprotective Effects.

    PubMed

    Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha; Amooru Gangaiah, Damu

    2017-01-01

    Cooccurrence of Diabetes Mellitus and Alzheimer's disease in elder people prompts scientists to develop multitarget agents that combat causes and symptoms of both diseases simultaneously. In line with this modern paradigm and as a follow-up to our previous studies, the present study is designed to investigate the crude methanolic extracts and subsequent CHCl 3 , n -BuOH, and H 2 O fractions of Acalypha alnifolia , Pavetta indica, and Ochna obtusata for their inhibitory activities towards specific targets involved in AD and DM, namely, acetylcholinesterase, butyrylcholinesterase, and α -glucosidase ( α -Glc). The methanolic extract and its derived chloroform fractions exhibited remarkable inhibitory capacities with IC 50 values being found at the μ g/mL level. Further studies on most active chloroform fractions presented a prominent ability to scavenge DPPH and ABTS reactive species and highest neuroprotective effect against H 2 O 2 induced cell injury. Phytochemical analysis showed a large amount of phenolics, flavonoids, and terpenoids in active fractions. In conclusion, A. alnifolia , P. indica, and O. obtusata could be promising sources for the treatment of AD and DM since these fractions induced significant anticholinesterase, antidiabetic, antioxidant, and neuroprotection effects attributable to phenolic, flavonoid, and terpenoid contents and encourage further studies for development of multifunctional therapeutic agent for AD and DM dual therapy.

  20. Anti-neuroinflammatory Potential of Natural Products in Attenuation of Alzheimer's Disease

    PubMed Central

    Shal, Bushra; Ding, Wei; Ali, Hussain; Kim, Yeong S.; Khan, Salman

    2018-01-01

    Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder associated with dementia and cognitive impairment most common in elderly population. Various pathophysiological mechanisms have been proposed by numerous researcher, although, exact mechanism is not yet elucidated. Several studies have been indicated that neuroinflammation associated with deposition of amyloid- beta (Aβ) in brain is a major hallmark toward the pathology of neurodegenerative diseases. So, there is a need to unravel the link of inflammatory process in neurodegeneration. Increased microglial activation, expression of cytokines, reactive oxygen species (ROS), and nuclear factor kappa B (NF-κB) participate in inflammatory process of AD. This review mainly concentrates on involvement of neuroinflammation and the molecular mechanisms adapted by various natural compounds, phytochemicals and herbal formulations in various signaling pathways involved in neuroprotection. Currently, pharmacologically active natural products, having anti-neuroinflammatory potential are being focused which makes them potential candidate to cure AD. A number of preclinical and clinical trials have been done on nutritional and botanical agents. Analysis of anti-inflammatory and neuroprotective phytochemicals such as terpenoids, phenolic derivatives, alkaloids, glycosides, and steroidal saponins displays therapeutic potential toward amelioration and prevention of devastating neurodegeneration observed in AD. PMID:29896105

  1. Synthetic Curcumin Analogs as Inhibitors of β -Amyloid Peptide Aggregation: Potential Therapeutic and Diagnostic Agents for Alzheimer's Disease.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim

    2015-01-01

    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.

  2. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection

    PubMed Central

    Gunnarson, Eli; Song, Yutong; Kowalewski, Jacob M.; Brismar, Hjalmar; Brines, Michael; Cerami, Anthony; Andersson, Ulf; Zelenina, Marina; Aperia, Anita

    2009-01-01

    Disturbed brain water homeostasis with swelling of astroglial cells is a common complication in stroke, trauma, and meningitis and is considered to be a major cause of permanent brain damage. Astroglial cells possess the water channel aquaporin 4 (AQP4). Recent studies from our laboratory have shown that glutamate, acting on group I metabotropic glutamate receptors (mGluRs), increases the permeability of astrocyte AQP4, which, in situations of hypoxia-ischemia, will increase astrocyte water uptake. Here we report that erythropoietin (EPO), which in recent years has emerged as a potent neuro-protective agent, antagonizes the effect of a group I mGluR agonist on astrocyte water permeability. Activation of group I mGluRs triggers fast and highly regular intracellular calcium oscillations and we show that EPO interferes with this signaling event by altering the frequency of the oscillations. These effects of EPO are immediate, in contrast to the neuroprotective effects of EPO that are known to depend upon gene activation. Our findings indicate that EPO may directly reduce the risk of astrocyte swelling in stroke and other brain insults. In support of this conclusion we found that EPO reduced the neurological symptoms in a mouse model of primary brain edema known to depend upon AQP4 water transport. PMID:19164545

  3. Neuroprotection by Paeoniflorin in the MPTP mouse model of Parkinson's disease.

    PubMed

    Zheng, Meizhu; Liu, Chunming; Fan, Yajun; Yan, Pan; Shi, Dongfang; Zhang, Yuchi

    2017-04-01

    Paeoniflorin (PF) is a major bioactive ingredient in Radix Paeonia alba roots that has low toxicity and has been shown to have neuroprotective effects. Our in vitro experiments suggested that PF affords a significant neuroprotective effect against MPP + -induced damage and apoptosis in PC12 cells through Bcl-2/Bax/caspase-3 pathway. The objectives of the present study were to explore the potential neuroprotective effect of PF in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). Our results demonstrated that PF treatment ameliorated the behavioral deficits of "in spontaneous motor activity and latency to fall of the rotarod test", and reduced dopaminergic cell loss that were induced by MPTP in a dose-dependent manner in an in vivo model of PD. In addition, we found that treatment of PF protected dopaminergic neurons by preventing MPTP-induced decreases in striatal and substantia nigra dopaminergic transporter (DAT) and tyrosine hydroxylase (TH) protein levels, and by changing dopamine catabolism and inhibiting dopamine turnover. Furthermore, it was also associated with up-regulation of the Bcl-2/BAD ratio, and inhibition of the activation of caspase-9 and caspase-3. These results showed that PF promoted dopamine neuron survival in vivo due to the MAO-B inhibition, and the PI3K/Akt signaling pathway may have mediated the protection of PF against MPTP, suggesting that PF treatment might represent a neuroprotective treatment for PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  5. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer

    PubMed Central

    Himmel, Lauren E.; Lustberg, Maryam B.; DeVries, A. Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K.

    2016-01-01

    Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without

  6. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer.

    PubMed

    Himmel, Lauren E; Lustberg, Maryam B; DeVries, A Courtney; Poi, Ming; Chen, Ching-Shih; Kulp, Samuel K

    2016-10-01

    Minocycline is purported to have neuroprotective properties in experimental models of some human neurologic diseases, and has therefore been identified as a putative neuroprotectant for chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. However, because its mechanism of action is believed to be mediated through anti-inflammatory, anti-apoptotic, and anti-oxidant pathways, co-administration of minocycline with chemotherapeutic agents has the potential to reduce the efficacy of anticancer drugs. The objective of this study is to evaluate the effect of minocycline on the activity of the AC chemotherapeutic regimen (Adriamycin [doxorubicin], Cytoxan [cyclophosphamide]) in in vitro and in vivo models of triple-negative breast cancer (TNBC). Clonogenic and methylthiazol tetrazolium (MTT) assays were used to assess survival and viability in two TNBC cell lines treated with increasing concentrations of AC in the presence or absence of minocycline. Biomarkers of apoptosis, cell stress, and DNA damage were evaluated by western blot. The in vivo effects of AC and minocycline, each alone and in combination, were assessed in a xenograft model of TNBC in female athymic nude mice by weekly tumor volume measurement, body and organ weight measurement, and histopathology. Apoptosis and proliferation were characterized by immunohistochemistry in the xenografts tumors. Brains from tumor-bearing mice were evaluated for microglial activation, glial scars, and the proportion of neural progenitor cells. Data from these in vitro and in vivo studies demonstrate that minocycline does not diminish the cytotoxic and tumor-suppressive effects of this chemotherapeutic drug combination in TNBC cells. Moreover, minocycline appeared to prevent the reduction in doublecortin-positive neural progenitor cells observed in AC-treated mice. We posit that minocycline may be useful clinically for its reported neuroprotective activity in breast cancer patients receiving AC without

  7. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.

    PubMed

    Zhao, Jing; Zhao, Yong; Zheng, Weiping; Lu, Yuyu; Feng, Gang; Yu, Shanshan

    2008-09-10

    Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from the powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. Administration of curcumin 100 and 300 mg/kg i.p. 60 min after MCAO significantly diminished infarct volume, and improved neurological deficit in a dose-dependent manner. Nissl staining showed that the neuronal injury was significantly improved after being treated with curcumin. Curcumin significantly decreased the expression of caspase-3 protein. A higher number of TUNEL-positive cells were found in the vehicle group, but they were significantly decreased in the treated group. Taken together, these results suggest that the neuroprotective potentials of curcumin against focal cerebral ischemic injury are, at least in part, ascribed to its anti-apoptotic effects.

  8. Ketamine and thiopental sodium: individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide.

    PubMed

    Shibuta, S; Varathan, S; Mashimo, T

    2006-10-01

    An N-methyl-D-aspartate (NMDA) blocker, ketamine, has been shown to be neuroprotective both in vivo and in vitro. However, ketamine is not commonly recommended for use in patients suffering from cerebral ischaemia because of its adverse neurological effects. We hypothesized that combined administration of ketamine and thiopental sodium (TPS) would be highly effective in protecting cerebral cortical neurones from ischaemia, with possibly reduced dosages. We examined the degree of neuroprotection provided by various concentrations of ketamine and TPS, alone and in combination, in cortical cultures exposed to NMDA or a nitric oxide-releasing compound (NOC-5) for 24 h. The survival rate (SR) of E16 Wistar rat cortical neurones was evaluated using photomicrographs before and after exposure to these compounds. The SRs of cortical neurones exposed to 30 microM NMDA or NOC-5 were 15.0 (3.8)%, 12.8 (3.1)%, respectively. Higher doses (5, 10 and 50 microM) but not lower doses (<1 microM) of ketamine improved SRs [57.9 (2.2)%, 61.1 (5.4)%, 76.7 (3.0)%, respectively] against NMDA but not NOC. Enhanced survival was observed with combined administration of 5 or 10 microM ketamine and 50 microM TPS [SR 71.3 (4.8)%, 74.7 (3.7)%, respectively, P<0.05 if ketamine alone, P<0.01 if TPS alone], against NMDA-induced neurotoxicity in vitro. Only the highest dose of TPS (50 microM) improved survival after NOC exposure. This neuroprotection was not influenced by ketamine. These data indicate that a low, clinically relevant dose of ketamine offer significant neuroprotection during prolonged exposure to NMDA but not to NOC. Combinations of reduced doses of ketamine and TPS exhibited enhanced neuroprotection against NMDA-induced neurotoxicity. Hence, combinations of these two common i.v. anaesthetics agents could be developed to protect the brain from ischaemia.

  9. Striatal Pleiotrophin Overexpression Provides Functional and Morphological Neuroprotection in the 6-Hydroxydopamine Model

    PubMed Central

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-01-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult. PMID:22008908

  10. Progesterone and Neuroprotection

    PubMed Central

    Singh, Meharvan; Su, Chang

    2012-01-01

    Summary Numerous studies aimed at identifying the role of estrogen on the brain have used the ovariectomized rodent as the experimental model. And while estrogen intervention in these animals have, at least partially, restored cholinergic, neurotrophin and cognitive deficits seen in the ovariectomized animal, it is worth considering that the removal of the ovaries results in the loss of not only circulating estrogen but of circulating progesterone as well. As such, the various deficits associated with ovariectomy may be attributed to the loss of progesterone as well. Similarly, one must also consider the fact that the human menopause results in the precipitous decline of not just circulating estrogens, but in circulating progesterone as well and as such, the increased risk for diseases such as Alzheimer’s disease during the postmenopausal period could also be contributed by this loss of progesterone. In fact, progesterone has been shown to exert neuroprotective effects, both in cell models, animal models and in humans. Here, we review the evidence that supports the neuroprotective effects of progesterone and discuss the various mechanisms that are thought to mediate these protective effects. We also discuss the receptor pharmacology of progesterone’s neuroprotective effects and present a conceptual model of progesterone action that supports the complementary effects of membrane-associated and classical intracellular progesterone receptors. In addition, we discuss fundamental differences in the neurobiology of progesterone and the clinically used, synthetic progestin, medroxyprogesterone acetate that may offer an explanation for the negative findings of the combined estrogen/progestin arm of the Women’s Health Initiative-Memory Study (WHIMS) and suggest that the type of progestin used may dictate the outcome of either pre-clinical or clinical studies that addresses brain function. PMID:22732134

  11. Intelligent Agents and Their Potential for Future Design and Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Intelligent Agents and Their Potential for Future Design and Synthesis Environment, held at NASA Langley Research Center, Hampton, VA, September 16-17, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, industry and universities. The objectives of the workshop were to assess the status of intelligent agents technology and to identify the potential of software agents for use in future design and synthesis environment. The presentations covered the current status of agent technology and several applications of intelligent software agents. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  12. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID

  13. Furoxans (Oxadiazole-4 N-oxides) with Attenuated Reactivity are Neuroprotective, Cross the Blood Brain Barrier, and Improve Passive Avoidance Memory.

    PubMed

    Horton, Austin; Nash, Kevin; Tackie-Yarboi, Ethel; Kostrevski, Alexander; Novak, Adam; Raghavan, Aparna; Tulsulkar, Jatin; Alhadidi, Qasim; Wamer, Nathan; Langenderfer, Bryn; Royster, Kalee; Ducharme, Maxwell; Hagood, Katelyn; Post, Megan; Shah, Zahoor A; Schiefer, Isaac T

    2018-05-07

    Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the central nervous system. Furoxan 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP-dependent neuroprotection was observed, and 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 h after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.

  14. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study

    PubMed Central

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-01-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain–blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke. PMID:21266983

  15. Benzothiazole Derivatives as Potential Anti-Infective Agents.

    PubMed

    Sharma, Prabodh Chander; Bansal, Kushal Kumar; Deep, Aakash; Pathak, Meenakshi

    2017-01-01

    Severity of microbial infections and escalating resistance towards antibiotics has created a deep necessity for discovery of novel anti-infective agents. Heterocyclic chemistry of benzothiazole has become one of the most prolific areas in the field of drug discovery and development that has attracted great attention in recent time due to its increasing importance in the field of pharmaceuticals. The importance of benzothiazole and derivatives as potential antimicrobial agents has been well established and a large number of papers have been published in this regard. The present communication is an earnest attempt to review the chemistry, synthetic aspects including click chemistry and antimicrobial activities of benzothiazole derivatives reported in recent scientific literature. The scientific information of this manuscript may be worthwhile in encouraging the prospective researchers working on this heterocyclic scaffold.

  16. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia.

    PubMed

    Mayurasakorn, Korapat; Williams, Jill J; Ten, Vadim S; Deckelbaum, Richard J

    2011-03-01

    With important effects on neuronal lipid composition, neurochemical signaling and cerebrovascular pathobiology, docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid, may emerge as a neuroprotective agent against cerebrovascular disease. This paper examines pathways for DHA accretion in brain and evidence for possible roles of DHA in prophylactic and therapeutic approaches for cerebrovascular disease. DHA is a major n-3 fatty acid in the mammalian central nervous system and enhances synaptic activities in neuronal cells. DHA can be obtained through diet or to a limited extent via conversion from its precursor, α-linolenic acid (α-LNA). DHA attenuates brain necrosis after hypoxic ischemic injury, principally by modulating membrane biophysical properties and maintaining integrity in functions between presynaptic and postsynaptic areas, resulting in better stabilizing intracellular ion balance in hypoxic-ischemic insult. Additionally, DHA alleviates brain apoptosis, by inducing antiapoptotic activities such as decreasing responses to reactive oxygen species, upregulating antiapoptotic protein expression, downregulating apoptotic protein expression, and maintaining mitochondrial integrity and function. DHA in brain relates to a number of efficient delivery and accretion pathways. In animal models DHA renders neuroprotection after hypoxic-ischemic injury by regulating multiple molecular pathways and gene expression.

  17. In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Moriano, Carlos

    2017-02-01

    The lichen-forming fungi Cetraria islandica has been largely used in folk medicines, and it has recently showed promising in vitro antioxidant effects in glial-like cells. Current work aimed at investigating the neuroprotective potential of its major isolated secondary metabolite: the depsidone fumarprotocetraric acid (FUM). H{sub 2}O{sub 2} was used herein to induce oxidative stress (OS)-mediated cytotoxicity in two models of neurons and astrocytes cells (SH-SY5Y and U373-MG cell lines). We found that a pre-treatment with FUM significantly enhanced cell viability compared to H{sub 2}O{sub 2}-treated cells, and we selected the optimal concentrations in each model (1 and 25 μg/ml, respectively)more » for assessing its cytoprotective mechanisms. FUM, which exerted effective peroxyl radical scavenging effect in the chemical oxygen radical antioxidant capacity (ORAC) assay, alleviated the alterations in OS markers provoked by H{sub 2}O{sub 2}. It attenuated intracellular ROS formation, lipid peroxidation and GSH depletion. At mitochondrial level, FUM prevented from the dissipation of mitochondrial membrane potential and the increase in mitochondrial calcium, implying a protective role against oxidative damage in mitochondrial membrane. Similarly, FUM pre-treatment diminished H{sub 2}O{sub 2}-induced apoptosis, as evidenced by the reduction in caspase-3 activity and expression; inmunoblot analysis also revealed a decrease in Bax and an increase in Bcl-2 proteins levels. Furthermore, FUM up-regulated the expression of the antioxidant enzymes catalase, superoxide dismutase-1, and hemeoxigenase-1. These findings and the activation of Nrf2 binding activity in nuclear extracts suggest a plausible involvement of Nrf2 signaling pathway in the cytoprotection by FUM. In conclusion, FUM emerges as a potential drug candidate in the therapy of OS-related diseases, such as the neurodegenerative disorders. - Highlights: • FUM pre-treatment exerts significant cytoprotection

  18. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model.

    PubMed

    Yadav, Satyndra Kumar; Prakash, Jay; Chouhan, Shikha; Westfall, Susan; Verma, Mradul; Singh, Tryambak Deo; Singh, Surya Pratap

    2014-01-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disease found in the aging population. Currently, many studies are being conducted to find a suitable and effective cure for PD, with an emphasis on the use of herbal plants. In Ayurveda, Mucuna pruriens (Mp), a leguminous plant, is used as an anti-inflammatory drug. In this study, the neuroprotective effect of an ethanolic extract of Mp seed is evaluated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD and compared to estrogen, a well reported neuroprotective agent used for treating PD. Twenty-four Swiss albino mice were randomly divided into four groups: Control, MPTP, MPTP+Mp and MPTP+estrogen. The behavioural recovery in both Mp and estrogen treated mice was investigated using the rotarod, foot printing and hanging tests. The recovery of dopamine neurons in the substantia nigra (SN) region was estimated by tyrosine hydroxylase (TH), immunostaining. Additionally inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) immunoreactivity was evaluated to assess the level of oxidative damage and glial activation respectively. The levels of dopamine and its metabolite in the nigrostriatal region were measured by HPLC. Mp treatment restored all the deficits induced by MPTP more effectively than estrogen. Mp treatment recovered the number of TH-positive cells in both the SN region and the striatum while reducing the expression of iNOS and GFAP in the SN. Treatment with Mp significantly increased the levels of dopamine, DOPAC and homovanillic acid compared to MPTP intoxicated mice. Notably, the effect of Mp was greater than that elicited by estrogen. Mp down regulates NO production, neuroinflammation and microglial activation and all of these actions contribute to Mp's neuroprotective activity. These results suggest that Mp can be an effective treatment for neurodegenerative diseases, especially PD by decreasing oxidative stress and possibly by

  19. Neuroprotective Effects of Intravenous Anesthetics: A New Critical Perspective

    PubMed Central

    Bilotta, Federico; Stazi, Elisabetta; Zlotnik, Alexander; Gruenbaum, Shaun E.; Rosa, Giovanni

    2015-01-01

    Perioperative cerebral damage can result in various clinical sequela ranging from minor neurocognitive deficits to catastrophic neurological morbidity with permanent impairment and death. The goal of neuroprotective treatments is to reduce the clinical effects of cerebral damage through two major mechanisms: increased tolerance of neurological tissue to ischemia and changes in intra-cellular responses to energy supply deprivation. In this review, we present the clinical evidence of intravenous anesthetics on perioperative neuroprotection, and we also provide a critical perspective for future studies. The neuroprotective efficacy of the intravenous anesthetics thiopental, propofol and etomidate is unproven. Lidocaine may be neuroprotective in non-diabetic patients who have undergoing cardiac surgery with cardiopulmonary bypass (CBP) or with a 48-hour infusion, but conclusive data are lacking. There are several limitations of clinical studies that evaluate postoperative cognitive dysfunction (POCD), including difficulties in identifying patients at high-risk and a lack of consensus for defining the “gold-standard” neuropsychological testing. Although a battery of neurocognitive tests remains the primary method for diagnosing POCD, recent evidence suggests a role for novel biomarkers and neuroimaging to preemptively identify patients more susceptible to cognitive decline in the perioperative period. Current evidence, while inconclusive, suggest that intravenous anesthetics may be both neuroprotective and neurotoxic in the perioperative period. A critical analysis on data recorded from randomized control trials (RCTs) is essential in identifying patients who may benefit or be harmed by a particular anesthetic. RCTs will also contribute to defining methodologies for future studies on the neuroprotective effects of intravenous anesthetics. PMID:24669972

  20. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model.

    PubMed

    Huguet, Gemma; Joglekar, Anoushka; Messi, Leopold Matamba; Buckalew, Richard; Wong, Sarah; Terman, David

    2016-07-26

    A detailed biophysical model for a neuron/astrocyte network is developed to explore mechanisms responsible for the initiation and propagation of cortical spreading depolarizations and the role of astrocytes in maintaining ion homeostasis, thereby preventing these pathological waves. Simulations of the model illustrate how properties of spreading depolarizations, such as wave speed and duration of depolarization, depend on several factors, including the neuron and astrocyte Na(+)-K(+) ATPase pump strengths. In particular, we consider the neuroprotective role of astrocyte gap junction coupling. The model demonstrates that a syncytium of electrically coupled astrocytes can maintain a physiological membrane potential in the presence of an elevated extracellular K(+) concentration and efficiently distribute the excess K(+) across the syncytium. This provides an effective neuroprotective mechanism for delaying or preventing the initiation of spreading depolarizations. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Bicuculline reverts the neuroprotective effects of meloxicam in an oxygen and glucose deprivation (OGD) model of organotypic hippocampal slice cultures.

    PubMed

    Landucci, Elisa; Llorente, Irene L; Anuncibay-Soto, Berta; Pellegrini-Giampietro, Domenico E; Fernández-López, Arsenio

    2018-06-24

    We previously demonstrated that the non-steroidal anti-inflammatory agent meloxicam has neuroprotective effects in an oxygen and glucose deprivation model (OGD) of rat organotypic hippocampal slice cultures. We wondered if GABAergic transmission changed the neuroprotective effects of meloxicam and if meloxicam was able to modulate endoplasmic reticulum stress (ER stress) in this model. Mortality was measured using propidium iodide. Western blot assays were performed to measure levels of cleaved and non-cleaved caspase-3 to quantify apoptosis, while levels of GRP78, GRP94 and phosphorylated eIF2α were used to detect unfolded protein response (UPR). Transcript levels of GRP78, GRP94 and GABAergic receptor α, β, and γ subunits were measured by real-time quantitative polymerase chain reaction (qPCR). In the present study, we show that the presence of meloxicam in a 30 min OGD assay, followed by 24 h of normoxic conditions, presented an antiapoptotic effect. The simultaneous presence of the GABA A receptor antagonist, bicuculline, in combination with meloxicam blocked the neuroprotective effect provided by the latter. However, in light of its effects on caspase 3 and PARP, bicuculline did not seem to promote the apoptotic pathway. Our results also showed that meloxicam modified the unfolded protein response (UPR), as well as the transcriptional response of different genes, including the GABA A receptor, alpha1, beta3 and gamma2 subunits. We concluded that meloxicam has a neuroprotective anti-apoptotic action, is able to enhance the UPR independently of the systemic anti-inflammatory response and its neuroprotective effect can be inhibited by blocking GABA A receptors. Copyright © 2018. Published by Elsevier Ltd.

  2. Resveratrol, a neuroprotective supplement for Alzheimer's disease.

    PubMed

    Li, Fei; Gong, Qihai; Dong, Hongxin; Shi, Jingshan

    2012-01-01

    The polyphenolic compound resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring phytochemical which has been found in more than 70 plant species, including herbs and human food products such as grapes, berries, and peanuts. Resveratrol was first isolated in 1940; however, little attention was paid to it until its benefits in coronary heart disease were studied in 1992. Since then, increasing evidence has indicated that resveratrol may be useful in treating cardiovascular diseases, cancers, pain, inflammation, tissue injury, and in reducing the risk of neurodegenerative disorders, especially Alzheimer's disease (AD). AD is characterized by a progressive dementia, and is one of the most common neurodegenerative disorders in the elderly. It has been reported that resveratrol exhibits neuroprotective benefits in animal models of AD. Resveratrol promotes the non-amyloidogenic cleavage of the amyloid precursor protein, enhances clearance of amyloid beta-peptides, and reduces neuronal damage. Despite the effort spent trying to understand the mechanisms by which resveratrol functions, the research work in this field is still incomplete. Many concerns such as bioavailability, biotransformation, synergism with other dietary factors, and risks inherent to its possible pro-oxidant activities still need to be addressed. This review summarizes and discusses the neuroprotective effects of resveratrol on AD, and their potential mechanisms.

  3. Neuroprotective properties of curcumin in Alzheimer's disease--merits and limitations.

    PubMed

    Chin, Dawn; Huebbe, Patricia; Pallauf, Kathrin; Rimbach, Gerald

    2013-01-01

    As demographics in developed nations shift towards an aging population, neurodegenerative pathologies, especially dementias such as Alzheimer's disease, pose one of the largest challenges to the modern health care system. Since there is yet no cure for dementia, there is great pressure to discover potential therapeutics for these diseases. One popular candidate is curcumin or diferuloylmethane, a polyphenolic compound that is the main curcuminoid found in Curcuma longa (family Zingiberaceae). In recent years, curcumin has been reported to possess anti-amyloidogenic, antiinflammatory, anti-oxidative, and metal chelating properties that may result in potential neuroprotective effects. Particularly, the hydrophobicity of the curcumin molecule hints at the possibility of blood-brain barrier penetration and accumulation in the brain. However, curcumin exhibits extremely low bioavailability, mainly due to its poor aqueous solubility, poor stability in solution, and rapid intestinal first-pass and hepatic metabolism. Despite the many efforts that are currently being made to improve the bioavailability of curcumin, brain concentration of curcumin remains low. Furthermore, although many have reported that curcumin possesses a relatively low toxicity profile, curcumin applied at high doses, which is not uncommon practice in many in vivo and clinical studies, may present certain dangers that in our opinion have not been addressed sufficiently. Herein, the neuroprotective potential of curcumin, with emphasis on Alzheimer's disease, as well as its limitations will be discussed in detail.

  4. Microglia and neuroprotection: implications for Alzheimer's disease.

    PubMed

    Streit, Wolfgang J

    2005-04-01

    The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.

  5. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration.

    PubMed

    Kobayashi, Motomu; Takeda, Yoshimasa; Taninishi, Hideki; Takata, Ken; Aoe, Hisami; Morita, Kiyoshi

    2007-07-01

    Although propofol and thiopental are commonly used as neuroprotective agents, it has not been determined which is more neuroprotective. This study was designed to quantitatively evaluate the neuroprotective effects of thiopental, propofol, and halothane on brain ischemia by determining P50, ischemic time necessary for causing 50% neuronal damage. Gerbils were anesthetized with thiopental, propofol, or halothane and underwent 2-vessel occlusion (0, 3, 5 or 10 min). Direct current potentials were measured in bilateral CA1 regions, in which histologic evaluation was performed 5 days later. In some animals, extracellular glutamate concentrations (microdialysis) were measured during 7.5 minutes of ischemia. P50 in the thiopental, propofol, and halothane groups were estimated to be 8.4, 6.5 (P<0.05, vs. thiopental), and 5.1 (P<0.05) minutes, respectively. Durations of ischemic depolarization were equally reduced in the thiopental and propofol groups compared with that in the halothane group. Severity of neuronal damage with identical duration of ischemic depolarization was attenuated by thiopental compared with the effect of propofol. Maximum glutamate concentrations in the thiopental and propofol group were significantly reduced compared with that in the halothane groups but were comparable. By using P50, we found that the neuroprotective effect of thiopental was greater than that of propofol. Although duration of ischemic depolarization was equally reduced in thiopental and propofol groups, thiopental has a greater suppressive effect on neuronal injury during identical duration of ischemic depolarization than propofol does. Glutamate concentration during brain ischemia tended to be attenuated more by thiopental than by propofol, but it was not statistically significant.

  6. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease.

    PubMed

    Curry, Daniel W; Stutz, Bernardo; Andrews, Zane B; Elsworth, John D

    2018-03-26

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.

  7. Selecting Patients for Intra-arterial Therapy in the Context of a Clinical Trial for Neuroprotection

    PubMed Central

    Lyden, Patrick; Weymer, Sara; Coffey, Chris; Cudkowicz, Merit; Berg, Samantha; O’Brien, Sarah; Fisher, Marc; Haley, E. Clarke; Khatri, Pooja; Saver, Jeff; Levine, Steven; Levy, Howard; Rymer, Marilyn; Wechsler, Lawrence; Jadhav, Ashutosh; McNeil, Elizabeth; Waddy, Salina; Pryor, Kent

    2016-01-01

    Background and Purpose The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. Methods The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. Results Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, NIHSS, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%), OR [95%CL] of 4.9 [2.3,10.4], p<0.001). Gross recruitment was 0.11 patients/site/month vs. 0.43 patients/site/month, respectively, before and after the amendment. Conclusions It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. Clinical Trial Registration Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. PMID:27803392

  8. Selecting Patients for Intra-Arterial Therapy in the Context of a Clinical Trial for Neuroprotection.

    PubMed

    Lyden, Patrick; Weymer, Sara; Coffey, Chris; Cudkowicz, Merit; Berg, Samantha; O'Brien, Sarah; Fisher, Marc; Haley, E Clarke; Khatri, Pooja; Saver, Jeff; Levine, Steven; Levy, Howard; Rymer, Marilyn; Wechsler, Lawrence; Jadhav, Ashutosh; McNeil, Elizabeth; Waddy, Salina; Pryor, Kent

    2016-12-01

    The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis-associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, National Institutes of Health Stroke Scale, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%; odds ratio [95% confidence limit] of 4.9 [2.3-10.4]; P<0.001). Gross recruitment was 0.11 patients per site month versus 0.43 patients per site per month, respectively, before and after the amendment. It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. © 2016 American Heart Association, Inc.

  9. In Vitro Screening of Three Indian Medicinal Plants for Their Phytochemicals, Anticholinesterase, Antiglucosidase, Antioxidant, and Neuroprotective Effects

    PubMed Central

    Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha

    2017-01-01

    Cooccurrence of Diabetes Mellitus and Alzheimer's disease in elder people prompts scientists to develop multitarget agents that combat causes and symptoms of both diseases simultaneously. In line with this modern paradigm and as a follow-up to our previous studies, the present study is designed to investigate the crude methanolic extracts and subsequent CHCl3, n-BuOH, and H2O fractions of Acalypha alnifolia, Pavetta indica, and Ochna obtusata for their inhibitory activities towards specific targets involved in AD and DM, namely, acetylcholinesterase, butyrylcholinesterase, and α-glucosidase (α-Glc). The methanolic extract and its derived chloroform fractions exhibited remarkable inhibitory capacities with IC50 values being found at the μg/mL level. Further studies on most active chloroform fractions presented a prominent ability to scavenge DPPH and ABTS reactive species and highest neuroprotective effect against H2O2 induced cell injury. Phytochemical analysis showed a large amount of phenolics, flavonoids, and terpenoids in active fractions. In conclusion, A. alnifolia, P. indica, and O. obtusata could be promising sources for the treatment of AD and DM since these fractions induced significant anticholinesterase, antidiabetic, antioxidant, and neuroprotection effects attributable to phenolic, flavonoid, and terpenoid contents and encourage further studies for development of multifunctional therapeutic agent for AD and DM dual therapy. PMID:29204442

  10. Combinations of ketamine and atropine are neuroprotective and reduce neuroinflammation after a toxic status epilepticus in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhote, Franck, E-mail: franck.dhote@irba.fr; Carpentier, Pierre; Barbier, Laure

    2012-03-01

    Epileptic seizures and status epilepticus (SE) induced by the poisoning with organophosphorus nerve agents (OP), like soman, are accompanied by neuroinflammation whose role in seizure-related brain damage (SRBD) is not clear. Antagonists of the NMDA glutamate ionotropic receptors are currently among the few compounds able to arrest seizures and provide neuroprotection even during refractory status epilepticus (RSE). Racemic ketamine (KET), in combination with atropine sulfate (AS), was previously shown to counteract seizures and SRBD in soman-poisoned guinea-pigs. In a mouse model of severe soman-induced SE, we assessed the potentials of KET/AS combinations as a treatment for SE/RSE-induced SRBD and neuroinflammation.more » When starting 30 min after soman challenge, a protocol involving six injections of a sub-anesthetic dose of KET (25 mg/kg) was evaluated on body weight loss, brain damage, and neuroinflammation whereas during RSE, anesthetic protocols were considered (KET 100 mg/kg). After confirming that during RSE, KET injection was to be repeated despite some iatrogenic deaths, we used these proof-of-concept protocols to study the changes in mRNA and related protein contents of some inflammatory cytokines, chemokines and adhesion molecules in cortex and hippocampus 48 h post-challenge. In both cases, the KET/AS combinations showed important neuroprotective effects, suppressed neutrophil granulocyte infiltration and partially suppressed glial activation. KET/AS could also reduce the increase in mRNA and related pro-inflammatory proteins provoked by the poisoning. In conclusion, the present study confirms that KET/AS treatment has a strong potential for SE/RSE management following OP poisoning. The mechanisms involved in the reduction of central neuroinflammation remain to be studied. -- Highlights: ► During soman-induced status epilepticus, ketamine-atropine limit brain damage. ► Molecular neuroinflammatory response is strongly decreased. ► Glial

  11. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  12. Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms

    PubMed Central

    Schamne, Marissa Giovanna; Sampaio, Tuane Bazanella; Pértile, Renata Aparecida Nedel; Fernandes, Pedro Augusto Carlos Magno; Markus, Regina P.

    2016-01-01

    Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction. PMID:27829983

  13. Pharmacology of Rasagiline, a New MAO-B Inhibitor Drug for the Treatment of Parkinson’s Disease with Neuroprotective Potential

    PubMed Central

    Finberg, John P.M.

    2010-01-01

    Rasagiline (Azilect) is a highly selective and potent propargylamine inhibitor of monoamine oxidase (MAO) type B. Like other similar propargylamine inhibitors, rasagiline binds covalently to the N5 nitrogen of the flavin residue of MAO, resulting in irreversible inactivation of the enzyme. Therapeutic doses of the drug which inhibit brain MAO-B by 95% or more cause minimal inhibition of MAO-A, and do not potentiate the pressor or other pharmacological effects of tyramine. Metabolic conversion of the compound in vivo is by hepatic cytochrome P450-1A2, with generation of 1-aminoindan as the major metabolite. Rasagiline possesses no amphetamine-like properties, by contrast with the related compound selegiline (Deprenyl, Jumex, Eldepryl). Although the exact distribution of MAO isoforms in different neurons and tissues is not known, dopamine behaves largely as a MAO-A substrate in vivo, but following loss of dopaminergic axonal varicosities from the striatum, metabolism by glial MAO-B becomes increasingly important. Following subchronic administration to normal rats, rasagiline increases levels of dopamine in striatal microdialysate, possibly by the build-up of β-phenylethylamine, which is an excellent substrate for MAO-B, and is an effective inhibitor of the plasma membrane dopamine transporter (DAT). Both of these mechanisms may participate in the anti-Parkinsonian effect of rasagiline in humans. Rasagiline possesses neuroprotective properties in a variety of primary neuronal preparations and neuron-like cell lines, which is not due to MAO inhibition. Recent clinical studies have also demonstrated possible neuroprotective properties of the drug in human Parkinsonian patients, as shown by a reduced rate of decline of symptoms over time. PMID:23908775

  14. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease.

    PubMed

    Sagredo, Onintza; Pazos, M Ruth; Satta, Valentina; Ramos, José A; Pertwee, Roger G; Fernández-Ruiz, Javier

    2011-09-01

    We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies. Copyright © 2011 Wiley-Liss, Inc.

  15. Imidacloprid as a Potential Agent for the Systemic Control of Sand Flies

    DTIC Science & Technology

    2011-03-01

    Imidacloprid as a potential agent for the systemic control of sand flies Gideon Wasserberg1,4*, Richard... imidacloprid as a systemic control agent. First, to evaluate the blood-feeding effect, we fed adult female Phlebotomus papatasi with imidacloprid ...mortality was obtained with a dose of only 250 ppm. Overall, results support the feasibility of imidacloprid as a systemic control agent that

  16. Primary screen for potential sheep scab control agents.

    PubMed

    Dunn, J A; Prickett, J C; Collins, D A; Weaver, R J

    2016-07-15

    The efficacy of potential acaricidal agents were assessed against the sheep scab mite Psoroptes ovis using a series of in vitro assays in modified test arenas designed initially to maintain P. ovis off-host. The mortality effects of 45 control agents, including essential oils, detergents, desiccants, growth regulators, lipid synthesis inhibitors, nerve action/energy metabolism disruptors and ecdysteroids were assessed against adults and nymphs. The most effective candidates were the desiccants (diatomaceous earth, nanoclay and sorex), the growth regulators (buprofezin, hexythiazox and teflubenzuron), the lipid synthesis inhibitors (spirodiclofen, spirotetramat and spiromesifen) and the nerve action and energy metabolism inhibitors (fenpyroximate, spinosad, tolfenpyrad, and chlorantraniliprole). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster.

    PubMed

    Hosamani, Ravikumar; Muralidhara

    2009-11-01

    Bacopa monnieri, Linn. (Brahmi, BM), traditionally used to improve mental health in Indian ayurvedic system of medicine is known to possess various neuropharmacolgical properties. In the recent past, Drosophila has been widely used as a model to study various neurodegenerative diseases. Environmental toxins like rotenone, a specific inhibitor of complex I is employed to increase oxidative stress mediated neuropathology and sporadic Parkinson's disease. In this study, we examined the neuroprotective properties of BM against rotenone induced oxidative damage and neurotoxicity. Flies (Oregon K strain, adult males) exposed to a standardized BM powder for 7 days in the diet exhibited significant diminution in the levels of endogenous oxidative markers viz., malondialdehyde, hydroperoxide and protein carbonyl content. Further, BM offered complete protection against rotenone (500 microM) induced oxidative stress and markedly inhibited dopamine depletion (head region, 33%; body region, 44%) in flies. Flies exposed to rotenone+BM exhibited a lower incidence of mortality (40-66% protection) and performed better in a negative geotaxis assay (45-65%) both suggesting the neuroprotective potential of BM. Interestingly, BM also conferred significant resistance (43-54% protection) in a paraquat oxidative stress bioassay. The neuroprotective effects of BM were highly comparable to those of a commercially available Brahmi preparation. Although the precise mechanism/s underlying the neuroprotective efficacy of BM are not clear, it is hypothesized that it is wholly or in part related to its ability to mitigate rotenone induced oxidative stress. Further, our approach confirms the utility of the Drosophila model in screening putative neuroprotective phytomedicines prior to their use in mammalian models.

  18. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  19. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    PubMed

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Preconditioning Provides Neuroprotection in Models of CNS Disease: Paradigms and Clinical Significance

    PubMed Central

    Stetler, R. Anne; Leak, Rehana K.; Gan, Yu; Li, Peiying; Hu, Xiaoming; Jing, Zheng; Chen, Jun; Zigmond, Michael J.; Gao, Yanqin

    2014-01-01

    Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of “cross-tolerance,” in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning. In a subsequent components of this two-part series, we will discuss the cellular and molecular events that are likely to underlie these phenomena. PMID:24389580

  1. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiang Jun; Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322; Yu, Shan Ping

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release andmore » activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.« less

  2. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2014-10-01

    antiepiletogenic properties of a mitochondrial-targeted antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling...The pilocarpine-induced model of status epilepticus (PILO) will be used to test SS-31 as a neuroprotectant, the kindling model will be used to test...the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the rat. In this model, prolonged

  3. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2015-10-01

    properties of a mitochondrial-targeted antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling seizure model and the...of epilepsy. The pilocarpine-induced model of status epilepticus (PILO) will be used to test SS-31 as a neuroprotectant, the kindling model will be...dysfunction. Aim #1 – Test the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the

  4. Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia.

    PubMed

    Tan, Hooi Poay; Wong, Daniel Zin Hua; Ling, Sui Kiong; Chuah, Cheng Hock; Kadir, Habsah Abdul

    2012-01-01

    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Closed gateways--can neuroprotectants shield the retina in glaucoma?

    PubMed

    Velpandian, Thirumurthy

    2010-01-01

    Neuroprotection for glaucoma is a therapeutic approach that aims to prevent optic nerve damage or cell death. An appropriate drug that reaches an adequate concentration across the blood retinal barrier is expected to shield the retina in glaucoma. Several in vitro and in vivo attempts in experimental models indicate the possibility of successful neuroprotection. However, clinical trials might not show the same level of neuroprotection as a result of subtherapeutic concentrations of the drug in the eye. The study by Zhong et al. in this issue of Drugs in R&D could not attribute the observed improvement in visual field indices to any one of the individual active constituents of Erigeron breviscapus (vant.) Hand. Mazz. (EBHM). One of the major constituents of EBHM is scutellarin, which is known to have poor oral bioavailability and an unclear ability to penetrate inside the eye. Therefore, before recognizing EBHM as a neuroprotectant in glaucoma for further clinical studies and practice, its active constituents and their pharmacokinetics (systemic as well as ocular) need to be explored.

  6. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy.

    PubMed

    Hernández, Cristina; Dal Monte, Massimo; Simó, Rafael; Casini, Giovanni

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.

  7. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    PubMed Central

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  8. Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease.

    PubMed

    Jalili-Baleh, Leili; Nadri, Hamid; Forootanfar, Hamid; Samzadeh-Kermani, Alireza; Küçükkılınç, Tuba Tüylü; Ayazgok, Beyza; Rahimifard, Mahban; Baeeri, Maryam; Doostmohammadi, Mohsen; Firoozpour, Loghman; Bukhari, Syed Nasir Abbas; Abdollahi, Mohammad; Ganjali, Mohammad Reza; Emami, Saeed; Khoobi, Mehdi; Foroumadi, Alireza

    2018-05-02

    New series of triazole-containing 3-phenylcoumarin-lipoic acid conjugates were designed as multi-functional agents for treatment of Alzheimer's disease. The target compounds 4a-o were synthesized via the azide-alkyne cycloaddition reaction and their biological activities were primarily evaluated in terms of neuroprotection against H 2 O 2 -induced cell death in PC12 cells and AChE/BuChE inhibition. The promising compounds 4j and 4i containing four carbons spacer were selected for further biological evaluations. Based on the obtained results, the benzocoumarin derivative 4j with IC 50 value of 7.3 µM was the most potent AChE inhibitor and displayed good inhibition toward intracellular reactive oxygen species (ROS). This compound with antioxidant and metal chelating ability showed also protective effect on cell injury induced by Aβ 1-42 in SH-SY5Y cells. Although the 8-methoxycoumarin analog 4i was slightly less active than 4j against AChE, but displayed higher protection ability against H 2 O 2 -induced cell death in PC12 and could significantly block Aβ-aggregation. The results suggested that the prototype compounds 4i and 4j might be promising multi-functional agents for the further development of the disease-modifying treatments of Alzheimer's disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Paraquat exposure-induced Parkinson's disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy.

    PubMed

    Soares, Jefferson J; Rodrigues, Daniela T; Gonçalves, Mayara B; Lemos, Maurício C; Gallarreta, Mariana S; Bianchini, Matheus C; Gayer, Mateus C; Puntel, Robson L; Roehrs, Rafael; Denardin, Elton L G

    2017-11-01

    Extracts from the leaves of Bougainvillea glabra Choisy are used in traditional medicines, but their actions on the central nervous system have not been studied. In the present study, we investigated the potential neuroprotective effects of Bougainvillea glabra Choisy leaf extract (BG extract) against paraquat (PQ)-induced neurotoxicity. Male adult wild-type flies (1- 4days old) were exposed to PQ (3.5mM) and/or BG extract (120μg/mL) through food for 4days. PQ-fed flies had decreased locomotor capacity in negative geotaxis and crossing number assays and had a higher incidence of mortality than the control group. PQ neurotoxicity was also associated with a marked decrease in dopamine levels and increase in acetylcholinesterase (AChE) activity, reactive oxygen species (ROS) production and lipid peroxidation. Co-exposure to BG extract prevented mortality, and dopamine depletion, improved locomotor performance and decreased AChE activity, ROS production and lipid peroxidation. GC-MS and HPLC analyses of BG extract revealed the presence of many antioxidant compounds such as phytol, α,γ-tocopherol, squalene, stigmasterol, geranylgeraniol, quercetin, and caffeic, vanillic, coumaric, ferulic acids. Our results showed neuroprotective effects of BG extract, reflecting the presence of antioxidant compounds. Thus, we suggested that B. glabra leaves could be considered an effective agent in the prevention of neurological disorders, where dopamine depletion and/or oxidative stress are involved, as in Parkinson's disease (PD). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    PubMed

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10

  11. In Vitro Neuroprotective and Anti-Inflammatory Activities of Natural and Semi-Synthetic Spirosteroid Analogues.

    PubMed

    García-Pupo, Laura; Zaldo-Castro, Armando; Exarchou, Vassiliki; Tacoronte-Morales, Juan Enrique; Pieters, Luc; Vanden Berghe, Wim; Nuñez-Figueredo, Yanier; Delgado-Hernández, René

    2016-07-29

    Two spirosteroid analogues were synthesized and evaluated for their in vitro neuroprotective activities in PC12 cells, against glutamate-induced excitotoxicity and mitochondrial damage in glucose deprivation conditions, as well as their anti-inflammatory potential in LPS/IFNγ-stimulated microglia primary cultures. We also evaluated the in vitro anti-excitotoxic and anti-inflammatory activities of natural and endogenous steroids. Our results show that the plant-derived steroid solasodine decreased PC12 glutamate-induced excitotoxicity, but not the cell death induced by mitochondrial damage and glucose deprivation. Among the two synthetic spirosteroid analogues, only the (25R)-5α-spirostan-3,6-one (S15) protected PC12 against ischemia-related in vitro models and inhibited NO production, as well as the release of IL-1β by stimulated primary microglia. These findings provide further insights into the role of specific modifications of the A and B rings of sapogenins for their neuroprotective potential.

  12. Docosahexaenoic acid: brain accretion and roles in neuroprotection after brain hypoxia and ischemia

    PubMed Central

    Mayurasakorn, Korapat; Williams, Jill J.; Ten, Vadim S.; Deckelbaum, Richard J.

    2014-01-01

    Purpose of review With important effects on neuronal lipid composition, neurochemical signaling and cerebrovascular pathobiology, docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid, may emerge as a neuroprotective agent against cerebrovascular disease. This paper examines pathways for DHA accretion in brain and evidence for possible roles of DHA in prophylactic and therapeutic approaches for cerebrovascular disease. Recent findings DHA is a major n-3 fatty acid in the mammalian central nervous system and enhances synaptic activities in neuronal cells. DHA can be obtained through diet or to a limited extent via conversion from its precursor, α-linolenic acid (α-LNA). DHA attenuates brain necrosis after hypoxic ischemic injury, principally by modulating membrane biophysical properties and maintaining integrity in functions between pre-and post-synaptic areas, resulting in better stabilizing intracellular ion balance in hypoxic-ischemic insult. Additionally, DHA alleviates brain apoptosis, by inducing anti-apoptotic activities such as decreasing responses to reactive oxygen species, up-regulating anti-apoptotic protein expression, down-regulating apoptotic protein expression, and maintaining mitochondrial integrity and function. Summary DHA in brain relates to a number of efficient delivery and accretion pathways. In animal models DHA renders neuroprotection after hypoxic-ischemic injury by regulating multiple molecular pathways and gene expression. PMID:21178607

  13. Chiral mercaptoacetamides display enantioselective inhibition of histone deacetylase 6 and exhibit neuroprotection in cortical neuron models of oxidative stress.

    PubMed

    Kalin, Jay H; Zhang, Hankun; Gaudrel-Grosay, Sophie; Vistoli, Giulio; Kozikowski, Alan P

    2012-03-05

    Mercaptoacetamide-based ligands have been designed as a new class of histone deacetylase (HDAC) inhibitors for possible use in the treatment of neurodegenerative diseases. The thiol group of these compounds provides a key binding element for interaction with the catalytic zinc ion, and thus differs from the more typically employed hydroxamic acid based zinc binding groups. Herein we disclose the chemistry and biology of some substituted mercaptoacetamides with the intention of increasing HDAC6 isoform selectivity while maintaining potency similar to their hydroxamic acid analogues. The introduction of a stereocenter α to the thiol group was found to have a considerable impact on HDAC inhibitor potency. These new compounds were also profiled for their therapeutic potential in an in vitro model of stress-induced neuronal injury and were found to act as nontoxic neuroprotective agents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Neuroprotective vaccination with copolymer-1 decreases laser-induced retinal damage

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Rosner, Mordechai

    2003-06-01

    The retinal damage induced by laser photocoagulation increases manifold by the secondary degeneration process whereby tissues adjacent to the primary lesion are destroyed. The neuroprotective effect of immunization by glatiramer acetate (Copolymer-1, Cop-1) in adjuvant was previously demonstrated in models of retina, optic nerve, brain, and spinal cord lesions. The present study tested the neuroprotective ability of Cop-1 to reduce the spread of laser-induced retinal damage. Standard argon laser lesions were created in 72 DA pigmented rats divided into four groups: two Cop-1 treated groups (animals treated seven days before or immediately after the laser session) and two control groups treated respectively by saline or the effective but toxic neuroprotective compound MK-801. The histological and morphological evaluations of the lesions 3, 20, and 60 days after the injury revealed significant reduction in photoreceptor loss of the retinas of the pre-immunized animals. Cop-1 given after the laser injury did not prevent cell loss significantly, while the neuroprotective effect of MK-801 was observed only on the third day after the laser injury. The results show that pre-immunization with Cop-1 is neuroprotective in unmyelinated (gray matter) neural tissue such as the retina. This approach may be of clinical significance in ameliorating laser-induced retinal injuries in humans.

  15. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state.

    PubMed

    Jantas, D; Greda, A; Golda, S; Korostynski, M; Grygier, B; Roman, A; Pilc, A; Lason, W

    2014-08-01

    Recent studies have documented that metabotropic glutamate receptors from group II and III (mGluR II/III) are a potential target in the symptomatic treatment of Parkinson's disease (PD), however, the neuroprotective effects of particular mGluR II/III subtypes in relation to PD pathology are recognized only partially. In the present study, we investigated the effect of various mGluR II/III activators in the in vitro model of PD using human neuroblastoma SH-SY5Y cell line and mitochondrial neurotoxin MPP(+). We demonstrated that all tested mGluR ligands: mGluR II agonist - LY354740, mGluR III agonist - ACPT-I, mGluR4 PAM - VU0361737, mGluR8 agonist - (S)-3,4-DCPG, mGluR8 PAM - AZ12216052 and mGluR7 allosteric agonist - AMN082 were protective against MPP(+)-evoked cell damage in undifferentiated (UN-) SH-SY5Y cells with the highest neuroprotection mediated by mGluR8-specific agents. However, in retinoic acid- differentiated (RA-) SH-SY5Y cells we found protection mediated only by mGluR8 activators. We also demonstrated the cell proliferation stimulating effect for mGluR4 and mGluR8 PAMs. Next, we showed that the protection mediated by mGluR II/III activators in UN-SH-SY5Y was not accompanied by the modulation of caspase-3 activity, however, a decrease in the number of apoptotic nuclei was found. Finally, we showed that the inhibitor of necroptosis, necrostatin-1 blocked the mGluR III-mediated protection. Altogether our comparative in vitro data add a further proof to neuroprotective effects of mGluR agonists or PAMs and point to mGluR8 as a promising target for neuroprotective interventions in PD. The results also suggest the participation of necroptosis-related molecular pathways in neuroprotective effects of mGluR III activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  17. Neuroprotective effect of humic Acid on focal cerebral ischemia injury: an experimental study in rats.

    PubMed

    Ozkan, Adile; Sen, Halil Murat; Sehitoglu, Ibrahim; Alacam, Hasan; Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Silan, Coşkun; Cosar, Murat; Karaman, Handan Isin Ozisik

    2015-02-01

    Stroke is still a major cause of death and permanent neurological disability. As humic acids are well-known antioxidant molecules, the purpose of this study was to investigate the potential neuroprotective effects of humic acid in a focal cerebral ischemia model. Twenty-four rats were divided equally into three groups. A middle cerebral artery occlusion model was performed in this study where control (group II) and humic acid (group III) were administered intraperitoneally following an ischemic experimental procedure. Group I was evaluated as sham. Malondialdehyde (MDA), superoxide dismutase (SOD), and nuclear respiratory factor-1 (NRF-1) levels were analyzed biochemically on the right side of the ischemic cerebral hemisphere, while ischemic histopathological studies were completed on the left side to investigate the antioxidant status. Biochemical results showed that SOD and NRF-1 levels were significantly increased in the humic acid group (III) compared with the control group (II) while MDA levels were significantly decreased. On histopathological examination, cerebral edema, vacuolization, degeneration, and destruction of neural elements were decreased in the humic acid group (III) compared with the control group (II). Cerebral ischemia was attenuated by humic acid administration. These observations indicate that humic acid may have potential as a therapeutic agent in cerebral ischemia by preventing oxidative stress.

  18. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models.

    PubMed

    Buendia, Izaskun; Gómez-Rangel, Vanessa; González-Lafuente, Laura; Parada, Esther; León, Rafael; Gameiro, Isabel; Michalska, Patrycja; Laudon, Moshe; Egea, Javier; López, Manuela G

    2015-12-01

    Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Selective Androgen Receptor Modulator RAD140 Is Neuroprotective in Cultured Neurons and Kainate-Lesioned Male Rats

    PubMed Central

    Jayaraman, Anusha; Christensen, Amy; Moser, V. Alexandra; Vest, Rebekah S.; Miller, Chris P.; Hattersley, Gary

    2014-01-01

    The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed “selective androgen receptor modulators” (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases. PMID:24428527

  20. Neuroprotective effects of leptin in the context of obesity and metabolic disorders.

    PubMed

    Davis, Cecilia; Mudd, Jeremy; Hawkins, Meredith

    2014-12-01

    As the population of the world ages, the prevalence of neurodegenerative disease continues to rise, accompanied by increases in disease burden related to obesity and metabolic disorders. Thus, it will be essential to develop tools for preventing and slowing the progression of these major disease entities. Epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. Experimentally, the fat-derived hormone leptin has been shown to act as a neuroprotective agent in various animal models of dementia, toxic insults, ischemia/reperfusion, and other neurodegenerative processes. Specifically, leptin minimizes neuronal damage induced by neurotoxins and pro-apoptotic conditions. Leptin has also demonstrated considerable promise in animal models of obesity and metabolic disorders via modulation of glucose homeostasis and energy intake. However, since obesity is known to induce leptin resistance, we hypothesize that resistance to the neuroprotective effects of leptin contributes to the pathogenesis of obesity-associated neurodegenerative diseases. This review aims to explore the literature pertinent to the role of leptin in the protection of neurons from the toxic effects of aging, obesity and metabolic disorders, to investigate the physiological state of leptin resistance and its causes, and to consider how leptin might be employed therapeutically in the prevention and treatment of neurodegenerative disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Neuroprotective antioxidants from marijuana.

    PubMed

    Hampson, A J; Grimaldi, M; Lolic, M; Wink, D; Rosenthal, R; Axelrod, J

    2000-01-01

    Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate. The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities. Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system, it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures, cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons. In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity. Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.

  2. Synthesis and evaluation of new pyridyl/pyrazinyl thiourea derivatives: Neuroprotection against amyloid-β-induced toxicity.

    PubMed

    Park, Jung-Eun; Elkamhawy, Ahmed; Hassan, Ahmed H E; Pae, Ae Nim; Lee, Jiyoun; Paik, Sora; Park, Beoung-Geon; Roh, Eun Joo

    2017-12-01

    Herein, we report synthesis and evaluation of new twenty six small molecules against β amyloid (Aβ)-induced opening of mitochondrial permeability transition pore (mPTP) using JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The neuroprotective effect of seventeen compounds against Aβ-induced mPTP opening was superior to that of the standard Cyclosporin A (CsA). Fifteen derivatives eliciting increased green to red fluorescence percentage less than 40.0% were evaluated for their impact on ATP production, cell viability and neuroprotection against Aβ-induced neuronal cell death. Among evaluated compounds, derivatives 9w, 9r and 9k had safe profile regarding ATP production and cell viability. In addition, they exhibited significant neuroprotection (69.3, 51.8 and 48.2% respectively). Molecular modeling study using CDocker algorithm predicted plausible binding modes explaining the elicited mPTP blocking activity. Hence, this study suggests compounds 9w, 9r and 9k as leads for further development of novel therapy to Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keana, J.F.W.; McBurney, R.N.; Scherz, M.W.

    1989-07-01

    Four diarylguanidine derivatives were synthesized. These compounds were found to displace, at submicromolar concentrations, {sup 3}H-labeled 1-(1-(2-thienyl)cyclohexyl)piperidine and (+)-({sup 3}H)MK-801 from phencyclidine receptors in brain membrane preparations. In electrophysiological experiments the diarylguanidines blocked N-methyl-D-aspartate (NMDA)-activated ion channels. These dairylguanidines also protected rat hippocampal neurons in vitro from glutamate-induced cell death. The results show that some diarylguanidines are noncompetitive antagonists of NMDA receptor-mediated responses and have the neuroprotective property that is commonly associated with blockers of the NMDA receptor-gated cation channel. Diarylguanidines are structurally unrelated to known blockers of NMDA channels and, therefore, represent a new compound series for the developmentmore » of neuroprotective agents with therapeutic value in patients suffering from stroke, from brain or spinal cord trauma, from hypoglycemia, and possibly from brain ischemia due to heart attack.« less

  4. Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons.

    PubMed

    Cai, Yi; Chew, Cory; Muñoz, Fernando; Sengelaub, Dale R

    2017-06-01

    Partial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone is neuroprotective, attenuating induced dendritic atrophy. In this study we examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites. Furthermore, to assess whether these neuroprotective effects were mediated through steroid hormone receptors, we used receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected rats were treated with either dihydrotestosterone or estradiol, alone or in combination with their respective receptor antagonists, or left untreated. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Compared with intact normal animals, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Dendritic atrophy was attenuated with both dihydrotestosterone and estradiol treatment to a degree similar to that seen with testosterone, and attenuation of atrophy was prevented by receptor blockade. Together, these findings suggest that neuroprotective effects on motoneurons can be mediated by either androgenic or estrogenic hormones and require action via steroid hormone receptors, further supporting a role for hormones as neurotherapeutic agents in the injured nervous system. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 691-707, 2017. © 2016 Wiley Periodicals, Inc.

  5. TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration.

    PubMed

    Ramírez-Barrantes, Ricardo; Marchant, Ivanny; Olivero, Pablo

    2016-08-01

    Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1) expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.

  6. Zinc, a neuroprotective agent against aluminum-induced oxidative DNA injury.

    PubMed

    Singla, Neha; Dhawan, D K

    2013-08-01

    Aluminum (Al) has been considered as one of the most abundant elements and comprises nearly 8 % of the Earth's crust. Despite of its immense presence, studies regarding the molecular basis of its interaction with the physiological system are rather sparse. On the other hand, zinc (Zn), an essential micronutrient, has been regarded as the second most important metal for brain functioning. The objective of the present study was to investigate the protective potential of Zn, if any, during Al-induced detrimental effects on DNA, tritiated thymidine uptake as well as expression of stress marker genes and proteins in rat brain. Male Sprague-Dawley rats weighing 140-160 g were divided into four different groups viz.: normal control, Al treated (100 mg/kg b wt/day via oral gavage), Zn treated (227 mg/l in drinking water), and combined Al and Zn treated. All the treatments were carried out for a total duration of 8 weeks. Agarose gel electrophoresis revealed DNA laddering pattern and comets in the rat brain following Al treatment, which however, were attenuated upon Zn treatment. Further, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, number of apoptotic brain cells, and uptake of tritiated thymidine were increased after Al treatment but were decreased upon Zn supplementation. Western blot and mRNA expressions of p53 and nuclear factor κB (NF-κB) were also found to be significantly elevated after Al treatment, which however, were reversed following Zn treatment. Hence, Zn shall prove to be an effective agent in mitigating the detrimental effects caused by Al in the rat brain.

  7. Podophyllotoxin: a novel potential natural anticancer agent

    PubMed Central

    Ardalani, Hamidreza; Avan, Amir; Ghayour-Mobarhan, Majid

    2017-01-01

    Objective: The aim of the present review is to give an overview about the role, biosynthesis, and characteristics of Podophyllotoxin (PTOX) as a potential antitumor agent with particular emphasis on key biosynthesis processes, function of related enzymes and characterization of genes encoding the enzymes. Materials and Methods: Google scholar, PubMed and Scopus were searched for literatures which have studied identification, characterization, fermentation and therapeutic effects of PTOX and published in English language until end of 2016. Results: PTOX is an important plant-derived natural product, has derivatives such as etoposide and teniposide, which have been used as therapies for cancers and venereal wart. PTOX structure is closely related to the aryltetralin lactone lignans that have antineoplastic and antiviral activities. Podophyllum emodi Wall. (syn. P. hexandrum) and Podophyllum peltatum L. (Berberidaceae) are the major sources of PTOX. It has been shown that ferulic acid and methylenedioxy substituted cinnamic acid are the enzymes involved in PTOX synthesis. PTOX prevents cell growth via polymerization of tubulin, leading to cell cycle arrest and suppression of the formation of the mitotic-spindles microtubules. Conclusion: Several investigations have been performed in biosynthesis of PTOX such as cultivation of these plants, though they were unsuccessful. Thus, it is important to find alternative sources to satisfy the pharmaceutical demand for PTOX. Moreover, further preclinical studies are warranted to explore the molecular mechanisms of these agents in treatment of cancer and their possible potential to overcome chemoresistance of tumor cells. PMID:28884079

  8. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.

  9. Nobiletin improves propofol-induced neuroprotection via regulating Akt/mTOR and TLR 4/NF-κB signaling in ischemic brain injury in rats.

    PubMed

    Zheng, Yuzhen; Bu, Jinmei; Yu, Liang; Chen, Jun; Liu, Haigen

    2017-07-01

    Stroke is regarded as one of the main health concerns globally, presenting with high mortality and morbidity rates. Cerebral ischemic damage and infarction are critically associated with stroke. Various mechanisms related to inflammation, oxidative stress and excitotoxicity are found to be involved in ischemic damage. Very short time period for treatment has necessitated in development of more effective neuroprotective agents. Study aimed in investigated the effects of nobiletin on experimentally induced ischemic brain injury and also to assess whether nobiletin potentiated the neuroprotective effects of propofol. Male Sprague-Dawley rats were subjected to ischemia/reperfusion (I/R) injury. Induction of cerebral infarction and I/R was done by middle cerebral artery occlusion (MCAO). Nobiletin (100 or 200mg/kg b.wt.) was intragastrically administered to rats for 9 days before ischemia induction and on the day of induction nobiletin was administered an hour prior. Separate group of rats were post-conditioned with propofol (50mg/kg/h; i.v.) for 30min following 24h of reperfusion. Propofol post-conditioning either with or without administration of nobiletin prior I/R injury attenuated pulmonary edema, neuronal apoptosis and reduced cerebral infarct volume. Overproduction of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and nitric oxide following I/R were reduced. Propofol either alone or with prior nobiletin treatment had down-regulated TLR4 and TLR4-mediated NF-κB signaling and caused activation of Akt/mTOR cascade. Propofol post-conditioning either with nobiletin prior I/R injury was found to be more effective than propofol alone, suggesting the positive effects of nobiletin on propofol-mediated anti-inflammatory and neuroprotective effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. A novel natural product inspired scaffold with robust neurotrophic, neurogenic and neuroprotective action

    PubMed Central

    Chakravarty, Sumana; Maitra, Swati; Reddy, R Gajendra; Das, Tapatee; Jhelum, Priya; Kootar, Scherazad; Rajan, Wenson D.; Samanta, Anumita; Samineni, Ramesh; Pabbaraja, Srihari; Kernie, Steven G.; Mehta, Goverdhan; Kumar, Arvind

    2015-01-01

    In search for drugs to treat neuropsychiatric disorders wherein neurotrophic and neurogenic properties are affected, two neurotrophically active small molecules specially crafted following natural product leads based on 2-oxa-spiro[5.5]-undecane scaffold, have been thoroughly evaluated for their neurotrophic, neurogenic and neuroprotective potential in ex vivo primary culture and in vivo zebrafish and mouse models. The outcome of in vivo investigations suggest that one of these molecules is more neurotrophic than neurogenic while the other one is more neurogenic than neurotrophic and the former exhibits remarkable neuroprotection in a mouse acute ischemic stroke model. The molecular mechanisms of action of these compounds appear to be through the TrkB-MEK-ERK-CREB-BDNF pathway as pre-treatment with neurotrophin receptor TrkB inhibitor ANA-12 and MEK inhibitor PD98059 attenuates the neurotrophic action of compounds. PMID:26388493

  11. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.

    PubMed Central

    MacGregor, D. G.; Miller, W. J.; Stone, T. W.

    1993-01-01

    1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors. PMID:8220909

  12. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling.

    PubMed

    Dong, Wenwen; Yang, Bei; Wang, Linlin; Li, Bingxuan; Guo, Xiangshen; Zhang, Miao; Jiang, Zhenfei; Fu, Jingqi; Pi, Jingbo; Guan, Dawei; Zhao, Rui

    2018-05-01

    Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI. Copyright © 2018. Published by Elsevier Inc.

  13. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    PubMed

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  14. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke

    PubMed Central

    Romero, Alejandro; Ramos, Eva; Patiño, Paloma; Oset-Gasque, Maria J.; López-Muñoz, Francisco; Marco-Contelles, José; Ayuso, María I.; Alcázar, Alberto

    2016-01-01

    Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented. PMID:27932976

  15. Potential of the chlorogenic acid as multitarget agent: Insulin-secretagogue and PPAR α/γ dual agonist.

    PubMed

    Sanchez, Maetzin Becerra; Miranda-Perez, Elizabeth; Verjan, Juan Carlos Gomez; de Los Angeles Fortis Barrera, Maria; Perez-Ramos, Julia; Alarcon-Aguilar, Francisco Javier

    2017-10-01

    The chlorogenic acid (CGA) is a natural product isolated from Cecropia obtusifolia, which possesses several pharmacological properties, such as: anti-carcinogenic, neuroprotective, antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic. In relation to its effects on the hyperglycemia and hypertriglyceridemia, few is known about the mechanisms in which this compound may be acting, therefore, the aim of the present study was to determine if CGA acts as an insulin secretagogue increasing intracellular calcium concentrations ([Ca 2+ ] i ) in RINm5F cells; or as an insulin sensitizer and lipid-lowering agent stimulating the expression of PPARγ and PPARα, respectively, in 3T3-L1 adipocytes. As results, RINm5F cells treated with 200μM of CGA showed an increase in [Ca 2+ ] i of 9-times versus control and 4-times as compared to positive control; in addition, an increase in insulin secretion was observed similarly to those of positive control. CGA also significantly increased the mRNA expression of PPARγ (150%) and GLUT4 (220%), as well PPARα (40%) and FATP (25%) as it was appreciated by RT-PCR. Additionally, a chemoinformatic analysis suggested that CGA has suitable physicochemical properties to be considered as leader bioactive molecule for the development of novel agents with similar properties. Together, our results indicate that CGA possesses multiple mechanisms of action for the development of highly effective therapeutics in the treatment of metabolic diseases such as type 2 diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy.

    PubMed

    Wang, C-Q; Ye, Y; Chen, F; Han, W-C; Sun, J-M; Lu, X; Guo, R; Cao, K; Zheng, M-J; Liao, L-C

    2017-02-20

    As a complex disease, traumatic brain injury (TBI) can result in long-term psychiatric changes and sensorimotor and cognitive impairments. The TBI-induced loss of memory and long-term cognitive dysfunction are related to mechanistic factors including an increased inflammatory response, autophagy, edema, and ischemia. Many published studies have offered evidence for the neuroprotective effects and anti-inflammatory properties of ketamine for TBI patients. Nonetheless, there is a limited understanding of the accurate mechanism that underlies the potential neuroprotective effects of ketamine. Herein, it can be shown that posttraumatic administration of ketamine at a sub-anesthetic dose (10mg/kg ketamine, every 24h up to 7days) can prevent the TBI-induced production of IL-6 and TNF-α, attenuate deficits of dendrites and spines and exert beneficial effects on memory and behavior. Moreover, studies show that ketamine may activate the mTOR signaling pathway by p-mTOR induction to down-regulate the expression of crucial autophagic proteins such as LC3 and Beclin-1. According to these findings, ameliorating secondary brain injury and anti-inflammatory properties is closely related to the neuroprotection of ketamine, which supports the use of ketamine as a potential therapy for patients with TBI to alleviate functional deficits. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Neuroprotective compounds of Tilia amurensis

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2015-01-01

    Background: Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. Objective: In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. Materials and Methods: Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. Conclusion: These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells. PMID:26664019

  18. Cannabinoids: between neuroprotection and neurotoxicity.

    PubMed

    Sarne, Yosef; Mechoulam, Raphael

    2005-12-01

    Cannabinoids, such as the delta9-tetrahydrocannabinol (THC), present in the cannabis plant, as well as anandamide and 2-arachidonoyl glycerol, produced by the mammalian body, have been shown to protect the brain from various insults and to improve several neurodegenerative diseases. The current review summarizes the evidence for cannabinoid neuroprotection in vivo, and refers to recent in vitro studies, which help elucidate possible molecular mechanisms underlying this protective effect. Some of these mechanisms involve the activation of CB1 and CB2 cannabinoid receptors, while others are not dependent on them. In some cases, protection is due to a direct effect of the cannabinoids on neuronal cells, while in others, it results from their effects on non-neuronal elements within the brain. In many experimental set-ups, cannabinoid neurotoxicity, particularly by THC, resides side by side with neuroprotection. The current review attempts to shed light on this dual activity, and to dissociate between the two contradictory effects.

  19. Plants' Metabolites as Potential Antiobesity Agents

    PubMed Central

    Gooda Sahib, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Fawzi; Abdul Hamid, Azizah

    2012-01-01

    Obesity and obesity-related complications are on the increase both in the developed and developing world. Since existing pharmaceuticals fail to come up with long-term solutions to address this issue, there is an ever-pressing need to find and develop new drugs and alternatives. Natural products, particularly medicinal plants, are believed to harbor potential antiobesity agents that can act through various mechanisms either by preventing weight gain or promoting weight loss amongst others. The inhibition of key lipid and carbohydrate hydrolyzing and metabolizing enzymes, disruption of adipogenesis, and modulation of its factors or appetite suppression are some of the plethora of targeted approaches to probe the antiobesity potential of medicinal plants. A new technology such as metabolomics, which deals with the study of the whole metabolome, has been identified to be a promising technique to probe the progression of diseases, elucidate their pathologies, and assess the effects of natural health products on certain pathological conditions. This has been applied to drug research, bone health, and to a limited extent to obesity research. This paper thus endeavors to give an overview of those plants, which have been reported to have antiobesity effects and highlight the potential and relevance of metabolomics in obesity research. PMID:22666121

  20. Multi Target Neuroprotective and Neurorestorative Anti-Parkinson and Anti-Alzheimer Drugs Ladostigil and M30 Derived from Rasagiline

    PubMed Central

    2013-01-01

    Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the

  1. [Resveratrol: a neuroprotective polyphenol in the Mediterranean diet].

    PubMed

    López-Miranda, Visitación; Soto-Montenegro, M Luisa; Vera, Gema; Herradón, Esperanza; Desco, Manuel; Abalo, Raquel

    2012-03-16

    Resveratrol is a polyphenol present in grapes, some nuts and dried fruits, and red wine. A number of beneficial properties have been attributed to this compound. Its potential neuroprotective effects are the subject of much research today. To review the effects of resveratrol, and more particularly those related to its capacity to offer protection against the neurodegeneration associated with several pathologies and traumatic injuries in the central nervous system. It has been suggested that the daily consumption of red wine, and therefore of resveratrol, could account for the so-called 'French paradox', according to which the population in the south of France, despite eating a diet that is relatively high in saturated fats, presents a low risk of heart disease. From this first evidence of the cardioprotective properties of resveratrol, its study has been extended and equally attractive biopharmacological effects have now been found in many different fields. Thus, neuroprotective effects have been found in models of neurodegeneration (Alzheimer's, Parkinson's or Huntington's disease, or diverse neuropathies), of ischaemia and of brain and spinal cord injury, but further clinical data are still needed in this regard. Although few studies have been conducted in humans, recent findings in experimental models of neurological pathology are encouraging and open up the doors to future clinical studies that will allow the therapeutic value of resveratrol to be determined.

  2. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection.

    PubMed

    Chen, Yan-Ting; Zang, Xue-Feng; Pan, Jie; Zhu, Xiao-Lei; Chen, Fei; Chen, Zhi-Bin; Xu, Yun

    2012-09-01

    1. Histone deacetylase (HDAC) inhibitors exert neuroprotection in both cellular and animal models of ischaemic stroke. However, which HDAC isoform (or isoforms) mediates this beneficial effect has not yet been determined. 2. In the present study, gene levels of the HDAC isoforms were determined in the mouse cortex using reverse transcription-polymerase chain reaction (RT-PCR), whereas changes in the expression of individual zinc-dependent HDAC family members were evaluated by western blotting, 3, 12, 24 and 48 h after cerebral ischaemia induced by transient middle cerebral artery occlusion in male Kunming mice. 3. The HDAC isoforms HDAC1-11 were all expressed in the mouse cortex and differentially affected by cerebral ischaemia. Notably, there was a substantial increase in HDAC3, HDAC6 and HDAC11 expression during the early phases of experimental stroke, indicating their contribution to stroke pathogenesis. Furthermore, induction of HDAC3 and HDAC6 in cortical neurons by ischaemic stroke was confirmed in vivo and in vitro using double-labelled immunostaining and RT-PCR, respectively. Therefore, small hairpin (sh) RNAs were used to selectively knock down HDAC3 or HDAC6. This knockdown appreciably promoted the survival of cortical neurons subjected to oxygen and glucose deprivation. 4. The findings of the present study demonstrate the expression patterns of HDAC isoforms during experimental ischaemic stroke. Furthermore, HDAC3 and HDAC6 were identified as potential mediators in the neurotoxicity of ischaemic stroke, suggesting that specific therapeutic approaches may be considered according to HDAC subtype. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.

  3. Neuroprotective effects of dietary supplement Kang-fu-ling against high-power microwave through antioxidant action.

    PubMed

    Hu, Shaohua; Peng, Ruiyun; Wang, Changzhen; Wang, Shuiming; Gao, Yabing; Dong, Ji; Zhou, Hongmei; Su, Zhentao; Qiao, Shanyi; Zhang, Shouguo; Wang, Lin; Wen, Xiaoxue

    2014-09-01

    Kang-fu-ling (KFL) is a polybotanical dietary supplement with antioxidant properties. This study aimed to evaluate the potential protective effects of KFL on cognitive deficit induced by high-power microwave (HPM) and the underlying mechanism for this neuroprotection. The electron spin resonance technique was employed to evaluate the free radical scavenging activity of KFL in vitro and KFL exhibited scavenging hydroxyl radical activity. KFL at doses of 0.75, 1.5 and 3 g kg(-1) and vehicle were administered orally once daily for 14 days to male Wistar rats after being exposed to 30 mW cm(-2) HPM for 15 minutes. KFL reversed HPM-induced memory loss and the histopathological changes in hippocampus of rats. In addition, KFL displayed a protective effect against HPM-induced oxidative stress and activated the nuclear factor-E2-related factor 2 (Nrf2) and its target genes in the hippocampus of rats. The Nrf2-antioxidant response element (ARE) signaling pathway may be involved in the neuroprotective effects of KFL against HPM-induced oxidative stress. In summary, the dietary supplement KFL is a promising natural complex, which ameliorates oxidative stress, with neuroprotective effects against HPM.

  4. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease.

    PubMed

    Olson, Katherine E; Gendelman, Howard E

    2016-02-01

    While immune control is associated with nigrostriatal neuroprotection for Parkinson's disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  6. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats.

    PubMed

    Zhao, Qipeng; Cheng, Xiuli; Wang, Xiaobo; Wang, Jing; Zhu, Yafei; Ma, Xueqin

    2016-11-04

    The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways. Male Sprague-Dawley rats were divided into 6 groups: sham group, I/R group, nimodipine and MXYF (58, 116 and 232mg/kg respectively) groups. Cerebral ischemia model was induced by middle cerebral artery occlusion for 2h followed by reperfusion for 48h. Neurological functional score was evaluated according to the method of Zea longa's score and the infarct area was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48h after reperfusion. The protein expression of cytochrome c (cyt-c), Bcl-2, Bax, caspase-9, caspase-3 and caspase-7 were analyzed by western blot and the mRNA expression of Caspase-9, Caspase-3 and Caspase-7 were determined by the reverse transcription-polymerase chain reaction. Oral administration of MXYF (116 and 232mg/kg) significantly reduced the neurological functional score and attenuated the cerebral infarct area. Western blot analysis showed that the expression of Bcl-2 is enhanced and Bax expression is inhibited after treatment with MXYF (116 and 232mg/kg), leading to significant increase of the ratio between Bcl-2 and Bax. Furthermore, the protein expression of cyt-c, caspase-9, caspase-3 and caspase-7 was significantly inhibited while the mRNA expression of caspase-9, caspase-3 and caspase-7 but not cyt-c was markedly inhibited in the MXYF (116 and 232mg/kg) treatment groups compared with the I/R group. The above data suggested that MXYF has potential neuroprotective activities by the regulation of apoptotic pathway, MXYF is a promising agent in treatment of stroke. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Determination of neuroprotective oxysterols in Calculus bovis, human gallstones, and traditional Chinese medicine preparations by liquid chromatography with mass spectrometry.

    PubMed

    Wang, Yalong; Jiang, Han; Huang, Huizhi; Xie, Yanqi; Zhao, Yunshi; You, Xiuhua; Tang, Lipeng; Wang, Youqiong; Yin, Wei; Qiu, Pengxin; Yan, Guangmei; Hu, Haiyan

    2015-03-01

    So far, the components responsible for the neuroprotective effects of Calculus bovis are unclear. Cholesterol, one of the major components in Calculus bovis, is easily oxidized into oxysterols, which possess direct or indirect neuroprotective effects proved by our and others' previous studies. Therefore, a liquid chromatography with mass spectrometry method coupled with ultrasonic extraction and solid-phase extraction was developed for the determination of neuroprotective oxysterols in Calculus bovis, human gallstones, and traditional Chinese medicine preparations. Chromatographic separation was achieved on a C18 column with isocratic elution at a flow rate of 1 mL/min. The established method showed good linearity (R(2) > 0.998), sensitivity with low limits of detection (0.06-0.39 μg/g), acceptable precisions (relative standard deviations ≤ 7.4%), stability (relative standard deviations ≤ 5.9%), and satisfactory accuracy (92.4-102.9%) for all analytes identified by different retention times, which could be applied for the determination of oxysterols. Five kinds of oxysterols proved to function as neuroprotectants were detected at different concentrations. Among them, 7β-hydroxycholesterol and cholestane-3β,5α,6β-triol were rather abundant in the samples. It could be concluded that the potential neuroprotective components in Calculus bovis may be these oxysterols. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3

  9. Brain neuroprotection by scavenging blood glutamate.

    PubMed

    Zlotnik, Alexander; Gurevich, Boris; Tkachov, Sergei; Maoz, Ilana; Shapira, Yoram; Teichberg, Vivian I

    2007-01-01

    Excess glutamate in brain fluids characterizes acute brain insults such as traumatic brain injury and stroke. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As blood glutamate scavenging has been demonstrated to increase the efflux of excess glutamate from brain into blood, we tested the prediction that oxaloacetate-mediated blood glutamate scavenging causes neuroprotection in a pathological situation such as closed head injury (CHI), in which there is a well established deleterious increase of glutamate in brain fluids. We observed highly significant improvements of the neurological status of rats submitted to CHI following an intravenous treatment with 1 mmol oxaloacetate/100 g rat weight which decreases blood glutamate levels by 40%. No detectable therapeutic effect was obtained when rats were treated IV with 1 mmol oxaloacetate together with 1 mmol glutamate/100 g rat. The treatment with 0.005 mmol/100 g rat oxaloacetate was no more effective than saline but when it was combined with the intravenous administration of 0.14 nmol/100 g of recombinant glutamate-oxaloacetate transaminase, recovery was almost complete. Oxaloacetate provided neuroprotection when administered before CHI or at 60 min post CHI but not at 120 min post CHI. Since neurological recovery from CHI was highly correlated with the decrease of blood glutamate levels (r=0.89, P=0.001), we conclude that blood glutamate scavenging affords brain neuroprotection Blood glutamate scavenging may open now new therapeutic options.

  10. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects.

    PubMed

    Ye, Yong; Xing, Haiting; Li, Yue

    2014-01-01

    preparation presents a new approach to brain neuroprotection, and has potential for clinical application.

  11. Neuroprotective Interventions: Is It Too Late?

    PubMed Central

    Jenkins, Dorothea; Chang, Eugene; Singh, Inderjit

    2013-01-01

    In most cases of neonatal hypoxic-ischemic encephalopathy, the exact timing of the hypoxic-ischemic event is unknown, and we have few reliable biomarkers to precisely identify the phase of injury or recovery in an individual patient. However, it is becoming increasingly clear that for neuroprotection in neonates to succeed, an understanding of the phase of injury is important to ascertain. In addition, in utero antecedents of chronic hypoxia, hypoxic preconditioning, intrauterine infection, and fetal gender may change the expected time course of injury. Neuroprotective interventions, such as hypothermia and N-acetylcysteine, currently have efficacy in human and animal studies only if instituted early in the inflammatory cascade. While these cascades are currently being investigated, molecular mechanisms of recovery have received little attention and may ultimately reveal a window for therapeutic intervention that is much longer than current paradigms. PMID:19745093

  12. Naturally occurring marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol functions as a novel neuroprotectant.

    PubMed

    Leng, Tiandong; Liu, Ailing; Wang, Youqiong; Chen, Xinying; Zhou, Shujia; Li, Qun; Zhu, Wenbo; Zhou, Yuehan; Su, Xingwen; Huang, Yijun; Yin, Wei; Qiu, Pengxin; Hu, Haiyan; Xiong, Zhi-gang; Zhang, Jingxia; Yan, Guangmei

    2016-01-01

    Steroids have been shown to have multiple effects on the nervous system including neuroprotective activities, and they have the potential to be used for the treatment of neurodegenerative diseases. In this current study, we tested the hypothesis that the marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol (Tetrol) has a neuroprotective effect. (1) We synthesized Tetrol through a multiple step reaction starting from hyodeoxycholic acid (HDCA). (2) We then evaluated the neuroprotective effect of Tetrol with a glutamate-induced neuronal injury model in vitro. Tetrol concentration dependently increased the survival rate of cerebellar granule neurons challenged with toxic concentration of glutamate. Consistently, Tetrol significantly decreased glutamate-induced lactate dehydrogenase (LDH) release with a threshold concentration of 2.5 μM. (3) We further evaluated the neuroprotective effect of Tetrol in a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia model in rat. Tetrol, at a dose of 12 mg/kg, significantly decreased MCAO-induced infarction volume by ∼50%. (4) Finally, we probed the mechanism and found that Tetrol concentration dependently attenuated N-methyl-d-aspartate (NMDA)-induced intracellular calcium ([Ca(2+)]i) increase with an IC50 of 7.8±0.62 μM, and inhibited NMDA currents in cortical neurons with an IC50 of 10.28±0.71 μM. Taken together, we have synthesized and characterized Tetrol as a novel neuroprotectant through negative modulation of NMDA receptors. Copyright © 2015. Published by Elsevier Inc.

  13. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease

    PubMed Central

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E.; Levites, Yona; Rincon-Limas, Diego E.

    2015-01-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  14. Molecular mechanisms of neuroprotective action of immunosuppressants--facts and hypotheses.

    PubMed

    Kaminska, Bozena; Gaweda-Walerych, Katarzyna; Zawadzka, Malgorzata

    2004-01-01

    Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target--calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.

  15. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  16. Anesthetic Neuroprotection in Experimental Stroke in Rodents: A Systematic Review and Meta-analysis.

    PubMed

    Archer, David P; Walker, Andrew M; McCann, Sarah K; Moser, Joanna J; Appireddy, Ramana M

    2017-04-01

    Patients undergoing endovascular therapy for acute ischemic stroke may require general anesthesia to undergo the procedure. At present, there is little clinical evidence to guide the choice of anesthetic in this acute setting. The clinical implications of experimental studies demonstrating anesthetic neuroprotection are poorly understood. Here, the authors evaluated the impact of anesthetic treatment on neurologic outcome in experimental stroke. Controlled studies of anesthetics in stroke using the filament occlusion model were identified in electronic databases up to December 15, 2015. The primary outcome measures, infarct volume, and neurologic deficit score were used to calculate the normalized mean difference for each comparison. Meta-analysis of normalized mean difference values provided estimates of neuroprotection and contributions of predefined factors: study quality, the timing of treatment, and the duration of ischemia. In 80 retrieved publications anesthetic treatment reduced neurologic injury by 28% (95% CI, 24 to 32%; P < 0.0001). Internal validity was high: publication bias enhanced the effect size by 4% or less, effect size increased with study quality (P = 0.0004), and approximately 70% of studies were adequately powered. Apart from study quality, no predefined factor influenced neuroprotection. Neuroprotection failed in animals with comorbidities. Neuroprotection by anesthetics was associated with prosurvival mechanisms. Anesthetic neuroprotection is a robust finding in studies using the filament occlusion model of ischemic stroke and should be assumed to influence outcomes in studies using this model. Neuroprotection failed in female animals and animals with comorbidities, suggesting that the results in young male animals may not reflect human stroke.

  17. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling.

    PubMed

    Zhu, Wei; Ding, Yuexia; Kong, Wei; Li, Tuo; Chen, Hongguang

    2018-04-16

    In this study, we explored the neuroprotective effects of docosahexaenoic acid (DHA) in traumatic brain injury (TBI) models. In this study, we first confirmed that DHA was neuroprotective against TBI via the NSS test and Morris water maze experiment. Western blot was conducted to identify the expression of Bax, caspase-3, and Bcl-2. And the cell apoptosis of the TBI models was validated by TUNEL staining. Relationships between nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway-related genes and DHA were explored by RT-PCR and Western blot. Rats of the DHA group performed remarkably better than those of the TBI group in both NSS test and water maze experiment. DHA conspicuously promoted the expression of Bcl-2 and diminished that of cleaved caspase-3 and Bax, indicating the anti-apoptotic role of DHA. Superoxide dismutase (SOD) activity and cortical malondialdehyde content, glutathione peroxidase (GPx) activity were renovated in rats receiving DHA treatment, implying that the neuroprotective influence of DHA was derived from lightening the oxidative stress caused by TBI. Moreover, immunofluorescence and Western blot experiments revealed that DHA facilitated the translocation of Nrf2 to the nucleus. DHA administration also notably increased the expression of the downstream factors NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1(HO-1). DHA exerted neuroprotective influence on the TBI models, potentially through activating the Nrf2- ARE pathway.

  18. Calcineurin inhibition enhances motor neuron survival following injury

    PubMed Central

    Hui, Kelvin KW; Liadis, Nicole; Robertson, Jennifer; Kanungo, Anish; Henderson, Jeffrey T

    2010-01-01

    Abstract The immunosuppressive agents cyclosporin A (CsA) and FK-506 have previously been shown to exhibit neurotrophic and neuroprotective properties in vivo. Given that significant clinical expertise exists for both drugs, they represent an attractive starting point for treatment of acute neural injuries. One putative mechanism for neuroprotection by these drugs relates to inhibition of calcineurin activity. However each drug–immunophilin complex can potentially influence additional signal transduction pathways. Furthermore, several non-immunosuppressive immunophilin ligands have been described as possessing neuroprotective properties, suggesting that neuroprotection may be separable from calcineurin inhibition. In the present study, we examined the mechanism of this neuroprotection in facial motor neurons following axotomy-induced injury. Similar to previous studies in rats, CsA and FK-506 enhanced motor neuron survival in mice following acute injury. To examine the mechanism responsible for neuroprotection by these agents, pharmacologic inhibitors of several potential alternate signalling pathways (17-(allylamino)-17-demethoxygeldanamycin, rapamycin, cypermethrin) were evaluated with respect to neuroprotection. Of these, only cypermethrin, a direct calcineurin inhibitor not previously associated with neuronal survival properties, was observed to significantly enhance motor neuron survival following injury. The results demonstrate for the first time that direct inhibition of calcineurin is neuroprotective in vivo. These data support a model in which calcineurin inhibition promotes neuronal survival, distinct from effects upon neurite outgrowth. PMID:19243469

  19. The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plant, Kathryn E.; Anderson, Elizabeth; Simecek, Nicole

    2009-02-15

    The mood stabilizing agents lithium chloride (LiCl) and sodium valproate (VPA) have recently gained interest as potential neuroprotective therapeutics. However, exploitation of these therapeutic applications is hindered by both a lack of molecular understanding of the mode of action, and a number of sub-optimal properties, including a relatively small therapeutic window and variable patient response. Human neuroblastoma cells (SH-SY5Y) were exposed to 1 mM lithium chloride or 1 mM sodium valproate for 6 h or 72 h, and transcriptomes measured by Affymetrix U133A/B microarray. Statistically significant gene expression changes were identified using SAM software, with selected changes confirmed at transcriptmore » (TaqMan) and protein (Western blotting) levels. Finally, anti-apoptotic action was measured by an in vitro fluorescent assay. Exposure of SH-SY5Y cells to therapeutically relevant concentrations of either lithium chloride or sodium valproate elicited 936 statistically significant changes in gene expression. Amongst these changes we observed a large (maximal 31.3-fold) increase in the expression of the homeodomain protein Six1, and have characterized the time- and dose-dependent up-regulation of this gene in response to both drugs. In addition, we demonstrate that, like LiCl or VPA treatment, Six1 over-expression protects SH-SY5Y cells from staurosporine-induced apoptosis via the blockade of caspsase-3 activation, whereas removal of Six1 protein via siRNA antagonises the ability of LiCl and VPA to protect SH-SY5Y cells from STS-induced apoptosis. These results provide a novel mechanistic rationale underlying the neuroprotective mechanism of LiCl and VPA, suggesting exciting possibilities for the development of novel therapeutic agents against neurodegenerative diseases such as Alzheimer's or Parkinsonism.« less

  20. Therapeutic options for diseases due to potential viral agents of bioterrorism.

    PubMed

    Bronze, Michael S; Greenfield, Ronald A

    2003-02-01

    The etiologic agents of smallpox and viral hemorrhagic fever have emerged as potential agents of bioterrorism due to their virulence, potential for human to human dissemination and limited strategies for treatment and prevention. Cidofovir has shown significant promise in animal models, and limited case reports in humans are encouraging. Ribavirin is the treatment of choice for certain hemorrhagic fever viral infections, but has no current application to Ebola and Marburg infections. Current vaccine strategies for smallpox are effective, but carry significant risk for complications. Licensed vaccines for hemorrhagic fever viruses are limited to yellow fever, but animal studies are promising. Genomic analysis of the viral pathogen and the animal model response to infection may provide valuable information enabling the development of novel treatment and prevention strategies. Current knowledge of these strategies is reviewed.

  1. Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease.

    PubMed

    Daviaud, Nicolas; Garbayo, Elisa; Sindji, Laurence; Martínez-Serrano, Alberto; Schiller, Paul C; Montero-Menei, Claudia N

    2015-06-01

    Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms

  2. Xanthones from Mangosteen Extracts as Natural Chemopreventive Agents: Potential Anticancer Drugs

    PubMed Central

    Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E.

    2011-01-01

    Despite decades of research, the treatment and management of malignant tumors still remain a formidable challenge for public health. New strategies for cancer treatment are being developed, and one of the most promising treatment strategies involves the application of chemopreventive agents. The search for novel and effective cancer chemopreventive agents has led to the identification of various naturally occurring compounds. Xanthones, from the pericarp, whole fruit, heartwood, and leaf of mangosteen (Garcinia mangostana Linn., GML), are known to possess a wide spectrum of pharmacologic properties, including anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities. The potential chemopreventive and chemotherapeutic activities of xanthones have been demonstrated in different stages of carcinogenesis (initiation, promotion, and progression) and are known to control cell division and growth, apoptosis, inflammation, and metastasis. Multiple lines of evidence from numerous in vitro and in vivo studies have confirmed that xanthones inhibit proliferation of a wide range of human tumor cell types by modulating various targets and signaling transduction pathways. Here we provide a concise and comprehensive review of preclinical data and assess the observed anticancer effects of xanthones, supporting its remarkable potential as an anticancer agent. PMID:21902651

  3. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection.

    PubMed

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M

    2017-02-24

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  4. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection

    PubMed Central

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M.

    2017-01-01

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus. PMID:28245590

  5. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    PubMed

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    (s) from astroglia, which in turn was responsible for the neurotrophic effect. Second, the anti-inflammatory mechanism was also important for the neuroprotective activity of 3-HM because the more microglia were added back to the neuron-enriched cultures, the more significant neuroprotective effect was observed. The anti-inflammatory mechanism of 3-HM was attributed to its inhibition of LPS-induced production of an array of pro-inflammatory and neurotoxic factors, including nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), prostaglandin E2 (PGE2) and reactive oxygen species (ROS). In conclusion, this study showed that 3-HM exerted potent neuroprotection by acting on two different targets: a neurotrophic effect mediated by astroglia and an anti-inflammatory effect mediated by the inhibition of microglial activation. 3-HM thus possesses these two important features necessary for an effective neuroprotective agent. In view of the well-documented very low toxicity of DM and its analogs, this report may provide an important new direction for the development of therapeutic interventions for inflammation-related diseases such as PD.

  6. Neuroprotective effects of ginsenoside Rg1 against oxygen-glucose deprivation in cultured hippocampal neurons.

    PubMed

    He, Qing; Sun, Jianguo; Wang, Qin; Wang, Wei; He, Bin

    2014-03-01

    that ginsenoside Rg1 may serve as a potential therapeutic agent for cerebral ischemia injury. Copyright © 2014. Published by Elsevier B.V.

  7. Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: linking hibernation and neuroprotection.

    PubMed

    Borlongan, Cesario V; Wang, Yun; Su, Tsung-Ping

    2004-09-01

    Hibernation is a potential protective strategy for the peripheral, as well as for the central nervous system. A protein factor termed hibernation induction trigger (HIT) was found to induce hibernation in summer-active ground squirrels. Purification of HIT yielded an 88-kD peptide that is enriched in winter hibernators. Partial sequence of the 88-kD protein indicates that it may be related to the inhibitor of metalloproteinase. Using opioid receptor antagonists to elucidate the mechanisms of HIT, it was found that HIT targeted the delta opioid receptors. Indeed, delta opioid (D-Ala 2, D-Leu 5) enkephalin (DADLE) was shown to induce hibernation. Specifically, HIT and DADLE were found to prolong survival of peripheral organs, such as the lung, the heart, liver, and kidney preserved en bloc or as a single preparation. In addition, DADLE has been recently demonstrated to promote survival of neurons in the central nervous system. Exposure to DADLE dose-dependently enhanced cell viability of cultured primary rat fetal dopaminergic cells. Subsequent transplantation of these DADLE-treated dopaminergic cells into the Parkinsonian rat brain resulted in a two-fold increase in surviving grafted cells. Interestingly, delivery of DADLE alone protected against dopaminergic depletion in a rodent model of Parkinson s disease. Similarly, DADLE blocked and reversed the dopaminergic terminal damage induced by methamphetamine (METH). Such neuroprotective effects of DADLE against METH neurotoxicity was accompanied by attenuation of mRNA expressions of a tumor necrosis factor p53 and an immediate early gene c-fos. In parallel to these beneficial effects of DADLE on the dopaminergic system, DADLE also ameliorated the neuronal damage induced by ischemia-reperfusion following a transient middle cerebral artery occlusion. In vitro replication of this ischemia cell death by serum-deprivation of PC12 cells revealed that DADLE exerted neuroprotection in a naltrexone-sensitive manner. These

  8. Current perspective of neuroprotection and glaucoma

    PubMed Central

    Tian, Kailin; Shibata-Germanos, Shannon; Pahlitzsch, Milena; Cordeiro, M Francesca

    2015-01-01

    Glaucoma is the second leading cause of blindness worldwide and is most notably characterized by progressive optic nerve atrophy and advancing loss of retinal ganglion cells (RGCs). The main concomitant factor is the elevated intraocular pressure (IOP). Existing treatments are focused generally on lowering IOP. However, both RGC loss and optic nerve atrophy can independently occur with IOP at normal levels. In recent years, there has been substantial progress in the development of neuroprotective therapies for glaucoma in order to restore vital visual function. The present review intends to offer a brief insight into conventional glaucoma treatments and discuss exciting current developments of mostly preclinical data in novel neuroprotective strategies for glaucoma that include recent advances in noninvasive diagnostics going beyond IOP maintenance for an enhanced global view. Such strategies now target RGC loss and optic nerve damage, opening a critical therapeutic window for preventative monitoring and treatment. PMID:26635467

  9. Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim.

    PubMed

    Qin, Rulan; Zhao, Ying; Zhao, Yudan; Zhou, Wanrong; Lv, Chongning; Lu, Jincai

    2016-12-01

    Three new phenolic compounds (1-3), along with five known compounds (4-8) were isolated from the rhizome of Cimicifuga dahurica (Turcz.) Maxim. Their structures were elucidated by spectroscopic methods including 1D-NMR, 2D-NMR and HR-MS techniques. DPPH method and protective effect on PC12 cells against H 2 O 2 -induced oxidative damage model were carried to evaluate the antioxidant capability of these compounds. Compound 5 showed significant antioxidant activity with IC 50 values 9.33μM in DPPH assay and compound 2 displayed marked neuro-protective effect with 87.65% cell viability at the concentration of 10μM. Additionally, the possible structure-activity relationships of these phenolic compounds were tentatively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat!

    PubMed

    Virmani, Ashraf; Pinto, Luigi; Binienda, Zbigniew; Ali, Syed

    2013-10-01

    Diet in human health is no longer simple nutrition, but in light of recent research, especially nutrigenomics, it is linked via evolution and genetics to cell health status capable of modulating apoptosis, detoxification, and appropriate gene response. Nutritional deficiency and disease especially lack of vitamins and minerals is well known, but more recently, epidemiological studies suggest a role of fruits and vegetables, as well as essential fatty acids and even red wine (French paradox), in protection against disease. In the early 1990s, various research groups started considering the use of antioxidants (e.g., melatonin, resveratrol, green tea, lipoic acid) and metabolic compounds (e.g., nicotinamide, acetyl-L-carnitine, creatine, coenzyme Q10) as possible candidates in neuroprotection. They were of course considered on par with snake oil salesman (women) at the time. The positive actions of nutritional supplements, minerals, and plant extracts in disease prevention are now mainstream and commercial health claims being made are subject to regulation in most countries. Apart from efficacy and finding, the right dosages, the safety, and especially the level of purification and lack of contamination are all issues that are important as their use becomes widespread. From the mechanistic point of view, most of the time these substances replenish the body's deficiency and restore normal function. However, they also exert actions that are not sensu stricto nutritive and could be considered pharmacological especially that, at times, higher intake than recommended (RDA) is needed to see these effects. Free radicals and neuroinflammation processes underlie many neurodegenerative conditions, even Parkinson's disease and Alzheimer's disease. Curcumin, carotenoids, acetyl-L-carnitine, coenzyme Q10, vitamin D, and polyphenols and other nutraceuticals have the potential to target multiple pathways in these conditions. In summary, augmenting neuroprotective pathways using

  11. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke.

    PubMed

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.

  12. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

    PubMed Central

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms. PMID:28217291

  13. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity.

    PubMed

    Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad

    2013-11-01

    In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p < 0.001). The extract also dose-dependently reduced intracellular ROS production (p < 0.001). Moreover, the extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.

  14. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  15. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro.

    PubMed

    Kaur, Jaspreet; Flores Gutiérrez, Javier; Nistri, Andrea

    2016-10-01

    Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Progesterone-induced Neuroprotection: Factors that may predict therapeutic efficacy

    PubMed Central

    Singh, Meharvan; Su, Chang

    2013-01-01

    Both progesterone and estradiol have well-described neuroprotective effects against numerous insults in a variety of cell culture models, animal models and in humans. However, the efficacy of these hormones may depend on a variety of factors, including the type of hormone used (ex. progesterone versus medroxyprogesterone acetate), the duration of the postmenopausal period prior to initiating the hormone intervention, and potentially, the age of the subject. The latter two factors relate to the proposed existence of a “window of therapeutic opportunity” for steroid hormones in the brain. While such a window of opportunity has been described for estrogen, there is a paucity of information to address whether such a window of opportunity exists for progesterone and its related progestins. Here, we review known cellular mechanisms likely to underlie the protective effects of progesterone and furthermore, describe key differences in the neurobiology of progesterone and the synthetic progestin, medroxyprogesterone acetate (MPA). Based on the latter, we offer a model that defines some of the key cellular and molecular players that predict the neuroprotective efficacy of progesterone. Accordingly, we suggest how changes in the expression or function of these cellular and molecular targets of progesterone with age or prolonged duration of hormone withdrawal (such as following surgical or natural menopause) may impact the efficacy of progesterone. PMID:23340161

  17. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    PubMed

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  18. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.

    PubMed

    Lopes, Fernanda Martins; Londero, Giovana Ferreira; de Medeiros, Liana Marengo; da Motta, Leonardo Lisbôa; Behr, Guilherme Antônio; de Oliveira, Valeska Aguiar; Ibrahim, Mohammad; Moreira, José Cláudio Fonseca; Porciúncula, Lisiane de Oliveira; da Rocha, João Batista Teixeira; Klamt, Fábio

    2012-08-01

    It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.

  19. Neuroprotective effect of sevoflurane in general anaesthesia.

    PubMed

    Ramos Ramos, Victoria; Mesa Suárez, Pablo; Santotoribio, José Diego; González García, María Ángela; Muñoz Hoyos, Antonio

    2017-02-23

    The aim of this study was to evaluate the brain damage caused by inhaled sevoflurane, by determining the concentration of serum S100B protein before and after the exposure to this drug as the only anaesthetic agent. Paediatric patients undergoing general anaesthesia for the conduct of a nuclear magnetic resonance were included in the study. A venous blood sample was taken from each patient before (basal sample) and after (post-exposure sample) administering the general anaesthesia. The concentration of serum S100B protein was determined in the basal (S100Bb) and post-exposure sample (S100Bp). A total of 72 patients were included in the study, with a mean patient age of 2 to 13 years (median=6), 28 males and 44 females. S100Bp values (median=66.5ng/L) were significantly lower (P=.0059) than those of S100Bb (median=84.0ng/L). The median of the difference between S100Bp and S100Bb was -11.0ng/L. Inhaled sevoflurane at low doses causes a decrease of serum S100B protein levels, hence, this drug could have a neuroprotective effect in the central nervous system. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  20. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.

    PubMed

    Nadal, Xavier; Del Río, Carmen; Casano, Salvatore; Palomares, Belén; Ferreiro-Vera, Carlos; Navarrete, Carmen; Sánchez-Carnerero, Carolina; Cantarero, Irene; Bellido, Maria Luz; Meyer, Stefan; Morello, Gaetano; Appendino, Giovanni; Muñoz, Eduardo

    2017-12-01

    Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ 9 -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ 9 -tetahydrocannabinol acid (Δ 9 -THCA) is largely unknown, despite its occurrence in different Cannabis preparations. Here we have assessed possible neuroprotective actions of Δ 9 -THCA through modulation of PPARγ pathways. The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ 9 -THCA on mitochondrial biogenesis and PPARγ coactivator 1-α expression was investigated in Neuro-2a (N2a) cells. The neuroprotective effect was analysed in STHdh Q111/Q111 cells expressing a mutated form of the huntingtin protein and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). The in vivo neuroprotective activity of Δ 9 -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NPA). Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ 9 -THCA increased mitochondrial mass in neuroblastoma N2a cells and prevented cytotoxicity induced by serum deprivation in STHdh Q111/Q111 cells and by mutHtt-q94 in N2a cells. Δ 9 -THCA, through a PPARγ-dependent pathway, was neuroprotective in mice treated with 3-NPA, improving motor deficits and preventing striatal degeneration. In addition, Δ 9 -THCA attenuated microgliosis, astrogliosis and up-regulation of proinflammatory markers induced by 3-NPA. Δ 9 -THCA shows potent neuroprotective activity, which is worth considering for the treatment of Huntington's disease and possibly other neurodegenerative and neuroinflammatory diseases. © 2017 The British Pharmacological Society.

  1. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  2. Potential drug-drug interactions between anti-cancer agents and community pharmacy dispensed drugs.

    PubMed

    Voll, Marsha L; Yap, Kim D; Terpstra, Wim E; Crul, Mirjam

    2010-10-01

    To identify the prevalence of potential drug-drug interactions between hospital pharmacy dispensed anti-cancer agents and community pharmacy dispensed drugs. A retrospective cohort study was conducted on the haematology/oncology department of the internal medicine ward in a large teaching hospital in Amsterdam, the Netherlands. Prescription data from the last 100 patients treated with anti-cancer agents were obtained from Paracelsus, the chemotherapy prescribing system in the hospital. The community pharmacy dispensed drugs of these patients were obtained by using OZIS, a system that allows regionally linked pharmacies to call up active medication on any patient. Both medication lists were manually screened for potential drug-drug interactions by using several information sources on interactions, e.g. Pubmed, the Flockhart P450 table, Micromedex and Dutch reference books. Prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. Ninety-one patients were included in the study. A total of 31 potential drug-drug interactions were found in 16 patients, of which 15 interactions were clinically relevant and would have required an intervention. Of these interactions 1 had a level of severity ≥ D, meaning the potential drug-drug interaction could lead to long lasting or permanent damage, or even death. The majority of the interactions requiring an intervention (67%) had a considerable level of evidence (≥ 2) and were based on well-documented case reports or controlled interaction studies. Most of the potential drug-drug interactions involved the antiretroviral drugs (40%), proton pump inhibitors (20%) and antibiotics (20%). The anti-cancer drug most involved in the drug-drug interactions is methotrexate (33%). This study reveals a high prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the

  3. Phenobarbital Augments Hypothermic Neuroprotection

    PubMed Central

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, p<0.05), and less ipsilateral cerebral hemisphere %Damage (mean±SD, 11±17 vs. 28±22, p<0.05). These results suggest that early post-hypoxia-ischemia administration of phenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  4. The development of bis(hydroxymethyl)pyrrole analogs as bifunctional DNA cross-linking agents and their chemotherapeutic potential.

    PubMed

    Su, Tsann-Long; Lee, Te-Chang; Kakadiya, Rajesh

    2013-11-01

    Bifunctional DNA cross-linking agents are widely used as chemotherapeutic agents in clinics. The advance in the development of these agents as potential antitumor agents has generated various types of bis(hydroxymethyl)pyrrole analogs. In order to develop highly effective anticancer agents, it is necessary to understand the chemophysical properties, structure-activity relationships, therapeutic potency, toxicity/safety, and pharmacokinetics of these DNA cross-linking agents. This review presents an overview of the recent advances in developing various types of bis(hydroxymethyl)pyrrole analogs with potential antitumor activity to provide more information for future drug design and strategies for combination chemotherapy. The rational drug design, chemical syntheses, antitumor activity, mechanism of action, and development of combined chemotherapy regimens, including a DNA repair inhibitor, are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Anti-diabetic potential of peptides: Future prospects as therapeutic agents.

    PubMed

    Marya; Khan, Haroon; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2018-01-15

    Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents. Copyright © 2017. Published by Elsevier Inc.

  6. New hydroxypyridinone iron-chelators as potential anti-neurodegenerative drugs.

    PubMed

    Arduino, Daniela; Silva, Daniel; Cardoso, Sandra M; Chaves, Silvia; Oliveira, Catarina R; Santos, M Amelia

    2008-05-01

    The neuroprotective action of a set of new hydroxypyridinone-based (3,4-HP) compounds (A, B and C), which are iron chelators extra-functionalized with a propargylamino group for potential MAO-B inhibition, was evaluated after cell treatment with MPP+ (an in vivo inducer of parkinsonism) and Abeta(1-40) and/or Abeta(1-42) peptides. Our results show that all these compounds improved cell viability in cells treated with MPP+ and Abeta(1-40) peptide or Abeta(1-42) peptide. In order to evaluate the cellular mechanisms underlying the activity of these compounds, we studied their protective role in caspase activation. All compounds tested were able to prevent MPP+ and Brefeldin A induced caspase-2 activation. They also showed quite effective in the inhibition of caspase-4 and caspase-3 activity, an effector caspase in the apoptotic process. Finally, detection of apoptotic-like cell death after cell exposure to MPP+ was also performed by TUNEL assay. Our results demonstrated that all tested compounds prevented DNA fragmentation by decreasing TUNEL positive cells. A, B and C were more effective than DFP (a 3,4-HP iron-chelating agent in clinical use) in MPP+ induced cell death. Therefore, these results evidenced a neuroprotective and antiapoptotic role for the compounds studied.

  7. Use of a wire extender during neuroprotected vertebral artery angioplasty and stenting.

    PubMed

    Lesley, Walter S; Kumar, Ravi; Rangaswamy, Rajesh

    2010-09-01

    The off-label use of an extender wire during vertebral artery stenting and angioplasty with or with neuroprotection has not been previously reported. Retrospective, single-patient, technical report. After monorail balloon angioplasty was performed on a proximal left vertebral artery stenosis, the 190 cm long Accunet neuroprotection filter device was not long enough for delivery of an over-the-wire stent. After mating a 145 cm long, 0.014 inch extension wire to the filter device, a balloon-mounted Liberté stent was implanted with good angiographic and clinical results. The off-label use of an extender wire permits successful over-the-wire stenting on a monorail neuroprotection device for vertebral artery endosurgery.

  8. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

    PubMed Central

    Costa, Lucio G.; Garrick, Jacqueline M.; Roquè, Pamela J.; Pellacani, Claudia

    2016-01-01

    Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection. PMID:26904161

  9. Artemisinin conferred ERK mediated neuroprotection to PC12 cells and cortical neurons exposed to sodium nitroprusside-induced oxidative insult.

    PubMed

    Zheng, Wenhua; Chong, Cheong-Meng; Wang, Haitao; Zhou, Xuanhe; Zhang, Lang; Wang, Rikang; Meng, Qian; Lazarovici, Philip; Fang, Jiankang

    2016-08-01

    The production of nitric oxide (NO) is one of the primary mediators of ischemic damage, glutamate neurotoxicity and neurodegeneration and therefore inhibition of NO-induced neurotoxicity may be considered a therapeutic target for reducing neuronal cell death (neuroprotection). In this study, artemisinin, a well-known anti-malaria drug was found to suppress sodium nitroprusside (SNP, a nitric oxide donor)-induced cell death in the PC12 cells and brain primary cortical neuronal cultures. Pretreatment of PC12 cells with artemisinin significantly suppressed SNP-induced cell death by decreasing the extent of oxidation, preventing the decline of mitochondrial membrane potential, restoring abnormal changes in nuclear morphology and reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities. Western blotting analysis revealed that artemisinin was able to activate extracellular regulated protein kinases (ERK) pathway. Furthermore, the ERK inhibitor PD98059 blocked the neuroprotective effect of artemisinin whereas the PI3K inhibitor LY294002 had no effect. Cumulatively these findings support the notion that artemisinin confers neuroprotection from SNP-induce neuronal cell death insult, a phenomenon coincidentally related to activation of ERK phosphorylation. This SNP-induced oxidative insult in PC12 cell culture model may be useful to investigate molecular mechanisms of NO-induced neurotoxicity and drug-induced neuroprotection, and to generate novel therapeutic concepts for ischemic disease treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury

    PubMed Central

    Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Purpose Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Methods Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. Results A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. Conclusions A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection. PMID:26167113

  11. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury.

    PubMed

    Russo, Rossella; Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection.

  12. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids.

    PubMed

    Martín-Montañez, E; Millon, C; Boraldi, F; Garcia-Guirado, F; Pedraza, C; Lara, E; Santin, L J; Pavia, J; Garcia-Fernandez, M

    2017-10-01

    Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc

  13. Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death.

    PubMed

    Sierra, Saleta; Ramos, Maria C; Molina, Pilar; Esteo, Cynthia; Vázquez, Jose Antonio; Burgos, Javier S

    2011-01-01

    There is growing evidence to support the hypothesis that statins may act as neuroprotectants in several neuropathological conditions, including Alzheimer's disease. The mechanisms for neuroprotection are only partially understood, however, and pleiotropic phenomena could be involved. We have made a comparative study of 9 statins (lovastatin, mevastatin, pravastatin, simvastatin, cerivastatin, atorvastatin, fluvastatin, pitavastatin, and rosuvastatin), analyzing several parameters that could be related to neuroprotection, such as chemical structure, lipophilicity, potential blood-brain-barrier penetration (BBB), 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibition, cholesterol modulation in neurons, glia, and human hepatocyte cell lines, and protection against neurodegeneration caused by tau hyperphosphorylation induced by okadaic acid. Our results indicate that monacolin J derivatives (natural and semi-synthetic statins) are the best candidates for the prevention of neurodegenerative conditions due to their higher potential BBB penetration capacity, cholesterol lowering effect on neurons with a satisfactory safety profile, and in vitro protection against cell death caused by okadaic acid in culture. Among the nine statins studied, simvastatin presented the best characteristics for preventing neurodegenerative conditions.

  14. Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia

    PubMed Central

    Lee, Jae-Chul; Park, Joon Ha; Park, Ok Kyu; Kim, In Hye; Yan, Bing Chun; Ahn, Ji Hyeon; Kwon, Seung-Hae; Choi, Jung Hoon

    2013-01-01

    Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications. PMID:24179693

  15. Effects of Fluoxetine on Hippocampal Neurogenesis and Neuroprotection in the Model of Global Cerebral Ischemia in Rats

    PubMed Central

    Kisel, Alena; Kudabaeva, Marina; Chernysheva, Galina; Smolyakova, Vera; Krutenkova, Elena; Wasserlauf, Irina; Plotnikov, Mark; Yarnykh, Vasily

    2018-01-01

    A selective serotonin reuptake inhibitor, fluoxetine, has recently attracted a significant interest as a neuroprotective therapeutic agent. There is substantial evidence of improved neurogenesis under fluoxetine treatment of brain ischemia in animal stroke models. We studied long-term effects of fluoxetine treatment on hippocampal neurogenesis, neuronal loss, inflammation, and functional recovery in a new model of global cerebral ischemia (GCI). Brain ischemia was induced in adult Wistar male rats by transient occlusion of three main vessels originating from the aortic arch and providing brain blood supply. Fluoxetine was injected intraperitoneally in a dose of 20 mg/kg for 10 days after surgery. To evaluate hippocampal neurogenesis at time points 10 and 30 days, 5-Bromo-2′-deoxyuridine was injected at days 8–10 after GCI. According to our results, 10-day fluoxetine injections decreased neuronal loss and inflammation, improved survival and functional recovery of animals, enhanced neurogenesis, and prevented an early pathological increase in neural stem cell recruitment in the subgranular zone (SGZ) of the hippocampus without reducing the number of mature neurons at day 30 after GCI. In summary, this study suggests that fluoxetine may provide a promising therapy in cerebral ischemia due to its neuroprotective, anti-inflammatory, and neurorestorative effect. PMID:29304004

  16. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    PubMed Central

    Matteucci, Andrea; Varano, Monica; Gaddini, Lucia; Mallozzi, Cinzia; Villa, Marika; Pricci, Flavia; Malchiodi-Albedi, Fiorella

    2014-01-01

    In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 μM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 μM. At the concentration of 100 μM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms. PMID:24736780

  17. Neuregulin-1 is Neuroprotective in a Rat Model of Organophosphate-Induced Delayed Neuronal Injury

    PubMed Central

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.

    2012-01-01

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. PMID:22583949

  18. Anticonvulsant and neuroprotective effects of oligosaccharides from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Tello, Isaac; Campos-Pena, Victoria; Montiel, Elizur; Rodriguez, Veronica; Aguirre-Moreno, Alma; Leon-Rivera, Ismael; Del Rio-Portilla, Federico; Herrera-Ruiz, Maribel; Villeda-Hernandez, Juana

    2013-01-01

    An oligosaccharide fraction isolated from the mycelium of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (GLOS) was separated by size-exclusion chromatography. The chemical structure of GLOS consists of a disaccharide repeating unit [-4-β-1-Galf(1-6)-O-(β-Glcp)-1-]n (n=3,4). In addition, this study was undertaken to determine the possible anticonvulsant and neuroprotective effects of GLOS (10-80 mg/kg) on kainic acid (KA)-induced seizures. The behavioral alterations and histopathology of hippocampal neurons were studied. Our results show that GLOS inhibited convulsions in rats from KA-induced seizures, reduced the degeneration pattern in the CA3 region of rats, decreased astrocytic reactivity, and reduced the expression of IL-1β and TNF-α induced by KA. These results indicate a potential anticonvulsant and neuroprotective effects of GLOS.

  19. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents

    PubMed Central

    Khoshnam, Seyed Esmaeil; Winlow, William; Farbood, Yaghoob; Moghaddam, Hadi Fathi; Farzaneh, Maryam

    2017-01-01

    Stroke is one of the leading causes of death and physical disability worldwide. The consequences of stroke injuries are profound and persistent, causing in considerable burden to both the individual patient and society. Current treatments for ischemic stroke injuries have proved inadequate, partly owing to an incomplete understanding of the cellular and molecular changes that occur following ischemic stroke. MicroRNAs (miRNA) are endogenously expressed RNA molecules that function to inhibit mRNA translation and have key roles in the pathophysiological processes contributing to ischemic stroke injuries. Potential therapeutic areas to compensate these pathogenic processes include promoting angiogenesis, neurogenesis and neuroprotection. Several miRNAs, and their target genes, are recognized to be involved in these recoveries and repair mechanisms. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique importance in ischemic stroke therapeutics. In this Review, we focus on the role of miRNAs as potential diagnostic and prognostic biomarkers, as well as promising therapeutic agents in cerebral ischemic stroke. PMID:28480877

  20. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  1. Imaging of hemorrhagic fever with renal syndrome: a potential bioterrorism agent of military significance.

    PubMed

    Bui-Mansfield, Liem T; Cressler, Dana K

    2011-11-01

    Hemorrhagic fever with renal syndrome (HFRS) is a potentially fatal infectious disease with worldwide distribution. Its etiologic agents are viruses of the genus Hantavirus of the virus family Bunyaviridae. Hypothetical ease of production and distribution of these agents, with their propensity to incapacitate victims and overwhelm health care resources, lend themselves as significant potential biological agents of terrorism. HFRS has protean clinical manifestations, which may mimic upper respiratory tract infection, nephrolithiasis, and Hantavirus pulmonary syndrome and may delay proper treatment. Sequelae of HFRS, such as hemorrhage, acute renal failure, retroperitoneal edema, pancreatitis, pulmonary edema, and neurologic symptoms, can be detected by different imaging modalities. Medical providers caring for HFRS patients must be aware of its radiologic features, which may help to confirm its clinical diagnosis. In this article, the authors review the epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and complications of HFRS.

  2. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury

    PubMed Central

    Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720

  3. Benzothiazole Aniline Tetra(ethylene glycol) and 3-Amino-1,2,4-triazole Inhibit Neuroprotection against Amyloid Peptides by Catalase Overexpression in Vitro

    PubMed Central

    2013-01-01

    Alzheimer’s disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45–50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects. PMID:23968537

  4. Neuroprotection against Surgically-Induced Brain Injury

    PubMed Central

    Jadhav, Vikram; Solaroglu, Ihsan; Obenaus, Andre; Zhang, John H.

    2007-01-01

    Background Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself due to the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. Methods/Results In the present review we will elaborate upon this surgically-induced brain injury and also present a novel animal model to study it. Additionally, we will summarize preliminary results obtained by pretreatment with PP1, a src tyrosine kinase inhibitor reported to have neuroprotective properties in in-vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on the patient recovery. Conclusion This brief review is intended to raise the question of ‘neuroprotection against surgically-induced brain injury’ in the neurosurgical scientific community and stimulate discussions. PMID:17210286

  5. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, LaTisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S.; Ready, Joseph M.; McKnight, Steven L.; Pieper, Andrew A.

    2012-01-01

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS. PMID:23027932

  6. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    PubMed

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ 1-42 mouse model of AD. Single intracerebroventricular injections of Aβ 1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ 1-42 injection significantly decreased the Aβ 1-42 -induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ 1-42 -induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ 1-42 -treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ 1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ 1-42 -treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ 1-42 -induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  7. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy

    PubMed Central

    Dixon, Brandon J.; Reis, Cesar; Ho, Wing Mann; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future. PMID:26389893

  8. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.

    PubMed

    Mykicki, Nadine; Herrmann, Alexander M; Schwab, Nicholas; Deenen, René; Sparwasser, Tim; Limmer, Andreas; Wachsmuth, Lydia; Klotz, Luisa; Köhrer, Karl; Faber, Cornelius; Wiendl, Heinz; Luger, Thomas A; Meuth, Sven G; Loser, Karin

    2016-10-26

    In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (T H 1) and T H 17 cells cause demyelination and neuronal degeneration. Regulatory T cells (T reg ) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, T reg function is impaired. We show that a recently approved drug, Nle 4 -d-Phe 7 -α-melanocyte-stimulating hormone (NDP-MSH), induced functional T reg , resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders. Copyright © 2016, American Association for the Advancement of Science.

  9. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems

    PubMed Central

    Herrando-Grabulosa, Mireia; Mulet, Roger; Pujol, Albert; Mas, José Manuel; Navarro, Xavier; Aloy, Patrick; Coma, Mireia; Casas, Caty

    2016-01-01

    Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis. PMID:26807587

  10. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease

    PubMed Central

    Hou, Lijuan; Chen, Wei; Liu, Xiaoli; Qiao, Decai; Zhou, Fu-Ming

    2017-01-01

    Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients. PMID:29163139

  11. Impact of glatiramer acetate on paraclinical markers of neuroprotection in multiple sclerosis: A prospective observational clinical trial.

    PubMed

    Ehling, Rainer; Di Pauli, Franziska; Lackner, Peter; Rainer, Carolyn; Kraus, Viktoria; Hegen, Harald; Lutterotti, Andreas; Kuenz, Bettina; De Zordo, Tobias; Schocke, Michael; Glatzl, Susanne; Löscher, Wolfgang N; Deisenhammer, Florian; Reindl, Markus; Berger, Thomas

    2015-10-15

    Data from in vitro and animal studies support a neuroprotective role of glatiramer acetate (GA) in multiple sclerosis (MS). We investigated prospectively whether treatment with GA leads to clinical and paraclinical changes associated with neuroprotection in patients with relapsing-remitting (RR) MS. Primary aim of this clinical study was to determine serum BDNF levels in RR-MS patients who were started on GA as compared to patients who remained therapy-naive throughout 24 months. Secondary outcomes included relapses and EDSS, cognition, quality of life, fatigue and depression, BDNF expression levels on peripheral immune cells (FACS, RT-PCR), serum anti-myelin basic peptide (MBP) antibody status, evoked potential and cerebral MRI studies. While GA treatment did not alter serum levels or expression levels on peripheral immune cells of BDNF over time it resulted in a transient increase of serum IgG antibody response to MBP, mainly due to subtype IgG1 (p<0.05), after 3 months. However, no significant differences were found between GA treated and therapy-naive patients with regard to serum BDNF and intracellular BDNF expression levels, nerve conduction (including median and tibial nerve somatosensory, pattern-shift visual and upper and lower limb motor evoked potentials) or MRI (including volume of hyperintense lesions, volume of hypointense lesions after CE, mean diffusivity and fractional anisotropy) outcome parameters. In conclusion, our findings do not support a major impact of GA treatment on paraclinical markers of neuroprotection in human RR-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. GPR30 Activation Contributes to the Puerarin-Mediated Neuroprotection in MPP+-Induced SH-SY5Y Cell Death.

    PubMed

    Cheng, Yue-Fa; Zhu, Guoqi; Wu, Qing-Wen; Xie, Yue-Sheng; Jiang, Yan; Guo, Lan; Guan, Ya-Li; Liu, Ying-Shuo; Zhang, Jun

    2017-02-01

    The neuroprotective action of puerarin in Parkinson's disease (PD) models has been well investigated. However, the mechanisms involved in protection have not been completely understood. G protein-coupled receptor 30 (GPR30) is a G protein-coupled estrogen receptor and considered a potential target in the neuroprotection against PD. In this study, we investigated whether puerarin prevented against 1-methyl-4-phenylpyridinium (MPP + )-induced cell death via GPR30. Our results showed that the GPR30 agonist, G1, exhibited puerarin-mediated neuroprotection against MPP + -induced cell death of SH-SY5Y cells. This protective action was reversed by the GPR30 antagonist. Moreover, a time- and concentration-dependent effect of puerarin on GPR30 expression was verified at the protein level but not at the mRNA level. Further, we showed that an mTor-dependent new GPR30 synthesis contributed to the protection conferred by puerarin. Finally, glial cell line-derived neurotrophic factor (GDNF) levels were enhanced by puerarin and G1 in both control and MPP + -lesioned cells via GPR30. Taken together, our data strongly suggest that puerarin prevents MPP + -induced cell death via facilitating GPR30 expression and GDNF release.

  13. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke.

    PubMed

    Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa; Obenaus, Andre; Bazan, Nicolas G

    2014-03-15

    Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo. Animals received neurobehavioral examination (composite neuroscore, rota-rod, beam walking and Y maze tests) followed by ex vivo magnetic resonance imaging and histopathology at 3 weeks. DHA improved composite neurologic score beginning on day 1 by 20%, which persisted throughout weeks 1-3 by 24-41% compared to the saline-treated group. DHA prolonged the latency in rota-rod on weeks 2-3 by 162-178%, enhanced balance performance in the beam walking test on weeks 1 and 2 by 42-51%, and decreased the number of entries in the Y maze test by 51% and spontaneous alteration by 53% on week 2 compared to the saline-treated group. DHA treatment reduced tissue loss (computed from T2-weighted images) by 24% and total and cortical infarct volumes by 46% and 54% compared to the saline-treated group. These results show that DHA confers enduring ischemic neuroprotection. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Potential of Three Ethnomedicinal Plants as Antisickling Agents.

    PubMed

    Nurain, Ismaila O; Bewaji, Clement O; Johnson, Jarrett S; Davenport, Robertson D; Zhang, Yang

    2017-01-03

    Sickle cell disease (SCD) is a genetic blood disorder that affects the shape and transportation of red blood cells (RBCs) in blood vessels, leading to various clinical complications. Many drugs that are available for treating the disease are insufficiently effective, toxic, or too expensive. Therefore, there is a pressing need for safe, effective, and inexpensive therapeutic agents from indigenous plants used in ethnomedicines. The potential of aqueous extracts of Cajanus cajan leaf and seed, Zanthoxylum zanthoxyloides leaf, and Carica papaya leaf in sickle cell disease management was investigated in vitro using freshly prepared 2% sodium metabisulfite for sickling induction. The results indicated that the percentage of sickled cells, which was initially 91.6% in the control, was reduced to 29.3%, 41.7%, 32.8%, 38.2%, 47.6%, in the presence of hydroxyurea, C. cajan seed, C. cajan leaf, Z. zanthoxyloides leaf, and C. papaya leaf extracts, respectively, where the rate of polymerization inhibition was 6.5, 5.9, 8.0, 6.6, and 6.0 (×10 -2 ) accordingly. It was also found that the RBC resistance to hemolysis was increased in the presence of the tested agents as indicated by the reduction of the percentage of hemolyzed cells from 100% to 0%. The phytochemical screening results indicated the presence of important phytochemicals including tannins, saponins, alkaloids, flavonoids, and glycosides in all the plant extracts. Finally, gas chromatography-mass spectrometry analysis showed the presence of important secondary metabolites in the plants. These results suggest that the plant extracts have some potential to be used as alternative antisickling therapy to hydroxyurea in SCD management.

  15. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer's disease treatment.

    PubMed

    Weinreb, Orly; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H

    2012-04-01

    Ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] is a dual acetylcholine-butyrylcholineesterase and brain selective monoamine oxidase (MAO)-A and -B inhibitor in vivo (with little or no MAO inhibitory effect in the liver and small intestine), intended for the treatment of dementia co-morbid with extrapyramidal disorders and depression (presently in a Phase IIb clinical study). This suggests that the drug should not cause a significant potentiation of the cardiovascular response to tyramine, thereby making it a potentially safer antidepressant than other irreversible MAO-A inhibitors. Ladostigil was shown to antagonize scopolamine-induced impairment in spatial memory, indicating that it can cause significant increases in rat brain cholinergic activity. Furthermore, ladostigil prevented gliosis and oxidative-nitrative stress and reduced the deficits in episodic and spatial memory induced by intracerebroventricular injection of streptozotocin in rats. Ladostigil was demonstrated to possess potent anti-apoptotic and neuroprotective activities in vitro and in various neurodegenerative rat models, (e.g. hippocampal damage induced by global ischemia in gerbils and cerebral oedema induced in mice by closed head injury). These neuroprotective activities involve regulation of amyloid precursor protein processing; activation of protein kinase C and mitogen-activated protein kinase signaling pathways; inhibition of neuronal death markers; prevention of the fall in mitochondrial membrane potential and upregulation of neurotrophic factors and antioxidative activity. Recent findings demonstrated that the major metabolite of ladostigil, hydroxy-1-(R)-aminoindan has also a neuroprotective activity and thus, may contribute to the overt activity of its parent compound. This review will discuss the scientific evidence for the therapeutic potential use of ladostigil in Alzheimer's and Lewy Body diseases and the molecular signaling pathways that are considered to be

  16. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  17. Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease.

    PubMed Central

    2012-01-01

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC50 = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood–brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development. PMID:23421686

  18. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection.

    PubMed

    Lin, Hung Wen; Thompson, John W; Morris, Kahlilia C; Perez-Pinzon, Miguel A

    2011-05-15

    Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.

  19. Neuroprotective and cognitive enhancing activity of the fermented Bozhougyiqi-Tang

    PubMed Central

    Weon, Jin Bae; Lee, Bohyoung; Yun, Bo-Ra; Lee, Jiwoo; Ma, Jin Y; Ma, Choong Je

    2014-01-01

    Background: Alzheimer's disease is a neurodegenerative disease related to memory impairments and neuronal cell death. Bozhougyiqi-Tang (BZYQT), a traditional herbal medicine, has been therapeutically used for the treatment of pulmonary tuberculosis. Objective: The aim of this study is to evaluated the neuroprotective effect of the fermented BZYQT and compared with unfermented BZYQT in HT22 cells by MTT assay and tested the beneficial effect on memory impairments induced by scopolamine (1 mg/kg, i.p.) using the passive avoidance and Morris water maze tests. Results: Compared with unfermented BZYQT, the neuroprotective effect of fermented BZYQT on glutamate induced neurotoxicity in HT22 cells increased at a concentration of 100 μg/mL. Fermented BZYQT increased the step-through latency of the passive avoidance response. Furthermore, in Morris water maze test for evaluation of spatial learning and memory, escape latency time was significantly reduced by fermented BZYQT. Conclusion: These results suggest that the fermentation process of BZYQT led to improve neuroprotective and cognitive enhancing effect. PMID:24991099

  20. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  1. Neuroprotective Dose Response in RCS Rats Implanted with Microphotodiode Arrays

    PubMed Central

    Pardue, Machelle T.; Kim, Moon K.; Walker, Tiffany A.; Faulkner, Amanda E.; Chow, Alan Y.; Ciavatta, Vincent T.

    2012-01-01

    Purpose Neuropreservation of retinal function and structure in RCS rats following implantation of a microphotodiode array (MPA) has been shown in previous studies(Pardue et al. 2005a; Pardue et al. 2005b). Since microphotodiodes produce electrical currents in proportion to the intensity of incident light, increased light exposure may result in greater neuroprotective effects. Our previous studies suggested that the frequency of light exposure to electroretinogram (ERG) flash stimuli might provide increased neuroprotection. Thus, in this study, we examined the dose response of subretinal electrical stimulation by exposing RCS rats implanted with MPAs to variable durations and combinations of two different lighting regimens: pulsing incandescent bulbs and xenon stimuli from an ERG Ganzfeld. While incandescent light regimens did not produce any significant differences in ERG function, we found significantly greater dark-adapted ERG b-wave amplitudes in RCS rats that received weekly versus biweekly ERGs over the course of 8 weeks of follow-up. These results suggest that subretinal electrical stimulation may be optimized to produce greater neuroprotective effects by dosing with periodic higher current. PMID:22183323

  2. Neonatal Neuroprotection: Bringing Best Practice to the Bedside in the NICU.

    PubMed

    Lockridge, Terrie

    Preterm birth interrupts the precise process of fetal maturation, forcing critical neurologic growth to continue within the Neonatal Intensive Care Unit (NICU). Concern for the impact of the NICU experience on the developing brain led to a unit-based Quality Improvement (QI) project to promote best outcomes for our graduates. The objective was to implement a standard of care for neonatal neuroprotection in a large urban tertiary center. A multidisciplinary committee researched and developed the Neonatal Neuroprotective Best Practice Guidelines to identify optimal interventions, as well as provide physiologic rationales to reinforce importance of these practices. An educational initiative accompanied release of this document to support consistency in clinical practice and to stress the critical role that every caregiver played in a child's outcome. As the Best Practice Guidelines encompassed virtually all aspects of caregiving in the NICU, it was impractical to measure the impact of such a broad range of interventions in a methodical manner. The full effect of these interventions will not likely be evident until NICU graduates have grown into childhood and adolescence. These constraints limited the scope of this QI project to the practicalities of identifying neuroprotective best practice and bringing it to the bedside. When combined with evidence-based medical and nursing care, neuroprotective care represents the best means of facilitating normal development and minimizing disability for our NICU graduates.

  3. Neuroprotective effects of a new skin care formulation following ultraviolet exposure.

    PubMed

    Fonseca, B L; dos Santos, B C; Martins, P; Bonorino, C; Corte, T W F; da Silva, V D; Bauer, M E

    2012-02-01

    Chronic ultraviolet (UV) exposure is a major environmental factor involved in extrinsic skin ageing (photo-ageing). Skin nerve fibres are significantly reduced in number following UV irradiation and new skincare compounds with neuroprotective effects are thus highly warranted. We developed a new skincare formulation from a plant extract and evaluated its neuroprotective effects of ex vivo UV irradiation. The new skincare emulsion was formulated from Echinacea purpurea extract and was enriched with antioxidants (patent no. PROV020110087075). Skin samples were obtained from 20 healthy patients enrolled for plastic surgery and were immediately treated with placebo (SPF 15) or test emulsions. Skin samples were exposed to UVA and UVB for 60 min. Nerve fibres were identified by immunofluorescence using a monoclonal antibody, anti-human CD56. Cell damage was quantified by image analysis. UVA and UVB significantly reduced (40-60%) densities of nerve endings in control samples treated with placebo (P < 0.001). Samples treated with test emulsion completely blocked UV-related effects on skin nerve endings. These neuroprotective effects were similarly observed regardless of age or tissue analysed (breast versus abdomen). Our new skincare formulation obtained from E. purpurea provides important neuroprotective effects of UV irradiation and could be used together with SPFs to prevent chronic deleterious effects of solar exposure. © 2011 Blackwell Publishing Ltd.

  4. Evaluation of FloSeal as a Potential Intracavitary Hemostatic Agent

    DTIC Science & Technology

    2006-02-01

    Laws ER Jr. Use of FloSeal hemostatic sealant in transsphenoidal pituitary surgery : technical note. Neurosurgery. 2002;51:513–516. 14. Kheirabadi BS...of death in com- bat and civilian trauma. When surgery is unavailable, one potential solution to such hemorrhage might be the introduction of an agent...situations, including venous and arterial vascular surgery ,7,9 cardiac valve replacement or cardiopulmonary bypass grafting,6 partial nephrectomies,10

  5. The neuroprotective effects of α-iso-cubebene on dopaminergic cell death: involvement of CREB/Nrf2 signaling.

    PubMed

    Park, Sun Young; Son, Beung Gu; Park, Young Hoon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.

  6. The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway

    PubMed Central

    Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V.; Cao, Chuanhai

    2014-01-01

    Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway. PMID:24566146

  7. Hypertension and vascular dementia in the elderly: the potential role of anti-hypertensive agents.

    PubMed

    Coca, Antonio

    2013-09-01

    Vascular dementia (VaD) - a severe form of vascular cognitive impairment - and cognitive decline are associated with hypertension and therefore it seems logical to consider that reducing BP with anti-hypertensive therapy may protect against the development/onset of cognitive function impairment or dementia. This narrative, non-systematic review discusses the available evidence on the potential correlation between the use of anti-hypertensive agents and the risk of VaD and cognitive decline. MEDLINE was searched for inclusion of relevant studies. No limitations in time were considered. A consensus on the potential effects of anti-hypertensive treatment in the reduction of VaD and associated cognitive decline has not been reached. A protective effect of anti-hypertensive agents has been observed in a number of studies although it is still unclear whether different classes of anti-hypertensive agents have a different effect on the development of VaD. The protective effect of anti-hypertensive agents appears to depend on the specific drug used - positive effects have been observed with calcium channel blockers (CCBs), such as lercanidipine and nitrendipine, the combination perindopril-indapamide and telmisartan.

  8. Silymarin versus Silibinin: Differential Antioxidant and Neuroprotective Effects against H2O2-induced Oxidative Stress in PC12 Cells.

    PubMed

    Jiang, Hui-Hui; Yan, Fa-Shun; Shen, Liang; Ji, Hong-Fang

    2016-05-01

    The present study assessed comparatively the antioxidant activities of silymarin and its major active component silibinin and their neuroprotective effects against hydrogen peroxide (H2O2)-induced oxidative stress in rat pheochromocytoma PC12 cells. It was found that despite newly prepared silymarin and silibinin solution possessing comparable superoxide anion (O2*-)-scavenging activities, with time the activity of silymarin lowered slightly, but that of silibinin decreased dramatically. Both silymarin and silibinin suppressed H2O2-induced oxidative stress and apoptosis, and the neuroprotective effect of silymarin was overall relatively stronger than that of silibinin. The findings provided clues for future studies on therapeutic potentials of the whole silymarin or purified silibinin for neurodegenerative diseases.

  9. Preconditioning in neuroprotection: From hypoxia to ischemia

    PubMed Central

    Li, Sijie; Hafeez, Adam; Noorulla, Fatima; Geng, Xiaokun; Shao, Guo; Ren, Changhong; Lu, Guowei; Zhao, Heng; Ding, Yuchuan; Ji, Xunming

    2017-01-01

    Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting. PMID:28110083

  10. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    PubMed

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  11. Potential Bio-Control Agent from Rhodomyrtus tomentosa against Listeria monocytogenes

    PubMed Central

    Odedina, Grace Fiyinfoluwa; Vongkamjan, Kitiya; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Listeria monocytogenes is an important foodborne pathogen implicated in many outbreaks of listeriosis. This study aimed at screening for the potential use of Rhodomyrtus tomentosa ethanolic leaf extract as a bio-control agent against L. monocytogenes. Twenty-two L. monocytogenes isolates were checked with 16 commercial antibiotics and isolates displayed resistance to 10 antibiotics. All the tested isolates were sensitive to the extract with inhibition zones ranging from 14 to 16 mm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranged from 16 to 32 µg/mL and 128 to 512 µg/mL, respectively. Time-kill assay showed that the extract had remarkable bactericidal effects on L. monocytogenes. The extract at a concentration of 16 µg/mL reduced tolerance to 10% NaCl in L. monocytogenes in 4 h. Stationary phase L. monocytogenes cells were rapidly inactivated by greater than 3-log units within 30 min of contact time with R. tomentosa extract at 128 µg/mL. Electron microscopy revealed fragmentary bacteria with changes in the physical and morphological properties. Our study demonstrates the potential of the extract for further development into a bio-control agent in food to prevent the incidence of L. monocytogenes contamination. PMID:26371033

  12. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia.

    PubMed

    Alonso-Alconada, Daniel; Alvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-04-29

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.

  13. Neuroprotective Effect of Melatonin: A Novel Therapy against Perinatal Hypoxia-Ischemia

    PubMed Central

    Alonso-Alconada, Daniel; Álvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-01-01

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events. PMID:23629670

  14. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2000-10-01

    to evaluate the neuroprotective effect of memantine in our rat model of laser-induced retinal-lesions. Methods: Argon laser retinal lesions were...inflicted in the eyes of 36 pigmented rats. The treated group received memantine 10 mg/kg dissolved in saline, immediately after exposure to laser and then

  15. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants.

    PubMed

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg(2+)-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  16. Neuroprotective strategies against calpain-mediated neurodegeneration

    PubMed Central

    Yildiz-Unal, Aysegul; Korulu, Sirin; Karabay, Arzu

    2015-01-01

    Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases. PMID:25709452

  17. Flaxseed oil as a neuroprotective agent on lead acetate-induced monoamineric alterations and neurotoxicity in rats.

    PubMed

    Abdel Moneim, Ahmed E

    2012-09-01

    Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.

  18. Nanoparticles as potential new generation broad spectrum antimicrobial agents.

    PubMed

    Yah, Clarence S; Simate, Geoffrey S

    2015-09-02

    The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens. Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP) technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will revolutionize clinical medicine and play a significant role in alleviating disease burden.

  19. Not so secret agents: Event-related potentials to semantic roles in visual event comprehension.

    PubMed

    Cohn, Neil; Paczynski, Martin; Kutas, Marta

    2017-12-01

    Research across domains has suggested that agents, the doers of actions, have a processing advantage over patients, the receivers of actions. We hypothesized that agents as "event builders" for discrete actions (e.g., throwing a ball, punching) build on cues embedded in their preparatory postures (e.g., reaching back an arm to throw or punch) that lead to (predictable) culminating actions, and that these cues afford frontloading of event structure processing. To test this hypothesis, we compared event-related brain potentials (ERPs) to averbal comic panels depicting preparatory agents (ex. reaching back an arm to punch) that cued specific actions with those to non-preparatory agents (ex. arm to the side) and patients that did not cue any specific actions. We also compared subsequent completed action panels (ex. agent punching patient) across conditions, where we expected an inverse pattern of ERPs indexing the differential costs of processing completed actions asa function of preparatory cues. Preparatory agents evoked a greater frontal positivity (600-900ms) relative to non-preparatory agents and patients, while subsequent completed actions panels following non-preparatory agents elicited a smaller frontal positivity (600-900ms). These results suggest that preparatory (vs. non-) postures may differentially impact the processing of agents and subsequent actions in real time. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neuroprotective Effects of a Novel Single Compound 1-Methoxyoctadecan-1-ol Isolated from Uncaria sinensis in Primary Cortical Neurons and a Photothrombotic Ischemia Model

    PubMed Central

    Kim, Ha Neui; Kim, Yu Ri; Hong, Jin Woo; Bae, Dong Won; Park, Se Jin; Shin, Hwa Kyoung; Choi, Byung Tae

    2014-01-01

    We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv.) Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP) and subsequent activation of p38 mitogen activated protein kinase (MAPK). However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for brain disorder

  1. Mitochondrial uncoupling agents antagonize rotenone actions in rat substantia nigra dopamine neurons.

    PubMed

    Wu, Yan-Na; Munhall, Adam C; Johnson, Steven W

    2011-06-13

    Mild uncoupling of oxidative phosphorylation has been reported to reduce generation of reactive oxygen species (ROS) and therefore may be neuroprotective. We reported previously that the mitochondrial poison rotenone enhanced currents evoked by N-methyl-D-aspartate (NMDA) by a ROS-dependent mechanism in rat midbrain dopamine neurons. Thus, rotenone, which produces a model of Parkinson's disease in rodents, may increase the risk of dopamine neuron excitotoxicity. The purpose of this study was to test the hypothesis that oxidative phosphorylation uncoupling agents would antagonize the effect of rotenone on NMDA current. We used patch pipettes to record whole-cell currents under voltage-clamp (-60 mV) in substantia nigra dopamine neurons in slices of rat brain. Rotenone, NMDA and uncoupling agents were added to the brain slice superfusate. Inward currents evoked by NMDA (30 μM) more than doubled in amplitude after slices were superfused for 30 min with 100 nM rotenone. Continuous superfusion with the uncoupling agent carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone (1-3 nM) or 2,4-dinitrophenol (100 nM) significantly antagonized and delayed the ability of rotenone to potentiate NMDA currents. Coenzyme Q₁₀ (1-10 nM), which has been reported to facilitate uncoupling protein activity, also antagonized this action of rotenone. These results suggest that mild uncoupling of oxidative phosphorylation may protect dopamine neurons against injury from mitochondrial poisons such as rotenone. Published by Elsevier B.V.

  2. The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents.

    PubMed

    Valiente Moro, Claire; De Luna, Carlos J; Tod, Alexander; Guy, Jonathan H; Sparagano, Olivier A E; Zenner, Lionel

    2009-06-01

    The poultry red mite, D. gallinae has been involved in the transmission of many pathogenic agents, responsible for serious diseases both in animals and humans. Nowadays, few effective methods are available to control the ectoparasite in poultry farms. Consequently, this is an emerging problem which must be taken into account to maintain good health in commercial egg production. This paper addresses the vector capacity of the ectoparasite with special emphasis on salmonellae, pathogenic agents responsible for many of the most important outbreaks of food-borne diseases worlwide. It has been experimentally shown that D. gallinae could act as a biological vector of S. enteritidis and natural carriage of these bacteria by the mite on poultry premises has also been reported. It was also found that D. gallinae carried other pathogens such as E. coli, Shigella sp., and Staphylococcus, thus increasing the list of pathogenic agents potentially transmitted by the mite.

  3. Neuroprotection and antioxidants

    PubMed Central

    Lalkovičová, Maria; Danielisová, Viera

    2016-01-01

    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality. PMID:27482198

  4. Neuroprotective Role of a Brain-Enriched Tyrosine Phosphatase, STEP, in Focal Cerebral Ischemia

    PubMed Central

    Deb, Ishani; Manhas, Namratta; Poddar, Ranjana; Rajagopal, Sathyanarayanan; Allan, Andrea M.; Lombroso, Paul J.; Rosenberg, Gary A.; Candelario-Jalil, Eduardo

    2013-01-01

    The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy. PMID:24198371

  5. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells.

    PubMed

    Barreca, Davide; Currò, Monica; Bellocco, Ersilia; Ficarra, Silvana; Laganà, Giuseppina; Tellone, Ester; Laura Giunta, Maria; Visalli, Giuseppa; Caccamo, Daniela; Galtieri, Antonio; Ientile, Riccardo

    2017-07-08

    Phloretin and phlorizin are the two strong natural antioxidants whose biological and pharmacological applications are rapidly growing in different human pathological conditions. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells. The neuroprotective activity of the two flavonoids has been analyzed on cell culture of neuroblastoma cells and evaluated by testing cell vitality, mitochondrial transmembrane potential and ROS production, antioxidant enzymes detection, activation of caspase 3, DNA damage, protein carbonylation, lipid peroxidation, and superoxide anion scavenging activity. Incubation of cells with rotenone caused cell death and significant increase in intracellular reactive oxygen species, activation of caspase 3, and variation in mitochondrial transmembrane potential. Although, rotenone exposure caused a significant increase of antioxidant enzymes, high levels of lipid peroxidation were also observed. Phloretin or phlorizin, at micromolar concentration, reduced rotenone-induced cell death by scavenging ability against superoxide anion radical, one of the main effectors of rotenone toxicity at level of mitochondrial respiratory chain complex I. Under our experimental conditions, a reduction of the intracellular ROS levels with consequent normalization of the aforementioned antioxidant enzymes occurred. Concomitantly, we observed the inhibition of caspase 3 activity and DNA damage. This study shows the promising neuroprotective ability of the two dihydrochalcones able to protect human differentiated neuroblastoma cells (commonly used as model of Parkinson's disease) from injury induced by rotenone, actively scavenging ROS, normalizing mitochondrial transmembrane potential and consequently avoiding energy depletion. © 2017 BioFactors, 43(4):549-557, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Cardiorespiratory Fitness and Cognitive Function in Midlife: Neuroprotection or Neuroselection?

    PubMed Central

    Belsky, Daniel W.; Caspi, Avshalom; Israel, Salomon; Blumenthal, James A.; Poulton, Richie; Moffitt, Terrie E.

    2015-01-01

    Objective To determine if better cognitive functioning at midlife among more physically fit individuals reflects “neuroprotection,” in which fitness protects against age-related cognitive decline, or “neuroselection,” in which children with higher cognitive functioning select into more active lifestyles. Methods Children in the Dunedin Longitudinal Study (N=1,037) completed the Wechsler Intelligence Scales and the Trail-Making, Rey-Delayed-Recall, and Grooved-Pegboard tasks as children and again at midlife (age-38). Adult cardiorespiratory fitness was assessed using a submaximal exercise test to estimate maximum-oxygen-consumption-adjusted-for-body-weight in milliliters/minute/kilogram (VO2max). We tested if more-fit individuals had better cognitive functioning than their less-fit counterparts (which could be consistent with neuroprotection), and if better childhood cognitive functioning predisposed to better adult cardiorespiratory fitness (neuroselection). Finally, we examined possible mechanisms of neuroselection. Results Participants with better cardiorespiratory fitness had higher cognitive test scores at midlife. However, fitness-associated advantages in cognitive functioning were present already in childhood. After accounting for childhood-baseline performance on the same cognitive tests, there was no association between cardiorespiratory fitness and midlife cognitive functioning. Socioeconomic and health advantages in childhood, and healthier lifestyles during young adulthood explained most of the association between childhood cognitive functioning and adult cardiorespiratory fitness. Interpretation We found no evidence for a neuroprotective effect of cardiorespiratory fitness as of midlife. Instead, children with better cognitive functioning are selecting into healthier lives. Fitness interventions may enhance cognitive functioning. But, observational and experimental studies testing neuroprotective effects of physical fitness should consider

  7. Potential production of palm oil-based foaming agent as fire extinguisher of peatlands in Indonesia: Literature review

    NASA Astrophysics Data System (ADS)

    Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.

    2017-05-01

    This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.

  8. Signal Transducers and Activators of Transcription: STATs-Mediated Mitochondrial Neuroprotection

    PubMed Central

    Lin, Hung Wen; Thompson, John W.; Morris, Kahlilia C.

    2011-01-01

    Abstract Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia. Antioxid. Redox Signal. 14, 1853–1861. PMID:20712401

  9. Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer's Disease

    PubMed Central

    Li, Nan; Wang, Jianping; Ma, Jun; Gu, Zhiqiang; Jiang, Chao; Yu, Lie

    2015-01-01

    Cistanches Herba (CH) is thought to be a “Yang-invigorating” material in traditional Chinese medicine. We evaluated neuroprotective effects of Cistanches Herba on Alzheimer's disease (AD) patients. Moderate AD participants were divided into 3 groups: Cistanches Herba capsule (CH, n = 10), Donepezil tablet (DON, n = 8), and control group without treatment (n = 6). We assessed efficacy by MMSE and ADAS-cog, and investigated the volume changes of hippocampus by 1.5 T MRI scans. Protein, mRNA levels, and secretions of total-tau (T-tau), tumor necrosis factor-α (TNF-α), and interleukin- (IL) 1β (IL-1β) in cerebrospinal fluid (CSF) were detected by Western blot, RT-PCR, and ELISA. The scores showed statistical difference after 48 weeks of treatment compared to control group. Meanwhile, volume changes of hippocampus were slight in drug treatment groups but distinct in control group; the levels of T-tau, TNF-α, and IL-1β were decreased compared to those in control group. Cistanches Herba could improve cognitive and independent living ability of moderate AD patients, slow down volume changes of hippocampus, and reduce the levels of T-tau, TNF-α, and IL-1β. It suggested that Cistanches Herba had potential neuroprotective effects for moderate AD. PMID:26435722

  10. The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage

    PubMed Central

    Yoo, Seung-Jun; Cho, Bongki; Lee, Deokho; Son, Gowoon; Lee, Yeong-Bae; Soo Han, Hyung; Kim, Eunjoo; Moon, Chanil; Moon, Cheil

    2017-01-01

    Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected side effects, including undesirable proliferative effects such as erythropoiesis and tumor growth. Therefore, the development of EPO analogs that would confer neuroprotection without adverse effects has been attempted. In this study, we examined the potential of a novel EPO-based short peptide, MK-X, as a novel drug for stroke treatment in comparison with EPO. We found that MK-X administration with reperfusion dramatically reduced brain injury in an in vivo mouse model of ischemic stroke induced by middle cerebral artery occlusion, whereas EPO had little effect. Similar to EPO, MK-X efficiently ameliorated mitochondrial dysfunction followed by neuronal death caused by glutamate-induced oxidative stress in cultured neurons. Consistent with this effect, MK-X significantly decreased caspase-3 cleavage and nuclear translocation of apoptosis-inducing factor induced by glutamate. MK-X completely mimicked the effect of EPO on multiple activation of JAK2 and its downstream PI3K/AKT and ERK1/2 signaling pathways, and this signaling process was involved in the neuroprotective effect of MK-X. Furthermore, MK-X and EPO induced similar changes in the gene expression patterns under glutamate-induced excitotoxicity. Interestingly, the most significant difference between MK-X and EPO was that MK-X better penetrated into the brain across the brain–blood barrier than did EPO. In conclusion, we suggest that MK-X might be used as a novel drug for protection from brain injury caused by ischemic stroke, which penetrates into the brain faster in comparison with EPO, even though MK-X and EPO have

  11. Endocannabinoid signaling in neurotoxicity and neuroprotection.

    PubMed

    Pope, C; Mechoulam, R; Parsons, L

    2010-09-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. Copyright © 2009 Elsevier Inc. All rights reserved.

  12. ENDOCANNABINOID SIGNALING IN NEUROTOXICITY AND NEUROPROTECTION

    PubMed Central

    Pope, C.; Mechoulam, R.; Parsons, L.

    2010-01-01

    The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Δ9 -tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. PMID:19969019

  13. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    PubMed

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  15. [Study of acetylsalicylic acid role in the potentiation of antiamnesic and neuroprotective properties of piracetam in rats with alloxan diabetes].

    PubMed

    Zhiliuk, V I; Levykh, A E; Mamchur, V I

    2013-01-01

    It has been established that prolonged alloxan-induced hyperglycemia in rats potentiates amnesic properties of scopolamine hydrobromide. It was characterized by shortening of the latent period by 44% (p<0,01) and by 47,7% (p<0,05) after 24 hours and on the 20th day of conditioned passive avoidance test. This effect was accompanied by increase in oxidative modification of proteins and nitric oxide synthesis in the cerebral cortex. Along with this, a significant enhancement of ADP- and collagen-induced platelet aggregation was observed. These processes may play the leading role in the development of cognitive deficit in diabetes. Meanwhile, co-administration of piracetam with acetylsalicylic acid was accompanied by an expressed antiamnetic potential - the reduction of early markers of proteins degradation (aldehydephenylhydrazones, APH) by 21,7% (p<0,05) and late markers of proteins degradation (ketonephenylhydrazones, KPH) by 23,8% (p<0,001) was noted. This combination was 15,7% (p<0,05) more active than piracetam according to the effect upon KPH. NO2-/NO3- level was also decreased by 30,3% (p<0,05) in comparison with alloxan-diabetic rats. The significant anti-platelet effect was observed: degree of collagen-induced platelet aggregation was reduced by 56,8% (p<0,01), ADP (5 μmol/l)-induced - by 31,7% (p<0,01), ADP (20 μmol/l)-induced - by 47,3% (p<0,01) as compared to the hyperglycemic rats. Such an increase in nootropic activity of piracetam may be assumed to be directly related to the ability of acetylsalicylic acid to improve microcirculation in the ischemic areas of the brain in diabetes and probably to its neuroprotective potential.

  16. Low-molecular-mass peptides from the venom of the Amazonian viper Bothrops atrox protect against brain mitochondrial swelling in rat: potential for neuroprotection.

    PubMed

    Martins, N M; Ferreira, D A S; Carvalho Rodrigues, M A; Cintra, A C O; Santos, N A G; Sampaio, S V; Santos, A C

    2010-08-01

    The neurodegenerative diseases are important causes of morbidity and mortality in Western countries. Common mechanisms of toxicity involving mitochondrial damage have been suggested; however, a definitive treatment has not yet been found. Therefore, there has been great interest in the development of mitochondria-targeted protective compounds for the treatment of neuropathies. Animal toxins represent a promising source of new molecules with neuroprotective activity and potential to originate new drugs. We present here the effects of a low-molecular-mass peptides fraction (Ba-V) from Bothrops atrox snake venom, on rat brain mitochondrial function. Ba-V did not induce the mitochondrial swelling and moreover, was as effective as cyclosporin A (CsA) to inhibit the calcium/phosphate-induced swelling, which indicates its potential to prevent the mitochondrial permeability transition (MPT). The membrane electrochemical potential, the oxygen consumption during states-3 and -4 respirations as well as the respiratory control ratio (RCR) were not affected by Ba-V. Additionally, Ba-V did not induce reactive oxygen species (ROS) generation. Interestingly, Ba-V did not protect against the generation of ROS induced by t-BOH, which suggests a protection mechanism other than ROS scavenging. Given the important role of the mitochondrial damage and, more specifically, of MPT, in the development of neuropathies, Ba-V might be useful in the future strategies for the treatment of these diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Discovery of antitubulin agents with antiangiogenic activity as single entities with multitarget chemotherapy potential.

    PubMed

    Gangjee, Aleem; Pavana, Roheeth Kumar; Ihnat, Michael A; Thorpe, Jessica E; Disch, Bryan C; Bastian, Anja; Bailey-Downs, Lora C; Hamel, Ernest; Bai, Rouli

    2014-05-08

    Antiangiogenic agents (AA) are cytostatic, and their utility in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of vascular endothelial growth factor receptor-2 (VEGFR2) inhibitors with antitubulin agents have been particularly successful. We have discovered a novel, potentially important analogue, that combines potent VEGFR2 inhibitory activity (comparable to that of sunitinib) with potent antitubulin activity (comparable to that of combretastatin A-4 (CA)) in a single molecule, with GI50 values of 10(-7) M across the entire NCI 60 tumor cell panel. It potently inhibited tubulin assembly and circumvented the most clinically relevant tumor resistance mechanisms (P-glycoprotein and β-III tubulin expression) to antimicrotubule agents. The compound is freely water-soluble as its HCl salt and afforded excellent antitumor activity in vivo, superior to docetaxel, sunitinib, or Temozolomide, without any toxicity.

  18. Analysis of gene expression profiles of CR80, a neuroprotective 1,8-Naphthyridine.

    PubMed

    Ramos, Eva; Romero, Alejandro; Egea, Javier; Marco-Contelles, José; Del Pino, Javier; de Los Ríos, Cristóbal

    2018-06-01

    The 1,8-naphthyridine CR80 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b] [1,8]naphthyridine-3-carboxylate) has shown interesting neuroprotective properties in in vitro and in vivo models of neurodegeneration. In spite of these promising outcomes, the molecular and cellular mechanisms underlying CR80 actions need to be further explored. We herein report the signal transduction pathways involved in developmental, neuroprotective and stress-activated processes, as well as the gene expression regulation by CR80 in SH-SY5Y neuroblastoma cells. The CR80 exposure upregulated several antioxidant enzymes (HO-1, GSR, SQSTM1, and TRXR1) and anti-apoptotic proteins (Bcl-xL, Bcl-2, P21, and Wnt6). The observed changes in gene expression would afford new insights on the neuroprotective profile of CR80.

  19. A silver lining for 24-hydroxycholesterol in Alzheimer's disease: The involvement of the neuroprotective enzyme sirtuin 1.

    PubMed

    Testa, Gabriella; Staurenghi, Erica; Giannelli, Serena; Gargiulo, Simona; Guglielmotto, Michela; Tabaton, Massimo; Tamagno, Elena; Gamba, Paola; Leonarduzzi, Gabriella

    2018-05-22

    It is now established that cholesterol oxidation products (oxysterols) are involved in several events underlying Alzheimer's disease (AD) pathogenesis. Of note, certain oxysterols cause neuron dysfunction and degeneration but, recently, some of them have been shown also to have neuroprotective effects. The present study, which aimed to understand the potential effects of 24-hydroxycholesterol (24-OH) against the intraneuronal accumulation of hyperphosphorylated tau protein, stressed these latter effects. A beneficial effect of 24-OH was demonstrated in SK-N-BE neuroblastoma cells, and is due to its ability to modulate the deacetylase sirtuin 1 (SIRT1), which contributes to preventing the neurotoxic accumulation of the hyperphosphorylated tau protein. Unlike 24-OH, 7-ketocholesterol (7-K) did not modulate the SIRT1-dependent neuroprotective pathway. To confirm the neuroprotective role of 24-OH, in vivo experiments were run on mice that express human tau without spontaneously developing tau pathology (hTau mice), by means of the intracerebroventricular injection of 24-OH. 24-OH, unlike 7-K, was found to completely prevent the hyperphosphorylation of tau induced by amyloid β monomers. These data highlight the importance of preventing the loss of 24-OH in the brain, and of maintaining high levels of the enzyme SIRT1, in order to counteract neurodegeneration. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Neuroprotective effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wetchateng, Thanitsara

    2014-08-01

    Cognitive impairment is a major problem, which eventually develops in schizophrenia. It contributes to the patients 'functional disability and cannot be attenuated by antipsychotic drugs. Bacopa monnieri (Brahmi), a neuroprotective herbal medicine in the elderly, might be a novel neuroprotective agent for prevention of cognitive deficit in schizophrenia. To study neuroprotective effects ofBrahmi on novel object recognition task and cerebral glutamate/N-methyl-D- aspartate receptor subtype 1 (NMDAR1) immunodensity in sub-chronic phencyclidine (PCP) rat model ofschizophrenia. Rats were assigned to three groups; Group-A: Control, Group-B: PCP administration and Group- C: Brahmi + PCP. Discrimination ratio (DR) representing cognitive ability was obtainedfrom novel object recognition task. NMDAR1 immunodensity was measured in prefrontal cortex, striatum, cornu ammonis fields I (CA 1) and 2/3 (CA2/3) and dentate gyrus (DG) using immunohistochemistry. DR was significantly reduced in PCP group compared with control. This occurred alongside NMDAR1 up-regulation in CA2/3 and DG but not in prefrontal cortex, striatum or CA1. Brahmi + PCP group showed an increased DR score up to normal which occurred alongside a significantly decreased NMDARI immunodensity in CA2/3 and DG compared with PCP group. Cognitive deficit observed in rats receiving PCP was mediated by NMDAR1 up-regulation in CA2/3 and DG Interestingly, receiving Brahmi before PCP administration can restore this cognitive deficit by decreasingNMDAR1 in these brain areas. Therefore, Brahmi could be a novel neuroprotective agentfor the prevention ofcognitive deficit in schizophrenia.

  1. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  2. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro.

    PubMed

    Kaneko, Yuji; Pappas, Colleen; Tajiri, Naoki; Borlongan, Cesar V

    2016-10-21

    Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABA A receptor (GABA A R), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABA A R subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABA A R specific agonist). This study provides evidence that oxytocin regulated GABA A R subunits in affording neuroprotection against OGD/R injury.

  3. Pleiotropic Protective Effects of Phytochemicals in Alzheimer's Disease

    PubMed Central

    Davinelli, Sergio; Sapere, Nadia; Zella, Davide; Bracale, Renata; Intrieri, Mariano; Scapagnini, Giovanni

    2012-01-01

    Alzheimer's disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple levels of the pathology are needed. Recent findings suggest that phytochemicals compounds with neuroprotective features may be an important resources in the discovery of drug candidates against AD. In this paper we will describe some polyphenols and we will discuss their potential role as neuroprotective agents. Specifically, curcumin, catechins, and resveratrol beyond their antioxidant activity are also involved in antiamyloidogenic and anti-inflammatory mechanisms. We will focus on specific molecular targets of these selected phytochemical compounds highlighting the correlations between their neuroprotective functions and their potential therapeutic value in AD. PMID:22690271

  4. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  5. Biology and preliminary host range assessment of two potential kudzu biological control agents

    Treesearch

    Matthew J. Fyre; Judith Hough-Goldstein; Jiang-Hua Sun

    2007-01-01

    Two insect species from China, Gonioctena tredecimmaclliata (Jacoby) (Coleoptera: Chrysomelidae) and Ornatalcides (Mesalcidodes) trifidus (Pascoe) (Coleoptera: Curculionidae), were studied in quarantine in the United States as potential biological control agents for kudzu, Pueraria nwntana variety Zobata (Willd.) Maesen and S. Almeida...

  6. Thiorphan, a neutral endopeptidase inhibitor used for diarrhoea, is neuroprotective in newborn mice.

    PubMed

    Medja, Fadia; Lelièvre, Vincent; Fontaine, Romain H; Lebas, Fanny; Leroux, Philippe; Ouimet, Tanja; Saria, Alois; Rougeot, Catherine; Dournaud, Pascal; Gressens, Pierre

    2006-12-01

    Excitotoxic damage appears to be a critical factor in the formation of perinatal brain lesions associated with cerebral palsy (CP). When injected into newborn mice, the glutamatergic analogue, ibotenate, produces cortical lesions and white matter cysts that mimic human perinatal brain lesions. Neuropeptides are neuronal activity modulators and could therefore modulate glutamate-induced lesions. However, neuropeptides are rapidly degraded by peptidases. Racecadotril, which is rapidly metabolized to its active metabolite thiorphan, is a neutral endopeptidase (NEP) inhibitor used in clinical practice for diarrhoea with a remarkable safety profile. This study aimed to test the original hypothesis that thiorphan could be neuroprotective against ibotenate-induced lesions in newborn mice. Intraperitoneal administration of thiorphan reduced ibotenate-induced cortical lesions by up to 57% and cortical caspase-3 cleavage by up to 59%. This neuroprotective effect was long-lasting and was still observed when thiorphan was administered 12 h after the insult, showing a remarkable window for therapeutic intervention. Further supporting the neuroprotective effect of pharmacological blockade of NEP, mouse pups with a genetic deletion of NEP displayed a significantly reduced size of the ibotenate-induced cortical grey matter lesion when compared with wild-type animals. Thiorphan effects were mimicked by substance P (SP) and, in a less potent manner, by neurokinin A. Thiorphan effects were inhibited by blockers of NK1 and NK2 receptors. Real-time reverse transcription-polymerase chain reaction, autoradiography and immunohistochemistry confirmed the expression of NK1 and NK2 receptors in the neonatal murine neocortex. These data demonstrate that thiorphan prevents neonatal excitotoxic cortical damage, an effect largely mediated by SP. Thiorphan could represent a promising drug for the prevention of CP, which remains a challenging disease. In a broader context, these results also raise

  7. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    PubMed

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats.

    PubMed

    Morimoto, Takeshi; Miyoshi, Tomomitsu; Sawai, Hajime; Fujikado, Takashi

    2010-02-01

    We previously showed that transcorneal electrical stimulation (TES) promoted the survival of axotomized retinal ganglion cells (RGCs) of rats. However the relationship between the parameters of TES and the neuroprotective effect of TES on axotomized RGCs was unclear. In the present study, we determined whether the neuroprotective effect of TES is affected by the parameters of TES. Adult male Wistar rats received TES just after transection of the left optic nerve (ON). The pulse duration, current intensity, frequency, waveform, and numbers of sessions of the TES were changed systematically. The alterations of the retina were examined histologically seven days or fourteen days after the ON transection. The optimal neuroprotective parameters were pulse duration of 1 and 2 ms/phase (P < 0.001, each), current intensity of 100 and 200 muA (P < 0.05, each), and stimulation frequency of 1, 5, and 20 Hz (P < 0.001, respectively). More than 30 min of TES was necessary to have a neuroprotective effect (P < 0.001). Symmetric pulses without an inter-pulse interval were most effective (P < 0.001). Repeated TES was more neuroprotective than a single TES at 14 days after ON transection (P < 0.001). Our results indicate that there is a range of optimal neuroprotective parameters of TES for axotomized RGCs of rats. These values will provide a guideline for the use of TES in patients with different retinal and optic nerve diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Comparison of Adaptive Neuroprotective Mechanisms of Sulforaphane and its Interconversion Product Erucin in in Vitro and in Vivo Models of Parkinson's Disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Djemil, Alice; D'Amico, Massimo; Pruccoli, Letizia; Cantelli-Forti, Giorgio; Hrelia, Patrizia; Tarozzi, Andrea

    2018-01-31

    Several studies suggest that an increase of glutathione (GSH) through activation of the transcriptional nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in the dopaminergic neurons may be a promising neuroprotective strategy in Parkinson's disease (PD). Among Nrf2 activators, isothiocyanate sulforaphane (SFN), derived from precursor glucosinolate present in Brassica vegetables, has gained attention as a potential neuroprotective compound. Bioavailability studies also suggest the contribution of SFN metabolites, including erucin (ERN), to the neuroprotective effects of SFN. Therefore, we compared the in vitro neuroprotective effects of SFN and ERN at the same dose level (5 μM) and oxidative treatment with 6-hydroxydopamine (6-OHDA) in SH-SY5Y cells. The pretreatment of SH-SY5Y cells with SFN recorded a higher (p < 0.05) active nuclear Nrf2 protein (12.0 ± 0.4 vs 8.0 ± 0.2 fold increase), mRNA Nrf2 (2.0 ± 0.3 vs 1.4 ± 0.1 fold increase), total GSH (384.0 ± 9.0 vs 256.0 ± 8.0 μM) levels, and resistance to neuronal apoptosis elicited by 6-OHDA compared to ERN. By contrast, the simultaneous treatment of SH-SY5Y cells with either SFN or ERN and 6-OHDA recorded similar neuroprotective effects with both the isothiocyanates (Nrf2 protein 2.2 ± 0.2 vs 2.1 ± 0.1 and mRNA Nrf2 2.1 ± 0.3 vs 1.9 ± 0.2 fold increase; total GSH 384.0 ± 4.8 vs 352.0 ± 6.4 μM). Finally, in vitro finding was confirmed in a 6-OHDA-PD mouse model. The metabolic oxidation of ERN to SFN could account for their similar neuroprotective effects in vivo, raising the possibility of using vegetables containing a precursor of ERN for systemic antioxidant benefits in a similar manner to SFN.

  10. Resveratrol as a Therapeutic Agent for Alzheimer's Disease

    PubMed Central

    Ma, Teng; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD. PMID:25525597

  11. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  12. Progesterone Inhibition of Neuronal Calcium Signaling Underlies Aspects of Progesterone-Mediated Neuroprotection

    PubMed Central

    Luoma, Jessie I; Stern, Christopher M; Mermelstein, Paul G.

    2011-01-01

    Progesterone is being utilized as a therapeutic means to ameliorate neuron loss and cognitive dysfunction following traumatic brain injury Although there have been numerous attempts to determine the means by which progesterone exerts neuroprotective effects, studies describing the underlying molecular mechanisms are lacking What has become clear, however, is the notion that progesterone can thwart several physiological processes that are detrimental to neuron function and survival, including inflammation, edema, demyelination and excitotoxicity One clue regarding the means by which progesterone has restorative value comes from the notion that these aforementioned biological processes all share the common theme of eliciting pronounced increases in intracellular calcium. Thus, we propose the hypothesis that progesterone regulation of calcium signaling underlies its ability to mitigate these cellular insults, ultimately leading to neuroprotection. Further, we describe recent findings that indicate neuroprotection is achieved via progesterone block of voltage-gated calcium channels, although additional outcomes may arise from blockade of various other ion channels and neurotransmitter receptors. PMID:22101209

  13. Advances in the Preclinical Study of Some Flavonoids as Potential Antidepressant Agents

    PubMed Central

    German-Ponciano, León Jesús; Rosas-Sánchez, Gilberto Uriel; Rivadeneyra-Domínguez, Eduardo

    2018-01-01

    Flavonoids are phenolic compounds found commonly in plants that protect them against the negative effects of environmental insults. These secondary metabolites have been widely studied in preclinical research because of their biological effects, particularly as antioxidant agents. Diverse flavonoids have been studied to explore their potential therapeutic effects in the treatment of disorders of the central nervous system, including anxiety and depression. The present review discusses advances in the study of some flavonoids as potential antidepressant agents. We describe their behavioral, physiological, and neurochemical effects and the apparent mechanism of action of their preclinical antidepressant-like effects. Natural flavonoids produce antidepressant-like effects in validated behavioral models of depression. The mechanism of action of these effects includes the activation of serotonergic, dopaminergic, noradrenergic, and γ-aminobutyric acid-ergic neurotransmitter systems and an increase in the production of neural factors, including brain-derived neurotrophic factor and nerve growth factor. Additionally, alterations in the function of tropomyosin receptor kinase B and activity of the enzyme monoamine oxidase A have been reported. In conclusion, preclinical research supports the potential antidepressant effects of some natural flavonoids, which opens new possibilities of evaluating these substances to develop complementary therapeutic alternatives that could ameliorate symptoms of depressive disorders in humans. PMID:29623232

  14. Targeting the Brain with a Neuroprotective Omega-3 Fatty Acid to Enhance Neurogenesis in Hypoxic Condition in Culture.

    PubMed

    Lo Van, Amanda; Sakayori, Nobuyuki; Hachem, Mayssa; Belkouch, Mounir; Picq, Madeleine; Fourmaux, Baptiste; Lagarde, Michel; Osumi, Noriko; Bernoud-Hubac, Nathalie

    2018-06-01

    Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases. We previously synthesized a stabilized form of DHA-containing lysophosphatidylcholine a major vector of DHA transportation to the brain, which is 1-acetyl,2-docoshexaenoyl-glycerophosphocholine, named AceDoPC®. Injection of AceDoPC® or DHA after experimental ischemic stroke showed that both molecules had neuroprotective effects but AceDoPC® was the most potent. This study aims to investigate the beneficial effects of DHA either unesterified or esterified within AceDoPC® on a model of neurogenesis in vitro, under physiological or pathological conditions. The effect of protectin DX (PDX, a double lipoxygenase product of DHA) was also tested. We cultured neural stem progenitor cells (NSPCs) derived from the adult mouse brain under normal or hypoxigenic (ischemic) conditions in vitro. Neurogenesis study of cell cultures with AceDoPC® showed enhanced neurogenesis compared to addition of unesterified DHA, PDX, or vehicle control, especially under pathological conditions. Our studies of the potential mechanisms involved in neuroprotection hinted that AceDoPC® neuroprotective and regenerative effects might be due in part to its anti-oxidative effects. These results indicate the potential for novel therapeutics against stroke that target the brain.

  15. MRS of brain metabolite levels demonstrates the ability of scavenging of excess brain glutamate to protect against nerve agent induced seizures.

    PubMed

    Ruban, Angela; Biton, Inbal E; Markovich, Arik; Mirelman, David

    2015-02-02

    This study describes the use of in vivo magnetic resonance spectrocopy (MRS) to monitor brain glutamate and lactate levels in a paraoxon (PO) intoxication model. Our results show that the administration of recombinant glutamate-oxaloacetate transaminase (rGOT) in combination with oxaloacetate (OxAc) significantly reduces the brain-accumulated levels of glutamate. Previously we have shown that the treatment causes a rapid decrease of blood glutamate levels and creates a gradient between the brain and blood glutamate levels which leads to the efflux of excess brain glutamate into the blood stream thereby reducing its potential to cause neurological damage. The fact that this treatment significantly decreased the brain glutamate and lactate levels following PO intoxication suggests that it could become a new effective neuroprotective agent.

  16. The neuroprotection of cannabidiol against MPP⁺-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.

    PubMed

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo

    2015-12-25

    Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer's Disease and Diabetes Mellitus dual therapy.

    PubMed

    Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha; Mallepalli, Suresh Kumar Reddy; Vadde, Ramakrishna; Amooru, Damu Gangaiah

    2018-03-02

    Extensive epidemiological and clinical studies revealed that Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (T2D) are most likely to appear simultaneously in aged people as T2D is a major risk factor for AD. Therefore, development of potential multifunctional agents for dual therapy of AD and T2D has received much attention. Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis have been used extensively in popular medicine. The present study was aimed at phytochemical profiling and evaluating multifunctional ability of titled plants in the AD and T2D dual therapy. Methanolic extracts and their derived fractions were evaluated for their inhibitory capacities against acetylcholinesterase (AChE) & butyrylcholinesterase (BuChE), and α- & β-glucosidase besides kinetic analysis of inhibition using methods of Elmann and Shibano, respectively. Antioxidant potency of active fractions was assessed by their DPPH and ABTS radical scavenging activities. Active fractions were tested by the MTT assay to verify cytotoxicity and neuroprotective ability in human nueroblastoma cell lines. Phytochemical screening was done with the aid of spectrophotometric methods. All the methanolic extracts of test plants (BAM, HIM, RMM) showed concentration dependent inhibitory activities against AChE, BuChE, α- and β-glucosidase enzymes. Subsequent fractionation and evaluation revealed that chloroform fractions BAC, HIC and RMC with IC 50 values of 12.29±2.14, 9.94±2.14, 16.65±1.99 and 27.38±1.24; 28.14±0.9, 5.16±0.22, 11.03±0.5 and 87.64±15.41; 41.35±1.6, 15.86±7.3, 26.04±0.37 and 25.33±0.3 were most prominent with regard to inhibition potential against AChE, BuChE, α- and β-glucosidase, respectively. Kinetic analysis of these active fractions proved that they disclosed mixed-type inhibition against AChE, BuChE, α- and β-glucosidase enzymes. In the MTT assay, active fractions BAC, HIC, RMC showed significant cell viability at high concentrations (400

  18. Discovery of Benzofuran Derivatives that Collaborate with Insulin-Like Growth Factor 1 (IGF-1) to Promote Neuroprotection.

    PubMed

    Wakabayashi, Takeshi; Tokunaga, Norihito; Tokumaru, Kazuyuki; Ohra, Taiichi; Koyama, Nobuyuki; Hayashi, Satoru; Yamada, Ryuji; Shirasaki, Mikio; Inui, Yoshitaka; Tsukamoto, Tetsuya

    2016-05-26

    A series of benzofuran derivatives with neuroprotective activity in collaboration with IGF-1 was discovered using a newly developed cell-based assay involving primary neural cells prepared from rat hippocampal and cerebral cortical tissues. A structure-activity relationship study identified compound 8 as exhibiting potent activity and brain penetrability. An in vitro pharmacological study demonstrated that although IGF-1 and 8 individually exhibited the neuroprotective effect, the latter acted in collaboration with IGF-1 to enhance neuroprotective activity.

  19. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons.

    PubMed

    Collins, Louise M; O'Keeffe, Gerard W; Long-Smith, Caitriona M; Wyatt, Sean L; Sullivan, Aideen M; Toulouse, André; Nolan, Yvonne M

    2013-06-01

    A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

  20. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia

    PubMed Central

    Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Sen, Halil Murat; Ozkan, Adile; Salis, Osman; Sehitoglu, Ibrahim; Kalkan, Yildiray; Silan, Coskun; Deniz, Mustafa; Cosar, Murat

    2015-01-01

    Objective(s): Stroke poses a crucial risk for mortality and morbidity. Our study aimed to investigate the effect of p-coumaric acid on focal cerebral ischemia in rats. Material and Methods: Rats were randomly divided into four groups, namely Group I (control rats), Group II (ischemia rats), Group III (6 hr ischemia + p-coumaric acid rats) and Group IV (24 hr ischemia + p-coumaric acid rats). Cerebral ischemia was induced via intraluminal monofilament occlusion model. In all groups, the brain was removed after the procedure and rats were sacrificed. Malondialdehyde, superoxide dismutase and nuclear respiratory factor-1 were measured in the ischemic hemisphere. The histopathological changes were observed in the right hemisphere within the samples. Functional assessment was performed for neurological deficit scores. Results: Following the treatment, biochemical factors changed significantly. Histopathologically, it was shown that p-coumaric acid decreased the oxidative damage. The neurological deficit scores of p-coumaric acid-treated rats were significantly improved after cerebral ischemia. Conclusion: Our results showed that p-coumaric acid is a neuroprotective agent on account of its strong anti-oxidant and anti-apoptotic features. Moreover, p-coumaric acid decreased the focal ischemia. Extra effort should be made to introduce p-coumaric acid as a promising therapeutic agent to be utilized for treatment of human cerebral ischemia in the future. PMID:26019798

  1. Pifithrin-α provides neuroprotective effects at the level of mitochondria independently of p53 inhibition.

    PubMed

    Neitemeier, Sandra; Ganjam, Goutham K; Diemert, Sebastian; Culmsee, Carsten

    2014-12-01

    Impaired mitochondrial integrity and function are key features of intrinsic death pathways in neuronal cells. Therefore, key regulators of intrinsic death pathways acting upstream of mitochondria are potential targets for therapeutic approaches of neuroprotection. The tumor suppressor p53 is a well-established regulator of cellular responses towards different kinds of lethal stress, including oxidative stress. Recent reports suggested that p53 may affect mitochondrial integrity and function through both, transcriptional activation of mitochondria-targeted pro-death proteins and direct effects at the mitochondrial membrane. In the present study, we compared the effects of pharmacological inhibition of p53 by pifithrin-α with those of selective p53 gene silencing by RNA interference. Using MTT assay and real-time cell impedance measurements we confirmed the protective effect of both strategies against glutamate-induced oxidative stress in immortalized mouse hippocampal HT-22 neurons. Further, we observed full restoration of mitochondrial membrane potential and inhibition of glutamate-induced mitochondrial fragmentation by pifithrin-α which was, in contrast, not achieved by p53 gene silencing. Downregulation of p53 by siRNA decreased p53 transcriptional activity and reduced expression levels of p21 mRNA, while pifithrin-α did not affect these endpoints. These results suggest a neuroprotective effect of pifithrin-α which occurred at the level of mitochondria and independently of p53 inhibition.

  2. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae).

    PubMed

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae ). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyce s bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae . The ability of various S treptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae . In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  3. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    PubMed Central

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  4. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  5. Estrone is neuroprotective in rats after traumatic brain injury.

    PubMed

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (p<0.01) and neuronal injury (p<0.001), and it reduced cerebral cortical levels of TUNEL-positive staining (p<0.0001), and decreased numbers of TUNEL-positive cells in the corpus callosum (p<0.03). We assessed the levels of β-amyloid in the injured animals and found that estrone significantly decreased the cortical levels of β-amyloid after brain injury. Cortical levels of phospho-ERK1/2 were significantly (p<0.01) increased by estrone. This increase was associated with an increase in phospho-CREB levels (p<0.021), and brain-derived neurotrophic factor (BDNF) expression (p<0.0006). In conclusion, estrone given acutely after injury increases the signaling of protective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  6. The acquisition of dangerous biological materials: Technical facts sheets to assist risk assessments of 46 potential BW agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents canmore » potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.« less

  7. SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons.

    PubMed

    Romeo-Guitart, David; Leiva-Rodríguez, Tatiana; Espinosa-Alcantud, María; Sima, Núria; Vaquero, Alejandro; Domínguez-Martín, Helena; Ruano, Diego; Casas, Caty

    2018-05-10

    Sirtuin 1 (SIRT1) activity is neuroprotective, and we have recently demonstrated its role in the retrograde degenerative process in motoneurons (MNs) in the spinal cord of rats after peripheral nerve root avulsion (RA) injury. SIRT2 has been suggested to exert effects opposite those of SIRT1; however, its roles in neurodegeneration and neuron response after nerve injury remain unclear. Here we compared the neuroprotective potentials of SIRT1 activation and SIRT2 inhibition in a mouse model of hypoglossal nerve axotomy. This injury induced a reduction of around half MN population within the hypoglossal nucleus by a non-apoptotic neurodegenerative process triggered by endoplasmic reticulum (ER) stress that resulted in activation of the unfolded protein response mediated by IRE1α and XBP1 by 21 days post injury. Both SIRT1 activation with NeuroHeal and SIRT2 inhibition with AK7 protected NSC-34 motor neuron-like cells against ER stress in vitro. In agreement with the in vitro results, NeuroHeal treatment or SIRT1 overexpression was neuroprotective of axotomized hypoglossal MNs in a transgenic mouse model. In contrast, AK7 treatment or SIRT2 genetic depletion in mice inhibited damaged MN survival. To resolve the in vitro/in vivo discrepancies, we used an organotypic spinal cord culture system that preserves glial cells. In this system, AK7 treatment of ER-stressed organotypic cultures was detrimental for MNs and increased microglial nuclear factor-κB and the consequent transcription of cytotoxic pro-inflammatory factors similarly. The results highlight the importance of glial cells in determining the neuroprotective impact of any treatment.

  8. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease.

    PubMed

    Naoi, Makoto; Maruyama, Wakako

    2009-08-01

    Neuroprotective therapy has been proposed for age-related neurodegenerative disorders, including Parkinson's disease. Inhibitors of type B monoamine oxidase (MAOB-Is), rasagiline and (-)deprenyl, are the most promising candidate neuroprotective drugs. Clinical trials of rasagiline in patients with Parkinson's disease suggest that rasagiline may have some disease-modifying effects. Results using animal and cellular models have proved that the MAOB-Is protect neurons by the intervention of 'intrinsic' mitochondrial apoptotic cascade and the induction of prosurvival antiapoptotic Bcl-2 and neurotrophic factors. Rasagiline-related MAOB-Is prevent mitochondrial permeability transition induced by various insults and activation of subsequent apoptotic cascades: cytochrome c release, casapase activation, and condensation and fragmentation of nuclear DNA. MAOB-Is increase transcription of prosurvival genes through activating the nuclear transcription factor-(NF) system. Rasagiline increases the protein and mRNA levels of GDNF in dopaminergic SH-SY5Y cells, whereas (-)deprenyl increases those of BDNF. Systemic administration of (-)deprenyl and rasagiline increases these neurotrophic factors in the cerebrospinal fluid from patients with Parkinson's disease and nonhuman primates. This review presents recent advances in our understanding of the neuroprotection offered by MAOB-Is and possible evaluation of neuroprotective efficacy in clinical samples is discussed.

  9. Biological basis of neuroprotection and neurotherapeutic effects of Whole Body Periodic Acceleration (pGz).

    PubMed

    Adams, Jose A; Uryash, Arkady; Bassuk, Jorge; Sackner, Marvin A; Kurlansky, Paul

    2014-06-01

    Exercise is a well known neuroprotective and neurotherapeutic strategy in animal models and humans with brain injury and cognitive dysfunction. In part, exercise induced beneficial effects relate to endothelial derived nitric oxide (eNO) production and induction of the neurotrophins; Brain Derived Neurotrophic Factor (BDNF) and Glial Derived Neurotrophic Factor (GDNF). Whole Body Periodic Acceleration (WBPA (pGz), is the motion of the supine body headward to footward in a sinusoidal fashion, at frequencies of 100-160 cycles/min, inducing pulsatile shear stress to the vascular endothelium. WBPA (pGz) increases eNO in the cardiovascular system in animal models and humans. We hypothesized that WBPA (pGz) has neuroprotective and neurotherapeutic effects due to enhancement of biological pathways that include eNOS, BDNF and GDNF. We discuss protein expression analysis of these in brain of rodents. Animal and observational human data affirm a neuroprotective and neurotherapeutic role for WBPA (pGz). These findings suggest that WBPA (pGz) in addition to its well known beneficial cardiovascular effects can be a simple non-invasive neuroprotective and neurotherapeutic strategy with far reaching health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms.

    PubMed

    Zhang, Feng; Signore, Armando P; Zhou, Zhigang; Wang, Suping; Cao, Guodong; Chen, Jun

    2006-05-15

    Erythropoietin (EPO) is a hormone that is neuroprotective in models of neurodegenerative diseases. This study examined whether EPO can protect against neuronal death in the CA1 region of the rat hippocampus following global cerebral ischemia. Recombinant human EPO was infused into the intracerebral ventricle either before or after the induction of ischemia produced by using the four-vessel-occlusion model in rat. Hippocampal CA1 neuron damage was ameliorated by infusion of 50 U EPO. Administration of EPO was neuroprotective if given 20 hr before or 20 min after ischemia, but not 1 hr following ischemia. Coinjection of the phosphoinositide 3 kinase inhibitor LY294002 with EPO inhibited the protective effects of EPO. Treatment with EPO induced phosphorylation of both AKT and its substrate, glycogen synthase kinase-3beta, in the CA1 region. EPO also enhanced the CA1 level of brain-derived neurotrophic factor. Finally, we determined that ERK activation played minor roles in EPO-mediated neuroprotection. These studies demonstrate that a single injection of EPO ICV up to 20 min after global ischemia is an effective neuroprotective agent and suggest that EPO is a viable candidate for treating global ischemic brain injury. Copyright 2006 Wiley-Liss, Inc.

  11. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2001-10-01

    to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods: Argon...dextromethorphan, memantine or brimonidine. The control groups (18 rats for each compound) received the solvent at the same volume and schedule as...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Systemic treatments with dextromethorphan, memantine or brimonidine

  12. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    PubMed Central

    Kiss, Tibor; Jungling, Adel

    2017-01-01

    ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. PMID:28067625

  13. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models.

    PubMed

    Maasz, Gabor; Zrinyi, Zita; Reglodi, Dora; Petrovics, Dora; Rivnyak, Adam; Kiss, Tibor; Jungling, Adel; Tamas, Andrea; Pirger, Zsolt

    2017-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. © 2017. Published by The

  14. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease.

    PubMed

    Reddy, P Hemachandra; Tonk, Sahil; Kumar, Subodh; Vijayan, Murali; Kandimalla, Ramesh; Kuruva, Chandra Sekhar; Reddy, Arubala P

    2017-02-19

    Currently, 5.4 million Americans suffer from AD, and these numbers are expected to increase up to 16 million by 2050. Despite tremendous research efforts, we still do not have drugs or agents that can delay, or prevent AD and its progression, and we still do not have early detectable biomarkers for AD. Multiple cellular changes have been implicated in AD, including synaptic damage, mitochondrial damage, production and accumulation of Aβ and phosphorylated tau, inflammatory response, deficits in neurotransmitters, deregulation of the cell cycle, and hormonal imbalance. Research into AD has revealed that miRNAs are involved in each of these cellular changes and interfere with gene regulation and translation. Recent discoveries in molecular biology have also revealed that microRNAs play a major role in post-translational regulation of gene expression. The purpose of this article is to review research that has assessed neuroprotective and neurodegenerative characteristics of microRNAs in brain samples from AD transgenic mouse models and patients with AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Evaluation of antioxidant and neuroprotective effect of Hippophae rhamnoides (L.) on oxidative stress induced cytotoxicity in human neural cell line IMR32

    PubMed Central

    Shivapriya, S.; Ilango, K.; Dubey, G.P.

    2015-01-01

    Aim and objective Hippophae rhamnoides is an edible, nutrient rich plant found in the northern regions of India. It belongs to the family Elaeagnaceae and is well known for its traditional pharmacological activities. The present study was aimed to investigate the antioxidant and neuroprotective activities of H. rhamnoides. Methodology The hydroalcoholic extract of H. rhamnoides was evaluated for free radical scavenging activity using DPPH, hydroxyl radical scavenging and ferric thiocyanate assays. In vitro neuroprotective activity was assessed on human neuroblastoma cell line-IMR32 against hydrogen peroxide (H2O2) induced cytotoxicity. The neuroprotective effect was determined by measuring the cell viability through tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reducing assay and propidium iodide (PI) staining. Also the intracellular reactive oxygen species (ROS) activity was assessed using dichloro-dihydro-fluorescein diacetate (DCFDA) assay by flowcytometer. Results The results of the study demonstrated that H. rhamnoides extract possesses potential free radical scavenging activity. The IC50 value for DPPH and OH radical scavenging assay was 70.92 μg/ml and 0.463 mg/ml, also the extract was also found to have considerable level of lipid peroxidation activity. The neuroprotective effect of H. rhamnoides was confirmed by its cell viability enhancing capacity against hydrogen peroxide induced cell cytotoxicity. The extract acted on IMR32 cells in a dose dependent manner as observed through PI and MTT assays. The percentage intracellular ROS activity was reduced by 60–70% in treated cells compared to H2O2 control. Conclusion Thus the outcome of the study suggests that H. rhamnoides acts as a neuroprotectant against oxidative stress induced neurodegeneration. PMID:26288571

  16. [60]Fullerene-based monolayers as neuroprotective biocompatible hybrid materials.

    PubMed

    Giust, Davide; Albasanz, José Luis; Martín, Mairena; Marega, Riccardo; Delforge, Arnaud; Bonifazi, Davide

    2011-10-14

    Here we report on the surface immobilization of redox-active [60]fullerene derivatives and the consequent neuroprotective effects toward l-glutamate induced excitotoxicity in human derived undifferentiated neuroblastoma cells. This journal is © The Royal Society of Chemistry 2011

  17. Evidence for neuroprotective effect of sulbutiamine against oxygen-glucose deprivation in rat hippocampal CA1 pyramidal neurons.

    PubMed

    Kwag, Jeehyun; Majid, Aman Shah Abdul; Kang, Kui Dong

    2011-01-01

    Hippocampus is one of the earliest brain regions that gets affected by ischemia, however, no pharmacological therapy exists yet that can fully counteract the ischemic damage. Here we study the effect of sulbutiamine, a synthetic thiamine analogue that can cross the blood-brain barrier easily, on hippocampal neurons under an in vitro model of ischemia, oxygen-glucose deprivation (OGD). We find that exposure to OGD in the presence of sulbutiamine significantly increases neuronal viability and enhances electrophysiological properties such as excitatory synaptic transmissions and intrinsic neuronal membrane input resistance in a concentration-dependent manner. Overall, here we report, for the first time, the neuroprotective evidence of sulbutiamine on hippocampal CA1 pyramidal neurons under OGD, which may have beneficial implications as a possible therapeutic agent/substance against ischemic insult.

  18. Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor.

    PubMed

    Li, Shizhong; Bock, Elisabeth; Berezin, Vladimir

    2010-05-26

    Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.

  19. [Similarity of cycloprolylglycine to piracetam in antihypoxic and neuroprotective effects].

    PubMed

    Kolisnikova, K N; Gudasheva, T A; Nazarova, G A; Antipov, T A; Voronina, T A; Seredenin, S B

    2012-01-01

    The antihypoxic activity of the endogenous cyclic dipeptide cycloprolylglycine (CPG) has been studied on a model of normobaric hypoxia with hypercapnia and its neuroprotective activity has been studied on a model of human neuroblastoma SH-SY5Y cell damage by 6-hydroxydopamine. It is established that CPG exhibits the antihypoxic activity at doses of 0.5 and 1.0 mg/kg (i.p.) on outbred and BALB/c mice, but not on C57B1/6 mice. The neuroprotective activity of CPG was detected in 10(-5) - 10(-8) M concentration range only when the treatment was carried out 24h before toxin introduction. The obtained data confirm the hypothesis that piracetam is a mimetic of the endogenous CPG neuropeptide.

  20. Cognitive and neuroprotective effects of chlorogenic acid.

    PubMed

    Heitman, Erin; Ingram, Donald K

    2017-01-01

    The aim of this review was to provide an overview of studies conducted to determine the effects of chlorogenic acid (CGA) on cognition and neurological health. A literature search was conducted using PubMed and various search terms including chlorogenic acid, CGA, memory, neuroscience, cognition, nutrition, antioxidant, pharmacokinetics, neuroprotection, and neurodegeneration. Many studies have linked CGA consumption to a wide range of health benefits, including neuroprotection, cardioprotection, weight loss, chemopreventive properties, anti-inflammatory activity, decreased blood pressure, decreased diet-induced insulin resistance, decreased blood pressure, anxiolytic effects, and antihyperalgesic effects. Pre-clinical and clinical studies both provide evidence that CGA supplementation could protect against neurological degeneration and the resulting diseases associated with oxidative stress in the brain; however, no formal, well-controlled studies have been performed to date. Recent research suggests that dietary consumption of CGA could produce a wide range of health benefits and physiological effects. There is also mounting evidence that the consumption of polyphenols, including CGA, in the diet could reduce the risk of developing neurodegenerative conditions. Further studies should be conducted with a focus on the effects of CGA on cognition and the nervous system and employing well-designed clinical studies.

  1. Potential of Neoactinolaimus as a biological control agent of root-knot and reniform nematodes

    USDA-ARS?s Scientific Manuscript database

    The predatory nematode Neoactinolaimus spp. (family Actinolaimidae) was examined as a potential biological control agent against root-knot (Meloidogyne spp.) and reniform (Rotylenchulus reniformis) nematodes in laboratory conditions. Neoactinolaimus possesses a large odontostylet to puncture the cu...

  2. Neuroprotective Treatment of Laser-Induced Retinal Injuries.

    DTIC Science & Technology

    1999-10-01

    evaluate the neuroprotective effect of dextromethorphan , which is FDA approved and clinically used drug, in our rat model of laser-induced retinal...lesions. Methods: Argon laser retinal lesions were inflicted in the eyes of 36 pigmented rats. The treated group received dextromethorphan 50 mg/kg...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Dextromethorphan treatment is not effective in ameliorating the

  3. Evidence for the role of histaminergic pathways in neuroprotective mechanism of ischemic postconditioning in mice.

    PubMed

    Kaur, Indresh; Kumar, Amit; Jaggi, Amteshwar S; Singh, Nirmal

    2017-08-01

    The present study has been designed to investigate the possible role of histaminergic pathway in neuroprotective mechanism of ischemic postconditioning (iPoCo). Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce I/R-induced cerebral injury in National Institutes of Health mice mice. iPoCo involving three episodes of carotid artery occlusion and reperfusion of 10 sec each was instituted immediately after BCAO just before prolonged reperfusion. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using Morris water maze test. Rotarod test, inclined beam-walking test, and neurological severity score (NSS) were performed to assess motor incoordination and sensorimotor abilities. Brain acetylcholine esterase (AChE) activity, brain myeloperoxidase (MPO) activity, brain thiobarbituric acid-reactive species (TBARS), and glutathione level (GSH) were also estimated. BCAO produced a significant rise in cerebral infarct size and NSS along with impairment of memory and motor coordination and biochemical alteration (↑AChE, ↑MPO ↓GSH, and ↑TBARS). iPoCo attenuated the deleterious effect of BCAO on infarct size, memory, NSS, motor coordination, and biochemical markers. Pretreatment of carnosine (a histamine [HA] precursor) potentiated the neuroprotective effects of iPoCo, whereas pretreatment of ketotifen (HA H1 receptor blocker and mast cell stabilizer) abolished the protective effects of iPoCo as well as that of carnosine on iPoCo. It may be concluded that neuroprotective effect of iPoCo probably involves activation of histaminergic pathways. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  4. Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition.

    PubMed

    Mao, Lun-Lin; Hao, Dong-Lin; Mao, Xiao-Wei; Xu, Yuan-Feng; Huang, Ting-Ting; Wu, Bo-Na; Wang, Li-Hui

    2015-08-18

    PTEN is a dual specificity phosphatase and is implicated in inflammation and apoptosis of cerebral ischemia and reperfusion (I/R) injury. Bisperoxovanadium (Bpv), a specific inhibitor of PTEN's phosphatase activity, has demonstrated powerful neuroprotective properties. We investigated the neuroprotective roles of Bpv in the rat model of middle cerebral artery occlusion (MCAO) cerebral I/R injury, and explored the modulation of inflammatory mediators and PI3K/Akt/GSK-3β pathways by Bpv. Our results showed that treatment with Bpv (0.2 mg/kg/day) significantly decreased neurological deficit scores at 7 days after MCAO and infarct volume at 4 days after MCAO. The IL-10 concentration was increased and TNF-α concentration was decreased in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO by Bpv. Furthermore, Bpv (0.2 mg/kg/day) treatment significantly reduced PTEN mRNA and protein levels and increased PI3K, Akt and p-GSK-3β proteins expression in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO. In conclusions, Bpv treatment demonstrates neuroprotective effects on cerebral ischemia and reperfusion injury of ischemic stroke rats and is associated with its modulation of inflammatory mediator production and up-regulation of PTEN downstream proteins PI3K, Akt and p-GSK-3β. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.

    PubMed

    Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B

    2016-03-17

    Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.

  6. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin.

    PubMed

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-03-21

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H(+) through the polymersome membrane was 5.659 × 10(-26) cm(2) s(-1), while that of liposomes was 1.017 × 10(-24) cm(2) s(-1). The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  7. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  8. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.

    PubMed

    Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus

    2003-04-01

    Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.

  9. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models.

    PubMed

    Singh, Nilendra; Agrawal, Megha; Doré, Sylvain

    2013-08-21

    Resveratrol, a natural stilbene present at relatively high concentrations in grape skin and seeds and red wine, is known for its purported antioxidant activity in the vascular and nervous systems. In contrast to its direct antioxidant role within the central nervous system, recent research supports a protective mechanism through increasing endogenous cellular antioxidant defenses, which triggers a cascade of parallel neuroprotective pathways. A growing body of in vitro and in vivo evidence indicates that resveratrol acts through multiple pathways and reduces ischemic damage in vital organs, such as the heart and the brain, in various rodent models. Most of the protective biological actions of resveratrol have been associated with its antioxidative, anti-inflammatory, and antiapoptotic properties and other indirect pathways. Continued public interest and increasing resveratrol supplements on the market warrant a review of the available in vitro and in vivo science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent, though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro and in vivo experimental models and some proposed mechanisms of action.

  10. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  11. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.

    PubMed

    Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-10-01

    Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.

  12. Design, synthesis, and evaluation of resveratrol derivatives as Aß(₁-₄₂) aggregation inhibitors, antioxidants, and neuroprotective agents.

    PubMed

    Lu, Chuanjun; Guo, Yueyan; Li, Jianheng; Yao, Meicun; Liao, Qiongfeng; Xie, Zhiyong; Li, Xingshu

    2012-12-15

    A series of novel resveratrol derivatives were designed, synthesised and evaluated as potential therapeutic agents for the treatment of Alzheimer's disease. Among these compounds, compound 7l, (E)-5-(4-(isopropylamino)styryl)benzene-1,3-diol, exhibited potent ß-amyloid aggregation inhibition activity, which was confirmed by a ThT fluorescence assay (71.65% at 20 μM) and transmission electron microscopy (TEM). Compound 7l also exhibited good antioxidant activity (4.12 Trolox equivalents in an oxygen radical absorbance capacity assay and a 37% reduction in reactive oxygen species in cells at 10 μM). The cytotoxicity analysis of compounds 7f, 7i, 7j and 7l indicated that these compounds have lower toxicities than resveratrol at 60 μM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?

    PubMed Central

    Masino, Susan A.; Geiger, Jonathan D.

    2015-01-01

    Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in energy metabolism increases levels of ATP and adenosine, purines that are critically involved in neuron–glia interactions, neuromodulation and synaptic plasticity. Enhancing brain bioenergetics (ATP) and increasing levels of adenosine, an endogenous anticonvulsant and neuroprotective molecule, might help with understanding and treating a variety of neurological disorders. PMID:18471903

  14. A review of the possible mechanisms of action of tocotrienol - a potential antiosteoporotic agent.

    PubMed

    Chin, Kok-Yong; Mo, Huanbiao; Soelaiman, Ima-Nirwana

    2013-12-01

    Osteoporosis is posing a tremendous healthcare problem globally. Much effort has been invested in finding novel antiosteoporotic agents to stop the progression of this disease. Tocotrienol, one of the isoforms of vitamin E, is poised as a potential antiosteoporotic agent. Previous studies showed that tocotrienol as a single isomer or as a mixture demonstrated both anabolic and antiresorptive effects in various rodent models of osteoporosis. In vitro experiments further demonstrated that tocotrienol could up-regulate genes related to osteoblastogenesis and modify receptor activator of nuclear factor kappa B signaling against osteoclastogenesis. Additionally, tocotrienol was also shown to be a strong 3- hydroxy-3-methyl-glutaryl-CoA reductase down-regulator with a mechanism different from that of statins. Inhibition of the mevalonate pathway affects both osteoblast and osteoclast formation in favor of the former. Tocopherol, a more commonly used isoform of vitamin E does not possess similar effects. Tocotrienol is also a potent antioxidant. It can scavenge free radicals and prevent oxidative damage on osteoblast thus promoting its survival. It may also up-regulate the antioxidant defense network in osteoclast and indirectly act against free radical signaling essential in osteoclastogenesis. The effects of tocotrienol on Wnt/β-catenin signaling essential in osteoblastogenesis have not been determined. More mechanistic studies need to be conducted to illustrate the antiosteoporotic effects of tocotrienol. Clinical trials are also required to confirm its effects in humans. In conclusion, tocotrienol demonstrates great potential as an antiosteoporotic agent and much research effort should be invested to develop it as an agent to curb osteoporosis.

  15. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    PubMed

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Targeted delivery of erythropoietin by transcranial focused ultrasound for neuroprotection against ischemia/reperfusion-induced neuronal injury: a long-term and short-term study.

    PubMed

    Wu, Sheng-Kai; Yang, Ming-Tao; Kang, Kai-Hsiang; Liou, Houng-Chi; Lu, Dai-Hua; Fu, Wen-Mei; Lin, Win-Li

    2014-01-01

    Erythropoietin (EPO) is a neuroprotective agent against cerebral ischemia/reperfusion (I/R)-induced brain injury. However, its crossing of blood-brain barrier is limited. Focused ultrasound (FUS) sonication with microbubbles (MBs) can effectively open blood-brain barrier to boost the vascular permeability. In this study, we investigated the effects of MBs/FUS on extending the therapeutic time window of EPO and its neuroprotective effects in both acute and chronic phases. Male Wistar rats were firstly subjected to two common carotid arteries and right middle cerebral artery occlusion (three vessels occlusion, 3VO) for 50 min, and then the rats were treated with hEPO (human recombinant EPO, 5000 IU/kg) with or without MBs/FUS at 5 h after occlusion/reperfusion. Acute phase investigation (I/R, I/R+MBs/FUS, I/R+hEPO, and I/R+hEPO+MBs/FUS) was performed 24 h after I/R; chronic tests including cylinder test and gait analysis were performed one month after I/R. The experimental results showed that MBs/FUS significantly increased the cerebral content of EPO by bettering vascular permeability. In acute phase, both significant improvement of neurological score and reduction of infarct volume were found in the I/R+hEPO+MBs/FUS group, as compared with I/R and I/R+hEPO groups. In chronic phase, long-term behavioral recovery and neuronal loss in brain cortex after I/R injury was significantly improved in the I/R+hEPO+MBs/FUS group. This study indicates that hEPO administration with MBs/FUS sonication even at 5 h after occlusion/reperfusion can produce a significant neuroprotection.

  17. The critical limiting temperature and selective brain cooling: neuroprotection during exercise?

    PubMed

    Marino, Frank E

    2011-01-01

    There is wide consensus that long duration exercise in the heat is impaired compared with cooler conditions. A common observation when examining exercise tolerance in the heat in laboratory studies is the critical limiting core temperature (CLT) and the apparent attenuation in central nervous system (CNS) drive leading to premature fatigue. Selective brain cooling (SBC) purportedly confers neuroprotection during exercise heat stress by attenuating the increase in brain temperature. As the CLT is dependent on heating to invoke a reduction in efferent drive, it is thus not compatible with SBC which supposedly attenuates the rise in brain temperature. Therefore, the CLT and SBC hypotheses cannot be complimentary if the goal is to confer neuroprotection from thermal insult as it is counter-intuitive to selectively cool the brain if the purpose of rising brain temperature is to down-regulate skeletal muscle recruitment. This presents a circular model for which there is no apparent end to the ultimate physiological outcome; a 'hot brain' selectively cooled in order to reduce the CNS drive to skeletal muscle. This review will examine the postulates of the CLT and SBC with their relationship to the avoidance of a 'hot brain' which together argue for a theoretical position against neuroprotection as the key physiological strategy in exercise-induced hyperthermia.

  18. Design, synthesis and pharmacological evaluation of (E)-3,4-dihydroxy styryl sulfonamides derivatives as multifunctional neuroprotective agents against oxidative and inflammatory injury.

    PubMed

    Ning, Xianling; Guo, Ying; Ma, Xiaoyan; Zhu, Renzong; Tian, Chao; Zhang, Zhili; Wang, Xiaowei; Ma, Zhizhong; Liu, Junyi

    2013-09-01

    A novel class of (E)-3,4-dihydroxy styryl sulfonamides and their 3,4-diacetylated derivatives as caffeic acid phenethyl ester (CAPE) analogs was designed and prepared for improving stability and solubility of the lead compound. Their neuroprotective properties were assessed by several models. The results showed that target compounds displayed positive free radical quenching abilities, superior to that of CAPE. Compounds 6j-k and 7j-k demonstrated remarkable protection effects against damage induced by hydrogen peroxide which were apparently stronger than that of CAPE. Most of target compounds could inhibit nitric oxide production. Additionally, target compounds showed high blood-brain barrier permeability. Copyright © 2013. Published by Elsevier Ltd.

  19. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.

    PubMed

    West, Andrew B

    2017-12-01

    In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  20. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Hashemi, Hajar; Gholami, Mina

    2017-03-01

    Alcohol abuse causes severe damage to the brain neurons. Studies have reported the neuroprotective effects of curcumin against alcohol-induced neurodegeneration. However, the precise mechanism of action remains unclear. Seventy rats were equally divided into 7 groups (10 rats per group). Group 1 received normal saline (0.7ml/rat) and group 2 received alcohol (2g/kg/day) for 21days. Groups 3, 4, 5 and 6 concurrently received alcohol (2g/kg/day) and curcumin (10, 20, 40 and 60mg/kg, respectively) for 21days. Animals in group 7 self- administered alcohol for 21days. Group 8 treated with curcumin (60mg/kg, i.p.) alone for 21days. Open Field Test (OFT) was used to investigate motor activity in rats. Hippocampal oxidative, antioxidative and inflammatory factors were evaluated. Furthermore, brain cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene level by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, protein expression for BDNF, CREB, phosphorylated CREB (CREB-P), Bax and Bcl-2 was determined by western blotting. Voluntary and involuntary administration of alcohol altered motor activity in OFT, and curcumin treatment inhibited this alcohol-induced motor disturbance. Also, alcohol administration augmented lipid peroxidation, mitochondrial oxidized glutathione (GSSG), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and Bax levels in isolated hippocampal tissues. Furthermore, alcohol-induced significant reduction were observed in reduced form of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and CREB, BDNF and Bcl-2 levels. Also curcumin alone did not change the behavior and biochemical and molecular parameters. Curcumin can act as a neuroprotective agent against neurodegenerative effects of alcohol abuse, probably via activation of CREB-BDNF signaling pathway

  1. Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yonggang; Lein, Pamela J.; Liu, Cuimei

    2012-07-15

    Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatmentmore » with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.« less

  2. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity

    PubMed Central

    Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je

    2011-01-01

    Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791

  3. Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion.

    PubMed

    Mohagheghi, Fatemeh; Khalaj, Leila; Ahmadiani, Abolhassan; Rahmani, Behrouz

    2013-04-01

    Two important pathophysiological mechanisms involved during cerebral ischemia are oxidative stress and inflammation. In pathological conditions such as brain ischemia the ability of free radicals production is greater than that of elimination by endogenous antioxidative systems, so brain is highly injured due to oxidation and neuroinflammation. Fibrates as peroxisome proliferator-activated receptor (PPAR)-α ligands, are reported to have antioxidant and anti-inflammatory actions. In this study, gemfibrozil, a fibrate is investigated for its therapeutic potential against global cerebral ischemia-reperfusion (I/R) injury of male and female rats. This study particularly has focused on inflammatory and antioxidant signaling pathways, such as nuclear factor erythroid-related factor (Nrf)-2, as well as the activity of some endogenous antioxidant agents. It was found that pretreatment of animals with gemfibrozil prior to I/R resulted in a sexually dimorphic outcome. Within females it proved to be protective, modulating inflammatory factors and inducing antioxidant defense system including superoxide dismutase (SOD), catalase, as well as glutathione level. However, Nrf-2 signaling pathway was not affected. It also decreased malondialdehyde level as an index of lipid peroxidation. In contrast, gemfibrozil pretreatment was toxic to males, enhancing the expression of inflammatory factors such as tumor necrosis factor-α, nuclear factor-κB, and cyclooxygenase-2, and decreasing Nrf-2 expression and SOD activity, leading to hippocampal neurodegeneration. Considering that gemfibrozil is a commonly used anti-hyperlipidemic agent in clinic, undoubtedly more investigations are crucial to exactly unravel its sex-dependent neuroprotective/neurodegenerative potential.

  4. Synthesis and Evaluation of Neuroprotective Selenoflavanones

    PubMed Central

    Choi, Yong-Sung; Kim, Dong-Myung; Kim, Yoon-Jung; Yang, Sai; Lee, Kyung-Tae; Ryu, Jong Hoon; Jeong, Jin-Hyun

    2015-01-01

    The physicochemical properties and antioxidant activity of a molecule could be improved by the substitution of an oxygen atom in a molecule with selenium. We synthesized selenoflavanones and flavanones to evaluate their neuroprotective effects. The selenoflavanones showed improved physicochemical properties, suggestive of the ability to pass through the blood-brain barrier (BBB). They showed in vitro antioxidant effects against hydrogen peroxide, and did not result in severe cytotoxicity. Moreover, infarction volumes in a transient ischemia mouse model were significantly reduced by the selenoflavanone treatments. PMID:26690420

  5. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.

    PubMed

    Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas

    2017-09-01

    The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.

  6. Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury

    PubMed Central

    Thom, Vivien; Arumugam, Thiruma V.; Magnus, Tim; Gelderblom, Mathias

    2017-01-01

    Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg. PMID:28824617

  7. Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation.

    PubMed

    Porrini, Vanessa; Sarnico, Ilenia; Benarese, Marina; Branca, Caterina; Mota, Mariana; Lanzillotta, Annamaria; Bellucci, Arianna; Parrella, Edoardo; Faggi, Lara; Spano, Pierfranco; Imbimbo, Bruno Pietro; Pizzi, Marina

    2017-01-18

    CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.

  8. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling.

    PubMed

    He, Yating; Ma, Xiaofeng; Li, Daojing; Hao, Junwei

    2017-08-01

    Inflammatory responses are accountable for secondary injury induced by acute ischemic stroke (AIS). Previous studies indicated that O-GlcNAc modification (O-GlcNAcylation) is involved in the pathology of AIS, and increase of O-GlcNAcylation by glucosamine attenuated the brain damage after ischemia/reperfusion. Inhibition of β-N-acetylglucosaminidase (OGA) with thiamet G (TMG) is an alternative option for accumulating O-GlcNAcylated proteins. In this study, we investigate the neuroprotective effect of TMG in a mouse model of experimental stroke. Our results indicate that TMG administration either before or after middle cerebral artery occlusion (MCAO) surgery dramatically reduced infarct volume compared with that in untreated controls. TMG treatment ameliorated the neurological deficits and improved clinical outcomes in neurobehavioral tests by modulating the expression of pro-inflammatory and anti-inflammatory cytokines. Additionally, TMG administration reduced the number of Iba1 + cells in MCAO mice, decreased expression of the M1 markers, and increased expression of the M2 markers in vivo. In vitro, M1 polarization of BV2 cells was inhibited by TMG treatment. Moreover, TMG decreased the expression of iNOS and COX2 mainly by suppressing NF-κB p65 signaling. These results suggest that TMG exerts a neuroprotective effect and could be useful as an anti-inflammatory agent for ischemic stroke therapy.

  9. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells.

    PubMed

    Ramkumar, Muthu; Rajasankar, Srinivasagam; Gobi, Veerappan Venkatesh; Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Chidambaram, Ranganathan

    2017-04-18

    Mitochondrial dysfunction and oxidative stress are the main toxic events leading to dopaminergic neuronal death in Parkinson's disease (PD) and identified as vital objective for therapeutic intercession. This study investigated the neuro-protective effects of the demethoxycurcumin (DMC), a derivative of curcumin against rotenone induced neurotoxicity. SH-SY5Y neuroblastoma cells are divided into four experimental groups: untreated cells, cells incubated with rotenone (100 nM), cells treated with DMC (50 nM) + rotenone (100 nM) and DMC alone treated. 24 h after treatment with rotenone and 28 h after treatment with DMC, cell viability was assessed using the MTT assay, and levels of ROS and MMP, plus expression of apoptotic protein were analysed. Rotenone induced cell death in SH-SY5Y cells was significantly reduced by DMC pretreatment in a dose-dependent manner, indicating the potent neuroprotective effects of DMC. Rotenone treatment significantly increases the levels of ROS, loss of MMP, release of Cyt-c and expression of pro-apoptotic markers and decreases the expression of anti-apoptotic markers. Even though the results of the present study indicated that the DMC may serve as a potent therapeutic agent particularly for the treatment of neurodegenerative diseases like PD, further pre-clinical and clinical studies are required.

  10. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  11. Potential biological control agents for management of cogongrass (Cyperales: Poaceae) in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Cogongrass, Imperata cylindrica (L.) Palisot de Beauvois (Cyperales: Poaceae), is a noxious invasive weed in the southeastern USA. Surveys for potential biological control agents of cogongrass were conducted in Asia and East Africa from 2013 to 2016. Several insect herbivores were found that may hav...

  12. Biochemistry and pharmacology of reversible inhibitors of MAO-A agents: focus on moclobemide.

    PubMed Central

    Nair, N P; Ahmed, S K; Kin, N M

    1993-01-01

    Moclobemide, p-chloro-N-[morpholinoethyl]benzamide, is a prototype of RIMA (reversible inhibitor of MAO-A) agents. The compound possesses antidepressant efficacy that is comparable to that of tricyclic and polycyclic antidepressants. In humans, moclobemide is rapidly absorbed after a single oral administration and maximum concentration in plasma is reached within an hour. It is moderately to markedly bound to plasma proteins. MAO-A inhibition rises to 80% within two hours; the duration of MAO inhibition is usually between eight and ten hours. The activity of MAO is completely reestablished within 24 hours of the last dose, so that a quick switch to another antidepressant can be safely undertaken if clinical circumstances demand. RIMAs are potent inhibitors of MAO-A in the brain; they increase the free cytosolic concentrations of norepinephrine, serotonin and dopamine in neuronal cells and in synaptic vesicles. Extracellular concentrations of these monoamines also increase. In the case of moclobemide, increase in the level of serotonin is the most pronounced. Moclobemide administration also leads to increased monoamine receptor stimulation, reversal of reserpine induced behavioral effects, selective depression of REM sleep, down regulation of beta-adrenoceptors and increases in plasma prolactin and growth hormone levels. It reduces scopolamine-induced performance decrement and alcohol induced performance deficit which suggest a neuroprotective role. Tyramine potentiation with moclobemide and most other RIMA agents is negligible. PMID:7905288

  13. Free-Radical Scavenger Edaravone Treatment Confers Neuroprotection Against Traumatic Brain Injury in Rats

    PubMed Central

    Wang, Guo-Hua; Li, Yong-Cai; Li, Xia; Shi, Hong; Gao, Yan-Qin; Vosler, Peter S.

    2011-01-01

    Abstract Traumatic brain injury (TBI) is one of the leading causes of neurological disability in young adults. Edaravone, a novel synthetic small-molecule free-radical scavenger, has been shown to have a neuroprotective effect in both animal models of cerebral ischemia and stroke patients; however, the underlying mechanism is poorly understood. In this report, we investigated the potential mechanisms of edaravone treatment in a rat model of TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. Edaravone (0.75, 1.5, or 3 mg/kg) or vehicle (normal saline) was intravenously administered at 2 and 12 h after TBI. Edaravone treatment significantly decreased hippocampal CA3 neuron loss, reduced oxidative stress, and decreased neuronal programmed cell death compared to vehicle treatment. The protective effects of edaravone treatment were also related to the pathology of TBI on non-neuronal cells, as edaravone decreased astrocyte and glial activation. Lastly, edaravone treatment significantly reduced the presence of inflammatory cytokines, cerebral edema, blood–brain barrier (BBB) permeability, and, importantly, neurological deficits following TBI. Our results suggest that edaravone exerts a neuroprotective effect in the rat model of TBI. The likely mechanism is via inhibiting oxidative stress, leading to a decreased inflammatory response and glial activation, and thereby reducing neuronal death and improving neurological function. PMID:21732763

  14. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents

    PubMed Central

    Lee, Boyeon; Clarke, Douglas; Al Ahmad, Abraham; Kahle, Michael; Parham, Christi; Auckland, Lisa; Shaw, Courtney; Fidanboylu, Mehmet; Orr, Anthony Wayne; Ogunshola, Omolara; Fertala, Andrzej; Thomas, Sarah A.; Bix, Gregory J.

    2011-01-01

    Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated levels of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. Post-stroke domain V administration increased VEGF levels via a mechanism involving brain endothelial cell α5β1 integrin, and the subsequent neuroprotective and angiogenic actions of domain V were in turn mediated via VEGFR. These results suggest that perlecan domain V represents a promising approach for stroke treatment. PMID:21747167

  15. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients

    NASA Astrophysics Data System (ADS)

    Zhou, Yanyan; Li, Peng; Brantner, Adelheid; Wang, Hongjie; Shu, Xinbin; Yang, Jian; Si, Nan; Han, Lingyu; Zhao, Haiyu; Bian, Baolin

    2017-03-01

    Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30 reference standards were identified in 6 fractions of methanol extract of Maca by UHPLC-ESI-Orbitrap MS. Among them, 15 representative active compounds were simultaneously determined in 17 samples by UHPLC-ESI-QqQ MS. The results suggested that Maca from Yunnan province was the potential substitute for the one from Peru. Meanwhile, the neuroprotective effects of Maca were investigated. Three fractions and two pure compounds showed strong activities in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced zebrafish model. Among them, 80% methanol elution fraction (Fr5) showed significant neuroprotective activity, followed by 100% part (Fr6). The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was a possible mechanism of its neuroprotective effect.

  17. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients

    PubMed Central

    Zhou, Yanyan; Li, Peng; Brantner, Adelheid; Wang, Hongjie; Shu, Xinbin; Yang, Jian; Si, Nan; Han, Lingyu; Zhao, Haiyu; Bian, Baolin

    2017-01-01

    Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30 reference standards were identified in 6 fractions of methanol extract of Maca by UHPLC-ESI-Orbitrap MS. Among them, 15 representative active compounds were simultaneously determined in 17 samples by UHPLC-ESI-QqQ MS. The results suggested that Maca from Yunnan province was the potential substitute for the one from Peru. Meanwhile, the neuroprotective effects of Maca were investigated. Three fractions and two pure compounds showed strong activities in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced zebrafish model. Among them, 80% methanol elution fraction (Fr5) showed significant neuroprotective activity, followed by 100% part (Fr6). The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was a possible mechanism of its neuroprotective effect. PMID:28304399

  18. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients.

    PubMed

    Zhou, Yanyan; Li, Peng; Brantner, Adelheid; Wang, Hongjie; Shu, Xinbin; Yang, Jian; Si, Nan; Han, Lingyu; Zhao, Haiyu; Bian, Baolin

    2017-03-17

    Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30 reference standards were identified in 6 fractions of methanol extract of Maca by UHPLC-ESI-Orbitrap MS. Among them, 15 representative active compounds were simultaneously determined in 17 samples by UHPLC-ESI-QqQ MS. The results suggested that Maca from Yunnan province was the potential substitute for the one from Peru. Meanwhile, the neuroprotective effects of Maca were investigated. Three fractions and two pure compounds showed strong activities in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced zebrafish model. Among them, 80% methanol elution fraction (Fr 5 ) showed significant neuroprotective activity, followed by 100% part (Fr 6 ). The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was a possible mechanism of its neuroprotective effect.

  19. N-arachidonoyl--serine is neuroprotective after traumatic brain injury by reducing apoptosis

    PubMed Central

    Cohen-Yeshurun, Ayelet; Trembovler, Victoria; Alexandrovich, Alexander; Ryberg, Erik; Greasley, Peter J; Mechoulam, Raphael; Shohami, Esther; Leker, Ronen R

    2011-01-01

    N-arachidonoyl--serine (AraS) is a brain component structurally related to the endocannabinoid family. We investigated the neuroprotective effects of AraS following closed head injury induced by weight drop onto the exposed fronto-parietal skull and the mechanisms involved. A single injection of AraS following injury led to a significant improvement in functional outcome, and to reduced edema and lesion volume compared with vehicle. Specific antagonists to CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) or large conductance calcium-activated potassium (BK) channels reversed these effects. Specific binding assays did not indicate binding of AraS to the GPR55 cannabinoid receptor. N-arachidonoyl--serine blocked the attenuation in phosphorylated extracellular-signal-regulated kinase 1/2 (ERK) levels and led to an increase in pAkt in both the ipsilateral and contralateral cortices. Increased levels of the prosurvival factor Bcl-xL were evident 24 hours after injury in AraS-treated mice, followed by a 30% reduction in caspase-3 activity, measured 3 days after injury. Treatment with a CB2 antagonist, but not with a CB1 antagonist, reversed this effect. Our results suggest that administration of AraS leads to neuroprotection via ERK and Akt phosphorylation and induction of their downstream antiapoptotic pathways. These protective effects are related mostly to indirect signaling via the CB2R and TRPV1 channels but not through CB1 or GPR55 receptors. PMID:21505478

  20. Taurine and its neuroprotective role.

    PubMed

    Kumari, Neeta; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Taurine plays multiple roles in the CNS including acting as a -neuro-modulator, an osmoregulator, a regulator of cytoplasmic calcium levels, a trophic factor in development, and a neuroprotectant. In neurons taurine has been shown to prevent mitochondrial dysfunction and to protect against endoplasmic reticulum (ER) stress associated with neurological disorders. In cortical neurons in culture taurine protects against excitotoxicity through reversing an increase in levels of key ER signaling components including eIF-2-alpha and cleaved ATF6. The role of communication between the ER and mitochondrion is also important and examples are presented of protection by taurine against ER stress together with prevention of subsequent mitochondrial initiated apoptosis.