NASA Astrophysics Data System (ADS)
Musa, I.; Nyoman Pujawan, I.
2018-04-01
Current supply chain management (SCM) has become a potentially treasured way of safeguarding competitive advantage and improving organizational performance since competition is no longer between organizations, but among supply chains. This research conceptualizes and develops four resiliency practices (Flexibility, Redundancy, Collaboration and Agility) and tests the relationships between organizations’ financial performance and competitive advantage in manufacturing firms. The study involves manufacturing firms in Indonesia and Sierra Leone. The study used stratified random sampling to pick a sample size of 95 manufacturing firms, which represented different industrial sectors. The respondents were mainly managers of different manufacturing companies. The relationships proposed in the conceptual framework were tested using correlation analysis. The results indicate that higher levels of resilience practices in manufacturing firms can lead to enhanced competitive advantage and improved financial performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, andmore » intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.« less
High Performance Computing Innovation Service Portal Study (HPC-ISP)
2009-04-01
threatened by global competition. It is essential that these suppliers remain competitive and maintain their technological advantage . In this increasingly...place themselves, as well as customers who rely on them, in competitive jeopardy. Despite the potential competitive advantage associated with adopting...computing users into the HPC fold and to enable more entry-level users to exploit HPC more fully for competitive advantage . About half of the surveyed
2016-03-01
Tinker DRA-3 Chem. Ox. Potassium permanganate 10 2.2 Advantages and Limitations Potential advantages and disadvantages of our dataset, and...Washington DC. Thomson, N.R., E.D. Hood, and G.J. Farquhar, 2007. “ Permanganate Treatment of an Emplaced DNAPL Source,” Ground Water Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.
2015-01-14
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from color mixed emitters is equally challenging formore » both LEDs and LDs, with neither source having a direct advantage. Fourth, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. Finally, the smaller area and higher current density operation of LDs provides them with a potential cost advantage over LEDs. These advantages make LDs a compelling source for future SSL.« less
Galosi, Andrea Benedetto; Muzzonigro, Giovanni; Lacetera, Vito; Mazzucchelli, Roberta
2011-01-01
The aim of this paper is to identify advantages that could be obtained by orientation of the biopsy specimen using the marking technique. We reviewed our experience (4,500 cases) and the published literature. The peripheral (proximal) end of the fresh specimen is marked with ink soon after needle delivering in a few minutes. It is performed easily in association with pre-embedding method. Five potential clinical advantages were identified: (1) tumor localization, (2) atypical lesions localization and planning rebiopsy strategy, (3) planning surgical strategy, (4) selection criteria for focal therapy and active surveillance, and (5) cost reduction. Peripheral end marking is low cost, easy and reproducible. It drives several potential advantages in cancer diagnosis or isolated atypical lesions, in particular, spatial localization within the biopsy (transition versus peripheral zone, anterior versus posterior, subcapsular versus intraparenchima, and extraprostatic extension) should be easy and reliable. We can add a new pathological parameter: pathological orientation or biopsy polarity. PMID:22096654
Leveraging business intelligence to make better decisions: Part I.
Reimers, Mona
2014-01-01
Data is the new currency. Business intelligence tools will provide better performing practices with a competitive intelligence advantage that will separate the high performers from the rest of the pack. Given the investments of time and money into our data systems, practice leaders must work to take every advantage and look at the datasets as a potential goldmine of business intelligence decision tools. A fresh look at decision tools created from practice data will create efficiencies and improve effectiveness for end-users and managers.
Wierer, Jonathan; Tsao, Jeffrey Y.
2014-09-01
III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less
Transnasal endoscopy: Technical considerations, advantages and limitations.
Atar, Mustafa; Kadayifci, Abdurrahman
2014-02-16
Transnasal endoscopy (TNE) is an upper endoscopy method which is performed by the nasal route using a thin endoscope less than 6 mm in diameter. The primary goal of this method is to improve patient tolerance and convenience of the procedure. TNE can be performed without sedation and thus eliminates the risks associated with general anesthesia. In this way, TNE decreases the cost and total duration of endoscopic procedures, while maintaining the image quality of standard caliber endoscopes, providing good results for diagnostic purposes. However, the small working channel of the ultra-thin endoscope used for TNE makes it difficult to use for therapeutic procedures except in certain conditions which require a thinner endoscope. Biopsy is possible with special forceps less than 2 mm in diameter. Recently, TNE has been used for screening endoscopy in Far East Asia, including Japan. In most controlled studies, TNE was found to have better patient tolerance when compared to unsedated endoscopy. Nasal pain is the most significant symptom associated with endoscopic procedures but can be reduced with nasal pretreatment. Despite the potential advantage of TNE, it is not common in Western countries, usually due to a lack of training in the technique and a lack of awareness of its potential advantages. This paper briefly reviews the technical considerations as well as the potential advantages and limitations of TNE with ultra-thin scopes.
Transnasal endoscopy: Technical considerations, advantages and limitations
Atar, Mustafa; Kadayifci, Abdurrahman
2014-01-01
Transnasal endoscopy (TNE) is an upper endoscopy method which is performed by the nasal route using a thin endoscope less than 6 mm in diameter. The primary goal of this method is to improve patient tolerance and convenience of the procedure. TNE can be performed without sedation and thus eliminates the risks associated with general anesthesia. In this way, TNE decreases the cost and total duration of endoscopic procedures, while maintaining the image quality of standard caliber endoscopes, providing good results for diagnostic purposes. However, the small working channel of the ultra-thin endoscope used for TNE makes it difficult to use for therapeutic procedures except in certain conditions which require a thinner endoscope. Biopsy is possible with special forceps less than 2 mm in diameter. Recently, TNE has been used for screening endoscopy in Far East Asia, including Japan. In most controlled studies, TNE was found to have better patient tolerance when compared to unsedated endoscopy. Nasal pain is the most significant symptom associated with endoscopic procedures but can be reduced with nasal pretreatment. Despite the potential advantage of TNE, it is not common in Western countries, usually due to a lack of training in the technique and a lack of awareness of its potential advantages. This paper briefly reviews the technical considerations as well as the potential advantages and limitations of TNE with ultra-thin scopes. PMID:24567791
Evaluation of the Performance of Warm Mix Asphalt in Washington State
DOT National Transportation Integrated Search
2012-10-01
Warm mix asphalt (WMA) is a relatively new and emerging technology for the asphalt industry. : It offers potential construction and environmental advantages over traditional hot mix asphalt : (HMA). However, WMA must perform at least as well as HMA b...
Jaafaripooyan, Ebrahim
2014-01-01
Background: Performance evaluation is essential to quality improvement in healthcare. The current study has identified the potential pros and cons of external healthcare evaluation programs, utilizing them subsequently to look into the merits of a similar case in a developing country. Methods: A mixed method study employing both qualitative and quantitative data collection and analysis techniques was adopted to achieve the study end. Subject Matter Experts (SMEs) and professionals were approached for two-stage process of data collection. Results: Potential advantages included greater attractiveness of high accreditation rank healthcare organizations to their customers/purchasers and boosted morale of their personnel. Downsides, as such, comprised the programs’ over-reliance on value judgment of surveyors, routinization and incurring undue cost on the organizations. In addition, the improved, standardized care processes as well as the judgmental nature of program survey were associated, as pros and cons, to the program investigated by the professionals. Conclusion: Besides rendering a tentative assessment of Iranian hospital evaluation program, the study provides those running external performance evaluations with a lens to scrutinize the virtues of their own evaluation systems through identifying the potential advantages and drawbacks of such programs. Moreover, the approach followed could be utilized for performance assessment of similar evaluation programs. PMID:25279381
Jaafaripooyan, Ebrahim
2014-09-01
Performance evaluation is essential to quality improvement in healthcare. The current study has identified the potential pros and cons of external healthcare evaluation programs, utilizing them subsequently to look into the merits of a similar case in a developing country. A mixed method study employing both qualitative and quantitative data collection and analysis techniques was adopted to achieve the study end. Subject Matter Experts (SMEs) and professionals were approached for two-stage process of data collection. Potential advantages included greater attractiveness of high accreditation rank healthcare organizations to their customers/purchasers and boosted morale of their personnel. Downsides, as such, comprised the programs' over-reliance on value judgment of surveyors, routinization and incurring undue cost on the organizations. In addition, the improved, standardized care processes as well as the judgmental nature of program survey were associated, as pros and cons, to the program investigated by the professionals. Besides rendering a tentative assessment of Iranian hospital evaluation program, the study provides those running external performance evaluations with a lens to scrutinize the virtues of their own evaluation systems through identifying the potential advantages and drawbacks of such programs. Moreover, the approach followed could be utilized for performance assessment of similar evaluation programs.
Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry
NASA Technical Reports Server (NTRS)
Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul
2003-01-01
Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.
Activated Carbon Fibers For Gas Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C
The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability ofmore » NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.« less
Digital signature feasibility study
DOT National Transportation Integrated Search
2008-06-01
The purpose of this study was to assess the advantages and disadvantages of using digital signatures to assist the Arizona Department of Transportation in conducting business. The Department is evaluating the potential of performing more electronic t...
Optical computation using residue arithmetic.
Huang, A; Tsunoda, Y; Goodman, J W; Ishihara, S
1979-01-15
Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.
Thoracoscopic versus robotic approaches: advantages and disadvantages.
Wei, Benjamin; D'Amico, Thomas A
2014-05-01
The overall advantages of thoracoscopy over thoracotomy in terms of patient recovery have been fairly well established. The use of robotics, however, is a newer and less proven modality in the realm of thoracic surgery. Robotics offers distinct advantages and disadvantages in comparison with video-assisted thoracoscopic surgery. Robotic technology is now used for a variety of complex cardiac, urologic, and gynecologic procedures including mitral valve repair and microsurgical treatment of male infertility. This article addresses the potential benefits and limitations of using the robotic platform for the performance of a variety of thoracic operations. Copyright © 2014 Elsevier Inc. All rights reserved.
Technology requirements for GaAs photovoltaic arrays
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Rockey, D.
1981-01-01
An analysis based on percent GaAs solar cell weight and cost is performed to assess the utility of this cell for future space missions. It is shown that the GaAs substrate cost and the end-of-life (EOL) advantage the cell can provide over the space qualified silicon solar cell are the dominant factors determining potential use. Examples are presented to show that system level advantages resulting from reduction in solar panel area may warrant the use of GaAs at its current weight and projected initial cost provided the EOL advantage over silicon is at least 20 percent.
Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan
2016-03-28
Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.
New Synthesis Of High-Performance Bismaleimides
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Lowther, Sharon; Cannon, Michelle; Smith, Janice; Whitely, Karen
1991-01-01
New general synthesis of tough and easy-to-process high-performance bismaleimides (BMI's) developed. Involves reaction of acetylene-terminated compounds with BMI's or biscitraconimides. Offers matrix resins and adhesives having combined advantages of toughness characteristic of thermoplastics and easy processability characteristic of thermosetting materials. Scheme has potential for providing high-performance matrix resins surviving well at high temperatures and absorb little moisture.
Samuel V. Glass; Borjen Yeh; Benjamin J. Herzog
2016-01-01
Continuous exterior insulation on above-grade walls is becoming more common in many parts of North America. It is generally accepted that exterior insulation provides advantages for energy performance, by reducing thermal bridging, and for moisture performance, by warming the wood structural members, thereby reducing the potential for wintertime moisture accumulation....
Technical assessment of maglev system concepts. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lever, J.H.
1998-10-01
The Government Maglev System Assessment Team operated from 1991 to 1993 as part of the National Maglev Initiative. They assessed the technical viability of four US Maglev system concepts, using the French TGV high speed train and the German TR07 Maglev system as assessment baselines. Maglev in general offers advantages that include high speed potential, excellent system control, high capacity, low energy consumption, low maintenance, modest land requirements, low operating costs, and ability to meet a variety of transportation missions. Further, the US Maglev concepts could provide superior performance to TR07 for similar cost or similar performance for less cost.more » They also could achieve both lower trip times and lower energy consumption along typical US routes. These advantages result generally from the use of large gap magnetic suspensions, more powerful linear synchronous motors and tilting vehicles. Innovative concepts for motors, guideways, suspension, and superconducting magnets all contribute to a potential for superior long term performance of US Maglev systems compared with TGV and TR07.« less
NASA Astrophysics Data System (ADS)
Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan
2016-03-01
Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency. Electronic supplementary information (ESI) available: Video records of the actuation process of the transparent wiper and the grabbing-releasing process of the transparent robot ``hand'', transmittance spectra of the PET and BOPP films, the SEM image showing the thickness of the SACNT sheet, calculation of the curvature, calculation of energy efficiency, experimental results of the control experiment, modeling of the SACNT/PET and PET/BOPP composites and experimental results of the repeatability test. See DOI: 10.1039/c5nr07237a
van Meer, R; Gritsenko, O V; Baerends, E J
2014-10-14
In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).
Solar thermal upper stage: Economic advantage and development status
NASA Technical Reports Server (NTRS)
Adams, Alan M.
1995-01-01
A solar thermal upper stage (STUS) is envisioned as a propulsive concept for the future. The STUS will be used for low Earth orbit (LEO) to geostationary-Earth orbit (GEO) transfer and for planetary exploration missions. The STUS offers significant performance gains over conventional chemical propulsion systems. These performance gains translate into a more economical, more efficient method of placing useful payloads in space and maximizing the benefits derived from space activity. This paper will discuss the economical advantages of an STUS compared to conventional chemical propulsion systems, the potential market for an STUS, and the recent activity in the development of an STUS. The results of this assessment combined with the performance gains, will provide a strong justification for the development of an STUS.
Potential of vegetable oils for lubricants
USDA-ARS?s Scientific Manuscript database
Vegetable oils offer significant advantages in terms of resource renewability, biodegradability, and comparable performance properties to petroleum-based products. The petroleum-based lubricants render unfavorable impact on the environment. With the growing environmental concerns, seed oils are find...
Optical fiber sensors: Accelerating applications in Navy ships
NASA Astrophysics Data System (ADS)
Day, G. W.; Lovely, P. S.; Whitesel, H. K.; Hickernell, R. K.
1994-05-01
The Navy needs new sensors for shipboard machinery monitoring and control, condition-based maintenance, and damage assessment. Optical fiber sensors are strongly preferred because of their immunity to electrical disturbances, as well as potential size, weight, and performance advantages. But despite well over a decade of development and promise, relatively few optical fiber sensors available today can meet the Navy's needs with acceptable performance and cost. This report examines the reasons and recommends strategies to help the Navy achieve its goals. Some of the recommendations confirm approaches that the Navy is already implementing. Optical fiber sensors have very valuable potential advantages, but those that the Navy can use may remain too expensive to be deployed if the Navy uses traditional methods of writing specifications and soliciting development and procurement bids. For this reason, the study focuses on cooperation with industry and promoting commercial off-the-shelf and dual-use technology.
Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.
Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun
2016-05-20
To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Hu, Po
2007-01-01
This paper is to explore potential new underlying theory of strategic human resource development based on critiques of current theoretical foundations of HRD. It offers a new definition and model of Strategic HRD based on resource-based view of firm and human resource, with linkage to financial performance and competitiveness. Proposed new model…
Spatial Ability Mediates the Gender Difference in Middle School Students' Science Performance
ERIC Educational Resources Information Center
Ganley, Colleen M.; Vasilyeva, Marina; Dulaney, Alana
2014-01-01
Prior research has demonstrated a male advantage in spatial skills and science achievement. The present research integrated these findings by testing the potential role of spatial skills in gender differences in the science performance of eighth-grade students (13-15 years old). In "Study 1" (N = 113), the findings showed that mental…
Exploring flight crew behaviour
NASA Technical Reports Server (NTRS)
Helmreich, R. L.
1987-01-01
A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.
Exploring flightcrew behaviour
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1987-01-01
A program of research into the determinants of flightcrew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.
Fussell, Nicola J; Rowe, Angela C; Mohr, Christine
2012-01-01
The reliance in experimental psychology on testing undergraduate populations with relatively little life experience, and/or ambiguously valenced stimuli with varying degrees of self-relevance, may have contributed to inconsistent findings in the literature on the valence hypothesis. To control for these potential limitations, the current study assessed lateralised lexical decisions for positive and negative attachment words in 40 middle-aged male and female participants. Self-relevance was manipulated in two ways: by testing currently married compared with previously married individuals and by assessing self-relevance ratings individually for each word. Results replicated a left hemisphere advantage for lexical decisions and a processing advantage of emotional over neutral words but did not support the valence hypothesis. Positive attachment words yielded a processing advantage over neutral words in the right hemisphere, while emotional words (irrespective of valence) yielded a processing advantage over neutral words in the left hemisphere. Both self-relevance manipulations were unrelated to lateralised performance. The role of participant sex and age in emotion processing are discussed as potential modulators of the present findings.
2017-09-01
that Yield Novel Therapeutic Advantages PRINCIPAL INVESTIGATOR: Rehan Akbani CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer ...mdanderson.org, jajani@mdanderson.org 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The University of Texas MD Anderson Cancer Center...is the study of gastric cancer , where the purpose is to reveal new insights into the biology of the disease that could potentially have therapeutic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ning; Yang, Yang; Cai, Hao
This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well tomore » wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.« less
The 71F Advantage: Applying Army Research Psychology for Health and Performance Gains
2010-08-01
for an accident investigator to enter work and sleep data into a laptop program while in the field and get a comprehensive report of potential ... potentially modifiable stresses Soldiers face is lack of sleep. While it may not be possible to eliminate sleep loss during military operations, it is impor...establishing goals, identifying potential solutions, systematically evaluating all possible solutions, selecting and exe- cuting a solution, and
European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Shen, Bo; Keinath, Chris
2017-01-01
High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less
Role of body-worn movement monitor technology for balance and gait rehabilitation.
Horak, Fay; King, Laurie; Mancini, Martina
2015-03-01
This perspective article will discuss the potential role of body-worn movement monitors for balance and gait assessment and treatment in rehabilitation. Recent advances in inexpensive, wireless sensor technology and smart devices are resulting in an explosion of miniature, portable sensors that can quickly and accurately quantify body motion. Practical and useful movement monitoring systems are now becoming available. It is critical that therapists understand the potential advantages and limitations of such emerging technology. One important advantage of obtaining objective measures of balance and gait from body-worn sensors is impairment-level metrics characterizing how and why functional performance of balance and gait activities are impaired. Therapy can then be focused on the specific physiological reasons for difficulty in walking or balancing during specific tasks. A second advantage of using technology to measure balance and gait behavior is the increased sensitivity of the balance and gait measures to document mild disability and change with rehabilitation. A third advantage of measuring movement, such as postural sway and gait characteristics, with body-worn sensors is the opportunity for immediate biofeedback provided to patients that can focus attention and enhance performance. In the future, body-worn sensors may allow therapists to perform telerehabilitation to monitor compliance with home exercise programs and the quality of their natural mobility in the community. Therapists need technological systems that are quick to use and provide actionable information and useful reports for their patients and referring physicians. Therapists should look for systems that provide measures that have been validated with respect to gold standard accuracy and to clinically relevant outcomes such as fall risk and severity of disability. © 2015 American Physical Therapy Association.
Role of Body-Worn Movement Monitor Technology for Balance and Gait Rehabilitation
King, Laurie; Mancini, Martina
2015-01-01
This perspective article will discuss the potential role of body-worn movement monitors for balance and gait assessment and treatment in rehabilitation. Recent advances in inexpensive, wireless sensor technology and smart devices are resulting in an explosion of miniature, portable sensors that can quickly and accurately quantify body motion. Practical and useful movement monitoring systems are now becoming available. It is critical that therapists understand the potential advantages and limitations of such emerging technology. One important advantage of obtaining objective measures of balance and gait from body-worn sensors is impairment-level metrics characterizing how and why functional performance of balance and gait activities are impaired. Therapy can then be focused on the specific physiological reasons for difficulty in walking or balancing during specific tasks. A second advantage of using technology to measure balance and gait behavior is the increased sensitivity of the balance and gait measures to document mild disability and change with rehabilitation. A third advantage of measuring movement, such as postural sway and gait characteristics, with body-worn sensors is the opportunity for immediate biofeedback provided to patients that can focus attention and enhance performance. In the future, body-worn sensors may allow therapists to perform telerehabilitation to monitor compliance with home exercise programs and the quality of their natural mobility in the community. Therapists need technological systems that are quick to use and provide actionable information and useful reports for their patients and referring physicians. Therapists should look for systems that provide measures that have been validated with respect to gold standard accuracy and to clinically relevant outcomes such as fall risk and severity of disability. PMID:25504484
A Male Advantage for Spatial and Object but Not Verbal Working Memory Using the N-Back Task
ERIC Educational Resources Information Center
Lejbak, Lisa; Crossley, Margaret; Vrbancic, Mirna
2011-01-01
Sex-related differences have been reported for performance and neural substrates on some working memory measures that carry a high cognitive load, including the popular n-back neuroimaging paradigm. Despite some evidence of a sex effect on the task, the influence of sex on performance represents a potential confound in neuroimaging research. The…
AN ELECTROSTATIC PRECIPITATOR BACKUP FOR SAMPLING SYSTEMS
The report describes a program carried out to design and evaluate the performance of an electrostatic collector to be used as an alternative to filters as a fine particle collector. Potential advantages of an electrostatic precipitator are low pressure drop and high capacity. Pot...
Beryllium implosion experiments at high case-to-capsule ratio on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Zylstra, Alex; Yi, Austin; Kline, John; Kyrala, George; Loomis, Eric; Perry, Ted; Shah, Rahul; Batha, Steve; MacLaren, Steve; Ralph, Joe; Salmonson, Jay; Masse, Laurent; Nikroo, Abbas; Stadermann, Michael; Callahan, Debbie; Hurricane, Omar; Rice, Neal; Huang, Haibo; Kong, Casey
2017-10-01
Using beryllium as an ablator material has several potential advantages for inertial fusion because of its low opacity and thus higher ablation rate. This could enable novel designs taking advantage of the reduced ablation-front growth rate, or operating at lower radiation temperature. To investigate the integrated performance of beryllium implosions, we conducted a tuning campaign leading into DT layered implosions using a 900um radius capsule in a 6.72mm diameter hohlraum (case-to-capsule ratio CCR=3.7); the large CCR enables direct study of the 1-D implosion performance. The tuning campaign shots demonstrate excellent control over the shock timing and implosion symmetry at this CCR. Performance data from the DT experiments will also be discussed. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.
[Advantages and disadvantages of direct-to-consumer genetic tests].
Christiansen, Camilla Worm; Gerdes, Anne-Marie Axø
2017-03-13
Direct-to-consumer genetic tests are sold over the internet to consumers all over the world - including Denmark. No regulation of these tests has been introduced neither in Denmark nor in Europe, even though they have been on the market since 2007. Such tests have several advantages, but indeed also a long list of potential disadvantages, which are most often ignored, and among these is insufficient training of general practitioners in performing the necessary counselling but also the risk of increased expenses to unnecessary follow-up consultations.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1980-01-01
An analysis of the potential capabilities of a spectrally diversified DIAL technique for monitoring atmospheric species is presented assuming operation from an earth-orbiting platform. Emphasis is given to the measurement accuracies and spatial and temporal resolutions required to meet present atmospheric science objectives. The discussion points out advantages of spectral diversity to perform comprehensive studies of the atmosphere; in general it is shown that IR systems have an advantage in lower atmospheric measurements, while UV systems are superior for middle and upper atmospheric measurements.
NASA Astrophysics Data System (ADS)
van Beurden, Maurice H. P. H.; Ijsselsteijn, Wijnand A.; de Kort, Yvonne A. W.
2011-03-01
Stereoscopic displays are known to offer a number of key advantages in visualizing complex 3D structures or datasets. The large majority of studies that focus on evaluating stereoscopic displays for professional applications use completion time and/or the percentage of correct answers to measure potential performance advantages. However, completion time and accuracy may not fully reflect all the benefits of stereoscopic displays. In this paper, we argue that perceived workload is an additional valuable indicator reflecting the extent to which users can benefit from using stereoscopic displays. We performed an experiment in which participants were asked to perform a visual path-tracing task within a convoluted 3D wireframe structure, varying in level of complexity of the visualised structure and level of disparity of the visualisation. The results showed that an optimal performance (completion time, accuracy and workload), depend both on task difficulty and disparity level. Stereoscopic disparity revealed a faster and more accurate task performance, whereas we observed a trend that performance on difficult tasks stands to benefit more from higher levels of disparity than performance on easy tasks. Perceived workload (as measured using the NASA-TLX) showed a similar response pattern, providing evidence that perceived workload is sensitive to variations in disparity as well as task difficulty. This suggests that perceived workload could be a useful concept, in addition to standard performance indicators, in characterising and measuring human performance advantages when using stereoscopic displays.
Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber
USDA-ARS?s Scientific Manuscript database
The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...
The Impact of Participation in Music on Learning Mathematics
ERIC Educational Resources Information Center
Holmes, Sylwia; Hallam, Susan
2017-01-01
Music psychologists have established that some forms of musical activity improve intellectual performance, spatial-temporal reasoning and other skills advantageous for learning. In this research, the potential of active music-making for improving pupils' achievement in spatial- temporal reasoning was investigated. As spatial-temporal skills are…
48 CFR 2009.570-2 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... work to be performed under an NRC contract which: (1) May diminish its capacity to give impartial, technically sound, objective assistance and advice, or may otherwise result in a biased work product; or (2) May result in its being given an unfair competitive advantage. Potential conflict of interest means...
48 CFR 2009.570-2 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... work to be performed under an NRC contract which: (1) May diminish its capacity to give impartial, technically sound, objective assistance and advice, or may otherwise result in a biased work product; or (2) May result in its being given an unfair competitive advantage. Potential conflict of interest means...
Svärd, Joakim; Wiens, Stefan; Fischer, Håkan
2012-01-01
In the aging literature it has been shown that even though emotion recognition performance decreases with age, the decrease is less for happiness than other facial expressions. Studies in younger adults have also revealed that happy faces are more strongly attended to and better recognized than other emotional facial expressions. Thus, there might be a more age independent happy face advantage in facial expression recognition. By using a backward masking paradigm and varying stimulus onset asynchronies (17–267 ms) the temporal development of a happy face advantage, on a continuum from low to high levels of visibility, was examined in younger and older adults. Results showed that across age groups, recognition performance for happy faces was better than for neutral and fearful faces at durations longer than 50 ms. Importantly, the results showed a happy face advantage already during early processing of emotional faces in both younger and older adults. This advantage is discussed in terms of processing of salient perceptual features and elaborative processing of the happy face. We also investigate the combined effect of age and neuroticism on emotional face processing. The rationale was previous findings of age-related differences in physiological arousal to emotional pictures and a relation between arousal and neuroticism. Across all durations, there was an interaction between age and neuroticism, showing that being high in neuroticism might be disadvantageous for younger, but not older adults’ emotion recognition performance during arousal enhancing tasks. These results indicate that there is a relation between aging, neuroticism, and performance, potentially related to physiological arousal. PMID:23226135
Potential advantages of solar electric propulsion for outer planet orbiters.
NASA Technical Reports Server (NTRS)
Sauer, C. G.; Atkins, K. L.
1972-01-01
Past studies of solar electric propulsion for outer planet orbiters have generally emphasized the advantages of flight time reduction and payload increases. However, several subtle advantages exist, which may become important in an environment of increasingly difficult requirements as ways to extend current technology are sought. These advantages accrue primarily because of the inherent capability, unique to electric propulsion, to efficiently shape a trajectory while enroute. Stressed in this paper are: the ability to meet orbital constraints due to assumed radiation belts, science flexibility in a dual launch program, increased numbers of observational passes, and the lengthening of launch periods. These are examined for years representative of relatively easy and difficult ballistic missions. The results indicate that an early investment in solar electric technology will provide a strong performance foundation for a long range outer planet exploration program which evolves from current spacecraft technology.
Steam injection for in-situ remediation of DNAPLs in low permeability media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleep, B.
1996-08-01
The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPLmore » in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.« less
Techno-economic requirements for composite aircraft components
NASA Technical Reports Server (NTRS)
Palmer, Ray
1993-01-01
The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.
7 CFR 17.6 - Discounts, fees, commissions and payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the supplier; (ii) Give the supplier a competitive advantage in relation to other potential suppliers... anything given in return for any consideration, services, or benefits received or to be received. (a... acted as a selling agent to obtain a contract even though the payment may be for services performed that...
High surface area, low weight composite nickel fiber electrodes
NASA Technical Reports Server (NTRS)
Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.
1993-01-01
The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.
Operations planning simulation: Model study
NASA Technical Reports Server (NTRS)
1974-01-01
The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.
Chemical Microthruster Options
NASA Technical Reports Server (NTRS)
DeGroot, Wim; Oleson, Steve
1996-01-01
Chemical propulsion systems with potential application to microsatellites are classified by propellant phase, i.e. gas, liquid, or solid. Four promising concepts are selected based on performance, weight, size, cost, and reliability. The selected concepts, in varying stages of development, are advanced monopropellants, tridyne(TM), electrolysis, and solid gas generator propulsion. Tridyne(TM) and electrolysis propulsion are compared vs. existing cold gas and monopropellant systems for selected microsatellite missions. Electrolysis is shown to provide a significant weight advantage over monopropellant propulsion for an orbit transfer and plane change mission. Tridyne(TM) is shown to provide a significant advantage over cold gas thrusters for orbit trimming and spacecraft separation.
Woods, Sarah; Taylor, Betsy
2013-12-01
Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.
Line Fluid Actuated Valve Development Program. [for application on the space shuttle
NASA Technical Reports Server (NTRS)
Lynch, R. A.
1975-01-01
The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.
2014-03-01
to determine if a system is stabilizable with feedback. 12 that asymptotic stability is guaranteed by Lyapunov theory. The advantage of this method are...discretized dynamics are a sufficient representation of the continuous system . Given these assumptions, the optimal control problem for minimum transit time is...tion (APF) guidance performance when applied to systems with limited control au- thority in a dynamic environment and then to use the findings to
Potential of hydrogen fuel for future air transportation systems.
NASA Technical Reports Server (NTRS)
Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.
1973-01-01
Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Brown, James B.
This software implements the first base caller for nanopore data that calls bases directly from raw data. The basecRAWller algorithm has two major advantages over current nanopore base calling software: (1) streaming base calling and (2) base calling from information rich raw signal. The ability to perform truly streaming base calling as signal is received from the sequencer can be very powerful as this is one of the major advantages of this technology as compared to other sequencing technologies. As such enabling as much streaming potential as possible will be incredibly important as this technology continues to become more widelymore » applied in biosciences. All other base callers currently employ the Viterbi algorithm which requires the whole sequence to employ the complete base calling procedure and thus precludes a natural streaming base calling procedure. The other major advantage of the basecRAWller algorithm is the prediction of bases from raw signal which contains much richer information than the segmented chunks that current algorithms employ. This leads to the potential for much more accurate base calls which would make this technology much more valuable to all of the growing user base for this technology.« less
Targeting multiple heterogeneous hardware platforms with OpenCL
NASA Astrophysics Data System (ADS)
Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.
2014-06-01
The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware-specific optimizations as necessary.
Campus Spies? Using Mystery Students to Evaluate University Performance
ERIC Educational Resources Information Center
Douglas, Alex; Douglas, Jacqueline
2006-01-01
Background: This paper explores the appropriateness of using mystery customer programmes in higher education institutions (HEIs) in the UK. Purpose: The main aim of the paper is to examine potential advantages and disadvantages of mystery customer programmes within HEIs, and to identify any issues that would need to be successfully resolved were…
ERIC Educational Resources Information Center
Tolentino, Leida C.; Tokowicz, Natasha
2009-01-01
The present study investigated the cognitive and neural mechanisms underlying the processing of concrete and abstract words by recording event-related potentials (ERPs) while participants performed an English lexical decision task. Concrete and abstract words were presented in three stimulus-order conditions: abstract before concrete, concrete…
ERIC Educational Resources Information Center
Helm-Stevens, Roxanne; Brown, Kneeland C.; Russell, Julia K.
2011-01-01
Knowledge management has the potential to develop strategic advantage and enhance the performance of an organization in terms of productivity and business process efficiency. For this reason, organizations are contributing significant resources to knowledge management; investing in information location and implementing knowledge management…
A joint sparse representation-based method for double-trial evoked potentials estimation.
Yu, Nannan; Liu, Haikuan; Wang, Xiaoyan; Lu, Hanbing
2013-12-01
In this paper, we present a novel approach to solving an evoked potentials estimating problem. Generally, the evoked potentials in two consecutive trials obtained by repeated identical stimuli of the nerves are extremely similar. In order to trace evoked potentials, we propose a joint sparse representation-based double-trial evoked potentials estimation method, taking full advantage of this similarity. The estimation process is performed in three stages: first, according to the similarity of evoked potentials and the randomness of a spontaneous electroencephalogram, the two consecutive observations of evoked potentials are considered as superpositions of the common component and the unique components; second, making use of their characteristics, the two sparse dictionaries are constructed; and finally, we apply the joint sparse representation method in order to extract the common component of double-trial observations, instead of the evoked potential in each trial. A series of experiments carried out on simulated and human test responses confirmed the superior performance of our method. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.
Lin, Liangdong; Xu, Xuena; Chu, Chenxiao; Majeed, Muhammad K; Yang, Jian
2016-11-02
Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g -1 at 3 A g -1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical simulation and analysis of the flow in a two-staged axial fan
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.
2016-05-01
In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.
Hybrid Wing Body Configuration Scaling Study
NASA Technical Reports Server (NTRS)
Nickol, Craig L.
2012-01-01
The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.
MOPADS (Models of Operator Performance in Air Defense Systems). Appendices
1984-11-01
differential equation models which aggregate and smooth individual events to obtain overall average performance measures. The advantages, in the MOPADS...Positive z is up. Each critical asset is specified by its coordinates anod a label. Growth potential is allowed in the data base for differentiating among...OlUI Figure IX-1. (Continued) C- 115 MAIN CATEGORY SELtCTION:SAINT USER ITATISITICS SECONDARY CATEGORT HE ,U1 * lIlT PRINT COMMAND MN - TATIS [TICS
Preliminary performances measured on a CMOS long linear array for space application
NASA Astrophysics Data System (ADS)
Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim
2017-11-01
This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.
A hybrid structure for the storage and manipulation of very large spatial data sets
Peuquet, Donna J.
1982-01-01
The map data input and output problem for geographic information systems is rapidly diminishing with the increasing availability of mass digitizing, direct spatial data capture and graphics hardware based on raster technology. Although a large number of efficient raster-based algorithms exist for performing a wide variety of common tasks on these data, there are a number of procedures which are more efficiently performed in vector mode or for which raster mode equivalents of current vector-based techniques have not yet been developed. This paper presents a hybrid spatial data structure, named the ?vaster' structure, which can utilize the advantages of both raster and vector structures while potentially eliminating, or greatly reducing, the need for raster-to-vector and vector-to-raster conversion. Other advantages of the vaster structure are also discussed.
Pulse tube cryocooler for IR applications
NASA Astrophysics Data System (ADS)
Korf, H.; Ruhlich, I.; Mai, M.; Thummes, G.
2005-05-01
Pulse tube cryocoolers (PTC) can be regarded as the next step in the development of the Stirling cooler. The major advantage vs. the Stirling cooler is the omission of any moving part in the cold head, resulting in significantly increased MTTF. Further advantages are higher mechanical robustness and stability and the potential for cost reduction. AIM developed PTC's for several years in close cooperation with the University of Giessen. As a recent result at AIM, Coaxial PTC cold head are available within the outline dimension of typical IR Stirling cold head of 13mm diameter. The achieved performance data are comparable to the serial data of the Stirling cold head. This PTC cold head is designed to be operated in the orifice mode without a double inlet which is known to cause instabilities. Technical details and performance data represent the current technical status at AIM.
Assessment of Schrodinger Eigenmaps for target detection
NASA Astrophysics Data System (ADS)
Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek
2014-06-01
Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.
Medicare's private plans: a report card on Medicare Advantage.
Gold, Marsha
2009-01-01
With higher payments and expanded private-plan authority, Medicare Advantage (MA) has caused the market to grow. One in three Medicare beneficiaries with Part D now gets this coverage through MA. Analysis of the sources of and reasons for enrollment growth suggest a troubling report card. Clearly, the Medicare Modernization Act (MMA) has expanded choice and the private-sector role. But it also has added to Medicare's complexity and costs and has created potential inequities, without apparent improvements in quality. However the debate ends, a stronger system of performance monitoring and accountability is needed to meet Medicare's essential fiduciary requirements and oversight responsibilities.
The process of managerial control in quality improvement initiatives.
Slovensky, D J; Fottler, M D
1994-11-01
The fundamental intent of strategic management is to position an organization with in its market to exploit organizational competencies and strengths to gain competitive advantage. Competitive advantage may be achieved through such strategies as low cost, high quality, or unique services or products. For health care organizations accredited by the Joint Commission on Accreditation of Healthcare Organizations, continually improving both processes and outcomes of organizational performance--quality improvement--in all operational areas of the organization is a mandated strategy. Defining and measuring quality and controlling the quality improvement strategy remain problematic. The article discusses the nature and processes of managerial control, some potential measures of quality, and related information needs.
NASA Technical Reports Server (NTRS)
Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.
2016-01-01
Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.
Expanding Medicaid managed care: the right choice for Texas?
Reddy, Swapna; Finley, Marisa; Posey, Dan; Rohack, James J
2012-10-01
We set out to determine whether expanding Medicaid managed care in Texas is the solution to the challenges faced by the state of meeting the healthcare needs of a rapidly growing Medicaid population while addressing its own fiscal limitations. We reviewed the Texas Medicaid program, the potential effects of federal healthcare reform, and the state political climate through the perspectives (advantages and disadvantages) of the primary stakeholders: patients, practitioners, hospitals, and insurers. Research was performed through online, federal and state regulatory, and legislative review. In addition, we reviewed government and peer-reviewed reports and articles pertaining to issues related to Medicaid populations, healthcare practitioners, and hospitals that serve them. Each primary stakeholder had potential advantages and disadvantages associated with the expansion of Medicaid managed care. We conclude that expanding Medicaid managed care, if done in a manner responsive to the needs of recipients, can meet enrollees' healthcare needs while controlling the state's costs.
Sublimator Driven Coldplate Engineering Development Unit Test Results
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.
2010-01-01
The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Because the SDC requires a consumable feedwater, it can only be used for short mission durations. Additionally, the SDC is ideal for a vehicle with small transport distances and low heat rejection requirements. An SDC Engineering Development Unit was designed and fabricated. Performance tests were performed in a vacuum chamber to quantify and assess the performance of the SDC. The test data was then used to develop correlated thermal math models. Nonetheless, an Integrated Sublimator Driven Coldplate (ISDC) concept is being developed. The ISDC couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases and provides for dissimilar system redundancy
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... Rule Change To Establish Procedures To Prevent Informational Advantages Resulting From the Affiliation... proposes a rule change to establish procedures designed to manage potential informational advantages... concerns about potential informational advantages and conflicts of interest between an exchange's self...
Potential of extended airbreathing operation of a two-stage launch vehicle by scramjet propulsion
NASA Astrophysics Data System (ADS)
Schoettle, U. M.; Hillesheimer, M.; Rahn, M.
This paper examines the application of scramjet propulsion to extend the ramjet operation of an airbreathing two-stage launch designed for horizontal takeoff and landing. Performance comparisons are made for two alternative propulsion concepts. The mission performance predictions presented are obtained from a multistep optimization procedure employing both trajectory optimization and vehicle design steps to achieve maximum payload capabilities. The simulation results are shown to offer an attractive payload advantage of the scramjet variant over the ramjet powered vehicle.
Evaluation of Non-Oxide Fuel for Fission-based Nuclear Reactors on Spacecraft
smaller and potentially lighter core, whichis a significant advantage. The results of this study indicate that use of both UC and UN may result in significant weight savings due tohigher uranium loading density....The goal of this project was to study the performance of atypical uranium-based fuels in a nuclear reactor capable of producing 1 megawattof thermal...UN), or uranium carbide (UC) and compared their performance to uranium oxide (UO2) which is thefuel form used in the vast majority of commercial
NASA Astrophysics Data System (ADS)
MacMahon, Heber; Vyborny, Carl; Sabeti, Victoria; Metz, Charles; Doi, Kunio
1985-09-01
A potential advantage of digital radiographic systems is their ability to enhance images by various types of processing. Digital unsharp masking is one of the simplest and potentially most useful forms of enhancement. The efficacy of unsharp masking in clinical radiologic diagnosis has not been investigated systematically, however. The effect of digital unsharp masking on the detectability of two types of subtle abnormalities, pneumothorax and interstitial infiltrate, was studied in an observer performance test. An ROC analysis of this preliminary data suggests that unsharp masking may improve diagnostic accuracy for pneumothorax. Radiologists' performance in identifying interstitial infiltrates was degraded by the image processing, however, and false positive diagnoses tended to be more frequent.
The lambda point experiment in microgravity
NASA Technical Reports Server (NTRS)
Lipa, J. A.
1988-01-01
The motivation and potential for performing very high resolution measurements of the heat capacity singularity at the lambda point of helium in microgravity conditions was briefly discussed. It is clear that tests extending deep into the asymptotic region can be performed, where the theoretical predictions take on their simplest form. This advantageous situation should lead to a major improvement in the understanding of the range of applicability of current theoretical ideas in this field. The lambda transition holds out the prospect of giving the maximum advance of any system, and with the application of cryogenic techniques, the potential of this system can be realized. The technology for the initial experiments is already developed, and results could be obtained in 1990.
Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control
Mars, Rogier B.; Shea, Nicholas J.; Kolling, Nils; Rushworth, Matthew F. S.
2011-01-01
We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach. PMID:20437297
Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.
Xie, Ming; Gruen, Dieter M
2010-11-18
State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.
A vertex similarity index for better personalized recommendation
NASA Astrophysics Data System (ADS)
Chen, Ling-Jiao; Zhang, Zi-Ke; Liu, Jin-Hu; Gao, Jian; Zhou, Tao
2017-01-01
Recommender systems benefit us in tackling the problem of information overload by predicting our potential choices among diverse niche objects. So far, a variety of personalized recommendation algorithms have been proposed and most of them are based on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel vertex similarity index named CosRA, which combines advantages of both the cosine index and the resource-allocation (RA) index. By applying the CosRA index to real recommender systems including MovieLens, Netflix and RYM, we show that the CosRA-based method has better performance in accuracy, diversity and novelty than some benchmark methods. Moreover, the CosRA index is free of parameters, which is a significant advantage in real applications. Further experiments show that the introduction of two turnable parameters cannot remarkably improve the overall performance of the CosRA index.
van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M
2015-11-01
The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.
Medical applications of ultra-short pulse lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, B M; Marion, J E
1999-06-08
The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less
Orbiting Deep Space Relay Station (ODSRS). Volume 1: Requirement determination
NASA Technical Reports Server (NTRS)
Hunter, J. A.
1979-01-01
The deep space communications requirements of the post-1985 time frame are described and the orbiting deep space relay station (ODSRS) is presented as an option for meeting these requirements. Under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance, but has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include: the ability to track a spacecraft 24 hours per day with ground stations located only in the USA; the ability to operate at higher frequencies that would be attenuated by Earth's atmosphere; and the potential for building very large structures without the constraints of Earth's gravity.
Science in space with the Space Station
NASA Technical Reports Server (NTRS)
Banks, Peter M.
1987-01-01
The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.
A Comprehensive Review of Swarm Optimization Algorithms
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
NASA Technical Reports Server (NTRS)
Probst, H. B.
1978-01-01
The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.
New tools using the hardware performance monitor to help users tune programs on the Cray X-MP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engert, D.E.; Rudsinski, L.; Doak, J.
1991-09-25
The performance of a Cray system is highly dependent on the tuning techniques used by individuals on their codes. Many of our users were not taking advantage of the tuning tools that allow them to monitor their own programs by using the Hardware Performance Monitor (HPM). We therefore modified UNICOS to collect HPM data for all processes and to report Mflop ratings based on users, programs, and time used. Our tuning efforts are now being focused on the users and programs that have the best potential for performance improvements. These modifications and some of the more striking performance improvements aremore » described.« less
Minimum energy, liquid hydrogen supersonic cruise vehicle study
NASA Technical Reports Server (NTRS)
Brewer, G. D.; Morris, R. E.
1975-01-01
The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.
Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.
2014-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.
Compact, Automated, Frequency-Agile Microspectrofluorimeter
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.
1995-01-01
Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.
Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors
2003-03-19
characterize the magnetic properties of the NiFe microbeads and chemically functionalize them for use in assays. 2.3. Sensor signal...have been developed as labels for biosensing. Magnetic labels have several potential advantages over other labels. The magnetic properties of the...temperature. Although Dynal M-280 microbeads are extremely monodispersed in size and have excellent biocompatible surface properties , their magnetic
Advanced high-temperature thermal energy storage media for industrial applications
NASA Astrophysics Data System (ADS)
Clear, T. D.; Weibel, R. T.
An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.
Advanced high-temperature thermal energy storage media for industrial applications
NASA Astrophysics Data System (ADS)
Claar, T. D.; Waibel, R. T.
1982-02-01
An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.
Tacit Knowledge Flows and Institutional Theory: Accelerating Acculturation
2010-01-01
sustainable competitive advantage , but different kinds of knowledge affect competitive advantage differently. This applies especially to the...such qualitative fieldwork and informs theory and practice alike. 1. Introduction Knowledge is key to sustainable competitive advantage ...4,8,19]. Knowledge enables effective action; effective action drives superior performance; and superior performance supports competitive advantage
NASA Astrophysics Data System (ADS)
Cucchiella, Federica; D'Adamo, Idiano; Gastaldi, Massimo; Lenny Koh, S. C.
2014-06-01
Green supply chain management (GSCM) has emerged as a key approach for enterprises seeking to become environmentally sustainable. This paper aims to evaluate and describe the advantages of a GSCM approach by analysing practices and performance consequences in the battery recycling sector. It seeks to integrate works in supply chain management (SCM), environmental management, performance management and real option (RO) theory into one framework. In particular, life cycle assessment (LCA) is applied to evaluate the environmental impact of a battery recycling plant project, and life cycle costing (LCC) is applied to evaluate its economic impact. Firms, also understanding the relevance of GSCM, have often avoided applying the green principles because of the elevated costs that such management involved. Such costs could also seem superior to the potential advantages since standard performance measurement systems are internally and business focused; for these reasons, we consider all the possible value deriving also by uncertainty associated to a green project using the RO theory. This work is one of the few and pioneering efforts to investigate GSCM practices in the battery recycling sector.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... members raises the potential for unfair competitive advantage and potential conflicts of interest between... these mitigate the aforementioned concerns about potential conflicts of interest and unfair competitive advantage. 2. Statutory Basis The Exchange believes that the proposed rule change is consistent with the...
Scaling of Ion Thrusters to Low Power
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.
1998-01-01
Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.
Membrane bioreactors' potential for ethanol and biogas production: a review.
Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J
2013-01-01
Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.
Optical bistability for optical signal processing and computing
NASA Astrophysics Data System (ADS)
Peyghambarian, N.; Gibbs, H. M.
1985-02-01
Optical bistability (OB) is a phenomenon in which a nonlinear medium responds to an optical input beam by changing its transmission abruptly from one value to another. A 'nonlinear medium' is a medium in which the index of refraction depends on the incident light intensity. A device is said to be optically bistable if two stable output states exist for the same value of the input. Optically bistable devices can perform a number of logic functions related to optical memory, optical transistor, optical discriminator, optical limiter, optical oscillator, and optical gate. They also have the potential for subpicosecond switching, greatly exceeding the capability of electronics. This potential is one of several advantages of optical data processing over electronic processing. Other advantages are greater immunity to electromagnetic interference and crosstalk, and highly parallel processing capability. The present investigation is mainly concerned with all-optical etalon devices. The considered materials, include GaAs, ZnS and ZnSe, CuCl, InSb, InAs, and CdS.
Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster
NASA Technical Reports Server (NTRS)
Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael
2004-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.
Evaluation of SAPHIRE: an automated approach to indexing and retrieving medical literature.
Hersh, W.; Hickam, D. H.; Haynes, R. B.; McKibbon, K. A.
1991-01-01
An analysis of SAPHIRE, an experimental information retrieval system featuring automated indexing and natural language retrieval, was performed on MEDLINE references using data previously generated for a MEDLINE evaluation. Compared with searches performed by novice and expert physicians using MEDLINE, SAPHIRE achieved comparable recall and precision. While its combined recall and precision performance did not equal the level of librarians, SAPHIRE did achieve a significantly higher level of absolute recall. SAPHIRE has other potential advantages over existing MEDLINE systems. Its natural language interface does not require knowledge of MeSH, and it provides relevance ranking of retrieved references. PMID:1807718
Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
Morris, C. I.
2003-01-01
Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.
Ear Advantage for Musical Location and Relative Pitch: Effects of Musical Training and Attention.
Hutchison, Joanna L; Hubbard, Timothy L; Hubbard, Nicholas A; Rypma, Bart
2017-06-01
Trained musicians have been found to exhibit a right-ear advantage for high tones and a left-ear advantage for low tones. We investigated whether this right/high, left/low pattern of musical processing advantage exists in listeners who had varying levels of musical experience, and whether such a pattern might be modulated by attentional strategy. A dichotic listening paradigm was used in which different melodic sequences were presented to each ear, and listeners attended to (a) the left ear or the right ear or (b) the higher pitched tones or the lower pitched tones. Listeners judged whether tone-to-tone transitions within each melodic sequence moved upward or downward in pitch. Only musically experienced listeners could adequately judge the direction of successive pitch transitions when attending to a specific ear; however, all listeners could judge the direction of successive pitch transitions within a high-tone stream or a low-tone stream. Overall, listeners exhibited greater accuracy when attending to relatively higher pitches, but there was no evidence to support a right/high, left/low bias. Results were consistent with effects of attentional strategy rather than an ear advantage for high or low tones. Implications for a potential performer/audience paradox in listening space are considered.
Immediately sequential bilateral cataract surgery: advantages and disadvantages.
Singh, Ranjodh; Dohlman, Thomas H; Sun, Grace
2017-01-01
The number of cataract surgeries performed globally will continue to rise to meet the needs of an aging population. This increased demand will require healthcare systems and providers to find new surgical efficiencies while maintaining excellent surgical outcomes. Immediately sequential bilateral cataract surgery (ISBCS) has been proposed as a solution and is increasingly being performed worldwide. The purpose of this review is to discuss the advantages and disadvantages of ISBCS. When appropriate patient selection occurs and guidelines are followed, ISBCS is comparable with delayed sequential bilateral cataract surgery in long-term patient satisfaction, visual acuity and complication rates. In addition, the risk of bilateral postoperative endophthalmitis and concerns of poorer refractive outcomes have not been supported by the literature. ISBCS is cost-effective for the patient, healthcare payors and society, but current reimbursement models in many countries create significant financial barriers for facilities and surgeons. As demand for cataract surgery rises worldwide, ISBCS will become increasingly important as an alternative to delayed sequential bilateral cataract surgery. Advantages include potentially decreased wait times for surgery, patient convenience and cost savings for healthcare payors. Although they are comparable in visual acuity and complication rates, hurdles that prevent wide adoption include liability concerns as ISBCS is not an established standard of care, economic constraints for facilities and surgeons and inability to fine-tune intraocular lens selection in the second eye. Given these considerations, an open discussion regarding the advantages and disadvantages of ISBCS is important for appropriate patient selection.
On the economics of staging for reusable launch vehicles
NASA Astrophysics Data System (ADS)
Griffin, Michael D.; Claybaugh, William R.
1996-03-01
There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.
Desiccant humidity control system. [for space shuttle cabins
NASA Technical Reports Server (NTRS)
Lunde, P. J.; Kester, F. L.
1975-01-01
A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.
Applications of Endothermic Reaction Technology to the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Glickstein, Marvin R.; Spadaccini, Louis J.
1998-01-01
The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.
Fabrication Security and Trust of Domain-Specific ASIC Processors
2016-10-30
embedded in the design. For example , an ASIC processor potentially has a 10-1,000X performance advantage over its FPGA and GPP counterparts, but...paper by summarizing our lessons learned from this project and suggests a few research directions. II. DOMAIN-SPECIFIC ASIC PROCESSORS As Figure 1 has...sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations
An integrated approach to rotorcraft human factors research
NASA Technical Reports Server (NTRS)
Hart, Sandra G.; Hartzell, E. James; Voorhees, James W.; Bucher, Nancy M.; Shively, R. Jay
1988-01-01
As the potential of civil and military helicopters has increased, more complex and demanding missions in increasingly hostile environments have been required. Users, designers, and manufacturers have an urgent need for information about human behavior and function to create systems that take advantage of human capabilities, without overloading them. Because there is a large gap between what is known about human behavior and the information needed to predict pilot workload and performance in the complex missions projected for pilots of advanced helicopters, Army and NASA scientists are actively engaged in Human Factors Research at Ames. The research ranges from laboratory experiments to computational modeling, simulation evaluation, and inflight testing. Information obtained in highly controlled but simpler environments generates predictions which can be tested in more realistic situations. These results are used, in turn, to refine theoretical models, provide the focus for subsequent research, and ensure operational relevance, while maintaining predictive advantages. The advantages and disadvantages of each type of research are described along with examples of experimental results.
Implementing High-Performance Geometric Multigrid Solver with Naturally Grained Messages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Hongzhang; Williams, Samuel; Zheng, Yili
2015-10-26
Structured-grid linear solvers often require manually packing and unpacking of communication data to achieve high performance.Orchestrating this process efficiently is challenging, labor-intensive, and potentially error-prone.In this paper, we explore an alternative approach that communicates the data with naturally grained messagesizes without manual packing and unpacking. This approach is the distributed analogue of shared-memory programming, taking advantage of the global addressspace in PGAS languages to provide substantial programming ease. However, its performance may suffer from the large number of small messages. We investigate theruntime support required in the UPC ++ library for this naturally grained version to close the performance gapmore » between the two approaches and attain comparable performance at scale using the High-Performance Geometric Multgrid (HPGMG-FV) benchmark as a driver.« less
Low concentrator PV optics optimization
NASA Astrophysics Data System (ADS)
Sharp, Leonard; Chang, Ben
2008-08-01
Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.
NASA Technical Reports Server (NTRS)
Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This
Prediction and causal reasoning in planning
NASA Technical Reports Server (NTRS)
Dean, T.; Boddy, M.
1987-01-01
Nonlinear planners are often touted as having an efficiency advantage over linear planners. The reason usually given is that nonlinear planners, unlike their linear counterparts, are not forced to make arbitrary commitments to the order in which actions are to be performed. This ability to delay commitment enables nonlinear planners to solve certain problems with far less effort than would be required of linear planners. Here, it is argued that this advantage is bought with a significant reduction in the ability of a nonlinear planner to accurately predict the consequences of actions. Unfortunately, the general problem of predicting the consequences of a partially ordered set of actions is intractable. In gaining the predictive power of linear planners, nonlinear planners sacrifice their efficiency advantage. There are, however, other advantages to nonlinear planning (e.g., the ability to reason about partial orders and incomplete information) that make it well worth the effort needed to extend nonlinear methods. A framework is supplied for causal inference that supports reasoning about partially ordered events and actions whose effects depend upon the context in which they are executed. As an alternative to a complete but potentially exponential-time algorithm, researchers provide a provably sound polynomial-time algorithm for predicting the consequences of partially ordered events.
Robin, Brett N; Jani, Sunil S; Marvil, Sean C; Reid, John B; Schillhammer, Carl K; Lubowitz, James H
2015-07-01
Controversy exists regarding the best method for creating the knee anterior cruciate ligament (ACL) femoral tunnel or socket. The purpose of this study was to systematically review the risks, benefits, advantages, and disadvantages of the endoscopic transtibial (TT) technique, anteromedial portal technique, outside-in technique, and outside-in retrograde drilling technique for creating the ACL femoral tunnel. A PubMed search of English-language studies published between January 1, 2000, and February 17, 2014, was performed using the following keywords: "anterior cruciate ligament" AND "femoral tunnel." Included were studies reporting risks, benefits, advantages, and/or disadvantages of any ACL femoral technique. In addition, references of included articles were reviewed to identify potential studies missed in the original search. A total of 27 articles were identified through the search. TT technique advantages include familiarity and proven long-term outcomes; disadvantages include the risk of nonanatomic placement because of constrained (TT) drilling. Anteromedial portal technique advantages include unconstrained anatomic placement; disadvantages include technical challenges, short tunnels or sockets, and posterior-wall blowout. Outside-in technique advantages include unconstrained anatomic placement; disadvantages include the need for 2 incisions. Retrograde drilling technique advantages include unconstrained anatomic placement, as well as all-epiphyseal drilling in skeletally immature patients; disadvantages include the need for fluoroscopy for all-epiphyseal drilling. There is no one, single, established "gold-standard" technique for creation of the ACL femoral socket. Four accepted techniques show diverse and subjective advantages, disadvantages, risks, and benefits. Level V, systematic review of Level II through V evidence. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Advantages of semiconductor CZT for medical imaging
NASA Astrophysics Data System (ADS)
Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.
2007-09-01
Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.
Achieving performance breakthroughs in an HMO business process through quality planning.
Hanan, K B
1993-01-01
Kaiser Permanente's Georgia Region commissioned a quality planning team to design a new process to improve payments to its suppliers and vendors. The result of the team's effort was a 73 percent reduction in cycle time. This team's experiences point to the advantages of process redesign as a quality planning model, as well as some general guidelines for its most effective use in teams. If quality planning project teams are carefully configured, sufficiently expert in the existing process, and properly supported by management, organizations can achieve potentially dramatic improvements in process performance using this approach.
LWIR detector requirements for low-background space applications
NASA Technical Reports Server (NTRS)
Deluccia, Frank J.
1990-01-01
Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.
Laser Propulsion—Is it another myth or a real potential?
NASA Astrophysics Data System (ADS)
Cook, Joung R.
2008-04-01
This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.
Data acquisition instruments: Psychopharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, D.S. III
This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended.more » In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.« less
Integrated Power and Attitude Control System (IPACS) technology developments
NASA Technical Reports Server (NTRS)
Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch
1990-01-01
Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.
Benefits of slush hydrogen for space missions
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Zubrin, Robert; Hardy, Terry L.
1991-01-01
A study was performed to quantify the benefits of using slush hydrogen instead of normal boiling point liquid hydrogen as a fuel for several space missions. Vehicles considered in the study included the Space Shuttle/Shuttle-C, LEO to GEO transfer vehicles, Lunar and Mars transfer vehicles, and cryogenic depots in low Earth orbit. The advantages of using slush hydrogen were expressed in terms of initial mass differences at a constant payload, payload differences at a constant tank volume, and increases in fuel storage time for cryogenic depots. Both chemical oxygen/hydrogen and hydrogen nuclear thermal rocket propulsion were considered in the study. The results indicated that slush hydrogen offers the potential for significant decreases in initial mass and increases in payload for most missions studied. These advantages increase as the mission difficulty, or energy, increases.
NASA Astrophysics Data System (ADS)
Job, Joshua; Wang, Zhihui; Rønnow, Troels; Troyer, Matthias; Lidar, Daniel
2014-03-01
We report on experimental work benchmarking the performance of the D-Wave Two programmable annealer on its native Ising problem, and a comparison to available classical algorithms. In this talk we will focus on the comparison with an algorithm originally proposed and implemented by Alex Selby. This algorithm uses dynamic programming to repeatedly optimize over randomly selected maximal induced trees of the problem graph starting from a random initial state. If one is looking for a quantum advantage over classical algorithms, one should compare to classical algorithms which are designed and optimized to maximally take advantage of the structure of the type of problem one is using for the comparison. In that light, this classical algorithm should serve as a good gauge for any potential quantum speedup for the D-Wave Two.
Research on solar pumped liquid lasers
NASA Technical Reports Server (NTRS)
Cox, J. D.; Kurzweg, U. H.; Weinstein, N. H.; Schneider, R. T.
1985-01-01
A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrC14 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination. The development of a manufacturing procedure and performance testing of the laser, liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.
Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Yamada, Masako
The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less
HAMP - the microwave package on the High Altitude and LOng range research aircraft (HALO)
NASA Astrophysics Data System (ADS)
Mech, M.; Orlandi, E.; Crewell, S.; Ament, F.; Hirsch, L.; Hagen, M.; Peters, G.; Stevens, B.
2014-12-01
An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.
HAMP - the microwave package on the High Altitude and LOng range research aircraft HALO
NASA Astrophysics Data System (ADS)
Mech, M.; Orlandi, E.; Crewell, S.; Ament, F.; Hirsch, L.; Hagen, M.; Peters, G.; Stevens, B.
2014-05-01
An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.
Static internal performance evaluation of several thrust reversing concepts for 2D-CD nozzles
NASA Technical Reports Server (NTRS)
Rowe, R. K.; Duss, D. J.; Leavitt, L. D.
1984-01-01
Recent performance testing of the two-dimensional convergent-divergent (2D-CD) nozzle has established the concept as a viable alternative to the axisymmetric nozzle for advanced technology aircraft. This type of exhaust system also offers potential integration and performance advantages in the areas of thrust reversing and vectoring over axi-symmetric nozzles. These advantages include the practical integration of thrust reversers which operate not only to reduce landing roll but also operate in-flight for enhanced maneuvering and thrust spoiling. To date there is a very limited data base available from which criteria can be developed for the design and evaluation of this type of thrust reverser system. For this reason, a static scale model test was conducted in which five different thrust reverser designs were evaluated. Each of the five models had varying performance/integration requirements which dictated the five different designs. Some of the parameters investigated in this test included; variable angle external cascade vanes, fixed angle internal cascade vanes, variable position inner doors, external slider doors and internal slider valves. In addition, normal force and yawing moment generation was investigated using the thrust reverser system. Selected results from this test will be presented and discussed in this paper.
Technology in Paralympic sport: performance enhancement or essential for performance?
Burkett, Brendan
2010-02-01
People with disabilities often depend on assistive devices to enable activities of daily living as well as to compete in sport. Technological developments in sport can be controversial. To review, identify and describe current technological developments in assistive devices used in the summer Paralympic Games; and to prepare for the London 2012 Games, the future challenges and the role of technology are debated. A systematic review of the peer-reviewed literature and personal observations of technological developments at the Athens (2004) and Beijing (2008) Paralympic Games was conducted. Standard assistive devices can inhibit the Paralympians' abilities to perform the strenuous activities of their sports. Although many Paralympic sports only require technology similar to their Olympic counterparts, several unique technological modifications have been made in prosthetic and wheelchair devices. Technology is essential for the Paralympic athlete, and the potential technological advantage for a Paralympian, when competing against an Olympian, is unclear. Technology must match the individual requirements of the athlete with the sport in order for Paralympians to safely maximise their performance. Within the 'performance enhancement or essential for performance?' debate, any potential increase in mechanical performance from an assistive device must be considered holistically with the compensatory consequences the disability creates. To avoid potential technology controversies at the 2012 London Olympic and Paralympic Games, the role of technology in sport must be clarified.
Robotics in colorectal surgery.
Kariv, Y; Delaney, C P
2005-10-01
A minimally invasive approach has not yet become the gold standard in colorectal procedures, despite its proven advantages in postoperative recovery. This is in part the result of the technical limitations in today's standard laparoscopy, and the advanced surgical skills that are required. Robotic technology overcomes some of these limitations by successfully providing intuitive motion and enhanced precision and accuracy, in an environment that is much more ergonomic. While currently performed in only few designated centers, this technology has already been applied in almost every major procedure performed to treat both benign and malignant conditions of the large bowel. The feasibility of performing these procedures using robotic systems has been reported in several series. Conversion and complication rates are low, and short term results are comparable to conventional laparoscopy. However, no clear advantages to patients have been demonstrated yet. Furthermore, robotic technology is associated with a significant increase in time consumed during surgery and cost of care. Nevertheless, a great potential for patients benefit in the future may exist with this technology. Increasing clinical experience with these systems, further technological developments, and continuous research are required before robotic technology can be routinely incorporated into surgical procedures on the colon and rectum.
NASA Astrophysics Data System (ADS)
Suhaimi, N. Sheeda; Ohae, C.; Gavara, T.; Nakagawa, K.; Hong, F.-L.; Katsuragawa, M.
2017-08-01
We have successfully generated a new broadband coherent light source in the continuous wave (CW) regime which is an ensemble of multi-harmonic radiations (2403, 1201, 801, 600 and 480 nm) by implementing a frequency dividing technology. The system is uniquely designed that all the harmonics are generated and propagate coaxially which gives the advantage of robustly maintaining the phase coherence among the harmonics. The highlight is its huge potential for the arbitrary optical waveform synthesis in the CW regime which has not been performed yet due to the limitation of the existing light source.
A review of Curtiss-Wright rotary engine developments with respect to general aviation potential
NASA Technical Reports Server (NTRS)
Jones, C.
1979-01-01
Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.
Chen, Xiao-Fei; Wu, Hai-Tang; Tan, Guang-Guo; Zhu, Zhen-Yu; Chai, Yi-Feng
2011-11-01
With the expansion of herbal medicine (HM) market, the issue on how to apply up-to-date analytical tools on qualitative analysis of HMs to assure their quality, safety and efficacy has been arousing great attention. Due to its inherent characteristics of accurate mass measurements and multiple stages analysis, the integrated strategy of liquid chromatography (LC) coupled with time-of-flight mass spectrometry (TOF-MS) and ion trap mass spectrometry (IT-MS) is well-suited to be performed as qualitative analysis tool in this field. The purpose of this review is to provide an overview on the potential of this integrated strategy, including the review of general features of LC-IT-MS and LC-TOF-MS, the advantages of their combination, the common procedures for structure elucidation, the potential of LC-hybrid-IT-TOF/MS and also the summary and discussion of the applications of the integrated strategy for HM qualitative analysis (2006-2011). The advantages and future developments of LC coupled with IT and TOF-MS are highlighted.
Overview of refractive surgery.
Bower, K S; Weichel, E D; Kim, T J
2001-10-01
Patients with myopia, hyperopia and astigmatism can now reduce or eliminate their dependence on contact lenses and eyeglasses through refractive surgery that includes radial keratotomy (RK), photorefractive keratectomy (PRK), laser-assisted in situ keratomileusis (LASIK), laser thermal keratoplasty (LTK) and intrastromal corneal rings (ICR). Since the approval of the excimer laser in 1995, the popularity of RK has declined because of the superior outcomes from PRK and LASIK. In patients with low-to-moderate myopia, PRK produces stable and predictable results with an excellent safety profile. LASIK is also efficacious, predictable and safe, with the additional advantages of rapid vision recovery and minimal pain. LASIK has rapidly become the most widely performed refractive surgery, with high patient and surgeon satisfaction. Noncontact Holium: YAG LTK provides satisfactory correction in patients with low hyperopia. ICR offers patients with low myopia the potential advantage of removal if the vision outcome is unsatisfactory. Despite the current widespread advertising and media attention about laser refractive surgery, not all patients are good candidates for this surgery. Family physicians should be familiar with the different refractive surgeries and their potential complications.
Miltner, M; Makaruk, A; Krischan, J; Harasek, M
2012-01-01
In the present work chemical-oxidative scrubbing as a novel method for the desulphurisation of raw biogas is presented with a special focus on the process potentials and economics. The selective absorption of hydrogen sulphide from gas streams containing high amounts of carbon dioxide using caustic solutions is not trivial but has been treated in literature. However, the application of this method to biogas desulphurisation has not been established so far. Based on rigorous experimental work, an industrial-scale pilot plant has been designed, erected and commissioned at a biogas plant with biogas upgrading and gas grid injection in Austria. Data collected from the 12-month monitored operation has been used to elaborate performance as well as economic parameters for the novel desulphurisation method. The proposed technology offers significant operational advantages regarding the degree of automation and the flexibility towards fluctuations in process boundary conditions. Furthermore, the economic assessment revealed the high competitiveness of the chemical-oxidative scrubbing process compared with other desulphurisation technologies with the named advantageous operational behaviour.
Kaky, Emad; Gilbert, Francis
2017-01-01
Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.
NASA Astrophysics Data System (ADS)
Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.
2014-05-01
A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.
Low Pressure Nuclear Thermal Rocket (LPNTR) concept
NASA Technical Reports Server (NTRS)
Ramsthaler, J. H.
1991-01-01
A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.
Modeling Multiple Risks: Hidden Domain of Attraction
2012-01-01
improve joint tail probability approximation but the deficiency can be remedied by a more general approach which we call hidden domain of attraction ( HDA ...HRV is a special case of HDA . If the distribution of X does not have MRV but (1.2) still holds, we may retrieve the MRV setup by transforming the...potential advantage in some circumstances of the notion of HDA is that it does not require that we transform components. Performing such transformations on
Coupling artificial intelligence and numerical computation for engineering design (Invited paper)
NASA Astrophysics Data System (ADS)
Tong, S. S.
1986-01-01
The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.
Detection of antisalivary duct antibody from Sjögren's syndrome by an autoradiographic method.
Cummings, N A; Tarpley, T M
1978-01-01
A new technique to detect anti-salivary duct antibody (ASDA) has been developed by using autoradiographic, rather than immunofluorescent methods. The antibody activity detected by autoradiography is probably classic ASDA. Both techniques may be consecutively performed on the same tissue section without attenuation of either. Some of the potential advantages of the radiolabelling of ASDA are pointed out, and a few preliminary experiments using the labelled antibody as a marker are presented.
Home advantage in the Winter Olympics (1908-1998).
Balmer, N J; Nevill, A M; Williams, A M
2001-02-01
We obtained indices of home advantage, based on the medals won by competing nations, for each event held at the Winter Olympics from 1908 to 1998. These indices were designed to assess home advantage while controlling for nation strength, changes in the number of medals on offer and the performance of 'non-hosting' nations. Some evidence of home advantage was found in figure skating, freestyle skiing, ski jumping, alpine skiing and short track speed skating. In contrast, little or no home advantage was observed in ice hockey, Nordic combined, Nordic skiing, bobsled, luge, biathlon or speed skating. When all events were combined, a significant home advantage was observed (P = 0.029), although no significant differences in the extent of home advantage were found between events (P > 0.05). When events were grouped according to whether they were subjectively assessed by judges, significantly greater home advantage was observed in the subjectively assessed events (P = 0.037). This was a reflection of better home performances, suggesting that judges were scoring home competitors disproportionately higher than away competitors. Familiarity with local conditions was shown to have some effect, particularly in alpine skiing, although the bobsled and luge showed little or no advantage over other events. Regression analysis showed that the number of time zones and direction of travel produced no discernible trends or differences in performance.
Air Launch: Examining Performance Potential of Various Configurations and Growth Options
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Creech, Dennis M.; Philips, Alan D.
2013-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there exists a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a pointof- departure configuration, two independent design actions were undertaken. Both designs utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight propellant loading scenario. Results indicate many advantages such as payload delivery of approximately 47,000 lbm and significant mission flexibility including variable launch site inclination and launch window. However, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.
Improved Space Object Observation Techniques Using CMOS Detectors
NASA Astrophysics Data System (ADS)
Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.
2013-08-01
CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.
Value-based management of design reuse
NASA Astrophysics Data System (ADS)
Carballo, Juan Antonio; Cohn, David L.; Belluomini, Wendy; Montoye, Robert K.
2003-06-01
Effective design reuse in electronic products has the potential to provide very large cost savings, substantial time-to-market reduction, and extra sources of revenue. Unfortunately, critical reuse opportunities are often missed because, although they provide clear value to the corporation, they may not benefit the business performance of an internal organization. It is therefore crucial to provide tools to help reuse partners participate in a reuse transaction when the transaction provides value to the corporation as a whole. Value-based Reuse Management (VRM) addresses this challenge by (a) ensuring that all parties can quickly assess the business performance impact of a reuse opportunity, and (b) encouraging high-value reuse opportunities by supplying value-based rewards to potential parties. In this paper we introduce the Value-Based Reuse Management approach and we describe key results on electronic designs that demonstrate its advantages. Our results indicate that Value-Based Reuse Management has the potential to significantly increase the success probability of high-value electronic design reuse.
Flywheel Energy Storage Technology Workshop
NASA Astrophysics Data System (ADS)
Okain, D.; Howell, D.
Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.
An Overview of Electron Acceptors in Microbial Fuel Cells
Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini
2017-01-01
Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
The effects of multiple obstacles on the locomotor behavior and performance of a terrestrial lizard.
Parker, Seth E; McBrayer, Lance D
2016-04-01
Negotiation of variable terrain is important for many small terrestrial vertebrates. Variation in the running surface resulting from obstacles (woody debris, vegetation, rocks) can alter escape paths and running performance. The ability to navigate obstacles likely influences survivorship through predator evasion success and other key ecological tasks (finding mates, acquiring food). Earlier work established that running posture and sprint performance are altered when organisms face an obstacle, and yet studies involving multiple obstacles are limited. Indeed, some habitats are cluttered with obstacles, whereas others are not. For many species, obstacle density may be important in predator escape and/or colonization potential by conspecifics. This study examines how multiple obstacles influence running behavior and locomotor posture in lizards. We predict that an increasing number of obstacles will increase the frequency of pausing and decrease sprint velocity. Furthermore, bipedal running over multiple obstacles is predicted to maintain greater mean sprint velocity compared with quadrupedal running, thereby revealing a potential advantage of bipedalism. Lizards were filmed running through a racetrack with zero, one or two obstacles. Bipedal running posture over one obstacle was significantly faster than quadrupedal posture. Bipedal running trials contained fewer total strides than quadrupedal ones. But on addition of a second obstacle, the number of bipedal strides decreased. Increasing obstacle number led to slower and more intermittent locomotion. Bipedalism provided clear advantages for one obstacle, but was not associated with further benefits for an additional obstacle. Hence, bipedalism helps mitigate obstacle negotiation, but not when numerous obstacles are encountered in succession. © 2016. Published by The Company of Biologists Ltd.
Micro-sized microbial fuel cell: a mini-review.
Wang, Hsiang-Yu; Bernarda, Angela; Huang, Chih-Yung; Lee, Duu-Jong; Chang, Jo-Shu
2011-01-01
This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.
Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing
2017-08-30
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
Advantages of thin silicon solar cells for use in space
NASA Technical Reports Server (NTRS)
Denman, O. S.
1978-01-01
A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.
Likelihood-based methods for evaluating principal surrogacy in augmented vaccine trials.
Liu, Wei; Zhang, Bo; Zhang, Hui; Zhang, Zhiwei
2017-04-01
There is growing interest in assessing immune biomarkers, which are quick to measure and potentially predictive of long-term efficacy, as surrogate endpoints in randomized, placebo-controlled vaccine trials. This can be done under a principal stratification approach, with principal strata defined using a subject's potential immune responses to vaccine and placebo (the latter may be assumed to be zero). In this context, principal surrogacy refers to the extent to which vaccine efficacy varies across principal strata. Because a placebo recipient's potential immune response to vaccine is unobserved in a standard vaccine trial, augmented vaccine trials have been proposed to produce the information needed to evaluate principal surrogacy. This article reviews existing methods based on an estimated likelihood and a pseudo-score (PS) and proposes two new methods based on a semiparametric likelihood (SL) and a pseudo-likelihood (PL), for analyzing augmented vaccine trials. Unlike the PS method, the SL method does not require a model for missingness, which can be advantageous when immune response data are missing by happenstance. The SL method is shown to be asymptotically efficient, and it performs similarly to the PS and PL methods in simulation experiments. The PL method appears to have a computational advantage over the PS and SL methods.
Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.
Hammes, Frederik; Egli, Thomas
2010-06-01
Rapid detection of microbial cells is a challenge in microbiology, particularly when complex indigenous communities or subpopulations varying in viability, activity and physiological state are investigated. Flow cytometry (FCM) has developed during the last 30 years into a multidisciplinary technique for analysing bacteria. When used correctly, FCM can provide a broad range of information at the single-cell level, including (but not limited to) total counts, size measurements, nucleic acid content, cell viability and activity, and detection of specific bacterial groups or species. The main advantage of FCM is that it is fast and easy to perform. It is a robust technique, which is adaptable to different types of samples and methods, and has much potential for automation. Hence, numerous FCM applications have emerged in industrial biotechnology, food and pharmaceutical quality control, routine monitoring of drinking water and wastewater systems, and microbial ecological research in soils and natural aquatic habitats. This review focuses on the information that can be gained from the analysis of bacteria in water, highlighting some of the main advantages, pitfalls and applications.
The impact of bilingualism on working memory in pediatric epilepsy
Veenstra, Amy L.; Riley, Jeffrey D.; Barrett, Lauren E.; Muhonen, Michael G.; Zupanc, Mary; Romain, Jonathan E.; Lin, Jack J.; Mucci, Grace
2016-01-01
Impairments in executive skills broadly span across multiple childhood epilepsy syndromes and can adversely affect quality of life. Bilingualism has been previously shown to correlate with enhanced executive functioning in healthy individuals. This study seeks to determine whether the bilingual advantage in executive functioning exists in the context of pediatric epilepsy. We retrospectively analyzed neuropsychological data in 52 children with epilepsy and compared executive function scores in monolingual versus bilingual children with epilepsy, while controlling for socioeconomic status and ethnicity. Bilingual children performed significantly better on the Working Memory scale than did monolingual children. There were no significant differences on the remaining executive function variables. The bilingual advantage appears to persist for working memory in children with epilepsy. These findings suggest that bilingualism is potentially a protective variable in the face of epilepsy-related working memory dysfunction. PMID:26720703
Research on solar pumped liquid lasers. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, J.D.; Kurzweg, U.H.; Weinstein, N.H.
1985-04-01
A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrCl4 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination.more » The development of a manufacturing procedure and performance testing of the laser liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.« less
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin
1987-01-01
Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.
Selective memory biases for words reflecting sex-specific body image concerns.
Unterhalter, Gina; Farrell, Simon; Mohr, Christine
2007-08-01
Women show "fear of fatness" and men a "drive for muscularity." Moreover, women perceive themselves as larger and men more muscular than they actually are. We tested potential memory biases congruent with these sex-specific body image concerns. Free recall performance for weight-related and muscle-related positive and negative words was assessed in 40 healthy undergraduate students (20 men). Men revealed a recall advantage for positive muscle words, while women showed a general advantage for positive and negative weight-related words. Thus, men revealed a memory bias congruent with their personal preference (more muscular), while women showed a general memory bias for weight information independent of their personal preference of being thinner. The absence of a positive memory bias in women might explain the higher incidence of body dissatisfaction and eating disorders in this population.
Home Field Advantage Calculation for Physical Education and Sport Students
ERIC Educational Resources Information Center
Inan, Tugbay
2018-01-01
It is a well-established fact that playing at home field is an advantageous condition for professional sport teams. For this reason, the home field advantage in team sports is an important issue to be explored. It is also one of the different topics that physical education and sports students can use when they want to perform performance analysis…
Laparoscopic virtual reality and box trainers: is one superior to the other?
Munz, Y; Kumar, B D; Moorthy, K; Bann, S; Darzi, A
2004-03-01
Virtual reality (VR) simulators now have the potential to replace traditional methods of laparoscopic training. The aim of this study was to compare the VR simulator with the classical box trainer and determine whether one has advantages over the other. Twenty four novices were tested to determine their baseline laparoscopic skills and then randomized into the following three group: LapSim, box trainer, and no training (control). After 3 weekly training sessions lasting 30-min each, all subjects were reassessed. Assessment included motion analysis and error scores. Nonparametric tests were applied, and p < 0.05 was deemed significant. Both trained groups made significant improvements in all parameters measured ( p < 0.05). Compared to the controls, the box trainer group performed significantly better on most of the parameters, whereas the LapSim group performed significantly better on some parameters. There were no significant differences between the LapSim and box trainer groups. LapSim is effective in teaching skills that are transferable to a real laparoscopic task. However, there appear to be no substantial advantages of one system over the other.
Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices
Solomon, W. M.; Snyder, P. B.; Bortolon, A.; ...
2016-03-25
In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less
Poly-silicon TFT AM-OLED on thin flexible metal substrates
NASA Astrophysics Data System (ADS)
Afentakis, Themis; Hatalis, Miltiadis K.; Voutsas, Apostolos T.; Hartzell, John W.
2003-05-01
Thin metal foils present an excellent alternative to polymers for the fabrication of large area, flexible displays. Their main advantage spurs from their ability to withstand higher temperatures during processing; microelectronic fabrication at elevated temperatures offers the ability to utilize a variety of crystallization processes for the active layer of devices and thermally grown gate dielectrics. This can lead to high performance (high mobility, low threshold voltage) low cost and highly reliable thin film transistors. In some cases, the conductive substrate can also be used to provide power to the active devices, thus reducing layout complexity. This paper discusses the first successful attempt to design and fabricate a variety of active matrix organic light emitting diode displays on thin, flexible stainless steel foils. Different pixel architectures, such as two- and four-transistor implementations, and addressing modes, such as voltage- or current-driven schemese are examined. This work clearly demonstrates the advantages associated with the fabrication of OLED displays on thin metal foils, which - through roll-to-roll processing - can potentially result in revolutionizing today's display processing, leading to a new generation of low cost, high performance versatile display systems.
Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi
1988-01-01
One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.
NASA Astrophysics Data System (ADS)
McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante
The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.
Dynamic Performance of a Back-to-Back HVDC Station Based on Voltage Source Converters
NASA Astrophysics Data System (ADS)
Khatir, Mohamed; Zidi, Sid-Ahmed; Hadjeri, Samir; Fellah, Mohammed-Karim
2010-01-01
The recent developments in semiconductors and control equipment have made the voltage source converter based high voltage direct current (VSC-HVDC) feasible. This new DC transmission is known as "HVDC Light or "HVDC Plus by leading vendors. Due to the use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with classic HVDC. In this paper, the scenario of back-to-back VSC-HVDC link connecting two adjacent asynchronous AC networks is studied. Control strategy is implemented and its dynamic performances during disturbances are investigated in MATLAB/Simulink program. The simulation results have shown good performance of the proposed system under balanced and unbalanced fault conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose Reyes
In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.
2010-08-22
tunable beam that will be used for the pump radiation in the femtosecond coherent anti-Stokes Raman scattering ( CARS ) measurements. This system has been...beam that will be used for the pump radiation in the femtosecond coherent anti-Stokes Raman scattering ( CARS ) measurements. This system has been... CARS ) spectroscopy. Fs CARS offers some significant potential advantages compared with nanosecond (ns) CARS , i.e., CARS as usually performed with ns
“Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”
Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...
2016-06-14
The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with themore » aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.« less
Reconstruction of the water table from self-potential data: a bayesian approach.
Jardani, A; Revil, A; Barrash, W; Crespy, A; Rizzo, E; Straface, S; Cardiff, M; Malama, B; Miller, C; Johnson, T
2009-01-01
Ground water flow associated with pumping and injection tests generates self-potential signals that can be measured at the ground surface and used to estimate the pattern of ground water flow at depth. We propose an inversion of the self-potential signals that accounts for the heterogeneous nature of the aquifer and a relationship between the electrical resistivity and the streaming current coupling coefficient. We recast the inversion of the self-potential data into a Bayesian framework. Synthetic tests are performed showing the advantage in using self-potential signals in addition to in situ measurements of the potentiometric levels to reconstruct the shape of the water table. This methodology is applied to a new data set from a series of coordinated hydraulic tomography, self-potential, and electrical resistivity tomography experiments performed at the Boise Hydrogeophysical Research Site, Idaho. In particular, we examine one of the dipole hydraulic tests and its reciprocal to show the sensitivity of the self-potential signals to variations of the potentiometric levels under steady-state conditions. However, because of the high pumping rate, the response was also influenced by the Reynolds number, especially near the pumping well for a given test. Ground water flow in the inertial laminar flow regime is responsible for nonlinearity that is not yet accounted for in self-potential tomography. Numerical modeling addresses the sensitivity of the self-potential response to this problem.
Fein, George; McGillivray, Shannon; Finn, Peter
2007-01-01
This study tested the hypotheses that older adults make less advantageous decisions than younger adults on the Iowa gambling task (IGT). Less advantageous decisions, as measured by the IGT, are characterized by choices that favor larger versus smaller immediate rewards, even though such choices may result in long-term negative consequences. The IGT, and measures of neuropsychological function, personality, and psychopathology were administered to 164 healthy adults 18–85 years of age. Older adults performed less advantageously on the IGT compared with younger adults. Additionally, a greater number of older adult’s IGT performances were classified as ‘impaired’ when compared to younger adults. Less advantageous decisions were associated with obsessive symptoms in older adults and with antisocial symptoms in younger adults. Performance on the IGT was positively associated with auditory working memory and psychomotor function in young adults, and in immediate memory in older adults. PMID:17445297
12 CFR 563.201 - Corporate opportunity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... duty to a savings association, you must not take advantage of corporate opportunities belonging to the...; and (2) The opportunity is of present or potential practical advantage to the savings association, either directly or through its subsidiary. (c) OTS will not deem you to have taken advantage of a...
76 FR 6199 - Enhanced Weapons, Firearms Background Checks, and Security Event Notifications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... XI. Voluntary Consensus Standards XII. Finding of No Significant Environmental Impact XIII. Paperwork... potential advantages to NRC licensees and certificate holders to enhance security. The first advantage is... advantage is that security personnel of certain licensees or certificate holders will be permitted to...
Neural Correlates of the In-Group Memory Advantage on the Encoding and Recognition of Faces
Herzmann, Grit; Curran, Tim
2013-01-01
People have a memory advantage for faces that belong to the same group, for example, that attend the same university or have the same personality type. Faces from such in-group members are assumed to receive more attention during memory encoding and are therefore recognized more accurately. Here we use event-related potentials related to memory encoding and retrieval to investigate the neural correlates of the in-group memory advantage. Using the minimal group procedure, subjects were classified based on a bogus personality test as belonging to one of two personality types. While the electroencephalogram was recorded, subjects studied and recognized faces supposedly belonging to the subject’s own and the other personality type. Subjects recognized in-group faces more accurately than out-group faces but the effect size was small. Using the individual behavioral in-group memory advantage in multivariate analyses of covariance, we determined neural correlates of the in-group advantage. During memory encoding (300 to 1000 ms after stimulus onset), subjects with a high in-group memory advantage elicited more positive amplitudes for subsequently remembered in-group than out-group faces, showing that in-group faces received more attention and elicited more neural activity during initial encoding. Early during memory retrieval (300 to 500 ms), frontal brain areas were more activated for remembered in-group faces indicating an early detection of group membership. Surprisingly, the parietal old/new effect (600 to 900 ms) thought to indicate recollection processes differed between in-group and out-group faces independent from the behavioral in-group memory advantage. This finding suggests that group membership affects memory retrieval independent of memory performance. Comparisons with a previous study on the other-race effect, another memory phenomenon influenced by social classification of faces, suggested that the in-group memory advantage is dominated by top-down processing whereas the other-race effect is also influenced by extensive perceptual experience. PMID:24358226
McNamara, P J; Sharief, N
2001-09-01
Near-patient blood glucose monitoring is an essential component of neonatal intensive care but the analysers currently used are unreliable and inaccurate. The aim of this study was to compare a new glucose electrode-based analyser (EML 105) and a non-wipe reflectance photometry method (Advantage) as opposed to a recognized laboratory reference method (Hexokinase). We also investigated the effect of sample route and haematocrit on the accuracy of the glucose readings obtained by each method of analysis. Whole blood glucose concentrations ranging from 0 to 3.5 mmol/l were carefully prepared in a laboratory setting and blood samples from each respective solution were then measured by EML 105 and Advantage analysers. The results obtained were then compared with the corresponding plasma glucose reading obtained by the Hexokinase method, using linear regression analysis. An in vivo study was subsequently performed on 103 neonates, over a 1-y period, using capillary and venous whole blood samples. Whole blood glucose concentration was estimated from each sample using both analysers and compared with the corresponding plasma glucose concentration estimated by the Hexokinase method. Venous blood was centrifuged and haematocrit was estimated using standardized curves. The effect of haematocrit on the agreement between whole blood and plasma glucose was investigated, estimating the degree of correlation on a scatterplot of the results and linear regression analysis. Both the EML 105 and Hexokinase methods were highly accurate, in vitro, with small proportional biases of 2% and 5%, respectively. However, in vivo, both study analysers overestimated neonatal plasma glucose, ranging from at best 0.45 mmol/l (EML 105 venous) to 0.69 mmol/l (EML capillary). There was no significant difference in the agreement of capillary (GD = 0.12, 95% CI, [-0.32,0.08], p = 0.2) or venous samples (GD = 0.05, 95% CI. [0.09, 0.19], p = 0.49) with plasma glucose when analysed by either study method (GD = glucose difference between study analyser and reference method) However, the venous samples analysed by EML 105 estimated plasma glucose significantly better than capillary samples using the same method of analysis (GD = 0.24, 95% CI. [0.09,0.38], p < 0.01). The relationship between haematocrit and the resultant glucose differences was non-linear with correlation coefficients of r = -0.057 (EML 105 capillary), r = 0.145 (EML 105 venous), r = -0.127 (Advantage capillary) and r = -0.275 (Advantage venous). There was no significant difference in the effect of haematocrit on the performance of EML 105 versus Advantage, regardless of the sample route. Both EML 105 and Advantage overestimated plasma glucose, with no significant difference in the performance of either analyser, regardless of the route of analysis. Agreement with plasma glucose was better for venous samples but this was only statistically significant when EML 105 capillary and venous results were compared. Haematocrit is not a significant confounding factor towards the performance of either EML 105 or Advantage in neonates, regardless of the route of sampling. The margin of overestimation of blood glucose prohibits the recommendation of both EML 105 and Advantage for routine neonatal glucose screening. The consequences include failure accurately to diagnose hypoglycaemia and delays in the instigation of therapeutic measures, both of which may potentially result in an adverse, long-term, neurodevelopmental outcome.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... potential for unfair competitive advantage.\\19\\ Although the Commission continues to be concerned about... regarding the potential for conflicts of interest in instances where a member firm is affiliated with an... use any information that it may have because of its affiliation with the Exchange to its advantage.\\18...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... potential for unfair competitive advantage.\\19\\ Although the Commission continues to be concerned about... regarding the potential for conflicts of interest in instances where a member firm is affiliated with an... use any information that it may have because of its affiliation with the Exchange to its advantage.\\18...
Broken-Plane Maneuver Applications for Earth to Mars Trajectories
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2007-01-01
Optimization techniques are critical when investigating Earth to Mars trajectories since they have the potential of reducing the total (delta)V of a mission. A deep space maneuver (DSM) executed during the cruise may improve a trajectory by reducing the total mission V. Nonetheless, DSMs not only may improve trajectory performance (from an energetic point of view) but also open up new families of trajectories that would satisfy very specific mission requirements not achievable with ballistic trajectories. In the following pages, various specific examples showing the potential advantages of the usage of broken plane maneuvers will be introduced. These examples correspond to possible scenarios for Earth to Mars trajectories during the next decade (2010-2020).
LIBS: a potential tool for industrial/agricultural waste water analysis
NASA Astrophysics Data System (ADS)
Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.
2016-04-01
Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.
Lifetime laser damage performance of β -Ga2O3 for high power applications
NASA Astrophysics Data System (ADS)
Yoo, Jae-Hyuck; Rafique, Subrina; Lange, Andrew; Zhao, Hongping; Elhadj, Selim
2018-03-01
Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.
Comparative Study of Barotrauma Risk during Fish Passage through Kaplan Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Romero-Gomez, Pedro; Serkowski, John A.
Rapid pressure changes in hydroelectric turbine flows can cause barotrauma that can be hazardous to the passage of fish, in particular migratory juvenile salmonids. Although numerous laboratory tests have evaluated the effect of rapid decompression in fish species of relevance, numerical modeling studies offer the advantage of predicting, for new turbine designs, the potential risks of mortality and injury from rapid pressure change during turbine passage. However, rapid pressure change is only one of several hydraulic risks encountered by fish during turbine passage in addition to blade strike, shear, and turbulence. To better understand the role of rapid pressure changes,more » the present work focuses on the application of a computational fluid dynamics based method for evaluating the risk of pressure-related mortality to fish passing through an early 1960s era original hydroelectric Kaplan turbine at Wanapum Dam (Columbia River, Washington), and a modern advanced Kaplan turbine installed in 2005. The results show that the modeling approach acceptably reproduced the nadir pressure distributions compared to field data previously collected at the site using an autonomous sensor. Our findings show that the new advanced-design unit performs better, in terms of reduced barotrauma risk to fish from exposure to low pressures, than the original turbine unit. The outcomes allow for comparative analyses of turbine designs and operations prior to installation, an advantage that can potentially be integrated in the process of designing new turbine units to achieve superior environmental performance. Overall, the results show that modern turbine designs can achieve the multiple objectives of increasing power generation, lowering cavitation potential, and reducing barotrauma risks to passing fish.« less
Nobilio, Lucia; Ugolini, Cristina
2003-01-01
The Italian regions of Emilia-Romagna and Lombardy within the Italian National Health Service provide an opportunity to see if two different approaches to the organisation of care--one more hierarchical and planned, the other more competitive and market-like--influence its quality through examining the relationship between the number of coronary artery bypass grafts (CABGs) and the rate of in-hospital mortality using administrative data for the period 1996-1998. Descriptive statistics and logistic regression models were used. The volume-outcome relation was statistically significant in both regions (odds ratio 0.71, P < 0.0001). Although CABG performance in Emilia-Romagna was slightly poorer than in Lombardy (OR 1.22, P < 0.05), the potential advantage in terms of the reduced risk of death for patients treated at high-volume versus low-volume hospitals was significantly greater. In Emilia-Romagna, the average performance advantage of high-volume units was more substantial in the case of private accredited hospitals than public hospitals (OR = 0.50, P < 0.0001 versus OR = 0.64, P < 0.0001). In Lombardy, the performance advantage of concentrating CABG procedures was greater in private research hospitals (OR = 0.67, P < 0.0001), whereas results were not statistically significant for the other types of hospital, indicating a good level of performance in both public and private hospitals even at low volumes. This also partially explained the lower mortality rate observed in that region. The degree of hierarchical regionalisation versus market-like arrangements characterising the two systems produced contrasting effects in terms of the quality of CABG surgery. Lombardy's more competitive environment appeared to achieve better performance in terms of a slightly lower probability of adverse outcomes, in a system with no formal assessment of population need and very high per capita revascularisation rates. To improve performance in the more hierarchical system adopted in Emilia-Romagna would require considerable effort to increase CABG surgery in low-volume cardiac units, and to sharpen performance incentives.
López-Gamero, María D; Molina-Azorín, José F; Claver-Cortés, Enrique
2009-07-01
The examination of the possible direct link between environmental protection and firm performance in the literature has generally produced mixed results. The present paper contributes to the literature by using the resource-based view as a mediating process in this relationship. The study specifically tests whether or not the resource-based view of the firm mediates the positive relationships of proactive environmental management and improved environmental performance with competitive advantage, which also has consequences for financial performance. We also check the possible link between the adoption of a pioneering approach and good environmental management practices. Our findings support that early investment timing and intensity in environmental issues impact on the adoption of a proactive environmental management, which in turn helps to improve environmental performance. The findings also show that a firm's resources and competitive advantage act as mediator variables for a positive relationship between environmental protection and financial performance. This contribution is original because the present paper develops a comprehensive whole picture of this path process, which has previously only been partially discussed in the literature. In addition, this study clarifies a relevant point in the literature, namely that the effect of environmental protection on firm performance is not direct and can vary depending on the sector considered. Whereas competitive advantage in relation to costs influences financial performance in the IPPC law sector, the relevant influence in the hotel sector comes from competitive advantage through differentiation.
Multimetallic nanosheets: synthesis and applications in fuel cells.
Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun
2018-04-03
Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.
A simplified Integer Cosine Transform and its application in image compression
NASA Technical Reports Server (NTRS)
Costa, M.; Tong, K.
1994-01-01
A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.
Implementation of a "Flipped Classroom" for Neurosurgery Resident Education.
Girgis, Fady; Miller, Jonathan P
2018-01-01
Engaging residents across a multiyear training spectrum is challenging given the heterogeneity of experience and limited time available for educational activities. A "flipped classroom" model, in which residents prepare ahead of time for mentored topic discussions, has potential advantages. We implemented a curriculum consisting of topics distributed across the specialty. Weekly, each resident was randomly assigned to research a specific aspect of an assigned topic appropriate to his or her level of experience: junior residents about what characterizes each clinical entity, midlevel residents about when to intervene, and chief residents about how to administer treatment. Residents completed an anonymous survey 6 months after implementation. Board examination performance was assessed before and after implementation. A total of 12 residents participated in the program. Weekly, 1.75±0.40 hours were spent in preparation, with senior residents reporting less time than junior residents. All residents indicated that the accumulation of experience across 7 years of residency was a major advantage of this program, and all preferred it to lectures. Performance on the board examination significantly increased after implementation (from 316±36 to 468±45, p<0.05). The flipped classroom is a viable approach to resident education and is associated with increased engagement and improved performance using validated knowledge-assessment tools.
Spatial ability mediates the gender difference in middle school students' science performance.
Ganley, Colleen M; Vasilyeva, Marina; Dulaney, Alana
2014-01-01
Prior research has demonstrated a male advantage in spatial skills and science achievement. The present research integrated these findings by testing the potential role of spatial skills in gender differences in the science performance of eighth-grade students (13-15 years old). In (N = 113), the findings showed that mental rotation ability mediated gender differences in physical science and technology/engineering test scores. In (N = 73,245), science performance was examined in a state population of eighth-grade students. As in , the results revealed larger gender differences on items that showed higher correlations with mental rotation. These findings underscore the importance of considering spatial training interventions aimed at reducing gender differences in the science performance of school-aged children. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Humble, Travis S.; McCaskey, Alex
A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto
Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Air Launch: Examining Performance Potential of Various Configurations and Growth Options
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Creech, Dennis M.; Philips, Alan
2013-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there existed a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a point-of-departure configuration, two independent design actions were undertaken. Both configurations utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V (?V) splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight refueling scenario. Results indicate many advantages such as large, relative payload delivery of approximately 47,000 lbm and significant mission flexibility, such as variable launch site inclination and launch window; however, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.
Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases.more » Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.« less
Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules
Panzeri, Francesco
2017-01-01
We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142
Dielectrophoresis-based microfluidic platforms for cancer diagnostics.
Chan, Jun Yuan; Ahmad Kayani, Aminuddin Bin; Md Ali, Mohd Anuar; Kok, Chee Kuang; Yeop Majlis, Burhanuddin; Hoe, Susan Ling Ling; Marzuki, Marini; Khoo, Alan Soo-Beng; Ostrikov, Kostya Ken; Ataur Rahman, Md; Sriram, Sharath
2018-01-01
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.
Cocurrent scrubber evaluation TVA's Colbert Lime--Limestone Wet-Scrubbing Pilot Plant. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robards, R.F.; Moore, N.D.; Kelso, T.M.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests of TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of the Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests.« less
NASA Astrophysics Data System (ADS)
Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.
Tykot, Robert H
2016-01-01
Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.
Wang, Wanping; Shao, Limin; Yuan, Bin; Zhang, Xu; Liu, Maili
2018-08-31
The number of chemical species is crucial in analyzing pulsed field gradient nuclear magnetic resonance spectral data. Any method to determine the number must handle the obstacles of collinearity and noise. Collinearity in pulsed field gradient NMR data poses a serious challenge to and fails many existing methods. A novel method is proposed by taking advantage of the two obstacles instead of eliminating them. In the proposed method, the determination is based on discriminating decay-profile-dominant eigenvectors from noise-dominant ones, and the discrimination is implemented with a novel low- and high-frequency energy ratio (LHFER). Its performance is validated with both simulated and experimental data. The method is mathematically rigorous, computationally efficient, and readily automated. It also has the potential to be applied to other types of data in which collinearity is fairly severe. Copyright © 2018 Elsevier B.V. All rights reserved.
Systematic study of error sources in supersonic skin-friction balance measurements
NASA Technical Reports Server (NTRS)
Allen, J. M.
1976-01-01
An experimental study was performed to investigate potential error sources in data obtained with a self-nulling, moment-measuring, skin-friction balance. The balance was installed in the sidewall of a supersonic wind tunnel, and independent measurements of the three forces contributing to the balance output (skin friction, lip force, and off-center normal force) were made for a range of gap size and element protrusion. The relatively good agreement between the balance data and the sum of these three independently measured forces validated the three-term model used. No advantage to a small gap size was found; in fact, the larger gaps were preferable. Perfect element alignment with the surrounding test surface resulted in very small balance errors. However, if small protrusion errors are unavoidable, no advantage was found in having the element slightly below the surrounding test surface rather than above it.
High-content screening in microfluidic devices.
Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre
2010-08-01
Miniaturization is the key to advancing the state of the art in high-content screening (HCS) in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. The advantages of this technology are discussed, including cost savings, high-throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration and scaling. The reader will understand the capabilities of anew microfluidics-based platform for HCS and the advantages it provides over conventional plate-based HCS. Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery.
Conventional engine technology. Volume 2: Status of diesel engine technology
NASA Technical Reports Server (NTRS)
Schneider, H. W.
1981-01-01
The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.
Possible applications for municipal solid waste fly ash.
Ferreira, C; Ribeiro, A; Ottosen, L
2003-01-31
The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.
One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection
Zhao, Xiaoli; Cai, Bin; Tang, Qingxin; Tong, Yanhong; Liu, Yichun
2014-01-01
Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorable for the studies of the response mechanism. On the other hand; one main merit of the field-effect sensors is to provide an extra gate electrode to realize the current modulation; so that the sensitivity can be dramatically enhanced by changing the conductivity when operating the sensors in the subthreshold regime. This article reviews the recent developments in the field of 1D nanostructure FET for gas detection. The sensor configuration; the performance as well as their sensing mechanism are evaluated. PMID:25090418
Characterization of boron coated vitreous carbon foam for neutron detection
NASA Astrophysics Data System (ADS)
Lavelle, C. M.; Deacon, Ryan M.; Hussey, Daniel S.; Coplan, Michael; Clark, Charles W.
2013-11-01
Reticulated vitreous carbon (RVC) foams coated with 3-11 μm thick layers of boron carbide (B4C) are experimentally characterized for use as an active material for neutron detection. The potential advantage of this material over thin films is that it can be fabricated in any shape and its porous structure may enhance the emission surface area for ionizing charged particles following thermal neutron capture. A coated foam is also advantageous because the neutron-absorbing material is only on the surface, which is more efficient for α particle emission on a per captured neutron basis. Measurements of the B4C layer thickness of an RVC coated foam, and determination of its elemental composition, are performed using scanning electron microscopy. Neutron transmission measurements using neutron radiography are presented and α particle emission from the coated foam in response to a moderated 252Cf thermal neutron source is demonstrated.
An evaluation of head-up displays in civil transport operations
NASA Technical Reports Server (NTRS)
Lauber, J. K.; Bray, R. S.; Scott, B. C.
1981-01-01
To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches.
Nonlinear vs. linear biasing in Trp-cage folding simulations
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka
2015-03-01
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
Nonlinear vs. linear biasing in Trp-cage folding simulations.
Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
Hybrid boosters for future launch vehicles
NASA Astrophysics Data System (ADS)
Dargies, E.; Lo, R. E.
There is a striking similarity in the design of the US Space Transportation System, the European ARI-ANE 5P and the Japanese II-II: they all use a high energy cryogenic core stage along with two large solid propellant rocket boosters (SRB's) in order to provide for a high lift-off thrust level. Prior to last years disasters with Challenger and Titan it was widely held that SRB's were cheap, uncomplicated and safe. Even before the revelation by these accidents of severe safety hazards, shuttle operations demonstrated that the SRB's were by no means as cheap as reusable systems ought to be. In addition, they became known as sources of considerable environmental pollution. In contrast, hybrid rocket propulsion systems offer the following potential advantages: • much higher savety level (TNT equivalent almost zero, shut-down capability in case of ignition failure of one unit, inert against unbonding) • choice of non-toxic propellant combinations • equal or higher specific performance For these reasons, system analysis were carried out to examine hybrids as potential alternative to SRB's. Various analytical tools (mass- and performance models, trajectory simulation etc.) were developed for parametrical studies of hybrid propulsion systems. Special attention was devoted to the well-known primary concern of hybrids: geometrical design of the solid fuel grain and regression rate of the ablating surface. Experimental data were used as input wherever possible. In 1985 first studies were carried out to find possible fields of application for hybrid rocket engines. A mass model and a performance model for hybrid rocket motors were developed, taking into account the peculiarities of hybrid combustion as there are i.e. low regression rate and shifting mixture ratio during operation. After some analytical work was done, hybrids proved to be a promising alternative to SRB's. Compared with solids, hybrids offer many advantages.
Znazen, Hela; Mejri, Aouatef; Touhami, Imed; Chtara, Moktar; Siala, Hajer; LE Gallais, Daniel; Ahmetov, Ildus I; Messaoud, Taeib; Chamari, Karim; Soussi, Nizar
2016-06-01
ID polymorphism of the gene coding for the angiotensin I-converting enzyme (ACE) represents a determining factor in physical and athletic performance in the context of genetic conditioning of sports predisposition. The aim of this study was to show the potential importance of genetic factors in relation to the athletic status in Tunisian athletes. The ACE genotypes were established using polymerase chain reaction (PCR) amplification for 282 Tunisian athletes (endurance: N.=149 - power: N.=133), and 211 sedentary volunteers. No significant difference was found in the ACE genotype distribution between athletes (36% DD, 49% ID, 15% II) and controls (CTR) (39% DD, 46% ID, 15% II; P=0.72). In contrast, a high significant difference between endurance and power groups were noted in genotype and alleles (χ2=10.32, P=0.0057; χ2=4,752, P=0.029, respectively). The elite endurance-athletes (N.=72) possess some inherent genetic advantage predisposing them to superior athletic performances compared to CTR for ACE alleles (χ2=3.51, P=0.06). In addition endurance trained athletes were also significantly different from CTR for ACE genotype (χ2=6.05, P=0.04). Furthermore, a significant difference have been found between elite power-athletes (N.=59) and CTR for ACE alleles (χ2=3.79, P=0.05). Tunisian athletes exhibit insertion (I) and deletion (D) alleles of the ACE polymorphism associated with a high level of human endurance and power performance, respectively. This genetic background plays an important role in sporting potential and causes some individuals to be better adapted to specific physical training. This should be considered in athlete development to identify which sporting specialties should be trained for Tunisian talent promotion.
Yow, W. Quin; Li, Xiaoqian
2015-01-01
Recent studies revealed inconsistent evidences of a bilingual advantage in executive processing. One potential source of explanation is the multifaceted experience of the bilinguals in these studies. This study seeks to test whether bilinguals who engage in language selection more frequently would perform better in executive control tasks than those bilinguals who engage in language selection less frequently. We examined the influence of the degree of bilingualism (i.e., language proficiency, frequency of use of two languages, and age of second language acquisition) on executive functioning in bilingual young adults using a comprehensive battery of executive control tasks. Seventy-two 18- to 25-years-old English–Mandarin bilinguals performed four computerized executive function (EF) tasks (Stroop, Eriksen flanker, number–letter switching, and n-back task) that measure the EF components: inhibition, mental-set shifting, and information updating and monitoring. Results from multiple regression analyses, structural equation modeling, and bootstrapping supported the positive association between age of second language acquisition and the interference cost in the Stroop task. Most importantly, we found a significant effect of balanced bilingualism (balanced usage of and balanced proficiency in two languages) on the Stroop and number–letter task (mixing cost only), indicating that a more balanced use and a more balanced level of proficiency in two languages resulted in better executive control skills in the adult bilinguals. We did not find any significant effect of bilingualism on flanker or n-back task. These findings provided important insights to the underlying mechanisms of the bilingual cognitive advantage hypothesis, demonstrating that regular experience with extensive practice in controlling attention to their two language systems results in better performance in related EFs such as inhibiting prepotent responses and global set-shifting. PMID:25767451
Yow, W Quin; Li, Xiaoqian
2015-01-01
Recent studies revealed inconsistent evidences of a bilingual advantage in executive processing. One potential source of explanation is the multifaceted experience of the bilinguals in these studies. This study seeks to test whether bilinguals who engage in language selection more frequently would perform better in executive control tasks than those bilinguals who engage in language selection less frequently. We examined the influence of the degree of bilingualism (i.e., language proficiency, frequency of use of two languages, and age of second language acquisition) on executive functioning in bilingual young adults using a comprehensive battery of executive control tasks. Seventy-two 18- to 25-years-old English-Mandarin bilinguals performed four computerized executive function (EF) tasks (Stroop, Eriksen flanker, number-letter switching, and n-back task) that measure the EF components: inhibition, mental-set shifting, and information updating and monitoring. Results from multiple regression analyses, structural equation modeling, and bootstrapping supported the positive association between age of second language acquisition and the interference cost in the Stroop task. Most importantly, we found a significant effect of balanced bilingualism (balanced usage of and balanced proficiency in two languages) on the Stroop and number-letter task (mixing cost only), indicating that a more balanced use and a more balanced level of proficiency in two languages resulted in better executive control skills in the adult bilinguals. We did not find any significant effect of bilingualism on flanker or n-back task. These findings provided important insights to the underlying mechanisms of the bilingual cognitive advantage hypothesis, demonstrating that regular experience with extensive practice in controlling attention to their two language systems results in better performance in related EFs such as inhibiting prepotent responses and global set-shifting.
The next generation of solar panel substrates?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gledhill, K.M.; Boswell, R.L.; Paul, J.G.
For over 25 years, satellite power system designers have used rigid honeycomb panels as solar array substrates. Those years have seen very little improvement in the performance of these rigid systems. A new technology under development at the Phillips Laboratory, however, may undo this stagnancy. Composite isogrid panel structures offer a number of potential advantages over honeycomb sandwich structures for solar array applications, including stiffness, weight, and cost improvements. Phillips Laboratory will be performing a series of evaluative tests on the isogrid structure to determine its suitability as a substitute for honeycomb sandwiches in solar panel applications. Testing will includemore » three-point bending, thermal vacuum, and thermal cycling.« less
Super NiCd Open-Circuit Storage and Low Earth Orbit (LEO) Life Test Evaluation
NASA Technical Reports Server (NTRS)
Baer, Jean Marie; Hwang, Warren C.; Ang, Valerie J.; Hayden, Jeff; Rao, Gopalakrishna; Day, John H. (Technical Monitor)
2002-01-01
This presentation discusses Air Force tests performed on super NiCd cells to measure their performance under conditions simulating Low Earth Orbit (LEO) conditions. Super NiCd cells offer potential advantages over existing NiCd cell designs including advanced cell design with improved separator material and electrode making processes, but handling and storage requires active charging. These tests conclude that the super NiCd cells support generic Air Force qualifications for conventional LEO missions (up to five years duration) and that handling and storage may not actually require active charging as previously assumed. Topics covered include: Test Plan, Initial Characterization Tests, Open-Circuit Storage Tests, and post storage capacities.
NASA Astrophysics Data System (ADS)
Sanjaya, Kadek Heri; Sya'bana, Yukhi Mustaqim Kusuma
2017-01-01
Research on eco-friendly vehicle development in Indonesia has largely neglected ergonomic study, despite the fact that traffic accidents have resulted in greater economic cost than fuel subsidy. We have performed a biomechanical experiment on human locomotion earlier. In this article, we describe the importance of implementing the biomechanical measurement methods in transportation ergonomic study. The instruments such as electromyogram (EMG), load cell, pressure sensor, and motion analysis methods as well as cross-correlation function analysis were explained, then the possibility of their application in driving behavior study is described. We describe the potentials and challenges of the biomechanical methods concerning the future vehicle development. The methods provide greater advantages in objective and accurate measurement not only in human task performance but also its correlation with vehicle performance.
Reichert, Christoph; Dürschmid, Stefan; Heinze, Hans-Jochen; Hinrichs, Hermann
2017-01-01
In brain-computer interface (BCI) applications the detection of neural processing as revealed by event-related potentials (ERPs) is a frequently used approach to regain communication for people unable to interact through any peripheral muscle control. However, the commonly used electroencephalography (EEG) provides signals of low signal-to-noise ratio, making the systems slow and inaccurate. As an alternative noninvasive recording technique, the magnetoencephalography (MEG) could provide more advantageous electrophysiological signals due to a higher number of sensors and the magnetic fields not being influenced by volume conduction. We investigated whether MEG provides higher accuracy in detecting event-related fields (ERFs) compared to detecting ERPs in simultaneously recorded EEG, both evoked by a covert attention task, and whether a combination of the modalities is advantageous. In our approach, a detection algorithm based on spatial filtering is used to identify ERP/ERF components in a data-driven manner. We found that MEG achieves higher decoding accuracy (DA) compared to EEG and that the combination of both further improves the performance significantly. However, MEG data showed poor performance in cross-subject classification, indicating that the algorithm's ability for transfer learning across subjects is better in EEG. Here we show that BCI control by covert attention is feasible with EEG and MEG using a data-driven spatial filter approach with a clear advantage of the MEG regarding DA but with a better transfer learning in EEG. PMID:29085279
The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.
Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel
2012-05-01
In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
FEL for the polymer processing industries
NASA Astrophysics Data System (ADS)
Kelley, Michael J.
1997-05-01
Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.
Effects of symbol type and numerical distance on the human event-related potential.
Jiang, Ting; Qiao, Sibing; Li, Jin; Cao, Zhongyu; Gao, Xuefei; Song, Yan; Xue, Gui; Dong, Qi; Chen, Chuansheng
2010-01-01
This study investigated the influence of the symbol type and numerical distance of numbers on the amplitudes and peak latencies of event-related potentials (ERPs). Our aim was to (1) determine the point in time of magnitude information access in visual number processing; and (2) identify at what stage the advantage of Arabic digits over Chinese verbal numbers occur. ERPs were recorded from 64 scalp sites while subjects (n=26) performed a classification task. Results showed that larger ERP amplitudes were elicited by numbers with distance-close condition in comparison to distance-far condition in the VPP component over centro-frontal sites. Furthermore, the VPP latency varied as a function of the symbol type, but the N170 did not. Such results demonstrate that magnitude information access takes place as early as 150 ms after onset of visual number stimuli and the advantage of Arabic digits over verbal numbers should be localized to the VPP component. We establish the VPP component as a critical ERP component to report in studies of numerical cognition and our results call into question the N170/VPP association hypothesis and the serial-stage model of visual number comparison processing.
Multimodal Estimation of Distribution Algorithms.
Yang, Qiang; Chen, Wei-Neng; Li, Yun; Chen, C L Philip; Xu, Xiang-Min; Zhang, Jun
2016-02-15
Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.
Tail docking in horses: a review of the issues.
Lefebvre, D; Lips, D; Odberg, F O; Giffroy, J M
2007-09-01
Routinely performed painful procedures are of increasing interest and, in 2001 (Royal Order, May 17), Belgium prohibited docking in several vertebrates including horses. In 2004, opponents to this decision submitted a Bill (Doc51 0969/001) to Parliament, intending to obtain derogation for Belgian draught horses, which were traditionally docked. The Animal Welfare Council of Belgium, an official body advising the Minister of Public Health, was asked to evaluate this complex question, including biological, ethical and socio-economic aspects, on the basis of the available peer-reviewed studies. In this context, this study reviews legal aspects (overview of the European legislation), zootechnic aspects (uses of the Belgian draught horse) and biological aspects (pain potentially related to docking; horses' welfare linked to insect harassment and hygiene, communication and reproduction) of tail docking in draught horses. We conclude that (1) there is no benefit for horses in tail docking, including Belgian draught horses, (2) potential advantages of docking are essentially in favour of humans and these advantages could be scrupulously re-evaluated, taking into account practices of other countries. Therefore, there is no need to dock any horse other than for veterinary reasons.
Magalhães, Frederico; Krogerus, Kristoffer; Castillo, Sandra; Ortiz-Julien, Anne; Dequin, Sylvie; Gibson, Brian
2017-08-01
Yeast cryotolerance brings some advantages for wine fermentations, including the improved aromatic complexity of white wines. Naturally cold-tolerant strains are generally less adept at wine fermentation but fermentative fitness can potentially be improved through hybridization. Here we studied the potential of using hybrids involving Saccharomyces eubayanus and a S. cerevisiae wine strain for low-temperature winemaking. Through screening the performance in response to variable concentrations of sugar, nitrogen and temperature, we isolated one hybrid strain that exhibited the superior performance. This hybrid strain was propagated and dried in pilot scale and tested for the fermentation of Macabeu and Sauvignon blanc grape musts. We obtained highly viable active dry yeast, which was able to efficiently ferment the grape musts with superior production of aroma active volatiles, in particular, 2-phenylethanol. The genome sequences of the hybrid strains revealed variable chromosome inheritance among hybrids, particularly within the S. cerevisiae subgenome. With the present paper, we expand the knowledge on the potentialities of using S. eubayanus hybrids in industrial fermentation at beverages other than lager beer. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler
NASA Astrophysics Data System (ADS)
Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.
2013-04-01
An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.
1991-01-01
Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.
Identification of potential hazards associated with new residential construction.
Methner, M M
2000-02-01
There were several advantages and limitations of this observational study. The most important advantage of this study was the opportunity to observe residential construction workers performing their jobs. By observing work practices, valuable information was gathered about specific trades and their potential exposure to various chemical and physical agents. This information will be useful in guiding subsequent exposure assessments. Probably the greatest limitation of this study was the lack of participation by homebuilders. Ideally, observations of construction processes would have been more objective if the study included the participation of more than one homebuilder. Aside from one worker who was observed to wear safety glasses, leather gloves, and a dust mask, virtually no personal protective equipment (PPE) was observed onsite. Often small contractors do not have the financial resources necessary to procure the appropriate PPE and issue these items to the workers. Based on hazard prevalence, professional judgement, and the degree of hazardous product use, potential exposures that warrant quantitative sampling efforts during Phase 2 of this study are: bulldozer/backhoe operators--noise, vibration, diesel exhaust; concrete workers--naphtha, mineral spirits, Portland cement; asphalt workers--petroleum hydrocarbons, asphalt, mineral spirits; plumbers--methylethyl ketone, acetone, tetrahydrofuran, cyclohexanone; drywall finishers--total and respirable dust, hexane, acetone; painters--ethylene glycol, VOCs; masons--dust (during the preparation of mortar); floor preparation technicians--total and respirable dust; and ceramic tile installers--toluene, naphtha, silica (from grout powder).
ERIC Educational Resources Information Center
Crosnoe, Robert; Smith, Chelsea; Leventhal, Tama
2015-01-01
Applying latent class and regression techniques to data from the NICHD Study of Early Child Care and Youth Development (n = 997), this study explored the potential academic advantages of time spent in out-of-school activities. Of particular interest was how these potential advantages played out in relation to the timing and duration of activity…
An investigation of home advantage in the Summer Paralympic Games.
Wilson, Darryl; Ramchandani, Girish
2017-01-01
There is a paucity of home advantage research set in the context of para-sport events. It is this gap in the knowledge that this paper addresses by investigating the prevalence and size of home advantage in the Summer Paralympic Games. Using a standardised measure of success, we compared the performances of nations when competing at home with their own performances away from home in the competition between 1960 and 2016. Both country-level and individual sport-level analyses were conducted for this time frame. A Wilcoxon signed rank test was used to determine whether there was a genuine difference in nations' performance under host and non-host conditions. Spearman's rank-order correlation was run to assess the relationship between nation quality and home advantage. Strong evidence of a home advantage effect in the Summer Paralympic Games was found at country level ( p < 0.01). When examining individual sports, only athletics, table tennis, and wheelchair fencing returned a significant home advantage effect ( p < 0.05). Possible explanations for these findings are discussed. The size of the home advantage effect was not significantly correlated with the quality or strength of the host nation ( p > 0.10). While our results confirm that home advantage is prevalent in the Summer Paralympic Games at an overall country level and within specific sports, they do not explain fully why such an effect does exist. Future studies should investigate the causes of home advantage in the competition and also draw comparisons with the Summer Olympic Games to explore any differences between para-sport events and able-bodied events.
Component-cost and performance based comparison of flow and static batteries
NASA Astrophysics Data System (ADS)
Hopkins, Brandon J.; Smith, Kyle C.; Slocum, Alexander H.; Chiang, Yet-Ming
2015-10-01
Flow batteries are a promising grid-storage technology that is scalable, inherently flexible in power/energy ratio, and potentially low cost in comparison to conventional or ;static; battery architectures. Recent advances in flow chemistries are enabling significantly higher energy density flow electrodes. When the same battery chemistry can arguably be used in either a flow or static electrode design, the relative merits of either design choice become of interest. Here, we analyze the costs of the electrochemically active stack for both architectures under the constraint of constant energy efficiency and charge and discharge rates, using as case studies the aqueous vanadium-redox chemistry, widely used in conventional flow batteries, and aqueous lithium-iron-phosphate (LFP)/lithium-titanium-phosphate (LTP) suspensions, an example of a higher energy density suspension-based electrode. It is found that although flow batteries always have a cost advantage (kWh-1) at the stack level modeled, the advantage is a strong function of flow electrode energy density. For the LFP/LTP case, the cost advantages decreases from ∼50% to ∼10% over experimentally reasonable ranges of suspension loading. Such results are important input for design choices when both battery architectures are viable options.
Sex-sensitive cognitive performance in untreated patients with early onset gender identity disorder.
Haraldsen, I R; Opjordsmoen, S; Egeland, T; Finset, A
2003-10-01
We explored whether the cognitive performance of gender identity disorder patients (GID) was comparable to that of their biological sex or skewed towards that of their gender identity. We tested four potentially sex-sensitive cognitive factors (rotation, visualization, perception, and verbalization) as well as two neutral factors (logic and arithmetic) in GID patients from Norway (GID-N, n = 33) or the USA (GID-US, n = 19) and in a control group (C, n = 29). The testing was undertaken prior to cross sex hormone treatment. Four-way ANOVA was applied in the final analysis of the cognitive performance and its dependency on different predictors (age, biological sex, education, group). In both GID groups as well as in the control group (C) males excelled in visualization and rotation, also when controlling for potential confounders (biological sex, group, age and education). No female advantage was detected. Furthermore, no interaction between biological sex and group assignment was revealed in the samples. In this study the cognitive pattern of GID patients is consistent with that of their biological sex and not that of their gender identity.
Naqvi, M; Yan, J; Dahlquist, E
2012-04-01
This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aggressive behavior and performance in the Tegu lizard Tupinambis merianae.
Herrel, Anthony; Andrade, Denis V; de Carvalho, José Eduardo; Brito, Ananda; Abe, Augusto; Navas, Carlos
2009-01-01
Aggression is an important component of behavior in many animals and may be crucial to providing individuals with a competitive advantage when resources are limited. Although much is known about the effects of catecholamines and hormones on aggression, relatively few studies have examined the effects of physical performance on aggression. Here we use a large, sexually dimorphic teiid lizard to test whether individuals that show high levels of physical performance (bite force) are also more aggressive toward a potential threat (i.e., a human approaching the lizard). Our results show that independent of their sex, larger individuals with higher bite forces were indeed more aggressive. Moreover, our data show that individuals with higher bite forces tend to show decreased escape responses and are slower, providing evidence for a trade-off between fight and flight abilities. As bite force increased dramatically with body size, we suggest that large body size and bite force may reduce the threshold for an individual to engage in an aggressive encounter, allowing it to potentially gain or maintain resources and fight off predators while minimizing the risk of injury.
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Schumacher, Daniel M.
2015-01-01
The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.
Motor expertise and performance in spatial tasks: A meta-analysis.
Voyer, Daniel; Jansen, Petra
2017-08-01
The present study aimed to provide a summary of findings relevant to the influence of motor expertise on performance in spatial tasks and to examine potential moderators of this effect. Studies of relevance were those in which individuals involved in activities presumed to require motor expertise were compared to non-experts in such activities. A final set of 62 effect sizes from 33 samples was included in a multilevel meta-analysis. The results showed an overall advantage in favor of motor experts in spatial tasks (d=0.38). However, the magnitude of that effect was moderated by expert type (athlete, open skills/ball sports, runner/cyclist, gymnast/dancers, musicians), stimulus type (2D, blocks, bodies, others), test category (mental rotation, spatial perception, spatial visualization), specific test (Mental Rotations Test, generic mental rotation, disembedding, rod-and-frame test, other), and publication status. These findings are discussed in the context of embodied cognition and the potential role of activities requiring motor expertise in promoting good spatial performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Vienna FORTRAN: A FORTRAN language extension for distributed memory multiprocessors
NASA Technical Reports Server (NTRS)
Chapman, Barbara; Mehrotra, Piyush; Zima, Hans
1991-01-01
Exploiting the performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna FORTRAN is a language extension of FORTRAN which provides the user with a wide range of facilities for such mapping of data structures. However, programs in Vienna FORTRAN are written using global data references. Thus, the user has the advantage of a shared memory programming paradigm while explicitly controlling the placement of data. The basic features of Vienna FORTRAN are presented along with a set of examples illustrating the use of these features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S. J.; Schepers, J. G.
Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.
Hybrid boosters for future launch vehicles
NASA Astrophysics Data System (ADS)
Dargies, E.; Lo, R. E.
1987-10-01
Hybrid rocket propulsion systems furnish the advantages of much higher safety levels, due both to shut-down capability in case of ignition failure to one unit and the potential choice of nontoxic propellant combinations, such as LOX/polyethylene; they nevertheless yield performance levels comparable or superior to those of solid rocket boosters. Attention is presently given to the results of DFVLR analytical model studies of hybrid propulsion systems, with attention to solid fuel grain geometrical design and propellant grain surface ablation rate. The safety of hybrid rockets recommends them for use by manned spacecraft.
1987-01-01
Sons, New York, 1983). The Effect of Electrochemical Potentials on the Durability of Rubber /Metal Bonds in Sea Watert A. STEVENSON Materials...cohesive fracture through the rubber . As a control experiment, a set of new dry testpieces were cut at the bond to various depths-simulating the full...melts are a new class of adhesives. They are created to improve the heat performance of hot melts without losing the advantages of hot melts, for
NASA Technical Reports Server (NTRS)
Chapman, Barbara; Mehrotra, Piyush; Zima, Hans
1992-01-01
Exploiting the full performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna Fortran is a language extension of Fortran which provides the user with a wide range of facilities for such mapping of data structures. In contrast to current programming practice, programs in Vienna Fortran are written using global data references. Thus, the user has the advantages of a shared memory programming paradigm while explicitly controlling the data distribution. In this paper, we present the language features of Vienna Fortran for FORTRAN 77, together with examples illustrating the use of these features.
Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells
Liu, Ruchuan
2014-01-01
Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591
Potential of laser for SPS power transmission
NASA Technical Reports Server (NTRS)
Bain, C. N.
1978-01-01
Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.
RF Manipulation and Detection of Protons in the High Performance Antiproton Trap (HiPAT)
NASA Technical Reports Server (NTRS)
Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan
2003-01-01
The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter-derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility.
Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster
NASA Technical Reports Server (NTRS)
Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon
2002-01-01
With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.
Sol-Gel Processing of MgF₂ Antireflective Coatings.
Löbmann, Peer
2018-05-02
There are different approaches for the preparation of porous antireflective λ/4 MgF₂ films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible.
NASA Astrophysics Data System (ADS)
Shinar, J.; Shinar, R.
The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Bongjun; Liang, Kelly; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu
We show that double-gate ambipolar thin-film transistors can be operated to enhance minority carrier injection. The two gate potentials need to be significantly different for enhanced injection to be observed. This enhancement is highly beneficial in devices such as light-emitting transistors where balanced electron and hole injections lead to optimal performance. With ambipolar single-walled carbon nanotube semiconductors, we demonstrate that higher ambipolar currents are attained at lower source-drain voltages, which is desired for portable electronic applications, by employing double-gate structures. In addition, when the two gates are held at the same potential, the expected advantages of the double-gate transistors suchmore » as enhanced on-current are also observed.« less
Gatemon Benchmarking and Two-Qubit Operation
NASA Astrophysics Data System (ADS)
Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles
Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.
Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam
2015-07-15
Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.
Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.
2012-01-01
Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.
Bio-electrochemical removal of nitrate from water and wastewater--a review.
Ghafari, Shahin; Hasan, Masitah; Aroua, Mohamed Kheireddine
2008-07-01
Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.
Future orbital transfer vehicle technology study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Davis, E. E.
1982-01-01
Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.
Tuning the mind: Exploring the connections between musical ability and executive functions.
Slevc, L Robert; Davey, Nicholas S; Buschkuehl, Martin; Jaeggi, Susanne M
2016-07-01
A growing body of research suggests that musical experience and ability are related to a variety of cognitive abilities, including executive functioning (EF). However, it is not yet clear if these relationships are limited to specific components of EF, limited to auditory tasks, or reflect very general cognitive advantages. This study investigated the existence and generality of the relationship between musical ability and EFs by evaluating the musical experience and ability of a large group of participants and investigating whether this predicts individual differences on three different components of EF - inhibition, updating, and switching - in both auditory and visual modalities. Musical ability predicted better performance on both auditory and visual updating tasks, even when controlling for a variety of potential confounds (age, handedness, bilingualism, and socio-economic status). However, musical ability was not clearly related to inhibitory control and was unrelated to switching performance. These data thus show that cognitive advantages associated with musical ability are not limited to auditory processes, but are limited to specific aspects of EF. This supports a process-specific (but modality-general) relationship between musical ability and non-musical aspects of cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
PEGylated nanomedicines: recent progress and remaining concerns.
Vllasaliu, Driton; Fowler, Robyn; Stolnik, Snow
2014-01-01
Recent biopharma deals related to nanocarrier drug delivery technologies highlight the emergence of nanomedicine. This is perhaps an expected culmination of many years of research demonstrating the potential of nanomedicine as the next generation of therapeutics with improved performance. PEGylated nanocarriers play a key role within this field. The drug delivery advantages of nanomedicines in general are discussed, focusing on nanocarriers and PEGylated nanomedicines, including products under current development/clinical evaluation. Well-established drug delivery benefits of PEGylation (e.g., prolonged circulation) are only briefly covered. Instead, attention is deliberately made to less commonly reported advantages of PEGylation, including mucosal delivery of nanomedicines. Finally, some of the issues related to the safety of PEGylated nanomedicines in clinical application are discussed. The advent of nanomedicine providing therapeutic options of refined performance continues. Although PEGylation as a tool to improve the pharmacokinetics of nanomedicines is well established and is used clinically, other benefits of 'PEGnology', including enhancement of physicochemical properties and/or biocompatibility of actives and/or drug carriers, as well as mucosal delivery, have attracted less attention. While concerns regarding the clinical use of PEGylated nanomedicines remain, evidence suggests that at least some safety issues may be controlled by adequate designs of nanosystems.
NASA Technical Reports Server (NTRS)
1982-01-01
A newly patented process for slicing silicon wafers that has distinct advantages over methods now widely used is described. The primary advantage of the new system is that it allows the efficient slicing of a number of ingots simultaneously at high speed. The cutting action is performed mechanically, most often with diamond particles that are transported to the cutting zone by a fluid vehicle or have been made an integral part of the blade by plating or impregnation. The new system uses a multiple or ganged band saw, arranged and spaced so that each side, or length, segment of a blade element, or loop, provides a cutting function. Each blade is maintained precisely in position by guides as it enters and leaves each ingot. The cutting action is performed with a conventional abrasive slurry composed of diamond grit suspended in an oil- or water-based vehicle. The distribution system draws the slurry from the supply reservoir and pumps it to the injection tubes to supply it to each side of each ingot. A flush system is provided at the outer end of the work-station zone. In order to reduce potential damage, a pneumatically driven flushing fluid is provided.
Canine transurethral laser prostatectomy using a rotational technique
NASA Astrophysics Data System (ADS)
Cromeens, Douglas M.; Johnson, Douglas E.
1995-05-01
Conventional radical prostatectomy in the dog has historically been attended by unacceptably high incidence of urinary incontinence (80 - 100%). Ablation of the prostate can be accomplished in the dog by transurethral irradiation of the prostate with the Nd:YAG laser and a laterally deflecting fiber. Exposure has ranged between 40 and 60 watts for 60 seconds at 4 fixed locations. Although prostatectomies performed with the above described technique offers significant advantage over conventional prostatectomies, the high power density at each location can result in small submucosal explosions (`popcorn effect') that increase the potential for bleeding and rupture of the prostatic capsule. We describe a new technique in which the energy is applied continuously by a laser fiber rotating around a central point. Delivering 40 watts of Nd:YAG energy for 4 minutes using a new angle-delivery device (UrotekTM), we produced results comparable to those of other previously reported techniques in the canine model with two added advantages: (1) a more even application of heat resulting in no `popcorn' effect and (2) a more reliably predictable area of coagulative necrosis within a given axial plane. This technique should provide additional safety for the veterinary surgeon performing visual laser ablation of the prostate in the dog.
NASA Astrophysics Data System (ADS)
Chen, Xin; Sánchez-Arriaga, Gonzalo
2018-02-01
To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.
Performance and cost of materials for lithium-based rechargeable automotive batteries
NASA Astrophysics Data System (ADS)
Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin
2018-04-01
It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
NASA Technical Reports Server (NTRS)
Irvine, R.; Van Alstine, R.
1979-01-01
The paper compares and describes the advantages of dry tuned gyros over floated gyros for space applications. Attention is given to describing the Teledyne SDG-5 gyro and the second-generation NASA Standard Dry Rotor Inertial Reference Unit (DRIRU II). Certain tests which were conducted to evaluate the SDG-5 and DRIRU II for specific mission requirements are outlined, and their results are compared with published test results on other gyro types. Performance advantages are highlighted.
Biosensors Based on Ultrathin Film Composite Membranes
1994-01-25
composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite
NASA Astrophysics Data System (ADS)
Yang, Zhongyu
This thesis describes the design, experimental performance, and theoretical simulation of a novel time-of-flight analyzer that was integrated into a high resolution electron energy loss spectrometer (TOF-HREELS). First we examined the use of an interleaved comb chopper for chopping a continuous electron beam. Both static and dynamic behaviors were simulated theoretically and measured experimentally, with very good agreement. The finite penetration of the field beyond the plane of the chopper leads to non-ideal chopper response, which is characterized in terms of an "energy corruption" effect and a lead or lag in the time at which the beam responds to the chopper potential. Second we considered the recovery of spectra from pseudo-random binary sequence (PRBS) modulated TOF-HREELS data. The effects of the Poisson noise distribution and the non-ideal behavior of the "interleaved comb" chopper were simulated. We showed, for the first time, that maximum likelihood methods can be combined with PRBS modulation to achieve resolution enhancement, while properly accounting for the Poisson noise distribution and artifacts introduced by the chopper. Our results indicate that meV resolution, similar to that of modern high resolution electron energy loss spectrometers, can be achieved with a dramatic performance advantage over conventional, serial detection analyzers. To demonstrate the capabilities of the TOF-HREELS instrument, we made measurements on a highly oriented thin film polytetrafluoroethylene (PTFE) sample. We demonstrated that the TOF-HREELS can achieve a throughput advantage of a factor of 85 compared to the conventional HREELS instrument. Comparisons were made between the experimental results and theoretical simulations. We discuss various factors which affect inversion of PRBS modulated Time of Flight (TOF) data with the Lucy algorithm. Using simulations, we conclude that the convolution assumption was good under the conditions of our experiment. The chopper rise time, Poisson noise, and artifacts of the chopper response are evaluated. Finally, we conclude that the maximum likelihood algorithms are able to gain a multiplex advantage in PRBS modulation, despite the Poisson noise in the detector.
Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.
2011-01-01
Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946
Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M
2011-10-01
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.
Iribarren, Diego; Vázquez-Rowe, Ian; Moreira, María Teresa; Feijoo, Gumersindo
2010-10-15
The combined application of Life Cycle Assessment and Data Envelopment Analysis has been recently proposed to provide a tool for the comprehensive assessment of the environmental and operational performance of multiple similar entities. Among the acknowledged advantages of LCA+DEA methodology, eco-efficiency verification and avoidance of average inventories are usually highlighted. However, given the novelty of LCA+DEA methods, a high number of additional potentials remain unexplored. In this sense, there are some features that are worth detailing given their wide interest to enhance LCA performance. Emphasis is laid on the improved interpretation of LCA results through the complementary use of DEA with respect to: (i) super-efficiency analysis to facilitate the selection of reference performers, (ii) inter- and intra-assessments of multiple data sets within any specific sector with benchmarking and trend analysis purposes, (iii) integration of an economic dimension in order to enrich sustainability assessments, and (iv) window analysis to evaluate environmental impact efficiency over a certain period of time. Furthermore, the capability of LCA+DEA methodology to be generally implemented in a wide range of scenarios is discussed. These further potentials are explained and demonstrated via the presentation of brief case studies based on real data sets. Copyright © 2010 Elsevier B.V. All rights reserved.
Integration of image capture and processing: beyond single-chip digital camera
NASA Astrophysics Data System (ADS)
Lim, SukHwan; El Gamal, Abbas
2001-05-01
An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.
Qing, Zhihe; Zhu, Lixuan; Li, Xiaoxuan; Yang, Sheng; Zou, Zhen; Guo, Jingru; Cao, Zhong; Yang, Ronghua
2017-10-17
As well-known, the excessive discharge of heavy-metal mercury not only destroys the ecological environment, bust also leads to severe damage of human health after ingestion via drinking and bioaccumulation of food chains, and mercury ion (Hg 2+ ) is designated as one of most prevalent toxic metal ions in drinking water. Thus, the high-performance monitoring of mercury pollution is necessary. Functional nucleic acids have been widely used as recognition probes in biochemical sensing. In this work, a carbazole derivative, ethyl-4-[3,6-bis(1-methyl-4-vinylpyridium iodine)-9H-carbazol -9-yl)] butanoate (EBCB), has been synthesized and found as a target-lighted DNA fluorescent indicator. As a proof-of-concept, Hg 2+ detection was carried out based on EBCB and Hg 2+ -mediated conformation transformation of a designed DNA probe. By comparison with conventional nucleic acid indicators, EBCB held excellent advantages, such as minimal background interference and maximal sensitivity. Outstanding detection capabilities were displayed, especially including simple operation (add-and-read manner), ultrarapidity (30 s), and low detection limit (0.82 nM). Furthermore, based on these advantages, the potential for high-performance screening of mercury antagonists was also demonstrated by the fluorescence change of EBCB. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment, and may pave a way to apply EBCB as an ideal signal transducer for development of high-performance sensing strategies.
Home advantage in the Winter Paralympic Games 1976-2014.
Wilson, Darryl; Ramchandani, Girish
2017-01-01
There is a limited amount of home advantage research concerned with winter sports. There is also a distinct lack of studies that investigate home advantage in the context of para sport events. This paper addresses this gap in the knowledge by examining home advantage in the Winter Paralympic Games. Using a standardised measure of success, we compared the performances of host nations at home with their own performances away from home between 1976 and 2014. Both country level and individual sport level analysis is conducted for this time period. Comparisons are also drawn with the Winter Olympic Games since 1992, the point from which both the Winter Olympic Games and the Winter Paralympic Games have been hosted by the same nations and in the same years. Clear evidence of a home advantage effect in the Winter Paralympic Games was found at country level. When examining individual sports, only alpine skiing and cross country skiing returned a significant home advantage effect. When comparing home advantage in the Winter Paralympic Games with the Winter Olympic Games for the last seven host nations (1992-2014), we found that home advantage was generally more pronounced (although not a statistically significant difference) in the case of the former. The causes of home advantage in the Winter Paralympic Games are unclear and should be investigated further.
Full parabolic trough qualification from prototype to demonstration loop
NASA Astrophysics Data System (ADS)
Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark
2017-06-01
On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.
Alfonso, Jorge Emilio; Berlana, David; Ukleja, Andrew; Boullata, Joseph
2017-09-01
Multichamber bags (MCBs) may offer potential clinical, ergonomic, and economic advantages compared with (hospital) pharmacy compounded bags (COBs) and multibottle systems (MBSs). A systematic literature review was performed to identify and assess the available evidence regarding advantages of MCBs compared with COBs and MBSs. Medline, Embase, the Cochrane Databases, and EconLit were searched for articles reporting clinical, ergonomic, and economic outcomes for MCBs compared with COBs or MBSs. The search was limited to studies conducted in hospitalized patients >2 years of age that were published in English between January 1990 and November 2014. The Population Intervention Comparison Outcomes Study Design (PICOS) framework was used for the analysis. From 1307 unique citations, 74 potentially relevant publications were identified; review of references identified 2 additional publications. Among the 76 publications, 18 published studies met the inclusion criteria. Most were retrospective in design. Ten studies reported clinical outcomes, including 1 prospective randomized trial and multiple retrospective analyses that reported a lower risk of bloodstream infection for MCBs compared with other delivery systems. Sixteen studies reported ergonomic and/or economic outcomes; most reported a potential cost benefit for MCBs, with consistent reports of reduced time and labor compared with other systems. The largest cost benefit was observed in studies evaluating total hospitalization costs. The systematic literature review identified evidence of potential clinical, ergonomic, and economic benefits for MCBs compared with COBs and MBSs; however, methodological factors limited evidence quality. More prospective studies are required to corroborate existing evidence.
Kamarajan, Chella; Pandey, Ashwini K.; Chorlian, David B.; Porjesz, Bernice
2014-01-01
The use of current source density (CSD), the Laplacian of the scalp surface voltage, to map the electrical activity of the brain is a powerful method in studies of cognitive and affective phenomena. During the last few decades, mapping of CSD has been successfully applied to characterize several neuropsychiatric conditions such as alcoholism, schizophrenia, depression, anxiety disorders, childhood/developmental disorders, and neurological conditions (i.e., epilepsy and brain lesions) using electrophysiological data from resting state and during cognitive performance. Use of CSD and Laplacian measures has proven effective in elucidating topographic and activation differences between groups: i) patients with a specific diagnosis vs. healthy controls, ii) subjects at high risk for a specific diagnosis vs. low risk or normal controls, and iii) patients with specific symptom(s) vs. patients without these symptom(s). The present review outlines and summarizes the studies that have employed CSD measures in investigating several neuropsychiatric conditions. The advantages and potential of CSD-based methods in clinical and research applications along with some of the limitations inherent in the CSD-based methods are discussed in the review, as well as future directions to expand the implementation of CSD to other potential clinical applications. As CSD methods have proved to be more advantageous than using scalp potential data to understand topographic and source activations, its clinical applications offer promising potential, not only for a better understanding of a range of psychiatric conditions, but also for a variety of focal neurological disorders, including epilepsy and other conditions involving brain lesions and surgical interventions. PMID:25448264
Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking
Benito, Ángel; Jeffares, Daniel; Palomero, Felipe; Calderón, Fernando; Bai, Feng-Yan; Bähler, Jürg; Benito, Santiago
2016-01-01
At present, wine is generally produced using Saccharomyces yeast followed by Oenococus bacteria to complete malolactic fermentation. This method has some unsolved problems, such as the management of highly acidic musts and the production of potentially toxic products including biogenic amines and ethyl carbamate. Here we explore the potential of the fission yeast Schizosaccharomyces pombe to solve these problems. We characterise an extensive worldwide collection of S. pombe strains according to classic biochemical parameters of oenological interest. We identify three genetically different S. pombe strains that appear suitable for winemaking. These strains compare favourably to standard Saccharomyces cerevisiae winemaking strains, in that they perform effective malic acid deacidification and significantly reduce levels of biogenic amines and ethyl carbamate precursors without the need for any secondary bacterial malolactic fermentation. These findings indicate that the use of certain S. pombe strains could be advantageous for winemaking in regions where malic acid is problematic, and these strains also show superior performance with respect to food safety. PMID:27007548
Windmann, Sabine; Hill, Holger
2014-10-01
Performance on tasks requiring discrimination of at least two stimuli can be viewed either from an objective perspective (referring to actual stimulus differences), or from a subjective perspective (corresponding to participant's responses). Using event-related potentials recorded during an old/new recognition memory test involving emotionally laden and neutral words studied either blockwise or randomly intermixed, we show here how the objective perspective (old versus new items) yields late effects of blockwise emotional item presentation at parietal sites that the subjective perspective fails to find, whereas the subjective perspective ("old" versus "new" responses) is more sensitive to early effects of emotion at anterior sites than the objective perspective. Our results demonstrate the potential advantage of dissociating the subjective and the objective perspective onto task performance (in addition to analyzing trials with correct responses), especially for investigations of illusions and information processing biases, in behavioral and cognitive neuroscience studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Systematic Sustainability Assessment (SSA) Tool for Hydroelectric Project in Malaysia
NASA Astrophysics Data System (ADS)
Turan, Faiz Mohd; Johan, Kartina
2017-08-01
Sustainably developed and managed hydropower has enormous potential to contribute to global sustainability goals. It is known that hydroelectricity contributing small amounts to greenhouse gas emissions and other atmospheric pollutants. However, developing the remaining hydroelectric potential offers many challenges, and public pressure and expectations on the environmental and social performance of hydroelectric tend to increase over time. This paper aims to develop Systematic Sustainability Assessment (SSA) Tool that promotes and guides more sustainable hydroelectric projects in the context of Malaysia. The proposed SSA tool which not only provide a quality and quantitative report of sustainability performance but also act as Self-Assessment Report (SAR) to provide roadmap to achieve greater level of sustainability in project management for continuous improvement. It is expected to provide a common language that allow government, civil society, financial institutions and the hydroelectric sector to talk about and evaluate sustainability issues. The advantage of SSA tool is it can be used at any stage of hydroelectric development, from the earliest planning stages right through to operation.
Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.
Cox, Pete J; Kirk, Tom; Ashmore, Tom; Willerton, Kristof; Evans, Rhys; Smith, Alan; Murray, Andrew J; Stubbs, Brianna; West, James; McLure, Stewart W; King, M Todd; Dodd, Michael S; Holloway, Cameron; Neubauer, Stefan; Drawer, Scott; Veech, Richard L; Griffin, Julian L; Clarke, Kieran
2016-08-09
Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Giese, Timothy J; York, Darrin M
2010-12-28
We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.
Ultrasonic analysis to discriminate bread dough of different types of flour
NASA Astrophysics Data System (ADS)
García-Álvarez, J.; Rosell, C. M.; García-Hernández, M. J.; Chávez, J. A.; Turó, A.; Salazar, J.
2012-12-01
Many varieties of bread are prepared using flour coming from wheat. However, there are other types of flours milled from rice, legumes and some fruits and vegetables that are also suitable for baking purposes, used alone or in combination with wheat flour. The type of flour employed strongly influences the dough consistency, which is a relevant property for determining the dough potential for breadmaking purposes. Traditional methods for dough testing are relatively expensive, time-consuming, off-line and often require skilled operators. In this work, ultrasonic analysis are performed in order to obtain acoustic properties of bread dough samples prepared using two different types of flour, wheat flour and rice flour. The dough acoustic properties can be related to its viscoelastic characteristics, which in turn determine the dough feasibility for baking. The main advantages of the ultrasonic dough testing can be, among others, its low cost, fast, hygienic and on-line performance. The obtained results point out the potential of the ultrasonic analysis to discriminate doughs of different types of flour.
Andrighetto, Luke M; Stevenson, Paul G; Pearson, James R; Henderson, Luke C; Conlan, Xavier A
2014-11-01
In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.
Neural network versus classical time series forecasting models
NASA Astrophysics Data System (ADS)
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
Spatial-scanning hyperspectral imaging probe for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-03-01
The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.
NASA Astrophysics Data System (ADS)
Falsafioon, Mehdi; Aidoun, Zine; Poirier, Michel
2017-12-01
A wide range of industrial refrigeration systems are good candidates to benefit from the cooling and refrigeration potential of supersonic ejectors. These are thermally activated and can use waste heat recovery from industrial processes where it is abundantly generated and rejected to the environment. In other circumstances low cost heat from biomass or solar energy may also be used in order to produce a cooling effect. Ejector performance is however typically modest and needs to be maximized in order to take full advantage of the simplicity and low cost of the technology. In the present work, the behavior of ejectors with different nozzle exit positions has been investigated using a prototype as well as a CFD model. The prototype was used in order to measure the performance advantages of refrigerant (R-134a) flowing inside the ejector. For the CFD model, it is assumed that the ejectors are axi-symmetric along x-axis, thus the generated model is in 2D. The preliminary CFD results are validated with experimental data over a wide range of conditions and are in good accordance in terms of entrainment and compression ratios. Next, the flow patterns of four different topologies are studied in order to discuss the optimum geometry in term of ejector entrainment improvement. Finally, The numerical simulations were used to find an optimum value corresponding to maximized entrainment ratio for fixed operating conditions.
Eguílaz, Marcos; Villalonga, Reynaldo; Yáñez-Sedeño, Paloma; Pingarrón, José M
2011-10-15
The design of a novel biosensing electrode surface, combining the advantages of magnetic ferrite nanoparticles (MNPs) functionalized with glutaraldehyde (GA) and poly(diallyldimethylammonium chloride) (PDDA)-coated multiwalled carbon nanotubes (MWCNTs) as platforms for the construction of high-performance multienzyme biosensors, is reported in this work. Before the immobilization of enzymes, GA-MNP/PDDA/MWCNT composites were prepared by wrapping of carboxylated MWCNTs with positively charged PDDA and interaction with GA-functionalized MNPs. The nanoconjugates were characterized by scanning electron microscopy (SEM) and electrochemistry. The electrode platform was used to construct a bienzyme biosensor for the determination of cholesterol, which implied coimmobilization of cholesterol oxidase (ChOx) and peroxidase (HRP) and the use of hydroquinone as redox mediator. Optimization of all variables involved in the preparation and analytical performance of the bienzyme electrode was accomplished. At an applied potential of -0.05 V, a linear calibration graph for cholesterol was obtained in the 0.01-0.95 mM concentration range. The detection limit (0.85 μM), the apparent Michaelis-Menten constant (1.57 mM), the stability of the biosensor, and the calculated activation energy can be advantageously compared with the analytical characteristics of other CNT-based cholesterol biosensors reported in the literature. Analysis of human serum spiked with cholesterol at different concentration levels yielded recoveries between 100% and 103% © 2011 American Chemical Society
New endoscopic "scissors" to treat Zenker's diverticulum (with video).
Ramchandani, Mohan; Nageshwar Reddy, D
2013-10-01
Zenker's diverticulum (ZD) is a rare disorder but is associated with significant morbidity. Cricopharyngeal (CP) myotomy is the mainstay of treatment, and various flexible endoscopic techniques have been used for division of the septum. However, there is a constant need for improvement in accessories. To evaluate the safety and effectiveness of a new electrocautery endoscopic scissor for CP myotomy in patients with symptomatic ZD. Observational human study. Tertiary-care hospital. This study involved 3 patients with symptomatic ZD. Flexible endoscopic CP myotomy was performed by using a novel scissors-type grasping device. CP myotomy involved 4 steps: (1) opening of the forceps, (2) grasping the muscle fiber, (3) closure of the forceps with application of gentle traction, and (4) dissection of muscle fibers by using cutting current. Intraprocedural bleeding was controlled with the same instrument by grasping vessels and applying coagulation current. Overall feasibility and performance, procedure time to achieve complete CP myotomy. CP myotomy was successfully performed in all patients. Mean procedure time was 10.6 minutes. There were no major adverse events. Minor intraprocedure bleeding occurred in 1 patient. Single arm, limited number of patients. The new instrument has potential advantages in comparison with standard instruments used for CP myotomy. The advantages of this new technique are better control of cutting and hemostatic abilities. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Cardiac action potential imaging
NASA Astrophysics Data System (ADS)
Tian, Qinghai; Lipp, Peter; Kaestner, Lars
2013-06-01
Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.
Drivers of Daily Routines in an Ectothermic Marine Predator: Hunt Warm, Rest Warmer?
Papastamatiou, Yannis P.; Watanabe, Yuuki Y.; Bradley, Darcy; Dee, Laura E.; Weng, Kevin; Lowe, Christopher G.; Caselle, Jennifer E.
2015-01-01
Animal daily routines represent a compromise between maximizing foraging success and optimizing physiological performance, while minimizing the risk of predation. For ectothermic predators, ambient temperature may also influence daily routines through its effects on physiological performance. Temperatures can fluctuate significantly over the diel cycle and ectotherms may synchronize behaviour to match thermal regimes in order to optimize fitness. We used bio-logging to quantify activity and body temperature of blacktip reef sharks (Carcharhinus melanopterus) at a tropical atoll. Behavioural observations were used to concurrently measure bite rates in herbivorous reef fishes, as an index of activity for potential diurnal prey. Sharks showed early evening peaks in activity, particularly during ebbing high tides, while body temperatures peaked several hours prior to the period of maximal activity. Herbivores also displayed peaks in activity several hours earlier than the peaks in shark activity. Sharks appeared to be least active while their body temperatures were highest and most active while temperatures were cooling, although we hypothesize that due to thermal inertia they were still warmer than their smaller prey during this period. Sharks may be most active during early evening periods as they have a sensory advantage under low light conditions and/or a thermal advantage over cooler prey. Sharks swam into shallow water during daytime low tide periods potentially to warm up and increase rates of digestion before the nocturnal activity period, which may be a strategy to maximize ingestion rates. “Hunt warm, rest warmer” may help explain the early evening activity seen in other ectothermic predators. PMID:26061229
Environmental management and firm performance: a case study.
Claver, Enrique; López, María D; Molina, José F; Tarí, Juan J
2007-09-01
This study has as its aim to help to clarify the relationship between environmental management and economic performance by integrating it into a wider framework that includes the relationship between environmental strategy and firm performance, the latter being understood as the combination of environmental performance, competitive advantage and economic performance. A case study of the COATO farming cooperative showed us that its environmental management, focused on prevention logic, has had a positive net effect on its environmental performance. Besides, the order in which these practices were adopted favoured the development of new organisational capabilities that have contributed to the appearance of advantages derived from the greater accumulated experience of employees in creating new projects that are designed to reduce residues and pollution. COATO has also obtained a competitive advantage in differentiation thanks to an improved brand image and to its increased credibility in business relationships. Finally, a positive correlation exists between the pioneering proactive strategy adopted by this cooperative and the improvement of its firm performance with respect to the other firms in its sector.
Chinese-Latin American Ties: A Convergence of Security Threats to the United States
2013-06-14
of action. This technique provides both advantages and disadvantages . It will consider the potential for exploitation of developing countries and...characteristics disadvantageous to China. 3. Opportunities are vulnerabilities that China could exploit to Beijing’s advantage . 4. Threats are elements...trading partner.22 China seems to be actively (and nefariously) pursuing an economic advantage . Chinese investments often resulted in “guarantees
Roca, Javier; Insa, Beatriz; Tejero, Pilar
2018-05-01
The current research shows the advantage of single-word messages in the particular case of variable message signs (VMSs) with a high aspect ratio. Early studies on traffic sign design proposed that pictorial information would advantage equivalent text messages in static signs. We used a driving simulator to present individually 36 VMSs, showing six words (e.g., "congestion") and six danger signs (e.g., congestion traffic sign). In Experiment 1, 18 drivers read aloud the text or orally identified the pictograms as soon as they could correctly do it. In Experiment 2, a different sample of 18 drivers gave a motor response, according to the meaning of the message. We analyzed the legibility distance and accuracy, driving performance (speed variability), and glance behavior. Our results show that single-word messages were associated with better performance (farther reading distances) and required less visual demands (fewer glances and less glancing times) than pictograms. As typical configurations of VMSs usually have a high aspect ratio, and thus allow large character heights, single-word messages can outperform the legibility of pictograms. However, the final advantage of text or pictorial messages would depend on several factors, such as the driver's knowledge of the language and the pictogram set, the use of single or multiple words, the particular design and size of critical details in letters and pictograms, environmental factors, and driver age. Potential applications include the design of VMSs and other devices aimed at displaying text and/or pictograms with a high aspect ratio.
Weiler, Monica R; Lavender, Steven A; Crawford, J Mac; Reichelt, Paul A; Conrad, Karen M; Browne, Michael W
2012-01-01
This study explored factors contributing to intervention adoption decisions among Emergency Medical Service (EMS) workers. Emergency Medical Service workers (n = 190), from six different organisations, participated in a two-month longitudinal study following the introduction of a patient transfer-board (also known as slide-board) designed to ease lateral transfers of patients to and from ambulance cots. Surveys administered at baseline, after one month and after two months sampled factors potentially influencing the EMS providers' decision process. 'Ergonomics Advantage' and 'Patient Advantage' entered into a stepwise regression model predicting 'intention to use' at the end of month one (R (2 )= 0.78). After the second month, the stepwise regression indicated only two factors were predictive of intention to use: 'Ergonomics Advantage,' and 'Endorsed by Champions' (R (2 )= 0.58). Actual use was predicted by: 'Ergonomics Advantage' and 'Previous Tool Experience.' These results relate to key concepts identified in the diffusion of innovation literature and have the potential to further ergonomics intervention adoption efforts. Practitioner Summary. This study explored factors that potentially facilitate the adoption of voluntarily used ergonomics interventions. EMS workers were provided with foldable transfer-boards (slideboards) designed to reduce the physical demands when laterally transferring patients. Factors predictive of adoption measures included perceived ergonomics advantage, the endorsement by champions, and prior tool experience.
NASA Astrophysics Data System (ADS)
Gaimari, G.; Russo, C.; Palaia, G.; Tenore, G.; Del Vecchio, A.; Romeo, U.
2016-03-01
Introduction: Leukoplakia is a potentially malignant epithelial lesion with carcinomatous percentages transformation comprehended between 1% and 7% for the homogeneous forms and from 4% to 15% for the non-homogeneous ones. Their removal can be performed by scalpel or laser surgery (excision or vaporization). Photodynamic therapy (PDT) is a bloodless treatment option, based on the involvement of three elements: light, photosensitizer and oxygen. When the molecules of the photosensitizer are activated by a low power laser, energy is transferred to molecular oxygen creating highly reactive radicals of oxygen, that have a cytotoxic effect on target cells. Aim of the study: According to several studies in Literature, it has been decided to evaluate through an initial clinical trial, the efficacy of PDT using topical aminolevulinic acid (5-ALA) activated by a laser diode (λ = 635 nm) to treat potentially oral malignant lesions and to illustrate the advantages and disadvantages derived from the use of this technique. Materials and Methods: Five patients, affected by oral leukoplakia (OL) and oral verrucous leukoplakia (OVL) on the mucosal cheeks, labial commissure, fornix and retromolar areas, have been treated using the PDT. Irradiation time with Diode laser: 1000s. Irradiation mode: Scanning. 5 cycles of 3 minute + final cycle of 100 seconds. Each cycle has been interrupted by pauses of 3 minutes. Results and conclusion: PDT results to be effective in the treatment of OL, especially on OVL. In fact, OVL, due to its irregularity, has got an area of increased retention for the gel that is more difficult to be removed by salivary flow. This could explain the better results obtained in this case rather than in those ones of OL. Furthermore, the advantages have been represented by: less invasivity, high sensitivity for altered tissues, minimal scar tissue, less side effects and no pain during and after operation. In contrast to this, the disadvantages were: longer treatment duration and the high cost.
Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.
Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke
2018-02-15
More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.
Is robotic surgery cost-effective: yes.
Liberman, Daniel; Trinh, Quoc-Dien; Jeldres, Claudio; Zorn, Kevin C
2012-01-01
With the expanding use of new technology in the treatment of clinically localized prostate cancer (PCa), the financial burden on the healthcare system and the individual has been important. Robotics offer many potential advantages to the surgeon and the patient. We assessed the potential cost-effectiveness of robotics in urological surgery and performed a comparative cost analysis with respect to other potential treatment modalities. The direct and indirect costs of purchasing, maintaining, and operating the robot must be compared to alternatives in treatment of localized PCa. Some expanding technologies including intensity-modulated radiation therapy are significantly more expensive than robotic surgery. Furthermore, the benefits of robotics including decreased length of stay and return to work are considerable and must be measured when evaluating its cost-effectiveness. Robot-assisted laparoscopic surgery comes at a high cost but can become cost-effective in mostly high-volume centers with high-volume surgeons. The device when utilized to its maximum potential and with eventual market-driven competition can become affordable.
Potential Advantages of Reusing Potentially Contaminated Land for Renewable Energy Fact Sheet
EPA promotes the reuse of potentially contaminated lands and landfills for renewable energy. This strategy creates new markets for potentially contaminated lands, while providing a sustainable land development strategy for renewable energy.
Home advantage and player nationality in international club football.
Poulter, Damian R
2009-06-01
The home advantage effect was investigated at a team and player level in Union of European Football Associations (UEFA) Champions League football using in-depth performance and disciplinary variables. Performance analysis revealed that the home team scored more goals, had more shots on and off target, had a greater share of possession, and won more corners than the away team. There was an opposite trend for disciplinary variables, with the home team committing less fouls than the away team, and receiving less yellow and red cards. There were home advantage effects at player level for goals, total shots, shots on target, assists, and yellow cards, as found in the team analysis. In addition, foreign players demonstrated a home advantage effect for goals scored, whereas domestic players scored an equivalent number of goals at home and away venues. Results are discussed in relation to the home advantage literature and wider implications for the sport.
Things Change, People Change, Libraries Go on: E-books or Not E-books?
NASA Astrophysics Data System (ADS)
Martines, F.
2015-04-01
The aim of this paper is to describe how e-books work and how they can be managed in a scientific or research library; specifically, to discuss the viability of e-lending. The results were a little bit surprising and even slightly confusing. Unquestionably, e-books have enormous potential, but much of this potential is untapped. Although there is widespread awareness of the advantages of e-books among users and librarians, problems and challenges are not as well known. After a discussion of the potential advantages, I will concentrate on some of the real drawbacks of e-books.
LOX/LH2 vane pump for auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Hemminger, J. A.; Ulbricht, T. E.
1985-01-01
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.
NASA Technical Reports Server (NTRS)
Everett, L.
1992-01-01
This report documents the performance characteristics of a Targeting Reflective Alignment Concept (TRAC) sensor. The performance will be documented for both short and long ranges. For long ranges, the sensor is used without the flat mirror attached to the target. To better understand the capabilities of the TRAC based sensors, an engineering model is required. The model can be used to better design the system for a particular application. This is necessary because there are many interrelated design variables in application. These include lense parameters, camera, and target configuration. The report presents first an analytical development of the performance, and second an experimental verification of the equations. In the analytical presentation it is assumed that the best vision resolution is a single pixel element. The experimental results suggest however that the resolution is better than 1 pixel. Hence the analytical results should be considered worst case conditions. The report also discusses advantages and limitations of the TRAC sensor in light of the performance estimates. Finally the report discusses potential improvements.
NASA Astrophysics Data System (ADS)
Rummel, Christian; Basciani, Reto; Nirkko, Arto; Schroth, Gerhard; Stucki, Monika; Reineke, David; Eberle, Balthasar; Kaiser, Heiko A.
2018-01-01
Stroke due to hypoperfusion or emboli is a devastating adverse event of cardiac surgery, but early detection and treatment could protect patients from an unfavorable postoperative course. Hypoperfusion and emboli can be detected with transcranial Doppler of the middle cerebral artery (MCA). The measured blood flow velocity correlates with cerebral oxygenation determined clinically by near-infrared spectroscopy (NIRS) of the frontal cortex. We tested the potential advantage of a spatially extended NIRS in detecting critical events in three cardiac surgery patients with a whole-head fiber holder of the FOIRE-3000 continuous-wave NIRS system. Principle components analysis was performed to differentiate between global and localized hypoperfusion or ischemic territories of the middle and anterior cerebral arteries. In one patient, we detected a critical hypoperfusion of the right MCA, which was not apparent in the frontal channels but was accompanied by intra- and postoperative neurological correlates of ischemia. We conclude that spatially extended NIRS of temporal and parietal vascular territories could improve the detection of critically low cerebral perfusion. Even in severe hemispheric stroke, NIRS of the frontal lobe may remain normal because the anterior cerebral artery can be supplied by the contralateral side directly or via the anterior communicating artery.
Ground-to-orbit laser propulsion: Advanced applications
NASA Technical Reports Server (NTRS)
Kare, Jordin T.
1990-01-01
Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.
NASA Astrophysics Data System (ADS)
Li, Jianping
2014-05-01
Suspension assay using optically color-encoded microbeads is a novel way to increase the reaction speed and multiplex of biomolecular detection and analysis. To boost the detection speed, a hyperspectral imaging (HSI) system is of great interest for quickly decoding the color codes of the microcarriers. Imaging Fourier transform spectrometer (IFTS) is a potential candidate for this task due to its advantages in HSI measurement. However, conventional IFTS is only popular in IR spectral bands because it is easier to track its scanning mirror position in longer wavelengths so that the fundamental Nyquist criterion can be satisfied when sampling the interferograms; the sampling mechanism for shorter wavelengths IFTS used to be very sophisticated, high-cost and bulky. In order to overcome this handicap and take better usage of its advantages for HSI applications, a new wide spectral range IFTS platform is proposed based on an optical beam-folding position-tracking technique. This simple technique has successfully extended the spectral range of an IFTS to cover 350-1000nm. Test results prove that the system has achieved good spectral and spatial resolving performances with instrumentation flexibilities. Accurate and fast measurement results on novel colloidal photonic crystal microbeads also demonstrate its practical potential for high-throughput and multiplex suspension molecular assays.
Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.
Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E
2012-02-21
We report the fabrication of gold screen printed macro electrodes which are electrochemically characterised and contrasted to polycrystalline gold macroelectrodes with their potential analytical application towards the sensing of chromium(III) and (VI) critically explored. It is found that while these gold screen printed macro electrodes have electrode kinetics typically one order of magnitude lower than polycrystalline gold macroelectrodes as is measured via a standard redox probe, in terms of analytical sensing, these gold screen printed macro electrodes mimic polycrystalline gold in terms of their analytical performance towards the sensing of chromium(III) and (VI), whilst boasting additional advantages over the macro electrode due to their disposable one-shot nature and the ease of mass production. An additional advantage of these gold screen printed macro electrodes compared to polycrystalline gold is the alleviation of the requirement to potential cycle the latter to form the required gold oxide which aids in the simplification of the analytical protocol. We demonstrate that gold screen printed macro electrodes allow the low micro-molar sensing of chromium(VI) in aqueous solutions over the range 10 to 1600 μM with a limit of detection (3σ) of 4.4 μM. The feasibility of the analytical protocol is also tested through chromium(VI) detection in environmental samples.
Reusable Boosters in a European-Russian Perspective
NASA Astrophysics Data System (ADS)
Deneu, François; Ramiandrasoa, Fabienne
2002-01-01
In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
A review of nanostructured lithium ion battery materials via low temperature synthesis.
Chen, Jiajun
2013-01-01
Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.
Foam-Metal Liner Attenuation of Low-Speed Fan Noise
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Jones, Michael G.
2008-01-01
A foam-metal liner for attenuation of fan noise was developed for and tested on a low speed fan. This type of liner represents a significant advance over traditional liners due to the possibility for placement in close proximity to the rotor. An advantage of placing treatment in this region is the modification of the acoustic near field, thereby inhibiting noise generation mechanisms. This can result in higher attenuation levels than can be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub-strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.
Peroperative Gastrograffin bowel lavage in gastroschisis.
Cherian, Abraham; Hallows, Ruth M; Singh, Shalinder J; McCallion, William A; Stewart, Richard J
2006-10-01
The aim of the study was to evaluate potential benefits in the use of peroperative bowel lavage with Gastrograffin in neonates with gastroschisis. A retrospective analysis of newborns with gastroschisis was performed over a 10-year period in 2 centers in the United Kingdom. Two groups were studied wherein one had peroperative bowel lavage with Gastrograffin and the other did not. Data were collected on 116 patients of whom 93 were suitable for analysis. There were no statistically significant differences in primary closure rate, duration of ventilation, parenteral nutrition, or hospital stay. Intestinal obstruction occurred more frequently in the nonlavage group. Gastrograffin lavage peroperatively in gastroschisis offers no potential advantage in reducing ventilatory requirements, parenteral nutrition, and hospital stay. It also does not achieve greater primary closure rates, but may reduce the incidence of intestinal obstruction.
Lin, Blossom Yen-Ju; Chao, Te-Hsin; Yao, Yuh; Tu, Shu-Min; Wu, Chun-Ching; Chern, Jin-Yuan; Chao, Shiu-Hsiung; Shaw, Keh-Yuong
2007-04-01
Previous studies have shown the advantages of using activity-based costing (ABC) methodology in the health care industry. The potential values of ABC methodology in health care are derived from the more accurate cost calculation compared to the traditional step-down costing, and the potentials to evaluate quality or effectiveness of health care based on health care activities. This project used ABC methodology to profile the cost structure of inpatients with surgical procedures at the Department of Colorectal Surgery in a public teaching hospital, and to identify the missing or inappropriate clinical procedures. We found that ABC methodology was able to accurately calculate costs and to identify several missing pre- and post-surgical nursing education activities in the course of treatment.
Jung, Young-Kwang; Lee, Ji-Hwan; Walsh, Aron; Soon, Aloysius
2017-04-11
CsSnI 3 is a potential lead-free inorganic perovskite for solar energy applications due to its nontoxicity and attractive optoelectronic properties. Despite these advantages, photovoltaic cells using CsSnI 3 have not been successful to date, in part due to low stability. We demonstrate how gradual substitution of Rb for Cs influences the structural, thermodynamic, and electronic properties on the basis of first-principles density functional theory calculations. By examining the effect of the Rb:Cs ratio, we reveal a correlation between octahedral distortion and band gap, including spin-orbit coupling. We further highlight the cation-induced variation of the ionization potential (work function) and the importance of surface termination for tin-based halide perovskites for engineering high-performance solar cells.
Mechanical transduction via a single soft polymer
NASA Astrophysics Data System (ADS)
Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong
2018-04-01
Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.
Mission and System Advantages of Iodine Hall Thrusters
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani
2014-01-01
The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (<1kW) and high power (>10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.
NASA Astrophysics Data System (ADS)
Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen
2015-07-01
Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.
Youssim, Iaroslav; Hank, Karsten; Litwin, Howard
2014-01-01
Building on a tripartite model of capitals necessary to perform productive activities and on work suggesting that cumulative (dis-) advantage processes are important mechanisms for life-course inequalities, our study set out to investigate the potential role of family social background and inheritance in later-life volunteering. We hypothesized that older individuals who inherited work-relevant economic and cultural capitals from their family of origin are more likely to be engaged in voluntary activities than their counterparts with a less advantageous family social background. Our main findings from the analysis of a representative sample of community-dwelling Israelis aged 50 and over provide strong support for this hypothesis: the likelihood to volunteer is significantly higher among those who received substantial financial transfers from their family of origin (‘inherited economic capital’) and among those having a ‘white collar’ parental background (‘inherited cultural capital’). We conclude with perspectives for future research. PMID:25651548
Youssim, Iaroslav; Hank, Karsten; Litwin, Howard
2015-01-01
Building on a tripartite model of capitals necessary to perform productive activities and on work suggesting that cumulative (dis-)advantage processes are important mechanisms for life course inequalities, our study set out to investigate the potential role of family social background and inheritance in later life volunteering. We hypothesized that older individuals who inherited work-relevant economic and cultural capitals from their family of origin are more likely to be engaged in voluntary activities than their counterparts with a less advantageous family social background. Our main findings from the analysis of a representative sample of community-dwelling Israelis aged 50 and over provide strong support for this hypothesis: the likelihood to volunteer is significantly higher among those who received substantial financial transfers from their family of origin ("inherited economic capital") and among those having a "white collar" parental background ("inherited cultural capital"). We conclude with perspectives for future research. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey Wishart
This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now knownmore » as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.« less
Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’
Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin
2010-01-01
At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells (‘guided missiles’). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based ‘killer artificial antigen-presenting cell’ strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity. PMID:20636007
Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico
2016-01-01
Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.
The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.
Cao, Yiping; Griffith, John F; Weisberg, Stephen B
2016-01-01
Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.
Nonlinear vs. linear biasing in Trp-cage folding simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energymore » minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.« less
High content screening in microfluidic devices
Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre
2011-01-01
Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997
Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process.
Anandakrishnan, Ramu; Zhang, Zining; Donovan-Maiye, Rory; Zuckerman, Daniel M
2016-10-04
The ATP synthase (F-ATPase) is a highly complex rotary machine that synthesizes ATP, powered by a proton electrochemical gradient. Why did evolution select such an elaborate mechanism over arguably simpler alternating-access processes that can be reversed to perform ATP synthesis? We studied a systematic enumeration of alternative mechanisms, using numerical and theoretical means. When the alternative models are optimized subject to fundamental thermodynamic constraints, they fail to match the kinetic ability of the rotary mechanism over a wide range of conditions, particularly under low-energy conditions. We used a physically interpretable, closed-form solution for the steady-state rate for an arbitrary chemical cycle, which clarifies kinetic effects of complex free-energy landscapes. Our analysis also yields insights into the debated "kinetic equivalence" of ATP synthesis driven by transmembrane pH and potential difference. Overall, our study suggests that the complexity of the F-ATPase may have resulted from positive selection for its kinetic advantage.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin
2015-07-21
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.
A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor
Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin
2015-01-01
This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105
Olsen, Flemming J; Biering-Sørensen, Tor; Krieger, Derk W
2015-05-01
Continuous cardiac rhythm monitoring has undergone compelling progress over the past decades. Cardiac monitoring has emerged from 12-lead electrocardiograms being performed at the discretion of the treating physician to in-hospital telemetry, Holter monitoring, prolonged external event monitoring and most recently toward insertable device monitoring for several years. Significant advantages and disadvantages pertaining to these monitoring options will be addressed in this review. Insertable cardiac monitors have several advantages over external monitoring techniques and may signify a clinical turning point in the field of arrhythmia management. However, their role in the detection of paroxysmal atrial fibrillation after cryptogenic strokes has yet to evolve. This will be the main focus of this review. Issues surrounding patient selection, clinical relevance and determination of cost-effectiveness for prolonged cardiac monitoring require further studies. Furthermore, insertable cardiac monitoring has not only the potential to augment diagnostic capabilities but also to improve the management of paroxysmal atrial fibrillation.
Potential utilization of biodiesel as alternative fuel for compression ignition engine in Malaysia
NASA Astrophysics Data System (ADS)
Wahab, M. A.; Ma'arof, M. I. N.; Ahmad, I. N.; Husain, H.
2017-10-01
Biodiesel is a type of fuel which is derived from various sources of vegetable plants and waste fuels. Today, numerous biodiesels have been engineered to be at par or even better in term of performance in comparison to pure diesel. Therefore, biodiesel has shown a promising sign as one of the best candidate in overcoming total dependency on pure diesel. This paper gives review on various tests and experiments conducted on biodiesel in order to highlight the potentials given by this particular fuel. In addition, providing the supporting evidences to further endorse for a mass usage of biodiesel in Malaysia - simultaneously, driving the country to become a potential global biodiesel producer in the near future. The reviewed studies were obtained mainly via indexed journals and online libraries. Conclusively, every test and study for every blend of biodiesel had shown consistent positive results in regards to performance and in overcoming emission related issues. Thus, providing the evidence that biodiesel is highly reliable. Malaysia as a semi-agricultural nation could take the advantage in becoming one of the leading global biodiesel producers. Nevertheless, this will requires total cooperation of every concerned government bodies and authorities.
Advantages and disadvantages of computer imaging in cosmetic surgery.
Koch, R J; Chavez, A; Dagum, P; Newman, J P
1998-02-01
Despite the growing popularity of computer imaging systems, it is not clear whether the medical and legal advantages of using such a system outweigh the disadvantages. The purpose of this report is to evaluate these aspects, and provide some protective guidelines in the use of computer imaging in cosmetic surgery. The positive and negative aspects of computer imaging from a medical and legal perspective are reviewed. Also, specific issues are examined by a legal panel. The greatest advantages are potential problem patient exclusion, and enhanced physician-patient communication. Disadvantages include cost, user learning curve, and potential liability. Careful use of computer imaging should actually reduce one's liability when all aspects are considered. Recommendations for such use and specific legal issues are discussed.
Personalized Cancer Medicine: An Organoid Approach.
Aboulkheyr Es, Hamidreza; Montazeri, Leila; Aref, Amir Reza; Vosough, Massoud; Baharvand, Hossein
2018-04-01
Personalized cancer therapy applies specific treatments to each patient. Using personalized tumor models with similar characteristics to the original tumors may result in more accurate predictions of drug responses in patients. Tumor organoid models have several advantages over pre-existing models, including conserving the molecular and cellular composition of the original tumor. These advantages highlight the tremendous potential of tumor organoids in personalized cancer therapy, particularly preclinical drug screening and predicting patient responses to selected treatment regimens. Here, we highlight the advantages, challenges, and translational potential of tumor organoids in personalized cancer therapy and focus on gene-drug associations, drug response prediction, and treatment selection. Finally, we discuss how microfluidic technology can contribute to immunotherapy drug screening in tumor organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.
The NASA welding assessment program
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Bozek, J.
1984-01-01
The potential cost and performance advantages of welding was understood but ignored by solar panel manufacturers in the U.S. Although NASA, DOD and COMSAT have supported welding development efforts, soldering remains the only U.S. space qualified method for interconnecting solar cells. The reason is that no U.S. satellite prime contractor found it necessary, due to mission requirements, to abandon the space proven soldering process. It appears that the proposed NASA space station program will provide an array requirement, a 10 year operation in a low Earth orbital environment, that mandates welding. The status of welding technology in the U.S. is assessed.
Biological nitrate removal processes from drinking water supply-a review.
Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali
2013-12-19
This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.
Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2
NASA Technical Reports Server (NTRS)
Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.
1975-01-01
The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.
Micellar liquid chromatography
NASA Astrophysics Data System (ADS)
Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.
1999-12-01
Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.
Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.
Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan
2014-07-22
Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.
The rationale for consuming protein blends in sports nutrition.
Paul, Gregory L
2009-08-01
Protein is considered by many to be the most important macronutrient for humans because of the numerous roles protein plays in the body. Protein needs have been compared across several population groups, including athletes and other exercising individuals. Many researchers have compared the effects of ingesting animal and vegetable protein sources and their implications on sports performance. Recently, blends of dairy protein and soy protein have appeared in commercial sports nutrition products such as nutrition bars and ready-to-drink and powdered beverages. This review will focus on the potential nutritional advantages of combining whey protein, casein, and isolated soy protein.
Sol-Gel Processing of MgF2 Antireflective Coatings
Löbmann, Peer
2018-01-01
There are different approaches for the preparation of porous antireflective λ/4 MgF2 films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible. PMID:29724064
Lift Recovery for AFC-Enabled High Lift System
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Gissen, Abraham N.; Whalen, Edward A.
2017-01-01
This project is a continuation of the NASA AFC-Enabled Simplified High-Lift System Integration Study contract (NNL10AA05B) performed by Boeing under the Fixed Wing Project. This task is motivated by the simplified high-lift system, which is advantageous due to the simpler mechanical system, reduced actuation power and lower maintenance costs. Additionally, the removal of the flap track fairings associated with conventional high-lift systems renders a more efficient aerodynamic configuration. Potentially, these benefits translate to a approx. 2.25% net reduction in fuel burn for a twin-engine, long-range airplane.
Unconventional Rotor Power Response to Yaw Error Variations
Schreck, S. J.; Schepers, J. G.
2014-12-16
Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.
Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.
Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J
2017-01-01
Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.
Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma
NASA Astrophysics Data System (ADS)
May, A.; Andarawis, E.
2007-03-01
We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.
Biological nitrate removal processes from drinking water supply-a review
2013-01-01
This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time. PMID:24355262
Micromechanical Switches on GaAs for Microwave Applications
NASA Technical Reports Server (NTRS)
Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang
1995-01-01
In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.
Sharing intelligence: Decision-making interactions between users and software in MAESTRO
NASA Technical Reports Server (NTRS)
Geoffroy, Amy L.; Gohring, John R.; Britt, Daniel L.
1991-01-01
By combining the best of automated and human decision-making in scheduling many advantages can accrue. The joint performance of the user and system is potentially much better than either alone. Features of the MAESTRO scheduling system serve to illustrate concepts of user/software cooperation. MAESTRO may be operated at a user-determinable and dynamic level of autonomy. Because the system allows so much flexibility in the allocation of decision-making responsibilities, and provides users with a wealth of information and other support for their own decision-making, better overall schedules may result.
Workshop III: Improving the Workplace Environment
NASA Astrophysics Data System (ADS)
Gledhill, Igle; Butcher, Gillian
2015-12-01
Research has shown that companies with more diversity and a better workplace perform better. So what makes a good workplace in physics, where women and men can work to their full potential? In the Improving the Workplace Environment workshop of the 5th IUPAP International Conference on Women in Physics, participants heard about initiatives taking place in Canada, the UK, Japan, and India to improve the workplace environment and shared good practices from around the world. Some of the less tangible aspects of the workplace environment, such as unconscious bias and accumulation of advantage and disadvantage, were explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Nan; Tong, Yanhong; Tang, Qingxin, E-mail: tangqx@nenu.edu.cn, E-mail: ycliu@nenu.edu.cn
We showed the advantages of flexible rubrene organic single-crystal microbelts in high-performance devices and circuits towards conformal electronics. The anisotropic transport based on the only one organic microbelt was studied by a “cross-channel” method, and the rubrene microbelt showed the highest mobility up to 26 cm{sup 2}/V s in the length direction. Based on an individual rubrene microbelt, the organic single-crystal circuit with good adherence on a pearl ball and the gain as high as 18 was realized. These results present great potential for applications of organic single-crystal belts in the next-generation conformal electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Dahal, Som; Dauksher, Bill
2016-11-21
Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.
Iris indexing based on local intensity order pattern
NASA Astrophysics Data System (ADS)
Emerich, Simina; Malutan, Raul; Crisan, Septimiu; Lefkovits, Laszlo
2017-03-01
In recent years, iris biometric systems have increased in popularity and have been proven that are capable of handling large-scale databases. The main advantage of these systems is accuracy and reliability. A proper iris patterns classification is expected to reduce the matching time in huge databases. This paper presents an iris indexing technique based on Local Intensity Order Pattern. The performance of the present approach is evaluated on UPOL database and is compared with other recent systems designed for iris indexing. The results illustrate the potential of the proposed method for large scale iris identification.
Crystal growth in a low gravity environment
NASA Technical Reports Server (NTRS)
Carruthers, J. R.
1977-01-01
Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.
Hormone purification by isoelectric focusing in space
NASA Technical Reports Server (NTRS)
Bier, M.
1982-01-01
The performance of a ground-prototype of an apparatus for recycling isoelectric focusing was evaluated in an effort to provide technology for large scale purification of peptide hormones, proteins, and other biologicals. Special emphasis was given to the effects of gravity on the function of the apparatus and to the determination of potential advantages deriveable from its use in a microgravity environment. A theoretical model of isoelectric focusing sing chemically defined buffer systems for the establishment of the pH gradients was developed. The model was transformed to a form suitable for computer simulations and was used extensively for the design of experimental buffers.
Advantages and limits of hemorrhoidal dearterialization in the treatment of symptomatic hemorrhoids
Giamundo, Paolo
2016-01-01
In the last two decades, hemorrhoidal dearterialization has become universally accepted as a treatment option for symptomatic hemorrhoids. The rationale for this procedure is based on the assumption that arterial blood overflow is mainly responsible for dilatation of the hemorrhoidal plexus due to the absence of capillary interposition between the arterial and venous systems within the anal canal. Dearterialization, with either suture ligation (Doppler-guided hemorrhoid artery ligation/transanal hemorrhoidal dearterialization) or laser (hemorrhoidal laser procedure), may be successfully performed alone or with mucopexy. Although the added value of Doppler-guidance in association with dearterialization has recently been challenged, this imaging method still plays an important role in localizing hemorrhoidal arteries and, therefore, minimizing the effect of anatomic variation among patients. However, it is important to employ the correct Doppler transducer. Some Doppler transducers may not easily detect superficial arteries due to inadequate frequency settings. All techniques of dearterialization have the advantage of preserving the anatomy and physiology of the anal canal, when compared to other surgical treatments for hemorrhoids. This advantage cannot be underestimated as impaired anal function, including fecal incontinence and other defecation disorders, may occur following surgical treatment for hemorrhoids. Furthermore, this potentially devastating problem can occur in patients of all ages, including younger patients. PMID:26843909
Advantages and limits of hemorrhoidal dearterialization in the treatment of symptomatic hemorrhoids.
Giamundo, Paolo
2016-01-27
In the last two decades, hemorrhoidal dearterialization has become universally accepted as a treatment option for symptomatic hemorrhoids. The rationale for this procedure is based on the assumption that arterial blood overflow is mainly responsible for dilatation of the hemorrhoidal plexus due to the absence of capillary interposition between the arterial and venous systems within the anal canal. Dearterialization, with either suture ligation (Doppler-guided hemorrhoid artery ligation/transanal hemorrhoidal dearterialization) or laser (hemorrhoidal laser procedure), may be successfully performed alone or with mucopexy. Although the added value of Doppler-guidance in association with dearterialization has recently been challenged, this imaging method still plays an important role in localizing hemorrhoidal arteries and, therefore, minimizing the effect of anatomic variation among patients. However, it is important to employ the correct Doppler transducer. Some Doppler transducers may not easily detect superficial arteries due to inadequate frequency settings. All techniques of dearterialization have the advantage of preserving the anatomy and physiology of the anal canal, when compared to other surgical treatments for hemorrhoids. This advantage cannot be underestimated as impaired anal function, including fecal incontinence and other defecation disorders, may occur following surgical treatment for hemorrhoids. Furthermore, this potentially devastating problem can occur in patients of all ages, including younger patients.
An Experiment on Prediction Markets in Science
Almenberg, Johan; Kittlitz, Ken; Pfeiffer, Thomas
2009-01-01
Prediction markets are powerful forecasting tools. They have the potential to aggregate private information, to generate and disseminate a consensus among the market participants, and to provide incentives for information acquisition. These market functionalities can be very valuable for scientific research. Here, we report an experiment that examines the compatibility of prediction markets with the current practice of scientific publication. We investigated three settings. In the first setting, different pieces of information were disclosed to the public during the experiment. In the second setting, participants received private information. In the third setting, each piece of information was private at first, but was subsequently disclosed to the public. An automated, subsidizing market maker provided additional incentives for trading and mitigated liquidity problems. We find that the third setting combines the advantages of the first and second settings. Market performance was as good as in the setting with public information, and better than in the setting with private information. In contrast to the first setting, participants could benefit from information advantages. Thus the publication of information does not detract from the functionality of prediction markets. We conclude that for integrating prediction markets into the practice of scientific research it is of advantage to use subsidizing market makers, and to keep markets aligned with current publication practice. PMID:20041139
Loffing, Florian; Hagemann, Norbert
2015-05-01
The fighting hypothesis proposes that left-oriented athletes enjoy a negative frequency-dependent advantage in combat sports such as boxing. Supporting evidence, however, is restricted to cross-sectional frequency data from small samples. Here, we examined the incidence and fight records of 2,403 left- and right-oriented fighters who were listed in the annual ratings of professional boxing from 1924 to 2012. Unexpectedly, left-oriented boxers were overrepresented in no more than 7 of the 89 years considered, their percentages varied up to 30% and increased over the entire period, and frequencies varied substantially between weight divisions. In support of the fighting hypothesis, lose-win ratios indicated larger fighting strength in left- compared to right-oriented boxers, which, however, was not reflected in different proportions of wins and losses by knockout. Our findings are partly consistent with an assumed left-oriented fighters' advantage in combat sports. Such advantage could be explained by negative frequency-dependent selection mechanisms; however, our study also revealed potential limits of the fighting hypothesis such that alternative explanations cannot be fully excluded. We propose that interference by factors not related to performance could also limit the suitability of data from elite sporting competition for testing evolutionary models of human handedness.
NASA Astrophysics Data System (ADS)
Dong, Leng; Chen, Yan; Dias, Sarah; Stone, William; Dias, Joseph; Rout, John; Gale, Alastair G.
2017-03-01
Visual search techniques and FROC analysis have been widely used in radiology to understand medical image perceptual behaviour and diagnostic performance. The potential of exploiting the advantages of both methodologies is of great interest to medical researchers. In this study, eye tracking data of eight dental practitioners was investigated. The visual search measures and their analyses are considered here. Each participant interpreted 20 dental radiographs which were chosen by an expert dental radiologist. Various eye movement measurements were obtained based on image area of interest (AOI) information. FROC analysis was then carried out by using these eye movement measurements as a direct input source. The performance of FROC methods using different input parameters was tested. The results showed that there were significant differences in FROC measures, based on eye movement data, between groups with different experience levels. Namely, the area under the curve (AUC) score evidenced higher values for experienced group for the measurements of fixation and dwell time. Also, positive correlations were found for AUC scores between the eye movement data conducted FROC and rating based FROC. FROC analysis using eye movement measurements as input variables can act as a potential performance indicator to deliver assessment in medical imaging interpretation and assess training procedures. Visual search data analyses lead to new ways of combining eye movement data and FROC methods to provide an alternative dimension to assess performance and visual search behaviour in the area of medical imaging perceptual tasks.
Dichotic Word Recognition in Noise and the Right-Ear Advantage
ERIC Educational Resources Information Center
Roup, Christina M.
2011-01-01
Purpose: This study sought to compare dichotic right-ear advantages (REAs) of young adults to older adult data (C. M. Roup, T. L. Wiley, & R. H. Wilson, 2006) after matching for overall levels of recognition performance. Specifically, speech-spectrum noise was introduced in order to reduce dichotic recognition performance of young adults to a…
Shiono, Masatoshi; Takahashi, Shin; Kakudo, Yuichi; Takahashi, Masanobu; Shimodaira, Hideki; Kato, Shunsuke; Ishioka, Chikashi
2014-01-01
Background The requirement of central venous (CV) port implantation is increasing with the increase in the number of cancer patients and advancement in chemotherapy. In our division, medical oncologists have implanted all CV ports to save time and consultation costs to other departments. Recently, upper arm implantation has become the first choice as a safe and comfortable method in our unit. Here we report our experience and discuss the procedure and its potential advantages. Methods All CV port implantations (n = 599) performed in our unit from January 2006 to December 2011 were analyzed. Procedural success and complication rates between subclavian and upper arm groups were compared. Results Both groups had similar patient characteristics. Upper arm CV port and subclavian implantations were equivalently successful and safe. Although we only retrospectively analyzed data from a single center, the upper arm group had a significantly lower overall postprocedural complication rate than the subclavian group. No pneumothorax risk, less risk of arterial puncture by ultrasound, feasibility of stopping potential arterial bleeding, and prevention of accidental arterial cannulation by targeting the characteristic solitary basilic vein were the identified advantages of upper arm CV port implantation. In addition to the aforementioned advantages, there is no risk of “pinch-off syndrome,” possibly less patient fear of manipulation, no scars on the neck and chest, easier accessibility, and compatibility with the “peripherally inserted central catheter” technique. Conclusions Upper arm implantation may benefit clinicians and patients with respect to safety and comfort. We also introduce our methods for upper arm CV port implantation with the videos. PMID:24614412
Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S
2017-03-01
The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.
Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors
Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming
2014-01-01
Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300
Explosive Welding in the 1990's
NASA Technical Reports Server (NTRS)
Lalwaney, N. S.; Linse, V. D.
1985-01-01
Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.
[Management practices in medium-sized private hospitals in São Paulo, Brazil].
Brito, Luiz Artur Ledur; Malik, Ana Maria; Brito, Eliane; Bulgacov, Sergio; Andreassi, Tales
2017-04-03
Traditional management practices are sometimes considered merely a necessary condition for superior performance. Other resources and competencies with higher barriers to imitation are assumed to be potential sources of competitive advantage. This study describes and analyzes the effect of traditional management practices on the performance of medium-sized hospitals. Medium-sized companies frequently display the greatest differences in management practices, and only recently did the hospital sector seek ways to develop its competitiveness in the administrative arena. The results generally indicate that basic management practices can make differences in performance, offering support for the new practice-based view (PBV). Hospitals with the highest rate of adoption of practices had the highest occupancy rate, hospital-bed admissions, and accreditation. Lack of adoption of management practices by medium-sized hospitals limits their competitive capacity and can be viewed as a component of the so-called Brazil cost, but in this case an internal component.
Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A
2014-12-01
Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.
Solar-Powered Electric Propulsion Systems: Engineering and Applications
NASA Technical Reports Server (NTRS)
Stearns, J. W.; Kerrisk, D. J.
1966-01-01
Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.
Phosphodiesterase Type 5 Inhibitors, Sport and Doping.
Di Luigi, Luigi; Sansone, Massimiliano; Sansone, Andrea; Ceci, Roberta; Duranti, Guglielmo; Borrione, Paolo; Crescioli, Clara; Sgrò, Paolo; Sabatini, Stefania
Phosphodiesterase type 5 inhibitors (PDE5i) (e.g., sildenafil, tadalafil, vardenafil, and avanafil) are drugs commonly used to treat erectile dysfunction, pulmonary arterial hypertension, and benign prostatic hyperplasia. PDE5i are not prohibited by the World Anti-Doping Agency (WADA) but are alleged to be frequently misused by healthy athletes to improve sporting performance. In vitro and in vivo studies have reported various effects of PDE5i on cardiovascular, muscular, metabolic, and neuroendocrine systems and the potential, therefore, to enhance performance of healthy athletes during training and competition. This suggests well-controlled research studies to examine the ergogenic effects of PDE5i on performance during activities that simulate real sporting situations are warranted to determine if PDE5i should be included on the prohibited WADA list. In the meantime, there is concern that some otherwise healthy athletes will continue to misuse PDE5i to gain an unfair competitive advantage over their competitors.
Advances of aqueous rechargeable lithium-ion battery: A review
NASA Astrophysics Data System (ADS)
Alias, Nurhaswani; Mohamad, Ahmad Azmin
2015-01-01
The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.
Rothen, Nicolas; Meier, Beat
2010-04-01
In synaesthesia, the input of one sensory modality automatically triggers an additional experience, not normally triggered by the input of that modality. Therefore, compared to non-synaesthetes, additional experiences exist and these may be used as retrieval cues when memory is tested. Previous case studies have suggested that synaesthesia may yield even extraordinary memory abilities. However, group studies found either a task-specific memory advantage or no performance advantage at all. The aim of the present study was to test whether grapheme-colour synaesthesia gives rise to a general memory benefit using a standardised memory test (Wechsler Memory Scale). The synaesthetes showed a performance advantage in episodic memory tests, but not in short-term memory tests. However, performance was still within the ordinary range. The results support the hypothesis that synaesthesia provides for a richer world of experience and as a consequence additional retrieval cues may be available and beneficial but not to the point of extraordinary memory ability.
An Integrated Product Environment
NASA Technical Reports Server (NTRS)
Higgins, Chuck
1997-01-01
Mechanical Advantage is a mechanical design decision support system. Unlike our CAD/CAM cousins, Mechanical Advantage addresses true engineering processes, not just the form and fit of geometry. If we look at a traditional engineering environment, we see that an engineer starts with two things - performance goals and design rules. The intent is to have a product perform specific functions and accomplish that within a designated environment. Geometry should be a simple byproduct of that engineering process - not the controller of it. Mechanical Advantage is a performance modeler allowing engineers to consider all these criteria in making their decisions by providing such capabilities as critical parameter analysis, tolerance and sensitivity analysis, math driven Geometry, and automated design optimizations. If you should desire an industry standard solid model, we would produce an ACIS-based solid model. If you should desire an ANSI/ISO standard drawing, we would produce this as well with a virtual push of the button. For more information on this and other Advantage Series products, please contact the author.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trędak, Przemysław, E-mail: przemyslaw.tredak@fuw.edu.pl; Rudnicki, Witold R.; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Pawińskiego 5a, 02-106 Warsaw
The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPUmore » to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.« less
Global warming potential of pavements
NASA Astrophysics Data System (ADS)
Santero, Nicholas J.; Horvath, Arpad
2009-09-01
Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.
Gadde, U; Kim, W H; Oh, S T; Lillehoj, Hyun S
2017-06-01
With the increase in regulations regarding the use of antibiotic growth promoters and the rise in consumer demand for poultry products from 'Raised Without Antibiotics' or 'No Antibiotics Ever' flocks, the quest for alternative products or approaches has intensified in recent years. A great deal of research has focused on the development of antibiotic alternatives to maintain or improve poultry health and performance. This review describes the potential for the various alternatives available to increase animal productivity and help poultry perform to their genetic potential under existing commercial conditions. The classes of alternatives described include probiotics, prebiotics, synbiotics, organic acids, enzymes, phytogenics, antimicrobial peptides, hyperimmune egg antibodies, bacteriophages, clay, and metals. A brief description of the mechanism of action, efficacy, and advantages and disadvantages of their uses are also presented. Though the beneficial effects of many of the alternatives developed have been well demonstrated, the general consensus is that these products lack consistency and the results vary greatly from farm to farm. Furthermore, their mode of action needs to be better defined. Optimal combinations of various alternatives coupled with good management and husbandry practices will be the key to maximize performance and maintain animal productivity, while we move forward with the ultimate goal of reducing antibiotic use in the animal industry.
3D near-infrared imaging based on a single-photon avalanche diode array sensor
NASA Astrophysics Data System (ADS)
Mata Pavia, Juan; Charbon, Edoardo; Wolf, Martin
2011-07-01
An imager for optical tomography was designed based on a detector with 128×128 single-photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contact-less setup has been conceived in which scanning of the object is not necessary. This enables one to perform high-resolution optical tomography with much higher acquisition rate, which is fundamental in clinical applications. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new imaging system generated a high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take full advantage of it. Images were generated using a new reconstruction algorithm that combined general inverse problem methods with Fourier transforms in order to reduce the complexity of the problem. Simulations show that the potential resolution of the new setup is in the order of millimeters. Experiments have been performed to confirm this potential. Images derived from the measurements demonstrate that we have already reached a resolution of 5mm.
GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)
NASA Astrophysics Data System (ADS)
Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza
2017-12-01
Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1978-01-01
Various communication systems were considered which are required to transmit both imaging and a typically error sensitive, class of data called general science/engineering (gse) over a Gaussian channel. The approach jointly treats the imaging and gse transmission problems, allowing comparisons of systems which include various channel coding and data compression alternatives. Actual system comparisons include an Advanced Imaging Communication System (AICS) which exhibits the rather significant potential advantages of sophisticated data compression coupled with powerful yet practical channel coding.
The Opportunity Cost of the Nonmonetary Advantages of the Soviet Military R and D Effort,
Analyzes the major nonbudgetary advantages enjoyed by the military research and development sector in the Soviet economic system. This analysis also...investigates to what extent and in what form such advantages are potentially transferable from the military to the civilian sector, thereby...constituting a real economic burden on the Soviet economy. The military R and D sector benefits from a high-powered priority system that overrides the planning
Hydrolysis of oligosaccharides over solid acid catalysts: a review.
Vilcocq, Léa; Castilho, Paula C; Carvalheiro, Florbela; Duarte, Luís C
2014-04-01
Mild fractionation/pretreatment processes are becoming the most preferred choices for biomass processing within the biorefinery framework. To further explore their advantages, new developments are needed, especially to increase the extent of the hydrolysis of poly- and oligosaccharides. A possible way forward is the use of solid acid catalysts that may overcome many current drawbacks of other common methods. In this Review, the advantages and limitations of the use of heterogeneous catalysis for the main groups of solid acid catalysts (zeolites, resins, carbon materials, clays, silicas, and other oxides) and their relation to the hydrolysis of model soluble disaccharides and soluble poly- and oligosaccharides are presented and discussed. Special attention is given to the hydrolysis of hemicelluloses and hemicellulose-derived saccharides into monosaccharides, the impact on process performance of potential catalyst poisons originating from biomass and biomass hydrolysates (e.g., proteins, mineral ions, etc.). The data clearly point out the need for studying hemicelluloses in natura rather than in model compound solutions that do not retain the relevant factors influencing process performance. Furthermore, the desirable traits that solid acid catalysts must possess for the efficient hemicellulose hydrolysis are also presented and discussed with regard to the design of new catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of cemented and uncemented fixation in total knee arthroplasty.
Brown, Thomas E; Harper, Benjamin L; Bjorgul, Kristian
2013-05-01
As a result of reading this article, physicians should be able to :1. Understand the rationale behind using uncemented fixation in total knee arthroplasty.2.Discuss the current literature comparing cemented and uncemented total knee arthroplasty3. Describe the value of radiostereographic analysis in assessing implant stability.4. Appreciate the limitations in the available literature advocating 1 mode of fixation in total knee arthroplasty. Total knee arthroplasty performed worldwide uses either cemented, cementless, or hybrid (cementless femur with a cemented tibia) fixation of the components. No recent literature review concerning the outcomes of cemented vs noncemented components has been performed. Noncemented components offer the potential advantage of a biologic interface between the bone and implants, which could demonstrate the greatest advantage in long-term durable fixation in the follow-up of young patients undergoing arthroplasty. Several advances have been made in the backing of the tibial components that have not been available long enough to yield long-term comparative follow-up studies. Short-term radiostereographic analysis studies have yielded differing results. Although long-term, high-quality studies are still needed, material advances in biologic fixation surfaces, such as trabecular metal and hydroxyapatite, may offer promising results for young and active patients undergoing total knee arthroplasty when compared with traditional cemented options. Copyright 2013, SLACK Incorporated.
Enumeration of small collections violates Weber's law.
Choo, H; Franconeri, S L
2014-02-01
In a phenomenon called subitizing, we can immediately generate exact counts of small collections (one to three objects), in contrast to larger collections, for which we must either create rough estimates or serially count. A parsimonious explanation for this advantage for small collections is that noisy representations of small collections are more tolerable, due to the larger relative differences between consecutive numbers (e.g., 2 vs. 3 is a 50 % increase, but 10 vs. 11 is only a 10 % increase). In contrast, the advantage could stem from the fact that small-collection enumeration is more precise, relying on a unique mechanism. Here, we present two experiments that conclusively showed that the enumeration of small collections is indeed "superprecise." Participants compared numerosity within either small or large visual collections in conditions in which the relative differences were controlled (e.g., performance for 2 vs. 3 was compared with performance for 20 vs. 30). Small-number comparison was still faster and more accurate, across both "more-fewer" judgments (Exp. 1), and "same-different" judgments (Exp. 2). We then reviewed the remaining potential mechanisms that might underlie this superprecision for small collections, including the greater diagnostic value of visual features that correlate with number and a limited capacity for visually individuating objects.
Future orbital transfer vehicle technology study. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
Davis, E. E.
1982-01-01
Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.
Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.
Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen
2015-05-01
The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).
Drescher, A.; Yoho, M.; Landsberger, S.; ...
2017-01-15
In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drescher, A.; Yoho, M.; Landsberger, S.
In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less
3D-nanostructured Au electrodes for the event-specific detection of MON810 transgenic maize.
Fátima Barroso, M; Freitas, Maria; Oliveira, M Beatriz P P; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; Delerue-Matos, Cristina
2015-03-01
In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Udani, Ankeet D; Harrison, T Kyle; Howard, Steven K; Kim, T Edward; Brock-Utne, John G; Gaba, David M; Mariano, Edward R
2012-08-01
A head-mounted display provides continuous real-time imaging within the practitioner's visual field. We evaluated the feasibility of using head-mounted display technology to improve ergonomics in ultrasound-guided regional anesthesia in a simulated environment. Two anesthesiologists performed an equal number of ultrasound-guided popliteal-sciatic nerve blocks using the head-mounted display on a porcine hindquarter, and an independent observer assessed each practitioner's ergonomics (eg, head turning, arching, eye movements, and needle manipulation) and the overall block quality based on the injectate spread around the target nerve for each procedure. Both practitioners performed their procedures without directly viewing the ultrasound monitor, and neither practitioner showed poor ergonomic behavior. Head-mounted display technology may offer potential advantages during ultrasound-guided regional anesthesia.
Zhao, Cui-e; Chen, Jia; Ding, Yuanzhao; Wang, Victor Bochuan; Bao, Biqing; Kjelleberg, Staffan; Cao, Bin; Loo, Say Chye Joachim; Wang, Lianhui; Huang, Wei; Zhang, Qichun
2015-07-08
Water-soluble conjugated oligoelectrolyte nanoparticles (COE NPs), consisting of a cage-like polyhedral oligomeric silsesquioxanes (POSS) core equipped at each end with pendant groups (oligo(p-phenylenevinylene) electrolyte, OPVE), have been designed and demonstrated as an efficient strategy in increasing the current generation in Escherichia coli microbial fuel cells (MFCs). The as-prepared COE NPs take advantage of the structure of POSS and the optical properties of the pendant groups, OPVE. Confocal laser scanning microscopy showed strong photoluminescence of the stained cells, indicating spontaneous accumulation of COE NPs within cell membranes. Moreover, the electrochemical performance of the COE NPs is superior to that of an established membrane intercommunicating COE, DSSN+ in increasing current generation, suggesting that these COE NPs thus hold great potential to boost the performance of MFCs.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
The Business Case for Spiral Development in Heavy Lift Launch Vehicle Systems
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Christensen, David L.; Keith, Edward L.
2005-01-01
Performance capabilities of a specific combination of the Space Shuttle external tank and various liquid engines in an in-line configuration, two-stage core vehicle with multiple redesigned solid rocket motor strap-ons are reexamined. This concept proposes using existing assets, hardware, and capabilities that are already crew-rated, flight certified, being manufactured under existing contracts, have a long history of component and system ground testing, and have been flown for over 20 yr. This paper goes beyond describing potential performance capabilities of specific components to discuss the overall system feasibility-from end to end, start to finish-describing the inherent cost advantages of the Spiral Development concept, which builds on existing capabilities and assets, as opposed to starting up a "fresh sheet" heavy-lift launch vehicle program from scratch.
Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro
2011-10-15
Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US
Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip
2014-01-01
The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID:25474632
A geospatial comparison of distributed solar heat and power in Europe and the US.
Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip
2014-01-01
The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system.
Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A
2013-01-01
The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.
NASA Astrophysics Data System (ADS)
Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.
2016-12-01
Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.
Factoring symmetric indefinite matrices on high-performance architectures
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1990-01-01
The Bunch-Kaufman algorithm is the method of choice for factoring symmetric indefinite matrices in many applications. However, the Bunch-Kaufman algorithm does not take advantage of high-performance architectures such as the Cray Y-MP. Three new algorithms, based on Bunch-Kaufman factorization, that take advantage of such architectures are described. Results from an implementation of the third algorithm are presented.
The Advantages of Using Planned Comparisons over Post Hoc Tests.
ERIC Educational Resources Information Center
Kuehne, Carolyn C.
There are advantages to using a priori or planned comparisons rather than omnibus multivariate analysis of variance (MANOVA) tests followed by post hoc or a posteriori testing. A small heuristic data set is used to illustrate these advantages. An omnibus MANOVA test was performed on the data followed by a post hoc test (discriminant analysis). A…
Lan, Yingying; Zhao, Hongyang; Zong, Yan; Li, Xinghua; Sun, Yong; Feng, Juan; Wang, Yan; Zheng, Xinliang; Du, Yaping
2018-05-01
Binary transition metal phosphides hold immense potential as innovative electrode materials for constructing high-performance energy storage devices. Herein, porous binary nickel-cobalt phosphide (NiCoP) nanosheet arrays anchored on nickel foam (NF) were rationally designed as self-supported binder-free electrodes with high supercapacitance performance. Taking the combined advantages of compositional features and array architectures, the nickel foam supported NiCoP nanosheet array (NiCoP@NF) electrode possesses superior electrochemical performance in comparison with Ni-Co LDH@NF and NiCoO2@NF electrodes. The NiCoP@NF electrode shows an ultrahigh specific capacitance of 2143 F g-1 at 1 A g-1 and retained 1615 F g-1 even at 20 A g-1, showing excellent rate performance. Furthermore, a binder-free all-solid-state asymmetric supercapacitor device is designed, which exhibits a high energy density of 27 W h kg-1 at a power density of 647 W kg-1. The hierarchical binary nickel-cobalt phosphide nanosheet arrays hold great promise as advanced electrode materials for supercapacitors with high electrochemical performance.
Designing the future: NBIC technologies and human performance enhancement.
Canton, James
2004-05-01
Never before has any civilization had the unique opportunity to enhance human performance on the scale that we will face in the near future. The convergence of nanotechnology, biotechnology, information technology, and cognitive science (NBIC) is creating a set of powerful tools that have the potential to significantly enhance human performance as well as transform society, science, economics, and human evolution. As the NBIC convergence becomes more understood, the possibility that we may be able to enhance human performance in the three domains of therapy, augmentation, and designed evolution will become anticipated and even expected. In addition, NBIC convergence represents entirely new challenges for scientists, policymakers, and business leaders who will have, for the first time, vast new and powerful tools to shape markets, societies, and lifestyles. The emergence of NBIC convergence will challenge us in new ways to balance risk and return, threat and opportunity, and social responsibility and competitive advantage as we step into the 21st century.
Integrating Reconfigurable Hardware-Based Grid for High Performance Computing
Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos
2015-01-01
FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241
NASA Astrophysics Data System (ADS)
Menicucci, D. F.
The performance of a photovoltaic (PV) system is affected by the particular mounting configuration selected. But the optimal configuration for various potential designs is unknown because too few PV systems have been fielded. Sandia National Laboratories (SNLA) is currently conducting a controlled field experiment in which four of the most commonly used module mounting configurations are being compared. The data from the experiment are used to verify the accuracy of PVFORM, a new PV performance model. The model is then used to simulate the performance of PV modules mounted in different configurations in eight sites throughtout the U.S. The module mounting configurations, the experimental methods used, the specialized statistical techniques used in the analysis and the final results of the effort are described. The module mounting configurations are rank ordered at each site according to their energy production performane and each is briefly discussed in terms of its advantages or disadvantages in various applications.
Porous Graphene Microflowers for High-Performance Microwave Absorption
NASA Astrophysics Data System (ADS)
Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao
2018-06-01
Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.
Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2014-01-01
Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398
Source imaging of potential fields through a matrix space-domain algorithm
NASA Astrophysics Data System (ADS)
Baniamerian, Jamaledin; Oskooi, Behrooz; Fedi, Maurizio
2017-01-01
Imaging of potential fields yields a fast 3D representation of the source distribution of potential fields. Imaging methods are all based on multiscale methods allowing the source parameters of potential fields to be estimated from a simultaneous analysis of the field at various scales or, in other words, at many altitudes. Accuracy in performing upward continuation and differentiation of the field has therefore a key role for this class of methods. We here describe an accurate method for performing upward continuation and vertical differentiation in the space-domain. We perform a direct discretization of the integral equations for upward continuation and Hilbert transform; from these equations we then define matrix operators performing the transformation, which are symmetric (upward continuation) or anti-symmetric (differentiation), respectively. Thanks to these properties, just the first row of the matrices needs to be computed, so to decrease dramatically the computation cost. Our approach allows a simple procedure, with the advantage of not involving large data extension or tapering, as due instead in case of Fourier domain computation. It also allows level-to-drape upward continuation and a stable differentiation at high frequencies; finally, upward continuation and differentiation kernels may be merged into a single kernel. The accuracy of our approach is shown to be important for multi-scale algorithms, such as the continuous wavelet transform or the DEXP (depth from extreme point method), because border errors, which tend to propagate largely at the largest scales, are radically reduced. The application of our algorithm to synthetic and real-case gravity and magnetic data sets confirms the accuracy of our space domain strategy over FFT algorithms and standard convolution procedures.
NASA Astrophysics Data System (ADS)
Gu, Taoli; Wei, Bingqing
2015-07-01
Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02310f
Augmentation of Rocket Propulsion: Physical Limits
NASA Technical Reports Server (NTRS)
Taylor, Charles R.
1996-01-01
Rocket propulsion is not ideal when the propellant is not ejected at a unique velocity in an inertial frame. An ideal velocity distribution requires that the exhaust velocity vary linearly with the velocity of the vehicle in an inertial frame. It also requires that the velocity distribution variance as a thermodynamic quantity be minimized. A rocket vehicle with an inert propellant is not optimal, because it does not take advantage of the propellant mass for energy storage. Nor is it logical to provide another energy storage device in order to realize variable exhaust velocity, because it would have to be partly unfilled at the beginning of the mission. Performance is enhanced by pushing on the surrounding because it increases the reaction mass and decreases the reaction jet velocity. This decreases the fraction of the energy taken away by the propellant and increases the share taken by the payload. For an optimal model with the propellant used as fuel, the augmentation realized by pushing on air is greatest for vehicles with a low initial/final mass ratio. For a typical vehicle in the Earth's atmosphere, the augmentation is seen mainly at altitudes below about 80 km. When drag is taken into account, there is a well-defined optimum size for the air intake. Pushing on air has the potential to increase the performance of rockets which pass through the atmosphere. This is apart from benefits derived from "air breathing", or using the oxygen in the atmosphere to reduce the mass of an on-board oxidizer. Because of the potential of these measures, it is vital to model these effects more carefully and explore technology that may realize their advantages.
Gilman, Alexey; Laurens, Lieve M.; Puri, Aaron W.; ...
2015-11-16
Methane is a feedstock of interest for the future, both from natural gas and from renewable biogas sources. Methanotrophic bacteria have the potential to enable commercial methane bioconversion to value-added products such as fuels and chemicals. A strain of interest for such applications is Methylomicrobium buryatense 5GB1, due to its robust growth characteristics. But, to take advantage of the potential of this methanotroph, it is important to generate comprehensive bioreactor-based datasets for different growth conditions to compare bioprocess parameters. The datasets of growth parameters, gas utilization rates, and products (total biomass, extracted fatty acids, glycogen, excreted acids) were obtained formore » cultures of M. buryatense 5GB1 grown in continuous culture under methane limitation and O2 limitation conditions. Additionally, experiments were performed involving unrestricted batch growth conditions with both methane and methanol as substrate. All four growth conditions show significant differences. The most notable changes are the high glycogen content and high formate excretion for cells grown on methanol (batch), and high O2:CH4 utilization ratio for cells grown under methane limitation. The results presented here represent the most comprehensive published bioreactor datasets for a gamma-proteobacterial methanotroph. This information shows that metabolism by M. buryatense 5GB1 differs significantly for each of the four conditions tested. O2 limitation resulted in the lowest relative O2 demand and fed-batch growth on methane the highest. Future studies are needed to understand the metabolic basis of these differences. However, these results suggest that both batch and continuous culture conditions have specific advantages, depending on the product of interest.« less
Academic consumer researchers: a bridge between consumers and researchers.
Griffiths, Kathleen M; Jorm, Anthony F; Christensen, Helen
2004-04-01
To describe the contributions that consumers, and academic consumer researchers in particular, can make to mental health research. A literature survey and a systematic consideration of the potential advantages of consumer and academic consumer researcher involvement in health research. Consumer researchers may contribute to better health outcomes, but there are significant barriers to their participation in the research process. To date, discussion has focused on the role of nonacademic consumers in the health research process. There has been little recognition of the particular contributions that consumers with formal academic qualifications and research experience can offer. Academic consumer researchers (ACRs) offer many of the advantages associated with lay consumer participation, as well as some unique advantages. These advantages include acceptance by other researchers as equal partners in the research process; skills in research; access to research funding; training in disseminating research findings within the scientific community; potential to influence research funding and research policy; capacity to influence the research culture; and potential to facilitate the involvement of lay consumers in the research process. In recognition of the value of a critical mass of ACRs in mental health, a new ACR unit (the Depression and Anxiety Consumer Research Unit [CRU]) has been established at the Centre for Mental Health Research at the Australian National University. Academic consumer researchers have the potential to increase the relevance of mental health research to consumers, to bridge the gap between the academic and consumer communities and to contribute to the process of destigmatizing mental disorders.
Walter, Sabrina; Quigley, Cliodhna; Mueller, Matthias M
2014-05-01
Performing a task across the left and right visual hemifields results in better performance than in a within-hemifield version of the task, termed the different-hemifield advantage. Although recent studies used transient stimuli that were presented with long ISIs, here we used a continuous objective electrophysiological (EEG) measure of competitive interactions for attentional processing resources in early visual cortex, the steady-state visual evoked potential (SSVEP). We frequency-tagged locations in each visual quadrant and at central fixation by flickering light-emitting diodes (LEDs) at different frequencies to elicit distinguishable SSVEPs. Stimuli were presented for several seconds, and participants were cued to attend to two LEDs either in one (Within) or distributed across left and right visual hemifields (Across). In addition, we introduced two reference measures: one for suppressive interactions between the peripheral LEDs by using a task at fixation where attention was withdrawn from the periphery and another estimating the upper bound of SSVEP amplitude by cueing participants to attend to only one of the peripheral LEDs. We found significantly greater SSVEP amplitude modulations in Across compared with Within hemifield conditions. No differences were found between SSVEP amplitudes elicited by the peripheral LEDs when participants attended to the centrally located LEDs compared with when peripheral LEDs had to be ignored in Across and Within trials. Attending to only one LED elicited the same SSVEP amplitude as Across conditions. Although behavioral data displayed a more complex pattern, SSVEP amplitudes were well in line with the predictions of the different-hemifield advantage account during sustained visuospatial attention.
Zhang, Yanhui; Tang, Zi-Rong; Fu, Xianzhi; Xu, Yi-Jun
2011-09-27
Increasing interest has been devoted to synthesizing graphene (GR)-semiconductor nanocomposites as photocatalysts for potential applications, which is very similar to its forebear carbon nanotube (CNT)-semiconductor photocatalysts. Unfortunately, a thoughtful and inevitable comparison between GR- and CNT-semiconductors as photocatalysts is often neglected in literature. This situation may give incomplete or exaggerated information on the contribution role of GR to enhance the semiconductor photocatalytic activity, as compared to CNT. Thus, our knowledge regarding the specific advantage of GR over CNT on how to design more efficient GR-semiconductor nanocomposites and understanding the origin of their enhanced photocatalytic performance is far from satisfactory. By taking the TiO(2) semiconductor as an example, we conceptually demonstrate how to synthesize a more efficient GR-TiO(2) nanocomposite as a visible light photocatalyst toward selective oxidation of alcohols under mild conditions. Comparison between GR-TiO(2) and CNT-TiO(2) discloses the prominent advantage of GR over CNT on both controlling the morphology of GR-TiO(2) nanocomposite and enhancing the photocatalytic activity of TiO(2). This work clearly highlights the importance and necessity for a comparison investigation between GR- and CNT-semiconductors as photocatalysts, which will promote our in-depth fundamental understanding on the analogy and difference between GR and CNT on controlling the morphology of GR (or CNT)-semiconductor nanocomposites and enhancing the photocatalytic performance. Therefore, we appeal the photocatalysis community to pay attention to this respect rather than separately imposing hype on the miracle of GR in much the same way as its carbon forebears, which could significantly advance our rational fabrication of smart GR-semiconductor nanocomposites for artificial photosynthesis. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun
2018-06-01
The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.
Bloch, Edward; Uddin, Nabil; Gannon, Laura; Rantell, Khadija; Jain, Saurabh
2015-01-01
Background Stereopsis is believed to be advantageous for surgical tasks that require precise hand-eye coordination. We investigated the effects of short-term and long-term absence of stereopsis on motor task performance in three-dimensional (3D) and two-dimensional (2D) viewing conditions. Methods 30 participants with normal stereopsis and 15 participants with absent stereopsis performed a simulated surgical task both in free space under direct vision (3D) and via a monitor (2D), with both eyes open and one eye covered in each condition. Results The stereo-normal group scored higher, on average, than the stereo-absent group with both eyes open under direct vision (p<0.001). Both groups performed comparably in monocular and binocular monitor viewing conditions (p=0.579). Conclusions High-grade stereopsis confers an advantage when performing a fine motor task under direct vision. However, stereopsis does not appear advantageous to task performance under 2D viewing conditions, such as in video-assisted surgery. PMID:25185439
Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR
NASA Astrophysics Data System (ADS)
Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun
2010-11-01
Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.
Zevin, Jason D; Miller, Brett
Reading research is increasingly a multi-disciplinary endeavor involving more complex, team-based science approaches. These approaches offer the potential of capturing the complexity of reading development, the emergence of individual differences in reading performance over time, how these differences relate to the development of reading difficulties and disability, and more fully understanding the nature of skilled reading in adults. This special issue focuses on the potential opportunities and insights that early and richly integrated advanced statistical and computational modeling approaches can provide to our foundational (and translational) understanding of reading. The issue explores how computational and statistical modeling, using both observed and simulated data, can serve as a contact point among research domains and topics, complement other data sources and critically provide analytic advantages over current approaches.
An approximate model for cancellous bone screw fixation.
Brown, C J; Sinclair, R A; Day, A; Hess, B; Procter, P
2013-04-01
This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.
Low-Speed Fan Noise Attenuation from a Foam-Metal Liner
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Jones, Michael G.
2011-01-01
A foam-metal liner for attenuation of fan noise was developed for and tested on a low-speed fan. This type of liner represents a significant advance over traditional liners, due to the possibility of placement in close proximity to the rotor. An advantage of placing treatment in this region is that the acoustic near field is modified, thereby inhibiting the noise-generation mechanism. This can result in higher attenuation levels than could be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.
Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU
NASA Astrophysics Data System (ADS)
Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.
2016-09-01
The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.
Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media
NASA Astrophysics Data System (ADS)
Jakobsen, Morten; Tveit, Svenn
2018-05-01
We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.
(C)overt attention and visual speller design in an ERP-based brain-computer interface.
Treder, Matthias S; Blankertz, Benjamin
2010-05-28
In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP). An ERP-based brain-computer interface (BCI) exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention) or whether it is also feasible for targets in the visual periphery (covert attention). Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Healthy participants (N = 13) performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (c)overt attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification) of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower for covert attention. The Hex-o-Spell outperforms the Matrix, especially when eye movements are not permitted, illustrating that performance can be increased if one accounts for peculiarities of peripheral vision.
(C)overt attention and visual speller design in an ERP-based brain-computer interface
2010-01-01
Background In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP). An ERP-based brain-computer interface (BCI) exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention) or whether it is also feasible for targets in the visual periphery (covert attention). Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Method Healthy participants (N = 13) performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (c)overt attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. Results We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification) of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Conclusions Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower for covert attention. The Hex-o-Spell outperforms the Matrix, especially when eye movements are not permitted, illustrating that performance can be increased if one accounts for peculiarities of peripheral vision. PMID:20509913
Word Processing Programs and Weaker Writers/Readers: A Meta-Analysis of Research Findings
ERIC Educational Resources Information Center
Morphy, Paul; Graham, Steve
2012-01-01
Since its advent word processing has become a common writing tool, providing potential advantages over writing by hand. Word processors permit easy revision, produce legible characters quickly, and may provide additional supports (e.g., spellcheckers, speech recognition). Such advantages should remedy common difficulties among weaker…
48 CFR 952.209-8 - Organizational conflicts of interest-disclosure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... otherwise impaired, or a person has an unfair competitive advantage. (b) An offeror notified that it is the... negotiations or, where individual contracts are negotiated with all firms in the competitive range, it means... or potential conflict of interest or unfair competitive advantage exists with respect to the advisory...
48 CFR 952.209-8 - Organizational conflicts of interest-disclosure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... otherwise impaired, or a person has an unfair competitive advantage. (b) An offeror notified that it is the... negotiations or, where individual contracts are negotiated with all firms in the competitive range, it means... or potential conflict of interest or unfair competitive advantage exists with respect to the advisory...
Powder River outlook stays healthy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-08-01
Well drilling activity in Wyoming's Powder River Basin is discussed. Operators are taking advantage of favorable economic advantages to tap the area's multiple pay potential and challenge its high success rate reputation. A significant amount of exploration and development can be expected in the future due to the recent discovery of high-flowing wells.
Competitive Advantage in Intercollegiate Athletics: Role of Intangible Resources.
Won, Doyeon; Chelladurai, Packianathan
2016-01-01
The present research explored the dynamics of competitive advantages in intercollegiate athletics by investigating the contribution of intangible resources (i.e., athletic and academic reputations) on the generation of more tangible resources (i.e., human and financial resources), which in turn influence the athletic performance (i.e., winning record) and academic performance (i.e., graduation rates), and gender equity. The research was based entirely on archival data of 324 NCAA Division I member institutions. The results of the SEM supported the study's basic arguments that tangible resources are the sources of competitive advantages in Division I intercollegiate athletics, and that intangible resources contribute to the generation of tangible resources.
3D near-infrared imaging based on a single-photon avalanche diode array sensor
NASA Astrophysics Data System (ADS)
Mata Pavia, Juan; Wolf, Martin; Charbon, Edoardo
2012-10-01
Near-infrared light can be used to determine the optical properties (absorption and scattering) of human tissue. Optical tomography uses this principle to image the internal structure of parts of the body by measuring the light that is scattered in the tissue. An imager for optical tomography was designed based on a detector with 128x128 single photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contactless setup has been conceived. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new setup generated an high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take advantage of it. Simulations show that the potential resolution of the new setup would be much higher than previous designs. Measurements have been performed showing its potential. Images derived from the measurements showed that it is possible to reach a resolution of at least 5mm.
The role of radionuclide imaging in the surgical management of primary hyperparathyroidism.
Hindié, Elif; Zanotti-Fregonara, Paolo; Tabarin, Antoine; Rubello, Domenico; Morelec, Isabelle; Wagner, Tristan; Henry, Jean-François; Taïeb, David
2015-05-01
Primary hyperparathyroidism is a frequent and potentially debilitating endocrine disorder for which surgery is the only curative treatment. The modalities of parathyroid surgery have changed over the last 2 decades, as conventional bilateral neck exploration is no longer the only surgical approach. Parathyroid scintigraphy plays a major role in defining the surgical strategy, given its ability to orient a targeted (focused) parathyroidectomy and to recognize ectopic locations or multiglandular disease. This review, which represents a collaborative effort between nuclear physicians, endocrinologists, and endocrine surgeons, emphasizes the importance of performing imaging before any surgery for primary hyperparathyroidism, even in the case of conventional bilateral neck exploration. We discuss the advantages and drawbacks of targeted parathyroidectomy and the performance of various scintigraphic protocols to guide limited surgery. We also discuss the optimal strategy to localize the offending gland before reoperation for persistent or recurrent hyperparathyroidism. Finally, we describe the potential applications of novel PET tracers, with special emphasis on (18)F-fluorocholine. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Fuel Cell Thermal Management Through Conductive Cooling Plates
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Burke, Kenneth A.
2008-01-01
An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.
Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Seyf, Hamid Reza; Henry, Asegun
2017-01-01
We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.
Analysis of a Concentrated Solar Thermophotovoltaic System with Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Seyf, Hamid Reza; Henry, Asegun
We analyzed a high temperature concentrated solar thermophotovoltaic (TPV) system with thermal energy storage (TES), which is enabled by the potential usage of liquid metal as a high temperature heat transfer fluid. The system concept combines the great advantages of TES with the potential for low cost and high performance derived from photovoltaic cells fabricated on reusable substrates, with a high reflectivity back reflector for photon recycling. The TES makes the electricity produced dispatchable, and thus the system studied should be compared to technologies such as concentrated solar power (CSP) with TES (e.g., using a turbine) or PV with electrochemical batteries, instead of direct and intermittent electricity generation from flat plate PV alone. Thus, the addition of TES places the system in a different class than has previously been considered and based on the model results, appears worthy of increased attention. The system level analysis presented identifies important cell level parameters that have the greatest impact on the overall system performance, and as a result can help to set the priorities for future TPV cell development.
Hybrid thermionic-photovoltaic converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datas, A.
2016-04-04
A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligiblemore » electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.« less
An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice.
Ma, Sihui; Huang, Qingyi; Yada, Koichi; Liu, Chunhong; Suzuki, Katsuhiko
2018-05-25
Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.
Challenges to Scaling CIGS Photovoltaics
NASA Astrophysics Data System (ADS)
Stanbery, B. J.
2011-03-01
The challenges of scaling any photovoltaic technology to terawatts of global capacity are arguably more economic than technological or resource constraints. All commercial thin-film PV technologies are based on direct bandgap semiconductors whose absorption coefficient and bandgap alignment with the solar spectrum enable micron-thick coatings in lieu to hundreds of microns required using indirect-bandgap c-Si. Although thin-film PV reduces semiconductor materials cost, its manufacture is more capital intensive than c-Si production, and proportional to deposition rate. Only when combined with sufficient efficiency and cost of capital does this tradeoff yield lower manufacturing cost. CIGS has the potential to become the first thin film technology to achieve the terawatt benchmark because of its superior conversion efficiency, making it the only commercial thin film technology which demonstrably delivers performance comparable to the dominant incumbent, c-Si. Since module performance leverages total systems cost, this competitive advantage bears directly on CIGS' potential to displace c-Si and attract the requisite capital to finance the tens of gigawatts of annual production capacity needed to manufacture terawatts of PV modules apace with global demand growth.
Electrical and optical performance of InAs/GaSb superlattice LWIR detectors
NASA Astrophysics Data System (ADS)
Field, M.; Sullivan, G. J.; Ikhlassi, A.; Grein, C.; Flatté, M. E.; Yang, H.; Zhong, M.; Weimer, M.
2006-02-01
InAs/GaSb superlattices are a promising technology for long-wave and very-long-wave infrared photodetectors. Present detectors at these wavelengths are mostly built using bulk HgCdTe (MCT) alloys, where the bandgap is controlled by the mercury-cadmium ratio. In contrast, InAs/GaSb heterostructures control the bandgap by engineering the widths of the layers making up the superlattice. This approach is expected to have important advantages over MCT, notably the tighter control of bandgap uniformity across a sample and the suppression of Auger recombination. InAs/GaSb superlattices have a potential advantage in temperature of operation, uniformity and yield. To realize their inherent potential, however, superlattice materials with low defect density and improved device characteristics must be demonstrated. Here, we report on the growth and characterization of a 9.7 μm cutoff wavelength InAs/GaSb superlattice detector, with a resistance-area product of R 0A = 11 Ωcm2 at 78 K, and an 8.5 μm cutoff diode with a resistance-area product of R 0A = 160 Ωcm2 at 78 K. The devices are p-i-n diodes with a relatively thin intrinsic region of depth 0.5 μm as the active absorbing region. The measured external quantum efficiencies of 7.1% and 5.4 % at 7.9 μm are not yet large enough to challenge the incumbent MCT technology, but suggest scaling the intrinsic region could be a way forward to potentially useful detectors.
eHealth in Treatment of Offenders in Forensic Mental Health: A Review of the Current State.
Kip, Hanneke; Bouman, Yvonne H A; Kelders, Saskia M; van Gemert-Pijnen, Lisette J E W C
2018-01-01
Treatment of offenders in forensic mental health is complex. Often, these in- or outpatients have low treatment motivation, suffer from multiple disorders, and have poor literacy skills. eHealth may be able to improve treatment outcomes because of its potential to increase motivation and engagement, and it can overcome the predominant one-size-fits-all approach by being tailored to individual patients. To examine its potential, this systematic review studies the way that eHealth has been used and studied in forensic mental health and identifies accompanying advantages and disadvantages for both patients and treatment, including effectiveness. A systematic search in Scopus, PsycINFO, and Web of Science was performed up until December 2017. Studies were included if they focused on technological interventions to improve the treatment of forensic psychiatric patients. The search resulted in 50 studies in which eHealth was used for treatment purposes. Multiple types of studies and technologies were identified, such as virtual reality, web-based interventions, and videoconferencing. The results confirmed the benefits of technology, for example, the acquisition of unique information about offenders, effectiveness, and tailoring to specific characteristics, but indicated that these are not fully taken advantage of. To overcome the barriers and obtain the benefits, eHealth has to have a good fit with patients and the forensic psychiatric context. It has to be seamlessly integrated in existing care and should not be added as an isolated element. To bridge the gap between the current situation and eHealth's potential, further research on development, implementation, and evaluation should be conducted.
1987-09-01
SFl WILE coP DTIC ELECTEI DEC0 419871 OFD IIN A STUDY ON THE PERCEPTIONS ABOUT COMMERCIAL SALES: SELLER ANDI • BUYER PERSPECTIVES THESIS Yong Sang Kim...PERCEPTIONS ABOUT H POTENTIAL ADVANTAGES OF FMS AND COMMERCIAL SALES: SELLER AND BUYER PERSPECTIVES THESIS Accession For Yong Sang Kim NTIS ,RA&I Major...AND COMMERCIAL SALES: SELLER AND BUYER PERSPECTIVES THESIS Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute
The oral and craniofacial relevance of chemically modified RNA therapeutics.
Elangovan, Satheesh; Kormann, Michael S D; Khorsand, Behnoush; Salem, Aliasger K
2016-01-01
Several tissue engineering strategies in the form of protein therapy, gene therapy, cell therapy, and their combinations are currently being explored for oral and craniofacial regeneration and repair. Though each of these approaches has advantages, they all have common inherent drawbacks of being expensive and raising safety concerns. Using RNA (encoding therapeutic protein) has several advantages that have the potential to overcome these limitations. Chemically modifying the RNA improves its stability and mitigates immunogenicity allowing for the potential of RNA to become an alternative to protein and gene based therapies. This brief review article focuses on the potential of RNA therapeutics in the treatment of disorders in the oral and craniofacial regions.
The Oral and Craniofacial Relevance of Chemically Modified RNA Therapeutics
Kormann, Michael S.D.; Khorsand, Behnoush
2016-01-01
Several tissue engineering strategies in the form of protein therapy, gene therapy, cell therapy and its combinations are currently being explored for oral and cranio-facial regeneration and repair. Though each of these approaches has advantages, they all have common inherent drawbacks of being expensive and raising safety concerns. Using RNA (encoding therapeutic protein) has several advantages that have the potential to overcome these limitations. Chemically modifying the RNA improves its stability and mitigates immunogenicity allowing for the potential of RNA to become an alternative to protein and gene based therapies. This brief review article focuses on the potential of RNA therapeutics in the treatment of disorders in the oral and craniofacial regions. PMID:26896600
Electrochemical separation of hydrogen from reformate using PEM fuel cell technology
NASA Astrophysics Data System (ADS)
Gardner, C. L.; Ternan, M.
This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H 2-CO 2 gas mixture and from a H 2-CO 2-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H 2-CO 2 gas mixture or a H 2-CO 2-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H 2-CO 2 gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell.
Reshaping Light-Emitting Diodes To Increase External Efficiency
NASA Technical Reports Server (NTRS)
Rogowski, Robert; Egalon, Claudio
1995-01-01
Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.
Smith, R; Schwab, K; Day, A; Rockall, T; Ballard, K; Bailey, M; Jourdan, I
2014-10-01
Although the potential benefits of stereoscopic laparoscopy have been recognized for years, the technology has not been adopted because of poor operator tolerance. Passive polarizing projection systems, which have revolutionized three-dimensional (3D) cinema, are now being trialled in surgery. This study was designed to see whether this technology resulted in significant performance benefits for skilled laparoscopists. Four validated laparoscopic skills tasks, each with ten repetitions, were performed by 20 experienced laparoscopic surgeons, in both two-dimensional (2D) and 3D conditions. The primary outcome measure was the performance error rate; secondary outcome measures were time for task completion, 3D motion tracking (path length, motion smoothness and grasping frequency) and workload dimension ratings of the National Aeronautics and Space Administration (NASA) Task Load Index. Surgeons demonstrated a 62 per cent reduction in the median number of errors and a 35 per cent reduction in median performance time when using the passive polarizing 3D display compared with the 2D display. There was a significant 15 per cent reduction in median instrument path length, an enhancement of median motion smoothness, and a 15 per cent decrease in grasper frequency with the 3D display. Participants reported significant reductions in subjective workload dimension ratings of the NASA Task Load Index following use of the 3D displays. Passive polarizing 3D displays improved both the performance of experienced surgeons in a simulated setting and surgeon perception of the operative field. Although it has been argued that the experience of skilled laparoscopic surgeons compensates fully for the loss of stereopsis, this study indicates that this is not the case. Surgical relevance The potential benefits of stereoscopic laparoscopy have been known for years, but the technology has not been adopted because of poor operator tolerance. The first laparoscopic operation was carried out using a prototype passive polarizing laparoscopic system in 2010. This is new three-dimensional (3D) technology offers a real option for 3D laparoscopic surgery where previous systems have failed. This study is the first to have been carried out using this technology. It is essential that new technologies are adopted only when there is robust evidence to support their use. Currently, there are concerns about the use of robotic technologies and whether advantages exist for patient care. If there are advantages, 3D must be playing a significant role. If so, perhaps the technology under investigation here offers potential to a greater spectrum of surgeons, as well as being a more affordable option. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems
NASA Technical Reports Server (NTRS)
Harty, Richard B.; Durand, Richard E.
1993-01-01
An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.
Kirschen, Gregory W; Jones, Jason J; Hale, Lauren
2018-06-14
The athletic advantage of sleep, although commonly touted by coaches, trainers, and sports physicians, is still unclear and likely varies by sport, athletic performance metric, and length of sufficient or insufficient sleep. Although recent literature reviews have highlighted circadian and nutritional factors that influence different aspects of athletic performance, a systematic summary of the effects of sleep duration and sleep quality on performance among competitive athletes is lacking. Here we systematically review the relationship between sleep duration and sleep quality and objective athletic performance among competitive athletes across 19 studies representing 12 sports. Taken holistically, we find that the sports requiring speed, tactical strategy, and technical skill are most sensitive to sleep duration manipulations. Furthermore, longer-term sleep manipulations are more likely than acute sleep manipulations (whether deprivation or extension) to affect athletic performance. Thus, the importance of sleep for competitive athletes to achieve high performance is dependent on the demands of the sport as well as the length of sleep interventions. In light of the limited number of studies investigating sleep quality and performance, the potential relevance of subjective sleep quality remains an interesting question for future work.
Power, Yuri; Goodyear, Bradley; Crockford, David
2012-12-01
The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.
48 CFR 2052.209-72 - Contractor organizational conflicts of interest.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Does not obtain an unfair competitive advantage over other parties by virtue of its performance of this... technical bias or unfair competitive advantage. (d) Disclosure after award. (1) The contractor warrants that...
Talking with the Doctor about Breast Surgery Options
... breast cancer. Q: What are the advantages and disadvantages for having a lumpectomy followed by radiation therapy? ... been performed. Q: What are the advantages and disadvantages of having a mastectomy? Dr. Attai: The risk ...
On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael
2008-01-01
The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.
Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2017-11-01
The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew E.; Graziano, Diane
Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less
Huang, Runze; Riddle, Matthew E.; Graziano, Diane; ...
2017-08-26
Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less
Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming
2017-12-19
Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.
NASA Technical Reports Server (NTRS)
Basile, Lisa
1988-01-01
The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historical records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.
NASA Technical Reports Server (NTRS)
Basile, Lisa
1988-01-01
The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historial records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.
Cascaded systems analysis of photon counting detectors
Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.
2014-01-01
Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of 0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. Conclusions: The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems. PMID:25281959
Cascaded systems analysis of photon counting detectors.
Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H
2014-10-01
Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of 0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems.
Effect of microemulsions on cell viability of human dermal fibroblasts
NASA Astrophysics Data System (ADS)
Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim
Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yufei, E-mail: mayufei@hit.edu.cn; Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001; He, Ying
An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.
L∞-Optimal feedforward gust load alleviation design for a large blended wing body airliner
NASA Astrophysics Data System (ADS)
Wildschek, A.; Haniš, T.; Stroscher, F.
2013-12-01
The potential advantages of Blended Wing Body (BWB) aircraft in terms of fuel efficiency are opposed by technical challenges such as the alleviation of gust loads. Due to the low wing, loading gusts, generally, have a more severe impact on BWB aircraft than on conventional aircraft. This paper presents the design and optimization of a Gust Load Alleviation System (GLAS) for a large BWB airliner. Numerical simulations are performed with an aeroelastic model of the aircraft including GLAS in order to compute time series of modal displacements for deriving equivalent static load cases which are used for the resizing of the aircraft structure.
NASA Astrophysics Data System (ADS)
Mai, Yiyong; Zhang, Fan; Feng, Xinliang
2013-12-01
Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.
Mai, Yiyong; Zhang, Fan; Feng, Xinliang
2014-01-07
Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.
Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling
2018-06-12
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.
Feasibility of Space Disposal of Radioactive Nuclear Waste. 1: Executive Summary
NASA Technical Reports Server (NTRS)
1973-01-01
This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.
High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film
NASA Astrophysics Data System (ADS)
Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.
2016-05-01
We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.
Research on liquid impact forming technology of double-layered tubes
NASA Astrophysics Data System (ADS)
Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan
2018-03-01
A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.
Polymer optical fiber sensors in human life safety
NASA Astrophysics Data System (ADS)
Marques, C. A. F.; Webb, D. J.; Andre, P.
2017-07-01
The current state of research into polymer optical fiber (POF) sensors linked to safety in human life is summarized in this paper. This topic is directly related with new solutions for civil aircraft, structural health monitoring, healthcare and biomedicine fields. In the last years, the properties of polymers have been explored to identify situations offering potential advantages over conventional silica fiber sensing technology, replacing, in some cases, problematic electronic technology used in these mentioned fields, where there are some issues to overcome. POFs could preferably replace their silica counterparts, with improved performance and biocompatibility. Finally, new developments are reported which use the unique properties of POF.
Hydrogen Storage for Aircraft Applications Overview
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)
2002-01-01
Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.
Choosing the best index for the average score intraclass correlation coefficient.
Shieh, Gwowen
2016-09-01
The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease.
Matrix-addressed analog ferroelectric memory
NASA Astrophysics Data System (ADS)
Lemons, R. A.; Grogan, J. K.; Thompson, J. S.
1980-08-01
A matrix addressed analog memory which uses multiple ferroelectric domain walls to address columns of words, is demonstrated. It is shown that the analog information is stored as a pattern in the metallization on the surface of the crystal, making a read-only memory. The pattern is done photolithographically in a way compatible with the simultaneous fabrication of many devices. Attention is given to the performance results, noting that the advantage of the device is that analog information can be stored with a high density in a single mask step. Finally, it is shown that potential applications are in systems which require repetitive output from a limited vocabulary of spoken words.
Modeling of the First Layers in the Fly's Eye
NASA Technical Reports Server (NTRS)
Moya, J. A.; Wilcox, M. J.; Donohoe, G. W.
1997-01-01
Increased autonomy of robots would yield significant advantages in the exploration of space. The shortfalls of computer vision can, however, pose significant limitations on a robot's potential. At the same time, simple insects which are largely hard-wired have effective visual systems. The understanding of insect vision systems thus may lead to improved approaches to visual tasks. A good starting point for the study of a vision system is its eye. In this paper, a model of the sensory portion of the fly's eye is presented. The effectiveness of the model is briefly addressed by a comparison of its performance to experimental data.
Fluorescent nanoparticles based on AIE fluorogens for bioimaging.
Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing
2016-02-07
Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.
An Efficient Image Recovery Algorithm for Diffraction Tomography Systems
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1993-01-01
A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...
Multiple Trellis Coded Modulation (MTCM): An MSAT-X report
NASA Technical Reports Server (NTRS)
Divsalar, D.; Simon, M. K.
1986-01-01
Conventional trellis coding outputs one channel symbol per trellis branch. The notion of multiple trellis coding is introduced wherein more than one channel symbol per trellis branch is transmitted. It is shown that the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal set comparable to that previously achieved only with signal constellation asymmetry. The advantage of multiple trellis coding over the conventional trellis coded asymmetric modulation technique is that the potential for code catastrophe associated with the latter has been eliminated with no additional cost in complexity (as measured by the number of states in the trellis diagram).
Small capillary pumped AMTEC systems
NASA Astrophysics Data System (ADS)
Hunt, Thomas K.; Sievers, Robert K.; Butkiewicz, David A.; Pantolin, Jan E.; Ivanenok, Joseph F.
1993-01-01
Alkali Metal Thermoelectric Converter (AMTEC) systems offer significant potential advantages for space power. Recent experiments have shown that electromagnetic pumps can operate with a negative priming head and so may be suitable for space applications in microgravity (Hunt et al. 1992). Capillary pumped cells offer an alternative approach to microgravity compatibility. We have designed, built, and operated capillary pumped AMTEC cells in various orientations with respect to gravity in order to provide a presumptive demonstration of zero-G capability (Sievers et al. 1992). We report lifetime and performance data for these capillary pumped AMTEC cells. Progress on other issues relating to space flight testing of AMTEC systems is also discussed.
Moller, Arlen C.; Merchant, Gina; Conroy, David E.; West, Robert; Hekler, Eric B.; Kugler, Kari C.; Michie, Susan
2017-01-01
As more behavioral health interventions move from traditional to digital platforms, the application of evidence-based theories and techniques may be doubly advantageous. First, it can expedite digital health intervention development, improving efficacy, and increasing reach. Second, moving behavioral health interventions to digital platforms presents researchers with novel (potentially paradigm shifting) opportunities for advancing theories and techniques. In particular, the potential for technology to revolutionize theory refinement is made possible by leveraging the proliferation of “real-time” objective measurement and “big data” commonly generated and stored by digital platforms. Much more could be done to realize this potential. This paper offers proposals for better leveraging the potential advantages of digital health platforms, and reviews three of the cutting edge methods for doing so: optimization designs, dynamic systems modeling, and social network analysis. PMID:28058516
Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO₂ Separation: A Review.
Janakiram, Saravanan; Ahmadi, Mahdi; Dai, Zhongde; Ansaloni, Luca; Deng, Liyuan
2018-05-14
Membrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO₂ from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance. This review aims at providing a complete overview of the recent advances in nanocomposite membranes for enhanced CO₂ separation. Nanofillers of various dimensions and properties are categorized and effects of nature and morphology of the 0D to 2D nanofillers in the corresponding nanocomposite membranes of different polymeric matrixes are discussed with regard to the CO₂ permeation properties. Moreover, a comprehensive summary of the performance data of various nanocomposite membranes is presented. Finally, the advantages and challenges of various nanocomposite membranes are discussed and the future research and development opportunities are proposed.
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947
von Berens, Å; Cederholm, T; Fielding, R A; Gustafsson, T; Kirn, D; Laussen, J; Nydahl, M; Travison, T G; Reid, K; Koochek, A
2018-01-01
To examine the potential association between serum 25(OH) vitamin D and the performance on the Short Physical Performance Battery (SPPB) including the sub-components; five repeated chair stands test, 4 meters walk test and balance in older mobility-limited community-dwelling men and women. A cross sectional study was performed in American and Swedish subjects who were examined for potential participation in a combined exercise and nutrition intervention trial. Logistic regression analysis and linear regression analyses were performed to evaluate the association for 25(OH)D with the overall score on the SBBP, chair stand, gait speed and balance. Community-dwelling (mean age 77.6 ± 5.3 years) mobility limited American (n=494) and Swedish (n=116) females (59%) and males. The SPPB (0-12 points) includes chair stand (s), gait speed (m/s) and a balance test. Mobility limitation i.e., SPPB score ≤ 9 was an inclusion criterion. A blood sample was obtained to measure serum 25(OH)vitamin D concentrations. No clear association of 25(OH)D with SPPB scores was detected either when 25(OH)D was assessed as a continuous variable or when categorized according to serum concentrations of <50, 50-75 or <75 nmol/L. However, when analyzing the relationship between 25(OH)D and seconds to perform the chair stands, a significant quadratic relationship was observed. Thus, at serum levels of 25(OH)D above 74 nmol/L, higher concentrations appeared to be advantageous for the chair stand test, whereas for serum levels below 74 nmol/L this association was not observed. This cross- sectional study lacked clear association between serum 25(OH)D and physical performance in mobility limited adults. A potentially interesting observation was that at higher serum levels of 25(OH)D a better performance on the chair stand test was indicated.
Home advantage in high-level volleyball varies according to set number.
Marcelino, Rui; Mesquita, Isabel; Palao Andrés, José Manuel; Sampaio, Jaime
2009-01-01
The aim of the present study was to identify the probability of winning each Volleyball set according to game location (home, away). Archival data was obtained from 275 sets in the 2005 Men's Senior World League and 65,949 actions were analysed. Set result (win, loss), game location (home, away), set number (first, second, third, fourth and fifth) and performance indicators (serve, reception, set, attack, dig and block) were the variables considered in this study. In a first moment, performance indicators were used in a logistic model of set result, by binary logistic regression analysis. After finding the adjusted logistic model, the log-odds of winning the set were analysed according to game location and set number. The results showed that winning a set is significantly related to performance indicators (Chisquare(18)=660.97, p<0.01). Analyses of log-odds of winning a set demonstrate that home teams always have more probability of winning the game than away teams, regardless of the set number. Home teams have more advantage at the beginning of the game (first set) and in the two last sets of the game (fourth and fifth sets), probably due to facilities familiarity and crowd effects. Different game actions explain these advantages and showed that to win the first set is more important to take risk, through a better performance in the attack and block, and to win the final set is important to manage the risk through a better performance on the reception. These results may suggest intra-game variation in home advantage and can be most useful to better prepare and direct the competition. Key pointsHome teams always have more probability of winning the game than away teams.Home teams have higher performance in reception, set and attack in the total of the sets.The advantage of home teams is more pronounced at the beginning of the game (first set) and in two last sets of the game (fourth and fifth sets) suggesting intra-game variation in home advantage.Analysis by sets showed that home teams have a better performance in the attack and block in the first set and in the reception in the third and fifth sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James
2012-12-19
The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
The Boom in 3D-Printed Sensor Technology
Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei
2017-01-01
Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability. PMID:28534832
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John
2003-01-01
To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.
Fiber-reinforced superalloy composites provide an added performance edge
NASA Technical Reports Server (NTRS)
Petrasek, D. W.; Mcdaniels, D. L.; Westfall, L. J.; Stephens, J. R.
1986-01-01
Fiber reinforcements are being explored as a means to increasing the performance of superalloys past 980 C. Fiber-reinforced superalloys (FRS), particularly tungsten FRS (TFRS) are candidate materials for rocket-engine turbopump blades for advanced Shuttle engines and in airbreathing and other rocket engines. Refractory metal wires are the reinforcement of choice due to tolerance to fiber/matrix interactions. W alloy fibers have a maximum tensile strength of 2165 MPa at 1095 C and a 100 hr creep rupture strength at stresses up to 1400 MPa. A TFRS has the potential of a service temperature 110 C over the strongest superalloy. Manufacturing processes being evaluated to realize the FRS components are summarized, together with design features which will be introduced in turbine blades to take advantage of the FRS materials and to extend their surface life.
Practical considerations in Bayesian fusion of point sensors
NASA Astrophysics Data System (ADS)
Johnson, Kevin; Minor, Christian
2012-06-01
Sensor data fusion is and has been a topic of considerable research, but rigorous and quantitative understanding of the benefits of fusing specific types of sensor data remains elusive. Often, sensor fusion is performed on an ad hoc basis with the assumption that overall detection capabilities will improve, only to discover later, after expensive and time consuming laboratory and/or field testing that little advantage was gained. The work presented here will discuss these issues with theoretical and practical considerations in the context of fusing chemical sensors with binary outputs. Results are given for the potential performance gains one could expect with such systems, as well as the practical difficulties involved in implementing an optimal Bayesian fusion strategy with realistic scenarios. Finally, a discussion of the biases that inaccurate statistical estimates introduce into the results and their consequences is presented.
An Evaluation of the Coupled LVT Concept.
1979-11-01
DISTRIBUT’ION/ AVAILABILIT Y CODES DIST AVAIL AND/ORt SPECIAL DATE ACCESSIONED DIST RIBUTION STAMP 81 7 17 006 DATE RECEIVED IN DTIC PHOTOGRAPH THIS...with the objective of improving the land and water performance. Recommendations are made for a coupling system and its controls and for an articulated...configuration. The advantages in land and water performance, as well as the drawbacks, are presented in comparison to single vehicles. The advantages
Pulse enhanced fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, B.
1996-12-31
Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.
Advantages of Social Network Analysis in Educational Research
ERIC Educational Resources Information Center
Ushakov, K. M.; Kukso, K. N.
2015-01-01
Currently one of the main tools for the large scale studies of schools is statistical analysis. Although it is the most common method and it offers greatest opportunities for analysis, there are other quantitative methods for studying schools, such as network analysis. We discuss the potential advantages that network analysis has for educational…
Effective Use of Java Data Objects in Developing Database Applications; Advantages and Disadvantages
2004-06-01
DATA OBJECTS IN DEVELOPING DATABASE APPLICATIONS. ADVANTAGES AND DISADVANTAGES Paschalis Zilidis June 2004 Thesis Advisor: Thomas...Objects in Developing Database Applications. Advantages and Disadvantages 6. AUTHOR(S) Paschalis ZILIDIS 5. FUNDING NUMBERS 7. PERFORMING...database for the backend datastore. The major disadvantage of this approach is the well-known “impedance mismatch” in which some form of mapping is
Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics.
Mahato, Kuldeep; Maurya, Pawan Kumar; Chandra, Pranjal
2018-03-01
Among various problems faced by mankind, health-related concerns are prevailing since long which are commonly found in the form of infectious diseases and different metabolic disorders. The clinical cure and management of such abnormalities are greatly dependent on the availability of their diagnoses. The conventional diagnostics used for such purposes are extremely powerful; however, most of these are limited by time-consuming protocols and require higher volume of test sample, etc. A new evolving technology called "biosensor" in this context shows an enormous potential for an alternative diagnostic device, which constantly compliments the conventional diagnoses. In this review, we have summarized different kinds of biosensors and their fundamental understanding with various state-of-the-art examples. A critical examination of different types of biosensing mechanisms is also reported highlighting the advantages of electrochemical biosensors for its great potentials in next-generation commercially viable modules. In recent years, a number of nanomaterials are extensively used to enhance not only the performance of biosensing mechanism, but also obtain robust, cheap, and fabrication-friendly durable mechanism. Herein, we have summarized the importance of nanomaterials in biosensing mechanism, their syntheses as well as characterization techniques. Subsequently, we have discussed the probe fabrication processes along with various techniques for assessing its analytical performances and potentials for commercial viability.
III-V on silicon micro-photonic circuits for frequency downconversion of RF signals
NASA Astrophysics Data System (ADS)
Roelkens, G.; Keyvaninia, S.; Tassaert, M.; Latkowski, S.; Bente, E.; Mariën, J.; Thomassen, L.; Baets, R.
2017-11-01
RF frequency downconverters are of key importance in communication satellites. Classically, this is implemented using an electronic mixer. In this paper we explore the use of photonic technology to realize the same functionality. The potential advantages of such an approach compared to the classical microwave solutions are that it is lighter weight, has lower power consumption and can be made smaller if photonic technology is used. An additional advantage is the fact that the optical local oscillator (LO) reference can easily be transported over longer distances than the equivalent LO signal in the microwave domain due to the large bandwidth and low loss and dispersion of optical fiber. Another big advantage is that one can envision the use of short pulse trains as the LO - starting off from a sinusoidal RF reference - in order to exploit subsampling. Subsampling avoids the need for high frequency LO references, which is especially valuable if a downconversion over several 10s of GHz is required. In this paper we present the operation principle of such a photonic frequency downconverter and describe the performance of the developed micro-photonic building blocks required for this functionality. These micro-photonic building blocks are implemented on a III-V semiconductor-on-silicon photonic platform. The components include a micro-photonic hybridly modelocked laser, a 30GHz electroabsorption modulator and an intermediate frequency (1.5GHz) photodetector.
Improved target detection by IR dual-band image fusion
NASA Astrophysics Data System (ADS)
Adomeit, U.; Ebert, R.
2009-09-01
Dual-band thermal imagers acquire information simultaneously in both the 8-12 μm (long-wave infrared, LWIR) and the 3-5 μm (mid-wave infrared, MWIR) spectral range. Compared to single-band thermal imagers they are expected to have several advantages in military applications. These advantages include the opportunity to use the best band for given atmospheric conditions (e. g. cold climate: LWIR, hot and humid climate: MWIR), the potential to better detect camouflaged targets and an improved discrimination between targets and decoys. Most of these advantages have not yet been verified and/or quantified. It is expected that image fusion allows better exploitation of the information content available with dual-band imagers especially with respect to detection of targets. We have developed a method for dual-band image fusion based on the apparent temperature differences in the two bands. This method showed promising results in laboratory tests. In order to evaluate its performance under operational conditions we conducted a field trial in an area with high thermal clutter. In such areas, targets are hardly to detect in single-band images because they vanish in the clutter structure. The image data collected in this field trial was used for a perception experiment. This perception experiment showed an enhanced target detection range and reduced false alarm rate for the fused images compared to the single-band images.
Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi
2017-09-01
Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.
2017-03-01
There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in the release of three high LET alpha particles. These promising, innovative approaches for cancer therapy present huge challenges for dose calculation, dosimetry and for investigation of the biological effects. The planned LDPA (photons, VHEE, protons, carbon ions) at ELI facilities has the unique property of ultra-high dose rate (> Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, have the potential to develop and establish encouraging novel methods working towards compact hospital-based clinical applications.
Limakrisna, Nandan; Yoserizal, Syahril
2016-01-01
Indonesian banking industry has experienced up and down as can be seen after Pakto '88, in which the number of new banks grew rapidly, but after the 1997-1998 financial crisis, a lot of banks were liquidated due to the deteriorating financial condition and violation of the precautionary principles by bank management. The purpose of this research is to determine and analyze the effects of good corporate governance, information technology, HR competencies on competitive advantage and its implication on marketing performance. The method used in this research was a descriptive survey and explanatory survey with a sample size of 320 respondents, and the data analysis methods used are structural equation modeling. Based on the results of the research, the findings obtained from good corporate governance, information technology, HR competencies have a significant effect on competitive advantage on the performance of marketing. However, when seen in part, competitive advantage has a dominant effect on marketing performance.
Improving performance by anchoring movement and "nerves".
Iso-Ahola, Seppo E; Dotson, Charles O; Jagodinsky, Adam E; Clark, Lily C; Smallwood, Lorraine L; Wilburn, Christopher; Weimar, Wendi H; Miller, Matthew W
2016-10-01
Golf's governing bodies' recent decision to ban all putting styles "anchoring one end of the club against the body" bridges an important practical problem with psychological theory. We report the first experiment testing whether anchoring provides technical and/or psychological advantage in competitive performance. Many "greats" of professional golf from Arnold Palmer and Jack Nicklaus to Tiger Woods have argued against anchoring, believing that it takes "nerves" out of competitive performance and therefore artificially levels the playing field. To shed more light on the issue, we tested participants' performance with anchored and unanchored putters under low and high pressure when controlling for the putter length. We found no statistically significant evidence for a technical advantage due to anchoring but a clear psychological advantage: participants who anchored their putters significantly outperformed unanchored counterparts under high, but not low, pressure. Results provide tentative evidence for the ban's justification from a competitive standpoint. However, before any definite conclusions can be made, more research is needed when using high-level golfers. Copyright © 2016 Elsevier B.V. All rights reserved.
Robotic pancreaticoduodenectomy for pancreatic adenocarcinoma: role in 2014 and beyond
Baker, Erin H.; Ross, Samuel W.; Seshadri, Ramanathan; Swan, Ryan Z.; Iannitti, David A.; Vrochides, Dionisios
2015-01-01
Minimally invasive surgery (MIS) for pancreatic adenocarcinoma has found new avenues for performing pancreaticoduodenectomy (PD) procedures, a historically technically challenging operation. Multiple studies have found laparoscopic PD to be safe, with equivalent oncologic outcomes as compared to open PD. In addition, several series have described potential benefits to minimally invasive PD including fewer postoperative complications, shorter hospital length of stay, and decreased postoperative pain. Yet, despite these promising initial results, laparoscopic PDs have not become widely adopted by the surgical community. In fact, the vast majority of pancreatic resections performed in the United States are still performed in an open fashion, and there are only a handful of surgeons who actually perform purely laparoscopic PDs. On the other hand, robotic assisted surgery offers many technical advantages over laparoscopic surgery including high-definition, 3-D optics, enhanced suturing ability, and more degrees of freedom of movement by means of fully-wristed instruments. Similar to laparoscopic PD, there are now several case series that have demonstrated the feasibility and safety of robotic PD with seemingly equivalent short-term oncologic outcomes as compared to open technique. In addition, having the surgeon seated for the procedure with padded arm-rests, there is an ergonomic advantage of robotics over both open and laparoscopic approaches, where one has to stand up for prolonged periods of time. Future technologic innovations will likely focus on enhanced robotic capabilities to improve ease of use in the operating room. Last but not least, robotic assisted surgery training will continue to be a part of surgical education curriculum ensuring the increased use of this technology by future generations of surgeons. PMID:26261726
An investigation of noise performance in optical lock-in thermography
NASA Astrophysics Data System (ADS)
Rajic, Nik; Antolis, Cedric
2017-12-01
An investigation into the noise performance of optical lock-in thermography (OLT) is described. The study aims to clarify the influence of infrared detector type and key inspection parameters such as illumination strength and lock-in duration on the quality of OLT amplitude and phase imagery. The study compares the performance of a state-of-the-art cooled photon detector with several lower-cost microbolometers. The results reveal a significant noise performance advantage to the photon detector. Under certain inspection regimes the advantage with respect to phase image quality is disproportionately high relative to detector sensitivities. This is shown to result from an explicit dependence in the phase signal variance on the ratio between the signal amplitude and the detector sensitivity. While this finding supports the preferred use of photon detectors for OLT inspections, it does not exclude microbolometers from a useful role. In cases where the significantly lower capital cost and improved practicality of microbolometers provide an advantage it is shown that performance shortfalls can be overcome with a relatively small factorial increase in optical illumination intensity.
Project safety as a sustainable competitive advantage.
Rechenthin, David
2004-01-01
To be consistently profitable, a construction company must complete projects in scope, on schedule, and on budget. At the same time, the nature of the often high-risk work performed by construction companies can result in high accident rates. Clients and other stakeholders are placing increasing pressure on companies to decrease those accident rates. Clients routinely demand copies of safety plans and evidence of past results at the "pre-qualification" or "request for proposal" stages of the procurement process. Are high accident rates and the associated costs just a part of business? Companies that deliver on scope, schedule, and budget have a competitive advantage. Is it possible for projects with low accident rates to use it as a competitive advantage? Is the value added by safety just a temporary or parity issue, or does a successful safety program offer significant advantage to the company and the client? This article concludes that in the case of a high-risk industry, such as the construction industry, an organization with a successful safety program can promote safety performance as a sustainable competitive advantage. It is a choice the company can make.
Optical interconnection networks for high-performance computing systems
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr; Bergman, Keren
2012-04-01
Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
Competitive Advantage in Intercollegiate Athletics: Role of Intangible Resources
Won, Doyeon; Chelladurai, Packianathan
2016-01-01
The present research explored the dynamics of competitive advantages in intercollegiate athletics by investigating the contribution of intangible resources (i.e., athletic and academic reputations) on the generation of more tangible resources (i.e., human and financial resources), which in turn influence the athletic performance (i.e., winning record) and academic performance (i.e., graduation rates), and gender equity. The research was based entirely on archival data of 324 NCAA Division I member institutions. The results of the SEM supported the study’s basic arguments that tangible resources are the sources of competitive advantages in Division I intercollegiate athletics, and that intangible resources contribute to the generation of tangible resources. PMID:26731118