Sample records for potential nitrite oxidation

  1. Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification.

    PubMed

    Hemp, James; Lücker, Sebastian; Schott, Joachim; Pace, Laura A; Johnson, Jena E; Schink, Bernhard; Daims, Holger; Fischer, Woodward W

    2016-11-01

    Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.

  2. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil.

    PubMed

    Ke, Xiubin; Angel, Roey; Lu, Yahai; Conrad, Ralf

    2013-08-01

    The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits

    PubMed Central

    Machha, Ajay

    2012-01-01

    Purpose In the last decade, a growing scientific and medical interest has emerged toward cardiovascular effects of dietary nitrite and nitrate; however, many questions concerning their mode of action(s) remain unanswered. In this review, we focus on multiple mechanisms that might account for potential cardiovascular beneficial effects of dietary nitrite and nitrate. Results Beneficial changes to cardiovascular health from dietary nitrite and nitrate might result from several mechanism(s) including their reduction into nitric oxide, improvement in endothelial function, vascular relaxation, and/or inhibition of the platelet aggregation. From recently obtained evidence, it appears that the longstanding concerns about the toxicity of oral nitrite or nitrate are overstated. Conclusion Dietary nitrite and nitrate may have cardiovascular protective effects in both healthy individuals and also those with cardiovascular disease conditions. A role for nitrite and nitrate in nitric oxide biosynthesis and/or in improving nitric oxide bioavailability may eventually provide a rationale for using dietary nitrite and nitrate supplementation in the treatment and prevention of cardiovascular diseases. PMID:21626413

  4. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  5. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    PubMed Central

    Lochmatter, Samuel; Maillard, Julien; Holliger, Christof

    2014-01-01

    This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970

  6. Manganese and the limits of high potential phototrophy

    NASA Astrophysics Data System (ADS)

    Fischer, W. W.; Hemp, J.; Johnson, J. E.

    2013-12-01

    Photosynthetic reaction centers create high-energy electrons using light, harnessing the charge separation to simultaneously provide the cell with a strong oxidant and strong reductant. Many substrates can be used as electron donors for phototrophy, however there appears to be important energetic limits. In oxygenic photosynthesis photosystem II (PSII) provides a very strong oxidant that is capable of oxidizing water (ca. +830 mV) to molecular oxygen at the water-oxidizing complex, a redox-active tetra-manganese cluster. Anoxygenic photosystems however appear to only be able to oxidize lower potential electron donors (Fe2+, H2, S0, HS, S2O32-, NO2-, AsO33-).. Several transitional photosystems have been proposed as evolutionary intermediates between anoxygenic and oxygenic photosynthesis, with electron donors of higher redox potentials such as nitrite (ca. +431 mV) or Mn2+ (ca. +780 mV) bridging the redox gap to water. While a range of observations from the geological record support a Mn2+-based transitional photosystem (Johnson et al. 2013), this proposed photochemical scheme is distinct from that observed in anoxygenic photosynthetic organisms. Mechanistically all anoxygenic reaction centers receive their electrons indirectly via soluble electron carriers such as cytochrome c, high potential iron sulfur proteins or cupredoxins. Conversely Mn2+ oxidation is only known to occur today via direct oxidation, such as during photoassembly of the water-oxidizing complex of PSII, or by two distinct, non-energy-conserving mechanisms using molecular oxygen. No natural photosystem is known to solely perform Mn2+-oxidation. The highest redox-potential accessed by known anoxygenic phototrophs oxidizes nitrite (Schott et al. 2010), but it has been unclear until now whether the reaction center is specially adapted to produce high potential oxidants, similar to that of PSII to oxidize Mn2+ and water. To constrain this we sequenced the genome of the nitrite-oxidizing phototroph Thiocapsa sp. KS1. The data reveal that a type II reaction center that looks identical to other closely related strains that lack such a high potential metabolism. Unlike the direct Mn2+ oxidation, nitrite oxidation appears to require no special mutations, implying that nitrite oxidation occurs via cytochromes or cupredoxins, in family with other anoxygenic electron donations. These results define a broad limit for high potential electron donors for anoxygenic photosynthesis, and indicate that only Mn2+--oxidizing photosynthesis (prior to water oxidation by oxygenic phototrophs) likely requires a direct interaction with the reaction center. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria, PNAS, Schott J, Griffin BM, Schink B (2010) Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17, Microbiology, 156, 2428-2437.

  7. Effect of curing agents on the oxidative and nitrosative damage to meat proteins during processing of fermented sausages.

    PubMed

    Villaverde, A; Morcuende, D; Estévez, M

    2014-07-01

    The effect of increasing concentrations of curing agents, ascorbate (0, 250, and 500 ppm), and nitrite (0, 75, and 150 ppm), on the oxidative and nitrosative damage to proteins during processing of fermented sausages was studied. The potential influence of these reactions on color and texture of the fermented sausages was also addressed. Nitrite had a pro-oxidant effect on tryptophan depletion and promoted the formation of protein carbonyls and Schiff bases. The nitration degree in the fermented sausages was also dependent on nitrite concentration. On the other hand, ascorbate acted as an efficient inhibitor of the oxidative and nitrosative damage to meat proteins. As expected, nitrite clearly favored the formation of the cured red color and ascorbate acted as an enhancer of color formation. Nitrite content was positively correlated with hardness. The chemistry behind the action of nitrite and ascorbate on muscle proteins during meat fermentation is thoroughly discussed. The results suggest that ascorbate (500 ppm) may be required to compensate the pro-oxidant impact of nitrite on meat proteins. This study provides insight on the action of curing agents on meat proteins during processing of fermented sausages. This chemistry background provides understanding of the potential influence of the oxidative and nitrosative damage to proteins on the quality of processed muscle foods. The study provides novel information on the impact of the combination of nitrite and ascorbate on the chemical deterioration of proteins and the influence on particular quality traits of fermented sausages. These data may be of interest for the design of cured muscle foods of enhanced quality. © 2014 Institute of Food Technologists®

  8. Erythrocytes are the major intravascular storage sites of nitrite in human blood

    PubMed Central

    Dejam, André; Hunter, Christian J.; Pelletier, Mildred M.; Hsu, Lewis L.; Machado, Roberto F.; Shiva, Sruti; Power, Gordon G.; Kelm, Malte; Gladwin, Mark T.; Schechter, Alan N.

    2005-01-01

    Plasma levels of nitrite ions have been used as an index of nitric oxide synthase (NOS) activity in vivo. Recent data suggest that nitrite is a potential intravascular repository for nitric oxide (NO), bioactivated by a nitrite reductase activity of deoxyhemoglobin. The precise levels and compartmentalization of nitrite within blood and erythrocytes have not been determined. Nitrite levels in whole blood and erythrocytes were determined using reductive chemiluminescence in conjunction with a ferricyanide-based hemoglobin oxidation assay to prevent nitrite destruction. This method yields sensitive and linear measurements of whole blood nitrite over 24 hours at room temperature. Nitrite levels measured in plasma, erythrocytes, and whole blood from 15 healthy volunteers were 121 plus or minus 9, 288 plus or minus 47, and 176 plus or minus 17 nM, indicating a surprisingly high concentration of nitrite within erythrocytes. The majority of nitrite in erythrocytes is located in the cytosol unbound to proteins. In humans, we found a significant artery-to-vein gradient of nitrite in whole blood and erythrocytes. Shear stress and acetylcholine-mediated stimulation of endothelial NOS significantly increased venous nitrite levels. These studies suggest a dynamic intravascular NO metabolism in which endothelial NOS-derived NO is stabilized as nitrite, transported by erythrocytes, and consumed during arterial-to-venous transit. (Blood. 2005;106:734-739) PMID:15774613

  9. Normoxic Cyclic GMP-independent Oxidative Signaling by Nitrite Enhances Airway Epithelial Cell Proliferation and Wound Healing

    PubMed Central

    Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.

    2013-01-01

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest novel oxidative signaling pathways involving nitrite-H2O2 reactions, possibly via the intermediary, NO2•. PMID:22425780

  10. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.

    PubMed

    Lu, Yongsheng; Xu, Lu; Shu, Weikang; Zhou, Jizhi; Chen, Xueping; Xu, Yunfeng; Qian, Guangren

    2017-01-01

    Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL -1 )h -1 were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL -1 of NH 4 + -N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO 2 - -N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Combined effects of gamma radiation doses and sodium nitrite content on the lipid oxidation and color of mortadella.

    PubMed

    Dutra, Monalisa Pereira; Cardoso, Giselle Pereira; Fontes, Paulo Rogério; Silva, Douglas Roberto Guimarães; Pereira, Marcio Tadeu; Ramos, Alcinéia de Lemos Souza; Ramos, Eduardo Mendes

    2017-12-15

    The effects of different doses of gamma radiation (0-20kGy) on the color and lipid oxidation of mortadella prepared with increasing nitrite levels (0-300ppm) were evaluated using a central composite rotatable design. Higher radiation doses increased the redox potential, promoted the lipid oxidation and elevating the hue color of the mortadellas. Nevertheless, higher addition of sodium nitrite elevated the residual nitrite content, reduced the lipid oxidation and promoted the increase of redness and the reduce of hue color of the mortadellas, regardless of the radiation dose applied. Nitrite addition had a greater effect than irradiation on the quality parameters evaluated, and even at low levels (∼75ppm), its use decreased the deleterious effects of irradiation at doses as high as 20kGy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus

    PubMed Central

    Füssel, Jessika; Lücker, Sebastian; Yilmaz, Pelin; Nowka, Boris; van Kessel, Maartje A. H. J.; Bourceau, Patric; Hach, Philipp F.; Littmann, Sten; Berg, Jasmine; Spieck, Eva; Daims, Holger; Kuypers, Marcel M. M.; Lam, Phyllis

    2017-01-01

    Nitrite-oxidizing bacteria (NOB) have conventionally been regarded as a highly specialized functional group responsible for the production of nitrate in the environment. However, recent culture-based studies suggest that they have the capacity to lead alternative lifestyles, but direct environmental evidence for the contribution of marine nitrite oxidizers to other processes has been lacking to date. We report on the alternative biogeochemical functions, worldwide distribution, and sometimes high abundance of the marine NOB Nitrococcus. These largely overlooked bacteria are capable of not only oxidizing nitrite but also reducing nitrate and producing nitrous oxide, an ozone-depleting agent and greenhouse gas. Furthermore, Nitrococcus can aerobically oxidize sulfide, thereby also engaging in the sulfur cycle. In the currently fast-changing global oceans, these findings highlight the potential functional switches these ubiquitous bacteria can perform in various biogeochemical cycles, each with distinct or even contrasting consequences. PMID:29109973

  13. Decreased nitrite levels in erythrocytes of children with β-thalassemia/hemoglobin E.

    PubMed

    Suvachananonda, Thitiwat; Wankham, Amara; Srihirun, Sirada; Tanratana, Pansakorn; Unchern, Supeenun; Fucharoen, Suthat; Chuansumrit, Ampaiwan; Sirachainan, Nongnuch; Sibmooh, Nathawut

    2013-09-01

    Nitrite anion is bioactive nitric oxide (NO) species circulating in blood, and represents the NO bioavailability and endothelial function. In this study, we aimed to investigate the nitrite levels and the correlation with hemolysis and severity in β-thalassemia/hemoglobin E (β-thal/HbE). 38 Children (12.0±1.9 years of age) with a diagnosis of mild, moderate and severe β-thalassemia were enrolled in the study. The blood nitrite levels and potential plasma NO consumption were measured by the chemiluminescence method. The nitrite levels in whole blood and erythrocytes of the severe thalassemia subjects were lower than those of the control subjects. At day 7 after transfusion of packed erythrocytes, the nitrite levels in erythrocytes increased. The plasma hemoglobin and NO consumption increased in the severe thalassemia subjects. The nitrite levels in erythrocytes inversely correlated with plasma hemoglobin, lactate dehydrogenase activity, potential NO consumption, and lipid peroxidation. Our studies demonstrate the decreased NO bioavailability in thalassemia, which could result from endothelial dysfunction, the increased potential NO consumption in plasma by cell-free hemoglobin and oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  15. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    PubMed

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions.

    PubMed

    Bedale, Wendy; Sindelar, Jeffrey J; Milkowski, Andrew L

    2016-10-01

    Consumers have an illogical relationship with nitrite (and its precursor, nitrate) in food. Despite a long history of use, nitrite was nearly banned from use in foods in the 1970s due to health concerns related to the potential for carcinogenic nitrosamine formation. Changes in meat processing methods reduced those potential risks, and nitrite continued to be used in foods. Since then, two opposing movements continue to shape how consumers view dietary nitrate and nitrite. The discovery of the profound physiological importance of nitric oxide led to the realization that dietary nitrate contributes significantly to the nitrogen reservoir for nitric oxide formation. Numerous clinical studies have also demonstrated beneficial effects from dietary nitrate consumption, especially in vascular and metabolic health. However, the latest wave of consumer sentiment against food additives, the clean-label movement, has renewed consumer fear and avoidance of preservatives, including nitrite. Education is necessary but may not be sufficient to resolve this disconnect in consumer perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Inorganic Nitrite Therapy: Historical perspective and future directions

    PubMed Central

    Kevil, Christopher G.; Kolluru, Gopi K.; Pattillo, Christopher B.; Giordano, Tony

    2015-01-01

    Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability that is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO based therapeutic agent through the unique action of sodium nitrite as an NO pro-drug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities of nitrite based therapies. PMID:21619929

  18. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical versus Biological Iron Cycling in Anoxic Environments

    PubMed Central

    2013-01-01

    This study introduces a newly isolated, genetically tractable bacterium (Pseudogulbenkiania sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-oxidation activity is directly biologically catalyzed. Specifically, we focused on the role of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribution (∼30–35%) from ligand-enhanced chemical oxidation. Our work with the model denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical oxidation of Fe(II) by microbially produced nitrite can be an important general side effect of biological denitrification. Our assessment of reaction rates derived from literature reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial production of nitrite) and truly biological Fe(II) oxidation. PMID:23402562

  19. Nitrite in organ protection

    PubMed Central

    Rassaf, Tienush; Ferdinandy, Peter; Schulz, Rainer

    2014-01-01

    In the last decade, the nitrate-nitrite-nitric oxide pathway has emerged to therapeutical importance. Modulation of endogenous nitrate and nitrite levels with the subsequent S-nitros(yl)ation of the downstream signalling cascade open the way for novel cytoprotective strategies. In the following, we summarize the actual literature and give a short overview on the potential of nitrite in organ protection. PMID:23826831

  20. Nitrite oxidation in the Namibian oxygen minimum zone.

    PubMed

    Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel M M

    2012-06-01

    Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.

  1. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations.

    PubMed

    Yu, Ran; Chandran, Kartik

    2010-03-04

    Nitrosomonas europaea is a widely studied chemolithoautotrophic ammonia oxidizing bacterium. While significant work exists on the ammonia oxidation pathway of N. europaea, its responses to factors such as dissolved oxygen limitation or sufficiency or exposure to high nitrite concentrations, particularly at the functional gene transcription level are relatively sparse. The principal goal of this study was to investigate responses at the whole-cell activity and gene transcript levels in N. europaea 19718 batch cultures, which were cultivated at different dissolved oxygen and nitrite concentrations. Transcription of genes coding for principal metabolic pathways including ammonia oxidation (amoA), hydroxylamine oxidation (hao), nitrite reduction (nirK) and nitric oxide reduction (norB) were quantitatively measured during batch growth, at a range of DO concentrations (0.5, 1.5 and 3.0 mg O2/L). Measurements were also conducted during growth at 1.5 mg O2/L in the presence of 280 mg-N/L of externally added nitrite. Several wide ranging responses to DO limitation and nitrite toxicity were observed in N. europaea batch cultures. In contrast to our initial hypothesis, exponential phase mRNA concentrations of both amoA and hao increased with decreasing DO concentrations, suggesting a mechanism to metabolize ammonia and hydroxylamine more effectively under DO limitation. Batch growth in the presence of 280 mg nitrite-N/L resulted in elevated exponential phase nirK and norB mRNA concentrations, potentially to promote utilization of nitrite as an electron acceptor and to detoxify nitrite. This response was in keeping with our initial hypothesis and congruent with similar responses in heterotrophic denitrifying bacteria. Stationary phase responses were distinct from exponential phase responses in most cases, suggesting a strong impact of ammonia availability and metabolism on responses to DO limitation and nitrite toxicity. In general, whole-cell responses to DO limitation or nitrite toxicity, such as sOUR or nitrite reduction to nitric oxide (NO) did not parallel the corresponding mRNA (nirK) profiles, suggesting differences between the gene transcription and enzyme translation or activity levels. The results of this study show that N. europaea possesses specific mechanisms to cope with growth under low DO concentrations and high nitrite concentrations. These mechanisms are additionally influenced by the physiological growth state of N. europaea cultures and are possibly geared to enable more efficient substrate utilization or nitrite detoxification.

  2. Nitrite oxidation in the Namibian oxygen minimum zone

    PubMed Central

    Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM

    2012-01-01

    Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426

  3. Metagenomic Evidence for the Presence of Comammox Nitrospira-Like Bacteria in a Drinking Water System.

    PubMed

    Pinto, Ameet J; Marcus, Daniel N; Ijaz, Umer Zeeshan; Bautista-de Lose Santos, Quyen Melina; Dick, Gregory J; Raskin, Lutgarde

    2016-01-01

    We report metagenomic evidence for the presence of a Nitrospira-like organism with the metabolic potential to perform the complete oxidation of ammonia to nitrate (i.e., it is a complete ammonia oxidizer [comammox]) in a drinking water system. This metagenome bin was discovered through shotgun DNA sequencing of samples from biologically active filters at the drinking water treatment plant in Ann Arbor, MI. Ribosomal proteins, 16S rRNA, and nxrA gene analyses confirmed that this genome is related to Nitrospira-like nitrite-oxidizing bacteria. The presence of the full suite of ammonia oxidation genes, including ammonia monooxygenase and hydroxylamine dehydrogenase, on a single ungapped scaffold within this metagenome bin suggests the presence of recently discovered comammox potential. Evaluations based on coverage and k-mer frequency distribution, use of two different genome-binning approaches, and nucleic acid and protein similarity analyses support the presence of this scaffold within the Nitrospira metagenome bin. The amoA gene found in this metagenome bin is divergent from those of canonical ammonia and methane oxidizers and clusters closely with the unusual amoA gene of comammox Nitrospira. This finding suggests that previously reported imbalances in abundances of nitrite- and ammonia-oxidizing bacteria/archaea may likely be explained by the capacity of Nitrospira-like organisms to completely oxidize ammonia. This finding might have significant implications for our understanding of microbially mediated nitrogen transformations in engineered and natural systems. IMPORTANCE Nitrification plays an important role in regulating the concentrations of inorganic nitrogen species in a range of environments, from drinking water and wastewater treatment plants to the oceans. Until recently, aerobic nitrification was considered to be a two-step process involving ammonia-oxidizing bacteria or archaea and nitrite-oxidizing bacteria. This process requires close cooperation between these two functional guilds for complete conversion of ammonia to nitrate, without the accumulation of nitrite or other intermediates, such as nitrous oxide, a potent greenhouse gas. The discovery of a single organism with the potential to oxidize both ammonia and nitrite adds a new dimension to the current understanding of aerobic nitrification, while presenting opportunities to rethink nitrogen management in engineered systems.

  4. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    PubMed

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering.

    PubMed

    Brockmann, D; Morgenroth, E

    2010-03-01

    In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Biodegradability of fluoxetine, mefenamic acid, and metoprolol using different microbial consortiums.

    PubMed

    Velázquez, Yolanda Flores; Nacheva, Petia Mijaylova

    2017-03-01

    The biodegradation of fluoxetine, mefenamic acid, and metoprolol using ammonium-nitrite-oxidizing consortium, nitrite-oxidizing consortium, and heterotrophic biomass was evaluated in batch tests applying different retention times. The ammonium-nitrite-oxidizing consortium presented the highest biodegradation percentages for mefenamic acid and metoprolol, of 85 and 64% respectively. This consortium was also capable to biodegrade 79% of fluoxetine. The heterotrophic consortium showed the highest ability to biodegrade fluoxetine reaching 85%, and it also had a high potential for biodegrading mefenamic acid and metoprolol, of 66 and 58% respectively. The nitrite-oxidizing consortium presented the lowest biodegradation of the three pharmaceuticals, of less than 48%. The determination of the selected pharmaceuticals in the dissolved phase and in the biomass indicated that biodegradation was the major removal mechanism of the three compounds. Based on the obtained results, the biodegradation kinetics was adjusted to pseudo-first-order for the three pharmaceuticals. The values of k biol for fluoxetine, mefenamic acid, and metoprolol determined with the three consortiums indicated that ammonium-nitrite-oxidizing and heterotrophic biomass allow a partial biodegradation of the compounds, while no substantial biodegradation can be expected using nitrite-oxidizing consortium. Metoprolol was the less biodegradable compound. The sorption of fluoxetine and mefenamic acid onto biomass had a significant contribution for their removal (6-14%). The lowest sorption coefficients were obtained for metoprolol indicating that the sorption onto biomass is poor (3-4%), and the contribution of this process to the global removal can be neglected.

  7. Dietary nitrates, nitrites, and cardiovascular disease.

    PubMed

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  8. Inorganic nitrite supplementation for healthy arterial aging

    PubMed Central

    DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.

    2014-01-01

    Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999

  9. The use of atmospheric pressure plasma as a curing process for canned ground ham.

    PubMed

    Lee, Juri; Jo, Kyung; Lim, Yubong; Jeon, Hee Joon; Choe, Jun Ho; Jo, Cheorun; Jung, Samooel

    2018-02-01

    This study investigated the potential use of atmospheric pressure plasma (APP) treatment as a curing process for canned ground ham. APP treatment for 60min while mixing increased the nitrite content in the meat batters from 0.64 to 60.50mgkg -1 while the pH and the total content of aerobic bacteria in the meat batters were unchanged. The canned ground hams cured by the APP treatment for 30min displayed no difference in their physicochemical qualities, such as nitrosyl hemochrome, color, residual nitrite, texture, lipid oxidation, and protein oxidation, compared with those of canned ground hams cured with sodium nitrite or celery powder at 42mgkg -1 of nitrite. The canned ground hams cured by the APP treatment received a higher score in taste and overall acceptability than those cured with sodium nitrite. Canned ground ham can be cured by the APP treatment without nitrite additives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Low NO Concentration Dependence of Reductive Nitrosylation Reaction of Hemoglobin*

    PubMed Central

    Tejero, Jesús; Basu, Swati; Helms, Christine; Hogg, Neil; King, S. Bruce; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2012-01-01

    The reductive nitrosylation of ferric (met)hemoglobin is of considerable interest and remains incompletely explained. We have previously observed that at low NO concentrations the reaction with tetrameric hemoglobin occurs with an observed rate constant that is at least 5 times faster than that observed at higher concentrations. This was ascribed to a faster reaction of NO with a methemoglobin-nitrite complex. We now report detailed studies of this reaction of low NO with methemoglobin. Nitric oxide paradoxically reacts with ferric hemoglobin with faster observed rate constants at the lower NO concentration in a manner that is not affected by changes in nitrite concentration, suggesting that it is not a competition between NO and nitrite, as we previously hypothesized. By evaluation of the fast reaction in the presence of allosteric effectors and isolated β- and α-chains of hemoglobin, it appears that NO reacts with a subpopulation of β-subunit ferric hemes whose population is influenced by quaternary state, redox potential, and hemoglobin dimerization. To further characterize the role of nitrite, we developed a system that oxidizes nitrite to nitrate to eliminate nitrite contamination. Removal of nitrite does not alter reaction kinetics, but modulates reaction products, with a decrease in the formation of S-nitrosothiols. These results are consistent with the formation of NO2/N2O3 in the presence of nitrite. The observed fast reductive nitrosylation observed at low NO concentrations may function to preserve NO bioactivity via primary oxidation of NO to form nitrite or in the presence of nitrite to form N2O3 and S-nitrosothiols. PMID:22493289

  11. Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; Ward, Bess B.

    2017-02-01

    The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.

  12. Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water

    PubMed

    Beitz; Bechmann; Mitzner

    1999-01-01

    The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.

  13. Migraines Are Correlated with Higher Levels of Nitrate-, Nitrite-, and Nitric Oxide-Reducing Oral Microbes in the American Gut Project Cohort

    PubMed Central

    Gonzalez, Antonio; Hyde, Embriette; Sangwan, Naseer; Gilbert, Jack A.; Viirre, Erik

    2016-01-01

    ABSTRACT Nitrates, such as cardiac therapeutics and food additives, are common headache triggers, with nitric oxide playing an important role. Facultative anaerobic bacteria in the oral cavity may contribute migraine-triggering levels of nitric oxide through the salivary nitrate-nitrite-nitric oxide pathway. Using high-throughput sequencing technologies, we detected observable and significantly higher abundances of nitrate, nitrite, and nitric oxide reductase genes in migraineurs versus nonmigraineurs in samples collected from the oral cavity and a slight but significant difference in fecal samples. IMPORTANCE Recent work has demonstrated a potentially symbiotic relationship between oral commensal bacteria and humans through the salivary nitrate-nitrite-nitric oxide pathway (C. Duncan et al., Nat Med 1:546–551, 1995, http://dx.doi.org/10.1038/nm0695-546). Oral nitrate-reducing bacteria contribute physiologically relevant levels of nitrite and nitric oxide to the human host that may have positive downstream effects on cardiovascular health (V. Kapil et al., Free Radic Biol Med 55:93–100, 2013, http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.013). In the work presented here, we used 16S rRNA Illumina sequencing to determine whether a connection exists between oral nitrate-reducing bacteria, nitrates for cardiovascular disease, and migraines, which are a common side effect of nitrate medications (U. Thadani and T. Rodgers, Expert Opin Drug Saf 5:667–674, 2006, http://dx.doi.org/10.1517/14740338.5.5.667). PMID:27822557

  14. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health.

    PubMed

    Koch, Carl D; Gladwin, Mark T; Freeman, Bruce A; Lundberg, Jon O; Weitzberg, Eddie; Morris, Alison

    2017-04-01

    Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayavedra-Soto, Luis; Arp, Daniel

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plantmore » productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.« less

  16. The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing.

    PubMed

    Kruse, Myriam; Zumbrägel, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André

    2013-10-01

    Metabolically-active autotrophic nitrite oxidizers from activated sludge were labeled with (13)C-bicarbonate under exposure to different temperatures and nitrite concentrations. The labeled samples were characterized by FAME-SIP (fatty acid methyl ester-stable isotope probing). The compound cis-11-palmitoleic acid, which is the major lipid of the most abundant nitrite oxidizer in activated sludge, Candidatus Nitrospira defluvii, showed (13)C-incorporation in all samples exposed to 3 mM nitrite. Subsequently, the lipid cis-7-palmitoleic acid was labeled, and it indicated the activity of a nitrite oxidizer that was different from the known Nitrospira taxa in activated sludge. The highest incorporation of cis-7-palmitoleic acid label was found after incubation with a nitrite concentration of 0.3 mM at 17 and 22°C. While activity of Nitrobacter populations could not be detected by the FAME-SIP approach, an unknown nitrite oxidizer with the major lipid cis-9 isomer of palmitoleic acid exhibited (13)C-incorporation at 28°C with 30 mM nitrite. These results indicated flexibility of nitrite-oxidizing guilds in a complex community responding to different conditions. Labeled lipids so far not described for activated sludge-associated nitrifiers indicated the presence of unknown nitrite oxidizers in this habitat. The FAME-SIP-based information can be used to define appropriate conditions for the enrichment of nitrite-oxidizing guilds from complex samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption rates were also detected within the layer of the secondary nitrite maximum. The imbalances between nitrite production and consumption rates help to explain the distribution of nitrite in the water column. The primary nitrite maximum in the upper oxycline is consistent with ammonium oxidation exceeding nitrite oxidation. Nitrite consumption rates exceeding rates of nitrite production result in the low nitrite concentration at the oxic-anoxic interface. Within the secondary nitrite maximum in the anoxic layer, production and consumption of nitrite are equivalent within measurement error. These low turnover rates suggest the stability of the nitrite pool in the secondary nitrite maximum over long time scales (decades to millennial). These data could be implemented into biogeochemical models to decipher the origin and the evolution of nitrite distribution in the OMZs.

  18. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    PubMed

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  19. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  20. Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion

    PubMed Central

    Pride, Christelle Kamga; Mo, Li; Quesnelle, Kelly; Dagda, Ruben K.; Murillo, Daniel; Geary, Lisa; Corey, Catherine; Portella, Rafael; Zharikov, Sergey; St Croix, Claudette; Maniar, Salony; Chu, Charleen T.; K. H. Khoo, Nicholas; Shiva, Sruti

    2014-01-01

    Aims Nitrite (NO2–), a dietary constituent and nitric oxide (NO) oxidation product, mediates cardioprotection after ischaemia/reperfusion (I/R) in a number of animal models when administered during ischaemia or as a pre-conditioning agent hours to days prior to the ischaemic episode. When present during ischaemia, the reduction of nitrite to bioactive NO by deoxygenated haem proteins accounts for its protective effects. However, the mechanism of nitrite-induced pre-conditioning, a normoxic response which does not appear to require reduction of nitrite to NO, remains unexplored. Methods and results Using a model of hypoxia/reoxygenation (H/R) in cultured rat H9c2 cardiomyocytes, we demonstrate that a transient (30 min) normoxic nitrite treatment significantly attenuates cell death after a hypoxic episode initiated 1 h later. Mechanistically, this protection depends on the activation of protein kinase A, which phosphorylates and inhibits dynamin-related protein 1, the predominant regulator of mitochondrial fission. This results morphologically, in the promotion of mitochondrial fusion and functionally in the augmentation of mitochondrial membrane potential and superoxide production. We identify AMP kinase (AMPK) as a downstream target of the mitochondrial reactive oxygen species (ROS) generated and show that its oxidation and subsequent phosphorylation are essential for cytoprotection, as scavenging of ROS prevents AMPK activation and inhibits nitrite-mediated protection after H/R. The protein kinase A-dependent protection mediated by nitrite is reproduced in an intact isolated rat heart model of I/R. Conclusions These data are the first to demonstrate nitrite-dependent normoxic modulation of both mitochondrial morphology and function and reveal a novel signalling pathway responsible for nitrite-mediated cardioprotection. PMID:24081164

  1. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    PubMed

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  2. Dermal application of nitric oxide releasing acidified nitrite-containing liniments significantly reduces blood pressure in humans.

    PubMed

    Opländer, Christian; Volkmar, Christine M; Paunel-Görgülü, Adnana; Fritsch, Thomas; van Faassen, Ernst E; Mürtz, Manfred; Grieb, Gerrit; Bozkurt, Ahmet; Hemmrich, Karsten; Windolf, Joachim; Suschek, Christoph V

    2012-02-15

    Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Influence of long-term diesel fuel pollution on nitrite-oxidising activity and population size of nitrobacter spp in soil.

    PubMed

    Deni, Jamal; Penninckx, Michel J

    2004-01-01

    Previous investigations have shown that ammonia oxidation is not inhibited by diesel fuel in a soil with a long history of contamination contrary to a non-contaminated soil. As a consequence, ammonia oxidation does not constitute a Limited step in nitrification process (Appl. Environ. Microbiol. 65 (1999) 4008). Moreover, this type of soil also has had the opportunity to develop an abundant microbial population able to metabolise the diesel hydrocarbons. Whether the properties of soil with a long history of diesel fuel contamination may affect the activity of nitrite-oxidising bacteria was investigated. It was observed that re-exposure of soil to diesel fuel apparently stimulated the proliferation of nitrite-oxidising bacteria, as determined by most probable number (MPN) culture technique and MPN-polymerase chain reaction technique. The potential of nitrite-oxidising activity in soil treated with diesel fuel was about 4 times higher than in the control without addition. In the presence of diesel fuel and ammonium, the potential nitrite-oxidising activity was 40% higher than in presence of ammonium only. However, in the presence of hydrocarbon only, low proliferation of Nitrobacter was observed, probably because the heterotrophic bacteria were strongly limited by lack of nitrogen and did not produce sufficient organic metabolites that could be used by the Nitrobacter cells.

  4. Food sources of nitrates and nitrites: the physiologic context for potential health benefits.

    PubMed

    Hord, Norman G; Tang, Yaoping; Bryan, Nathan S

    2009-07-01

    The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.

  5. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  6. Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor.

    PubMed

    Na, Kwan Byung; Hwang, Tae Sik; Lee, Sung Hun; Ahn, Dae Hee; Park, Doo Hyun

    2007-03-01

    The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

  7. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    PubMed

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  8. Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils

    PubMed Central

    van Dalen, Christine J.; Winterbourn, Christine C.; Kettle, Anthony J.

    2005-01-01

    Eosinophil peroxidase is a haem enzyme of eosinophils that is implicated in oxidative tissue injury in asthma. It uses hydrogen peroxide to oxidize thiocyanate and bromide to their respective hypohalous acids. Nitrite is also a substrate for eosinophil peroxidase. We have investigated the mechanisms by which the enzyme oxidizes nitrite. Nitrite was very effective at inhibiting hypothiocyanous acid (‘cyanosulphenic acid’) and hypobromous acid production. Spectral studies showed that nitrite reduced the enzyme to its compound II form, which is a redox intermediate containing FeIV in the haem active site. Compound II does not oxidize thiocyanate or bromide. These results demonstrate that nitrite is readily oxidized by compound I, which contains FeV at the active site. However, it reacts more slowly with compound II. The observed rate constant for reduction of compound II by nitrite was determined to be 5.6×103 M−1·s−1. Eosinophils were at least 4-fold more effective at promoting nitration of a heptapeptide than neutrophils. This result is explained by our finding that nitrite reacts 10-fold faster with compound II of eosinophil peroxidase than with the analogous redox intermediate of myeloperoxidase. Nitration by eosinophils was increased 3-fold by superoxide dismutase, which indicates that superoxide interferes with nitration. We propose that at sites of eosinophilic inflammation, low concentrations of nitrite will retard oxidant production by eosinophil peroxidase, whereas at higher concentrations nitrogen dioxide will be a major oxidant formed by these cells. The efficiency of protein nitration will be decreased by the diffusion-controlled reaction of superoxide with nitrogen dioxide. PMID:16336215

  9. Separate Nitrite, Nitric Oxide, and Nitrous Oxide Reducing Fractions from Pseudomonas perfectomarinus

    PubMed Central

    Payne, W. J.; Riley, P. S.; Cox, C. D.

    1971-01-01

    Pseudomonas perfectomarinus was found to grow anaerobically at the expense of nitrate, nitrite, or nitrous oxide but not chlorate or nitric oxide. In several repetitive experiments, anaerobic incubation in culture media containing nitrate revealed that an average of 82% of the cells in aerobically grown populations were converted to the capacity for respiration of nitrate. Although they did not form colonies under these conditions, the bacteria synthesized the denitrifying enzymes within 3 hr in the absence of oxygen or another acceptable inorganic oxidant. This was demonstrated by the ability, after anaerobic incubation, of cells and of extracts to reduce nitrite, nitric oxide, and nitrous oxide to nitrogen. From crude extracts of cells grown on nitrate, nitrite, or nitrous oxide, separate complex fractions were obtained that utilized reduced nicotinamide adenine dinucleotide as the source of electrons for the reduction of (i) nitrite to nitric oxide, (ii) nitric oxide to nitrous oxide, and (iii) nitrous oxide to nitrogen. Gas chromatographic analyses revealed that each of these fractions reduced only one of the nitrogenous oxides. PMID:4324803

  10. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  11. Nitrite formation from vegetable sources and its use as a preservative in cooked sausage.

    PubMed

    Ko, Young Mi; Park, Jin Hwa; Yoon, Ki Sun

    2017-04-01

    Due to the potential health risk associated with nitrites, nitrite alternatives from natural sources in meat products have been investigated. We compared the nitrate contents of young radish, lettuce and commercial vegetable powder (cabbage and Chinese cabbage). We also investigated the effect of incubation time and salt addition on vegetable nitrite formation from vegetable sources. The antioxidant and antimicrobial effects of vegetable nitrite in cooked sausage were also compared with sodium nitrite. Young radish produced the greatest amount of nitrite after 24 h of incubation at 38 °C. On average, an approximately 32% reduction of nitrite was observed in sausage during 4 weeks of storage. Lipid oxidation in sausage was significantly prevented by vegetable nitrite produced from vegetable powder or young radish. The colour of the sausage prepared with young radish was most similar to that of the sausage with sodium nitrite. The addition of young radish to sausage significantly prevented the growth of Listeria monocytogenes at 4 °C and Staphylococcus aureus at 8 °C. Young radish was more effective as a natural antioxidant and antimicrobial agent as compared to commercial vegetable powder, which is currently used to make natural meat products, indicating that young radish has a high potential as a natural preservative. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    PubMed

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Transcriptional Response of Nitrifying Communities to Wetting of Dry Soil

    PubMed Central

    Firestone, Mary K.

    2013-01-01

    The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers. PMID:23524666

  14. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    PubMed

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters

    PubMed Central

    Bristow, Laura A.; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B.; Bertagnolli, Anthony D.; Wright, Jody J.; Hallam, Steven J.; Ulloa, Osvaldo; Canfield, Donald E.; Revsbech, Niels Peter; Thamdrup, Bo

    2016-01-01

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (<10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss. PMID:27601665

  16. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation

    NASA Astrophysics Data System (ADS)

    Pachiadaki, Maria G.; Sintes, Eva; Bergauer, Kristin; Brown, Julia M.; Record, Nicholas R.; Swan, Brandon K.; Mathyer, Mary Elizabeth; Hallam, Steven J.; Lopez-Garcia, Purificacion; Takaki, Yoshihiro; Nunoura, Takuro; Woyke, Tanja; Herndl, Gerhard J.; Stepanauskas, Ramunas

    2017-11-01

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed.

  17. Estimation of the nitric oxide formed from hydroxylamine by Nitrosomonas

    PubMed Central

    Anderson, J. H.

    1965-01-01

    1. Nitric oxide that was produced by reducing nitrite with an excess of acidified potassium iodide under nitrogen in Warburg respirometer flasks was rapidly absorbed by a solution of permanganate in sodium hydroxide held in the side arm. A small amount of nitrous oxide (or nitrogen) that was also produced was not absorbed. 2. By using a quantitative method for the recovery of nitrite from samples of the alkaline permanganate, it was found that the sum of the nitrite N formed and the residual nitrous oxide N was equivalent to the nitrite N used to generate the gases. These results showed that alkaline permanganate completely oxidized nitric oxide to nitrite. The method was suitable for determining 0·4–20 μmoles of nitric oxide. 3. The technique was used to determine the nitric oxide content of the nitrogenous gas that was produced anaerobically from hydroxylamine by an extract of the autotrophic nitrifying micro-organism Nitrosomonas in the presence of methylene blue as electron acceptor. PMID:14342235

  18. NC10 Bacteria in a Marine Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Padilla, C. C.; Bristow, L. A.; Benson, C. R.; Sarode, N. D.; Girguis, P. R.; Glass, J. B.; DiChristina, T. J.; Thamdrup, B.; Stewart, F. J.

    2014-12-01

    Marine oxygen minimum zones (OMZs) are key regions of nitrogen cycling and nitrogen loss as N2. The potential for methane cycling to influence OMZ nitrogen budgets remains largely unknown. The anaerobic oxidation of methane (AOM) coupled to nitrite or nitrate reduction has been shown to be a potential source of methane consumption, N loss, and oxygen production in freshwater sediments, but has not been described for marine pelagic environments. Nitrite-dependent AOM is performed by bacteria of the candidate division NC10 through an intra-aerobic pathway involving the dismutation of nitric oxide to O2 and N2. We explored the potential that NC10-like bacteria are present and active in the anoxic, nitrite-rich OMZ of the Eastern Tropical North Pacific. Community transcriptome sequencing confirmed the expression of genes with top matches to the NC10 bacterium 'Candidatus Methylomirabilis oxyfera.' NC10-like transcripts increased in relative abundance with depth into the anoxic OMZ core and included genes of aerobic methanotrophy and denitrification, as well as high numbers of transcripts matching norZ nitric oxide reductase, hypothesized to play a role in the O2-yielding dismutation reaction. Phylogenetic analysis of OMZ particulate methane monooxygenase (pmoA) and 16S rRNA gene sequences recovered by PCR revealed multiple clades of NC10 phylotypes in the OMZ. Preliminary data from OMZ enrichments revealed methane-dependent nitrite consumption, but further characterization is required to identify the pathways and organisms mediating this process. These findings expand the known environmental range of NC10 and suggest the possibility of previously uncharacterized linkages between OMZ nitrogen and methane cycles.

  19. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    PubMed

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  20. Effect of temperature and dissolved oxygen on biological nitrification at high ammonia concentrations.

    PubMed

    Weon, S Y; Lee, S I; Koopman, B

    2004-11-01

    Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.

  1. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    PubMed

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  2. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    PubMed

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation

    PubMed Central

    Nowka, Boris; Daims, Holger

    2014-01-01

    Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863

  4. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells

    PubMed Central

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.

    2013-01-01

    Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol (SNO) formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell membrane associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. PMID:23639566

  6. Effects of T-state and R-state stabilization on deoxyhemoglobin-nitrite reactions and stimulation of nitric oxide signaling

    PubMed Central

    Cantu-Medellin, Nadiezhda; Vitturi, Dario A.; Rodriguez, Cilina; Murphy, Serena; Dorman, Scott; Shiva, Sruti; Zhou, Yipin; Jia, Yiping; Palmer, Andre F.; Patel, Rakesh P.

    2011-01-01

    Recent data suggest that transitions between the relaxed (R) and tense (T) state of hemoglobin control the reduction of nitrite to nitric oxide (NO) by deoxyhemoglobin. This reaction may play a role in physiologic NO homeostasis and be a novel consideration for the development of the next generation of hemoglobin-based blood oxygen carriers (HBOCs, i.e. artificial blood substitutes). Herein we tested the effects of chemical stabilization of bovine hemoglobin in either the T- (THb) or R-state (RHb) on nitrite reduction kinetics, NO-gas formation and ability to stimulate NO-dependent signaling. These studies were performed over a range of fractional saturations that is expected to mimic biological conditions. The initial rate for nitrite-reduction decreased in the following order RHb > bHb > THb, consistent with the hypothesis that the rate constant for nitrite reduction is faster with R-state Hb and slower with T-state Hb. Moreover, RHb produced more NO-gas and inhibited mitochondrial respiration more potently than both bHb and THb. Interestingly, at low oxygen fractional saturations, THb produced more NO and stimulated nitrite-dependent vasodilation more potently than bHb despite both derivatives having similar initial rates for nitrite reduction and a more negative reduction potential in THb versus bHb. These data suggest that cross-linking of bovine hemoglobin in the T-state conformation leads to a more effective coupling of nitrite reduction to NO-formation. Our results support the model of allosteric regulation of nitrite reduction by deoxyhemoglobin and show that cross-linking hemoglobins in distinct quaternary states can generate products with increased NO yields from nitrite reduction that could be harnessed to promote NO-signaling in vivo. PMID:21277987

  7. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation.

    PubMed

    Pachiadaki, Maria G; Sintes, Eva; Bergauer, Kristin; Brown, Julia M; Record, Nicholas R; Swan, Brandon K; Mathyer, Mary Elizabeth; Hallam, Steven J; Lopez-Garcia, Purificacion; Takaki, Yoshihiro; Nunoura, Takuro; Woyke, Tanja; Herndl, Gerhard J; Stepanauskas, Ramunas

    2017-11-24

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed. Copyright © 2017, American Association for the Advancement of Science.

  8. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle

    PubMed Central

    Kits, K. Dimitri; Sedlacek, Christopher J.; Lebedeva, Elena V.; Han, Ping; Bulaev, Alexandr; Pjevac, Petra; Daebeler, Anne; Romano, Stefano; Albertsen, Mads; Stein, Lisa Y.; Daims, Holger; Wagner, Michael

    2017-01-01

    Summary paragraph Nitrification, the oxidation of ammonia (NH3) via nitrite (NO2-) to nitrate (NO3-), is a key process of the biogeochemical nitrogen cycle. For decades, ammonia and nitrite oxidation were thought to be separately catalyzed by ammonia-oxidizing bacteria (AOB) and archaea (AOA), and by nitrite-oxidizing bacteria (NOB). The recent discovery of complete ammonia oxidizers (comammox) in the NOB genus Nitrospira1,2, which alone convert ammonia to nitrate, raised questions about the ecological niches where comammox Nitrospira successfully compete with canonical nitrifiers. Here we isolated the first pure culture of a comammox bacterium, Nitrospira inopinata, and show that it is adapted to slow growth in oligotrophic and dynamic habitats based on a high affinity for ammonia, low maximum rate of ammonia oxidation, high growth yield compared to canonical nitrifiers, and genomic potential for alternative metabolisms. The nitrification kinetics of four AOA from soil and hot springs were determined for comparison. Their surprisingly poor substrate affinities and lower growth yields reveal that, in contrast to earlier assumptions, not all AOA are most competitive in strongly oligotrophic environments and that N. inopinata has the highest substrate affinity of all analyzed ammonia oxidizer isolates except the marine AOA Nitrosopumilus maritimus SCM13. These results suggest a role of comammox organisms for nitrification under oligotrophic and dynamic conditions. PMID:28847001

  9. Chemical transformation of iodate(IO3-) and nitrite(NO2-) in frozen solution and its environmental implications.

    NASA Astrophysics Data System (ADS)

    Kim, Kitae

    2017-04-01

    Ice is ubiquitous on earth and involved in various chemical reactions in the environment. Most chemical reactions are slowed down when temperature decreases according to Arrhenius equation. However, several chemical processes can be enhanced in frozen state. Reactive halogen species play important roles in the global environment. In particular, the presence of gaseous halogens in the polar and marine boundary layers is of great interest because these highly reactive species can affect ozone and mercury depletion events, oxidizing capacity, and DMS(dimethylsulfide) oxidation to form cloud-condensation nuclei. Among halogen compounds, the sources and emission mechanisms of inorganic iodine species in the polar region remain unclear. Iodide(I-) and iodate(IO3-) are the most dominant iodine species in nature and their chemical transformation or I-/IO3- ratio in frozen state remains poorly understood. Recent study shows that the production of active iodine compounds from frozen iodate salts during photochemical reaction. In previous study, nitrite(NO2-) oxidation to nitrate(NO3-), which is very slow reaction in aqueous solution, was significantly (105 times) accelerated in frozen state. The enhanced proton and oxygen concentration within ice grain boundaries are suspected that the enhanced oxidation of nitrite by freezing. Here we investigate chemical transformation of iodate/nitrite mixture in ice. The results show that the chemical reaction between iodate and nitrite in ice can potentially provide a new pathway for the source of reactive iodine species to the polar atmosphere. The detailed experimental conditions and mechanism will be discussed in the presentation.

  10. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.

    PubMed

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads; Kitzinger, Katharina; Herbold, Craig; Spieck, Eva; Nielsen, Per Halkjaer; Wagner, Michael; Daims, Holger

    2015-09-08

    Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers, suggests a wide distribution of this extended interaction between ammonia and nitrite oxidizers, which enables nitrite-oxidizing bacteria to indirectly use urea as a source of energy. A soluble formate dehydrogenase lends additional ecophysiological flexibility and allows N. moscoviensis to use formate, with or without concomitant nitrite oxidation, using oxygen, nitrate, or both compounds as terminal electron acceptors. Compared with Nitrospira defluvii from lineage I, N. moscoviensis shares the Nitrospira core metabolism but shows substantial genomic dissimilarity including genes for adaptations to elevated oxygen concentrations. Reciprocal feeding and metabolic versatility, including the participation in different nitrogen cycling processes, likely are key factors for the niche partitioning, the ubiquity, and the high diversity of Nitrospira in natural and engineered ecosystems.

  11. Evidence by chromatography and mass spectrometry that inorganic nitrite induces S-glutathionylation of hemoglobin in human red blood cells.

    PubMed

    Böhmer, Anke; Pich, Andreas; Schmidt, Mario; Haghikia, Arash; Tsikas, Dimitrios

    2016-04-15

    Previously we found by HPLC with fluorescence detection that inorganic nitrite induces oxidation of glutathione (GSH) to its disulfide (GSSG) in intact and more abundantly in lyzed red blood cells (RBCs) from healthy humans. In the present work, we performed MS-based protein analysis and observed that nitrite (range, 0-20mM) induces formation of S-glutathionyl hemoglobin (HbSSG) at cysteine (Cys) β93 and β112 of oxyhemoglobin (HbO2) in lyzed human RBCs (range, 6-8mM HbO2). Hemoglobin species were isolated from incubation mixtures of nitrite in lyzed RBCs by ultrafiltration or affinity chromatography and analyzed by HPLC and LC-MS/MS. The mechanism likely involves inhibition of catalase activity by nitrite (IC50, 9 μM), which allows H2O2 to accumulate and oxidize Cys moieties of oxyhemoglobin and erythrocytic GSH to form HbSSG in addition to GSSG. In freshly prepared hemolysate samples, nitrite induced release of superoxide and molecular oxygen. In the presence of paracetamol and nitrite in hemolysate samples, 3-nitro-paracetamol was detected. Nitrite also induced S-nitroso hemoglobin (HbSNO) formation in low yield (i.e., 0.1%). Synthetic cysteine (Cys), glutathione (GSH), N-acetylcysteine (NAC) and N-acetylcysteine ethyl ester (NACET) inhibited nitrite-induced modifications of oxyhemoglobin including methemoglobin, HbSSG (CysSH > NACET > GSH ≈ NAC; thiol concentration, 50 μM) and HbSNO. Nitrite-induced oxidative modifications may alter physiological hemoglobin functions and may require alternative treatments for conditions associated with oxidized hemoglobin like in nitrite-induced methemoglobinemia. Accumulation of soluble Cys in RBCs via oral administration of NACET could be a new promising strategy to prevent nitrite-induced methemoglobinemia by nitrite and other oxidants. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    PubMed

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  13. Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea.

    PubMed

    Wang, Jiaqi; Shen, Lidong; He, Zhanfei; Hu, Jiajie; Cai, Zhaoyang; Zheng, Ping; Hu, Baolan

    2017-11-01

    Nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples anaerobic methane oxidation and nitrite reduction, is a recently discovered bioprocess coupling microbial nitrogen and carbon cycles. The discovery of this microbial process challenges the traditional knowledge of global methane sinks and nitrogen losses. In this study, the abundance and activity of N-DAMO bacteria were investigated and their contributions to methane sink and nitrogen loss were estimated in different seasons and different partitions of an intertidal zone of the East China Sea. The results showed that N-DAMO bacteria were extensively and continuously present in the intertidal zone, with the number of cells ranging from 5.5 × 10 4 to 2.8 × 10 5 copy g -1 soil and the potential activity ranging from 0.52 to 5.7 nmol CO 2  g -1 soil day -1 , contributing 5.0-36.6% of nitrite- and sulfate-dependent anaerobic methane oxidation in the intertidal zone. The N-DAMO activity and its contribution to the methane consumption were highest in the spring and in the low intertidal zone. These findings showed that the N-DAMO process is an important methane and nitrogen sink in the intertidal zone and varies with the seasons and the partitions of the intertidal zone.

  14. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream

    PubMed Central

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-01-01

    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation. PMID:27208107

  15. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    PubMed

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Serum nitrate/nitrite concentration correlates with gastric juice nitrate/nitrite: a possible marker for mutagenesis of the proximal stomach.

    PubMed

    Kishikawa, Hiroshi; Nishida, Jiro; Ichikawa, Hitoshi; Kaida, Shogo; Matsukubo, Takashi; Miura, Soichiro; Morishita, Tetsuo; Hibi, Toshifumi

    2011-01-01

    In the normal acid-secreting stomach, luminally generated nitric oxide, which contributes to carcinogenesis in the proximal stomach, is associated with the concentration of nitrate plus nitrite (nitrate/nitrite) in gastric juice. We investigated whether the serum nitrate/nitrite concentration is associated with that of gastric juice and whether it can be used as a serum marker. Serum and gastric juice nitrate/nitrite concentration, Helicobacter pylori antibody, and gastric pH were measured in 176 patients undergoing upper endoscopy. Multiple regression analysis revealed that serum nitrate/nitrite concentration was the best independent predictor of gastric juice nitrate/nitrite concentration. On single regression analysis, serum and gastric juice nitrate/nitrite concentration were significantly correlated, according to the following equation: gastric juice nitrate/nitrite concentration (μmol/l) = 3.93 - 0.54 × serum nitrate/nitrite concentration (μmol/l; correlation coefficient = 0.429, p < 0.001). In analyses confined to subjects with gastric pH less than 2.0, and in those with serum markers suggesting normal acid secretion (pepsinogen-I >30 ng/ml and negative H. pylori antibody), the serum nitrate/nitrite concentration was an independent predictor of the gastric juice nitrate/nitrite concentration (p < 0.001). Measuring the serum nitrate/nitrite concentration has potential in estimating the gastric juice nitrate/nitrite concentration. The serum nitrate/nitrite concentration could be useful as a marker for mutagenesis in the proximal stomach. Copyright © 2011 S. Karger AG, Basel.

  17. Mechanisms for cellular NO oxidation and nitrite formation in lung epithelial cells.

    PubMed

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Myerburg, Mike M; Wang, Jun; Frizzell, Sam; Gladwin, Mark T

    2013-08-01

    Airway lining fluid contains relatively high concentrations of nitrite, and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 h under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low-oxygen conditions. The addition of oxyhemoglobin to the A549 cell medium decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and nitrate, suggesting an enzymatic activity is required. This NO oxidation activity was highest in membrane-bound proteins with molecular size <100kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation. We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into the medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via p-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell-membrane-associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Mechanisms of Human Erythrocytic Bioactivation of Nitrite*

    PubMed Central

    Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C.; Lee, Amber N.; Belanger, Andrea M.; Diz, Debra I.; Laurienti, Paul J.; Caudell, David L.; Wang, Jun; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2015-01-01

    Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

  19. Effect of light on colour and reaction of nitrite in sliced pork bologna under different chilled storage temperatures.

    PubMed

    Carballo, J; Cavestany, M; Jiménez-Colmenero, F

    1991-01-01

    The effect of different lighting conditions (darkness and exposure to 1900 ± 100 lux) on colour stability, conversion of added nitrite (residual nitrite, nitrite converted to nitrate, nitroso heme pigments, and protein-bound nitrite) and oxidative rancidity (2-thiobarbituric acid index) in sliced, vacuum-packaged pork bologna as a function of storage temperature (0 ± 1°C and 7 ± 1°C) was studied. Colour (redness) losses over the storage period were more dependent upon photochemical processes than on thermal processes, and the action of temperature on colour was attributable to its effect on microbial growth, which in turn also affects oxygen availability. Conversion of nitrite into the different fractions studied was chiefly temperature-dependent, but exposure to light lowered the residual nitrite content. Nevertheless, the effect of illumination on the constant rate of residual nitrite depletion was dependent on the storage temperature. Recovery of the added nitrite, i.e. the total of the nitrite in all the fractions combined, was highly dependent upon fluctuations in the residual nitrite levels and varied over the storage period. Under the conditions of the experiment, photo-oxidation did not appear to be a determining factor in lipid oxidation. Copyright © 1991. Published by Elsevier Ltd.

  20. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea.

    PubMed

    Yang, Shan; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-10-01

    To date, the association of coral-bacteria and the ecological roles of bacterial symbionts in corals remain largely unknown. In particular, little is known about the community components of bacterial symbionts of corals involved in the process of denitrification and ammonia oxidation. In this study, the nitrite reductase (nirS and nirK) and ammonia monooxygenase subunit A (amoA) genes were used as functional markers. Diverse bacteria with the potential to be active as denitrifiers and ammonia-oxidizing bacteria (AOB) were found in two East China Sea corals: stony coral Alcyonium gracillimum and soft coral Tubastraea coccinea. The 16S rRNA gene library analysis demonstrated different communities of bacterial symbionts in these two corals of the same location. Nitrite reductase nirK gene was found only in T. coccinea, while both nirK and nirS genes were detected in A. gracillimum, which might be the result of the presence of different bacterial symbionts in these two corals. AOB rather than ammonia-oxidizing archaea were detected in both corals, suggesting that AOB might play an important role in the ammonia oxidation process of the corals. This study indicates that the coral bacterial symbionts with the potential for nitrite reduction and ammonia oxidation might have multiple ecological roles in the coral holobiont, which promotes our understanding of bacteria-mediated nitrogen cycling in corals. To our knowledge, this study is the first assessment of the community structure and phylogenetic diversity of denitrifying bacteria and AOB in corals based on nirK, nirS, and amoA gene library analysis.

  1. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.

    PubMed

    Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun

    2017-12-01

    Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L -1 and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN 3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N 2 O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H 2 O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.

  2. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase.

    PubMed

    Tripatara, Pinpat; Patel, Nimesh S A; Webb, Andrew; Rathod, Krishnaraj; Lecomte, Florence M J; Mazzon, Emanuela; Cuzzocrea, Salvatore; Yaqoob, Mohammed M; Ahluwalia, Amrita; Thiemermann, Christoph

    2007-02-01

    In normal conditions, nitric oxide (NO) is oxidized to the anion nitrite, but in hypoxia, this nitrite may be reduced back to NO by the nitrite reductase action of deoxygenated hemoglobin, acidic disproportionation, or xanthine oxidoreductase (XOR). Herein, is investigated the effects of topical sodium nitrite administration in a rat model of renal ischemia/reperfusion (I/R) injury. Rats were subjected to 60 min of bilateral renal ischemia and 6 h of reperfusion in the absence or presence of sodium nitrite (30 nmol) administered topically 1 min before reperfusion. Serum creatinine, serum aspartate aminotransferase, creatinine clearance, fractional excretion of Na(+), and plasma nitrite/nitrate concentrations were measured. The nitrite-derived NO-generating capacity of renal tissue was determined under acidic and hypoxic conditions by ozone chemiluminescence in homogenates of kidneys that were subjected to sham, ischemia-only, and I/R conditions. Nitrite significantly attenuated renal dysfunction and injury, an effect that was abolished by previous treatment of rats with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl-3-oxide (2.5 mumol intravenously 5 min before ischemia and 50 nmol topically 6 min before reperfusion). Renal tissue homogenates produced significant amounts of NO from nitrite, an effect that was attenuated significantly by the xanthine oxidoreductase inhibitor allopurinol. Taken together, these findings demonstrate that topically administered sodium nitrite protects the rat kidney against I/R injury and dysfunction in vivo via the generation, in part, of xanthine oxidoreductase-catalyzed NO production. These observations suggest that nitrite therapy might prove beneficial in protecting kidney function and integrity during periods of I/R such as those encountered in renal transplantation.

  3. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    PubMed

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  4. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression

    PubMed Central

    Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.

    2013-01-01

    In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb’s own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ≤1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb’s growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission. PMID:24145454

  5. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  6. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    PubMed Central

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat. PMID:7224631

  7. Methane oxidation in anoxic lake waters

    NASA Astrophysics Data System (ADS)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the presence of members of the Methylomirabiliaceae family (NC10 phylum), known to perform AOM with nitrite as terminal electron acceptor. Interestingly, albeit the similarly favorable conditions in both basins, the South Basin showed nearly two-fold higher CH4 oxidation rates, but the Methylomirabiliaceae abundance appeared to be much higher in the meromictic North Basin. Ongoing work will attempt to verify whether the apparent difference in the abundance of Methylomirabiliaceae is a permanent feature. We will further seek to determine the relative contribution of bacterial nitrite-dependent AOM to total methane oxidation, as well as the environmental controls that may explain the differential importance of Methylomirabiliaceae in the two connected lake basins.

  8. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study.

    PubMed

    Pérez, Julio; Lotti, Tommaso; Kleerebezem, Robbert; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2014-12-01

    This model-based study investigated the mechanisms and operational window for efficient repression of nitrite oxidizing bacteria (NOB) in an autotrophic nitrogen removal process. The operation of a continuous single-stage granular sludge process was simulated for nitrogen removal from pretreated sewage at 10 °C. The effects of the residual ammonium concentration were explicitly analyzed with the model. Competition for oxygen between ammonia-oxidizing bacteria (AOB) and NOB was found to be essential for NOB repression even when the suppression of nitrite oxidation is assisted by nitrite reduction by anammox (AMX). The nitrite half-saturation coefficient of NOB and AMX proved non-sensitive for the model output. The maximum specific growth rate of AMX bacteria proved a sensitive process parameter, because higher rates would provide a competitive advantage for AMX. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs.

    PubMed

    Baek, Jin Hyen; Zhang, Xiaoyuan; Williams, Matthew C; Hicks, Wayne; Buehler, Paul W; D'Agnillo, Felice

    2015-07-03

    Methemoglobin-forming drugs, such as sodium nitrite (NaNO2), may exacerbate oxidative toxicity under certain chronic or acute hemolytic settings. In this study, we evaluated markers of renal oxidative stress and injury in guinea pigs exposed to extracellular hemoglobin (Hb) followed by NaNO2 at doses sufficient to simulate clinically relevant acute methemoglobinemia. NaNO2 induced rapid and extensive oxidation of plasma Hb in this model. This was accompanied by increased renal expression of the oxidative response effectors nuclear factor erythroid 2-derived-factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), elevated non-heme iron deposition, lipid peroxidation, interstitial inflammatory cell activation, increased expression of tubular injury markers kidney injury-1 marker (KIM-1) and liver-fatty acid binding protein (L-FABP), podocyte injury, and cell death. Importantly, these indicators of renal oxidative stress and injury were minimal or absent following infusion of Hb or NaNO2 alone. Together, these results suggest that the exposure to NaNO2 in settings associated with increased extracellular Hb may potentiate acute renal toxicity via processes that are independent of NaNO2 induced erythrocyte methemoglobinemia. Published by Elsevier Ireland Ltd.

  10. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    PubMed

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy

    PubMed Central

    Vitturi, Dario A.; Patel, Rakesh P.

    2011-01-01

    Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO-signaling, especially during hypoxia. This concept has been discussed both in the context of nitrite serving a role as an endogenous modulator of NO-homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replete NO-signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts, and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology. PMID:21683783

  12. Nitrite transport into pig erythrocytes and its potential biological role.

    PubMed

    Jensen, F B

    2005-07-01

    To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.

  13. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health. PMID:25803049

  14. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback processes in the Benguela and can be applied in other regions.

  15. Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR).

    PubMed

    Fux, C; Huang, D; Monti, A; Siegrist, H

    2004-01-01

    Nitrogen can be eliminated effectively from sludge digester effluents by anaerobic ammonium oxidation (anammox), but 55-60% of the ammonium must first be oxidized to nitrite. Although a continuous flow stirred tank reactor (CSTR) with suspended biomass could be used, its hydraulic dilution rate is limited to 0.8-1 d(-1) (30 degrees C). Higher specific nitrite production rates can be achieved by sludge retention, as shown here for a moving-bed biofilm reactor (MBBR) with Kaldnes carriers on laboratory and pilot scales. The maximum nitrite production rate amounted to 2.7 gNO2-Nm(-2)d(-1) (3 gO2m(-3)d(-1), 30.5 degrees C), thus doubling the dilution rate compared to CSTR operation with suspended biomass for a supernatant with 700 gNH4-Nm(-3). Whenever the available alkalinity was fully consumed, an optimal amount of nitrite was produced. However, a significant amount of nitrate was produced after 11 months of operation, making the effluent unsuitable for anaerobic ammonium oxidation. Because the sludge retention time (SRT) is relatively long in biofilm systems, slow growth of nitrite oxidizers occurs. None of the selection criteria applied - a high ammonium loading rate, high free ammonia or low oxygen concentration - led to selective suppression of nitrite oxidation. A CSTR or SBR with suspended biomass is consequently recommended for full-scale operation.

  16. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    PubMed

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-05-01

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO 2 - /mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO 2 - ), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O 2 ), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH 3 l -1 ), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.

    PubMed

    Wong, Michael L; Charnay, Benjamin D; Gao, Peter; Yung, Yuk L; Russell, Michael J

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO 3 - ) and nitrite (NO 2 - ) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO 2 and N 2 , will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H 2 O vapor will then produce acids such as HNO, HNO 2 , HNO 3 , and HO 2 NO 2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO 2 models, we calculate the NOx delivery to be 2.4 × 10 5 , 6.5 × 10 8 , and 1.9 × 10 8 molecules cm -2 s -1 . After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life. Key Words: Nitrogen oxides-Nitrate-Nitrite-Photochemistry-Lightning-Emergence of life. Astrobiology 17, 975-983.

  18. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  19. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in themore » potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.« less

  20. The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification.

    PubMed

    Wang, Wei; Kinkel, Traci; Martens-Habbena, Willm; Stahl, David A; Fang, Ferric C; Hansen, Eric J

    2011-06-01

    Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.

  1. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  2. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.

    PubMed

    Regan, John M; Harrington, Gregory W; Noguera, Daniel R

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.

  3. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion.

    PubMed

    Van Hecke, Thomas; Vanden Bussche, Julie; Vanhaecke, Lynn; Vossen, Els; Van Camp, John; De Smet, Stefaan

    2014-02-26

    Uncured and nitrite-cured chicken, pork, and beef were used as low, medium, and high sources of heme-Fe, respectively, and exposed to an in vitro digestion model simulating the mouth, stomach, duodenum, and colon. With increasing content of iron compounds, up to 25-fold higher concentrations of the toxic lipid oxidation products malondialdehyde, 4-hydroxy-2-nonenal, and other volatile aldehydes were formed during digestion, together with increased protein carbonyl compounds as measurement of protein oxidation. Nitrite curing of all meats lowered lipid and protein oxidation to the level of oxidation in uncured chicken. Strongly depending on the individual fecal inoculum, colonic digestion of beef resulted in significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxymethyl-guanine compared to chicken and pork, whereas nitrite curing had no significant effect. This study confirms previously reported evidence that heme-Fe is involved in the epidemiological association between red meat consumption and colorectal cancer, but questions the role of nitrite curing in this association.

  4. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    PubMed Central

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay. PMID:11772611

  5. Nitrate and nitrite in biology, nutrition and therapeutics

    PubMed Central

    Lundberg, Jon O.; Gladwin, Mark T.; Ahluwalia, Amrita; Benjamin, Nigel; Bryan, Nathan S.; Butler, Anthony; Cabrales, Pedro; Fago, Angela; Feelisch, Martin; Ford, Peter C.; Freeman, Bruce A.; Frenneau, Michael; Friedman, Joel; Kelm, Malte; Kevil, Christopher G.; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Lancaster, Jack R.; Lefer, David J.; McColl, Kenneth; McCurry, Kenneth; Patel, Rakesh; Petersson, Joel; Rassaf, Tienush; Reutov, Valentin P.; Richter-Addo, George B.; Schechter, Alan; Shiva, Sruti; Tsuchiya, Koichiro; van Faassen, Ernst E.; Webb, Andrew J.; Zuckerbraun, Brian S.; Zweier, Jay L.; Weitzberg, Eddie

    2014-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent two-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm. PMID:19915529

  6. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    PubMed

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Complete nitrification by Nitrospira bacteria

    PubMed Central

    Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra; Han, Ping; Herbold, Craig; Albertsen, Mads; Jehmlich, Nico; Palatinszky, Marton; Vierheilig, Julia; Bulaev, Alexandr; Kirkegaard, Rasmus H.; von Bergen, Martin; Rattei, Thomas; Bendinger, Bernd; Nielsen, Per H.; Wagner, Michael

    2016-01-01

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered as a two-step process catalyzed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes both the pathways for ammonia and nitrite oxidation, which are concomitantly expressed during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities. PMID:26610024

  8. Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation

    PubMed Central

    Qian, Jin; Zhou, Junmei; Zhang, Zhen; Liu, Rulong; Wang, Qilin

    2016-01-01

    A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% nitrite was accumulated in the nitritation SBR with an influent ammonia loading rate of 0.43 kg N/d/m3. During Nitritation-TDD operation, particle sizes (d50) of the sludge decreased from 406 to 225 um in nitritation SBR and from 327–183 um in AnUSB reactor. Pyrosequencing tests revealed that ammonium-oxidizing bacteria (AOB) population was stabilized at approximately 7.0% (calculated as population of AOB-related genus divided by the total microbial population) in the nitritation SBR. In contrast, nitrite-oxidizing bacteria (NOB) population decreased from 6.5–0.6% over the same time, indicating the effective nitrite accumulation in the nitritation SBR. Thiobacillus, accounting for 34.2% in the AnUSB reactor, was mainly responsible for nitrogen removal via autotrophic denitritation, using an external source of thiosulfate as electron donor. Also, it was found that free nitrous acid could directly affect the denitritation activity. PMID:27272192

  9. A Novel Nanofilm Sensor Based on Poly-(Alizarin Red)/Fe3O4 Magnetic Nanoparticles-Multiwalled Carbon Nanotubes Composite Material for Determination of Nitrite.

    PubMed

    Qu, Jianying; Dong, Ying; Yong, Wang; Lou, Tongfang; Du, Xueping; Qu, Jianhang

    2016-03-01

    Fe3O4 magnetic nanoparticles were synthesized by chemical co-precipitation with sodium citrate as surfactant and were characterized by FT-IR spectrometer, X-ray diffraction and transmission electron microscopy. A novel nitrite sensor was fabricated by electropolymerization of alizarin red on the surface of glassy carbon electrode modified with Fe3O4-multiwalled carbon nanotubes composite nanofilm. Under the optimal experimental conditions, it was showed that the proposed sensor exhibited good electrocatalytic activity to the oxidation of nitrite, and the peak current increased linearly with the nitrite concentration from 9.64 x 10(-6) mol x L(-1) to 1.30 x 10(-3) mol x L(-1) (R = 0.9976) with a detection limit of 1.19 x 10(-6) mol x L(-1) (S/N = 3). This sensor showed excellent sensitivity, wide linear range, stability and repeatability for nitrite determination with potential applications.

  10. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    PubMed

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  11. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.

  12. Oxidation of Octopus vulgaris hemocyanin by nitrogen oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvato, B.; Giacometti, G.M.; Beltramini, M.

    1989-01-24

    The reaction of Octopus vulgaris hemocyanin with nitrite was studied under a variety of conditions in which the green half-met derivative is formed. Analytical evidence shows that the amount of chemically detectable nitrite in various samples of the derivative is not proportional to the cupric copper detected by EPR. The kinetics of oxidation of hemocyanin as a function of protein concentration and pH, in the presence of nitrite and ascorbate, is consistent with a scheme in which NO/sub 2/ is the reactive oxidant. We suggest that the green half-methemocyanin contains a metal center with one cuprous and one cupric coppermore » without an exogenous nitrogen oxide ligand.« less

  13. Methaemoglobinaemia associated with the use of cocaine and volatile nitrites as recreational drugs: a review

    PubMed Central

    Hunter, Laura; Gordge, Laura; Dargan, Paul I; Wood, David M

    2011-01-01

    Methaemoglobinaemia can cause significant tissue hypoxia, leading to severe, potentially life-threatening clinical features and/or death. Over recent years there have been increasing reports of methaemoglobinaemia related to recreational drug use. There have been 25 articles describing methaemoglobinaemia related to recreational use of volatile nitrites (poppers) and more recently, four reports of methaemoglobinaemia in association with recreational cocaine use. In this article we discuss the mechanisms by which methaemoglobinaemia occurs in relation to the use of both volatile nitrites and cocaine, and summarize the published cases of recreational drug-related methaemoglobinaemia. The volatile nitrites can cause methaemoglobinaemia directly through their activity as oxidizing agents. However, with cocaine, methaemoglobinaemia is related to adulterants such as local anaesthetics or phenacetin, rather than to the cocaine itself. Clinicians managing patients with acute recreational drug toxicity should be aware of the potential for methaemoglobinaemia in these patients, particularly in patients with cyanosis or unexplained low oxygen saturations on pulse oximetry, and ensure that appropriate and timely management is provided, including, where appropriate, the use of methylthioninium chloride (methylene blue). PMID:21352269

  14. Feasibility and preliminary safety of nitric oxide releasing solution as a treatment for bovine mastitis.

    PubMed

    Regev, Gilly; Martins, James; Sheridan, Michael P; Leemhuis, Jonathan; Thompson, James; Miller, Christopher

    2018-06-01

    Nitric oxide-releasing solution (NORS) is a liquid formulation that releases nitric oxide, a broad spectrum antimicrobial, single electron nitroxide radical. This solution was investigated as a potential antimicrobial treatment for bovine mastitis (BM). Three experiments were performed: a) NORS' effect on Staphylococcus aureus and Escherichia coli in an in vitro model; b) NORS' effect on milk obtained from dairy cows showing symptoms of clinical mastitis; and c) the consequences of administering NORS to healthy milking cattle using a dose-escalating in vivo study. Metabolite concentrations were estimated in their blood for methaemoglobin and nitrite; also, milk nitrite concentration and somatic cell count (SCC) were measured to study possible mammary gland inflammation following treatment. NORS lowered the bacterial concentration in all infected samples, in a time- and milk-diluted dependant fashion. Blood methemoglobin concentrations following treatment were all within the normal range for cattle. However, blood and milk nitrite concentrations increased initially but, during the next 24 h, returned to normal range, as did SCC, without any clinical signs of mammary gland inflammation. NORS, if shown to be effective, could be an alternative treatment for mastitis with a shorter clearance time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction.

    PubMed

    Nagababu, Enika; Ramasamy, Somasundaram; Abernethy, Darrell R; Rifkind, Joseph M

    2003-11-21

    Recent studies have generated a great deal of interest in a possible role for red blood cells in the transport of nitric oxide (NO) to the microcirculation and the vascular effect of this nitric oxide in facilitating the flow of blood through the microcirculation. Many questions have, however, been raised regarding such a mechanism. We have instead identified a completely new mechanism to explain the role of red cells in the delivery of NO to the microcirculation. This new mechanism results in the production of NO in the microcirculation where it is needed. Nitrite produced when NO reacts with oxygen in arterial blood is reutilized in the arterioles when the partial pressure of oxygen decreases and the deoxygenated hemoglobin formed reduces the nitrite regenerating NO. Nitrite reduction by hemoglobin results in a major fraction of the NO generated retained in the intermediate state where NO is bound to Hb(III) and in equilibrium with the nitrosonium cation bound to Hb(II). This pool of NO, unlike Hb(II)NO, is weakly bound and can be released from the heme. The instability of Hb(III)NO in oxygen and its displacement when flushed with argon requires that reliable determinations of red blood cell NO must be performed on freshly lysed samples without permitting the sample to be oxygenated. In fresh blood samples Hb(III)NO accounts for 75% of the red cell NO with appreciably higher values in venous blood than arterial blood. These findings confirm that nitrite reduction at reduced oxygen pressures is a major source for red cell NO. The formation and potential release from the red cell of this NO could have a major impact in regulating the flow of blood through the microcirculation.

  16. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79

    PubMed Central

    Sedlacek, Christopher J.; Nielsen, Susanne; Greis, Kenneth D.; Haffey, Wendy D.; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J.

    2016-01-01

    ABSTRACT Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. IMPORTANCE Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their natural environment, they coexist and interact with nitrite oxidizers, which convert nitrite to nitrate, and with heterotrophic microorganisms. The presence of nitrite oxidizers and heterotrophic bacteria has a positive influence on the growth of the ammonia oxidizers. Here, we present a study investigating the effect of nitrite oxidizers and heterotrophic bacteria on the proteome of a selected ammonia oxidizer in a defined culture to elucidate how these two groups improve the performance of the ammonia oxidizer. The results show that the presence of a nitrite oxidizer and heterotrophic bacteria reduced the stress for the ammonia oxidizer and resulted in more efficient energy generation. This study contributes to our understanding of microbe-microbe interactions, in particular between ammonia oxidizers and their neighboring microbial community. PMID:27235442

  17. Denitrifying SUP05 Require Exogenous Nitrogen

    NASA Astrophysics Data System (ADS)

    Shah, V.; Chang, B. X.; Morris, R. M.

    2016-02-01

    Members of the SUP05 clade of gamma-proteobacteria are among the most abundant chemoautotrophs in the ocean. Environmental sequencing studies suggest that they have critical roles in mediating carbon fixation, denitrification, and sulfur oxidation in oxygen minimum zones (OMZs). They have evaded cultivation and little is known about the specific growth requirements or substrate ranges that determine their abundance, distribution and impact on marine biogeochemical cycles. We evaluated the genetic potential of an isolate from the SUP05 clade "Ca. Thioglobus autotrophica strain EF1" to fix carbon, reduce nitrogen and oxidize sulfur under anaerobic growth conditions. Growth experiments support genomic predictions, indicating that strain EF1 is a facultatively anaerobic sulfur-oxidizing chemolithoautotroph that reduces nitrate to nitrite and nitric oxide to nitrous oxide. These experiments also revealed that strain EF1 is limited for growth by ammonium, which indicates that it requires an exogenous source of nitrogen for biosynthesis. Evidence that SUP05 cells produce nitrite and nitrous oxide and require exogenous nitrogen suggests that they have important roles in nitrogen cycling and that their growth is ultimately limited by the degradation of sinking organic matter.

  18. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions.

    PubMed

    Weißbach, Max; Thiel, Paul; Drewes, Jörg E; Koch, Konrad

    2018-05-01

    A Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) was performed over five months to investigate the performance and dynamics of nitrogen elimination and nitrous oxide production from digester reject water under real feed-stream conditions. A 93% conversion of ammonium to nitrite could be maintained for adapted seed sludge in the first stage (nitritation). The second stage (nitrous denitritation), inoculated with conventional activated sludge, achieved a conversion of 70% of nitrite to nitrous oxide after only 12 cycles of operation. The development of an alternative feeding strategy and the addition of a coagulant (FeCl 3 ) facilitated stable operation and process intensification. Under steady-state conditions, nitrite was reliably eliminated and different nitrous oxide harvesting strategies were assessed. Applying continuous removal increased N 2 O yields by 16% compared to the application of a dedicated stripping phase. These results demonstrate the feasible application of the CANDO process for nitrogen removal and energy recovery from ammonia rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions.

    PubMed

    Wunderlin, Pascal; Mohn, Joachim; Joss, Adriano; Emmenegger, Lukas; Siegrist, Hansruedi

    2012-03-15

    Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N2O production were investigated in a laboratory batch-scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions. Under aerobic conditions, the addition of nitrite resulted in strongly nitrite-dependent N2O production, mainly by nitrifier denitrification of ammonia-oxidizing bacteria (AOB). Furthermore, N2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO2/l); the contribution of nitrifier denitrification by AOB increased at higher nitrite and lower ammonia concentrations towards the end of the experiment. Under anoxic conditions, nitrate reducing experiments confirmed that N2O emission is low under optimal growth conditions for heterotrophic denitrifiers (e.g. no oxygen input and no limitation of readily biodegradable organic carbon). However, N2O and nitric oxide (NO) production rates increased significantly in the presence of nitrite or low dissolved oxygen concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Detection and identification of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide in nitrite adulterated urine specimens containing morphine and its glucuronides.

    PubMed

    Luong, Susan; Fu, Shanlin

    2014-03-01

    In vitro urine adulteration is a well-documented practice adopted by individuals aiming to evade detection of drug use, when required to undergo mandatory sports and workplace drug testing. Potassium nitrite is an effective urine adulterant due to its oxidizing potential, and has been shown to mask the presence of many drugs of abuse. However, limited research has been conducted to understand its mechanism of action, and to explore the possibility of the drugs undergoing direct oxidation to form stable reaction products. In this study, opiates including morphine, codeine, morphine-3-glucuronide and morphine-6-glucuronide were exposed to potassium nitrite in water and urine to mimic the process of nitrite adulteration. It was found that two stable reaction products were detected by liquid chromatography-mass spectrometry (LC-MS) when morphine and morphine-6-glucuronide were exposed to nitrite. Isolation and elucidation using spectrometric and spectroscopic techniques revealed that they were 2-nitro-morphine and 2-nitro-morphine-6-glucuronide, respectively. These reaction products were also formed when an authentic morphine-positive urine specimen was fortified with nitrite. 2-Nitro-morphine was found to be stable enough to undergo the enzymatic hydrolysis procedure and also detectable by gas chromatography-mass spectrometry (GC-MS) after forming a trimethylsilyl derivative. On the contrary, morphine-3-glucuronide did not appear to be chemically manipulated when exposed to potassium nitrite in urine. These reaction products are not endogenously produced, are relatively stable and can be monitored with both LC-MS and GC-MS confirmatory techniques. As a result, these findings have revealed the possibility for the use of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide as markers for the indirect monitoring of morphine and morphine-6-glucuronide in urine specimens adulterated with nitrite. Copyright © 2013 John Wiley & Sons, Ltd.

  1. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  2. A nitric oxide-releasing solution as a potential treatment for fungi associated with tinea pedis.

    PubMed

    Regev-Shoshani, G; Crowe, A; Miller, C C

    2013-02-01

    To test a nitric oxide-releasing solution (NORS) as a potential antifungal footbath therapy against Trichophyton mentagrophytes and Trichophyton rubrum during the mycelial and conidial phases. NORS (sodium nitrite citric acid) produces nitric oxide verified by gas chromatography and mass spectrometry (GC-MS). Antifungal activity of this solution was tested against mycelia and conidia of T. mentagrophytes and T. rubrum, using 1-20 mmol l(-1) nitrites and 10-30 min exposure times. The direct effect of the gas released from the solution on the viability of those fungi was tested. NORS demonstrated strong antifungal activity and was found to be dose and time dependent. NO and nitrogen dioxide (NO(2) ) were the only gases detected from this reaction and are likely responsible for the antifungal effect. This in vitro research suggests that a single 20-min exposure to NORS could potentially be used as an effective single-dose treatment against fungi that are associated with tinea pedis in both mycelia and spore phase. This study provides the background for developing a user-friendly footbath treatment for Athlete's Foot that will kill both vegetative fungi and its spores. © 2012 The Society for Applied Microbiology.

  3. Solar photochemical oxidations of benzylic and allylic alcohols using catalytic organo-oxidation with DDQ: application to lignin models.

    PubMed

    Walsh, Katie; Sneddon, Helen F; Moody, Christopher J

    2014-10-03

    Visible light has a dramatic effect on the oxidation of benzylic and allylic alcohols, including those deactivated by electron-withdrawing groups, and β-O-4 lignin models, using catalytic amounts of the organo-oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Sodium nitrite or tert-butyl nitrite is used as cocatalyst, and oxygen is employed as the terminal oxidant.

  4. Cholesterol oxidation in meat products and its regulation by supplementation of sodium nitrite and apple polyphenol before processing.

    PubMed

    Osada, K; Hoshina, S; Nakamura, S; Sugano, M

    2000-09-01

    The levels of cholesterol oxidation derivatives (OxChol) in eight commercial species of meat products were examined. These products contained more than 1 mg/100 g of OxChol, and 7beta-hydroxycholesterol + 5beta-epoxycholesterol (111-1092 microg/100 g), 5alpha-epoxycholesterol (80-712 microg/100 g), cholestanetriol (0-368 microg/100 g), and 7-ketocholesterol (708-1204 microg/100 g) were detected. To know the interaction of sodium nitrite supplementation against cholesterol oxidation in meat products, sausage was produced with or without varying levels of sodium nitrite and stored in the refrigerator for 15 days. As a result, cholesterol oxidation in sausage was inhibited by addition of sodium nitrite in a dose-dependent manner. This observation may be associated with inactivation of O(2)(-) radical and stabilization of polyunsaturated fatty acids (PUFAs). In fact, the levels of OxChol in sausage increased, accompanying the decrease of coexisting linoleic acid when sodium nitrite was not added to sausage meat. Thus, cholesterol oxidation in meat products seems to be considarably promoted by the oxidation of coexisting PUFAs. On the other hand, additive apple polyphenol also inhibited linoleic acid oxidation in sausage and then suppressed cholesterol oxidation through its radical scavenging effects. Therefore, apple polyphenol, having a large amount of an oligomer of catechin, may interfere with cholesterol oxidation in meat processing or storage of meat products through its antioxidative action and be useful as a new antioxitant for meat products when it is added to the original meat before processing.

  5. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone.

    PubMed

    Lüke, Claudia; Speth, Daan R; Kox, Martine A R; Villanueva, Laura; Jetten, Mike S M

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria.

  6. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone

    PubMed Central

    Kox, Martine A.R.; Villanueva, Laura; Jetten, Mike S.M.

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria. PMID:27077014

  7. Nitric Oxide Metabolism in Neisseria meningitidis

    PubMed Central

    Anjum, Muna F.; Stevanin, Tânia M.; Read, Robert C.; Moir, James W. B.

    2002-01-01

    Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c′ are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress. PMID:12003939

  8. An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor

    PubMed Central

    Boo, Yong Chool; Tressel, Sarah L.; Jo, Hanjoong

    2007-01-01

    Nitric oxide produced from nitric oxide synthase(s) is an important cell signaling molecule in physiology and pathophysiology. In the present study, we describe a very sensitive and convenient analytical method to measure NOx (nitrite plus nitrate) in culture media by employing an ultra-sensitive nitric oxide-selective electrochemical sensor which became commercially available recently. An aliquot of conditioned culture media was first treated with nitrate reductase/NADPH/glucose-6-phosphate dehydrogenase/glucose-6-phosphate to convert nitrate to nitrite quantitatively. The nitrite (that is present originally plus the reduced nitrate) was then reduced to equimolar NO in an acidic iodide bath while NO was being detected by the sensor. This analytical method appears to be very useful to assess basal and stimulated NO release from cultured cells. PMID:17056288

  9. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alspaugh, J.A.; Granger, D.L.

    Activated macrophages are able to inhibit the replication of intracellular microbes and tumor cells. In the murine system, this cytostatic effect is associated with the oxidation of L-arginine to L-citrulline, nitrite, and nitrate and is thought to be mediated by an intermediate of this reaction, possibly nitric oxide (NO.). By exposing replicating Cryptococcus neoformans cells to conditions under which NO. is chemically generated, we have observed a cytostatic effect similar to that caused by activated murine macrophages. Nitric oxide is formed as a decomposition product of nitrite salts in acidic, aqueous solutions. Although C. neoformans replicates well in the presencemore » of high nitrite concentrations at physiologic pH, its growth in acidic media can be inhibited by the addition of low concentrations of sodium nitrite. The degree of cytostasis is dependent on both the pH and the nitrite concentration of the NO. generating solution. The cytostatic effector molecule appears to be a gas since, in addition to inhibiting C. neoformans replication in solution, it is able to exert its inhibitory effect across a gas-permeable but ion-impermeable membrane. At high nitrite concentrations, a fungicidal effect occurs. We propose that the growth inhibition of C. neoformans upon exposure to chemically generated NO. or some related oxide of nitrogen represents a cell-free system simulating the cytostatic effect of activated murine macrophages.« less

  10. Relevance and Diversity of Nitrospira Populations in Biofilters of Brackish RAS

    PubMed Central

    Kruse, Myriam; Keuter, Sabine; Bakker, Evert; Spieck, Eva; Eggers, Till; Lipski, André

    2013-01-01

    Lithoautotrophic nitrite-oxidizing bacterial populations from moving-bed biofilters of brackish recirculation aquaculture systems (RAS; shrimp and barramundi) were tested for their metabolic activity and phylogenetic diversity. Samples from the biofilters were labeled with 13C-bicarbonate and supplemented with nitrite at concentrations of 0.3, 3 and 10 mM, and incubated at 17 and 28°C, respectively. The biofilm material was analyzed by fatty acid methyl ester - stable isotope probing (FAME-SIP). High portions of up to 45% of Nitrospira-related labeled lipid markers were found confirming that Nitrospira is the major autotrophic nitrite oxidizer in these brackish systems with high nitrogen loads. Other nitrite-oxidizing bacteria such as Nitrobacter or Nitrotoga were functionally not relevant in the investigated biofilters. Nitrospira-related 16S rRNA gene sequences were obtained from the samples with 10 mM nitrite and analyzed by a cloning approach. Sequence studies revealed four different phylogenetic clusters within the marine sublineage IV of Nitrospira, though most sequences clustered with the type strain of Nitrospira marina and with a strain isolated from a marine RAS. Three lipids dominated the whole fatty acid profiles of nitrite-oxidizing marine and brackish enrichments of Nitrospira sublineage IV organisms. The membranes included two marker lipids (16∶1 cis7 and 16∶1 cis11) combined with the non-specific acid 16∶0 as major compounds and confirmed these marker lipids as characteristic for sublineage IV species. The predominant labeling of these characteristic fatty acids and the phylogenetic sequence analyses of the marine Nitrospira sublineage IV identified organisms of this sublineage as main autotrophic nitrite-oxidizers in the investigated brackish biofilter systems. PMID:23705006

  11. Maternal serum nitric oxide levels associated with biochemical and clinical parameters in hypertension in pregnancy.

    PubMed

    Bartha, J L; Comino-Delgado, R; Bedoya, F J; Barahona, M; Lubian, D; Garcia-Benasach, F

    1999-02-01

    To measure maternal serum concentrations of total nitrites, as an index of nitric oxide synthesis, in normal and hypertensive pregnant women, and to examine the correlation between these concentrations and several variables of clinical interest. A total of 60 women in four different groups were studied: 10 normotensive pregnant women, 17 pregnant women with preeclampsia, 18 pregnant women with gestational hypertension and 15 pregnant women with chronic hypertension. Serum nitrite levels were determined using the Griess reaction after reduction with nitrate reductase. Serum nitrite levels were higher in preeclamptic women (34.11+/-14 micromol/l, P=0.04), lower in chronic hypertensive women (19.56+/-6.46 micromol/l, P=0.04) and similar in women with gestational hypertension (26.97+/-9.44 micromol/l) in comparison to the control group (25.37+/-7.24 micromol/l). Serum nitrite levels in preeclamptic women had significant positive correlations with hematocrit, fasting insulinemia, and apolipoprotein B and negative correlations with platelet count, serum phosphorus and glucose:insulin ratio. In pregnant women with chronic hypertension a negative correlation was found between serum nitrite levels and active partial thromboplastin time. In pregnant women with gestational hypertension, serum nitrite levels had negative correlations with birthweight and 24-h urine calcium, and positive correlations with mean corspuscular hemoglobin, 24-h urine sodium and maternal age. We suggest that in women with preeclampsia, a higher maternal nitric oxide level may act as a compensatory mechanism against hemoconcentration and platelet aggregation and that nitric oxide production may be related to some metabolic events. In women with gestational hypertension, higher serum nitrite levels may be related to clinical and biochemical findings common in preeclampsia. In chronic hypertension, a lower maternal nitric oxide level is related to the status of coagulation.

  12. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    PubMed Central

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50–15000 μmoL L−1 (cubic SiC NWs) and 5–8000 μmoL L−1 (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L−1 respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility. PMID:27109361

  13. Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor.

    PubMed

    Chen, Hong-Bo; Yang, Qi; Li, Xiao-Ming; Wang, Yan; Luo, Kun; Zeng, Guang-Ming

    2013-08-01

    Recently, it was found that excess phosphorus removal could be induced by aerobic/extended-idle regime. In this study, an anoxic period was introduced after the aeration to realize simultaneous nitrogen and phosphorus removal. The results demonstrated that stable partial nitrification could be achieved by controlling the aeration duration at 2.5h because it could not only obtain a desirable ammonia oxidation to nitrite but also avoid the extensive aeration converting nitrite to nitrate, and moreover, the accumulated poly-3-hydroxybutyrate still remain in a relative sufficient concentration (1.5mmolCg(-1) VSS), which could subsequently served as internal carbon source for post-anoxic denitrification. The nitrite accumulation ratio was observed to have relatively high correlation with biological nutrient removal. Over stages with stable high-level nitrite accumulation, the process achieved desirable and stable nitrogen and phosphorus removal efficiencies averaging 95% and 99% respectively. Fluorescence in situ hybridization analysis showed that the faster growth rate of the ammonia oxidizing bacteria than the nitrite oxidizing bacteria was the main reason for achieving nitrite accumulation. In addition, the secondary phosphorus release was negligible and the process maintained excellent nutrient removal under low influent ammonia nitrogen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Influence of Estimated Training Status on Anti and Pro-Oxidant Activity, Nitrite Concentration, and Blood Pressure in Middle-Aged and Older Women

    PubMed Central

    Jacomini, André M.; Dias, Danielle da Silva; Brito, Janaina de Oliveira; da Silva, Roberta F.; Monteiro, Henrique L.; Llesuy, Susana; De Angelis, Kátia; Amaral, Sandra L.; Zago, Anderson S.

    2017-01-01

    The purpose of this study was to compare the association between anti and pro-oxidant activity, nitrite concentration, and blood pressure (BP) in middle-aged and older women with different levels of estimated training status (TS). The sample consisted of 155 females (50–84 years) who were submitted to a physical examination to evaluate estimated TS through the “Functional Fitness Battery Test,” BP measurements, and plasma blood samples to evaluate pro-oxidant and antioxidant activity and nitrite concentrations. Participants were separated by age into a middle-aged group (<65 years) and an older (≥65 years) group and then subdivided in each group according to TS. Blood biochemistry was similar between groups. On the other hand, protein oxidation was lower in participants with higher TS, independent of age. Older females with higher TS presented higher nitrite concentrations, lower lipoperoxidation, and lower values of BP compared with those with lower TS. Lower GPx activity was observed in participants with higher TS compared with middle-aged with lower TS. Thus, our results suggest that good levels of TS may be associated with lower oxidative stress and higher nitrite concentration and may contribute to maintain normal or reduced blood pressure values. PMID:28326041

  15. Influence of Estimated Training Status on Anti and Pro-Oxidant Activity, Nitrite Concentration, and Blood Pressure in Middle-Aged and Older Women.

    PubMed

    Jacomini, André M; Dias, Danielle da Silva; Brito, Janaina de Oliveira; da Silva, Roberta F; Monteiro, Henrique L; Llesuy, Susana; De Angelis, Kátia; Amaral, Sandra L; Zago, Anderson S

    2017-01-01

    The purpose of this study was to compare the association between anti and pro-oxidant activity, nitrite concentration, and blood pressure (BP) in middle-aged and older women with different levels of estimated training status (TS). The sample consisted of 155 females (50-84 years) who were submitted to a physical examination to evaluate estimated TS through the "Functional Fitness Battery Test," BP measurements, and plasma blood samples to evaluate pro-oxidant and antioxidant activity and nitrite concentrations. Participants were separated by age into a middle-aged group (<65 years) and an older (≥65 years) group and then subdivided in each group according to TS. Blood biochemistry was similar between groups. On the other hand, protein oxidation was lower in participants with higher TS, independent of age. Older females with higher TS presented higher nitrite concentrations, lower lipoperoxidation, and lower values of BP compared with those with lower TS. Lower GPx activity was observed in participants with higher TS compared with middle-aged with lower TS. Thus, our results suggest that good levels of TS may be associated with lower oxidative stress and higher nitrite concentration and may contribute to maintain normal or reduced blood pressure values.

  16. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei

    PubMed Central

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  17. Nitrates and Nitrites in the Treatment of Ischemic Cardiac Disease

    PubMed Central

    Nossaman, Vaughn E.; Nossaman, Bobby D.; Kadowitz, Philip J.

    2010-01-01

    The organic nitrite, amyl of nitrite, was initially used as a therapeutic agent in the treatment of angina pectoris in 1867, but was replaced over a decade later by the organic nitrate, nitroglycerin (NTG), due to the ease of administration and longer duration of action. The administration of organic nitrate esters, such as NTG, continues to be used in the treatment of angina pectoris and heart failure during the birth of modern pharmacology. The clinical effectiveness is due to vasodilator activity in large veins and arteries through an as yet unidentified method of delivering nitric oxide (NO), or a NO-like compound to vascular smooth muscle cells. The major drawback with NTG administration is the rapid development of tolerance; and with amyl of nitrite, the duration and route of administration. Although amyl of nitrite are no longer used in the treatments of hypertension or ischemic heart disease, the nitrite anion has recently been discovered to possess novel pharmacologic actions such as modulating hypoxic vasodilation and providing cytoprotection in ischemia-reperfusion injury. Although the actions of these two similar chemical classes (nitrites and organic nitrates) have often been considered to be alike, we still do not understand their mechanism of action. However, the recent discovery that the nitrite anion, derived from either sodium nitrite or an intermediate NTG form, may act as a storage form for NO and provides support for investigating the use of these agents in the treatment of ischemic cardiovascular states. We review what is presently known about the use of nitrites and nitrates, the potential uses of these agents, and their mechanisms of action. PMID:20539102

  18. Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79.

    PubMed

    Sedlacek, Christopher J; Nielsen, Susanne; Greis, Kenneth D; Haffey, Wendy D; Revsbech, Niels Peter; Ticak, Tomislav; Laanbroek, Hendrikus J; Bollmann, Annette

    2016-08-01

    Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their natural environment, they coexist and interact with nitrite oxidizers, which convert nitrite to nitrate, and with heterotrophic microorganisms. The presence of nitrite oxidizers and heterotrophic bacteria has a positive influence on the growth of the ammonia oxidizers. Here, we present a study investigating the effect of nitrite oxidizers and heterotrophic bacteria on the proteome of a selected ammonia oxidizer in a defined culture to elucidate how these two groups improve the performance of the ammonia oxidizer. The results show that the presence of a nitrite oxidizer and heterotrophic bacteria reduced the stress for the ammonia oxidizer and resulted in more efficient energy generation. This study contributes to our understanding of microbe-microbe interactions, in particular between ammonia oxidizers and their neighboring microbial community. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  20. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2018-05-01

    The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Meat processing and colon carcinogenesis: cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats

    PubMed Central

    Santarelli, Raphaëlle L; Vendeuvre, Jean-Luc; Naud, Nathalie; Taché, Sylviane; Guéraud, Françoise; Viau, Michelle; Genot, Claude; Corpet, Denis E; Pierre, Fabrice H F

    2010-01-01

    Processed meat intake is associated with colorectal cancer risk, but no experimental study supports the epidemiologic evidence. To study the effect of meat processing on carcinogenesis promotion, we first did a 14-day study with 16 models of cured meat. Studied factors, in a 2 × 2 × 2 × 2 design, were muscle color (a proxy for heme level), processing temperature, added nitrite, and packaging. Fischer 344 rats were fed these 16 diets, and we evaluated fecal and urinary fat oxidation and cytotoxicity, three biomarkers of heme-induced carcinogenesis promotion. A principal component analysis allowed for selection of four cured meats for inclusion into a promotion study. These selected diets were given for 100 days to rats pretreated with 1,2-dimethylhydrazine. Colons were scored for preneoplastic lesions: aberrant crypt foci (ACF) and mucin-depleted foci (MDF). Cured meat diets significantly increased the number of ACF/colon compared with a no-meat control diet (P = 0.002). Only the cooked nitrite-treated and oxidized high heme meat significantly increased the fecal level of apparent total N-nitroso compounds (ATNC) and the number of MDF per colon compared with the no-meat control diet (P < 0.05). This nitrite-treated and oxidized cured meat specifically increased the MDF number compared with similar non nitrite-treated meat (P = 0.03) and with similar non oxidized meat (P = 0.004). Thus, a model cured meat, similar to ham stored aerobically, increased the number of preneoplastic lesions, which suggests colon carcinogenesis promotion. Nitrite treatment and oxidation increased this promoting effect, which was linked with increased fecal ATNC level. This study could lead to process modifications to make non promoting processed meat. PMID:20530708

  2. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water

    PubMed Central

    Haaijer, Suzanne C. M.; Ji, Ke; van Niftrik, Laura; Hoischen, Alexander; Speth, Daan; Jetten, Mike S. M.; Damsté, Jaap S. Sinninghe; Op den Camp, Huub J. M.

    2013-01-01

    Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (ammonia-oxidizing bacteria) and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmol of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on fluorescence in situ hybridization and metagenomic data) converting a maximum of 3 mmol of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity). Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted polymerase chain reaction analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species. PMID:23515432

  3. Acute oral dose of sodium nitrite induces redox imbalance, DNA damage, metabolic and histological changes in rat intestine.

    PubMed

    Ansari, Fariheen Aisha; Ali, Shaikh Nisar; Arif, Hussain; Khan, Aijaz Ahmed; Mahmood, Riaz

    2017-01-01

    Industrialization and unchecked use of nitrate/nitrite salts for various purposes has increased human exposure to high levels of sodium nitrite (NaNO2) which can act as a pro-oxidant and pro-carcinogen. Oral exposure makes the gastrointestinal tract particularly susceptible to nitrite toxicity. In this work, the effect of administration of a single acute oral dose of NaNO2 on rat intestine was studied. Animals were randomly divided into four groups and given single doses of 20, 40, 60 and 75 mg NaNO2/kg body weight. Untreated animals served as the control group. An NaNO2 dose-dependent decline in the activities of brush border membrane enzymes, increase in lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased thiol content was observed in all treated groups. The activities of various metabolic and antioxidant defense enzymes were also altered. NaNO2 induced a dose-dependent increase in DNA damage and DNA-protein crosslinking. Histopathological studies showed marked morphological damage in intestinal cells. The intestinal damage might be due to nitrite-induced oxidative stress, direct action of nitrite anion or chemical modification by reaction intermediates.

  4. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  5. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during...

  6. Nitrite Formation from Hydroxylamine and Oximes by Pseudomonas aeruginosa

    PubMed Central

    Amarger, Noelle; Alexander, M.

    1968-01-01

    Nitrite was formed from hydroxylamine and several oximes by intact cells and extracts of Pseudomonas aeruginosa. The activity was induced by the presence of oximes in the culture medium. Nitroalkanes were not intermediates in the conversion of acetaldoxime, acetone oxime, or butanone oxime to nitrite, since nitromethane inhibited the formation of nitrite from the nitro compounds but not from the corresponding oximes. The oxime apparently functions as a constant source of hydroxylamine during growth of the bacterium. Hydroxylamine at low concentration was converted stoichiometrically to nitrite by extracts of the bacterium; high concentrations were inhibitory. Nicotinamide adenine dinucleotide phosphate, oxygen, and other unidentified cofactors were necessary for the reaction. Actively nitrifying extracts possessed no hydroxylamine-cytochrome c reductase activity. Hyponitrite, nitrous oxide, and nitric oxide were not metabolized. PMID:4384968

  7. The use and control of nitrate and nitrite for the processing of meat products.

    PubMed

    Honikel, Karl-Otto

    2008-01-01

    Nitrate and nitrite are used for the purpose of curing meat products. In most countries the use of both substances, usually added as potassium or sodium salts, is limited. Either the ingoing or the residual amounts are regulated by laws. The effective substance is nitrite acting primarily as an inhibitor for some microorganisms. Nitrite added to a batter of meat is partially oxidized to nitrate by sequestering oxygen - thus it acts as an antioxidant - a part of nitrite is bound to myoglobin, forming the heat stable NO-myoglobin, a part is bound to proteins or other substances in meat. Nitrate may be reduced to nitrite in raw meat products by microorganisms. As oxidation and reduction may occur the concentrations of nitrite plus nitrate in a product has to be controlled and measured especially if the residual amounts are regulated. This sum of both compounds is important for the human body. Intake of nitrate with food leads to its absorption over the digestive tract into the blood. In the oral cavity nitrate appears again where it is reduced to nitrite. With the saliva the nitrite is mixed with food, having the same effect as nitrite in a batter (inhibiting growth of some pathogenic microorganisms) and swallowed. In the stomach nitrite can eventually form carcinogenic nitrosamines in the acidic environment.

  8. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite.

    PubMed

    Nielsen, Per M; Fago, Angela

    2015-08-01

    Carbonic anhydrase (CA) is a zinc enzyme that catalyzes hydration of carbon dioxide (CO2) and dehydration of bicarbonate in red blood cells, thus facilitating CO2 transport and excretion. Bovine CA II may also react with nitrite to generate nitric oxide, although nitrite is a known inhibitor of the CO2 hydration reaction. To address the potential in vivo interference of these reactions and the nature of nitrite binding to the enzyme, we here investigate the inhibitory effect of 10-30 mM nitrite on Michaelis-Menten kinetics of CO2 hydration and bicarbonate dehydration by stopped-flow spectroscopy. Our data show that nitrite significantly affects the apparent dissociation constant KM for CO2 (11 mM) and bicarbonate (221 mM), and the turnover number kcat for the CO2 hydration (1.467 × 10(6) s(-1)) but not for the bicarbonate dehydration (7.927 × 10(5) s(-1)). These effects demonstrate mixed and competitive inhibition for the reaction with CO2 and bicarbonate, respectively, and are consistent with nitrite binding to the active site zinc. The high apparent dissociation constant found here for CO2, bicarbonate and nitrite (16-120 mM) are all overall consistent with published data and reveal a large capacity of free enzyme available for binding each of the three substrates at their in vivo levels, with little or no significant interference among reactions. The low affinity of the enzyme for nitrite suggests that the in vivo interaction between red blood cell CA II and nitrite requires compartmentalization at the anion exchanger protein of the red cell membrane to be physiologically relevant. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Isolated and combined exposure to ammonia and nitrite in giant freshwater pawn (Macrobrachium rosenbergii): effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes.

    PubMed

    Zhang, Yufan; Ye, Chaoxia; Wang, Anli; Zhu, Xuan; Chen, Changhong; Xian, Jianan; Sun, Zhenzhu

    2015-10-01

    The residual contaminators such as ammonia and nitrite are widely considered as relevant sources of aquatic environmental pollutants, posing a great threat to shrimp survival. To study the toxicological effects of ammonia and nitrite exposure on the innate immune response in invertebrates, we investigated the oxidative stress and apoptosis in haemocytes of freshwater prawn (Macrobrachium rosenbergii) under isolated and combined exposure to ammonia and nitrite in order to provide useful information about adult prawn immune responses. M. rosenbergii (13.44 ± 2.75 g) were exposed to 0, 5, and 25 mg/L total ammonia-N (TAN) and 0, 5, and 20 mg/L nitrite-N for 24 h. All ammonia concentrations were combined with all nitrite concentrations, making a total of nine treatments studied. Following the exposure treatment, antioxidant enzyme activity, reactive oxygen species (ROS) generation, nitric oxide (NO) generation, and apoptotic cell ratio of haemocytes were measured using flow cytometry. Results indicated that ROS generation was sensitive to the combined effect of ammonia and nitrite, which subsequently affected the Cu-Zn SOD activity. In addition, CAT showed the highest activity at 5 mg/L TAN while GPx decreased at 5 mg/L TAN and returned towards baseline at 25 mg/L. NO generation synchronized with the apoptotic cell ratio in haemocytes, indicating that NO production was closely associated with programmed cell death. Both NO production and apoptotic ratios significantly decreased following 25 mg/L TAN, which may be due to the antagonistic regulation of NO and GPx. We hypothesized that the toxicological effect of nitrite exhibited less change in physiological changes compared to that of ammonia, because of the high tolerance to nitrite exposure in mature M. rosenbergii and/or the competitive effects of chloride ions. Taken together, these results showed that ammonia and nitrite caused a series of combined oxidative stress and apoptosis in M. rosenbergi, but further studies are of great need to explain the mechanisms.

  10. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    NASA Technical Reports Server (NTRS)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  11. Evaluating the capacity to generate and preserve nitric oxide bioactivity in highly purified earthworm erythrocruorin: a giant polymeric hemoglobin with potential blood substitute properties.

    PubMed

    Roche, Camille J; Talwar, Abhinav; Palmer, Andre F; Cabrales, Pedro; Gerfen, Gary; Friedman, Joel M

    2015-01-02

    The giant extracellular hemoglobin (erythrocruorin) from the earth worm (Lumbricus terrestris) has shown promise as a potential hemoglobin-based oxygen carrier (HBOC) in in vivo animal studies. An important beneficial characteristic of this hemoglobin (LtHb) is the large number of heme-based oxygen transport sites that helps overcome issues of osmotic stress when attempting to provide enough material for efficient oxygen delivery. A potentially important additional property is the capacity of the HBOC either to generate nitric oxide (NO) or to preserve NO bioactivity to compensate for decreased levels of NO in the circulation. The present study compares the NO-generating and NO bioactivity-preserving capability of LtHb with that of human adult hemoglobin (HbA) through several reactions including the nitrite reductase, reductive nitrosylation, and still controversial nitrite anhydrase reactions. An assignment of a heme-bound dinitrogen trioxide as the stable intermediate associated with the nitrite anhydrase reaction in both LtHb and HbA is supported based on functional and EPR spectroscopic studies. The role of the redox potential as a factor contributing to the NO-generating activity of these two proteins is evaluated. The results show that LtHb undergoes the same reactions as HbA and that the reduced efficacy for these reactions for LtHb relative to HbA is consistent with the much higher redox potential of LtHb. Evidence of functional heterogeneity in LtHb is explained in terms of the large difference in the redox potential of the isolated subunits. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. In vitro effect of sodium nitrite on platelet aggregation in human platelet rich plasma--preliminary report.

    PubMed

    Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F

    2015-10-01

    The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.

  13. Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process

    PubMed Central

    Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

    2012-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by “Candidatus Methylomirabilis oxyfera.” M. oxyfera is affiliated with the “NC10” phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process. PMID:22905032

  14. Inhibition kinetics of nitritation and half-nitritation of old landfill leachate in a membrane bioreactor.

    PubMed

    Li, Yun; Wang, Zhaozhao; Li, Jun; Wei, Jia; Zhang, Yanzhuo; Zhao, Baihang

    2017-04-01

    Nitritation can be used as a pretreatment for anaerobic ammonia oxidation (anammox). Various control strategies for nitritation and half-nitritation of old landfill leachate in a membrane bioreactor were investigated in this study and the inhibition kinetics of substrate, product and old landfill leachate on nitritation were analyzed via batch tests. The results demonstrated that old landfill leachate nitritation in the membrane bioreactor can be achieved by adjusting the influent loading and dissolved oxygen (DO). From days 105-126 of the observation period, the average effluent concentration was 871.3 mg/L and the accumulation rate of [Formula: see text] was 97.2%. Half-nitritation was realized quickly by adjusting hydraulic retention time and DO. A low-DO control strategy appeared to best facilitate long-term and stable operation. Nitritation inhibition kinetic experiments showed that the inhibition of old landfill leachate was stronger than that of the substrate [Formula: see text] or product [Formula: see text] . The ammonia oxidation rate dropped by 22.2% when the concentration of old landfill leachate (calculated in chemical oxygen demand) was 1600.2 mg/L; further, when only free ammonia or free nitrous acid were used as a single inhibition factor, the ammonia oxidation rate dropped by 4.7-6.5% or 14.5-15.9%, respectively. Haldane, Aiba, and a revised inhibition kinetic model were adopted to separately fit the experimental data. The R 2 correlation coefficient values for these three models were 0.982, 0.996, and 0.992, respectively. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate.

    PubMed

    Duncan, C; Dougall, H; Johnston, P; Green, S; Brogan, R; Leifert, C; Smith, L; Golden, M; Benjamin, N

    1995-06-01

    High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.

  16. A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments

    PubMed Central

    Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo

    2015-01-01

    This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131

  17. Nitrites and nitrates in exhaled breath condensate in cystic fibrosis: relation to clinical parameters.

    PubMed

    Fila, L; Chladek, J; Maly, M; Musil, J

    2013-01-01

    To evaluate correlation of exhaled breath condensate (EBC) nitrite and nitrate concentrations with disease severity in cystic fibrosis (CF) patients. Nitrites and nitrates are products of oxidative metabolism of nitric oxide. Impaired metabolism of nitric oxide plays a role in pathogenesis of CF. EBC was collected from 46 stable CF patients and from 21 healthy controls. EBC concentrations of nitrites and nitrates were correlated with parameters of lung disease and nutritional status and with systemic inflammatory markers. EBC nitrates concentrations in CF patients were lower than in healthy subjects (5.8 vs 14.3 μmol/l, p<0.001). They correlated positively with FEV1 (p=0.025) and serum albumin values (p=0.016) and negatively with chest radiograph Northern score (p=0.015) and serum C-reactive protein values (p=0.005). EBC nitrites concentrations in CF patients did not differ from those in healthy subjects and were not correlated to any studied parameter. EBC nitrates concentrations correlate with disease severity in CF patients and are lower than in healthy subjects (Tab. 4, Fig. 1, Ref. 48).

  18. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    PubMed

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  19. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri.

    PubMed Central

    Körner, H; Zumft, W G

    1989-01-01

    The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction. Images PMID:2764573

  20. Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments.

    PubMed

    Carpenter, Julian; Bi, Yuqiang; Hayes, Kim F

    2015-01-20

    Iron sulfide precipitates formed under sulfate reducing conditions may buffer U(IV) insoluble solid phases from reoxidation after oxidants re-enter the reducing zone. In this study, sediment column experiments were performed to quantify the effect of biogenic mackinawite on U(IV) stability in the presence of nitrite or dissolved oxygen (DO). Two columns, packed with sediment from an abandoned U contaminated mill tailings site near Rifle, CO, were biostimulated for 62 days with an electron donor (3 mM acetate) in the presence (BRS+) and absence (BRS−) of 7 mM sulfate. The bioreduced sediment was supplemented with synthetic uraninite (UO2(s)), sterilized by gamma-irradiation, and then subjected to a sequential oxidation by nitrite and DO. Biogenic iron sulfides produced in the BRS+ column, mostly as mackinawite, inhibited U(IV) reoxidation and mobilization by both nitrite and oxygen. Most of the influent nitrite (0.53 mM) exited the columns without oxidizing UO2, while a small amount of nitrite was consumed by iron sulfides precipitates. An additional 10-day supply of 0.25 mM DO influent resulted in the release of about 10% and 49% of total U in BRS+ and BRS– columns, respectively. Influent DO was effectively consumed by biogenic iron sulfides in the BRS+ column, while DO and a large U spike were detected after only a brief period in the effluent in the BRS– column.

  1. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  2. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    PubMed

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  3. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.

    PubMed

    Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario

    2012-12-01

    The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC (P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.

    2014-12-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.

  5. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta.

    PubMed Central

    Pinsky, D J; Cai, B; Yang, X; Rodriguez, C; Sciacca, R R; Cannon, P J

    1995-01-01

    Inducible nitric oxide (NO) produced by macrophages is cytotoxic to invading organisms and has an important role in host defense. Recent studies have demonstrated inducible NO production within the heart, and that cytokine-induced NO mediates alterations in cardiac contractility, but the cytotoxic potential of nitric oxide with respect to the heart has not been defined. To evaluate the role of inducible nitric oxide synthase (iNOS) on cardiac myocyte cytotoxicity, we exposed adult rat cardiac myocytes to either cytokines alone or to activated J774 macrophages in coculture. Increased expression of both iNOS message and protein was seen in J774 macrophages treated with IFN gamma and LPS and cardiac myocytes treated with TNF-alpha, IL-1 beta, and IFN gamma. Increased NO synthesis was confirmed in both the coculture and isolated myocyte preparations by increased nitrite production. Increased NO synthesis was associated with a parallel increase in myocyte death as measured by CPK release into the culture medium as well as by loss of membrane integrity, visualized by trypan blue staining. Addition of the competitive NO synthase inhibitor L-NMMA to the culture medium prevented both the increased nitrite production and the cytotoxicity observed after cytokine treatment in both the isolated myocyte and the coculture experiments. Because transforming growth-factor beta modulates iNOS expression in other cell types, we evaluated its effects on cardiac myocyte iNOS expression and NO-mediated myocyte cytotoxicity. TGF-beta reduced expression of cardiac myocyte iNOS message and protein, reduced nitrite production, and reduced NO-mediated cytotoxicity in parallel. Taken together, these experiments show the cytotoxic potential of endogenous NO production within the heart, and suggest a role for TGF-beta or NO synthase antagonists to mute these lethal effects. These findings may help explain the cardiac response to sepsis or allograft rejection, as well as the progression of dilated cardiomyopathies of diverse etiologies. Images PMID:7532189

  6. Correlation of plasma nitrite/nitrate levels and inducible nitric oxide gene expression among women with cervical abnormalities and cancer.

    PubMed

    Sowjanya, A Pavani; Rao, Meera; Vedantham, Haripriya; Kalpana, Basany; Poli, Usha Rani; Marks, Morgan A; Sujatha, M

    2016-01-30

    Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer. Copyright © 2015. Published by Elsevier Inc.

  7. Profound differences between humans and rodents in the ability to concentrate salivary nitrate: Implications for translational research.

    PubMed

    Montenegro, Marcelo F; Sundqvist, Michaela L; Nihlén, Carina; Hezel, Michael; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O

    2016-12-01

    In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10-20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1mmol/kg), plasma nitrate levels increased markedly reaching ~300µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit

    PubMed Central

    2014-01-01

    Background The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. Results We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Conclusions Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning. PMID:24708438

  9. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit.

    PubMed

    Hoefman, Sven; van der Ha, David; Boon, Nico; Vandamme, Peter; De Vos, Paul; Heylen, Kim

    2014-04-04

    The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning.

  10. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen

    PubMed Central

    Ma, Bin; Bao, Peng; Wei, Yan; Zhu, Guibing; Yuan, Zhiguo; Peng, Yongzhen

    2015-01-01

    Achieving nitrogen removal from domestic wastewater using anaerobic ammonium oxidation (anammox) has the potential to make wastewater treatment energy-neutral or even energy-positive. The challenge is to suppress the growth of nitrite-oxidizing bacteria (NOB). This study presents a promising method based on intermittent aeration with low dissolved oxygen to limit NOB growth, thereby providing an advantage to anammox bacteria to form a partnership with the ammonium-oxidizing bacteria (AOB). The results showed that NOB was successfully suppressed using that method, with the relative abundance of NOB maintained between 2.0–2.6%, based on Fluorescent in-situ Hybridization. Nitrogen could be effectively removed from domestic wastewater with anammox at a temperature above 20 °C, with an effluent total nitrogen (TN) concentration of 6.6 ± 2.7 mg/L, while the influent TN and soluble chemical oxygen demand were 62.6 ± 3.1 mg/L and 88.0 ± 8.1 mg/L, respectively. PMID:26354321

  11. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria.

    PubMed

    Wang, Xiaolong; Gao, Dawen

    2018-02-01

    Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inhaled nitrite reverses hemolysis-induced pulmonary vasoconstriction in newborn lambs without blood participation

    PubMed Central

    Blood, Arlin B.; Schroeder, Hobe J.; Terry, Michael H.; Merrill-Henry, Jeanette; Bragg, Shannon L.; Vrancken, Kurt; Liu, Taiming; Herring, Jason L.; Sowers, Lawrence C.; Wilson, Sean M.; Power, Gordon G.

    2011-01-01

    Background Nitrite can be converted to nitric oxide (NO) by a number of different biochemical pathways. In newborn lambs an aerosol of inhaled nitrite has been found to reduce pulmonary blood pressure, possibly acting via conversion to NO by reaction with intraerythrocytic deoxyhemoglobin. If so, the vasodilating effects of nitrite would be attenuated by free hemoglobin in plasma that would rapidly scavenge NO. Methods and Results Pulmonary vascular pressures and resistances to flow were measured in anesthetized newborn lambs. Plasma hemoglobin concentrations were then elevated, resulting in marked pulmonary hypertension. This effect was attenuated if infused hemoglobin was first oxidized to methemoglobin which does not scavenge NO. These results further implicate NO as a tonic pulmonary vasodilator. Next, while free hemoglobin continued to be infused, the lambs were given inhaled NO gas (20 ppm), inhaled sodium nitrite aerosol (0.87 M), or an intravascular nitrite infusion (3 mg·hr−1 bolus, 5 mg·kg−1·hr−1 infusion). Inhaled NO and inhaled nitrite aerosol both resulted in pulmonary vasodilation. Intravascular infusion of nitrite, however, did not. Increases in exhaled NO gas were observed while breathing the nitrite aerosol (~20 ppb NO) but not during intravascular infusion of nitrite. Conclusions We conclude that the pulmonary vasodilating effect of inhaled nitrite results from its conversion to NO in airway and parenchymal lung tissue and is not dependent on reactions with deoxyhemoglobin in the pulmonary circulation. Inhaled nitrite aerosol remains a promising candidate to reduce pulmonary hypertension in clinical application. PMID:21282501

  13. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants.

    PubMed

    Lücker, Sebastian; Schwarz, Jasmin; Gruber-Dorninger, Christiane; Spieck, Eva; Wagner, Michael; Daims, Holger

    2015-03-01

    Numerous past studies have shown members of the genus Nitrospira to be the predominant nitrite-oxidizing bacteria (NOB) in nitrifying wastewater treatment plants (WWTPs). Only recently, the novel NOB 'Candidatus Nitrotoga arctica' was identified in permafrost soil and a close relative was enriched from activated sludge. Still, little is known about diversity, distribution and functional importance of Nitrotoga in natural and engineered ecosystems. Here we developed Nitrotoga 16S rRNA-specific PCR primers and fluorescence in situ hybridization (FISH) probes, which were applied to screen activated sludge samples from 20 full-scale WWTPs. Nitrotoga-like bacteria were detected by PCR in 11 samples and reached abundances detectable by FISH in seven sludges. They coexisted with Nitrospira in most of these WWTPs, but constituted the only detectable NOB in two systems. Quantitative FISH revealed that Nitrotoga accounted for nearly 2% of the total bacterial community in one of these plants, a number comparable to Nitrospira abundances in other WWTPs. Spatial statistics revealed that Nitrotoga coaggregated with ammonia-oxidizing bacteria, strongly supporting a functional role in nitrite oxidation. This activity was confirmed by FISH in combination with microradiography, which revealed nitrite-dependent autotrophic carbon fixation by Nitrotoga in situ. Correlation of the presence or absence with WWTP operational parameters indicated low temperatures as a main factor supporting high Nitrotoga abundances, although in incubation experiments these NOB remained active over an unexpected range of temperatures, and also at different ambient nitrite concentrations. In conclusion, this study demonstrates that Nitrotoga can be functionally important nitrite oxidizers in WWTPs and can even represent the only known NOB in engineered systems.

  14. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate in other organs. PMID:25727730

  15. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata.

    PubMed

    Sellimi, Sabrine; Ksouda, Ghada; Benslima, Abdelkarim; Nasri, Rim; Rinaudo, Marguerite; Nasri, Moncef; Hajji, Mohamed

    2017-09-01

    The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory activity and the antioxidant properties, in vitro and in cured meat sausages containing reduced levels of sodium nitrite, of fucoxanthin extracted from the Tunisian brown seaweed Cystoseira barbata (CBFX). Results revealed that CBFX exhibited great scavenging activities against DPPH free radicals (EC 50  = 136 μg/ml), peroxyl radicals in the linoleate-β-carotene system (EC 50  = 43 μg/ml) and hydroxyl radicals generated by Fenton reaction (DNA nicking assay). A considerable ferric reducing potential was also recorded for CBFX (EC 50  = 34 μg/ml). It is interesting to note that CBFX was found to modulate the ACE activity, which is the key enzyme involved in the blood pressure regulation, with an EC 50 of 5 μg/ml. When fucoxanthin was supplemented, the concentration of sodium nitrite added to cured turkey meat sausages was reduced from 150 to 80 ppm, coupled with the enhancement of colour and oxidative stabilities. Thus, CBFX, with noticeable antioxidant and antihyertensive effects, could be used as a natural additive in functional foods to alleviate potential human health hazards caused by carcinogenic nitrosamines formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Connection between nitrogen and manganese cycles revealed by transcriptomic analysis in Shewanella algae C6G3

    NASA Astrophysics Data System (ADS)

    Michotey, V.; Aigle, A.; Armougom, F.; Mejean, V.; Guasco, S.; Bonin, P.

    2016-02-01

    In sedimentary systems, the repartition of terminal electron-accepting molecules is often stratified on a permanent or seasonal basis. Just below to oxic zone, the suboxic one is characterized by high concentrations of oxidized inorganic compounds such as nitrate, manganese oxides (MnIII/IV) and iron oxides that are in close vicinity. Several studies have reported unexpected anaerobic nitrite/nitrate production at the expense of ammonium mediated by MnIII/IV, however this transient processes is difficult to discern and poorly understood. In the frame of this study, genes organization of nitrate and MnIII/IV respiration was investigated in S.algae. Additional genes were identified in S. algae compare to S. oneidensis: genes coding for nitrate and nitrite reductase (napA-a and nrfA-2) and an OMC protein (mtrH). In contrast to S. oneidensis, an anaerobic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during growth with MnIII/IV, concomitantly with expression of nitrate/nitrite reductase genes (napA, nrfA, nrfA-2). Among the hypothesis explaining this data, the potential putative expression of unidentified gene able to perform ammonium oxidation was not observed on the global transcriptional level, however several signs of oxidative stress were detected and the existence of a secondary reaction generated by a putative oxidative s could not be excluded. Another option could be the action of reverse reaction by an enzyme such as NrfA or NrfA-2 due to the electron flow equilibrium. Whatever the electron acceptor (Nitrate/ MnIII/IV), the unexpected expression level of of omcA, mtrF, mtrH, mtrC was observed and peaked at the end of the exponential phase. Different expression patterns of the omc genes were observed depending on electron acceptor and growth phase. Only mtrF-2 gene was specifically expressed in Mn(III/IV) condition. Nitrate and Mn(III/IV) respirations seem connected at physiological as well as at transcriptional level

  17. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.

    PubMed

    Jamieson, James; Prommer, Henning; Kaksonen, Anna H; Sun, Jing; Siade, Adam J; Yusov, Anna; Bostick, Benjamin

    2018-05-15

    Microbially driven nitrate-dependent iron (Fe) oxidation (NDFO) in subsurface environments has been intensively studied. However, the extent to which Fe(II) oxidation is biologically catalyzed remains unclear because no neutrophilic iron-oxidizing and nitrate reducing autotroph has been isolated to confirm the existence of an enzymatic pathway. While mixotrophic NDFO bacteria have been isolated, understanding the process is complicated by simultaneous abiotic oxidation due to nitrite produced during denitrification. In this study, the relative contributions of biotic and abiotic processes during NDFO were quantified through the compilation and model-based interpretation of previously published experimental data. The kinetics of chemical denitrification by Fe(II) (chemodenitrification) were assessed, and compelling evidence was found for the importance of organic ligands, specifically exopolymeric substances secreted by bacteria, in enhancing abiotic oxidation of Fe(II). However, nitrite alone could not explain the observed magnitude of Fe(II) oxidation, with 60-75% of overall Fe(II) oxidation attributed to an enzymatic pathway for investigated strains: Acidovorax ( A.) strain BoFeN1, 2AN, A. ebreus strain TPSY, Paracoccus denitrificans Pd 1222, and Pseudogulbenkiania sp. strain 2002. By rigorously quantifying the intermediate processes, this study eliminated the potential for abiotic Fe(II) oxidation to be exclusively responsible for NDFO and verified the key contribution from an additional, biological Fe(II) oxidation process catalyzed by NDFO bacteria.

  18. Agricultural land usage transforms nitrifier population ecology.

    PubMed

    Bertagnolli, Anthony D; McCalmont, Dylan; Meinhardt, Kelley A; Fransen, Steven C; Strand, Stuart; Brown, Sally; Stahl, David A

    2016-06-01

    Application of nitrogen fertilizer has altered terrestrial ecosystems. Ammonia is nitrified by ammonia and nitrite-oxidizing microorganisms, converting ammonia to highly mobile nitrate, contributing to the loss of nitrogen, soil nutrients and production of detrimental nitrogen oxides. Mitigating these costs is of critical importance to a growing bioenergy industry. To resolve the impact of management on nitrifying populations, amplicon sequencing of markers associated with ammonia and nitrite-oxidizing taxa (ammonia monooxygenase-amoA, nitrite oxidoreductase-nxrB, respectively) was conducted from long-term managed and nearby native soils in Eastern Washington, USA. Native nitrifier population structure was altered profoundly by management. The native ammonia-oxidizing archaeal community (comprised primarily by Nitrososphaera sister subclusters 1.1 and 2) was displaced by populations of Nitrosopumilus, Nitrosotalea and different assemblages of Nitrososphaera (subcluster 1.1, and unassociated lineages of Nitrososphaera). A displacement of ammonia-oxidizing bacterial taxa was associated with management, with native groups of Nitrosospira (cluster 2 related, cluster 3A.2) displaced by Nitrosospira clusters 8B and 3A.1. A shift in nitrite-oxidizing bacteria (NOB) was correlated with management, but distribution patterns could not be linked exclusively to management. Dominant nxrB sequences displayed only distant relationships to other NOB isolates and environmental clones. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    PubMed

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  20. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis

    PubMed Central

    Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

  1. Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation.

    PubMed

    Delgado-Pando, Gonzalo; Cofrades, Susana; Ruiz-Capillas, Claudia; Solas, Maria Teresa; Triki, Mehdi; Jiménez-Colmenero, Francisco

    2011-09-01

    Oil (healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI), and microbial transglutaminase (MTG)) were used as pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation of frankfurters were analyzed and found to be affected by the type of oil-in-water emulsion and by chilling storage (2° C, 41 days). Although the lipid oxidation levels attained were low, replacement of animal fat by healthier oil combinations in frankfurter formulation did promote a slight increase in lipid oxidation. Residual nitrite was affected (P < 0.05) by formulation and storage. Only 51-61% of the added nitrite was detectable in the product after processing and 17-46% at the end of storage. The microbial population was low in all formulations during chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in level to all samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Nitrite therapy improves survival postexposure to chlorine gas

    PubMed Central

    Honavar, Jaideep; Doran, Stephen; Oh, Joo-Yeun; Steele, Chad; Matalon, Sadis

    2014-01-01

    Exposure to relatively high levels of chlorine (Cl2) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl2 exposure, could prevent Cl2 gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl2 gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl2 exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl2-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl2 gas exposure that is amenable to administration in mass-casualty scenarios. PMID:25326579

  3. Nitrite therapy improves survival postexposure to chlorine gas.

    PubMed

    Honavar, Jaideep; Doran, Stephen; Oh, Joo-Yeun; Steele, Chad; Matalon, Sadis; Patel, Rakesh P

    2014-12-01

    Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl₂ exposure, could prevent Cl₂ gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl₂ gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl₂ exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl₂-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl₂ gas exposure that is amenable to administration in mass-casualty scenarios. Copyright © 2014 the American Physiological Society.

  4. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    PubMed

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  5. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.

    PubMed

    Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping

    2017-06-01

    Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.

  6. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    PubMed

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.

    PubMed

    Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P

    2013-08-01

    Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  9. Sodium nitrite: the "cure" for nitric oxide insufficiency.

    PubMed

    Parthasarathy, Deepa K; Bryan, Nathan S

    2012-11-01

    This process of "curing" food is a long practice that dates back thousands of years long before refrigeration or food safety regulations. Today food safety and mass manufacturing are dependent upon safe and effective means to cure and preserve foods including meats. Nitrite remains the most effective curing agent to prevent food spoilage and bacterial contamination. Despite decades of rigorous research on its safety and efficacy as a curing agent, it is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite that is currently being developed as novel therapies for conditions associated with nitric oxide (NO) insufficiency. Much of the same biochemistry that has been understood for decades in the meat industry has been rediscovered in human physiology. This review will highlight the fundamental biochemistry of nitrite in human physiology and highlight the risk benefit evaluation surrounding nitrite in food and meat products. Foods or diets enriched with nitrite can have profound positive health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Portable Nitric Oxide (NO) Generator Based on Electrochemical Reduction of Nitrite for Potential Applications in Inhaled NO Therapy and Cardiopulmonary Bypass Surgery.

    PubMed

    Qin, Yu; Zajda, Joanna; Brisbois, Elizabeth J; Ren, Hang; Toomasian, John M; Major, Terry C; Rojas-Pena, Alvaro; Carr, Benjamin; Johnson, Thomas; Haft, Jonathan W; Bartlett, Robert H; Hunt, Andrew P; Lehnert, Nicolai; Meyerhoff, Mark E

    2017-11-06

    A new portable gas phase nitric oxide (NO) generator is described for potential applications in inhaled NO (INO) therapy and during cardiopulmonary bypass (CPB) surgery. In this system, NO is produced at the surface of a large-area mesh working electrode by electrochemical reduction of nitrite ions in the presence of a soluble copper(II)-ligand electron transfer mediator complex. The NO generated is then transported into gas phase by either direct purging with nitrogen/air or via circulating the electrolyte/nitrite solution through a gas extraction silicone fiber-based membrane-dialyzer assembly. Gas phase NO concentrations can be tuned in the range of 5-1000 ppm (parts per million by volume for gaseous species), in proportion to a constant cathodic current applied between the working and counter electrodes. This new NO generation process has the advantages of rapid production times (5 min to steady-state), high Faraday NO production efficiency (ca. 93%), excellent stability, and very low cost when using air as the carrier gas for NO (in the membrane dialyzer configuration), enabling the development of potentially portable INO devices. In this initial work, the new system is examined for the effectiveness of gaseous NO to reduce the systemic inflammatory response (SIR) during CPB, where 500 ppm of NO added to the sweep gas of the oxygenator or to the cardiotomy suction air in a CPB system is shown to prevent activation of white blood cells (granulocytes and monocytes) during extracorporeal circulation with cardiotomy suction conducted with five pigs.

  11. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature.

    PubMed

    Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1  h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  12. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  13. Nitric oxide donors or nitrite counteract copper-[dithiocarbamate](2)-mediated tumor cell death and inducible nitric oxide synthase down-regulation: possible role of a nitrosyl-copper [dithiocarbamate](2) complex.

    PubMed

    Rhenals, Maricela Viola; Strasberg-Rieber, Mary; Rieber, Manuel

    2010-02-25

    In contrast to other metal-dithiocarbamate [DEDTC] complexes, the copper-DEDTC complex is highly cytotoxic, inducing oxidative stress, preferentially in tumor cells. Because nitric oxide (NO) forms adducts with Cu[DEDTC](2), we investigated whether NO donors like S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP), and nitrite, a NO decomposition product, modulate Cu[DEDTC](2) cytotoxicity against human tumor cells. We show that apoptosis-associated PARP cleavage and inducible nitric oxide synthase (iNOS) down-regulation induced by nanomolar Cu[DEDTC](2), are counteracted by 50 muM SNAP, SNP, or CoCl(2), an inducer of hypoxia and NO signaling. Nitrite was stochiometrically effective in antagonizing Cu[DEDTC](2) cytotoxicity and inducing shifts in the absorption spectrum of the binary complex in the 280 and 450 nm regions. Subtoxic concentrations of Cu[DEDTC](2) became lethal when tumor cells were pretreated with c-PTIO, a membrane-impermeable scavenger for extracellular NO. Our results suggest that: (a) reactive oxygen species induced by Cu[DEDTC](2) are scavenged by nitrite released from NO, (b) the extent of lethality of Cu[DEDTC](2) is dependent on the reciprocal formation of an inactive ternary Cu[DEDTC](2)NO copper-nitrosyl complex.

  14. Nitrite oxidation in ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS).

    PubMed

    Farhat, Ali; Dooley, Alek N; Ahmad, Farrukh

    2011-07-01

    Nitrite anions are formed in the human body and in the natural environment as intermediate chemical compounds during the reduction of nitrate, a ubiquitous anthropogenic contaminant introduced into the environment primarily through fertilizer use. Multiple reaction monitoring (MRM) in ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS) is a promising new technique for quantifying and confirming the identity of anions in complex aqueous mixtures. In this article, we present the results of a short investigation devised to: (1) compare the signal generated by the MRM transitions for nitrite with those for nitrate, (2) isolate the source of the signal from these MRM transitions occurring within the IC-ESI-MS/MS instrument and (3) assess the relationship between the observed MRM signals for nitrite. The MRM transitions used in this study were m/z 62 (NO(3)(-))→m/z 46 (NO(2)(-)) and m/z 46 (NO(2)(-))→m/z 46 (NO(2)(-)). Results of the investigation revealed the association of both MRM transitions with the nitrite chromatographic peak, indicating the occurrence of nitrite oxidation to nitrate at the ESI interface before the first quadrupole. Calibrations for both MRM signals, as well as their sum, were found to be linear. However, the ratio of m/z 62→m/z 46 to m/z 46→m/z 46 (indicating an extent of oxidation) ranged from 35 to 56% over a nitrite concentration range of 10 to 100 ppm, showing no clear trend associated with concentration. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    DOE PAGES

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; ...

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  16. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  17. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  18. Role of nitrite, urate and pepsin in the gastroprotective effects of saliva

    PubMed Central

    Rocha, Bárbara S.; Lundberg, Jon O; Radi, Rafael; Laranjinha, João

    2016-01-01

    Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (p<0.05) and nitrated pepsin was detected both in the gastric juice and the mucosa (p<0.05). Exogenous urate, a scavenger of nitrogen dioxide radical, blunted •NO detection and inhibited pepsin nitration, suggesting an underlining free radical-dependent mechanism for nitration. Functionally, pepsin nitration prevented the development of gastric ulcers, as the lesions were only apparent when pepsin nitration was inhibited by urate. In sum, this work unravels a novel dietary-dependent nitrating pathway in which pepsin is nitrated and inactivated in the stomach, preventing the progression of gastric ulcers. PMID:27156250

  19. Simultaneous oxidation of ammonium and p-cresol linked to nitrite reduction by denitrifying sludge.

    PubMed

    González-Blanco, G; Beristain-Cardoso, R; Cuervo-López, F; Cervantes, F J; Gómez, J

    2012-01-01

    The metabolic capability of denitrifying sludge to oxidize ammonium and p-cresol was evaluated in batch cultures. Ammonium oxidation was studied in presence of nitrite and/or p-cresol by 55 h. At 50 mg/L NH4+-N and 76 mg/L NO2--N, the substrates were consumed at 100% and 95%, respectively, being N2 the product. At 50 mg/L NH4+-N and 133 mg/L NO2--N, the consumption efficiencies decreased to 96% and 70%, respectively. The increase in nitrite concentration affected the ammonium oxidation rate. Nonetheless, the N2 production rate did not change. In organotrophic denitrification, the p-cresol oxidation rate was slower than ammonium oxidation. In litho-organotrophic cultures, the p-cresol and ammonium oxidation rates were affected at 133 mg/L NO2--N. Nonetheless, at 76 mg/L NO2--N the denitrifying sludge oxidized ammonium and p-cresol, but at different rate. Finally, this is the first work reporting the simultaneous oxidation of ammonium and p-cresol with the production of N2 from denitrifying sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. From Nitrate to Nitric Oxide: The Role of Salivary Glands and Oral Bacteria.

    PubMed

    Qu, X M; Wu, Z F; Pang, B X; Jin, L Y; Qin, L Z; Wang, S L

    2016-12-01

    The salivary glands and oral bacteria play an essential role in the conversion process from nitrate (NO 3 - ) and nitrite (NO 2 - ) to nitric oxide (NO) in the human body. NO is, at present, recognized as a multifarious messenger molecule with important vascular and metabolic functions. Besides the endogenous L-arginine pathway, which is catalyzed by complex NO synthases, nitrate in food contributes to the main extrinsic generation of NO through a series of sequential steps (NO 3 - -NO 2 - -NO pathway). Up to 25% of nitrate in circulation is actively taken up by the salivary glands, and as a result, its concentration in saliva can increase 10- to 20-fold. However, the mechanism has not been clearly illustrated until recently, when sialin was identified as an electrogenic 2NO 3 - /H + transporter in the plasma membrane of salivary acinar cells. Subsequently, the oral bacterial species located at the posterior part of the tongue reduce nitrate to nitrite, as catalyzed by nitrate reductase enzymes. These bacteria use nitrate and nitrite as final electron acceptors in their respiration and meanwhile help the host to convert nitrate to NO as the first step. This review describes the role of salivary glands and oral bacteria in the metabolism of nitrate and in the maintenance of NO homeostasis. The potential therapeutic applications of oral inorganic nitrate and nitrite are also discussed. © International & American Associations for Dental Research 2016.

  1. Comparison of different two-pathway models for describing the combined effect of DO and nitrite on the nitrous oxide production by ammonia-oxidizing bacteria.

    PubMed

    Lang, Longqi; Pocquet, Mathieu; Ni, Bing-Jie; Yuan, Zhiguo; Spérandio, Mathieu

    2017-02-01

    The aim of this work is to compare the capability of two recently proposed two-pathway models for predicting nitrous oxide (N 2 O) production by ammonia-oxidizing bacteria (AOB) for varying ranges of dissolved oxygen (DO) and nitrite. The first model includes the electron carriers whereas the second model is based on direct coupling of electron donors and acceptors. Simulations are confronted to extensive sets of experiments (43 batches) from different studies with three different microbial systems. Despite their different mathematical structures, both models could well and similarly describe the combined effect of DO and nitrite on N 2 O production rate and emission factor. The model-predicted contributions for nitrifier denitrification pathway and hydroxylamine pathway also matched well with the available isotopic measurements. Based on sensitivity analysis, calibration procedures are described and discussed for facilitating the future use of those models.

  2. Role of blood and vascular smooth muscle in the vasoactivity of nitrite.

    PubMed

    Liu, Taiming; Schroeder, Hobe J; Barcelo, Lisa; Bragg, Shannon L; Terry, Michael H; Wilson, Sean M; Power, Gordon G; Blood, Arlin B

    2014-10-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. Copyright © 2014 the American Physiological Society.

  3. Evidence that inhibitory factor extracted from bovine retractor penis is nitrite, whose acid-activated derivative is stabilized nitric oxide.

    PubMed Central

    Martin, W.; Smith, J. A.; Lewis, M. J.; Henderson, A. H.

    1988-01-01

    1. Unactivated extracts of bovine retractor penis (BRP) contains 3-7 microM nitrite. Acid-activation of these extracts at pH 2 for 10 min followed by neutralization generates the active form of inhibitory factor (IF; assayed by its vasodilator action on rabbit aorta), and is associated with partial loss of nitrite. 2. Increasing the time of acid-activation at pH 2 from 10 to 60 min with intermittent vortex mixing generates greater vasodilator activity and increases nitrite loss. 3. When acid-activated and neutralized extracts are incubated at 37 degrees C or 30 min or boiled for 5 min, vasodilator activity is lost and nitrite content increased. Reactivation of these samples at pH 2 for 10 min followed by neutralization leads to partial recoveries of vasodilator activity with loss in nitrite content. 4. Addition of sodium nitrite to BRP extracts increases acid-activatable vasodilator activity pro rata. 5. Acid-activation of aqueous sodium nitrite solutions results in less loss of nitrite and generation of less vasodilator activity than BRP extracts. Vasodilatation is only transient and is rapidly abolished on neutralization, whereas responses to acid-activated BRP extracts are more prolonged and activity is stable on ice. 6. Bovine aortic endothelial cells yield vasodilator activity that is indistinguishable from that isolated from BRP. It is activated by acid, stable on ice, abolished by boiling or by haemoglobin, and appears to be due to the generation of nitric oxide (NO) from nitrite.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2897219

  4. Role of blood and vascular smooth muscle in the vasoactivity of nitrite

    PubMed Central

    Liu, Taiming; Schroeder, Hobe J.; Barcelo, Lisa; Bragg, Shannon L.; Terry, Michael H.; Wilson, Sean M.; Power, Gordon G.

    2014-01-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. PMID:25108012

  5. Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils

    USDA-ARS?s Scientific Manuscript database

    Substantial efforts have been made to characterize soil nitrous oxide (N2O) emissions following N fertilizer addition. While nitrite (NO2-) is a central regulator of N2O production, NO2- and N2O responses to nitrogen (N) fertilizer amendments still cannot be readily predicted. Our objective was to...

  6. Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Yeh, Shang-Chun; Tsai, Dah-Shyang; Guan, Sheng-Yong; Chou, Chen-Chia

    2015-11-01

    Urea and sodium nitrite are generally viewed as nitridation additives in the electrolyte for plasma electrolytic oxidation (PEO) of aluminum alloys. We study the influences of these two convenient chemicals in presence of sodium aluminate and find very different effects on film growth. Urea addition enhances the nitrogen content of PEO layer, diminishes the layer thickness, increases the porosity, interferes with the α-alumina formation, and promotes precipitation in the electrolyte. Hence, the electrolytic urea content ought to be maintained less than 45 g dm-3. On the other hand, sodium nitrite behaves like an oxidation additive, more than a nitridation additive. NaNO2 addition effectively introduces nitrogen in the PEO layer at low concentration, yet the nitrogen content of oxide layer decreases with increasing NaNO2 concentration. The effects of NaNO2, such as increasing layer thickness, reducing porosity, promoting α-alumina formation are attributed to oxidation enhancement, not because of nitridation.

  7. Effect of inhaled nitric oxide on cerebrospinal fluid and blood nitrite concentrations in newborn lambs

    PubMed Central

    Conahey, George R.; Power, Gordon G.; Hopper, Andrew O.; Terry, Michael H.; Kirby, Laura S.; Blood, Arlin B.

    2009-01-01

    Inhaled nitric oxide (iNO) has many extrapulmonary effects. As the half-life of NO in blood is orders of magnitude less than the circulation time from lungs to the brain, the mediator of systemic effects of iNO is unknown. We hypothesized that concentrations of nitrite, a circulating byproduct of NO with demonstrated NO bioactivity, would increase in blood and cerebrospinal fluid (CSF) during iNO therapy. iNO (80ppm) was given to six newborn lambs and results compared to six control lambs. Blood and CSF nitrite concentrations increased two-fold in response to iNO. cGMP increased in blood but not CSF suggesting brain guanylate cyclase activity was not increased. When sodium nitrite was infused intravenously blood and CSF nitrite levels increased within 10 min and reached similar levels of 14.6±1.5 µM after 40 min. The reactivity of nitrite in hemoglobin-free brain homogenates was investigated, with the findings that nitrite did not disappear nor did measurable amounts of s-nitroso, n-nitroso, or iron-nitrosyl-species appear. We conclude that although nitrite diffuses freely between blood and CSF, due to its lack of reactivity in the brain, nitrite’s putative role as the mediator of the systemic effects of iNO is limited to intravascular reactions. PMID:18535482

  8. Application of an optimized total N-nitrosamine (TONO) assay to pools: placing N-nitrosodimethylamine (NDMA) determinations into perspective.

    PubMed

    Kulshrestha, Pankaj; McKinstry, Katherine C; Fernandez, Bernadette O; Feelisch, Martin; Mitch, William A

    2010-05-01

    Although N-nitrosodimethylamine (NDMA) has been the most prevalent N-nitrosamine detected in disinfected waters, it remains unclear whether NDMA is indeed the most significant N-nitrosamine or just one representative of a larger pool of N-nitrosamines. A widely used assay applied to quantify nitrite, S-nitrosothiols, and N-nitrosamines in biological samples involves their reduction to nitric oxide by acidic tri-iodide, followed by chemiluminescent detection of the evolved nitric oxide in the gas phase. We here describe an adaptation of this method for analyzing total N-nitrosamine (TONO) concentrations in disinfected pools. Optimal sensitivity for N-nitrosamines was obtained using a reduction solution containing 13.5 mL glacial acetic acid and 1 mL of an aqueous 540 g/L iodide and 114 g/L iodine solution held at 80 degrees C. The method detection limit for N-nitrosamines was 110 nM using 100 microL sample injections and NDMA as a standard. N-nitrosamines featuring a range of polarities were converted to nitric oxide with 75-103% efficiency compared to NDMA. Evaluation of potential interfering species indicated that only nitrite and S-nitrosothiols were a concern, but both interferences were effectively eliminated using group-specific sample pretreatments previously employed for biological samples. To evaluate the low TONO concentrations anticipated for pools, 1 L samples were extracted by continuous liquid-liquid extraction with ethyl acetate for 24 h, and concentrated to 1 mL. N-nitrosamine recovery during extraction ranged from 37-75%, and there was a potential for artifactual nitrosation of amines during solvent reflux in the presence of significant nitrite concentrations, but not at the low nitrite concentrations prevalent in most pools. Using the 1000-fold concentration factor and 56% average extraction efficiency, the method detection limit would be 62 pM (5 ng/L as NDMA). The TONO assay was applied to six pools and their common tap water source in conjunction with analysis for specific nitrosamines. Even accounting for the range of N-nitrosamine extraction recoveries, NDMA accounted for an average of only 13% (range 3-46%) of the total nitrosamine pool.

  9. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  10. Patterned Electrode-Based Amperometric Gas Sensor for Direct Nitric Oxide Detection within Microfluidic Devices

    PubMed Central

    Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E.; Takayama, Shuichi

    2010-01-01

    This manuscript describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin (~ 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. Electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65 ~ 0.75 V vs. Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interferents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to ~1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas permeable microchannels, as they are stimulated with endotoxin. PMID:20329749

  11. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    PubMed

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  12. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    PubMed Central

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (p<0.001 and =0.017 for nitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  13. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments.

    PubMed

    Rios-Del Toro, E Emilia; Cervantes, Francisco J

    2016-06-01

    In the present study, the capacity of enrichments derived from marine sediments collected from different sites of the Mexican littoral to perform anaerobic ammonium oxidation (anammox) coupled to sulfide-dependent denitrification for simultaneous removal of ammonium and sulfide linked to nitrite reduction was evaluated. Sulfide-dependent denitrification out-competed anammox during the simultaneous oxidation of sulfide and ammonium. Significant accumulation of elemental sulfur (ca. 14-30 % of added sulfide) occurred during the coupling between the two respiratory processes, while ammonium was partly oxidized (31-47 %) due to nitrite limitation imposed in sediment incubations. Nevertheless, mass balances revealed up to 38 % more oxidation of the electron donors available (ammonium and sulfide) than that expected from stoichiometry. Recycling of nitrite, from nitrate produced through anammox, is proposed to contribute to extra oxidation of sulfide, while additional ammonium oxidation is suggested by sulfate-reducing anammox (SR-anammox). The complex interaction between nitrogenous and sulfurous compounds occurring through the concomitant presence of autotrophic denitrification, conventional anammox and SR-anammox may significantly drive the nitrogen and sulfur fluxes in marine environments.

  14. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    PubMed

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  15. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    PubMed

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    PubMed

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Long-Term Infusion of Sodium Nitrite in Humans

    PubMed Central

    Vega-Villa, K; Pluta, R; Lonser, R; Woo, S

    2013-01-01

    A long-term sodium nitrite infusion is intended for the treatment of vascular disorders. Phase I data demonstrated a significant nonlinear dose-exposure-toxicity relationship within the therapeutic dosage range. This study aims to develop a quantitative systems pharmacology model characterizing nitric oxide (NO) metabolome and methemoglobin after sodium nitrite infusion. Nitrite, nitrate, and methemoglobin concentration–time profiles in plasma and RBC were used for model development. Following intravenous sodium nitrite administration, nitrite undergoes conversion in RBC and tissue. Nitrite sequestered by RBC interacts more extensively with deoxyhemoglobin, which contributes greatly to methemoglobin formation. Methemoglobin is formed less-than-proportionally at higher nitrite doses as characterized with facilitated methemoglobin removal. Nitrate-to-nitrite reduction occurs in tissue and via entero-salivary recirculation. The less-than-proportional increase in nitrite and nitrate exposure at higher nitrite doses is modeled with a dose-dependent increase in clearance. The model provides direct insight into NO metabolome disposition and is valuable for nitrite dosing selection in clinical trials. PMID:23903463

  18. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    PubMed

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  19. Nitrite oxidizing bacteria for water treatment in coastal aquaculture system

    NASA Astrophysics Data System (ADS)

    Noorak, S.; Rakkhiaw, S.; Limjirakhajornt, K.; Uppabullung, A.; Keawtawee, T.; Sangnoi, Y.

    2018-04-01

    This research aimed to isolate and characterize nitrite oxidizing bacteria and to study their capability for water quality improvement. Fourteen strains of bacteria with nitrite-oxidizing character were isolated after 21 days of enrichment in Pep-Beef-NOB medium contained NaNO2. Two strains, SF-1 and SF-5, showed highest nitrite removal rate for 42.42% and 37.2%, respectively. These strains were determined an efficiency of open-system wastewater treatment for 14 days. The results showed that control, SF-1 and SF-5 had remove ammonia from day 1 to day 6. At the end of the study, ammonia was removed by the control, SF-1 and SF-5 for 81.27%, 70.1% and 69.82%, respectively. Nitrite concentration was lowest at day 8 with removal rate of 98.73%, 98.3% and 97.24% from control, SF-1 and SF-5, respectively. However, nitrite concentration in control experiment was increased again at day 11 whereas in SF-1 and SF-5 were increased at day 13. Chemical Oxygen Demand (COD) was decreased by 77.78%, 73.50% and 78.63% in the control, SF-1 and SF-5, respectively. Biological Oxygen Demand (BOD) in the control, SF-1 and SF-5 were reduced by 85.92%, 79.53% and 82.09%, respectively. Based on 16S rRNA gene, SF-1 and SF-5 were identified as Bacillus vietnamensis and B. firmus, respectively.

  20. Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly favorable driving force.

    PubMed

    Youngblut, Matthew; Pauly, Daniel J; Stein, Natalia; Walters, Daniel; Conrad, John A; Moran, Graham R; Bennett, Brian; Pacheco, A Andrew

    2014-04-08

    Cytochrome c nitrite reductase (ccNiR) from Shewanella oneidensis, which catalyzes the six-electron reduction of nitrite to ammonia in vivo, was shown to oxidize hydroxylamine in the presence of large quantities of this substrate, yielding nitrite as the sole free nitrogenous product. UV-visible stopped-flow and rapid-freeze-quench electron paramagnetic resonance data, along with product analysis, showed that the equilibrium between hydroxylamine and nitrite is fairly rapidly established in the presence of high initial concentrations of hydroxylamine, despite said equilibrium lying far to the left. By contrast, reduction of hydroxylamine to ammonia did not occur, even though disproportionation of hydroxylamine to yield both nitrite and ammonia is strongly thermodynamically favored. This suggests a kinetic barrier to the ccNiR-catalyzed reduction of hydroxylamine to ammonia. A mechanism for hydroxylamine reduction is proposed in which the hydroxide group is first protonated and released as water, leaving what is formally an NH2(+) moiety bound at the heme active site. This species could be a metastable intermediate or a transition state but in either case would exist only if it were stabilized by the donation of electrons from the ccNiR heme pool into the empty nitrogen p orbital. In this scenario, ccNiR does not catalyze disproportionation because the electron-donating hydroxylamine does not poise the enzyme at a sufficiently low potential to stabilize the putative dehydrated hydroxylamine; presumably, a stronger reductant is required for this.

  1. Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil.

    PubMed

    Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun

    2018-01-01

    Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers ( Nitrobacter and Nitrospira ) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter - and Nitrospira -like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis and Mantel test indicated that soil nitrogen, carbon, phosphorus, and available potassium content were important environmental attributes that control the Nitrobacter - and Nitrospira -like NOB community structure across different fertilization treatments under aggregate levels in the red soil. In general, nitrite-oxidizing bacteria community composition and alpha-diversity are depending on fertilizer regimes, but independent of the soil aggregate.

  2. Conserved active site residues limit inhibition of a copper-containing nitrite reductase by small molecules.

    PubMed

    Tocheva, Elitza I; Eltis, Lindsay D; Murphy, Michael E P

    2008-04-15

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  3. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    PubMed

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Meat processing and colon carcinogenesis: cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats.

    PubMed

    Santarelli, Raphaëlle L; Vendeuvre, Jean-Luc; Naud, Nathalie; Taché, Sylviane; Guéraud, Françoise; Viau, Michelle; Genot, Claude; Corpet, Denis E; Pierre, Fabrice H F

    2010-07-01

    Processed meat intake is associated with colorectal cancer risk, but no experimental study supports the epidemiologic evidence. To study the effect of meat processing on carcinogenesis promotion, we first did a 14-day study with 16 models of cured meat. Studied factors, in a 2 x 2 x 2 x 2 design, were muscle color (a proxy for heme level), processing temperature, added nitrite, and packaging. Fischer 344 rats were fed these 16 diets, and we evaluated fecal and urinary fat oxidation and cytotoxicity, three biomarkers of heme-induced carcinogenesis promotion. A principal component analysis allowed for selection of four cured meats for inclusion into a promotion study. These selected diets were given for 100 days to rats pretreated with 1,2-dimethylhydrazine. Colons were scored for preneoplastic lesions: aberrant crypt foci (ACF) and mucin-depleted foci (MDF). Cured meat diets significantly increased the number of ACF/colon compared with a no-meat control diet (P = 0.002). Only the cooked nitrite-treated and oxidized high-heme meat significantly increased the fecal level of apparent total N-nitroso compounds (ATNC) and the number of MDF per colon compared with the no-meat control diet (P < 0.05). This nitrite-treated and oxidized cured meat specifically increased the MDF number compared with similar nonnitrite-treated meat (P = 0.03) and with similar nonoxidized meat (P = 0.004). Thus, a model cured meat, similar to ham stored aerobically, increased the number of preneoplastic lesions, which suggests colon carcinogenesis promotion. Nitrite treatment and oxidation increased this promoting effect, which was linked with increased fecal ATNC level. This study could lead to process modifications to make nonpromoting processed meat. 2010 AACR.

  5. THE REDUCTION OF NITRATE, NITRITE AND HYDROXYLAMINE TO AMMONIA BY ENZYMES FROM CUCURBITA PEPO L. IN THE PRESENCE OF REDUCED BENZYL VIOLOGEN AS ELECTRON DONOR.

    PubMed

    CRESSWELL, C F; HAGEMAN, R H; HEWITT, E J; HUCKLESBY, D P

    1965-01-01

    1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90-100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation-reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH- or NADPH-nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent K(m) for nitrite (1 mum) is substantially less than that for hydroxylamine, for which variable values between 0.05 and 0.9mm (mean 0.51 mm) have been observed. 8. The apparent K(m) values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7.5 mum respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite to ammonia by plants, and a possible mechanism for reduction of both compounds by the same enzyme system is discussed in the light of current ideas relating to other organisms.

  6. Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase*

    PubMed Central

    Carballal, Sebastián; Cuevasanta, Ernesto; Yadav, Pramod K.; Gherasim, Carmen; Ballou, David P.; Alvarez, Beatriz; Banerjee, Ruma

    2016-01-01

    Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO•), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2−) reduction by Fe(II)-CBS to form Fe(II)NO•-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO•-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO−) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO• and peroxynitrite. PMID:26867575

  7. Modulation of the cyclooxygenase pathway via inhibition of nitric oxide production contributes to the anti-inflammatory activity of kaempferol.

    PubMed

    Mahat, Mahamad Yunnus A; Kulkarni, Nagaraj M; Vishwakarma, Santosh L; Khan, Farhin R; Thippeswamy, B S; Hebballi, Vijay; Adhyapak, Anjana A; Benade, Vijay S; Ashfaque, Saudagar Mohammad; Tubachi, Suraj; Patil, Basangouda M

    2010-09-10

    Kaempferol has been reported to inhibit nitric oxide synthase and cyclooxygenase enzymes in animal models. The present study was designed to investigate whether kaempferol modulates the cyclooxygenase pathway via inhibition of nitric oxide production, which in turn contributes to its anti-inflammatory activity. Investigations were performed using carrageenan induced rat air pouch model. Inflammation was assessed by measurement of nitrites (nitrite, a breakdown product of nitric oxide), prostaglandin-E(2) levels and cellular infiltration in the pouch fluid exudates. To assess the anti-inflammatory effect of the extract, rat air pouch linings were examined histologically. The levels of nitrite and prostaglandin-E(2) in pouch fluid were measured by using Griess assay and ELISA respectively. Cell counts and differential counts were performed using a Coulter counter and Wright-Giemsa stain respectively. Kaempferol when administered orally at 50 and 100mg/kg dose showed significant inhibition of carrageenan induced production of nitrite (40.12 and 59.74%, respectively) and prostaglandin-E(2) generation (64.23 and 78.55%, respectively). Infiltration of the cells into the rat granuloma air pouch was also significantly inhibited by kaempferol. Modulation of cyclooxygenase pathway via inhibition of nitric oxide synthesis significantly contributes to kaempferol's anti-inflammatory activity. The present study characterizes the effects and mechanisms of naturally occurring phenolic flavonoid kaempferol, on inducible nitric oxide synthase expression and nitric oxide production. These results partially explain the pharmacological efficacy of flavonoids in general and kaempferol in particular as anti-inflammatory compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Oxidant-antioxidant status in Egyptian children with sickle cell anemia: a single center based study.

    PubMed

    El-Ghamrawy, Mona Kamal; Hanna, Wagdi Maurice; Abdel-Salam, Amina; El-Sonbaty, Marwa M; Youness, Eman R; Adel, Ahmed

    2014-01-01

    the present study was conducted to investigate the oxidant-antioxidant status in Egyptian children with sickle cell anemia. the serum levels of total antioxidant capacity (TAO), paraoxonase (PON), vitamin E, nitrite, and malondialdehyde (MDA) were measured in 40 steady state children with homozygous sickle cell anemia (24 males and 16 females) and 20 apparently healthy age- and gender-matched controls. mean serum TAO, PON, vitamin E, and nitrite levels were significantly lower in the group with sickle cell anemia, whereas mean serum MDA was significantly higher in these children compared to controls. No significant differences in mean levels of TAO, PON, nitrite, vitamin E, and MDA were found in sickle cell anemia patients receiving hydroxyurea when compared with those not receiving hydroxyurea. A significant negative correlation between serum nitrite and the occurrence of vaso-occlusive crises (VOC) was observed (r=-0.3, p=0.04). PON level was found to be positively correlated with patients' weight and BMI (r=-0.4, p=0.01; r=-0.7, p<0.001, respectively), but not with frequency of VOC. The area under the curve of serum nitrite in predicting occurrence of VOC was 0.782, versus 0.701 for PON, and 0.650 for TAO (p=0.006). Serum MDA was not correlated with nitrite, PON, TAO, or vitamin E levels. No significant correlations were detected between serum nitrite and hemoglobin or antioxidant enzymes. children with sickle cell anemia have chronic oxidative stress that may result in increased VOC, and decreased serum nitrite may be associated with increases in VOC frequency. A novel finding in this study is the decrease in PON level in these patients, which is an interesting subject for further research. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  9. Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation.

    PubMed

    Vitturi, Dario A; Teng, Xinjun; Toledo, José C; Matalon, Sadis; Lancaster, Jack R; Patel, Rakesh P

    2009-05-01

    Allosteric regulation of nitrite reduction by deoxyhemoglobin has been proposed to mediate nitric oxide (NO) formation during hypoxia. Nitrite is predominantly an anion at physiological pH, raising questions about the mechanism by which it enters the red blood cell (RBC) and whether this is regulated and coupled to deoxyhemoglobin-mediated reduction. We tested the hypothesis that nitrite transport by RBCs is regulated by fractional saturation. Using human RBCs, nitrite consumption was faster at lower fractional saturations, consistent with faster reactions with deoxyheme. A membrane-based regulation was suggested by slower nitrite consumption with intact versus lysed RBCs. Interestingly, upon nitrite addition, intracellular nitrite concentrations attained a steady state that, despite increased rates of consumption, did not change with decreasing oxygen tensions, suggesting a deoxygenation-sensitive step that either increases nitrite import or decreases the rate of nitrite export. A role for anion exchanger (AE)-1 in the control of nitrite export was suggested by increased intracellular nitrite concentrations in RBCs treated with DIDS. Moreover, deoxygenation decreased steady-state levels of intracellular nitrite in AE-1-inhibited RBCs. Based on these data, we propose a model in which deoxyhemoglobin binding to AE-1 inhibits nitrite export under low oxygen tensions allowing for the coupling between deoxygenation and nitrite reduction to NO along the arterial-to-venous gradient.

  10. Effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment.

    PubMed

    Zhang, Chaosheng; Zhang, Shaoqing; Zhang, Liqiu; Rong, Hongwei; Zhang, Kefang

    2015-04-01

    On the basis of achieving shortcut nitrification in a lab-scale SBR, the effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment was investigated. The results indicate that under the condition of DO of 0.5 ± 0.2 mg/L and temperature of 30 ± 2 °C, the absolute value of nitrite accumulation increased significantly with the increase in free ammonia (FA) concentration from 5.30 to 48.67 mg/L; however, the nitrite accumulation rate remained almost constant at a constant pH of 8.0 ± 0.1. Ammonia oxidation and the nitrite accumulation become slow with the pH decreased from 8.0 ± 0.1 to 7.5 ± 0.2, and the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were severely inhibited when the pH further decreased to 6.5. More importantly, this study confirmed that the pH decrease from 8.0 to 6.5 within a short time exhibited significant negative effect on the ammonia oxidation rather than the FA concentration.

  11. The intracellular proton gradient enables anaerobic ammonia oxidizing (anammox) bacteria to tolerate NO2 - inhibition.

    PubMed

    Carvajal-Arroyo, José M; Puyol, Daniel; Li, Guangbin; Sierra-Álvarez, Reyes; Field, Jim A

    2014-12-20

    Anammox bacteria are inhibited by nitrite, which is one of their substrates. By utilizing 2,4 dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone, two uncouplers of respiration, we demonstrate that nitrite tolerance of anammox cells is strongly dependent on their ability to maintain a proton gradient, which may be the driving force for active nitrite transport system.

  12. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    PubMed

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  13. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.).

    PubMed

    Ngugi, David Kamanda; Brune, Andreas

    2012-04-01

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using (15)N isotope tracer analysis. Living termites emitted N(2) at rates ranging from 3.8 to 6.8 nmol h(-1) (g fresh wt.)(-1). However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of (15)N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N(2) O, ranging from 0.4 to 3.9 nmol h(-1) (g fresh wt.)(-1), providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  15. Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems.

    PubMed

    Riazi, Fatemeh; Zeynali, Fariba; Hoseini, Ebrahim; Behmadi, Homa; Savadkoohi, Sobhan

    2016-11-01

    The present study focuses on the effect of different levels of red grape pomace (1 and 2%, w/w) on the color changes, lipid oxidation (TBARS), antioxidant activity, microbial counts, total phenol content and sensory attributes of the sausages formulated with various levels of sodium nitrite (30, 60 and 120mg/kg). It was found that the addition of grape pomace (1%, w/w) in combination of reduced nitrite levels to the beef sausage samples reduced TBARS content and the degree of lipid oxidation. Antioxidant activity and total phenol contents were further evaluated based on DPPH scavenging activity method. A significant reduction in lightness (L*) and yellowness (b*) of systems containing grape pomace was observed, following by an increase in the oxidative stability and the radical scavenging activity. Acceptability of beef sausages was not significantly (P>0.05) affected by the addition of grape pomace and had relatively greater scores from a sensory point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer.

    PubMed

    Van Hecke, Thomas; Vossen, Els; Hemeryck, Lieselot Y; Vanden Bussche, Julie; Vanhaecke, Lynn; De Smet, Stefaan

    2015-11-15

    Uncured and nitrite-cured pork were subjected, raw, cooked (65 °C, 15 min) or overcooked (90 °C, 30 min), to an in vitro digestion model, which includes mouth, stomach, duodenum, and colon phases. Heating of uncured meat resulted in a pronounced increase in lipid and protein oxidation products throughout digestion. Nitrite-curing had an antioxidant effect during digestion, but this effect disappeared when the meat was overcooked, resulting in up to ninefold higher 4-hydroxy-2-nonenal concentrations compared with digested nitrite-cured raw and cooked pork. Colonic digesta contained significantly higher concentrations of the NOC-specific DNA adduct O(6)-carboxy-methylguanine when pork underwent a more intense heating procedure, independent of nitrite-curing, depending strongly on the fecal inoculum used. Since processed meats are usually nitrite-cured, the present study suggests that overcooking processed meat is likely to result in the formation of genotoxic compounds during digestion and should, therefore, be avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. It is rocket science – why dietary nitrate is hard to ‘beet’! Part I: twists and turns in the realization of the nitrate–nitrite–NO pathway

    PubMed Central

    Khatri, Jibran; Mills, Charlotte Elizabeth; Maskell, Perry; Odongerel, Chimed

    2016-01-01

    Dietary nitrate (found in green leafy vegetables, such as rocket, and in beetroot) is now recognized to be an important source of nitric oxide (NO), via the nitrate–nitrite–NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. While this pathway may now seem obvious, its realization followed a rather tortuous course over two decades. Early steps included the discovery that nitrite was a source of NO in the ischaemic heart but this appeared to have deleterious effects. In addition, nitrate‐derived nitrite provided a gastric source of NO. However, residual nitrite was not thought to be absorbed systemically. Nitrite was also considered to be physiologically inert but potentially carcinogenic, through N‐nitrosamine formation. In Part 1 of a two‐part Review on the nitrate‐nitrite‐NO pathway we describe key twists and turns in the elucidation of the pathway and the underlying mechanisms. This provides the critical foundation for the more recent developments in the nitrate–nitrite–NO pathway which are covered in Part 2. PMID:26896747

  18. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi

    PubMed Central

    Giguere, Andrew T.; Murthy, Ganti S.; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2018-01-01

    ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. PMID:29577088

  19. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi.

    PubMed

    Mellbye, Brett L; Giguere, Andrew T; Murthy, Ganti S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Chaplen, Frank W R

    2018-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO 2 , and N 2 O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi . The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH 4 + ). Up to 60% of NH 4 + -based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO 3 - ), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO 2 ], and nitrous oxide [N 2 O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.

  20. A Two-Component Monooxygenase Catalyzes Both the Hydroxylation of p-Nitrophenol and the Oxidative Release of Nitrite from 4-Nitrocatechol in Bacillus sphaericus JS905

    PubMed Central

    Kadiyala, Venkateswarlu; Spain, Jim C.

    1998-01-01

    Bacteria that metabolize p-nitrophenol (PNP) oxidize the substrate to 3-ketoadipic acid via either hydroquinone or 1,2,4-trihydroxybenzene (THB); however, initial steps in the pathway for PNP biodegradation via THB are unclear. The product of initial hydroxylation of PNP could be either 4-nitrocatechol or 4-nitroresorcinol. Here we describe the complete pathway for aerobic PNP degradation by Bacillus sphaericus JS905 that was isolated by selective enrichment from an agricultural soil in India. Washed cells of PNP-grown JS905 released nitrite in stoichiometric amounts from PNP and 4-nitrocatechol. Experiments with extracts obtained from PNP-grown cells revealed that the initial reaction is a hydroxylation of PNP to yield 4-nitrocatechol. 4-Nitrocatechol is subsequently oxidized to THB with the concomitant removal of the nitro group as nitrite. The enzyme that catalyzed the two sequential monooxygenations of PNP was partially purified and separated into two components by anion-exchange chromatography and size exclusion chromatography. Both components were required for NADH-dependent oxidative release of nitrite from PNP or 4-nitrocatechol. One of the components was identified as a reductase based on its ability to catalyze the NAD(P)H-dependent reduction of 2,6-dichlorophenolindophenol and nitroblue tetrazolium. Nitrite release from either PNP or 4-nitrocatechol was inhibited by the flavoprotein inhibitor methimazole. Our results indicate that the two monooxygenations of PNP to THB are catalyzed by a single two-component enzyme system comprising a flavoprotein reductase and an oxygenase. PMID:9647818

  1. The involvement of nitric oxide in the hemodynamic and metabolic activities of the brain and small intestine

    NASA Astrophysics Data System (ADS)

    Tolmasov, M.; Barbiro-Michaely, E.; Mayevsky, A.

    2009-02-01

    Nitric oxide is a mediator in many physiological processes including vasodilatation of blood vessels, neurotransmission and prevention of platelet aggregation. It has also a role in the pathophysiology of sepsis, hemorrhagic shock, various traumatic events and critical conditions involved with circulatory abnormalities. The last one is accompanied by blood flow redistribution and is considered to be the putative cause of altered oxygen metabolism in various pathophysiological conditions. The present study tested the involvement of NO in the brain as a vital organ versus the small intestine, a less vital organ using the non-specific nitric oxide synthase inhibitor L-NAME and exogenous NO donor - nitrite. The parameters that were simultaneously monitored in both organs included mean arterial blood pressure (MAP), tissue blood flow (TBF), using laser Doppler flowmetery and NADH fluorescence using the fluorometric technique. Three groups were tested. Group 1 - L-NAME +nitrite, group 2 - control L-NAME and group 3 - control nitrite. Following LNAME, MAP significantly increased and remained elevated through the entire experiment. TBF decreased in both organs with full recovery in the brain and no recovery in the intestine, whereas NADH showed no significant changes. Nitrite alone had no significant effect on the parameters in any of the organs. In group 1 the infusion of nitrite decreased the level of elevated MAP earlier induced by L-NAME. Nitrite also recovered the reduced TBF in the brain whereas it had no beneficial effect on intestinal blood flow indicating for its regulatory role in the brain but not in the intestine.

  2. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    PubMed

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  3. [Methemoglobinemia due to ingestion of isobutyl nitrite ('poppers')].

    PubMed

    Pruijm, M T C; de Meijer, P H E M

    2002-12-07

    Two male students, aged 20 and 21 years, developed central cyanosis shortly after drinking 5 ml of 'poppers' (isobutyl nitrite). They presented with methaemoglobinaemia and were hospitalised. After treatment with oxygen and intravenous fluids they could be discharged in good health the following day. Poppers are alkyl nitrites with vasdilative and oxidizing properties. They are used as party drugs (i.e. inhaled) because of their short-lived euphoric effect. Overdose can result in methaemoglobinaemia: the presence of oxidized haemoglobin which is unable to transport oxygen. Depending on the serum level of methaemoglobin this may result in central cyanosis, unconsciousness, coma and even death. Patients with high methaemoglobin levels should be treated with i.v. methylene blue.

  4. Proposal to support the 4th international conference on nitrification and related processes (ICoN4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klotz, Martin Gunter

    The 4th International Conference on Nitrification and Related Processes (ICoN4) commencing between June 27 and July 1, 2015, at the University of Alberta in Edmonton, Alberta, Canada brings together an international collection of academic, government, and private sector researchers of the global biogeochemical nitrogen cycle to share their scientific discoveries, innovations and pertinent societal impacts. The classical understanding of “nitrification” describes the two-step transformation of ammonium to nitrite and nitrite to nitrate; however, we now know from the analysis genome sequences, the application of ‘omics technologies, microbial ecology, biogeochemistry, and microbial physiology that the transformation of ammonium is not performedmore » by a few particular groups of microorganisms nor is it confined to oxic environments. Past ICoN meetings have explored the interconnections between ammonium- and nitrite-consuming processes in all ecosystems, the emission of greenhouse gases by these processes and their control, and the intersection between intermediates of the nitrification process and other elemental cycles; this has generated tremendous progress in our understanding of the global nitrogen cycle and it has generated excitement in the next generation of N cycle researchers. Nitrification research has a long-standing connection to the Community Science Program of the DOE. Between 1999 and 2001, the JGI generated the first genome sequence of an ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718, and it has subsequently sequenced, or is in the process of sequencing over 50 additional genomes from ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and ammonia-oxidizing archaea. Autotrophic ammonia- and nitrite-transforming microorganisms play also a critical role in carbon cycling and sequestration in nearly all ecosystems. Not only do they control the concentration and speciation of biologically available N to plants and other microorganisms, nitrification is also the source of the various forms of nitrogen pollution. Nitrate pollution from over-fertilization of managed soils causes eutrophication and the reduction of nitrate and nitrate also results in emission of N2O, a denitrification process that leads to the accumulation of this major greenhouse gas in the atmosphere. Anaerobic ammonia oxidation (anammox) and nitrite-driven anaerobic methane oxidation (n-DAMO) are involved in the transformation of ammonium, nitrite, and nitrate to dinitrogen without N2O as an intermediate, acting as mitigating processes to nitrification. Along with the vast international participation in the ICoN conferences, encouragement and inclusion of early career investigators and graduate students is viewed as critical to the continued success of our discipline.« less

  5. Elucidation of major contributors involved in nitrogen removal and transcription level of nitrogen-cycling genes in activated sludge from WWTPs

    NASA Astrophysics Data System (ADS)

    Che, You; Liang, Peixin; Gong, Ting; Cao, Xiangyu; Zhao, Ying; Yang, Chao; Song, Cunjiang

    2017-03-01

    We investigated nitrogen-cycle bacterial communities in activated sludge from 8 municipal wastewater treatment plants (WWTPs). Redundancy analyses (RDA) showed that temperature was the most significant driving force in shaping microbial community structure, followed by influent NH4+ and total nitrogen (TN). The diversity of ammonia oxidizing and nitrite reducing bacteria were investigated by the construction of amoA, nirS and nirK gene clone libraries. Phylogenetic analysis indicated that Thauera and Mesorhizobium were the predominant nitrite reducing bacteria, and Nitrosomonas was the only detected ammonia oxidizing bacteria in all samples. Quantification of transcription level of nirS and nirK genes indicated that nirS-type nitrite reducing bacteria played the dominant roles in nitrite reduction process. Transcription level of nirS gene positively correlated with influent NH4+ and TN significantly, whereas inversely linked with hydraulic retention time. Temperature had a strong positive correlation to transcription level of amoA gene. Overall, this study deepened our understanding of the major types of ammonia oxidizing and nitrite reducing bacteria in activated sludge of municipal WWTPs. The relationship between transcription level of nitrogen-cycle genes and operational or environmental variables of WWTPs revealed in this work could provide guidance for optimization of operating parameters and improving the performance of nitrogen removal.

  6. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    USGS Publications Warehouse

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium, and barium may have been affected by competition with Fe+2 for sorption sites on hydrous ferric oxide minerals. ?? 2010.

  7. Recent trends in electrochemical biosensors of superoxide dismutases.

    PubMed

    Balamurugan, Murugesan; Santharaman, Paulraj; Madasamy, Thangamuthu; Rajesh, Seenivasan; Sethy, Niroj Kumar; Bhargava, Kalpana; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2018-09-30

    Superoxide dismutases (SODs), a family of ubiquitous enzymes, provide essential protection to biological systems against uncontrolled reactions with oxygen- and nitrogen- based radical species. We review first the role of SODs in oxidative stress and the other biological functions such as peroxidase, nitrite oxidase, thiol oxidase activities etc., implicating its role in neurodegenerative, cardiovascular diseases, and ageing. Also, this review focuses on the development of electrochemical label-free immunosensor for SOD1 and the recent advances in biosensing assay methods based on their catalytic and biological functions with various substrates including reactive oxygen species (superoxide anion radical, hydrogen peroxide), nitric oxide metabolites (nitrite, nitrate) and thiols using thiol oxidase activity. Furthermore, we emphasize the progress made in improving the detection performance through incorporation of the SOD into conducting polymers and nanocomposite matrices. In addition, we address the potential opportunities, challenges, advances in electrochemical-sensing platforms and development of portable analyzer for point-of-care applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    PubMed Central

    He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue

    2017-01-01

    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626

  9. Nitrogen isotope effects induced by anammox bacteria

    PubMed Central

    Brunner, Benjamin; Contreras, Sergio; Lehmann, Moritz F.; Matantseva, Olga; Rollog, Mark; Kalvelage, Tim; Klockgether, Gabriele; Lavik, Gaute; Jetten, Mike S. M.; Kartal, Boran; Kuypers, Marcel M. M.

    2013-01-01

    Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones. PMID:24191043

  10. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species.

    PubMed

    Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P

    2015-01-01

    Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.

  11. Hydrogen bubble dynamic template fabrication of nanoporous Cu film supported by graphene nanaosheets: A highly sensitive sensor for detection of nitrite.

    PubMed

    Majidi, Mir Reza; Ghaderi, Seyran

    2017-12-01

    High surface area nanoporous Cu film (NPCF) has been successfully synthesized using a hydrogen bubble dynamic template on the graphene nanosheets (GNs) modified glassy carbon electrode (GCE). The effect of different synthesis conditions such as applied potential and deposition time on the NPCF morphology was investigated. The structure and constituent of the NPCF-GNs/GCE were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and electrochemical methods. The study on electrocatalytic performance of the NPCF-GNs/GCE demonstrated that this electrode has excellent catalytic activity toward nitrite oxidation. The quantitative measurement of nitrite by amperometric method showed a wide concentration range (0.1-100µmolL -1 ) with a detection limit and a sensitivity of 8.87 × 10 -8 molL -1 and 3.1 AL/molcm 2 , respectively. The excellent electrochemical response and high sensitivity of the proposed electrode were attributed to the 3D structure of NPCF and the synergic effect of NPCF and GNs. Furthermore, this electrode showed some other advantages including good repeatability, high reproducibility, long-term stability and anti-interference performance toward nitrite sensing. The applicability of the proposed electrode was proved by successful determination of nitrite in real samples (tap water, river water and sausage samples). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented residue].

    PubMed

    Khramenkov, S V; Kozlov, M N; Krevbona, M V; Drofeev, A G; Kazakova, E A; Grachev, V A; Kuznetsov, B B; Poliakov, D Iu; Nikolaev, Iu A

    2013-01-01

    A new genus and species of bacteria capable of ammonium oxidation under anaerobic conditions in the presence of nitrite is described. The enrichment culture was obtained from the Moscow River silt by sequential cultivation in reactors with selective conditions for anaerobic ammonium oxidation. Bacterial cells were coccoid, -0.4 x 0.7 mm, with the intracellular membrane structures typical of bacteria capable of anaerobic ammonium oxidation (anammoxosome and paryphoplasm). The cells formed aggregates 5-25 μm in diameter (10 μm on average). They were readily adhered to solid surfaces. The cells were morphologically labile, they easily lost their content and changed their morphology during fixation for electron microscopy. The organism was capable of ammonium oxidation with nitrite. The semisaturation constants Ks for nitrite and ammonium were 0.38 mg N-NO2/L and 0.41 mg N-NH4/L, respectively. The maximal nitrite concentrations for growth were 90 and 75 mg N-NO2/L for single and continuous application, respectively. The doubling time was 32 days, μ(max) = 0.022 day(-1), the optimal temperature and pH were 20 degrees C and 7.8-8.3, respectively. According to the 16S rRNA gene sequencing, the bacterium was assigned to a new genus and species within the phylum Planctomycetes. The proposed name for the new bacterium is Candidatus Anammoximicrobium moscowii gen. nov., sp. nov. (a microorganisms carrying out anaerobia ammonium oxidation, isolated in the Moscow region).

  13. Review of Options for Ammonia/Ammonium Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C. A.

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processesmore » and provides reasoning to not consider those processes further for this application.« less

  14. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.

  15. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Charnay, Benjamin D.; Gao, Peter; Yung, Yuk L.; Russell, Michael J.

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life.

  16. Flexible biological arsenite oxidation utilizing NOx and O2 as alternative electron acceptors.

    PubMed

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-07-01

    The feasibility of flexible microbial arsenite (As III ) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As III with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As III oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As III oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As III oxidation had the highest oxidation rate (0.59 mg As g -1  VSS min -1 ), followed by nitrate- (0.40 mg As g -1  VSS min -1 ) and nitrite-dependent As III oxidation (0.32 mg As g -1  VSS min -1 ). The kinetic data of aerobic As III oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As III oxidation. Both aerobic and anoxic As III oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As III oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plasma Levels of Aminothiols, Nitrite, Nitrate, and Malondialdehyde in Myelodysplastic Syndromes in the Context of Clinical Outcomes and as a Consequence of Iron Overload

    PubMed Central

    Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista

    2014-01-01

    The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001) , homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease. PMID:24669287

  18. Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload.

    PubMed

    Pimková, Kristýna; Chrastinová, Leona; Suttnar, Jiří; Štikarová, Jana; Kotlín, Roman; Čermák, Jaroslav; Dyr, Jan Evangelista

    2014-01-01

    The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001), homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease.

  19. Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid.

    PubMed

    Erdinest, Nir; Shohat, Noam; Moallem, Eli; Yahalom, Claudia; Mechoulam, Hadas; Anteby, Irene; Ovadia, Haim; Solomon, Abraham

    2015-01-01

    It is known that both human conjunctival fibroblasts (HCF) and corneal epithelial (HCE) cells contribute to the inflammatory process in the ocular surface by releasing inflammatory cytokines. In addition, nitric oxide (NO) has an important role in inflammatory responses in the ocular surface. In the present study, we aimed to characterize the capacity of these cells to release nitric oxide in response to cytokines and Lipopolysaccharide (LPS), and show that Alpha-linoleic acid (ALA) inhibits these responses. HCF, HCE cells, peripheral blood mononuclear cells (PBMCs) and co-culture of HCF and PBMC were treated with different combinations of inflammatory inducers, including interleukin)IL- (6, tumor necrosis factors (TNF)-α, interferon (IFN)- γ and IL-1β and LPS. Nitrite levels were measured in cell supernatants with and without ALA by the Griess reaction test at 24, 48 and 72 h respectively. Expression of nitric oxide synthase 2 (NOS-2) was evaluated by real-time PCR. All cytokine combinations had an inducible effect on nitrite secretion in HCF, PBMC and co-cultured PBMC and HCF, but not in HCE cells. Treatment with a combination of IL-6, LPS, TNF-α, IFN- γ and IL-1β induced the highest nitrite secretion (2.91 fold, P < 0.01) as compared to cells incubated in medium alone. nitrite secretion was reduced by 38.9 % (P < 0.05) after treatment with ALA alone. Co-culturing PBMC with HCF with and without ALA treatment demonstrated similar results in nitrite level as,compared to PBMC alone. In addition, ALA significantly decreased NOS-2 expression in HCF by 48.9 % (P < 0. 001) after 72 h. The decrease in nitrite release and inhibition of NOS-2 expression indicate that ALA may have an anti-inflammatory effect both on HCF and on peripheral immune cells. This indicates that ALA may serve as a potent anti-inflammatory agent in ocular surface inflammation.

  20. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    PubMed

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Rapid determination of isoamyl nitrite in pharmaceutical preparations by flow injection analysis with on-line UV irradiation and luminol chemiluminescence detection.

    PubMed

    Kishikawa, Naoya; Kondo, Naoko; Amponsaa-Karikari, Abena; Kodamatani, Hitoshi; Ohyama, Kaname; Nakashima, Kenichiro; Yamazaki, Shigeo; Kuroda, Naotaka

    2014-02-01

    Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on-line photoreactor. This method is based on on-line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Changes in plasma and urinary nitrite after birth in premature infants at risk for necrotizing enterocolitis

    PubMed Central

    Pun, Priti; Jones, Jesica; Wolfe, Craig; Deming, Douglas D.; Power, Gordon G.; Blood, Arlin B.

    2016-01-01

    Background Plasma nitrite serves as a reservoir of nitric oxide (NO) bioactivity. Because nitrite ingestion is markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be lower in newborns than in adults, and that infants diagnosed with necrotizing enterocolitis (NEC), a disease characterized by ischemia and bacterial invasion of intestinal walls, would have lower levels of circulating nitrite in the days prior to diagnosis. Methods Single blood and urine samples were collected from 9 term infants and 12 adults, 72 preterm infants every 5 d for 3 wk, and from 13 lambs before and after cord occlusion. Results Nitrite fell 50% relative to cord levels in the first day after birth; and within 15 min after cord occlusion in lambs. Urinary nitrite was higher in infants than adults. Plasma and urinary nitrite levels in infants who developed NEC were similar to those of preterm control infants on days 1 and 5, but significantly elevated at 15 and 20 d after birth. Conclusion Plasma nitrite falls dramatically at birth while newborn urinary nitrite levels are significantly greater than adults. Acute NEC is associated with elevated plasma and urinary nitrite levels. PMID:26539663

  3. A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria.

    PubMed

    Sun, Weimin; Krumins, Valdis; Dong, Yiran; Gao, Pin; Ma, Chunyan; Hu, Min; Li, Baoqin; Xia, Bingqing; He, Zijun; Xiong, Shangling

    2018-01-01

    Anaerobic digestion is a complicated microbiological process that involves a wide diversity of microorganisms. Acetate is one of the most important intermediates, and interactions between acetate-oxidizing bacteria and archaea could play an important role in the formation of methane in anoxic environments. Anaerobic digestion at thermophilic temperatures is known to increase methane production, but the effects on the microbial community are largely unknown. In the current study, stable isotope probing was used to characterize acetate- and lactate-oxidizing bacteria in thermophilic anaerobic digestion. In microcosms fed 13 C-acetate, bacteria related to members of Clostridium, Hydrogenophaga, Fervidobacterium, Spirochaeta, Limnohabitans, and Rhodococcus demonstrated elevated abundances of 13 C-DNA fractions, suggesting their activities in acetate oxidation. In the treatments fed 13 C-lactate, Anaeromyxobacter, Desulfobulbus, Syntrophus, Cystobacterineae, and Azospira were found to be the potential thermophilic lactate utilizers. PICRUSt predicted that enzymes related to nitrate and nitrite reduction would be enriched in 13 C-DNA fractions, suggesting that the acetate and lactate oxidation may be coupled with nitrate and/or nitrite reduction. Co-occurrence network analysis indicated bacterial taxa not enriched in 13 C-DNA fractions that may also play a critical role in thermophilic anaerobic digestion.

  4. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  5. Investigation of new hypergol scrubber technology

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1994-01-01

    The ultimate goal of this work is to minimize the liquid waste generated from the scrubbing of hypergolic vent gases. In particular, nitrogen tetroxide, a strong oxidizer used in hypergolic propellant systems, is currently scrubbed with a sodium hydroxide solution resulting in a hazardous liquid waste. This study investigated the use of a solution of potassium hydroxide and hydrogen peroxide for the nitrogen textroxide vent scrubber system. The potassium nitrate formed would be potentially usable as a fertilizer. The hydrogen peroxide is added to convert the potassium nitrite that is formed into more potassium nitrate. Smallscale laboratory tests were conducted to establish the stability of hydrogen peroxide in the proposed scrubbing solution and to evaluate the effectiveness of hydrogen peroxide in converting nitrite to nitrate.

  6. Enrichment and Physiological Characterization of a Cold-Adapted Nitrite-Oxidizing Nitrotoga sp. from an Eelgrass Sediment

    PubMed Central

    Ishii, Kento; Fujitani, Hirotsugu; Soh, Kentaro; Nakagawa, Tatsunori; Takahashi, Reiji

    2017-01-01

    ABSTRACT Nitrite-oxidizing bacteria (NOB) are responsible for the second step of nitrification in natural and engineered ecosystems. The recently discovered genus Nitrotoga belongs to the Betaproteobacteria and potentially has high environmental importance. Although environmental clones affiliated with Nitrotoga are widely distributed, the limited number of cultivated Nitrotoga spp. results in a poor understanding of their ecophysiological features. In this study, we successfully enriched the nonmarine cold-adapted Nitrotoga sp. strain AM1 from coastal sand in an eelgrass zone and investigated its physiological characteristics. Multistep-enrichment approaches led to an increase in the abundance of AM1 to approximately 80% of the total bacterial population. AM1 was the only detectable NOB in the bacterial community. The 16S rRNA gene sequence of AM1 was 99.6% identical to that of “Candidatus Nitrotoga arctica,” which was enriched from permafrost-affected soil. The highest nitrogen oxidation rate of AM1 was observed at 16°C. The half-saturation constant (Km) and the generation time were determined to be 25 μM NO2− and 54 h, respectively. The nitrite oxidation rate of AM1 was stimulated at concentrations of <30 mM NH4Cl but completely inhibited at 50 mM NH4Cl. AM1 can grow well under specific environmental conditions, such as low temperature and in the presence of a relatively high concentration of free ammonia. These results help improve our comprehension of the functional importance of Nitrotoga. IMPORTANCE Nitrite-oxidizing bacteria (NOB) are key players in the second step of nitrification, which is an important process of the nitrogen cycle. Recent studies have suggested that the organisms of the novel NOB genus Nitrotoga were widely distributed and played a functional role in natural and engineered ecosystems. However, only a few Nitrotoga enrichments have been obtained, and little is known about their ecology and physiology. In this study, we successfully enriched a Nitrotoga sp. from sand in a shallow coastal marine ecosystem and undertook a physiological characterization. The laboratory experiments showed that the Nitrotoga enrichment culture could adapt not only to low temperature but also to relatively high concentrations of free ammonia. The determination of as-yet-unknown unique characteristics of Nitrotoga contributes to the improvement of our insights into the microbiology of nitrification. PMID:28500038

  7. Enrichment and Physiological Characterization of a Cold-Adapted Nitrite-Oxidizing Nitrotoga sp. from an Eelgrass Sediment.

    PubMed

    Ishii, Kento; Fujitani, Hirotsugu; Soh, Kentaro; Nakagawa, Tatsunori; Takahashi, Reiji; Tsuneda, Satoshi

    2017-07-15

    Nitrite-oxidizing bacteria (NOB) are responsible for the second step of nitrification in natural and engineered ecosystems. The recently discovered genus Nitrotoga belongs to the Betaproteobacteria and potentially has high environmental importance. Although environmental clones affiliated with Nitrotoga are widely distributed, the limited number of cultivated Nitrotoga spp. results in a poor understanding of their ecophysiological features. In this study, we successfully enriched the nonmarine cold-adapted Nitrotoga sp. strain AM1 from coastal sand in an eelgrass zone and investigated its physiological characteristics. Multistep-enrichment approaches led to an increase in the abundance of AM1 to approximately 80% of the total bacterial population. AM1 was the only detectable NOB in the bacterial community. The 16S rRNA gene sequence of AM1 was 99.6% identical to that of " Candidatus Nitrotoga arctica," which was enriched from permafrost-affected soil. The highest nitrogen oxidation rate of AM1 was observed at 16°C. The half-saturation constant ( K m ) and the generation time were determined to be 25 μM NO 2 - and 54 h, respectively. The nitrite oxidation rate of AM1 was stimulated at concentrations of <30 mM NH 4 Cl but completely inhibited at 50 mM NH 4 Cl. AM1 can grow well under specific environmental conditions, such as low temperature and in the presence of a relatively high concentration of free ammonia. These results help improve our comprehension of the functional importance of Nitrotoga IMPORTANCE Nitrite-oxidizing bacteria (NOB) are key players in the second step of nitrification, which is an important process of the nitrogen cycle. Recent studies have suggested that the organisms of the novel NOB genus Nitrotoga were widely distributed and played a functional role in natural and engineered ecosystems. However, only a few Nitrotoga enrichments have been obtained, and little is known about their ecology and physiology. In this study, we successfully enriched a Nitrotoga sp. from sand in a shallow coastal marine ecosystem and undertook a physiological characterization. The laboratory experiments showed that the Nitrotoga enrichment culture could adapt not only to low temperature but also to relatively high concentrations of free ammonia. The determination of as-yet-unknown unique characteristics of Nitrotoga contributes to the improvement of our insights into the microbiology of nitrification. Copyright © 2017 American Society for Microbiology.

  8. Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum▿

    PubMed Central

    Ettwig, Katharina F.; van Alen, Theo; van de Pas-Schoonen, Katinka T.; Jetten, Mike S. M.; Strous, Marc

    2009-01-01

    Anaerobic methane oxidation coupled to denitrification was recently assigned to bacteria belonging to the uncultured phylum NC10. In this study, we incubated sediment from a eutrophic ditch harboring a diverse community of NC10 bacteria in a bioreactor with a constant supply of methane and nitrite. After 6 months, fluorescence in situ hybridization showed that NC10 bacteria dominated the resulting population. The enrichment culture oxidized methane and reduced nitrite to dinitrogen gas. We assessed NC10 phylum diversity in the inoculum and the enrichment culture, compiled the sequences currently available for this bacterial phylum, and showed that of the initial diversity, only members of one subgroup had been enriched. The growth of this subgroup was monitored by quantitative PCR and correlated to nitrite-reducing activity and the total biomass of the culture. Together, the results indicate that the enriched subgroup of NC10 bacteria is responsible for anaerobic methane oxidation coupled to nitrite reduction. Due to methodological limitations (a strong bias against NC10 bacteria in 16S rRNA gene clone libraries and inhibition by commonly used stopper material) the environmental distribution and importance of these bacteria could be largely underestimated at present. PMID:19329658

  9. Electron-paramagnetic-resonance studies of the mechanism of leaf nitrite reductase. Signals from the iron-sulphur centre and haem under turnover conditions.

    PubMed

    Cammack, R; Hucklesby, D P; Hewitt, E J

    1978-06-01

    Low-temperature e.p.r. spectra are presented of nitrite reductase purified from leaves of vegetable marrow (Cucurbita pepo). The oxidized enzyme showed a spectrum at g=6.86, 4.98 and 1.95 corresponding to high-spin Fe(3+) in sirohaem, which disappeared slowly on treatment with nitrite. The midpoint potential of the sirohaem was estimated to be -120mV. On reduction with Na(2)S(2)O(4) or Na(2)S(2)O(4)+Methyl Viologen a spectrum at g=2.038, 1.944 and 1.922 was observed, due to a reduced iron-sulphur centre. The midpoint potential of this centre was very low, about -570mV at pH8.1, decreasing with increasing pH. On addition of cyanide, which binds to haem, and Na(2)S(2)O(4), the iron-sulphur centre became further reduced. We think that this is due to an increased midpoint potential of the iron-sulphur centre. Other ligands to haem, such as CO and the reaction product NH(3), had similar but less pronounced effects, and also changed the lineshape of the iron-sulphur signal. Samples were prepared of the enzyme frozen during the reaction with nitrite, Methyl Viologen and Na(2)S(2)O(4) in various proportions. Signals were interpreted as due to the reduced iron-sulphur centre (with slightly different g values), a haem-NO complex and reduced Methyl Viologen. In the presence of an excess of nitrite, the haem-NO spectrum was more intense, whereas in the presence of an excess of Na(2)S(2)O(4) it was weaker, and disappeared at the end of the reaction. A reaction sequence is proposed for the enzyme, in which the haem-NO complex is an intermediate, followed by other e.p.r.-silent states, leading to the production of NH(4) (+).

  10. Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil

    PubMed Central

    Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun

    2018-01-01

    Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers (Nitrobacter and Nitrospira) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter- and Nitrospira-like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis and Mantel test indicated that soil nitrogen, carbon, phosphorus, and available potassium content were important environmental attributes that control the Nitrobacter- and Nitrospira-like NOB community structure across different fertilization treatments under aggregate levels in the red soil. In general, nitrite-oxidizing bacteria community composition and alpha-diversity are depending on fertilizer regimes, but independent of the soil aggregate. PMID:29867799

  11. Trichosanthes tricuspidata modulates oxidative toxicity in brain hippocampus against pilocarpine induced status epilepticus in mice.

    PubMed

    Smilin Bell Aseervatham, G; Sivasudha, Thilagar; Suganya, Mohan; Rameshkumar, Angappan; Jeyadevi, Ramachandran

    2013-08-01

    Epilepsy prevails to be a neurological disorder in anticipation of safer drugs with enhanced anticonvulsant efficacy as presently available drugs fails to offer adequate control of epileptic seizures in about one-third of patients. The objective of this study was to evaluate the effect of Trichosanthes tricuspidata methanolic extract (TTME) against epilepsy mediated oxidative stress in pilocarpine induced mice. Intraperitonial administration of pilocarpine (85 mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p < 0.05) reduced by TTME (100 and 200 mg/kg; i.p) in a dose dependant manner, similar to diazepam. Seizure was accompanied by significant increase in lipid peroxidation and the hippocampal nitrite content in pilocarpine group when compared with control. Moreover, the antioxidant enzymes superoxide dismutase, catalase and glutathione levels were decreased in pilocarpine administered groups. TTME administration attenuated oxidative damage as evident by decreased lipid oxidative damage and nitrite-nitrate content and restored the level of enzymatic antioxidant defenses in hippocampus. Involvement of free radicals during epilepsy is further confirmed by histopathological analysis which showed the loss of neuronal cells in hippocampus CA1 and CA3 pyramidal region. Our findings strongly support the hypothesis that TTME has anticonvulsant activity accompanied with the strong antioxidant potential plays a crucial role in reducing the oxidative stress produced by seizure.

  12. Enhanced nitrite reductase activity associated with the haptoglobin complexed hemoglobin dimer: Functional and antioxidative implications

    PubMed Central

    Roche, Camille J.; Dantsker, David; Alayash, Abdu I.; Friedman, Joel M.

    2012-01-01

    The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb–Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb–Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb–Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb–Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation. PMID:22521791

  13. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    PubMed

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Honokiol protects against renal ischemia/reperfusion injury via the suppression of oxidative stress, iNOS, inflammation and STAT3 in rats.

    PubMed

    Yu, Yongwu; Li, Mingxv; Su, Ning; Zhang, Zhiyong; Zhao, Haidan; Yu, Hai; Xu, Yingluan

    2016-02-01

    Honokiol is the predominant active ingredient in the commonly used traditional Chinese medicine, Magnolia, which has been confirmed in previous studies to exhibit anti-oxidation, antimicrobial, antitumor and other pharmacological effects. However, its effects on renal ischemia/reperfusion injury (IRI) remain to be elucidated. The present study aimed to examine the effects of honokiol on renal IRI, and to investigate its potential protective mechanisms in the heart. Male adult Wistar albino rats were induced into a renal IRI model. Subsequently, the levels of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), and the levels of serum nitrite and the kidney nitrite were examined in the IRI group. The levels of oxidative stress, inducible nitric oxide synthase (iNOS), inflammatory factors and caspase-3 were evaluated using a series of commercially available kits. The levels of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and the protein expression levels of STAT3 were determined using western blotting. Pretreatment with honokiol significantly reduced the levels of serum creatinine, BUN, ALT, AST and ALP, and the level of nitrite in the kidney of the IRI group, compared with the control group. The levels of malondialdehyde, the activity of myeloperoxidase, and the gene expression and activity of iNOS were reduced in the IRI rats, compared with the sham-operated rats, whereas the levels of superoxide dismutase and catalase were increased following treatment with honokiol in the IRI rats. In addition, the expression levels of tumor necrosis factor-α and interleukin-6 in the IRI rats were increased by honokiol. Treatment with honokiol suppressed the protein expression levels of p-STAT3 and caspase-3 in the IRI rats. These findings indicated that honokiol protects against renal IRI via the suppression of oxidative stress, iNOS, inflammation and STAT3 in the rat.

  15. Nitrous oxide emissions from one-step partial nitritation/anammox processes.

    PubMed

    Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2016-12-01

    Measurements of nitrous oxide were made at pilot- and full-scale plants to evaluate greenhouse gas emissions from one-step partial nitritation/anammox processes applied in moving bed biofilm reactors treating reject water. It was found that 0.51-1.29% and 0.35-1.33% of the total nitrogen loads in the pilot- and full-scale reactor, respectively, were emitted as nitrous oxide. Between 80 and 90% of nitrous oxide emissions were in gaseous form and the rest amount was found in the reactor effluent; over 90% of nitrous oxide emissions occurred in the aerated period and less than 8% in the non-aerated period in the full-scale study. Nitrous oxide productions/consumptions were closely related to aeration and the nitrogen loads applied in the system.

  16. Elucidating the mechanism for the reduction of nitrite by copper nitrite reductase--a contribution from quantum chemical studies.

    PubMed

    De Marothy, S A; Blomberg, M R A; Siegbahn, P E M

    2007-01-30

    Density functional methods have been applied to investigate the properties of the active site of copper-containing nitrite reductases and possible reaction mechanisms for the enzyme catalysis. The results for a model of the active site indicate that a hydroxyl intermediate is not formed during the catalytic cycle, but rather a state with a protonated nitrite bound to the reduced copper. Electron affinity calculations indicate that reduction of the T2 copper site does not occur immediately after nitrite binding. Proton affinity calculations are indicative of substantial pK(a) differences between different states of the T2 site. The calculations further suggest that the reaction does not proceed until uptake of a second proton from the bulk solution. They also indicate that Asp-92 may play both a key role as a proton donor to the substrate, and a structural role in promoting catalysis. In the D92N mutant another base, presumably a nearby histidine (His-249) may take the role as the proton donor. On the basis of these model calculations and available experimental evidence, an ordered reaction mechanism for the reduction of nitrite is suggested. An investigation of the binding modes of the nitric oxide product and the nitrite substrate to the model site has also been made, indicating that nitric oxide prefers to bind in an end-on fashion to the reduced T2 site.

  17. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater.

    PubMed

    Pijuan, Maite; Torà, Josep; Rodríguez-Caballero, Adrián; César, Elvira; Carrera, Julián; Pérez, Julio

    2014-02-01

    Nitrous oxide (N2O) and methane emissions were monitored in a continuous granular airlift nitritation reactor from ammonium-rich wastewater (reject wastewater). N2O emissions were found to be dependent on dissolved oxygen (DO) concentration in the range of 1-4.5 mg O2/L, increasing within this range when reducing the DO values. At higher DO concentrations, N2O emissions remained constant at 2.2% of the N oxidized to nitrite, suggesting two different mechanisms behind N2O production, one dependent and one independent of DO concentration. Changes on ammonium, nitrite, free ammonia and free nitrous acid concentrations did not have an effect on N2O emissions within the concentration range tested. When operating the reactor in a sequencing batch mode under high DO concentration (>5 mg O2/L), N2O emissions increased one order of magnitude reaching values of 19.3 ± 7.5% of the N oxidized. Moreover, CH4 emissions detected were due to the stripping of the soluble CH4 that remained dissolved in the reject wastewater after anaerobic digestion. Finally, an economical and carbon footprint assessment of a theoretical scaled up of the pilot plant was conducted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome c Oxidase Interactions with Dioxygen and Nitrogen Oxides

    PubMed Central

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D.

    2016-01-01

    Conspectus Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper and/or iron ions, those reacting with dioxygen (O2) and/or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2−)). As inspiration for this work, we turn to mitochondrial cytochrome c oxidase which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis and characterization of new O2-adducts whose further study will add insights into O2-reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO’s function, which is intimately tied to cellular O2-balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-FeIII-O-CuII(L) products; their properties are discussed. The O-atom is derived from dioxygen and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo-complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a “naked” synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active-sites. The other sector of research is focused on heme/Cu assemblies mediating the redox interplay between nitrite and NO(g). In the nitrite reductase chemistry, the cupric center serves as a Lewis acid while the heme is the redox active center providing the electron. The orientation of nitrite in approaching the ferrous heme center and N-atom binding are important. Also, detailed spectroscopic and kinetic studies of the NO(g) oxidase chemistry, in excellent agreement with theoretical calculations, reveal the intermediates and key mechanistic steps. Thus, we suggest that both chemical and biochemical heme/Cu mediated nitrite reductase and NO(g) oxidase chemistry require N-atom binding to a ferrous heme along with cupric ion O-atom coordination, proceeding via a three-membered O-Fe-N chelate ring transition state. These important mechanistic features of heme/Cu systems interconverting NO(g) and nitrite are discussed for the first time. PMID:26244814

  19. Nitrite spray treatment to promote red color stability of vacuum packaged beef.

    PubMed

    Song, Xiao; Cornforth, Daren; Whittier, Dick; Luo, Xin

    2015-01-01

    Sodium nitrite solutions were sprayed on select grade boneless rib (M. longissimus thoracis) and bottom round (mainly M. biceps femoris) steaks individually, to form bright red nitric oxide myoglobin (NO-Mb) in vacuum packages. Our objective was to determine the optimum level of nitrite in spray for stable raw steak redness, low or no residual nitrite, and low surface pinking (ham-like cured color) after cooking. Results showed that steaks sprayed with 100-350 ppm nitrite solutions had 3.0-3.6g weight gain and a calculated level of 1.3-5.3mg nitrite added/kg steak, but very low (<1 ppm) residual nitrite. Nitrite sprays of 250-350 ppm were optimum for raw steak color during 21 days of storage at 1°C (a*>10; chroma C*>16). Raw steak redness was less stable in round than rib. Visual scores for pinkness after cooking were low, indicating that cooked color at even the highest nitrite treatment (350 ppm) was acceptable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    PubMed Central

    Langone, Michela; Yan, Jia; Haaijer, Suzanne C. M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Andreottola, Gianni

    2014-01-01

    Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale sequencing batch reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8–8.0, respectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high NH3-N (1.9–10 mg NH3-N/L) and low nitrite (3–8 mg TNN/L) are required conditions during the whole SBR cycle. Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α–subunit (amoA) gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the “Ca. Brocadia fulgida” type, able to grow in presence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS) gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus Nitrobacter was detected. PMID:24550899

  1. Understanding Differences in the Nitrogen Cycle in Low-Oxygen Zones in the Eastern Tropical North Pacific

    NASA Astrophysics Data System (ADS)

    Wood, C.; Travis, N. M.; Forbes, M. S.; Casciotti, K. L.

    2016-12-01

    Hypoxic and anoxic zones are found in oceans worldwide. These zones can be caused by warm water "caps" that trap colder water underneath the warm water so the cold water cannot replenish its oxygen. Processes such as global warming and eutrophication can also contribute to such oxygen-depleted zones. Thus, it is important to study these zones to investigate and reveal the impact humans have on ecosystems worldwide so we can fix the problems we have caused. The Eastern Tropical North Pacific (ETNP), off the southwestern coast of Mexico, contains a natural-oxygen deficient zone. On a research cruise to the ETNP in April 2016, incubations were conducted to measure the rates of nitrification in the upper water column (upper 100 m) at three stations. Incubations were conducted in light and dark bottles spiked with 15N-containing nitrite. In this study, nitrite concentration in incubation starting points was analyzed. For each point, four depths of increasing depth (they varied depending on the station) were analyzed, and for each depth there were three samples. For each sample five absorbance measurements were averaged to calculate nitrite concentration against known standards. Concentrations of nitrite were found to increase moving into the oxygen deficient zone. The nitrite peaks at the coastal stations were at shallower depths than the peak at the centermost station in the low-oxygen zone. At the centermost station within the oxygen-deficient region, the nitrite concentration at the primary peak was 1.6µM, which was the highest point out of all the stations. This nitrite concentration data will be expanded to all stations where 15N addition incubation experiments were performed. In the future, these time-zero data will be combined with time-24 data to calculate nitrite oxidation rates based on 15N isotope analysis. Measuring nitrite oxidation rates will help us further understand processes structuring nitrite accumulation in the ETNP low-oxygen zone.

  2. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  3. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease.

    PubMed

    Esposito, Giuseppe; Cirillo, Carla; Sarnelli, Giovanni; De Filippis, Daniele; D'Armiento, Francesco Paolo; Rocco, Alba; Nardone, Gerardo; Petruzzelli, Raffaella; Grosso, Michela; Izzo, Paola; Iuvone, Teresa; Cuomo, Rosario

    2007-09-01

    Enteric glia participates to the homeostasis of the gastrointestinal tract. In the central nervous system, increased expression of astroglial-derived S100B protein has been associated with the onset and maintaining of inflammation. The role of enteric glial-derived S100B protein in gastrointestinal inflammation has never been investigated in humans. In this study, we evaluated the expression of S100B and its relationship with nitric oxide production in celiac disease. Duodenal biopsy specimens from untreated and on gluten-free diet patients with celiac disease and controls were respectively processed for S100B and inducible nitric oxide synthase (iNOS) protein expression and nitrite production. To evaluate the direct involvement of S100B in the inflammation, control biopsy specimens were exposed to exogenous S100B, and iNOS protein expression and nitrite production were measured. We also tested gliadin induction of S100B-dependent inflammation in cultured biopsy specimens deriving from on gluten-free diet patients in the absence or presence of the specific S100B antibody. S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production were significantly increased in untreated patients but not in on gluten-free diet patients vs controls. Addition of S100B to control biopsy specimens resulted in a significant increase of iNOS protein expression and nitrite production. In celiac disease patients but not in controls biopsy specimens, gliadin challenge significantly increased S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production, but these effects were completely inhibited by S100B antibody. Enteric glial-derived S100B is increased in the duodenum of patients with celiac disease and plays a role in nitric oxide production.

  4. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    PubMed

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  5. Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies.

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2017-06-01

    Catalase, a heme enzyme, which catalyzes decomposition of hydrogen peroxide to water and molecular oxygen, is one of the main enzymes of the antioxidant defense system of the cell. Nitrite, used as a food preservative has long been regarded as a harmful compound due to its ability to form carcinogenic nitrosamines. Recently, much evidence has been presented that nitrite plays a protective role as a nitric oxide donor under hypoxic conditions. In this work the effect of nitrite on the catalytic reactions of catalase was studied. Catalase was inhibited by nitrite, and this process was pH-dependent. IC 50 values varied from about 1μM at pH5.0 to about 150μM of nitrite at pH7.4. The presence of chloride significantly enhanced nitrite-induced catalase inhibition, in agreement with earlier observations. The kinetics of the reactions of nitrite with ferric catalase, its redox intermediate, Compound I, and catalase inactive form, Compound II, was also studied. Possible mechanisms of nitrite-induced catalase inhibition are analyzed and the biological consequences of the reactions of catalase with nitrite are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Implications of electric potentials applied on a denitrifying process.

    PubMed

    Cadena Ramírez, Arturo; Texier, Anne-Claire; González, Ignacio; Gómez, Jorge

    2018-03-20

    The effect of three electric potentials (EP) (+104, -187 and -279 mV) applied to the denitrifying process was explored. It was observed that the denitrifying sludge was able to support the oxidation of p-cresol with the application of the EP in the absence of nitrate, but it was unable to drive the denitrification without an organic electron donor. On denitrification, the applied EP uncoupled the oxidative from the reductive process, favoring the p-cresol oxidation over the production of N2. Additionally, biochemical level effects were observed. At +104 and -279 mV potentials, the nitrate and nitrite consumption was affected as well as the p-hydroxybenzoate transformation. However, at -187 mV, effects seemed to occur only on the transport of substrates. This paper presents evidence that denitrification has very characteristic and different physiological behaviors for each EP assayed.

  7. Detection of bacterial pyrogens on the basis of their effects on gamma interferon-mediated formation of neopterin or nitrite in cultured monocyte cell lines.

    PubMed Central

    Werner-Felmayer, G; Baier-Bitterlich, G; Fuchs, D; Hausen, A; Murr, C; Reibnegger, G; Werner, E R; Wachter, H

    1995-01-01

    In a number of mammalian cell types, pteridine biosynthesis from guanosine 5'-triphosphate and formation of nitric oxide from L-arginine are induced by gamma interferon (IFN-gamma) and bacterial lipopolysaccharide (LPS). We assessed the possibility of using such metabolic alterations for the in vitro detection of pyrogens. Products from gram-negative and gram-positive bacteria and related synthetic compounds were tested for their potential to induce either of these pathways. Stimulation of pteridine biosynthesis was monitored as the formation of neopterin in the human myelomonocytic cell line THP-1. The formation of nitric oxide was determined as nitrite in murine J774A.1 macrophage cultures. The substances tested included toxic and detoxified parts of LPS and lipid A from Escherichia coli, Salmonella typhimurium, Salmonella minnesota, and Klebsiella pneumoniae as well as lipoteichoic acid and toxic shock syndrome toxin 1 from Staphylococcus aureus. Furthermore, two cell wall compounds from Mycobacterium tuberculosis, trehalose 6,6'-dimycolate and N-acetylmuramyl-L-alanyl-D-isoglutamine, which are active components of Freund's adjuvant, were used. When applied as a single stimulus, only the whole LPS molecule potently stimulated neopterin or nitrite formation. Lipid A and products from gram-positive bacteria were weakly active. For neopterin formation, lipid A required the presence of fetal calf serum. Besides detoxified LPS and independently from the presence of serum, all bacterial compounds tested strongly increased the effects mediated by IFN-gamma. Our results show that bacterial pyrogens can be detected by monitoring the formation of neopterin or nitrite. This may provide a basis for the development of an in vitro assay for the detection of pyrogenic contamination with the aim of replacing the currently used animal test. PMID:7664177

  8. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    PubMed

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  9. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    PubMed Central

    Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540

  10. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  11. Fat Content and Nitrite-Curing Influence the Formation of Oxidation Products and NOC-Specific DNA Adducts during In Vitro Digestion of Meat

    PubMed Central

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat. PMID:24978825

  12. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.

    PubMed

    Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2015-12-28

    To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

  13. Spirulina platensis protects against renal injury in rats with gentamicin-induced acute tubular necrosis.

    PubMed

    Avdagić, Nesina; Cosović, Esad; Nakas-Ićindić, Emina; Mornjaković, Zakira; Zaciragić, Asija; Hadzović-Dzuvo, Almira

    2008-11-01

    The present study was carried out to evaluate the renoprotective antioxidant effect of Spirulina platensis on gentamicin-induced acute tubular necrosis in rats. Albino-Wistar rats, (9male and 9 female), weighing approximately 250 g, were used for this study. Rats were randomly assigned to three equal groups. Control group received 0,9 % sodium chloride intraperitoneally for 7 days at the same volume as gentamicin group. Gentamicin group was treated intraperitoneally with gentamicin, 80 mg/kg daily for 7 days. Gentamicin+spirulina group received Spirulina platensis 1000 mg/kg orally 2 days before and 7 days concurrently with gentamicin (80 mg/kg i.p.). Nephrotoxicity was assessed by measuring plasma nitrite concentration, stabile metabolic product of nitric oxide with oxygen. Plasma nitrite concentration was determined by colorimetric method using Griess reaction. For histological analysis kidney specimens were stained with hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) stain. Plasma nitrite concentration and the level of kidney damage were significantly higher in gentamicin group in comparison both to the control and gentamicin+spirulina group. Spirulina platensis significantly lowered the plasma nitrite level and attenuated histomorphological changes related to renal injury caused by gentamicin. Thus, the results from present study suggest that Spirulina platensis has renoprotective potential in gentamicin-induced acute tubular necrosis possibly due to its antioxidant properties.

  14. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    PubMed Central

    Ma, Ru

    2016-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP) sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{+}$\\end{document}4+ and high NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2− content were suitable for the growth of M. oxyfera bacteria. PMID:27994974

  15. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway.

    PubMed

    Lidder, Satnam; Webb, Andrew J

    2013-03-01

    The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the 'nitrate-nitrite-nitric oxide (NO) pathway'. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre-clinical studies with nitrate or nitrite also show the potential to protect against ischaemia-reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate-rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate 'Veg-Table' with 'Nitrate Units' [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  16. Biological nitrogen removal from sewage via anammox: Recent advances.

    PubMed

    Ma, Bin; Wang, Shanyun; Cao, Shenbin; Miao, Yuanyuan; Jia, Fangxu; Du, Rui; Peng, Yongzhen

    2016-01-01

    Biological nitrogen removal from sewage via anammox is a promising and feasible technology to make sewage treatment energy-neutral or energy-positive. Good retention of anammox bacteria is the premise of achieving sewage treatment via anammox. Therefore the anammox metabolism and its factors were critically reviewed so as to form biofilm/granules for retaining anammox bacteria. A stable supply of nitrite for anammox bacteria is a real bottleneck for applying anammox in sewage treatment. Nitritation and partial-denitrification are two promising methods of offering nitrite. As such, the strategies for achieving nitritation in sewage treatment were summarized by reviewing the factors affecting nitrite oxidation bacteria growth. Meanwhile, the methods of achieving partial-denitrification have been developed through understanding the microorganisms related with nitrite accumulation and their factors. Furthermore, two cases of applying anammox in the mainstream sewage treatment plants were documented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Electrochemical detection of nitrite on poly(pyronin Y)/graphene nanocomposites modified ITO substrate

    NASA Astrophysics Data System (ADS)

    Şinoforoğlu, Mehmet; Dağcı, Kader; Alanyalıoğlu, Murat; Meral, Kadem

    2016-06-01

    The present study reports on an easy preparation of poly(pyronin Y)/graphene (poly(PyY)/graphene) nanocomposites thin films on indium tin oxide coated glass substrates (ITO). The thin films of poly(PyY)/graphene nanocomposites are prepared by a novel method consisting of three steps; (i) preparation of graphene oxide (GO) thin films on ITO by spin-coating method, (ii) self-assembly of PyY molecules from aqueous solution onto the GO thin film, (iii) surface-confined electropolymerization (SCEP) of the adsorbed PyY molecules on the GO thin film. The as-prepared poly(PyY)/graphene nanocomposites thin films are characterized by using electroanalytical and spectroscopic techniques. Afterwards, the graphene-based polymeric dye thin film on ITO is used as an electrode in an electrochemical cell. Its performance is tested for electrochemical detection of nitrite. Under optimized conditions, the electrocatalytical effect of the nanocomposites thin film through electrochemical oxidation of nitrite is better than that of GO coated ITO.

  18. Optimization of a mainstream nitritation-denitritation process and anammox polishing.

    PubMed

    Regmi, Pusker; Holgate, Becky; Fredericks, Dana; Miller, Mark W; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2015-01-01

    This paper deals with an almost 1-year long pilot study of a nitritation-denitritation process that was followed by anammox polishing. The pilot plant treated real municipal wastewater at ambient temperatures. The effluent of high-rate activated sludge process (hydraulic retention time, HRT=30 min, solids retention time=0.25 d) was fed to the pilot plant described in this paper, where a constant temperature of 23 °C was maintained. The nitritation-denitritation process was operated to promote nitrite oxidizing bacteria out-selection in an intermittently aerated reactor. The intermittent aeration pattern was controlled using a strategy based on effluent ammonia and nitrate+nitrite concentrations. The unique feature of this aeration control was that fixed dissolved oxygen set-point was used and the length of aerobic and anoxic durations were changed based on the effluent ammonia and nitrate+nitrite concentrations. The anaerobic ammonia oxidation (anammox) bacteria were adapted in mainstream conditions by allowing the growth on the moving bed bioreactor plastic media in a fully anoxic reactor. The total inorganic nitrogen (TIN) removal performance of the entire system was 75±15% during the study at a modest influent chemical oxygen demand (COD)/NH4+-N ratio of 8.9±1.8 within the HRT range of 3.1-9.4 h. Anammox polishing contributed 11% of overall TIN removal. Therefore, this pilot-scale study demonstrates that application of the proposed nitritation-denitritation system followed by anammox polishing is capable of relatively high nitrogen removal without supplemental carbon and alkalinity at a low HRT.

  19. Role of nitrite in regulation of fetal cephalic circulation in sheep

    PubMed Central

    Truong, Giang T; Schröder, Hobe J; Liu, Taiming; Zhang, Meijuan; Kanda, Eriko; Bragg, Shannon; Power, Gordon G; Blood, Arlin B

    2014-01-01

    Nitrite has been postulated to provide a reservoir for conversion to nitric oxide (NO), especially in tissues with reduced oxygen levels as in the fetus. Nitrite would thus provide local vasodilatation and restore a balance between oxygen supply and need, a putative mechanism of importance especially in the brain. The current experiments test the hypothesis that exogenous nitrite acts as a vasodilator in the cephalic vasculature of the intact, near term fetal sheep. Fetuses were first instrumented to measure arterial blood pressure and carotid artery blood flow and then studied 4–5 days later while in utero without anaesthesia. Initially l-nitro-arginine (LNNA) was given to block endogenous NO production. Carotid resistance to flow increased 2-fold from 0.54 ± 0.01 (SEM) to 1.20 ± 0.08 mmHg min ml−1 (in 13 fetuses, P < 0.001), indicating NO tonically reduces cerebral vascular tone. Sodium nitrite (or saline as control) was then infused in increasing step-doses from 0.01 to 33 μm in half-log increments over a period of 2 h. Carotid artery pressure, blood flow and vascular resistance did not change compared to fetuses receiving saline, even at plasma nitrite concentrations two orders of magnitude above the physiological range. The results indicate that while cephalic vascular tone is controlled by endogenous nitric oxide synthase activity, exogenously administered nitrite is not a vasodilator at physiological concentrations in the vasculature served by the carotid artery of fetal sheep. PMID:24535441

  20. Oral bacteria--the missing link to ambiguous findings of exhaled nitrogen oxides in cystic fibrosis.

    PubMed

    Zetterquist, Wilhelm; Marteus, Helena; Kalm-Stephens, Pia; Näs, Elisabeth; Nordvall, Lennart; Johannesson, Marie; Alving, Kjell

    2009-02-01

    Nitrite in exhaled breath condensate (EBC) has been shown to be elevated in cystic fibrosis (CF), while exhaled nitric oxide (FENO) is paradoxically low. This has been argued to reflect increased metabolism of NO while its diffusion is obstructed by mucus. However, we wanted to study the possible influence of salivary nitrite and bacterial nitrate reduction on these parameters in CF patients by the intervention of an anti-bacterial mouthwash. EBC and saliva were collected from 15 CF patients (10-43 years) and 15 controls (9-44 years) before and 5 min after a 30s chlorhexidine mouthwash, in parallel with measurements of FENO. Nitrite and nitrate concentrations were measured fluorometrically. EBC nitrite, but not nitrate, was significantly higher in the CF patients (median 3.6 vs 1.3 microM in controls, p<0.05) and decreased after mouthwash in both groups (3.6-1.4 microM, p<0.01; 1.3-0.5 microM, p<0.01). Salivary nitrite correlated significantly to EBC nitrite (r=0.60, p<0.001) and decreased correspondingly after chlorhexidine, whereas salivary nitrate increased. FENO was lower in CF and the difference between patients and controls was accentuated after mouthwash (5.4 vs 8.4 ppb in controls, p<0.05). EBC nitrite mainly originates in the pharyngo-oral tract and its increase in CF is possibly explained by a regional change in bacterial activity. The limited lower airway contribution supports the view of a genuinely impaired formation and metabolism of NO in CF, rather than poor diffusion of the molecule.

  1. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures.

    PubMed

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L(-1)·day(-1) was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89-91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia.

  2. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  3. Evaluation of the Nitric Oxide and Nitrite Scavenging Capability, N-Nitrosamine Formation Inhibitory Activity, and Optimization of Ultrasound-Assisted Aqueous Two-Phase System Extraction of Total Saponins from Coreopsis tinctoria Flowering Tops by Response Surface Methodology.

    PubMed

    Luo, Ruiling; Yao, Xincheng; Liu, Xieying; Zhang, Yushang; Ying, Xue

    2018-03-01

    Coreopsis tinctoria flowering tops (CTFs) is a popular health product as herbal tea or as a traditional medicinal herb that is rich in saponins and exerts substantial biological activity. In this study, an ultrasound-assisted aqueous two-phase system (ATPS) was utilized to extract total saponins from CTFs and optimize the extraction process by response surface methodology. Moreover, the nitric oxide and nitrite scavenging capability, and N-nitrosamine formation inhibitory activity of total saponins were evaluated. Results showed that the optimal conditions for total saponins were 37.76% (w/w) ammonium sulfate and 35.62% (w/w) ethanol in ATPS coupled with ultrasonic-assisted extraction. Under the optimal conditions, the maximum yield of total saponins of 33.4 g/kg can be obtained from the CTFs raw material. The nitric oxide radical scavenging, nitrite scavenging, and N-nitrosamine inhibitory activities (SC 50 ) were 287.92 ± 7.42, 191.63 ± 7.69, and 1787.4 ± 51.26 μg/mL, respectively. The total saponins has a certain nitric oxide and nitrite scavenging capability, and N-nitrosamine formation inhibitory activity in vitro. Given these activities, research on saponins from CTFs provides profound and lasting implications for the novel applications of C. tinctoria.

  4. Oxidative stress and antioxidant responses in juvenile Brazilian flounder Paralichthys orbignyanus exposed to sublethal levels of nitrite.

    PubMed

    Maltez, Lucas Campos; Barbas, Luis André Luz; Nitz, Lilian Fiori; Pellegrin, Lucas; Okamoto, Marcelo Hideo; Sampaio, Luís André; Monserrat, José Maria; Garcia, Luciano

    2018-06-01

    This study evaluated the effects of short-term exposure to sublethal levels of nitrite on oxidative stress parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus. An assessment of fish recovery was also performed. Fish were exposed to 0.08 (control), 5.72, 10.43, and 15.27 NO 2 -N mg L -1 for 10 days followed by the same recovery time. Gill, liver, and muscle samples were collected after 1, 5, and 10 days of exposure and after recovery for the measurement of antioxidant capacity against peroxyl radicals (ACAP), glutathione-S-transferase (GST) activity, content of non-protein (NPSH) and protein thiols (PSH), and lipid peroxidation levels by thiobarbituric acid-reactive substances (TBARS) content. Nitrite exposure induced alterations which compromised the overall antioxidant system (reduced ACAP and GST activity) and enhanced oxidative damage in lipids and proteins. Increases in GST activity and NPSH and PSH contents were also demonstrated. The recovery period allowed for resumption of basal levels for all (treatment 5.72 NO 2 -N mg L -1 ) or some of the evaluated parameters (other treatments). In conclusion, exposure to nitrite concentrations from 5.72 to 15.27 NO 2 -N mg L -1 induced oxidative stress and antioxidant responses in juvenile Brazilian flounder. The 10-day recovery period was sufficient for a complete resumption of basal physiological condition of fish exposed to concentrations of up to 5.72 NO 2 -N mg L -1 .

  5. A comparative study of nitrite reduction by synthetic and biogenic Fe(II-III) hydroxysalts green rusts: Evidence for hydroxyl-nitrite green rust formation as an intermediate reaction product.

    NASA Astrophysics Data System (ADS)

    Ona-Nguema, G.; Guerbois, D.; Morin, G.; Zhang, Y.; Noel, V.; Brest, J.

    2013-12-01

    The occurrence of high nitrite concentrations as a result of anthropogenic activities is an important water quality concern as it is highly toxic to human and fauna, and it is used as a nitrogen source for the assimilation process. The toxicity of nitrite is related to its transformation into carcinogenic N-nitroso compounds, which are suspected to be responsible for some gastric cancers, and to its ability to convert the hemoglobin to methaemoglobin what is then unable to fix oxygen and to transport it to the tissues, involving hypoxia and the blue-baby syndrome [1]. To reduce the adverse effect of nitrite on human health and on macroalgal blooms, any process enhancing the transformation of nitrite ions to nitrogen gas is of interest for the remediation of natural environments. To achieve this purpose the use of processes involving Fe(II)-containing minerals could be considered as one of the best options. Green-rusts are mixed Fe(II-III) layered double hydroxides commonly found in anoxic zones of natural environments such as sediments and hydromorphic soils. In such anoxic environments, green rust minerals play an important role in the biogeochemical redox cycling of iron and nitrogen, and can affect the speciation and mobility of many organic and inorganic contaminants. The present study investigates the reduction of nitrite by two synthetic and two biogenic green rusts. On the one hand, Fe(II-III) hydroxychloride and Fe(II-III) hydroxycarbonate green rusts were used as synthetic interlayer forms of GR, which are referred to as ';syn-GR(CO3)' and ';syn-GR(Cl)', respectively. On the other hand, the study was performed with biogenic Fe(II-III) hydroxycarbonate green rusts obtained from the bioreduction of two ferric precursors, either Fe(III)-oxyhydroxycarbonate or lepidocrocite; these biogenic green rusts are referred to as ';bio-GR(CO3)F' and ';bio-GR(CO3)L', respectively. For synthetic green rusts, results showed that the oxidation of both syn-GR(CO3) and syn-GR(Cl) led to the reduction of nitrite ions to ammonium, and that the production of ammonium depended on their Fe(II) content. XRD patterns indicated that both synthetic green rusts were fully oxidized into magnetite during the reaction with nitrite. For biogenic green rusts, the study revealed that both bio-GR(CO3)F and bio-GR(CO3)L were capable of reducing nitrite ions without ammonium production, suggesting the conversion of nitrite ions to nitrogen gas. Moreover, we provided evidence for the first time that the interactions of bio-GR(CO3)F with nitrite led to the formation of an hydroxy-nitrite green rust as a result of the incorporation of nitrite in the interlayer region of bio-GR(CO3)F; such an intercalation of nitrite ions was not observed in experiments with bio-GR(CO3)L. XRD analysis indicated that GR(NO2) was formed as an intermediate reaction product prior to the fully oxidation of GR to ferric oxyhydroxides. [1] Philips S., Laanbroek H. J. and Verstraete W. (2002). Rev. Environ. Sci. Biotechnol. 1, 115-141.

  6. Relating induced in situ conditions of raw chicken breast meat to pinking.

    PubMed

    Holownia, K; Chinnan, M S; Reynolds, A E; Davis, J W

    2004-01-01

    Our objective was to simulate the pink color defect in cooked chicken breast meat with treatment combinations that would induce measurable changes in the conditions of raw meat. In addition, the feasibility of using induced raw meat conditions to develop a logistic regression model for prediction of pinking was studied. Approximately 960 breast fillets from 2 plants with 2 replications were used for inducing in situ conditions with 16 combinations of sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite (present and not present). Muscles in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Raw samples were analyzed for pH, oxidation-reduction potential, and pigment evaluation. Results indicated a significant role of induced in situ conditions of raw meat in the occurrence of pinking. Presence of 1 ppm or more of sodium nitrite in raw meat produced significant pinking of cooked meat. The light muscle color group was least affected and the dark group was most affected by induced pH, oxidation-reduction potential conditions, and metmyoglobin and nitrosopigment content. The predictive ability of the logistic model was more than 90% with nitrosopigment, pH, and reducing conditions being the most important factors. Moreover, validation of the model was confirmed by close association between observed pink samples and those predicted as pink.

  7. Detection and diversity of fungal nitric oxide reductase genes ( p450nor) in agricultural soils

    DOE PAGES

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.; ...

    2016-03-11

    Members of the Fungi convert nitrate (NO 3 -) and nitrite (NO 2 -) to gaseous nitrous oxide (N 2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N 2O from added NO 3 - or NO 2 - in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups,more » of which 151 produced N 2O from NO 2 -. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N 2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N 2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N 2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N 2O formation.« less

  8. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid.

    PubMed

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo

    2015-03-01

    Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Detection and diversity of fungal nitric oxide reductase genes ( p450nor) in agricultural soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.

    Members of the Fungi convert nitrate (NO 3 -) and nitrite (NO 2 -) to gaseous nitrous oxide (N 2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N 2O from added NO 3 - or NO 2 - in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups,more » of which 151 produced N 2O from NO 2 -. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N 2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N 2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N 2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N 2O formation.« less

  10. Effects of different rehabilitation models on erythrocyte deformability and nitrite plus nitrate as end-products of nitric oxide levels in elderly women.

    PubMed

    Filar-Mierzwa, Katarzyna; Wójcik, Barbara; Marchewka, Anna; Dąbrowski, Zbigniew; Superata, Jerzy; Wiśniowski, Zdzisław

    2017-12-01

    The aim of the present study was to analyze the effects of two rehabilitation protocols, dance movement therapy exercises (DMT) and general rehabilitation exercises (GRE), on erythrocyte deformability and plasma levels of nitrite plus nitrate as end products of nitric oxide (NOx) in elderly women. The study included 39 women aged 61-82 years, subjected to either GRE (n = 20) or DMT (n = 19). Women were subjected to 5-months programs of GRE and DMT, with each session lasting no longer than 45-50 min, and the intensity of exercising corresponding to no more than 40-60% of heart rate reserve. Plasma levels of NOx were determined spectrophotometrically before and at the end of the intervention. A significant increase in the total nitrate/nitrite concentration from 1.341 μmol/L to 1.590 μmol/L (7.3%) was observed in women subjected to the DMT rehabilitation program. Furthermore, an increase in erythrocyte deformability was observed in this group at shear stress 0.30. No significant difference was found between the pre- and post-rehabilitation NOx levels of women participating in the GRE program. Participation in DMT rehabilitation program might be reflected by an increase in plasma NOx levels and an improvement of erythrocyte deformability at lesser shear stress, and thus could potentially result in better vascular function. DMT should be offered to older adults, especially to persons who do not find conventional forms of rehabilitation as attractive, as they might refrain from physical activity and suffer from a faster decline in nitric oxide production. Geriatr Gerontol Int 2017; 17: 2479-2484. © 2017 Japan Geriatrics Society.

  11. Dietary Nitrate Acutely and Markedly Increased Exhaled Nitric Oxide in a Cystic Fibrosis Case.

    PubMed

    Kerley, Conor P; Kilbride, Emma; Greally, Peter; Elnazir, Basil

    2016-12-01

    Airway nitric oxide (NO) is a ubiquitous signaling molecule with bronchoprotective, anti-inflammatory and anti-infective roles. Cystic fibrosis (CF) is a chronic lung condition associated with deceased exhaled NO. Strategies to increase exhaled NO in CF have yielded inconsistent results. A potential new method of increasing systemic NO involves ingestion of dietary, inorganic nitrate which is reduced to nitrite and NO. We present the case of a 12-year-old, athletic boy with CF who demonstrated acute but marked increases in exhaled NO following dietary nitrate consumption compared to placebo. © 2016 Marshfield Clinic.

  12. Peripheral NMDA Receptor/NO System Blockage Inhibits Itch Responses Induced by Chloroquine in Mice

    PubMed Central

    Haddadi, Nazgol-Sadat; Foroutan, Arash; Ostadhadi, Sattar; Azimi, Ehsan; Rahimi, Nastaran; Nateghpour, Mehdi; Lerner, Ethan A.; Dehpour, Ahmad Reza

    2017-01-01

    Intradermal administration of chloroquine (CQ) provokes scratching behavior in mice. Chloroquine-induced itch is histamine-independent and we have reported that the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is involved in CQ-induced scratching behavior in mice. Previous studies have demonstrated that activation of N-methyl-d-aspartate receptors (NMDARs) induces NO production. Here we show that NMDAR antagonists significantly decrease CQ-induced scratching in mice while a non-effective dose of an NMDAR agonist potentiates the scratching behavior provoked by sub-effective doses of CQ. In contrast, combined pre-treatment with sub-effective doses of an NMDAR antagonist, MK-801, and the NO synthase inhibitor, L-N-nitro arginine methyl ester (L-NAME), decreases CQ-induced scratching behavior. While intradermal administration of CQ significantly increases the concentration of intradermal nitrite, the end product of NO metabolism, effective doses of intraperitoneal and intradermal MK-801 significantly decrease intradermal nitrite levels. Likewise, administration of an effective dose of L-NAME significantly decreases CQ-induced nitrite production. We conclude that the NMDA/NO pathway in the skin modulates CQ-induced scratching behavior. PMID:28119997

  13. Nitrite-embedded packaging film effects on fresh and frozen beef color development and stability as influenced by meat age and muscle type.

    PubMed

    Claus, James R; Du, Chen

    2013-11-01

    Muscles (Longissimus lumborum, LL; Psoas major, PM, semitendinosus, ST) were aged (2, 9d postmortem), cut into steaks, anaerobically packaged (nitrite-embedded film, NEF), and displayed (fresh, 19d; frozen, 39d). Fresh NEF increased (P<0.05) in redness (first 48h). Upon opening fresh NEF (d 6) and overwrapping in PVC film, redness declined (P<0.05). NEF cooked LL had more red surface compared to non-NEF. Meat age influenced NEF color. Intact NEF maintained acceptable red color throughout display. Residual nitrite and nitrate associated with fresh NEF and nitrate in NEF cooked LL were found (P<0.05) in the outer layer. Consideration should be given to providing sufficient time for nitric oxide myoglobin development when using NEF which may be influenced by meat age and muscle differences. NEF packaging has potential to extend fresh beef color display life. NEF appears to offer the opportunity to display bright red beef in frozen display by limiting typical effects of photooxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The suppression of the N-nitrosating reaction by chlorogenic acid.

    PubMed Central

    Kono, Y; Shibata, H; Kodama, Y; Sawa, Y

    1995-01-01

    N-Nitrosation of a model aromatic amine (2,3-diamino-naphthalene) by the N-nitrosating agent produced by nitrite in acidic solution was inhibited by a polyphenol, chlorogenic acid, which is an ester of caffeic acid quinic acid. Caffeic acid also inhibited the N-nitrosation, but quinic acid did not. 1,2-Benzenediols and 3,4-dihydroxybenzoic acid had inhibitory activities. Chlorogenic acid, caffeic acid, 1,2-benzenediols and 3,4-dihydroxybenzoic acid were able to scavenge the stable free radical, 1,1-diphenyl-2-picrylhydrazyl. Chlorogenic acid was found to be nitrated by acidic nitrite. The kinetic studies and the nitration observed only by bubbling of nitric oxide plus nitrogen dioxide gases indicated that the nitrating agent was nitrogen sesquioxide. The observations showed that the mechanism by which chlorogenic acid inhibited N-nitrosation of 2,3-diamino-naphthalene is due to its ability to scavenge the nitrosating agent, nitrogen sesquioxide. Chlorogenic acid may be effective not only in protecting against oxidative damage but also in inhibiting potentially mutagenic and carcinogenic reactions in vivo. PMID:8554543

  15. The Chemical Interplay between Nitric Oxide and Mitochondrial Cytochrome c Oxidase: Reactions, Effectors and Pathophysiology

    PubMed Central

    Sarti, Paolo; Forte, Elena; Giuffrè, Alessandro; Mastronicola, Daniela; Magnifico, Maria Chiara; Arese, Marzia

    2012-01-01

    Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO2  −, PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O2 competitiveness. In the mitochondrion, during turnover with O2, one pathway prevails over the other one depending on NO, cytochrome c 2+ and O2 concentration. High cytochrome c 2+, and low O2 proved to be crucial in favoring CcOX nitrosylation, whereas under-standard cell-culture conditions formation of the nitrite derivative prevails. All together, these findings suggest that NO can modulate physiologically the mitochondrial respiratory/OXPHOS efficiency, eventually being converted to nitrite by CcOX, without cell detrimental effects. It is worthy to point out that nitrite, far from being a simple oxidation byproduct, represents a source of NO particularly important in view of the NO cell homeostasis, the NO production depends on the NO synthases whose activity is controlled by different stimuli/effectors; relevant to its bioavailability, NO is also produced by recycling cell/body nitrite. Bioenergetic parameters, such as mitochondrial ΔΨ, lactate, and ATP production, have been assayed in several cell lines, in the presence of endogenous or exogenous NO and the evidence collected suggests a crucial interplay between CcOX and NO with important energetic implications. PMID:22811713

  16. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Sulassaari, Sirkka; Martikainen, Pertti J.

    2014-05-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). There are missing sources of HONO when considering the chemical reactions in the atmosphere. Soil could be such a missing source. Emissions of HONO from soils studied in laboratory incubations have been recently reported. The soil-derived HONO has been connected to soil nitrite (NO2-) and a study with an ammonium oxidizing bacterium has shown that HONO could be produced in ammonium oxidation. Our hypothesis was that boreal acidic soils with high nitrification activity could be important sources of HONO. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle processes. In contrast to drained peatlands, natural peatlands with high water table and boreal coniferous forests on mineral soils with low nitrification capacity had low HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low nitrification rate and low availability of nitrite in these soils are the likely reasons for their low HONO production rates. We studied the origin of HONO in one drained peat soil by inhibiting nitrification with acetylene. Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus ammonium oxidation is not the direct mechanism for the HONO emission in this soil. It is still an open question if HONO originates directly from some microbial process like ammonium oxidation or chemically from nitrite produced in microbial processes.

  17. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  18. Oxidative stress biomarkers and their relationship with cytokine concentrations in overweight/obese pregnant women and their neonates.

    PubMed

    Hernández-Trejo, María; Montoya-Estrada, Araceli; Torres-Ramos, Yessica; Espejel-Núñez, Aurora; Guzmán-Grenfell, Alberto; Morales-Hernández, Rosa; Tolentino-Dolores, Maricruz; Laresgoiti-Servitje, Estibalitz

    2017-01-07

    Oxidative damage present in obese/overweight mothers may lead to further oxidative stress conditions or inflammation in maternal and cord blood samples. Thirty-four pregnant women/newborn pairs were included in this study to assess the presence of oxidative stress biomarkers and their relationship with serum cytokine concentrations. Oxidative stress biomarkers and antioxidant enzymes were compared between the mother/offspring pairs. The presence of 27 cytokines was measured in maternal and cord blood samples. Analyses were initially performed between all mothers and newborns and later between normal weight and mothers with overweight and obesity, and diabetic/non-diabetic women. Significant differences were found in biomarker concentrations between mothers and newborns. Additionally, superoxide-dismutase activity was higher in pre-pregnancy overweight mothers compared to those with normal weight. Activity for this enzyme was higher in neonates born from mothers with normal pregestational weight compared with their mothers. Nitrites in overweight/obese mothers were statistically lower than in their offspring. Maternal free fatty acids, nitrites, carbonylated proteins, malondialdehyde and superoxide dismutase predicted maternal serum concentrations of IL-4, IL-13, IP-10 and MIP-1β. Arginase activity in maternal plasma was related to decreased concentrations of IL-4 and IL-1β in cord arterial blood. Increased maternal malondialdehyde plasma was associated with higher levels of IL-6 and IL-7 in the offspring. Oxidative stress biomarkers differ between mothers and offspring and can predict maternal and newborn cytokine concentrations, indicating a potential role for oxidative stress in foetal metabolic and immunologic programming. Moreover, maternal obesity and diabetes may affect maternal microenvironments, and oxidative stress related to these can have an impact on the placenta and foetal growth.

  19. The effects of nitrite on the survival of Clostridium sporogenes and the autoxidation properties of the Kavurma.

    PubMed

    Yetim, Hasan; Kayacier, Ahmed; Kesmen, Zulal; Sagdic, Osman

    2006-02-01

    Kavurma is a traditional cooked (fried) meat product manufactured to preserve meat. Some bacterial genera, e.g., clostridia are important in kavurma. The objective of this study was to determine the influence of nitrite and the traditional cooking process on the survival and proliferation of Clostridium botulinum and the autoxidation properties of the kavurma. For this purpose, Clostridium sporogenes having similar characteristics to C. botulinum was used, and the samples were inoculated with 10(6) CFU/g C. sporogenes cells before the traditional cooking. The final products were packaged and stored under refrigeration for 6 months, and then the oxidation parameters (TBA, peroxide and free fatty acid values) and C. sporogenes counts of samples were determined. It was observed that C. sporogenes could survive during the traditional cooking process and storage. However, counts decreased during storage; for example, nitrite containing samples initially had 3.21logCFU/g C. sporogenes and 2.73logCFU/g at the end of storage. While nitrite had a slight antimicrobial effect on clostridia, it significantly reduced the TBA, peroxide and FFA values of the samples. In conclusion, it is suggested that addition of 100ppm of nitrite might be useful in kavurma processing because of its role in limiting oxidation as well as its antimicrobial effect.

  20. Thiopental inhibits nitric oxide production in rat aorta.

    PubMed

    Castillo, C; Asbun, J; Escalante, B; Villalón, C M; López, P; Castillo, E F

    1999-12-01

    We studied whether thiopental affects endothelial nitric oxide dependent vasodilator responses and nitrite production (an indicator of nitric oxide production) elicited by acetylcholine, histamine, and A23187 in rat aorta (artery in which nitric oxide is the main endothelial relaxant factor). In addition, we evaluated the barbiturate effect on nitric oxide synthase (NOS) activity in both rat aorta and kidney homogenates. Thiopental (10-100 microg/mL) reversibly inhibited the endothelium-dependent relaxation elicited by acetylcholine, histamine, and A23187. On the contrary, this anesthetic did not modify the endothelium-independent but cGMP-dependent relaxation elicited by sodium nitroprusside (1 nM - 1 microM) and nitroglycerin (1 nM - 1 microM), thus excluding an effect of thiopental on guanylate cyclase of vascular smooth muscle. Thiopental (100 microg/mL) inhibited both basal (87.8+/-14.3%) and acetylcholine- or A23187-stimulated (78.6+/-3.9 and 39.7+/-5.6%, respectively) production of nitrites in aortic rings. In addition the barbiturate inhibited (100 microg/mL) the NOS (45+/-4 and 42.8+/-9%) in aortic and kidney homogenates, respectively (measured as 14C-labeled citrulline production). In conclusion, thiopental inhibition of endothelium-dependent relaxation and nitrite production in aortic rings strongly suggests an inhibitory effect on NOS. Thiopental inhibition of the NOS provides further support to this contention.

  1. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: In situ measurement of a sequential multistep reaction

    USGS Publications Warehouse

    Smith, Richard L.; Böhlke, John Karl; Garabedian, Stephen P.; Revesz, Kinga M.; Yoshinari, Tadashi

    2004-01-01

    Denitrification was measured within a nitrate‐contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 μM) and nitrous oxide (up to 143 μM) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small‐scale (15–24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down‐gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one‐dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036–0.047 μmol N (L aquifer)−1 d−1) was faster than the subsequent denitrification steps (0.013–0.016 μmol N (L aquifer)−1 d−1 for nitrous oxide and 0.013–0.020 μmol N (L aquifer)−1 d−1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down‐gradient before being completely consumed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  3. Increase in gastric pH reduces hypotensive effect of oral sodium nitrite in rats.

    PubMed

    Pinheiro, Lucas C; Montenegro, Marcelo F; Amaral, Jefferson H; Ferreira, Graziele C; Oliveira, Alisson M; Tanus-Santos, Jose E

    2012-08-15

    The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies.

    PubMed

    Jensen, Frank B; Rohde, Sabina

    2010-04-01

    Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.

  5. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    PubMed

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  6. Effect of Potassium Chlorate on the Treatment of Domestic Sewage by Achieving Shortcut Nitrification in a Constructed Rapid Infiltration System.

    PubMed

    Fang, Qinglin; Xu, Wenlai; Yan, Zhijiao; Qian, Lei

    2018-04-04

    A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO₃) to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO₃ to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO₃ had no obvious effect. The addition of 5mM KClO₃ in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover, if the shortcut denitrification process will be achieved in the subsequent research, it could save 60.27 mg CH₃OH per litre of sewage in the CRI system compared with the full denitrification process.

  7. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma

    PubMed Central

    Itoiz, María E.; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-01-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Study Design: Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Results: Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. Conclusions: NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes. Key words:Field cancerization, oral squamous cell carcinoma, Nitric Oxide Synthase 2 (NOS2), malignity markers. PMID:24316703

  8. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur.

    PubMed

    Tian, Ren-Mao; Sun, Jin; Cai, Lin; Zhang, Wei-Peng; Zhou, Guo-Wei; Qiu, Jian-Wen; Qian, Pei-Yuan

    2016-09-01

    Glass sponge (Hexactinellida, Porifera) is a special lineage because of its unique tissue organization and skeleton material. Structure and physiology of glass sponge have been extensively studied. However, our knowledge of the glass sponge-associated microbial community and of the interaction with the host is rather limited. Here, we performed genomic studies on the microbial community in the glass sponge Lophophysema eversa in seamount. The microbial community was dominated by an ammonia-oxidizing archaeum (AOA), a nitrite-oxidizing bacterium (NOB) and a sulfur-oxidizing bacterium (SOB), all of which were autotrophs. Genomic analysis on the AOA, NOB and SOB in the sponge revealed specific functional features of sponge-associated microorganisms in comparison with the closely related free-living relatives, including chemotaxis, phage defence, vitamin biosynthesis and nutrient uptake among others, which are related to ecological functions. The three autotrophs play essential roles in the cycles of carbon, nitrogen and sulfur in the microenvironment inside the sponge body, and they are considered to play symbiotic roles in the host as scavengers of toxic ammonia, nitrite and sulfide. Our study extends knowledge regarding the metabolism and the evolution of chemolithotrophs inside the invertebrate body. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages.

    PubMed

    Romano, Barbara; Pagano, Ester; Orlando, Pierangelo; Capasso, Raffaele; Cascio, Maria Grazia; Pertwee, Roger; Marzo, Vincenzo Di; Izzo, Angelo A; Borrelli, Francesca

    2016-11-01

    Historical and scientific evidence suggests that Cannabis use has immunomodulatory and anti-inflammatory effects. We have here investigated the effect of the non-psychotropic phytocannabinoid Δ 9 -tetrahydrocannabivarin (THCV) and of a Cannabis sativa extract with high (64.8%) content in THCV (THCV-BDS) on nitric oxide (NO) production, and on cannabinoid and transient receptor potential (TRP) channel expression in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. THCV-BDS and THCV exhibited similar affinity in radioligand binding assays for CB 1 and CB 2 receptors, and inhibited, via CB 2 but not CB 1 cannabinoid receptors, nitrite production evoked by LPS in peritoneal macrophages. THCV down-regulated the over-expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin 1β (IL-1β) proteins induced by LPS. Furthermore, THCV counteracted LPS-induced up-regulation of CB 1 receptors, without affecting the changes in CB 2 , TRPV2 or TRPV4 mRNA expression caused by LPS. Other TRP channels, namely, TRPA1, TRPV1, TRPV3 and TRPM8 were poorly expressed or undetectable in both unstimulated and LPS-challenged macrophages. It is concluded that THCV - via CB 2 receptor activation - inhibits nitrite production in macrophages. The effect of this phytocannabinoid was associated with a down-regulation of CB 1 , but not CB 2 or TRP channel mRNA expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    PubMed Central

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers. PMID:25303715

  11. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    PubMed

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.

  12. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox ▿

    PubMed Central

    Vlaeminck, Siegfried E.; Terada, Akihiko; Smets, Barth F.; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy

    2010-01-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857

  13. Pseudoazurin dramatically enhances the reaction profile of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 and facilitates release of product nitric oxide.

    PubMed

    Sam, Katharine A; Fairhurst, Shirley A; Thorneley, Roger N F; Allen, James W A; Ferguson, Stuart J

    2008-05-02

    Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.

  14. Heterotrophic denitrification plays an important role in N₂O production from nitritation reactors treating anaerobic sludge digestion liquor.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2014-10-01

    Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Safer and healthier reduced nitrites turkey meat sausages using lyophilized Cystoseira barbata seaweed extract.

    PubMed

    Sellimi, Sabrine; Benslima, Abdelkarim; Ksouda, Ghada; Montero, Veronique Barragan; Hajji, Mohamed; Nasri, Moncef

    2017-10-21

    Background Nitrite salts are still common additives in the meat industry. The present study provides a first approach on the employment of the lyophilized aqueous extract (WE) of the Tunisian seaweed Cystoseira barbata for the quality enhancement of turkey meat sausage. Methods WE was supplemented as a natural antioxidant agent to investigate its effectiveness in delaying lipid oxidation turkey meat sausages containing reduced amounts of sodium nitrites. Results On storage day 5, all concentrations of WE (0.01-0.4 %) reduced the meat lipid oxidation by approximately 36 %, as compared to the negative control containing only 80 mg/kg of meat of sodium nitrites as antioxidant. It was noted that within 15 days of refrigerated storage, a meat system containing 80 mg/kg of meat of sodium nitrites and 0.02 % and 0.04 % of WE had similar Thiobarbituric Acid Reactive Substances (TBARS) levels (19±1.32 and 17±1.12 µmol/kg of meat, respectively), which were comparable to the positive control containing sodium nitrites (150 mg/kg of meat) and 0.045 % vitamin C (18.46±1.27 µmol/kg of meat). In-depth, the metabolomic profiling using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-quadripole-time-of-flight-mass spectrometry (LC-QTOF-MS) analyses of the Tunisian seaweed C. barbata solvent extracts showed that the main active compounds were phenolic compounds, fatty acids and sterols. Conclusions Overall, the cold medium containing C. barbata lyophilized aqueous extrac, with strong antioxidant activity and antihypertensive properties, may open the way to the development of a natural quality enhancement strategy for new functional and ever healthier reduced nitrites meat sausages based on algae.

  16. Polymeric Optical Sensors for Selective and Sensitive Nitrite Detection Using Cobalt(III) Corrole and Rh(III) Porphyrin as Ionophores

    PubMed Central

    Yang, Si; Wo, Yaqi; Meyerhoff, Mark E.

    2014-01-01

    Cobalt(III) 5, 10, 15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl)porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-penicillamine. PMID:25150700

  17. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    PubMed

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the Michaelis constant. Together, our results show that nitrate inhibits XOR-mediated NO production from nitrite, and this mechanism may explain how nitrate attenuates the vascular and blood pressure responses to nitrite. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Inhibition of inducible nitric oxide synthase expression by novel nonsteroidal anti-inflammatory derivatives with gastrointestinal-sparing properties.

    PubMed Central

    Cirino, G.; Wheeler-Jones, C. P.; Wallace, J. L.; Del Soldato, P.; Baydoun, A. R.

    1996-01-01

    1. The effects of novel nitric oxide-releasing nonsteroidal anti-inflammatory compounds (NO-NSAIDs) on induction of nitric oxide (NO) synthase by bacterial lipopolysaccharide (LPS) were examined in a murine cultured macrophage cell line, J774. 2. LPS-induced nitrite production was markedly attenuated by the nitroxybutylester derivatives of flurbiprofen (FNBE), aspirin, ketoprofen, naproxen, diclofenac and ketorolac, with each compound reducing accumulated nitrite levels by > 40% at the maximum concentrations (100 micrograms ml-1) used. 3. Further examination revealed that nitrite production was inhibited in a concentration-dependent (1-100 micrograms ml-1) manner by FNBE which at 100 micrograms ml-1 decreased LPS-stimulated levels by 63.3 +/- 8.6% (n = 7). The parent compound flurbiprofen was relatively ineffective over the same concentration-range, inhibiting nitrite accumulation by 24 +/- 0.9% (n = 3) at the maximum concentration used (100 micrograms ml-1). 4. FNBE reduced LPS-induced nitrite production when added to cells up to 4 h after LPS. Thereafter, FNBE caused very little or no reduction in nitrite levels. Furthermore NO-NSAIDs (100 micrograms ml-1) did not inhibit the metabolism of L-[3H]-arginine to citrulline by NO synthase isolated from LPS-activated macrophages. 5. Western blot analysis demonstrated that NO synthase expression was markedly attenuated following co-incubation of J774 cell with LPS (1 microgram ml-1; 24 h) and FNBE (100 micrograms ml-1; 24 h). Thus taken together, these findings indicate that NO-NSAIDs inhibit induction of NO synthase without directly affecting enzyme activity. 6. In conclusion our results indicate that NO-NSAIDs can inhibit the inducible L-arginine-NO pathway, and are capable of suppressing NO synthesis by inhibiting expression of NO synthase. The clinical implications of these findings remain to be established. Images Figure 4 PMID:8730734

  19. Unraveling the potential of a combined nitritation-anammox biomass towards the biodegradation of pharmaceutically active compounds.

    PubMed

    Kassotaki, Elissavet; Pijuan, Maite; Joss, Adriano; Borrego, Carles M; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi

    2018-05-15

    In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Role of nitrite in the photochemical formation of radicals in the snow.

    PubMed

    Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf

    2014-01-01

    Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.

  1. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. It is rocket science - why dietary nitrate is hard to 'beet'! Part II: further mechanisms and therapeutic potential of the nitrate-nitrite-NO pathway.

    PubMed

    Mills, Charlotte Elizabeth; Khatri, Jibran; Maskell, Perry; Odongerel, Chimed; Webb, Andrew James

    2017-01-01

    Dietary nitrate (found in green leafy vegetables such as rocket and in beetroot) is now recognized to be an important source of nitric oxide, via the nitrate-nitrite-NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. Having described key twists and turns in the elucidation of the pathway and the underlying mechanisms in Part I, we explore the more recent developments which have served to confirm mechanisms, extend our understanding, and discover new properties and potential therapeutic uses of the pathway in Part II. Even the established dependency on low oxygen states for bioactivation of nitrite has recently been challenged. Dietary nitrate appears to be an important component of 'healthy diets', such as the DASH diet to lower blood pressure and the Mediterranean diet, with its potential to lower cardiovascular risk, possibly through beneficial interactions with a range of other constituents. The World Cancer Research Foundation report strong evidence for vegetables including spinach and lettuce (high nitrate-containing) decreasing cancer risk (mouth, pharynx, larynx, oesophagus and stomach), summarized in a 'Nitrate-Cancer Risk Veg-Table'. The European Space Agency recommends that beetroot, lettuce, spinach and rocket (high-nitrate vegetables) are grown to provide food for long-term space missions. Nitrate, an ancient component of rocket fuel, could support sustainable crops for healthy humans. © 2016 The British Pharmacological Society.

  3. Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration.

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Menert, Anne; Lemmiksoo, Vallo; Saluste, Alar; Tenno, Taavo; Tomingas, Martin

    2011-01-01

    Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2(-)-N/NOx(-)-N was achieved for FA concentration of 70 mg/L at 36 degrees C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.

  4. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  5. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Grabb, Kalina C.; Buchwald, Carolyn; Hansel, Colleen M.; Wankel, Scott D.

    2017-01-01

    Under anaerobic conditions, the environmental reduction of nitrate (NO3-) and nitrite (NO2-) to more reduced forms is widely regarded as being microbially catalyzed. However, the chemical reduction of oxidized nitrogen species by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under environmentally relevant conditions. Here we examine the nitrogen (N) and oxygen (O) stable isotope dynamics of the chemical reduction of NO2- by mineral associated Fe(II) (chemodenitrification) and its production of the potent greenhouse gas nitrous oxide (N2O). By shedding light on factors controlling kinetics of the reaction and its corresponding dual isotopic expression in the reactant NO2- and product N2O, this work contributes to a growing body of work aiming to improve our ability to identify chemodenitrification in the environment. Consistent with previous studies, we find that while homogenous reactions between aqueous NO2- and Fe(II) were kinetically slow, heterogeneous reactions involving Fe(II)-containing minerals often catalyzed considerable nitrite loss. In particular, rapid reduction of NO2- was catalyzed by the Fe-rich smectite clay mineral nontronite as well as the mixed Fe(II)-Fe(III) oxyhydroxide phase green rust. These minerals serve as both a source of reduced iron within the mineral structure as well as a surface for promoting the reactivity of Fe(II). However, even in the presence of aqueous Fe(II), experiments with low-Fe and non-Fe containing minerals showed little to no NO2- loss, perhaps suggesting a more dominant role for structural iron during chemodenitrification. When catalyzed by nontronite and green rust, N and O isotope effects for chemodenitrification (15εcDNF and 18εcDNF) ranged from 2 to 11‰ and 4 to 10‰, respectively, with lower values generally observed at higher reaction rates. Higher reaction rates were also linked to higher molar yields of N2O (up to 31%), highlighting a strong potential for chemodenitrification to produce N2O - especially relative to its production by microbial pathways, which typically exhibit yields <1%. The intramolecular 15N site preference (SP) of the linear N2O molecule (the difference in δ15N between the central and outer atoms), reflective of different production mechanisms, was also measured for N2O produced during green rust catalyzed chemodenitrification. Relative to values measured in other recent studies of chemodenitrification, SP values were consistently high (+26.5‰ ± 0.8‰), especially relative to N2O produced via bacterial denitrification (SP ∼ 0‰). Finally, the coupling of 18εcDNF and 15εcDNF at a ratio of ∼1 during green rust catalyzed chemodenitrification contrasts distinctly with recently characterized bacterial nitrite reduction, potentially permitting disentangling of both processes under well-constrained conditions. This study contributes to the broader understanding of the potential relevance for mineral-derived Fe(II) to promote the reduction of nitrite and consequent production of N2O, especially in iron-rich systems hosting dynamic redox oscillations, including hyporheic zones, estuarine sediments and groundwater aquifers.

  6. Epsilonproteobacterial hydroxylamine oxidoreductase (εHao): characterization of a 'missing link' in the multihaem cytochrome c family.

    PubMed

    Haase, Doreen; Hermann, Bianca; Einsle, Oliver; Simon, Jörg

    2017-07-01

    Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite-ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host-associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep-sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao-maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao-typical absorbance maximum at 460 nm. In most cases, the εHao-encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane-bound HaoCA assembly reminiscent of the menaquinol-oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a 'missing link' in the evolution of NrfA and Hao enzymes. © 2017 John Wiley & Sons Ltd.

  7. Long-term straw returning affects Nitrospira-like nitrite oxidizing bacterial community in a rapeseed-rice rotation soil.

    PubMed

    Luo, Xuesong; Han, Shun; Lai, Songsong; Huang, Qiaoyun; Chen, Wenli

    2017-04-01

    Nitrospira are the most widespread and well known nitrite-oxidizing bacteria (NOB) and putatively key nitrite-oxidizers in acidic ecosystems. Nevertheless, their ecology in agriculture soils has not been well studied. To understand the impact of straw incorporation on soil Nitrospira-like bacterial community, a cloned library analysis of the nitrite oxidoreductase gene-nxrB was performed for a long-term rapeseed-rice rotation system. In this study, most members of the Nitrospira-like NOB in the paddy soils from the Wuxue field experiment station were phylogenetically related with Nitrospira lineages II. The Shannon diversity index possessed a decrease trend in the straw applied soils. The relative abundances of 16 OTUs (accounting 72% of the total OTUs, including 11 unique OTUs and 5 shared OTUs) were different between in the straw applied and control soils. These data suggested a selection effect from the long-term straw fertilization. Canonical correspondence analysis data showed that a centralized group of Nitrospira-like NOB OTUs in the community was partly explained by the soil ammonium, nitrate, available phosphorus, and the available potassium. This could suggest that straw fertilization led to the soil Nitrospira-like NOB community shift, which was correlated with the change of available nutrients in the bulk soil. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Multicomponent Training on Blood Pressure, Nitric Oxide, Redox Status, and Physical Fitness in Older Adult Women: Influence of Endothelial Nitric Oxide Synthase (NOS3) Haplotypes

    PubMed Central

    Lizzi, Elisangela Aparecida da Silva; Gonçalves, Thiago Correa Porto; Rodrigues, Jhennyfer Aline Lima; Tavares, Simone Sakagute; Lacchini, Riccardo; Pinheiro, Lucas Cezar; Ferreira, Graziele Cristina; Jacomini, André Mourão; Bueno Júnior, Carlos Roberto

    2017-01-01

    The purpose of this study was to verify the influence of the genotype or haplotype (interaction) of the NOS3 polymorphisms [-786T>C, 894G>T (Glu298Asp), and intron 4b/a] on the response to multicomponent training (various capacities and motor skills) on blood pressure (BP), nitrite concentration, redox status, and physical fitness in older adult women. The sample consisted of 52 participants, who underwent body mass index and BP assessments. Physical fitness was evaluated by six-minute walk, elbow flexion, and sit and stand up tests. Plasma/blood samples were used to evaluate redox status, nitrite concentration, and genotyping. Associations were observed between isolated polymorphisms and the response of decreased systolic and diastolic BP and increased nitrite concentration and antioxidant activity. In the haplotype analysis, the group composed of ancestral alleles (H1) was the only one to present improvement in all variables studied (decrease in systolic and diastolic BP, improvement in nitrite concentration, redox status, and physical fitness), while the group composed of variant alleles (H8) only demonstrated improvement in some variables of redox status and physical fitness. These findings suggest that NOS3 polymorphisms and physical training are important interacting variables to consider in evaluating redox status, nitric oxide availability and production, and BP control. PMID:29104725

  9. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The dual effects of nitrite on hemoglobin-dependent redox reactions.

    PubMed

    Lu, Naihao; Chen, Chao; He, Yingjie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2014-08-31

    Evidence to support the role of heme proteins-dependent reactions as major inducers of oxidative damage is increasingly present. Nitrite (NO2(-)) is one of the major end products of NO metabolism, and from the daily consumption. Although the biological significance of heme proteins/NO2(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO2(-) on heme proteins-dependent redox reactions have been greatly underestimated. In this study, we investigated the influence of NO2(-) on met-hemoglobin (Hb)-dependent oxidative and nitrative stress. It was found that NO2(-) effectively reduced cytotoxic ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. However, the presence of NO2(-) surprisingly exerted pro-oxidant effect on Hb-H2O2-induced protein (bovine serum albumin, enolase) oxidation at low concentrations and enhanced the loss of HepG2 cell viability. In the reduction of ferryl Hb to ferric state, NO2(-) was decreased and oxidized to a nitrating agent NO2, Tyr12 and Tyr191 in enolase were subsequently nitrated. In contrast to the frequently inhibitive effect of nitrotyrosine, NO2(-)-triggered tyrosine nitration might play an important role in enolase activation. These data provided novel evidence that the dietary intake and potential therapeutic application of NO2(-) would possess anti- and pro-oxidant activities through interfering in hemoglobin-dependent redox reactions. Besides the classic role in protein tyrosine nitration, the dual effects on hemoglobin-triggered oxidative stress may provide new insights into the physiological and toxicological implications of NO2(-) with heme proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  12. A sensitive crude oil bioassay indicates that oil spills potentially induce a change of major nitrifying prokaryotes from the archaea to the bacteria.

    PubMed

    Urakawa, Hidetoshi; Garcia, Juan C; Barreto, Patricia D; Molina, Gabriela A; Barreto, Jose C

    2012-05-01

    The sensitivity of nitrifiers to crude oil released by the BP Deepwater Horizon oil spill in Gulf of Mexico was examined using characterized ammonia-oxidizing bacteria and archaea to develop a bioassay and to gain further insight into the ecological response of these two groups of microorganisms to marine oil spills. Inhibition of nitrite production was observed among all the tested ammonia-oxidizing organisms at 100 ppb crude oil. Nitrosopumilus maritimus, a cultured representative of the abundant Marine Group I Archaea, showed 20% inhibition at 1 ppb, a much greater degree of sensitivity to petroleum than the tested ammonia-oxidizing and heterotrophic bacteria. The differing susceptibility may have ecological significance since a shift to bacterial dominance in response to an oil spill could potentially persist and alter trophic interactions influenced by availability of different nitrogen species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. SPIRULINA PLATENSIS PROTECTS AGAINST RENAL INJURY IN RATS WITH GENTAMICIN-INDUCED ACUTE TUBULAR NECROSIS

    PubMed Central

    Avdagić, Nesina; Ćosović, Esad; Nakaš-Ićindić, Emina; Mornjaković, Zakira; Začiragić, Asija; Hadžović-Džuvo, Almira

    2008-01-01

    The present study was carried out to evaluate the renoprotective antioxidant effect of Spirulina platensis on gentamicin-induced acute tubular necrosis in rats. Albino-Wistar rats, (9male and 9 female), weighing approximately 250 g, were used for this study. Rats were randomly assigned to three equal groups. Control group received 0,9 % sodium chloride intraperitoneally for 7 days at the same volume as gentamicin group. Gentamicin group was treated intraperitoneally with gentamicin, 80mg/kg daily for 7 days. Gentamicin+spirulina group received Spirulina platensis 1000 mg/kg orally 2 days before and 7 days concurrently with gentamicin (80mg/kg i.p.). Nephrotoxicity was assessed by measuring plasma nitrite concentration, stabile metabolic product of nitric oxide with oxygen. Plasma nitrite concentration was determined by colorimetric method using Griess reaction. For histological analysis kidney specimens were stained with hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) stain. Plasma nitrite concentration and the level of kidney damage were significantly higher in gentamicin group in comparison both to the control and gentamicin+spirulina group. Spirulina platensis significantly lowered the plasma nitrite level and attenuated histomorphological changes related to renal injury caused by gentamicin. Thus, the results from present study suggest that Spirulina platensis has renoprotective potential in gentamicin-induced acute tubular necrosis possibly due to its antioxidant properties. PMID:19125703

  14. Nitrite in feed: From Animal health to human health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case ofmore » livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.« less

  15. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    PubMed Central

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is presented and discussed. PMID:26733968

  16. Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats.

    PubMed

    Colburn, Trenton D; Ferguson, Scott K; Holdsworth, Clark T; Craig, Jesse C; Musch, Timothy I; Poole, David C

    2017-01-01

    Exercise intolerance characteristic of diseases such as chronic heart failure (CHF) and diabetes is associated with reduced nitric oxide (NO) bioavailability from nitric oxide synthase (NOS), resulting in an impaired microvascular O 2 driving pressure (Po 2 mv; O 2 delivery/O 2 utilization) and metabolic control. Infusions of the potent NO donor sodium nitroprusside augment NO bioavailability yet decrease mean arterial pressure (MAP) thereby reducing its potential efficacy for patient populations. To eliminate or reduce hypotensive sequelae, [Formula: see text] was superfused onto the spinotrapezius muscle. It was hypothesized that local [Formula: see text] administration would elevate resting Po 2 mv and slow Po 2 mv kinetics [increased time constant (τ) and mean response time (MRT)] following the onset of muscle contractions without decreasing MAP. In 12 anesthetized male Sprague-Dawley rats, Po 2 mv of the circulation-intact spinotrapezius muscle was measured by phosphorescence quenching during 180 s of electrically induced twitch contractions (1 Hz) before and after superfusion of sodium nitrite (NaNO 2 30 mM). [Formula: see text] superfusion elevated resting Po 2 mv (control: 28.4 ± 1.1 vs. [Formula: see text]: 31.6 ± 1.2 mmHg; P ≤ 0.05), τ (control: 12.3 ± 1.2 vs. [Formula: see text]: 19.7 ± 2.2 s; P ≤ 0.05), and MRT (control: 19.3 ± 1.9 vs. [Formula: see text]: 25.6 ± 3.3 s; P ≤ 0.05). Importantly, these effects occurred in the absence of any reduction in MAP (103 ± 4 vs. 105 ± 4 mmHg, pre- and postsuperfusion respectively; P > 0.05). These results indicate that [Formula: see text] supplementation delivered to the muscle directly through [Formula: see text] superfusion enhances the blood-myocyte oxygen driving pressure without compromising MAP at rest and following the onset of muscle contraction. This strategy has substantial clinical utility for a range of ischemic conditions. Ischemic conditions as diverse as chronic heart failure (CHF) and frostbite inflict tissue damage via inadequate O 2 delivery. Herein we demonstrate that direct application of sodium nitrite enhances the O 2 supply-O 2 demand relationship, raising microvascular O 2 pressure in healthy skeletal muscle. This therapeutic action of nitrite-derived nitric oxide occurred without inducing systemic hypotension and has the potential to relieve focal ischemia and preserve tissue vitality by enhancing O 2 delivery. Copyright © 2017 the American Physiological Society.

  17. Novel Small Molecule Therapeutics for Sickle Cell Disease: Nitric Oxide, Carbon Monoxide, Nitrite, and Apolipoprotein A-I

    PubMed Central

    Kato, Gregory J.

    2009-01-01

    A hemolysis-linked subphenotype of sickle cell disease (SCD), characterized by pulmonary hypertension, stroke, priapism and leg ulcers, is associated with decreased nitric oxide bioavailability and vasculopathy. Vasculopathy appears to have a multifactorial etiology, including mechanisms primarily that involve deficient nitric oxide (NO) signaling, but also involving altered function of NO synthase related to substrate availability and cooperating factors such as apolipoproteins. Improved understanding of the vascular pathophysiology of SCD has led to new vascular targets for translational research in SCD. This growing vascular therapeutics field in SCD is complementary to the ongoing efforts to reduce the morbidity of vaso-occlusive pain crisis. This presentation will review the current biology and translational clinical development of novel small molecules targeting sickle cell vasculopathy. Strategies targeting the heme-oxygenase-carbon monoxide pathway, the arginine-NO synthase-cGMP-phosphodiesterase 5 pathway, the nitrate-nitrite-NO pathway, and the apolipoprotein A-I pathways will be reviewed. In this context, current clinical trials of inhaled NO, CO, nitrite, sildenafil and apoA-I mimetics will be discussed. PMID:19074079

  18. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemicalmore » approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.« less

  19. Effect of temperature on anoxic sulfide oxidation and denitrification in the bulk wastewater phase of sewer networks.

    PubMed

    Mathioudakis, V L; Aivasidis, A

    2009-01-01

    Artificial dosage of nitrate in sewer networks is considered as one of the most effective methods for odor and corrosion control. However, there is limited knowledge on the effect of temperature on the transformations that takes place during anoxic conditions. Thus, two groups of batch experiments were conducted to gain insight in the involved processes in bulk phase of a septic municipal wastewater. It can be concluded that sewer denitrification, in bulk phase, can be simplified in three stages. According to the experimental results, nitrate or nitrite is utilized for autotrophic denitrification with sulfide, while heterotrophic utilization is initiated after the completion of anoxic sulfide oxidation. Moreover, temperature is proved to have a significant impact on sewer denitrification kinetic profile, as it determines the extent of temporal nitrite accumulation. The temperature coefficient of each anoxic process, including sulfide oxidation, nitrate utilization and denitrification/nitrite utilization is experimentally calculated and temperature dependent equations are developed, providing the rate of all anoxic processes in bulk phase of sewer wastewater, in any given temperature.

  20. Nitrite intensity explains N management effects on N2O emissions in maize

    USDA-ARS?s Scientific Manuscript database

    It is typically assumed that the dependence of nitrous oxide (N2O) emissions on soil nitrogen (N) availability is best quantified in terms of ammonium (NH4+) and/or nitrate (NO3-) concentrations. In contrast, nitrite (NO2-) is seldom measured separately from NO3- despite its role as a central substr...

  1. Effect of nitrite on the odourant volatile fraction of cooked ham.

    PubMed

    Thomas, Caroline; Mercier, Frédéric; Tournayre, Pascal; Martin, Jean-Luc; Berdagué, Jean-Louis

    2013-08-15

    The aim of this work was to reliably identify the key odour compounds in cooked ham and acquire new knowledge on the role of sodium nitrite on the formation of its aroma. Gas chromatography coupled with mass spectrometry and (or) olfactometry was used. In all, 24 odourants were identified in the volatile fraction of cooked ham. Their main origins are discussed. Orthonasal sniffing of the hams was used to study how these substances contributed to the overall aroma of the product. The aroma of cooked ham is a balance between that of certain sulfur compounds produced during cooking and that of oxidation compounds commonly found in cooked meats. In the absence of nitrite, this balance is disturbed by extensive formation of oxidation compounds that mask the meaty notes induced by the sulfur compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Very early reaction intermediates detected by microsecond time scale kinetics of cytochrome cd1-catalyzed reduction of nitrite.

    PubMed

    Sam, Katharine A; Strampraad, Marc J F; de Vries, Simon; Ferguson, Stuart J

    2008-10-10

    Paracoccus pantotrophus cytochrome cd(1) is a nitrite reductase found in the periplasm of many denitrifying bacteria. It catalyzes the reduction of nitrite to nitric oxide during the denitrification part of the biological nitrogen cycle. Previous studies of early millisecond intermediates in the nitrite reduction reaction have shown, by comparison with pH 7.0, that at the optimum pH, approximately pH 6, the earliest intermediates were lost in the dead time of the instrument. Access to early time points (approximately 100 micros) through use of an ultra-rapid mixing device has identified a spectroscopically novel intermediate, assigned as the Michaelis complex, formed from reaction of fully reduced enzyme with nitrite. Spectroscopic observation of the subsequent transformation of this species has provided data that demand reappraisal of the general belief that the two subunits of the enzyme function independently.

  3. A new catalytic-spectrophotometric method for quantification of trace amounts of nitrite in fruit juice samples.

    PubMed

    Sobhanardakani, S; Farmany, A; Abbasi, S; Cheraghi, J; Hushmandfar, R

    2013-03-01

    A new kinetic method has been developed for the determination of nitrite in fruit juice samples. The method is based on the catalytic effect of nitrite with the oxidation of Nile Blue A (NBA) by KBrO(3) in the sulfuric acid medium. The optimum conditions obtained are 1.2 mM sulfuric acid, 0.034 mM of NBA, 2.8 × 10(-3) M KBrO(3), reaction temperature of 20 °C, and reaction time of 100 s at 595.5 nm. Under the optimized conditions, the method allowed the quantification of nitrite in a range of 0.2-800 μg/mL with a detection limit of 0.02 μg/mL. The method was applied to the determination of nitrite in 15 brands of fruit juice samples.

  4. Changes in tissue nitrite concentration in the crop of the turkey poult in response to Salmonella typhimurium challenge.

    PubMed

    Thaxton, J P; Cutler, S A; Griffith, R; Scanes, C G

    2006-06-01

    The present study examines whether Salmonella typhimurium colonization of the crop of young turkeys influences nitrite concentration in the component tissues of the crop. Nitric oxide (NO) is the principal compound in biological samples that is converted into nitrites and NO is known to be a component of the early host response to infection. Challenge with S. typhimurium increased the concentration of nitrite in the crop wall of 3-wk-old turkey poults. The magnitude of the response was reduced at 8 h and absent at 48 h after challenge. As would be expected, S. typhimurium concentrations in the crop were markedly increased following challenge, and were nondetectable in control poults.

  5. Blood Pressure-Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor.

    PubMed

    Montenegro, Marcelo F; Sundqvist, Michaela L; Larsen, Filip J; Zhuge, Zhengbing; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O

    2017-01-01

    Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg -1 ), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg -1 min -1 ) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure-lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate-nitrite-NO pathway. © 2016 American Heart Association, Inc.

  6. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  7. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  8. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    PubMed

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  9. The effects of a lupin-enriched diet on oxidative stress and factors influencing vascular function in overweight subjects.

    PubMed

    Yang, Xingbin; Croft, Kevin D; Lee, Ya P; Mori, Trevor A; Puddey, Ian B; Sipsas, Sofia; Barden, Anne; Swinny, Ewald; Hodgson, Jonathan M

    2010-11-15

    A diet enriched in lupin kernel flour can lower blood pressure, but mechanisms responsible are unclear. Lupin is a source of polyphenols, protein, and L-arginine, factors that may influence blood pressure via effects on oxidative stress and vascular function. Therefore, we aimed to determine the effects of a lupin-enriched diet on oxidative stress and factors influencing vascular function as potential mechanisms for demonstrated benefits on blood pressure. Overweight men and women (n = 88) were recruited to a 16-week parallel-design study. Participants were randomly assigned to replace 15%-20% of their usual daily energy intake with white bread (control) or lupin kernel flour-enriched bread (lupin). All measurements were taken at baseline and 16 weeks. At baseline, plasma F₂-isoprostanes and 20-hydroxyeicosatetraenoic acid (20-HETE) were positively associated with blood pressure, and plasma nitrite was negatively associated with blood pressure (p < 0.05). For lupin relative to control, the estimated differences in plasma F₂-isoprostanes (45 pmol/L; 95%CI: -68, 158), urinary F₂-isoprostanes (17 pmol/mmol creatinine; 95%CI: -43, 76), plasma 20-HETE (75 pmol/L; 95%CI: -91, 241), and plasma nitrite (-0.3 μmol/L; 95%CI: -1.1, 0.4) were not significant. Although regular consumption of lupin-enriched bread can lower blood pressure, these results do not support for the hypothesis that this is via effects on oxidative stress or vascular function.

  10. Air Quality Criteria for Oxides of Nitrogen (Final Report, 1993)

    EPA Science Inventory

    This criteria document focuses on a review and assessment of the effects on human health and welfare of the nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO2), and the related compounds, nitrites, nitrates, nitrogenous acids, and nitrosamines. Although the emphasis is ...

  11. Enzyme-Based Ultrasensitive Electrochemical Biosensors for Rapid Assessment of Nitrite Toxicity: Recent Advances and Perspectives.

    PubMed

    Gahlaut, Anjum; Hooda, Vinita; Gothwal, Ashish; Hooda, Vikas

    2018-05-14

    In the present era of rapid international globalization and industrialization, intensive use of nitrite as a fertilizing agent in agriculture, preservative, dyeing agent, food additive and as corrosion inhibitor in industrial sectors is adversely effecting environment, natural habitats and human health. The issue of toxicity and carcinogenicity due to excessive ingestion of nitrites via the dietary intake has led to an imminent need for its efficient real-time monitoring in situ. Nitrite detection employing electrochemical biosensors has been gaining high credibility in the field of clinical research. Nitrite biosensors have emerged as an outstanding choice for portable point of care testing of nitrite quantification owing to the excellent properties, such as rapidity, miniaturization, ultra-low limits of detection, multiplexing and enhanced detection sensitivity. The article is enclosed with an interesting outlook on latest emerging trends in the development of nitrite biosensors utilizing nanomaterials, such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, nanocomposites, polymers and biomaterials. The present review embarks on the highlights relevant to the nitrite quantification in real samples, then proceeds with a meticulous description of the most pertinent electrochemical nitrite biosensors, which have been proposed by adopting diverse materials and strategies of fabrication and finally end with the achievements and future outlook signifying the application of these nanoengineered biosensors for environmental surveillance and human safety.

  12. Cigarette smoke inhibits macrophage sensing of Gram-negative bacteria and lipopolysaccharide: relative roles of nicotine and oxidant stress

    PubMed Central

    McMaster, S K; Paul-Clark, M J; Walters, M; Fleet, M; Anandarajah, J; Sriskandan, S; Mitchell, J A

    2007-01-01

    Background and purpose: Smoking cigarettes is a major risk factor for the development of cardiovascular and respiratory disease. Moreover, smokers are more prone to infections. This has been associated with a suppression of the immune system by smoke. However, it is not clear how cigarette smoke affects the ability of immune cells to sense pathogens. Cigarette smoke contains a large number of molecules which may mediate responses on immune cells and of these, nicotine and oxidants have both been identified as inhibitory for the sensing of bacterial lipopolysaccharide (LPS). Nitric oxide synthase (NOS) and tumour necrosis factor (TNF)-α are both induced in macrophages on stimulation with Gram negative bacteria or LPS. Experimental approach: We used murine macrophages stimulated with whole heat-killed bacteria or LPS. We measured output of NO (as nitrite) and TNFα, NOS protein by Western blotting and cellular oxidant stress. Key results: Cigarette smoke extract suppressed the ability of murine macrophages to release NO, but not TNFα in response to whole bacteria. Cigarette smoke extract also inhibited nitric oxide synthase II protein expression in response to LPS. The effects of cigarette smoke extract on nitrite formation stimulated by LPS were unaffected by inhibition of nicotinic receptors with α-bungarotoxin (100 units ml−1). However, the effects of cigarette smoke extract on LPS-induced nitrite formation were mimicked by hydrogen peroxide and reversed by the anti-oxidants N-acetyl cysteine and glutathione. Conclusions and implications: We suggest that cigarette smoke exerts its immunosuppressive effects through an oxidant-dependent and not a nicotine-dependent mechanism. PMID:18059323

  13. Cigarette smoke inhibits macrophage sensing of Gram-negative bacteria and lipopolysaccharide: relative roles of nicotine and oxidant stress.

    PubMed

    McMaster, S K; Paul-Clark, M J; Walters, M; Fleet, M; Anandarajah, J; Sriskandan, S; Mitchell, J A

    2008-02-01

    Smoking cigarettes is a major risk factor for the development of cardiovascular and respiratory disease. Moreover, smokers are more prone to infections. This has been associated with a suppression of the immune system by smoke. However, it is not clear how cigarette smoke affects the ability of immune cells to sense pathogens. Cigarette smoke contains a large number of molecules which may mediate responses on immune cells and of these, nicotine and oxidants have both been identified as inhibitory for the sensing of bacterial lipopolysaccharide (LPS). Nitric oxide synthase (NOS) and tumour necrosis factor (TNF)-alpha are both induced in macrophages on stimulation with Gram negative bacteria or LPS. We used murine macrophages stimulated with whole heat-killed bacteria or LPS. We measured output of NO (as nitrite) and TNFalpha, NOS protein by Western blotting and cellular oxidant stress. Cigarette smoke extract suppressed the ability of murine macrophages to release NO, but not TNFalpha in response to whole bacteria. Cigarette smoke extract also inhibited nitric oxide synthase II protein expression in response to LPS. The effects of cigarette smoke extract on nitrite formation stimulated by LPS were unaffected by inhibition of nicotinic receptors with alpha-bungarotoxin (100 units ml(-1)). However, the effects of cigarette smoke extract on LPS-induced nitrite formation were mimicked by hydrogen peroxide and reversed by the anti-oxidants N-acetyl cysteine and glutathione. We suggest that cigarette smoke exerts its immunosuppressive effects through an oxidant-dependent and not a nicotine-dependent mechanism.

  14. A novel, kinetically stable, catalytically active, all-ferric, nitrite-bound complex of Paracoccus pantotrophus cytochrome cd1.

    PubMed Central

    Allen, James W A; Higham, Christopher W; Zajicek, Richard S; Watmough, Nicholas J; Ferguson, Stuart J

    2002-01-01

    The oxidized form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase, as isolated, has bis-histidinyl co-ordination of the c haem and His/Tyr co-ordination of the d(1) haem. On reduction, the haem co-ordinations change to His/Met and His/vacant respectively. If the latter form of the enzyme is reoxidized, a conformer is generated in which the ferric c haem is His/Met co-ordinated; this can revert to the 'as isolated' state of the enzyme over approx. 20 min at room temperature. However, addition of nitrite to the enzyme after a cycle of reduction and reoxidation produces a kinetically stable, all-ferric complex with nitrite bound to the d(1) haem and His/Met co-ordination of the c haem. This complex is catalytically active with the physiological electron donor protein pseudoazurin. The effective dissociation constant for nitrite is 2 mM. Evidence is presented that d(1) haem is optimized to bind nitrite, as opposed to other anions that are commonly good ligands to ferric haem. The all-ferric nitrite bound state of the enzyme could not be generated stoichiometrically by mixing nitrite with the 'as isolated' conformer of cytochrome cd(1) without redox cycling. PMID:12086580

  15. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  16. An investigation into the unusual linkage isomerization and nitrite reduction activity of a novel tris(2-pyridyl) copper complex

    NASA Astrophysics Data System (ADS)

    Roger, Isolda; Wilson, Claire; Senn, Hans M.; Sproules, Stephen; Symes, Mark D.

    2017-08-01

    The copper-containing nitrite reductases (CuNIRs) are a class of enzymes that mediate the reduction of nitrite to nitric oxide in biological systems. Metal-ligand complexes that reproduce the salient features of the active site of CuNIRs are therefore of fundamental interest, both for elucidating the possible mode of action of the enzymes and for developing biomimetic catalysts for nitrite reduction. Herein, we describe the synthesis and characterization of a new tris(2-pyridyl) copper complex ([Cu1(NO2)2]) that binds two molecules of nitrite, and displays all three of the common binding modes for NO2-, with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound in a monodentate fashion with a linkage isomerism between the κ1-ONO and κ1-NO2 binding modes. We use density functional theory to help rationalize the presence of all three of these linkage isomers in one compound, before assessing the redox activity of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite reduction electrocatalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may have implications for the design of biomimetic catalysts for nitrite reduction.

  17. Oral nitrite circumvents antiseptic mouthwash-induced disruption of enterosalivary circuit of nitrate and promotes nitrosation and blood pressure lowering effect.

    PubMed

    Pinheiro, Lucas C; Ferreira, Graziele C; Amaral, Jefferson H; Portella, Rafael L; Tella, Sandra de O C; Passos, Madla A; Tanus-Santos, Jose E

    2016-12-01

    The nitric oxide (NO • ) metabolites nitrite and nitrate exert antihypertensive effects by mechanisms that involve gastric formation of S-nitrosothiols. However, while the use of antiseptic mouthwash (AM) is known to attenuate the responses to nitrate by disrupting its enterosalivary cycle, there is little information about whether AM attenuates the effects of orally administered nitrite. We hypothesized that the antihypertensive effects of orally administered nitrite would not be prevented by AM because, in contrast to oral nitrate, oral nitrite could promote S-nitrosothiols formation in the stomach without intereference by AM. Chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats (and normotensive controls) treated with AM (or vehicle) once/day. We found that orally administered nitrite exerts antihypertensive effects that were not affected by AM. This finding contrasts with lack of antihypertensive responses to oral nitrate in 2K1C hypertensive rats treated with AM. Nitrite and nitrate treatments increased plasma nitrites, nitrates, and S-nitrosothiols concentrations. However, while treatment with AM attenuated the increases in plasma nitrite concentrations after both nitrite and nitrate treatments, AM attenuated the increases in S-nitrosothiols in nitrate-treated rats, but not in nitrite-treated rats. Moreover, AM attenuated vascular S-nitrosylation (detected by the SNO-RAC method) after nitrate, but not after nitrite treatment. Significant correlations were found between the hypotensive responses and S-nitrosothiols, and vascular S-nitrosylation levels. These results show for the first time that oral nitrite exerts antihypertensive effects notwithstanding the fact that antiseptic mouthwash disrupts the enterosalivary circulation of nitrate. Our results support a major role for S-nitrosothiols formation resulting in vascular S-nitrosylation as a key mechanism for the antihypertensive effects of both oral nitrite and nitrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Analysis of nitrosamines in cooked bacon by QuEChERS sample preparation and gas chromatography – tandem mass spectrometry with backflushing

    USDA-ARS?s Scientific Manuscript database

    Nitrites are added as a preservative to a variety of cured meats, including bacon, to kill bacteria, extend shelf-life, and improve quality. During cooking, nitrites in the meat can be converted to carcinogenic nitrosamines (NAs), the formation of which are mitigated by the addition of anti-oxidant...

  19. Fiber Type-Specific Effects of Dietary Nitrate.

    PubMed

    Jones, Andrew M; Ferguson, Scott K; Bailey, Stephen J; Vanhatalo, Anni; Poole, David C

    2016-04-01

    Dietary nitrate supplementation increases circulating nitrite concentration, and the subsequent reduction of nitrite to nitric oxide is promoted in hypoxic environments. Given that PO2 is lower in Type II compared with Type I muscle, this article examines the hypothesis that the ergogenicity of nitrate supplementation is linked to specific effects on vascular, metabolic, and contractile function in Type II muscle.

  20. Sulfide‐ and nitrite‐dependent nitric oxide production in the intestinal tract

    PubMed Central

    Vermeiren, Joan; Van de Wiele, Tom; Van Nieuwenhuyse, Glynn; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary In the gut ecosystem, nitric oxide (NO) has been described to have damaging effects on the energy metabolism of colonocytes. Described mechanisms of NO production are microbial reduction of nitrate via nitrite to NO and conversion of l‐arginine by NO synthase. The aim of this study was to investigate whether dietary compounds can stimulate the production of NO by representative cultures of the human intestinal microbiota and whether this correlates to other processes in the intestinal tract. We have found that the addition of a reduced sulfur compound, i.e. cysteine, contributed to NO formation. This increase was ascribed to higher sulfide concentrations generated from cysteine that in turn promoted the chemical conversion of nitrite to NO. The NO release from nitrite was of the order of 4‰ at most. Overall, it was shown that two independent biological processes contribute to the chemical formation of NO in the intestinal tract: (i) the production of sulfide by fermentation of sulfur containing amino acids or reduction of sulfate by sulfate reducing bacteria, and (ii) the reduction of nitrate to nitrite. Our results indicate that dietary thiol compounds in combination with nitrate may contribute to colonocytes damaging processes by promoting NO formation. PMID:22129449

  1. Effects of antioxidant combinations on shelf stability of irradiated chicken sausage during storage

    NASA Astrophysics Data System (ADS)

    Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Ju-Woon; Choi, Yun-Sang; Kim, Cheon-Jei

    2015-01-01

    This study was conducted in order to investigate the combined effects of gamma irradiation (0, 2.5, and 5 kGy) and antioxidant combination, mugwort extract (ME) and ascorbic acid (Aa), on the pH, total color difference (ΔE), hue angle (H°), 2-thiobarbituricacid-reactive substances (TBARS) values, residual nitrite contents, and sensory evaluation in chicken sausage during storage. The pH values and sensory properties, except for color, of chicken sausage were not significantly affected by adding ME or treating irradiation during storage. However, ΔE, and H° values of samples containing ME (either alone or with Aa) were higher than that of control, whereas irradiation had no significant effect during storage. A combination of ME+Aa (0.2% ME+0.05% Aa) was effective at delaying lipid oxidation in irradiated chicken sausage. In addition, nitrite contents were reduced by gamma ray as a dose dependent manner and, particularly in ME+Aa was most effective in decreasing the residual nitrite. Our results suggested that gamma irradiation combined with an antioxidant mixture is a useful technology for reducing the residual nitrite and retarding the lipid oxidation in chicken sausage.

  2. Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.

    USDA-ARS?s Scientific Manuscript database

    Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...

  3. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions

    EPA Science Inventory

    Drinking water monochloramine (NH2Cl) use may promote ammonia–oxidizing bacteria (AOB) growth. For biological ammonia (NH3) oxidation, AOB use (i) ammonia monooxygenase for NH3 oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrit...

  4. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less

  5. Role of aldehyde dehydrogenase in hypoxic vasodilator effects of nitrite in rats and humans

    PubMed Central

    Arif, Sayqa; Borgognone, Alessandra; Lin, Erica Lai-Sze; O'Sullivan, Aine G; Sharma, Vishal; Drury, Nigel E; Menon, Ashvini; Nightingale, Peter; Mascaro, Jorge; Bonser, Robert S; Horowitz, John D; Feelisch, Martin; Frenneaux, Michael P; Madhani, Melanie

    2015-01-01

    Background and Purpose Hypoxic conditions favour the reduction of nitrite to nitric oxide (NO) to elicit vasodilatation, but the mechanism(s) responsible for bioconversion remains ill defined. In the present study, we assess the role of aldehyde dehydrogenase 2 (ALDH2) in nitrite bioactivation under normoxia and hypoxia in the rat and human vasculature. Experimental Approach The role of ALDH2 in vascular responses to nitrite was studied using rat thoracic aorta and gluteal subcutaneous fat resistance vessels from patients with heart failure (HF; 16 patients) in vitro and by measurement of changes in forearm blood flow (FBF) during intra-arterial nitrite infusion (21 patients) in vivo. Specifically, we investigated the effects of (i) ALDH2 inhibition by cyanamide or propionaldehyde and the (ii) tolerance-independent inactivation of ALDH2 by glyceryl trinitrate (GTN) on the vasodilator activity of nitrite. In each setting, nitrite effects were measured via evaluation of the concentration–response relationship under normoxic and hypoxic conditions in the absence or presence of ALDH2 inhibitors. Key Results Both in rat aorta and human resistance vessels, dilatation to nitrite was diminished following ALDH2 inhibition, in particular under hypoxia. In humans there was a non-significant trend towards attenuation of nitrite-mediated increases in FBF. Conclusions and Implications In human and rat vascular tissue in vitro, hypoxic nitrite-mediated vasodilatation involves ALDH2. In patients with HF in vivo, the role of this enzyme in nitrite bioactivation is at the most, modest, suggesting the involvement of other more important mechanisms. PMID:25754766

  6. NITRIFICATION BY ASPERGILLUS FLAVUS1

    PubMed Central

    Marshall, K. C.; Alexander, M.

    1962-01-01

    Marshall, K. C. (Cornell University, Ithaca, N. Y.) and M. Alexander. Nitrification by Aspergillus flavus. J. Bacteriol. 83:572–578. 1962.—Aspergillus flavus has been shown to produce bound hydroxylamine, nitrite, and nitrate when grown in peptone, amino acid, or buffered ammonium media. Free hydroxylamine was not detected in these cultures, but it was found in an unbuffered ammonium medium in which neither nitrite nor nitrate was formed. Evidence was obtained for the presence of β-nitropropionic acid in the filtrate of an actively nitrifying culture. Alumina treatment of an ammonium medium prevented the formation by growing cultures of nitrite and nitrate but not bound hydroxylamine. The effect of alumina treatment was reversed by the addition of 10−3m CeCl3 to the medium. Extracts of the fungus contained peroxidase and an enzyme capable of catalyzing the production of nitrite from β-nitropropionic acid. The nitrite-forming enzyme is apparently specific for β-nitropropionate; no activity was found with nitromethane, nitroethane, and nitropropane as substrates. Nitrate was not reduced to nitrite nor was nitrite oxidized to nitrate by the hyphal extracts. The significance of these observations in nitrification by A. flavus is discussed. PMID:14470254

  7. Prooxidant effects of the combination of green tea extract and sodium nitrite for accelerating lipolysis and lipid oxidation in pepperoni during storage.

    PubMed

    Lin, Yuhai; Huang, Ming; Zhou, Guanghong; Zou, Yufeng; Xu, Xinglian

    2011-01-01

    The individual and interactive effects of green tea (GT) extract and sodium nitrite (NT) on lipolysis and lipid oxidation were investigated in pepperoni during processing and storage (4 °C). Pepperoni was treated with GT at concentrations of 0.02%, 0.05%, 0.1%, 0.2%, 0.5%; and NT from 0.003% to 0.015% in increments of 0.003%; and a combination of 0.05% GT and 0.009% NT (GT/NT). The pH, color, residual nitrite, fatty acid (FA), and 2-thiobarbituric acid reactive substances (TBARS) values were measured. The results showed inhibitory effects on TBARS value were concentration dependent. The largest effect was at 0.05% for GT and 0.009% for NT. Adding 0.05% GT significantly decreased (P < 0.05) the TBARS values but did not affect color values during storage. NT (0.009%) was more effective than GT (0.05%) for maintaining lower TBARS values (P < 0.05). Total fatty acids were not affected by 0.05% GT and 0.009% NT treatments. However, adding GT/NT showed a significant prooxidant effect (P < 0.05) in pepperoni, which accelerated lipolysis and lipid oxidation significantly (P < 0.05) during storage, with depletion of nitrite. This suggests that adding GT and an appropriate amount of NT into pepperoni could promote lipolysis and lipid oxidation during storage, as compared to NT alone. When using GT extract as an antioxidant in industrial production of pepperoni, the interaction effect with NT should be considered, as it may lead to a prooxidant effect during refrigerated storage. © 2011 Institute of Food Technologists®

  8. Serum oxidant and antioxidant levels in diesel exposed toll collectors.

    PubMed

    Arbak, Peri; Yavuz, Ozlem; Bukan, Neslihan; Balbay, Oner; Ulger, Füsun; Annakkaya, Ali Nihat

    2004-07-01

    It has been suggested that exposure to diesel exhaust may lead to adverse effects due to the generation of oxidants. To evaluate the end products of oxidative stress in DE exposure, toll collectors who are considered a high risk group in regard to occupational toxins were compared to controls who had office-based occupations in the same company in this cross sectional study. A total of 38 toll collectors constituted the study group. All subjects were male. The toll collectors and 29 controls were similar regarding age, smoking status and duration of work. All subjects underwent a clinical examination and an interviewer-administrated questionnaire regarding respiratory symptoms, past medical and occupational history, and pulmonary function tests were performed in all subjects. Serum malondialdehyde (MDA), nitrite+nitrate and vitamin E levels were measured. Toll collectors showed higher serum MDA (5.76 +/- 2.15 micromol/L vs. 3.07 +/- 0.76 micromol/L, p=0.0001) and nitrite+nitrate levels (96.50 +/- 45.54 micromol/L vs. 19.32 +/- 11.77 micromol/L, p=0.0001) than controls. Vitamin E levels were similar in toll collectors and controls (10.57 +/- 3.44 mg/L and 9.72 +/- 2.44 mg/L, respectively, p=0.267). There was no difference between groups in terms of the findings of clinical examinations and respiratory symptoms. In pulmonary function parameters, only peak expiratory flow (PEF) in toll collectors was significantly lower than that of controls (88.9% predicted and 104.2% predicted, respectively, p=0.012). In conclusion, we suggest that serum MDA and nitrite+nitrate levels may be used as biological markers of oxidative stress related to DE exposure, but prospective controlled clinical studies are necessary to clarify the possible association between concentrations of MDA and nitrite+nitrate and pulmonary diseases related to DE exposure.

  9. Formation of zinc protoporphyrin IX in Parma-like ham without nitrate or nitrite.

    PubMed

    Wakamatsu, Jun-ichi; Uemura, Juichi; Odagiri, Hiroko; Okui, Jun; Hayashi, Nobutaka; Hioki, Shoji; Nishimura, Takanori; Hattori, Akihito

    2009-04-01

    Zinc protoporphyrin IX (ZPP) is a characteristic red pigment in meat products that are manufactured without the addition of a curing agent such as nitrate or nitrite. To examine the effects of impurities such as mineral components in sea salt on the formation of ZPP, we manufactured Parmatype dry-cured hams that were salted with refined salt or sea salt and examined the involvement of oxidation-reduction potential (ORP) in the formation of ZPP. The content of ZPP was increased drastically after 40 weeks. Microscopic observation showed strong fluorescence caused by ZPP muscle fiber after 40 weeks. Conversely, heme content varied considerably during processing. ORP increased during processing. However, there was no obvious difference between ham salted with refined salt and that salted with sea salt. Therefore, it was concluded that impurities in sea salt were not involved in the formation of ZPP.

  10. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma.

    PubMed

    Morelatto, Rosana; Itoiz, María-Elina; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-05-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes.

  11. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate.

    PubMed

    Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu

    2017-06-29

    In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.

  12. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances.

    PubMed

    Sutka, R L; Ostrom, N E; Ostrom, P H; Breznak, J A; Gandhi, H; Pitt, A J; Li, F

    2006-01-01

    The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 +/- 1.2 per thousand, 32.5 +/- 0.6 per thousand, and 35.6 +/- 1.4 per thousand for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 +/- 4.2 per thousand) was similar to that produced during hydroxylamine oxidation (33.5 +/- 1.2 per thousand) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 +/- 1.7 per thousand), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (-0.6 +/- 1.9 per thousand and -0.5 +/- 1.9 per thousand, respectively) were similar to those during nitrate reduction (-0.5 +/- 1.9 per thousand and -0.5 +/- 0.6 per thousand, respectively), indicating no influence of either substrate on site preference. Site preferences of approximately 33 per thousand and approximately 0 per thousand are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.

  13. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite

    NASA Astrophysics Data System (ADS)

    Tamizhdurai, P.; Sakthinathan, Subramanian; Chen, Shen-Ming; Shanthi, K.; Sivasanker, S.; Sangeetha, P.

    2017-04-01

    Cerium oxide nanoparticles (CeO2 NPs) are favorable in nanotechnology based on some remarkable properties. In this study, the crystalline CeO2 NPs are successfully prepared by an efficient microwave combustion (MCM) and conventional route sol-gel (CRSGM) methods. The structural morphology of the as-prepared CeO2 NPs was investigated by various spectroscopic and analytical techniques. Moreover, the XRD pattern confirmed the formation of CeO2 NPs as a face centered cubic structure. The magnetometer studies indicated the low saturation magnetization (23.96 emu/g) of CeO2 NPs for weak paramagnetic and high saturation magnetization (32.13 emu/g) of CeO2 NPs for super paramagnetic. After that, the oxidation effect of benzyl alcohol was investigated which reveals good conversion and selectivity. Besides, the CeO2 NPs modified glassy carbon electrode (GCE) used for the detection of nitrite with linear concentration range (0.02-1200 μM), low limit of detection (0.21 μM) and higher sensitivity (1.7238 μAμM-1 cm-2). However, the CeO2 NPs modified electrode has the fast response, high sensitivity and good selectivity. In addition, the fabricated electrode is applied for the determination of nitrite in various water samples. Eventually, the CeO2 NPs can be regarded as an effective way to enhance the catalytic activity towards the benzyl alcohol and nitrite.

  14. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite

    PubMed Central

    Tamizhdurai, P.; Sakthinathan, Subramanian; Chen, Shen-Ming; Shanthi, K.; Sivasanker, S.; Sangeetha, P.

    2017-01-01

    Cerium oxide nanoparticles (CeO2 NPs) are favorable in nanotechnology based on some remarkable properties. In this study, the crystalline CeO2 NPs are successfully prepared by an efficient microwave combustion (MCM) and conventional route sol-gel (CRSGM) methods. The structural morphology of the as-prepared CeO2 NPs was investigated by various spectroscopic and analytical techniques. Moreover, the XRD pattern confirmed the formation of CeO2 NPs as a face centered cubic structure. The magnetometer studies indicated the low saturation magnetization (23.96 emu/g) of CeO2 NPs for weak paramagnetic and high saturation magnetization (32.13 emu/g) of CeO2 NPs for super paramagnetic. After that, the oxidation effect of benzyl alcohol was investigated which reveals good conversion and selectivity. Besides, the CeO2 NPs modified glassy carbon electrode (GCE) used for the detection of nitrite with linear concentration range (0.02–1200 μM), low limit of detection (0.21 μM) and higher sensitivity (1.7238 μAμM−1 cm−2). However, the CeO2 NPs modified electrode has the fast response, high sensitivity and good selectivity. In addition, the fabricated electrode is applied for the determination of nitrite in various water samples. Eventually, the CeO2 NPs can be regarded as an effective way to enhance the catalytic activity towards the benzyl alcohol and nitrite. PMID:28406231

  15. Plasma Levels of Nitrite and Nitrate in Early and Recent Classes of Fish

    PubMed Central

    Williams, Donna A; Flood, Mary H; Lewis, Debra A; Miller, Virginia M; Krause, William J

    2008-01-01

    The stable metabolite of nitric oxide in plasma is NOx, the sum of nitrite plus nitrate. Measures of plasma NOx may provide information about the nitric oxide tonus of the entire endothelium including capillary microvessels. Although data are available for mammalian species, plasma NOx measurements in early vertebrate species are scarce. The purpose of this study was to test the hypothesis that plasma NOx would be similar to the NOx in the water environment for fish in early classes (Agnatha and Chondrichthye) and would exceed water NOx levels in the known nitrite-sensitive fish (Osteichthye). Plasma samples were obtained from 18 species of adult fish (n = 167) and from their housing or natural water environment. NOx was measured by using chemiluminescence. Plasma NOx was detected in all species and ranged from 0.5 nmol/ml (skate) to 453.9 nmol/ml (shortnose gar). Average plasma NOx was significantly higher in sea lamprey than in Atlantic hagfish whereas that of little skate was 3-fold lower than in spiny dogfish shark. Plasma NOx differed significantly among early bony fish (paddlefish, pallid sturgeon, gar) yet was similar among modern bony fish, with the exception of rainbow trout. Plasma NOx reflected water NOx in only 2 species (hagfish and shark), and levels did not coincide with nitrite sensitivity. This study provides an expanded comparative view of plasma NOx levels across 3 groups of early fish. The data obtained suggest a nitric oxide system in early and modern fish. PMID:19004368

  16. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    PubMed

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH 3-to-N 2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed N Oad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurringmore » prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N 2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  18. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)

    DOE PAGES

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A.; ...

    2016-01-12

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate–potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH 3-to-N 2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed N Oad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation which incorporates a deprotonation step occurringmore » prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species which is discharged in a subsequent electron transfer step before the N–N bond formation. The negatively charged species is thus a precursor for the formation of N 2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. As a result, ammonia oxidation is a new example of a bond-forming reaction on (100) terraces which involves decoupled proton-electron transfer.« less

  19. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera".

    PubMed

    Kool, Dorien M; Zhu, Baoli; Rijpstra, W Irene C; Jetten, Mike S M; Ettwig, Katharina F; Sinninghe Damsté, Jaap S

    2012-12-01

    The recently described bacterium "Candidatus Methylomirabilis oxyfera" couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of "Ca. Methylomirabilis oxyfera" is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of "Ca. Methylomirabilis oxyfera" to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple "Ca. Methylomirabilis oxyfera" enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC(16:0)). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC(16:1Δ7)), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC(16:0) and 10MeC(16:1Δ7) are key and characteristic components of the lipid profile of "Ca. Methylomirabilis oxyfera." The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.

  20. Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots.

    PubMed

    Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi

    2016-11-01

    Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing µ-oxo Heme-FeIII−O−CuII(L) Constructs

    PubMed Central

    Hematian, Shabnam; Kenkel, Isabell; Shubina, Tatyana E.; Dürr, Maximilian; Liu, Jeffrey J.; Siegler, Maxime A.; Ivanovic-Burmazovic, Ivana; Karlin, Kenneth D.

    2015-01-01

    While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2−) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic µ-oxo heme-FeIII−O−CuII(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of µ-oxo complexes have been determined and compared to literature analogs. All µ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)CuII(NO2−)]+ plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one µ-oxo heme-FeIII−O−CuII(L) compound, the reaction with NO(g) reveals an intermediate species (“intermediate”), formally a bis-NO adduct, [(NO)(porphyrinate)FeII-(NO2−)−CuII(L)]+ (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)CuII(NO2−)]+ and heme-FeII(NO) to −125 °C leads to association and generation of the key 433 nm UV–vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the µ-oxo complex. PMID:25974136

  2. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    PubMed

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Polydeoxyribonucleotides and nitric oxide release from guinea-pig hearts during ischaemia and reperfusion.

    PubMed Central

    Masini, E.; Lupini, M.; Mugnai, L.; Raspanti, S.; Mannaioni, P. F.

    1995-01-01

    1. Two polydeoxyribonucleotides, produced by the controlled hydrolysis of DNA of mammalian lung (defibrotide and its lower molecular weight fraction, P.O. 085 DV), were studied for their ability to modify the release of nitrite and the coronary flow in perfusates collected from isolated, normally perfused hearts of guinea-pigs and from hearts subjected to regional ischaemia and reperfusion. 2. In guinea-pig normally perfused hearts, both defibrotide (DFT) and its fraction, P.O. 085 DV, increase the amount of nitrite appearing in perfusates in a concentration-dependent fashion. At the highest concentration studied (10(-6) M), P.O. 085 DV was more effective than DFT. A concomitant increase in the coronary flow was observed. 3. The increase in nitrite in perfusates and the increase in coronary flow induced by both DFT and P.O. 085 DV were significantly reduced by NG-monomethyl-L-arginine (L-NMMA, 10(-4) M), an inhibitor of nitric oxide synthase (NOS). 4. The endothelium-dependent vasodilator, acetylcholine (ACh), enhances the formation of nitrite and the coronary flow. Both the increase in coronary flow and in the formation of nitrite were significantly reduced by L-NMMA (10(-4) M). 5. In guinea-pig hearts subjected to ischaemia and reperfusion, the effect of both compounds in increasing the amount of nitrite in perfusates was more evident and more pronounced with P.O. 085 DV. 6. Reperfusion-induced arrhythmias were significantly reduced by both compounds to the extent of complete protection afforded by compound P.O. 085 DV. 7. The cardioprotective and antiarrhythmic effects of DFT and P.O. 085 DV are discussed. PMID:7582482

  4. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    PubMed Central

    Thorup, Casper; Schramm, Andreas

    2017-01-01

    ABSTRACT This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. PMID:28720728

  5. Using Pure Cultures to Define the Site Preference of Nitrous Oxide Produced by Microbial Nitrification and Denitrification

    NASA Astrophysics Data System (ADS)

    Sutka, R. L.; Breznak, J. A.; Ostrom, N. E.; Ostrom, P. H.; Gandhi, H.

    2004-12-01

    Defining the site preference of nitrous oxide (N2O) produced in pure culture studies is crucial to interpreting field data. We have previously demonstrated that the intramolecular distribution of nitrogen isotopes (isotopomers) can be used to differentiate N2O produced by nitrifier denitrification and nitrification in cultures of Nitrosomonas europaea. Here, we have expanded on our initial results and evaluated the isotopomeric composition of N2O produced during nitrification and nitrifier denitrification with cultures of Nitrosospira multiformis. In addition, we have analyzed N2O produced during methanotrophic nitrification, denitrification, and fungal denitrification. To evaluate N2O production during nitrification and nitrifier denitrification, we compared the site preference of N2O formed as a result of nitrite reduction and hydroxylamine oxidation with Nitrosomonas europaea and Nitrosospira multiformis. The average site preference of N2O produced by hydroxylamine oxidation was similar for Nitrosomonas europaea (33.0 ± 3.5 ‰ ) and Nitrosospira multiformis (33.1 ± 4.2 ‰ ). Nitrous oxide produced by nitrifier-denitrification by Nitrosomonas europaea and Nitrosospira multiformis had a similar site preference of - 1.4 ± 4.4 ‰ and - 1.1 ± 2.6 ‰ respectively. The results indicate that it is possible to differentiate between N2O produced by nitrite reduction and hydroxylamine oxidation by ammonia oxidizing bacteria. Methanotrophic nitrification was evaluated by analyzing the N2O produced during hydroxylamine oxidation in concentrated cell suspensions of two methane oxidizing bacteria. The site preference of N2O produced by the two methane oxidizers, Methylococcus capsulatus Bath and Methylosinus trichosporium was 31.8 ± 4.7 ‰ and 33.0 ± 4.5 ‰ respectively. The results indicate that a site preference of 33 ‰ is applicable for nitrification regardless of whether a methane oxidizer or ammonia oxidizer is involved in the reaction. To determine the site preference of N2O produced during denitrification we used concentrated cell suspensions of two organisms (Pseudomonas chlororaphis and Pseudomonas aureofaciens) that lack N2O reductase. The site preference of N2O produced during nitrite reduction was similar for P. chlororaphis (0.3 ± 2.7 ‰ ) and P. aureofaciens (- 0.3 ± 1.7 ‰ ). The results indicate that the site preference of N2O produced during nitrite reduction is 0 ‰ regardless of whether the organism is a denitrifier or nitrifier. Fungal denitrification was investigated using pure cultures of Fusarium oxysporum and Cylindrocarpon tonkinense. The site preference of N2O produced during nitrite reduction was similar for the cultures with an average site preference of 34.7 ± 2.2 ‰ for Fusarium oxysporum and 29.7 ± 1.7 ‰ for Cylindrocarpon tonkinense. The data indicate that fungal denitrification and bacterial denitrification can be distinguished based on site preference. The results from all of the pure culture studies indicate that isotopomers can be used to apportion bacterial nitrification and denitrification and in field studies.

  6. Decreased steroid hormone synthesis from inorganic nitrite and nitrate: studies in vitro and in vivo.

    PubMed

    Panesar, N S; Chan, K W

    2000-12-15

    Nitrites and nitrates are consumed nonchalantly in diet. Organic nitrates are also used as vasodilators in angina pectoris, but the therapy is associated with tolerance whose mechanism remains elusive. Previously, we found inorganic nitrate inhibited steroidogenesis in vitro. Because adrenocorticoids regulate water and electrolyte metabolism, tolerance may ensue from steroid deficiency. We have studied the effects of nitrite and nitrate on in vitro synthesis and in vivo blood levels of steroid hormones. In vitro, nitrite was more potent than nitrate in inhibiting human chorionic gonadotropin (hCG)-stimulated androgen synthesis by Mouse Leydig Tumor cells. At concentrations above 42 mM, nitrite completely inhibited androgen synthesis, and, unlike nitrate, the inhibition was irreversible by increasing hCG concentration. The cAMP production remained intact but reduced with both ions. The nitric oxide (NO) scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (c-PTIO) significantly increased hCG- or cAMP-stimulated androgen synthesis in all buffers, suggesting that NO is a chemical species directly involved in the nitrite/nitrate-induced inhibition. This is further supported by c-PTIO countering the inhibitory action of methylene blue on androgen synthesis. Rats given distilled water containing 50 mg/L NaNO(2) or NaNO(3) for 4 weeks drank significantly less daily. At the end, their blood corticosterone and testosterone levels were significantly decreased. The adrenocortical histology showed bigger lipid droplets, which are pathogonomic of impaired steroidogenesis. Nitrite and nitrate are metabolized to NO, which binds heme in cytochrome P450 enzymes, thereby inhibiting steroidogenesis. Therapeutic nitrates likewise may decrease adrenal (and gonadal) steroidogenesis. Cortisol deficiency would impair water excretion causing volume expansion, and aldosterone deficiency would cause sodium loss and raised renin. Paradoxically, volume expansion without sodium retention and raised renin has all been reported in tolerance. Copyright 2000 Academic Press.

  7. Effect of sodium ascorbate dose on the shelf life stability of reduced nitrite liver pâtés.

    PubMed

    Vossen, Els; Doolaege, Evelyne H A; Moges, Haile Demewez; De Meulenaer, Bruno; Szczepaniak, Slawomir; Raes, Katleen; De Smet, Stefaan

    2012-05-01

    The effect of sodium ascorbate (SA; 500, 750, 1000 mg/kg) and sodium nitrite (SN; 40, 80, 120 mg/kg) doses on the shelf-life stability of liver pâtés was investigated in a full factorial design. Clear dose-dependent responses of the added SN or SA were found for the concentrations of nitrite, ascorbic acid and dehydroascorbic acid in the raw batters and in the cooked pâtés before and after 48 h of chilled display. Decreasing the SN dose to 80 mg/kg had no negative impact on the colour stability (a* value) and lipid oxidation (TBARS), and no additional antioxidant effect of SA was noticed. Lowering SN to 40 mg/kg resulted in proper colour formation, but the colour stability was inferior and lipid oxidation increased. Yet, increasing the amount of SA, at this low SN dose, resulted in lower TBARS values. Decreasing the SN dose to 80 or 40 mg/kg had no distinct effect on protein oxidation, which was however only measured by carbonyl content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Nitrite- and Nitrate-Dependent Methanotrophs - Environmental Detection and Relevance in Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Ettwig, K. F.

    2014-12-01

    Humans continue to have an enormous impact on global C and N cycles. While a clear stimulation of methane emissions through human activities is evident, the role of also increasingly released nitrogenous compounds as electron acceptors for microbial methane oxidation is not well constrained. We have developed diverse methods for environmental detection of nitrate(NO3-)- and - predominantly - nitrite(NO2-)-dependent methanotrophs, which have been applied to several freshwater environments. In contrast to most metabolically flexible heterotrophic denitrifiers, the microorganisms responsible for methane-dependent nitrate/nitrite reduction seem to be specialized to use methane only, grow slowly and employ pathways different from each other and from model organisms, which necessitate new approaches for the assessment of their environmental relevance. Nitrite-dependent methane oxidation is carried out by bacteria of the NC10 phylum, whereas nitrate-dependent methane oxidizers are close relatives of methanogenic archaea and sulfate-dependent anaerobic methanotrophs (ANME-2). Laboratory enrichment cultures of the nitrite-reducing methanotroph Methylomirabilis oxyfera (NC10 phylum) have formed the basis for its genetic and physiological characterization and the development of several independent methods for its sensitive detection. M. oxyfera differs from all known microorganisms by encoding an incomplete denitrification pathway, in which the last 2 steps, the reduction of NO via N2O to N2, apparently is replaced by the dismutation of NO to N2 and O2. The intracellularly produced O2 is used for methane oxidation via a methane monooxygenase, analogously to the phylogenetically unrelated proteobacterial methanotrophs. But unlike in proteobacteria, C is not assimilated from methane, but rather CO2, with important consequences for the interpretation of environmental isotope labelling studies. In addition, M. oxyfera is characterized by a distinct PLFA profile, including methylated lipids so far not found in any other organism. Case studies using specific primers together with lipid profiles and 13C-labelling in peatlands and other freshwater environments illustrate that the newly developed approaches and biomarkers enable the demonstration of M. oxyfera's role as a methane sink.

  9. Enhanced XOR activity in eNOS-deficient mice: Effects on the nitrate-nitrite-NO pathway and ROS homeostasis.

    PubMed

    Peleli, Maria; Zollbrecht, Christa; Montenegro, Marcelo F; Hezel, Michael; Zhong, Jianghong; Persson, Erik G; Holmdahl, Rikard; Weitzberg, Eddie; Lundberg, Jon O; Carlström, Mattias

    2016-10-01

    Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS -/- ) and wildtype (wt) mice. XOR activity was upregulated in eNOS -/- compared with wt, but not in nNOS -/- , iNOS -/- or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS -/- compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS -/- displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS -/- , but not in wt mice. A high dose of dietary nitrate reduced blood pressure in naïve eNOS -/- mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and eNOS is proposed to play a significant role in NO homeostasis and blood pressure regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A comparison of organic and inorganic nitrates/nitrites.

    PubMed

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  12. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    PubMed

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  13. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response

    PubMed Central

    Raat, Nicolaas J.H.; Noguchi, Audrey C.; Liu, Virginia B.; Raghavachari, Nalini; Liu, Delong; Xu, Xiuli; Shiva, Sruti; Munson, Peter J.; Gladwin, Mark T.

    2009-01-01

    Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion, and could be restored to normal levels with nitrite supplementation in water. Remarkably, we confirmed that basal nitrite levels significantly reduced liver injury after ischemia-reperfusion. Consistent with an effect of nitrite on the post-translational modification of complex I of the mitochondrial electron transport chain, the severity of liver infarction was inversely proportional to complex I activity after nitrite repletion in the diet. The transcriptional response of dietary nitrite after ischemia was more robust than after normoxia, suggesting a hypoxic potentiation of nitrite-dependent transcriptional signaling. Our studies indicate that normal dietary nitrate and nitrite levels modulate ischemic stress responses and hypoxic gene expression programs, supporting the hypothesis that dietary nitrate and nitrite are cytoprotective components of the diet. PMID:19464364

  14. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge.

    PubMed

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-04-15

    Both nitrite [Formula: see text] and dissolved oxygen (DO) play important roles in nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB). However, few studies focused on the combined effect of them on N2O production by AOB as well as the corresponding mechanisms. In this study, N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated under various [Formula: see text] and DO concentrations. At each investigated DO level, both the biomass specific N2O production rate and the N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) increased as [Formula: see text] concentration increased from 3 mg N/L to 50 mg N/L. However, at each investigated [Formula: see text] level, the maximum biomass specific N2O production rate occurred at DO of 0.85 mg O2/L, while the N2O emission factor decreased as DO increased from 0.35 to 3.5 mg O2/L. The analysis of the process data using a mathematical N2O model incorporating both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways indicated that the contribution of AOB denitrification pathway increased as [Formula: see text] concentration increased, but decreased as DO concentration increased, accompanied by a corresponding change in the contribution of NH2OH oxidation pathway to N2O production. The AOB denitrification pathway was predominant in most cases, with the NH2OH oxidation pathway making a comparable contribution only at high DO level (e.g. 3.5 mg O2/L). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    PubMed

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O production in DNRA bacteria and its relevance in situ.

  16. Hypothyroidism and oxidative stress: differential effect on the heart of virgin and pregnant rats.

    PubMed

    Carmona, Y V; Coria, M J; Oliveros, L B; Gimenez, M S

    2014-01-01

    The present study investigates the effects of hypothyroidism on both the redox state and the thyroid hormone receptors expression in the heart ventricle of virgin and pregnant rats.Hypothyroid state was induced by 6-n-propyl-2-thiouracil in drinking water given to Wistar rats starting 8 days before mating until day 21 of pregnancy or for 30 days in virgin rats. Serum paraoxonase-1 (PON-1) activity, serum and heart nitrites, and thiobarbituric acid-reactive substances (TBARS) were analyzed. Heart protein oxidation, as carbonyls, and copper-zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx), and catalase (CAT) activities, were determined. In addition, heart expressions of NADPH oxidase (NOX-2), CAT, SOD, GPx, and thyroid receptors (TRα and TRβ) mRNA were assessed by RT-PCR. Inducible and endothelial Nitric Oxide Synthase (iNOS and eNOS) were determined by Western blot. Hypothyroidism in the heart of virgin rats decreased TRα and TRβ expressions, and induced oxidative stress, leading to a decrease of nitrites and an increase of carbonyls, NOX-2 mRNA, and GPx activity. A decreased PON-1 activity suggested low protection against oxidative stress in blood circulation. Pregnancy reduced TRα and TRβ mRNA expressions and induced oxidative stress by increasing nitrite and TBARS levels, SOD and CAT activities and NOX-2, eNOS and iNOS expressions, while hypothyroidism, emphasized the decreases of TRα mRNA levels and did not alter the redox state in the heart. TR expressions and redox balance of rat hearts depend on the physiological state. Pregnancy per se seems to protect the heart against oxidative stress induced by hypothyroidism. Supporting Information for this article is available online at http://www.thieme-connect.de/ejournals/toc/hmr. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira

    PubMed Central

    Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.

    2017-01-01

    Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium. PMID:28194147

  18. Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women.

    PubMed

    Yubero-Serrano, Elena M; Delgado-Casado, Nieves; Delgado-Lista, Javier; Perez-Martinez, Pablo; Tasset-Cuevas, Inmaculada; Santos-Gonzalez, Monica; Caballero, Javier; Garcia-Rios, Antonio; Marin, Carmen; Gutierrez-Mariscal, Francisco M; Fuentes, Francisco; Villalba, Jose M; Tunez, Isaac; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2011-12-01

    Postprandial oxidative stress is characterized by an increased susceptibility of the organism towards oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. We have investigated whether the quality of dietary fat alters postprandial cellular oxidative stress and whether the supplementation with coenzyme Q(10) (CoQ) lowers postprandial oxidative stress in an elderly population. In this randomized crossover study, 20 participants were assigned to receive three isocaloric diets for periods of 4 week each: (1) Mediterranean diet supplemented with CoQ (Med+CoQ diet), (2) Mediterranean diet (Med diet), and (3) saturated fatty acid-rich diet (SFA diet). After a 12-h fast, the volunteers consumed a breakfast with a fat composition similar to that consumed in each of the diets. CoQ, lipid peroxides (LPO), oxidized low-density lipoprotein (oxLDL), protein carbonyl (PC), total nitrite, nitrotyrosine plasma levels, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and ischemic reactive hyperaemia (IRH) were determined. Med diet produced a lower postprandial GPx activity and a lower decrease in total nitrite level compared to the SFA diet. Med and Med+CoQ diets induced a higher postprandial increase in IRH and a lower postprandial LPO, oxLDL, and nitrotyrosine plasma levels than the SFA diet. Moreover, the Med+CoQ diet produced a lower postprandial decrease in total nitrite and a greater decrease in PC levels compared to the other two diets and lower SOD, CAT, and GPx activities than the SFA diet.In conclusion, Med diet reduces postprandial oxidative stress by reducing processes of cellular oxidation and increases the action of the antioxidant system in elderly persons and the administration of CoQ further improves this redox balance.

  19. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    PubMed

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Role of ergothioneine on S-nitrosoglutathione catabolism.

    PubMed Central

    Misiti, F; Castagnola, M; Zuppi, C; Giardina, B; Messana, I

    2001-01-01

    Ergothioneine (ESH) is a low-molecular-mass thiol present in millimolar concentrations in a limited number of tissues, including erythrocytes, kidney, seminal fluid and liver; however, its biological function is still unclear. In the present study we investigated the role of ESH in the catabolism of S-nitrosoglutathione (GSNO). The results show that: (1) GSNO decomposition is strongly influenced by ESH (k"=0.178+/-0.032 M(-1) x s(-1)); (2) ammonia is the main nitrogen-containing compound generated by the reaction; and (3) nitrite is practically absent under both aerobic and anaerobic conditions. These findings are markedly different from those reported for the GSH-induced decomposition of GSNO, in which the nitrogen-containing end products are nitrite, ammonia and nitrous oxide (N(2)O) under aerobic conditions but nitrite, ammonia, nitric oxide (NO) and small quantities of hydroxylamine under anaerobic conditions. Considering the high concentration of ESH in specific cells, the reaction with GSNO should be considered as an important molecular event occurring in the cell. PMID:11389687

  1. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR.

    PubMed

    Zhao, Bin; An, Qiang; He, Yi Liang; Guo, Jin Song

    2012-07-01

    A heterotrophic nitrifier, strain NR, was isolated from a membrane bioreactor. Strain NR was identified as Alcaligenes faecalis by Auto-Microbic system and 16S rRNA gene sequence analysis. A. faecalis strain NR shows a capability of heterotrophic nitrification and N(2)O and N(2) production as well under the aerobic condition. Further tests demonstrated that neither nitrite nor nitrate could be denitrified aerobically by strain NR. However, when hydroxylamine was used as the sole nitrogen source, nitrogenous gases were detected. With an enzyme assay, a 0.063 U activity of hydroxylamine oxidase was observed, while nitrate reductase and nitrite reductase were undetectable. Thus, nitrogenous gas was speculated to be produced via hydroxylamine. Therefore, two different metabolic pathways might exist in A. faecalis NR. One is heterotrophic nitrification by oxidizing ammonium to nitrite and nitrate. The other is oxidizing ammonium to nitrogenous gas directly via hydroxylamine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Toluene nitration in irradiated nitric acid and nitrite solutions

    NASA Astrophysics Data System (ADS)

    Elias, Gracy; Mincher, Bruce J.; Mezyk, Stephen P.; Muller, Jim; Martin, Leigh R.

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the nitration of aryl alkyl mild ortho-para director toluene in irradiated nitric acid and neutral nitrite solutions were investigated using γ and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection, GC-MS and LC-MS, were used to assess the stable reaction products. Free-radical based nitration reaction products were found in irradiated acidic and neutral media. In 6.0 M HNO3, ring substitution, side chain substitution, and oxidation, produced different nitrated toluene products. For ring substitution, nitrogen oxide radicals were added mainly to cyclohexadienyl radicals, whereas for side chain substitution, these radicals were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite solutions, radiolytically-induced ring nitration products approached a statistically random distribution, suggesting a direct free-radical reaction involving addition of the rad NO2 radical.

  3. Nitric oxide inhibition of alcohol dehydrogenase in fresh-cut apples ( Malus domestica Borkh).

    PubMed

    Amissah, Joris Gerald Niilante; Hotchkiss, Joseph H; Watkins, Chris B

    2013-11-20

    The effects of nitric oxide (NO) and nitrite treatment on alcohol dehydrogenase activity and the shelf life of apple tissue were investigated. Fresh-cut apple slices were stored for 2 days at 6 °C in 0.25-1% NO (v/v, balance N2) or 100% N2 atmospheres. Slices were also treated with 1% NO or 2 mM sodium nitrite (NaNO2) for 20 min, stored for 6 weeks in 100% N2 at 6 °C, and analyzed for acetaldehyde, ethanol, and ethyl acetate accumulation, firmness, and color. Compared with N2 or deionized water controls, treatment with 1% NO or 2 mM NaNO2 inhibited ethanol accumulation, whereas that of acetaldehyde increased. Ethyl acetate accumulation was inhibited only by NO. Slice firmness was not affected by NO or NaNO2 treatment, but slices were darker than the untreated controls. NO and nitrite may extend the shelf life of fresh-cut produce with low concentrations of phenolic compounds.

  4. The history of aerobic ammonia oxidizers: from the first discoveries to today.

    PubMed

    Monteiro, Maria; Séneca, Joana; Magalhães, Catarina

    2014-07-01

    Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.

  5. Effect of wastewater quality parameters on coliform inactivation by tin oxide anodes.

    PubMed

    Teel, Amy L; Watts, Richard J

    2018-04-16

    The effect of six water quality constituents on wastewater effluent disinfection by tin oxide anodes (TOAs) was investigated in single cell laboratory reactors. Several concentrations of suspended solids, chemical oxygen demand (COD), alkalinity, ammonia-nitrogen, nitrite-nitrogen, and nitrate-nitrogen were added to media containing 10 6 total coliform bacteria mL -1 . Current was applied through the TOAs, and coliform bacteria viability was analyzed over time. Over 99.9% inactivation of coliform bacteria was found over 15 min in TOA reactors. Concentrations of the six water quality constituents typical of concentrations found in wastewaters had no effect on TOA disinfection efficacy. The results of this research demonstrate that TOAs, which could potentially be powered by solar panels, have potential as a sustainable disinfection process compared to chlorine, ozone, and ultraviolet light.

  6. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    PubMed Central

    Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018

  7. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalystmore » drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  8. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.

    PubMed

    Pierson, M D; Smoot, L A

    1982-01-01

    Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.

  9. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples.

    PubMed

    Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie

    2018-09-15

    In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model

    NASA Astrophysics Data System (ADS)

    Yoshikawa, C.; Sasai, Y.; Wakita, M.; Honda, M. C.; Fujiki, T.; Harada, N.; Makabe, A.; Matsushima, S.; Toyoda, S.; Yoshida, N.; Ogawa, N. O.; Suga, H.; Ohkouchi, N.

    2016-02-01

    Based on the observed inverse relationship between the dissolved oxygen and N2O concentrations in the ocean, previous models have indirectly predicted marine N2O emissions from the apparent oxygen utilization (AOU), In this study, a marine ecosystem model that incorporates nitrous oxide (N2O) production processes (i.e., ammonium oxidation during nitrification and nitrite reduction during nitrifier denitrification) was newly developed to estimate the sea-air N2O flux and to quantify N2O production processes. Site preference of 15N (SP) in N2O isotopomers (14N15N16O and 15N14N16O) and the average nitrogen isotope ratio (δ15N) were added to the model because they are useful tracers to distinguish between ammonium oxidation and nitrite reduction. This model was applied to two contrasting time series sites, a subarctic station (K2) and a subtropical station (S1) in the western North Pacific. The model was validated with observed nitrogen concentration and nitrogen isotopomer datasets, and successfully simulated the higher N2O concentrations, higher δ15N values, and higher site preference values for N2O at K2 compared with S1. The annual mean N2O emissions were estimated to be 34 mg N m-2 yr-1 at K2 and 2 mg N m-2 yr-1 at S1. Using this model, we conducted three case studies: 1) estimating the ratio of in-situ biological N2O production to nitrate (NO3-) production during nitrification, 2) estimating the ratio of N2O production by ammonium oxidation to that by nitrite reduction, and 3) estimating the ratio of AOA ammonium oxidation to AOB ammonium oxidation. The results of case studies estimated the ratios of in situ biological N2O production to nitrate production during nitrification to be 0.22% at K2 and 0.06% at S1. It is also suggested that N2O was mainly produced via ammonium oxidation at K2 but was produced via both ammonium oxidation and nitrite reduction at S1. It is also revealed that 80% of the ammonium oxidation at K2 was caused by archaea in the subsurface water. The results of isotope tracer incubation experiments using an archaeal activity inhibitor supported this hypothesis.

  11. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea.

    PubMed

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-05-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  12. Shifts in Nitrification Kinetics and Microbial Community during Bioaugmentation of Activated Sludge with Nitrifiers Enriched on Sludge Reject Water

    PubMed Central

    Yu, Lifang; Peng, Dangcong; Pan, Ruiling

    2012-01-01

    This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354

  13. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    PubMed Central

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g−1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L−1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg−1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L−1 d−1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell−1 d−1, which finally led to the stable operation of the system. PMID:27279481

  14. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  15. Potential Biomarker of Myofibrillar Protein Oxidation in Raw and Cooked Ham: 3-Nitrotyrosine Formed by Nitrosation.

    PubMed

    Feng, Xianchao; Li, Chenyi; Ullah, Niamat; Hackman, Robert M; Chen, Lin; Zhou, Guanghong

    2015-12-30

    The stability of cured meat products is increased by the protection of its proteins from oxidation by sodium nitrite (NaNO2) during processing. This study investigated the effects of NaNO2 (0, 50, 100, 200, and 400 mg/kg) on the physiochemical and structural characteristics of myofibrillar protein (MP) in raw and cooked ham. The NaNO2 showed a dose-dependent antioxidant effect, by inhibiting carbonyl formation, dityrosine formation, and denaturation of MP, and a nitrosative effect, through the formation of 3-Nitrotyrosine (3-NT). The 3-NT content within MP of raw ham had distinct negative correlations with sulfhydryl content and surface hydrophobicity. The 3-NT content within MP of cooked ham had significantly negative correlations with carbonyl, sulfhydryl content and turbidity and had significantly positive correlations with disulfide content. These results indicated that 3-NT may be a potential marker for protein oxidation in raw and cooked cured meat products.

  16. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    PubMed

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  17. Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: generation, spatial variation and microbial interpretation.

    PubMed

    Zheng, Maosheng; Tian, Yuhao; Liu, Tang; Ma, Tao; Li, Li; Li, Can; Ahmad, Muhammad; Chen, Qian; Ni, Jinren

    2015-03-01

    Nitrous oxide (N2O) emission from wastewater treatment plants (WWTPs) has received increasing attention. This paper presented how N2O emission was significantly reduced in a pilot-scale Carrousel oxidation ditch under reasonable nitrification and denitrification. N2O emission from the reactor was found as low as 0.027% of influent nitrogen, which was much less than that from other processes. Further measurements on spatial variation of N2O emission in the alternative aerobic/anoxic zones with help of a series of batch experiments demonstrated that about 90% of the emission was contributed by nitrifier denitrification (ND). Moreover, the taxonomic analysis based on high through-put 16S rRNA gene sequencing revealed that the high abundance of denitrifying bacteria and nitrite-oxidizing bacteria (NOB) was responsible for low nitrite accumulations and consequent low N2O emissions. However, N2O generation would be greatly increased upon the normal operation being shocked by either ammonia overload or aeration failure of the oxidation ditch system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Inorganic nitrogen transformations in the treatment of landfill leachate with a high ammonium load: A case study.

    PubMed

    Parkes, Stephen D; Jolley, Dianne F; Wilson, Stephen R

    2007-01-01

    The inorganic nitrogen transformations occurring at a municipal waste leachate treatment facility were investigated. The treatment facility consisted of a collection well and an artificial wetland between two aeration ponds. The first aeration pond showed a decrease in ammonium (from 3480 (+/- 120) to 630(+/- 90) mg x L(-1)), a reduction in inorganic nitrogen load (3480 to 1680 mg N x L(-1)), and an accumulation of nitrite (< 1.3 mg-N x L(-1) in the collection well, to 1030 mg-N x L(-1)). Incomplete ammonium oxidation was presumably the result of the low concentration of carbonate alkalinity (approximately 2 mg x L(-1)), which may cause a limitation in the ammonium oxidation rate of nitrifiers. Low carbonate alkalinity levels may have been the result of stripping of CO(2) from the first aeration pond at the high aeration rates and low pH. Various chemodenitrification mechanisms are discussed as the reason for the reduction in the inorganic nitrogen load, including; the reduction of nitrite by iron (II) (producing various forms of gaseous nitrogen); and reactions involving nitrous acid. It is suggested that the accumulation of nitrite may be the result of inhibition of nitrite oxidizers by nitrous acid and low temperatures. Relative to the first aeration pond, the speciation and concentration of inorganic nitrogen was stable in the wetlands and 2nd aeration pond. The limited denitrification in the wetlands most probably occurred due to low concentrations of organic carbon, and short retention times.

  19. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    PubMed

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P < 0.05). Besides, protective effect of zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P < 0.05). These effects were significant as compared to zolpidem (5 mg/kg) per se (P < 0.05). Present study suggest that the possible involvement of GABAergic modulation in the protective effect of zolpidem against hypoxic stress.

  20. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome

    PubMed Central

    Abby, Sophie S.; Melcher, Michael; Kerou, Melina; Krupovic, Mart; Stieglmeier, Michaela; Rossel, Claudia; Pfeifer, Kevin; Schleper, Christa

    2018-01-01

    Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits. PMID:29434576

  1. Fact and Fiction of Nitrous Oxide Production By Nitrification

    NASA Astrophysics Data System (ADS)

    Stein, L. Y.; Kozlowski, J.; Stieglmeier, M.; Klotz, M. G.; Schleper, C.

    2014-12-01

    An accepted dogma in nitrification research is that ammonia-oxidizing bacteria (AOB) produce a modicum of nitrous oxide (N2O) during nitritation via incomplete oxidation of hydroxylamine, and substantially more at low oxygen concentrations via nitrifier denitrification.The nitrifier denitrification pathway involves the reduction of nitrite to N2O via nitric oxide and was thought to require activities of a copper-containing nitrite reductase (NirK) and nitric oxide reductase (NorB); inventory encoded in most, but not all AOB genome sequences. The discovery of nirK genes in ammonia-oxidizing Thaumarchaeota (AOA) resulted in a slew of publications stating that AOA must also perform nitrifier denitrification and, due to their high abundance, must control the majority of nitrification-linked N2O emissions. Prior to a publication by Stieglmeier et al. (2014), which definitively showed a lack of nitrifier denitrification by two axenic AOA cultures, other researchers relied on enrichment cultures, negative data, and heavy inferencing without direct demonstration of either a functional pathway or involvement of specific genes or enzymes. AOA genomes lack recognizable nitric oxide reductases and thermophilic AOA also lack nirK genes. Physiological and microrespirometry experiments with axenic AOB and AOA cultures allowed us to demonstrate that: 1) AOB produce N2O via nitrifier denitrification even though some lack annotated nirK and/or norB genes; 2) nitrifier denitrification by AOB is reliant on nitric oxide but ammonia oxidation is not; 3) ammonia oxidation by AOA is reliant on production of nitric oxide; 4) AOA are incapable of generating N2O via nitrifier denitrification; 5) N2O production by AOA is from chemical interactions between NO and media components, most likely not by enzyme activity. Our results reveal operation of different N oxide transformation pathways in AOB and AOA governed by different environmental controls and involving different mechanisms of N2O production. Critical controls on these mechanisms are levels of oxygen and ammonium. Future calculations of relative contributions of AOB and AOA to N2O emissions must take into account physiological, enzymatic, and environmental differences between these two nitrifying microorganisms.

  2. Applying Molecular Tools for Monitoring Inhibition of Nitrification by Heavy Metals

    EPA Science Inventory

    The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification and denitrification as sequential steps. The first step in nitrification, the oxidation of ammonia to nitrite by ammonia oxidizing bacteria (AOB), is sens...

  3. Impaired Arginine Metabolism Coupled to a Defective Redox Conduit Contributes to Low Plasma Nitric Oxide in Polycystic Ovary Syndrome.

    PubMed

    Krishna, Meera B; Joseph, Annu; Thomas, Philip Litto; Dsilva, Belinda; Pillai, Sathy M; Laloraya, Malini

    2017-01-01

    Though oxidative stress is associated with Polycystic Ovary Syndrome (PCOS), the status of nitric oxide is still unclear. Nitric Oxide (NO) plays pivotal roles in many physiological functions which are compromised in PCOS. Our recent study reveals lowered T-regulatory cells (Tregs) in PCOS, and Treg generation is known to be regulated by NO levels. However concrete evidences are lacking on mechanisms modulating NO levels under PCOS. This is a retrospective case-control cohort study, comprised of PCOS women (N=29) and normal menstruating women as controls (N=20). We analysed NOx (nitrite+nitrate) and hydrogen peroxide (H2O2) concentrations, transcript levels of endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and arginine modulators, hydrogen peroxide regulators in the cohort. PCOS women showed reduced plasma NOx(nitrate+nitrite) and H2O2 compared to controls. We report reduction in transcript levels of iNOS/NOS2 and eNOS/NOS3 in PCOS peripheral blood. The transcripts involved in arginine bioavailability: Argininosuccinate lyase (ASL), Solute Carrier Family1, member 7 (SLC7A1) and Arginase 1 (ARG1) and Asymmetric Dimethyl Arginine (ADMA) metabolism: Protein arginine methyltransferase 1 (PRMT1) and Dimethylarginine dimethylaminohydrolase 2 (DDAH2) also showed differential expression. H2O2 concentration in PCOS women was also found to be reduced. The reduction can be attributed to increase in catalase levels as a consequence of the body's effort to alleviate the oxidative burden in the system. Our study advocates that PCOS women have lowered NO due to reduced iNOS/eNOS expression, low H2O2, high ADMA synthesis and reduced arginine bioavailability. An in-depth analysis of redox biology of PCOS to open up potential therapeutic strategies is highly recommended. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Nitric oxide-induced interstrand cross-links in DNA.

    PubMed

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  5. Color compensation in nitrite-reduced meat batters incorporating paprika or tomato paste.

    PubMed

    Bázan-Lugo, Eduardo; García-Martínez, Ignacio; Alfaro-Rodríguez, Rosa Hayde; Totosaus, Alfonso

    2012-06-01

    Nitrite is a key ingredient the manufacture of meat products, forming a stable pink color characteristic of cured products, retarding the development of rancidity and off-odors and flavors during storage, and preventing microbial growth. The negative aspects of nitrite and the demands for healthy foods result in the need to reduce nitrite in cured meat products. Paprika or tomato has been employed as natural pigments in meat products. The objective of this work was to determine the effect of incorporating paprika powder or tomato paste on the texture, rancidity and instrumental and sensory color compensation in nitrite-reduced meat batters. Addition of tomato paste improved moisture content, resulting in harder but less cohesive samples as compared to control and paprika-containing meat batters. Color characteristics of reduced nitrite samples obtained higher a* red coloration (8.9 for paprika and 7.7-8.0 for tomato paste), as compared to control samples (5.65). Instrumental color was low in control samples, with high values for tomato paste and paprika samples. Nonetheless, tomato paste used to compensate color in nitrite-reduced meat batters was ranked closer to the control sample in sensory evaluation. Color characteristics-instrumental and sensory-in these kinds of meat products were enhanced by the addition of 2.5-3.0% of tomato paste, presenting results close to the non-reduced nitrite control. Similarly, antioxidant components of tomato paste or paprika reduced lipid oxidation. Nitrite reduction from 150 to 100 ppm could be achieved employing tomato paste as a natural pigment to improve color and texture. Copyright © 2011 Society of Chemical Industry.

  6. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    PubMed

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Treatment of Spacecraft Wastewater Using a Hollow Fiber Membrane Biofilm Redox Control Reactor

    NASA Technical Reports Server (NTRS)

    Smith, Daniel P.

    2003-01-01

    The purpose of this project was to develop and evaluate design concepts for biological treatment reactors for the purification of spacecraft wastewater prior to reverse osmosis treatment. The motivating factor is that wastewater recovery represents the greatest single potential reduction in the resupply requirements for crewed space missions. Spacecraft wastewater composition was estimated from the characteristics of the three major component streams: urine/flush water, hygiene water, and atmospheric condensate. The key characteristics of composite spacecraft wastewater are a theoretical oxygen demand of 4519 mg/L, of which 65% is nitrogenous oxygen demand, in a volume of 11.5 liter/crew-day. The organic carbon to nitrogen ratio of composite wastewater is 0.86. Urine represents 93% of nitrogen and 49% of the organic carbon in the composite wastestream. Various bioreaction scenarios were evaluated to project stoichiometric oxygen demands and the ability of wastewater carbon to support denitrification. Ammonia nitrification to the nitrite oxidation state reduced the oxygen requirement and enabled wastewater carbon to provide nearly complete denitrification. A conceptual bioreactor design was established using hollow fiber membranes for bubbleless oxygen transfer in a gravity-free environment, in close spatial juxtaposition to a second interspaced hollow fiber array for supplying molecular hydrogen. Highly versatile redox control and an enhanced ability to engineer syntrophic associations are stated advantages. A prototype reactor was constructed using a microporous hollow fiber membrane module for aeration. Maintaining inlet gas pressure within 0.25 psi of the external water pressure resulted in bubble free operation with no water ingress into hollow fiber lumens. Recommendations include the design and operational testing of hollow fiber bioreactors using: 1) Partial nitrification/nitrite predenitrification; 2) Limited aeration for simultaneous nitrification/denitrification or for nitrite reduction/ammonia oxidation; 3) Hydrogenotrophic denitrification.

  8. Studies on the development of functional powder from citrus peel.

    PubMed

    Kang, H J; Chawla, S P; Jo, C; Kwon, J H; Byun, M W

    2006-03-01

    The suitability of citrus peels, generated as a by-product of the juice industry, as a source of antioxidants was investigated. Citrus peel powder was prepared by lyophilizing 70% ethanol extract from citrus peels. Extraction was carried out at room temperature (20 degrees C) for 72 h. The extract was subjected to gamma-irradiation treatment (20 kGy). The aqueous solutions of citrus peel powder were examined for color characteristics and antioxidant potential in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, beta-carotene bleaching and nitrite scavenging activities. There were significant changes in Hunter color values due to irradiation. The a*- and b*-values decreased due to radiation treatment. DPPH radical scavenging, beta-carotene bleaching and nitrite scavenging activities were not affected by irradiation treatment. Nitrite scavenging activity was the highest in the extract at pH 1.2 followed by pH 4.2 and 6.0. These functional properties of the aqueous solution were found to be stable in heat treatment. It could significantly improve oxidative stability of lipids in fish meat system. Based on these results there may be opportunities to use citrus peel powder as a functional component in the food processing industry with gamma irradiation treatment improving its color characteristics without adversely influencing the functional properties.

  9. Electroencephalographic Response to Sodium Nitrite May Predict Delayed Cerebral Ischemia After Severe Subarachnoid Hemorrhage.

    PubMed

    Garry, Payashi S; Rowland, Matthew J; Ezra, Martyn; Herigstad, Mari; Hayen, Anja; Sleigh, Jamie W; Westbrook, Jon; Warnaby, Catherine E; Pattinson, Kyle T S

    2016-11-01

    Aneurysmal subarachnoid hemorrhage often leads to death and poor clinical outcome. Injury occurring during the first 72 hours is termed "early brain injury," with disruption of the nitric oxide pathway playing an important pathophysiologic role in its development. Quantitative electroencephalographic variables, such as α/δ frequency ratio, are surrogate markers of cerebral ischemia. This study assessed the quantitative electroencephalographic response to a cerebral nitric oxide donor (intravenous sodium nitrite) to explore whether this correlates with the eventual development of delayed cerebral ischemia. Unblinded pilot study testing response to drug intervention. Neuroscience ICU, John Radcliffe Hospital, Oxford, United Kingdom. Fourteen World Federation of Neurosurgeons grades 3, 4, and 5 patients (mean age, 52.8 yr [range, 41-69 yr]; 11 women). IV sodium nitrite (10 μg/kg/min) for 1 hour. Continuous electroencephalographic recording for 2 hours. The alpha/delta frequency ratio was measured before and during IV sodium nitrite infusion. Seven of 14 patients developed delayed cerebral ischemia. There was a +30% to +118% (range) increase in the alpha/delta frequency ratio in patients who did not develop delayed cerebral ischemia (p < 0.0001) but an overall decrease in the alpha/delta frequency ratio in those patients who did develop delayed cerebral ischemia (range, +11% to -31%) (p = 0.006, multivariate analysis accounting for major confounds). Administration of sodium nitrite after severe subarachnoid hemorrhage differentially influences quantitative electroencephalographic variables depending on the patient's susceptibility to development of delayed cerebral ischemia. With further validation in a larger sample size, this response may be developed as a tool for risk stratification after aneurysmal subarachnoid hemorrhage.

  10. Inhaled Nitric Oxide in Acute Lung Disease.

    DTIC Science & Technology

    1995-01-01

    play a pivotal and central cellular, NO. combines with the heme molecules role in many of the clinical manifestations of ARDS, it present in...blood flow to trate anion (NO3), and b) reaction with 02 to form poorly ventilated lung segments and further compro- nitrite anion (NO2) (23, 24). It...is the most consistent feature of creases in methemoglobin levels (Table 1). Plasma NO- therapy. Theoretically, inhaled NO. vasodilates nitrite levels

  11. Nitrite therapy after cardiac arrest reduces ROS generation, improves cardiac and neurological function and enhances survival via reversible inhibition of mitochondrial complex I

    PubMed Central

    Dezfulian, Cameron; Shiva, Sruti; Alekseyenko, Aleksey; Pendyal, Akshay; Beiser, DG; Munasinghe, Jeeva P.; Anderson, Stasia A.; Chesley, Christopher F.; Hoek, TL Vanden; Gladwin, Mark T.

    2009-01-01

    Background Three-fourths of cardiac arrest survivors die prior to hospital discharge or suffer significant neurological injury. Excepting therapeutic hypothermia and revascularization, no novel therapies have been developed that improve survival or cardiac and neurological function after resuscitation. Nitrite (NO2−) increases cellular resilience to focal ischemia-reperfusion injury in multiple organs. We hypothesized that nitrite therapy may improve outcomes after the unique global ischemia-reperfusion insult of cardiopulmonary arrest. Methods and Results We developed a mouse model of cardiac arrest characterized by 12-minutes of normothermic asystole and a high cardiopulmonary resuscitation (CPR) rate. In this model, global ischemia and CPR was associated with blood and organ nitrite depletion, reversible myocardial dysfunction, impaired alveolar gas exchange, neurological injury and an approximate 50% mortality. A single low dose of intravenous nitrite (50 nmol=1.85 μmol/kg=0.13 mg/kg) compared to blinded saline placebo given at CPR initiation with epinephrine improved cardiac function, survival and neurological outcomes. From a mechanistic standpoint, nitrite treatment restored intracardiac nitrite and increased S-nitrosothiol levels, decreased pathological cardiac mitochondrial oxygen consumption due to reactive oxygen species formation and prevented oxidative enzymatic injury via reversible specific inhibition of respiratory chain complex I. Conclusion Nitrite therapy after resuscitation from 12-minutes of asystole rapidly and reversibly modulated mitochondrial reactive oxygen species generation during early reperfusion, limiting acute cardiac dysfunction and death, as well as neurological impairment in survivors. PMID:19704094

  12. Ingested nitrate and nitrite and stomach cancer risk: an updated review.

    PubMed

    Bryan, Nathan S; Alexander, Dominik D; Coughlin, James R; Milkowski, Andrew L; Boffetta, Paolo

    2012-10-01

    Nitrite and nitrate are naturally occurring molecules in vegetables and also added to cured and processed meats to delay spoilage and pathogenic bacteria growth. Research over the past 15 years has led to a paradigm change in our ideas about health effects of both nitrite and nitrate. Whereas, historically nitrite and nitrate were considered harmful food additives and listed as probable human carcinogens under conditions where endogenous nitrosation could take place, they are now considered by some as indispensible nutrients essential for cardiovascular health by promoting nitric oxide (NO) production. We provide an update to the literature and knowledge base concerning their safety. Most nitrite and nitrate exposure comes from naturally occurring and endogenous sources and part of the cell signaling effects of NO involve nitrosation. Nitrosation must now be considered broadly in terms of both S- and N-nitrosated species, since S-nitrosation is kinetically favored. Protein S-nitrosation is a significant part of the role of NO in cellular signal transduction and is involved in critical aspects of cardiovascular health. A critical review of the animal toxicology literature of nitrite indicates that in the absence of co-administration of a carcinogenic nitrosamine precursor, there is no evidence for carcinogenesis. Newly published prospective epidemiological cohort studies indicate that there is no association between estimated intake of nitrite and nitrate in the diet and stomach cancer. This new and growing body of evidence calls for a reconsideration of nitrite and nitrate safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    PubMed

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  14. Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer

    NASA Astrophysics Data System (ADS)

    Kojima, Hisaya; Tokizawa, Riho; Kogure, Kouhei; Kobayashi, Yuki; Itoh, Masayuki; Shiah, Fuh-Kwo; Okuda, Noboru; Fukui, Manabu

    2014-07-01

    Methane-oxidizing bacteria (MOB) gain energy from the oxidation of methane and may play important roles in freshwater ecosystems. In this study, the community structure of planktonic MOB was investigated in a subtropical reservoir. Bacterial community structure was investigated through the analysis of the 16S rRNA gene. Three groups of phylogenetically distinct MOB were detected in the clone libraries of polymerase chain reaction products obtained with universal primers. The groups belonged to the class Gammaproteobacteria, the class Alphaproteobacteria, and the candidate phylum NC10. The last group, which consists of close relatives of the nitrite reducer `Candidatus Methylomirabilis oxyfera', was frequently detected in the clone libraries of deep-water environments. The presence of 3 groups of MOB in deep water was also shown by a cloning analysis of the pmoA gene encoding particulate methane monooxygenase. The dominance of `M. oxyfera'-like organisms in deep water was confirmed by catalyzed reporter deposition-fluorescence in situ hybridization, in which cells stained with a specific probe accounted for 16% of total microbial cells. This is the first study to demonstrate that close relatives of the nitrite reducer can be major component of planktonic MOB community which may affect carbon flow in aquatic ecosystems.

  15. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor.

    PubMed

    Deshmukh, Rahul; Sharma, Vivek; Mehan, Sidharth; Sharma, Nidhi; Bedi, K L

    2009-10-12

    Enhancing cyclic nucleotides signaling by inhibition of phosphodiesterases (PDEs) is known to be beneficial in disorders associated with cognitive decline. The present study was designed to investigate the effect of vinpocetine (PDE1 inhibitor) on intracerebroventricular (i.c.v.) streptozotocin induced experimental sporadic dementia of Alzheimer's type. Infusion of streptozotocin impaired learning and memory, increased oxidative-nitritive stress and induced cholinergic hypofunction in rats. Chronic treatment with vinpocetine (5, 10 and 20 mg/kg i.p.) for 21 days following first i.c.v. streptozotocin infusion significantly improved learning and memory in Morris water maze and passive avoidance paradigms. Further, vinpocetine significantly reduced the oxidative-nitritive stress, as evidenced by decrease in malondialdehyde (MDA) and nitrite levels, and restored the reduced glutathione (GSH) levels. Significant increase in acetylcholinesterase activity and lactate dehydrogenase levels was observed in the present model indicating cholinergic hypofunction and increase in neuronal cell damage. Chronic treatment with vinpocetine also reduced significantly the increase in acetylcholinesterase activity and lactate dehydrogenase levels indicating restorative capacity of vinpocetine with respect to cholinergic functions and preventing the neuronal damage. The observed beneficial effects of vinpocetine on spatial memory may be due to its ability to favorably modulate cholinergic functions, prevent neuronal cell damage and possibly through its antioxidant mechanism also.

  16. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria.

    PubMed

    He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 μmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.

  17. Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes

    PubMed Central

    Tie, Lu; Li, Xue-Jun; Wang, Xian; Channon, Keith M.; Chen, Alex F.

    2009-01-01

    Refractory wound is a severe complication that leads to limb amputation in diabetes. Endothelial nitric oxide synthase (eNOS) plays a key role in normal wound repair but is uncoupled in streptozotocin (STZ)-induced type 1 diabetes because of reduced cofactor tetrahydrobiopterin (BH4). We tested the hypothesis that overexpression of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for de novo BH4 synthesis, retards NOS uncoupling and accelerates wound healing in STZ mice. Blood glucose levels were significantly increased in both male endothelium-specific GTPCH I transgenic mice (Tg-GCH; via a tie-2 promoter) and wild-type (WT) littermates 5 days after STZ regimen. A full-thickness excisional wound was created on mouse dorsal skin by a 4-mm punch biopsy. Wound closure was delayed in STZ mice, which was rescued in STZ Tg-GCH mice. Cutaneous BH4 level was significantly reduced in STZ mice vs. WT mice, which was maintained in STZ Tg-GCH mice. In STZ mice, constitutive NOS (cNOS) activity and nitrite levels were decreased compared with WT mice, paralleled by increased superoxide anion (O2−) level and inducible NOS (iNOS) activity. In STZ Tg-GCH mice, nitrite level and cNOS activity were potentiated and O2− level and iNOS activity were suppressed compared with STZ mice. Thus endothelium-specific BH4 overexpression accelerates wound healing in type 1 diabetic mice by enhancing cNOS activity and suppressing oxidative stress. PMID:19336662

  18. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system.

    PubMed

    Li, Hua; Liang, Xinqiang; Chen, Yingxu; Lian, Yanfeng; Tian, Guangming; Ni, Wuzhong

    2008-01-01

    DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4(+)-N and NO3(-)-N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carried out. The results showed that DP enhanced the mean NH4(+)-N concentrations by 19.1%--24.3%, but reduced the mean NO3(-)-N concentrations by 44.9%--56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%--30.9%, 14.9%--43.5%, and 14.7%--31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3(-)-N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.

  19. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    PubMed

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  20. Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects.

    PubMed

    Michl, Thomas D; Coad, Bryan R; Doran, Michael; Osiecki, Michael; Kafshgari, Morteza Hasanzadeh; Voelcker, Nicolas H; Hüsler, Amanda; Vasilev, Krasimir; Griesser, Hans J

    2015-04-25

    We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.

  1. Simulations and Experiments Reveal the Relative Significance of the Free Chlorine/Nitrite Reaction in Chloraminated Systems

    EPA Science Inventory

    Nitrification can be a problem in distribution systems where chloramines are used as secondary disinfectants. A very rapid monochloramine residual loss is often associated with the onset of nitrification. During nitrification, ammonia-oxidizing bacteria biologically oxidize fre...

  2. Relative Importance of Nitrite Oxidation by Hypochlorous Acid under Chloramination Conditions

    EPA Science Inventory

    The importance of nitrite’s oxidation by tree chlorine under chloramination conditions was evaluated using batch kinetic experiments and a chloramine model implemented into the computer program AWUASIM. The experimental data was best represented with the inclusion of a reaction b...

  3. [Anoxic bioremediation of urban polluted river water with biofilm].

    PubMed

    Zhang, Yong-Ming; Hu, Yi-Zhen; Yan, Rong; Liu, Fang

    2009-07-15

    Reactor like oxidation ditch was used for anaerobic bioremediation of urban river water, in which biofilm formed on ceramic honeycomb carrier was used instated of activated sludge. The dissolved oxygen in the wastewater was controlled under 0.5 mg/L for anoxic oxidation, and ammonia nitrogen was removed 40 to 60 percent, and total nitrogen removed 40 to 45 percent, that is ammonia nitrogen and total nitrogen were removed at the same time, also, nitrite was not any accumulated during the process. The biofilm was taken into flask to culture under anoxic oxidation condition in order to prove if anaerobic ammonium oxidation (ANAMMOX) occurred in the process, and ammonia and nitrite nitrogen were also removed at the same time in the experiment, which suggested that nitrification-denitrification and ANAMMOX occurred in bioremediation of urban surface water with low ratio of carbon and nitrogen at the same time. The anammox bacteria were existed in the biofilm according to molecular biological analysis. The experiment will be significant for bioremediation of eutrophication water body.

  4. The role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer.

    PubMed

    Belotte, Jimmy; Fletcher, Nicole M; Awonuga, Awoniyi O; Alexis, Mitchell; Abu-Soud, Husam M; Saed, Mohammed G; Diamond, Michael P; Saed, Ghassan M

    2014-04-01

    To investigate the role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer (EOC). Two parent EOC cell lines (MDAH-2774 and SKOV-3) and their chemoresistant counterparts (cisplatin, 50 µmol/L) were used. Total RNA was extracted and subjected to real-time reverse transcriptase polymerase chain reaction to evaluate the expression of glutathione reductase (GSR) and inducible nitric oxide synthase (iNOS), as well as nitrate/nitrite levels. Analysis of variance was used for main effects and Tukey for post hoc analysis at P < .05 for statistical significance. Both cisplatin resistant cell lines displayed a significant decrease in GSR messenger RNA (mRNA) levels and activity (P < .01). As compared to sensitive controls, nitrate/nitrite levels were significantly higher in SKOV-3 cisplatin resistant cells while iNOS mRNA levels were significantly higher in MDAH-2774 cisplatin resistant cells (P < .05). Our data suggest that the development of cisplatin resistance tilts the balance toward a pro-oxidant state in EOC.

  5. Structural aspects of denitrifying enzymes.

    PubMed

    Moura, I; Moura, J J

    2001-04-01

    The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.

  6. Quercetin and its principal metabolites, but not myricetin, oppose lipopolysaccharide-induced hyporesponsiveness of the porcine isolated coronary artery

    PubMed Central

    Al-Shalmani, Salmin; Suri, Sunita; Hughes, David A; Kroon, Paul A; Needs, Paul W; Taylor, Moira A; Tribolo, Sandra; Wilson, Vincent G

    2011-01-01

    BACKGROUND AND PURPOSE Quercetin is anti-inflammatory in macrophages by inhibiting lipopolysaccharide (LPS)-mediated increases in cytokine and nitric oxide production but there is little information regarding the corresponding effect on the vasculature. We have examined the effect of quercetin, and its principal human metabolites, on inflammatory changes in the porcine isolated coronary artery. EXPERIMENTAL APPROACH Porcine coronary artery segments were incubated overnight at 37°C in modified Krebs-Henseleit solution with or without 1 µg·mL−1 LPS. Some segments were also co-incubated with quercetin-related flavonoids or Bay 11-7082, an inhibitor of NFκB. Changes in isometric tension of segments to vasoconstrictor and vasodilator agents were recorded. Nitrite content of the incubation solution was estimated using the Griess reaction, while inducible nitric oxide synthase was identified immunohistochemically. KEY RESULTS Lipopolysaccharide reduced, by 35–50%, maximal contractions to KCl and U46619, thromboxane A2 receptor agonist, and impaired endothelium-dependent relaxations to substance P. Nitrite content of the incubation medium increased 3- to 10-fold following exposure to LPS and inducible nitric oxide synthase was detected in the adventitia. Quercetin (0.1–10 µM) opposed LPS-induced changes in vascular responses, nitrite production and expression of inducible nitric oxide synthase. Similarly, 10 µM Bay 11-7082, 10 µM quercetin 3′-sulphate and 10 µM quercetin 3-glucuronide prevented LPS-induced changes, while myricetin (10 µM) was inactive. Myricetin (10 µM) prevented quercetin-induced modulation of LPS-mediated nitrite production. CONCLUSION AND IMPLICATIONS Quercetin, quercetin 3′-suphate and quercetin 3-glucuronide, exerted anti-inflammatory effects on the vasculature, possibly through a mechanism involving inhibition of NFκB. Myricetin-induced antagonism of the effect of anti-inflammatory action of quercetin merits further investigation. PMID:21375526

  7. Competition for ammonia influences the structure of chemotrophic communities in geothermal springs.

    PubMed

    Hamilton, Trinity L; Koonce, Evangeline; Howells, Alta; Havig, Jeff R; Jewell, Talia; de la Torre, José R; Peters, John W; Boyd, Eric S

    2014-01-01

    Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii" and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable of nitrogen fixation in geothermal communities. These observations help to explain the strong pattern in the codistribution of ammonia-oxidizing archaea and diazotrophs in circumneutral-to-alkaline geothermal springs.

  8. Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs

    PubMed Central

    Hamilton, Trinity L.; Koonce, Evangeline; Howells, Alta; Havig, Jeff R.; Jewell, Talia; de la Torre, José R.; Peters, John W.

    2014-01-01

    Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable of nitrogen fixation in geothermal communities. These observations help to explain the strong pattern in the codistribution of ammonia-oxidizing archaea and diazotrophs in circumneutral-to-alkaline geothermal springs. PMID:24242238

  9. NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259

  10. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    PubMed

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A sensitive colorimetric method for the determination of nitrite in water supplies, meat and dairy products using ionic liquid-modified methyl red as a colour reagent.

    PubMed

    Zhang, Haijuan; Qi, Shengda; Dong, Yalei; Chen, Xiaojiao; Xu, Yinyin; Ma, Yanhua; Chen, Xingguo

    2014-05-15

    This paper describes a colorimetric approach to determine trace amounts of nitrite in water supplies, meat and dairy products using 1-butyl-3-methylimidazolium-modified methyl red ([BMIM]MR) as a colour reagent. The technique capitalises on the catalytic effect of nitrite on the oxidative degradation of [BMIM]MR by potassium bromate in acidic media. The absorbances were proportional to nitrite concentrations in the range of 8.70×10(-2) to 4.17 μM with a detection limit of 1.64×10(-2) μM. Compared with the method using methyl red as a colour reagent, 60 times improvement of sensitivity was obtained. Activation energy and the apparent rate constant for the catalytic reaction are 61.11 kJ mol(-1) and 1.18×10(4) s(-1), respectively. The proposed method was successfully applied for the analysis of nitrite in Yellow River water, chicken, and milk with recoveries ranging from 96% to 105%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Lipolysis and lipid oxidation in fermented sausages depending on different processing conditions and different antioxidants.

    PubMed

    Zanardi, Emanuela; Ghidini, Sergio; Battaglia, Alessandra; Chizzolini, Roberto

    2004-02-01

    Lipolysis and lipid oxidation in Mediterranean and North Europe type sausages were studied in relation to raw material, processing conditions and additives. In particular the effect of ascorbic acid, nitrites and spices was evaluated. Lipolysis was measured by the determination of total and free fatty acids of fresh minces and matured products and lipid oxidation was evaluated by thiobarbituric acid reactive substances and cholesterol oxidation products. The increase of free fatty acids during maturation appears to be independent from processing conditions and the differences in polyunsaturated fatty acids increment found among the formulations appear to be due to inherent variations of raw materials. The presence of ascorbic acid and/or nitrite seems important for cholesterol protection and, as a consequence, for the safety of fermented meat products while spices at doses up to 0.1% do not seem to have a remarkable effect. The effect on fatty acid oxidation of the same additives and of the different processing technologies is not significantly different and the variations linked to raw material may play the greatest role.

  13. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor.

    PubMed

    Zhang, Xiaojing; Zhang, Nan; Fu, Haoqiang; Chen, Tao; Liu, Sa; Zheng, Shuhua; Zhang, Jie

    2017-11-01

    In this study, a membrane bioreactor (MBR) was adopted for completely autotrophic nitrogen removal over nitrite (CANON) process. Zinc oxide nanoparticles (ZnO NPs) was step-wise increased to analyze the influence on nitrogen removal, microbial activity and microbial communities. Finally ZnO NPs was removed to study its recovery capability. The bioactivities of ammonia-oxidizing bacteria (AOB), anaerobic ammonia-oxidizing bacteria (AAOB) and nitrite-oxidizing bacteria (NOB) were detected by batch experiments. Results showed that the ZnO NPs with low concentration (≤5mgL -1 ) was profitable for nitrogen removal while the high concentration performed inhibition, and it lowered the abundance of both AOB and NOB while enhanced that of AAOB. ZnO NPs with high concentration (≥10mgL -1 ) suppressed both AOB and AAOB, and long-term exposure within ZnO NPs led to microbial diversity decrease. The inhibition threshold of ZnO NPs on CANON process was 10mgL -1 , and the profitable concentration was 1mgL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation.

    PubMed

    Wang, Shanyun; Wang, Weidong; Liu, Lu; Zhuang, Linjie; Zhao, Siyan; Su, Yu; Li, Yixiao; Wang, Mengzi; Wang, Cheng; Xu, Liya; Zhu, Guibing

    2018-05-24

    Artificial microbial nitrogen (N) cycle hotspots in the plant-bed/ditch system were developed and investigated based on intact core and slurry assays measurement using isotopic tracing technology, quantitative PCR and high-throughput sequencing. By increasing hydraulic retention time and periodically fluctuating water level in heterogeneous riparian zones, hotspots of anammox, nitrification, denitrification, ammonium (NH 4 + ) oxidation, nitrite (NO 2 - ) oxidation, nitrate (NO 3 - ) reduction and DNRA were all stimulated at the interface sediments, with the abundance and activity being about 1-3 orders of magnitude higher than those in nonhotspots. Isotopic pairing experiments revealed that in microbial hotspots, nitrite sources were higher than the sinks, and both NH 4 + oxidation (55.8%) and NO 3 - reduction (44.2%) provided nitrite for anammox, which accounted for 43.0% of N-loss and 44.4% of NH 4 + removal in riparian zones but did not involve nitrous oxide (N 2 O) emission risks. High-throughput analysis identified that bacterial quorum sensing mediated this anammox hotspot with B.fulgida dominating the anammox community, but it was B. anammoxidans and Jettenia sp. that contributed more to anammox activity. In the nonhotspot zones, the NO 2 - source (NO 3 - reduction dominated) was lower than the sink, limiting the effects on anammox. The in situ N 2 O flux measurement showed that the microbial hotspot had a 27.1% reduced N 2 O emission flux compared with the nonhotspot zones.

  15. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  16. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  17. The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status.

    PubMed

    Erdamar, Hüsamettin; Demirci, Hüseyin; Yaman, Halil; Erbil, M Kemal; Yakar, Tolga; Sancak, Banu; Elbeg, Sehri; Biberoğlu, Gürsel; Yetkin, Ilhan

    2008-01-01

    Free radical-mediated oxidative stress has been implicated in the etiopathogenesis of several autoimmune disorders. Also, there is growing evidence supporting the role of reactive oxygen species in the pathogenesis of thyroid disorders. The aim of this study was to investigate the influence of hypothyroidism, hyperthyroidism, and their treatments on the metabolic state of oxidative stress, and antioxidant status markers. A total of 20 newly diagnosed patients with overt hypothyroidism due to Hashimoto's thyroiditis, 20 patients with overt hyperthyroidism due to Graves' disease, and 20 healthy subjects as the control group were enrolled in the study. Fasting blood samples (12 h), taken at the initiation, after the 30th and 60th day of therapy were analyzed for malondialdehyde, nitrite, vitamin E, vitamin A, beta-carotene, ascorbate, and myeloperoxidase and superoxide dismutase activity. No patient presented additional risk factors for increased reactive oxygen species levels. Malondialdehyde, nitrite, vitamin E, and myeloperoxidase activity increased in patients with hypothyroidism. After 2 months, the levels of nitrite and vitamin E were reduced to control levels by treatment. The patients with hyperthyroidism had increased levels of malondialdehyde and myeloperoxidase activity in comparison with the controls. Treatment with propylthiouracil attenuated these increments after 1 month. Our results reveal an increased generation of reactive oxygen species and impairment of the antioxidant system in patients with hyperthyroidism, and particularly in patients with hypothyroidism. These findings indicate that thyroid hormones have a strong impact on oxidative stress and the antioxidant system.

  18. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpRmore » for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network.« less

  19. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment cores spanning the upper CRB. Early findings from Rifle, CO indicate elevated abundances of ammonia-oxidizers seem to correlate with elevated uranium concentrations emphasizing the critical need to understand how nitrogen-cycling organisms influence subsurface U redox chemistry and mobility.

  20. Methaemoglobinaemia due to amyl nitrite inhalation: a case report.

    PubMed

    Machabert, R; Testud, F; Descotes, J

    1994-05-01

    Methaemoglobinaemia is a potential toxic effect of aliphatic nitrites which are increasingly abused by male homosexuals and drug addicts because of marked vasodilating properties ('poppers'). In most instances, severe complications were described following the ingestion of large quantities of amyl, butyl or isobutyl nitrites. A deficiency in NADH-dependent haemoglobin reductase in some patients has been noted. This is the first report of symptomatic methaemoglobinaemia following the inhalation of amyl nitrite.

  1. Proposed Toxic and Hypoxic Impairment of a Brainstem Locus in Autism

    PubMed Central

    McGinnis, Woody R.; Audhya, Tapan; Edelson, Stephen M.

    2013-01-01

    Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS) in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain’s point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal function. The NTS facilitates normal cerebrovascular perfusion, and is the seminal point for an ascending noradrenergic system that modulates many complex behaviors. Microvascular configuration predisposes the NTS to focal hypoxia. A subregion—the “pNTS”—permits exposure to all blood-borne neurotoxins, including those that do not readily transit the blood-brain barrier. Impairment of acetylcholinesterase (mercury and cadmium cations, nitrates/nitrites, organophosphates, monosodium glutamate), competition for hemoglobin (carbon monoxide, nitrates/nitrites), and higher blood viscosity (net systemic oxidative stress) are suggested to potentiate microcirculatory insufficiency of the NTS, and thus autism. PMID:24336025

  2. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    PubMed Central

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations. PMID:25329300

  3. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements.

    PubMed

    Dabundo, Richard; Lehmann, Moritz F; Treibergs, Lija; Tobias, Craig R; Altabet, Mark A; Moisander, Pia H; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L(-1) d(-1), to 530 nmoles N L(-1) d(-1), contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.

  4. PHOSPHORYLATION BY EXTRACTS OF NITROSOMONAS EUROPAEA

    PubMed Central

    Burge, W. D.; Malavolta, E.; Delwiche, C. C.

    1963-01-01

    Burge, W. D. (University of California, Berkeley), E. Malavolta, and C. C. Delwiche. Phosphorylation by extracts of Nitrosomonas europaea. J. Bacteriol. 85:106–110. 1963.—Cellfree preparations of Nitrosomonas europaea are capable of oxidizing hydroxylamine, but not ammonium ion, to nitrite. The quantity of nitrite formed by our preparations was, at most, equivalent to only 70% of the hydroxylamine added. Although the preparations had a strong phosphatase activity, resulting in a net loss of organic phosphate during the experimental period, P32-labeled inorganic phosphate was found to be incorporated into the organic fraction, including adenosine triphosphate (ATP) and adenosine diphosphate (ADP). The provision of hydroxylamine as substrate resulted in the formation of nitrite and an increased incorporation of P32 into the organic fraction. It is concluded that the chemosynthetic autotroph Nitrosomonas, in common with certain other autotrophic organisms and heterotrophs, is capable of converting energy released in the oxidation of its inorganic substrate into high-energy phosphate units (ATP and ADP) for the mediation of other energy-requiring reactions. The simultaneous formation of ATP and ADP is interpreted as evidence for an adenylate kinase activity. The preparations used exhibited a considerable endogenous incorporation of P32 into organic phosphate in the absence of added hydroxylamine. Cyanide inhibited both phosphorylation and the oxidation of hydroxylamine. Both the supernatant and particulate fractions of a Nitrosomonas extract subjected to centrifugal fields of 100,000 × g were active in phosphorylation and nitrite formation, but these activities appeared to be uncoupled in the particulate fraction and only partially coupled in the supernatant solution. This most likely reflects a significant endogenous respiration, and not a real lack of coupling between the two reactions. PMID:14016952

  5. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    PubMed

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.

  6. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham.

    PubMed

    Sindelar, J J; Cordray, J C; Sebranek, J G; Love, J A; Ahn, D U

    2007-08-01

    Vegetable juice powder (VJP) and a starter culture containing Staphylococcus carnosus have been identified as necessary ingredients for the manufacture of uncured, no-nitrate/nitrite-added meat products with quality and sensory attributes similar to traditional cured products. The objectives of this study were to determine the effects of varying concentrations of VJP and incubation time (MIN-HOLD) on quality characteristics, including lipid oxidation, color, and cured meat pigment concentrations, of ham over a 90-d storage period, compare residual nitrate and nitrite content, and determine if differences exist in sensory properties of finished products. Four ham treatments (TRT) (TRT 1: 0.20% VJP, 0 MIN-HOLD; TRT 2: 0.20% VJP, 120 MIN-HOLD; TRT 3: 0.35% VJP, 0 MIN-HOLD; TRT 4: 0.35% VJP, 120 MIN-HOLD) and a sodium nitrite-added control (C) were used for this study. No differences (P > 0.05) were observed between TRTs and C for CIE L*, a*, b*, and cured color measured by reflectance ratio. Lipid oxidation (TBARS) for combined TRTs and C revealed little change over time while the C had less (P < 0.05) lipid oxidation than TRTs 2 and 4 for combined days. No differences (P > 0.05) were reported for cured pigment concentration between TRTs and C. Trained sensory panel intensity ratings for ham and vegetable aroma, and flavor, color, and firmness showed that a high concentration (0.35%) of VJP resulted in the highest scores for undesirable vegetable aroma and flavor. Treatment combinations with a low concentration (0.20%) of VJP were comparable to the C for all sensory attributes.

  7. Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the Antarctic Ocean

    NASA Astrophysics Data System (ADS)

    Kemeny, P. C.; Weigand, M. A.; Zhang, R.; Carter, B. R.; Karsh, K. L.; Fawcett, S. E.; Sigman, D. M.

    2016-07-01

    In the Southern Ocean, the nitrogen (N) isotopes of organic matter and the N and oxygen (O) isotopes of nitrate (NO3-) have been used to investigate NO3- assimilation and N cycling in the summertime period of phytoplankton growth, both today and in the past. However, recent studies indicate the significance of processes in other seasons for producing the annual cycle of N isotope changes. This study explores the impact of fall conditions on the 15N/14N (δ15N) and 18O/16O (δ18O) of NO3- and nitrite (NO2-) in the Pacific Antarctic Zone using depth profiles from late summer/fall of 2014. In the mixed layer, the δ15N and δ18O of NO3- + NO2- increase roughly equally, as expected for NO3- assimilation; however, the δ15N of NO3--only (measured after NO2- removal) increases more than does NO3--only δ18O. Differencing indicates that NO2- has an extremely low δ15N, often < -70‰ versus air. These observations are consistent with the expression of an equilibrium N isotope effect between NO3- and NO2-, likely due to enzymatic NO3--NO2- interconversion. Specifically, we propose reversibility of the nitrite oxidoreductase (NXR) enzyme of nitrite oxidizers that, having been entrained from the subsurface during late summer mixed layer deepening, are inhibited by light. Our interpretation suggests a role for NO3--NO2- interconversion where nitrifiers are transported into environments that discourage NO2- oxidation. This may apply to surface regions with upwelling, such as the summertime Antarctic. It may also apply to oxygen-deficient zones, where NXR-catalyzed interconversion may explain previously reported evidence of NO2- oxidation.

  8. Simulations and Experiments Reveal the Relative Significance of the Free Chlorine/Nitrite Reaction in Chloraminated Systems - slides

    EPA Science Inventory

    Nitrification can be a problem in distribution systems where chloramines are used as secondary disinfectants. A very rapid monochloramine residual loss is often associated with the onset of nitrification. During nitrification, ammonia-oxidizing bacteria biologically oxidize fre...

  9. Impact of hemoglobin nitrite to nitric oxide reductase on blood transfusion for resuscitation from hemorrhagic shock.

    PubMed

    Brouse, Chad; Ortiz, Daniel; Su, Yan; Oronsky, Bryan; Scicinski, Jan; Cabrales, Pedro

    2015-01-01

    Transfusion of blood remains the gold standard for fluid resuscitation from hemorrhagic shock. Hemoglobin (Hb) within the red blood cell transports oxygen and modulates nitric oxide (NO) through NO scavenging and nitrite reductase. This study was designed to examine the effects of incorporating a novel NO modulator, RRx-001, on systemic and microvascular hemodynamic response after blood transfusion for resuscitation from hemorrhagic shock in a hamster window chamber model. In addition, to RRx-001 the role of low dose of nitrite (1 × 10(-9) moles per animal) supplementation after resuscitation was studied. Severe hemorrhage was induced by arterial controlled bleeding of 50% of the blood volume (BV) and the hypovolemic state was maintained for 1 h. The animals received volume resuscitation by an infusion of 25% of BV using fresh blood alone or with added nitrite, or fresh blood treated with RRx-001 (140 mg/kg) or RRx-001 (140 mg/kg) with added nitrite. Systemic and microvascular hemodynamics were followed at baseline and at different time points during the entire study. Tissue apoptosis and necrosis were measured 8 h after resuscitation to correlate hemodynamic changes with tissue viability. Compared to resuscitation with blood alone, blood treated with RRx-001 decreased vascular resistance, increased blood flow and functional capillary density immediately after resuscitation and preserved tissue viability. Furthermore, in RRx-001 treated animals, both mean arterial pressure (MAP) and met Hb were maintained within normal levels after resuscitation (MAP >90 mmHg and metHb <2%). The addition of nitrite to RRx-001 did not significantly improve the effects of RRx-001, as it increased methemoglobinemia and lower MAP. RRx-001 alone enhanced perfusion and reduced tissue damage as compared to blood; it may serve as an adjunct therapy to the current gold standard treatment for resuscitation from hemorrhagic shock.

  10. Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate.

    PubMed

    Peng, Lai; Carvajal-Arroyo, José M; Seuntjens, Dries; Prat, Delphine; Colica, Giovanni; Pintucci, Cristina; Vlaeminck, Siegfried E

    2017-12-15

    The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N 2 O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (COD rem /N rem ). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N 2 O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O 2 /L; COD rem /N rem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O 2 /L) lowered the aerobic N 2 O emission and weakened the dependency on nitrite concentration, suggesting a shift in N 2 O production pathway. The most effective N 2 O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low COD rem /N rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas.

    PubMed

    Chamizo-Ampudia, Alejandro; Sanz-Luque, Emanuel; Llamas, Ángel; Ocaña-Calahorro, Francisco; Mariscal, Vicente; Carreras, Alfonso; Barroso, Juan B; Galván, Aurora; Fernández, Emilio

    2016-10-01

    Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it. © 2016 John Wiley & Sons Ltd.

  12. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults

    PubMed Central

    DeVan, Allison E.; Cruickshank-Quinn, Charmion; Reisdorph, Nichole; Bassett, Candace J.; Evans, Trent D.; Brooks, Forrest A.; Bryan, Nathan S.; Chonchol, Michel B.; Giordano, Tony; McQueen, Matthew B.; Seals, Douglas R.

    2015-01-01

    Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 or 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging. PMID:26626856

  13. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    PubMed

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-04-29

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

  14. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir.

    PubMed

    Long, Yan; Liu, Changbao; Lin, Hengliang; Li, Ningning; Guo, Qingwei; Xie, Shuguang

    2017-06-01

    In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0-5 cm, 5-10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 10 5 to 8.24 × 10 5 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32-2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from "Candidatus Methylomirabilis oxyfera". Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.

  15. NC10 bacteria in marine oxygen minimum zones

    PubMed Central

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling. PMID:26918666

  16. Reactive transport modeling of nitrogen in Seine River sediments

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  17. The role of natural organic matter in nitrite formation by LP-UV/H2O2 treatment of nitrate-rich water.

    PubMed

    Semitsoglou-Tsiapou, Sofia; Mous, Astrid; Templeton, Michael R; Graham, Nigel J D; Hernández Leal, Lucía; Kruithof, Joop C

    2016-12-01

    The role of natural organic matter (NOM) on nitrite formation from nitrate photolysis by low pressure ultraviolet lamp (LP-UV) photolysis and LP-UV/H 2 O 2 treatment was investigated. Nitrate levels up to the WHO guideline maximum of 50 mg NO 3 - /L were used in tests. The presence of 4 mg/L Suwannee River natural organic matter (NOM) led to increased nitrite yields compared to NOM-free controls. This was caused partly by NOM scavenging of OH radicals, preserving the produced NO 2 - as well as the ONOO - that leads to NO 2 - formation, but also via the production of radical species ( 1 O 2 , O 2 - and OH) by the photolysis of NOM. In addition, solvated electrons formed by NOM photolysis may reduce nitrate directly to nitrite. For comparison, Nordic Lake NOM, representative of aquatic NOM, as well as Pony Lake NOM, which had a greater nitrogen content (6.51% w/w) than the other two types of NOM, were investigated, yielding similar nitrite levels as Suwannee River NOM. The results suggest that neither the type nor the nitrogen content of the NOM have an effect on the nitrite yields obtained over the range of UV/H 2 O 2 doses applied (UV fluences of 500-2100 mJ/cm 2 and hydrogen peroxide doses of 10, 25, and 50 mg/L). The findings indicate that for UV fluences above 1500 mJ/cm 2 the resulting nitrite concentration can exceed the 0.1 mg/L EU regulatory limit for nitrite, suggesting that nitrite formation by LP-UV advanced oxidation of nitrate-rich waters is important to consider. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Short-term treatment with nitrate is not sufficient to induce in vivo antithrombotic effects in rats and mice.

    PubMed

    Kramkowski, K; Leszczynska, A; Przyborowski, K; Proniewski, B; Marcinczyk, N; Rykaczewska, U; Jarmoc, D; Chabielska, E; Chlopicki, S

    2017-01-01

    In humans, short-term supplementation with nitrate is hypotensive and inhibits platelet aggregation via an nitric oxide (NO)-dependent mechanism. In the present work, we analyzed whether short-term treatment with nitrate induces antithrombotic effects in rats and mice. Arterial thrombosis was evoked electrically in a rat model in which renovascular hypertension was induced by partial ligation of the left renal artery. In mice expressing green fluorescent protein, laser-induced thrombosis was analyzed intravitally by using confocal microscope. Sodium nitrate (NaNO 3 ) or sodium nitrite (NaNO 2 ) was administered orally at a dose of 0.17 mmol/kg, twice per day for 3 days. Short-term nitrate treatment did not modify thrombus formation in either rats or mice, while nitrite administration led to pronounced antithrombotic activity. In hypertensive rats, nitrite treatment resulted in a significant decrease in thrombus weight (0.50 ± 0.08 mg vs. VEH 0.96 ± 0.09 mg; p < 0.01). In addition, nitrite inhibited ex vivo platelet aggregation and thromboxane B 2 (TxB 2 ) generation and prolonged prothrombin time. These effects were accompanied by significant increases in blood NOHb concentration and plasma nitrite concentration. In contrast, nitrate did not affect ex vivo platelet aggregation or prothrombin time and led to only slightly elevated nitrite plasma concentration. In mice, nitrate was also ineffective, while nitrite led to decreased platelet accumulation in the area of laser-induced endothelial injury. In conclusion, although nitrite induced profound NO-dependent antithrombotic effects in vivo, conversion of nitrates to nitrite in rats and mice over short-term 3-day treatment was not sufficient to elicit NO-dependent antiplatelet or antithrombotic effects.

  19. Nitrogen polishing in a fully anoxic anammox MBBR treating mainstream nitritation-denitritation effluent.

    PubMed

    Regmi, Pusker; Holgate, Becky; Miller, Mark W; Park, Hongkeun; Chandran, Kartik; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B

    2016-03-01

    As nitrogen discharge limits are becoming more stringent, short-cut nitrogen systems and tertiary nitrogen polishing steps are gaining popularity. For partial nitritation or nitritation-denitritation systems, anaerobic ammonia oxidation (anammox) polishing may be feasible to remove residual ammonia and nitrite from the effluent. Nitrogen polishing of mainstream nitritation-denitritation system effluent via anammox was studied at 25°C in a fully anoxic moving bed bioreactor (MBBR) (V = 0.45 m(3) ) over 385 days. Unlike other anammox based processes, a very fast startup of anammox MBBR was demonstrated, despite nitrite limited feeding conditions (influent nitrite = 0.7 ± 0.59 mgN/L, ammonia = 6.13 ± 2.86 mgN/L, nitrate = 3.41 ± 1.92 mgN/L). The nitrogen removal performance was very stable within a wide range of nitrogen inputs. Anammox bacteria (AMX) activity up to 1 gN/m(2) /d was observed which is comparable to other biofilm-based systems. It is generally believed that nitrate production limits nitrogen removal through AMX metabolism. However, in this study, anammox MBBR demonstrated ammonia, nitrite, and nitrate removal at limited chemical oxygen demand (COD) availability. AMX and heterotrophs contributed to 0.68 ± 0.17 and 0.32 ± 0.17 of TIN removal, respectively. It was speculated that nitrogen removal might be aided by denitratation which could be due to heterotrophs or the recently discovered ability for AMX to use short-chain fatty acids to reduce nitrate to nitrite. This study demonstrates the feasibility of anammox nitrogen polishing in an MBBR is possible for nitritation-denitration systems. © 2015 Wiley Periodicals, Inc.

  20. A Critical Role for the cccA Gene Product, Cytochrome c2, in Diverting Electrons from Aerobic Respiration to Denitrification in Neisseria gonorrhoeae

    PubMed Central

    Hopper, Amanda C.; Li, Ying

    2013-01-01

    Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae. PMID:23543713

Top