Science.gov

Sample records for potential pharmacological target

  1. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  2. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  3. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets.

    PubMed

    Ljubicic, Vladimir; Burt, Matthew; Jasmin, Bernard J

    2014-02-01

    Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.

  4. Glycosaminoglycans are potential pharmacological targets for classic DNA minor groove binder drugs berenil and pentamidine.

    PubMed

    Zsila, Ferenc

    2015-10-14

    It is shown that the antiprotozoal drugs berenil and pentamidine, conventional minor groove binders of DNA, form non-covalent complexes with polyanionic glycosaminoglycans. Induced circular dichroism (CD) spectra as well as UV hypochromism confirmed drug binding to the asymmetric template of heparin and chondroitin 6-sulfate. The biphasic nature of the CD signals refers to intermolecular chiral exciton coupling between the dicationic guest molecules forming a right- or a left-handed helical array along the GAG chains. Quantitative evaluation of the spectroscopic data measured in pH 7.0 buffer solution (80 mM NaCl) indicated a higher (Ka ∼ 10(6) M(-1) for berenil) and a lower (Ka ∼ 10(5) M(-1) for pentamidine) affinity heparin binding of these agents, similar to that reported for DNA. Drug-chondroitin sulfate complexes (Ka ∼ 10(4)-10(5) M(-1)) could be detected only at low ionic strength. These results imply that besides nucleic acids, GAGs may be another pharmacological targets for diarylamidine drugs.

  5. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease.

    PubMed

    Gómez-Gálvez, Yolanda; Palomo-Garo, Cristina; Fernández-Ruiz, Javier; García, Concepción

    2016-01-04

    Inflammation is an important pathogenic factor in Parkinson's disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum. The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD. Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects. Parkinsonian inflammation can be reproduced experimentally in rodents by intrastriatal injections of lipopolysaccharide (LPS) which, through an intense activation of glial elements and peripheral infiltration, provokes a rapid deterioration of the striatum that may extend to the substantia nigra too. Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue. First, we found elevated levels of the CB2 receptor measured by qRT-PCR in the striatum and substantia nigra of LPS-lesioned mice, as well as an increase in the immunostaining for this receptor in the LPS-lesioned striatum. Second, we found a significant increase in CD68 immunostaining, which serve to identify activated microglia and also infiltrated peripheral macrophages, in these brain structures in response to LPS insult, which was much more intense in CB2 receptor-deficient mice in the case of the substantia nigra. Next, we observed that the activation of CB2 receptors with a selective agonist (HU-308) reversed LPS-induced elevation of CD68 immunostaining in the striatum and the parallel reduction in TH immunostaining. Lastly, we

  6. Targeting 20-HETE producing enzymes in cancer – rationale, pharmacology, and clinical potential

    PubMed Central

    Alexanian, Anna; Sorokin, Andrey

    2013-01-01

    Studies demonstrate that lipid mediator 20-Hydroxyeicosatetraenoic acid (20-HETE) synthesis and signaling are associated with the growth of cancer cells in vitro and in vivo. Stable 20-HETE agonists promote the proliferation of cancer cells, whereas selective inhibitors of the 20-HETE-producing enzymes of the Cytochrome (CYP450)4A and CYP4F families can block the proliferation of glioblastoma, prostate, renal cell carcinoma, and breast cancer cell lines. A recent observation that the expression of CYP4A/4F genes was markedly elevated in thyroid, breast, colon, and ovarian cancer further highlights the significance of 20-HETE-producing enzymes in the progression of different types of human cancer. These findings provide the rationale for targeting 20-HETE-producing enzymes in human cancers and set the basis for the development of novel therapeutic strategies for anticancer treatment. PMID:23569388

  7. Reward learning as a potential target for pharmacological augmentation of cognitive remediation for schizophrenia: a roadmap for preclinical development

    PubMed Central

    Acheson, Dean T.; Twamley, Elizabeth W.; Young, Jared W.

    2013-01-01

    Rationale: Impaired cognitive abilities are a key characteristic of schizophrenia. Although currently approved pharmacological treatments have demonstrated efficacy for positive symptoms, to date no pharmacological treatments successfully reverse cognitive dysfunction in these patients. Cognitively-based interventions such as cognitive remediation (CR) and other psychosocial interventions however, may improve some of the cognitive and functional deficits of schizophrenia. Given that these treatments are time-consuming and labor-intensive, maximizing their effectiveness is a priority. Augmenting psychosocial interventions with pharmacological treatments may be a viable strategy for reducing the impact of cognitive deficits in patients with schizophrenia. Objective: We propose a strategy to develop pharmacological treatments that can enhance the reward-related learning processes underlying successful skill-learning in psychosocial interventions. Specifically, we review clinical and preclinical evidence and paradigms that can be utilized to develop these pharmacological augmentation strategies. Prototypes for this approach include dopamine D1 receptor and α7 nicotinic acetylcholine receptor agonists as attractive targets to specifically enhance reward-related learning during CR. Conclusion: The approach outlined here could be used broadly to develop pharmacological augmentation strategies across a number of cognitive domains underlying successful psychosocial treatment. PMID:23785309

  8. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    PubMed Central

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development. PMID:20049170

  9. A Systems-Pharmacology Analysis of Herbal Medicines Used in Health Improvement Treatment: Predicting Potential New Drugs and Targets

    PubMed Central

    Liu, Jianling; Pei, Mengjie; Zheng, Chunli; Li, Yan; Wang, Yonghua; Lu, Aiping; Yang, Ling

    2013-01-01

    For thousands of years, tonic herbs have been successfully used all around the world to improve health, energy, and vitality. However, their underlying mechanisms of action in molecular/systems levels are still a mystery. In this work, two sets of tonic herbs, so called Qi-enriching herbs (QEH) and Blood-tonifying herbs (BTH) in TCM, were selected to elucidate why they can restore proper balance and harmony inside body, organ and energy system. Firstly, a pattern recognition model based on artificial neural network and discriminant analysis for assessing the molecular difference between QEH and BTH was developed. It is indicated that QEH compounds have high lipophilicity while BTH compounds possess high chemical reactivity. Secondly, a systematic investigation integrating ADME (absorption, distribution, metabolism, and excretion) prediction, target fishing and network analysis was performed and validated on these herbs to obtain the compound-target associations for reconstructing the biologically-meaningful networks. The results suggest QEH enhance physical strength, immune system and normal well-being, acting as adjuvant therapy for chronic disorders while BTH stimulate hematopoiesis function in body. As an emerging approach, the systems pharmacology model might facilitate to understand the mechanisms of action of the tonic herbs, which brings about new development for complementary and alternative medicine. PMID:24369484

  10. Conotoxins: Structure, Therapeutic Potential and Pharmacological Applications.

    PubMed

    Mir, Rafia; Karim, Sajjad; Kamal, Mohammad Amjad; Wilson, Cornelia M; Mirza, Zeenat

    2016-01-01

    Cone snails, also known as marine gastropods, from Conus genus produce in their venom a diverse range of small pharmacologically active structured peptides called conotoxins. The cone snail venoms are widely unexplored arsenal of toxins with therapeutic and pharmacological potential, making them a treasure trove of ligands and peptidic drug leads. Conotoxins are small disulfide bonded peptides, which act as remarkable selective inhibitors and modulators of ion channels (calcium, sodium, potassium), nicotinic acetylcholine receptors, noradrenaline transporters, N-methyl-D-aspartate receptors, and neurotensin receptors. They are highly potent and specific against several neuronal targets making them valuable as research tools, drug leads and even therapeutics. In this review, we discuss their gene superfamily classification, nomenclature, post-translational modification, structural framework, pharmacology and medical applications of the active conopeptides. We aim to give an overview of their structure and therapeutic potential. Understanding these aspects of conopeptides will help in designing more specific peptidic analogues.

  11. Pharmacological potential of cerium oxidenanoparticles

    NASA Astrophysics Data System (ADS)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  12. Emerging preclinical pharmacological targets for Parkinson's disease

    PubMed Central

    More, Sandeep Vasant; Choi, Dong-Kug

    2016-01-01

    Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms. PMID:26988916

  13. Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients.

    PubMed

    Mao, Yu; Hao, Jian; Jin, Zi-Qi; Niu, Yang-Yang; Yang, Xue; Liu, Dan; Cao, Rui; Wu, Xiong-Zhi

    2017-02-15

    Chinese Herbal Medicine (CHM) plays a significant role in breast cancer treatment. We conduct the study to ascertain the relative molecular targets of effective Chinese herbs in treating stage IV breast cancer.Survival benefit of CHM was verified by Kaplan-Meier method and Cox regression analysis. A bivariate correlation analysis was used to find and establish the effect of herbs in complex CHM formulas. A network pharmacological approach was adopted to explore the potential mechanisms of CHM.Patients in the CHM group had a median survival time of 55 months, which was longer than the 23 months of patients in the non-CHM group. Cox regression analysis indicated that CHM was an independent protective factor. Correlation analysis showed that 10 herbs were strongly correlated with favorable survival outcomes (P<0.01). Bioinformatics analyses suggested that the 10 herbs might achieve anti-breast cancer activity primarily through inhibiting HSP90, ERα and TOP-II related pathways.

  14. Selecting Potential Pharmacological Interventions in Sarcopenia.

    PubMed

    Kilsby, Amanda J; Sayer, Avan A; Witham, Miles D

    2017-04-01

    Sarcopenia of age is prevalent and costly and proven pharmacological interventions are currently lacking. The pathophysiology of sarcopenia is incompletely understood but appears to involve multiple pathways, including inflammation, hormonal dysregulation, impaired regeneration, mitochondrial dysfunction and denervation. There are several ways in which we might select potential pharmacological interventions for testing in clinical trials. These include a 'bottom-up' approach using basic science to elucidate the molecular processes involved and identify potential targets from this knowledge-a strategy that has led to the development of myostatin inhibitors. A 'top-down' approach might use observational data to examine the association between physical function and use of certain medications, such as the association between angiotensin-converting enzyme inhibitors with slower decline in physical function. Once a pharmacological intervention has been proposed, efficacy must be demonstrated in this complex multi-morbid population. Both muscle mass and muscle function need to be measured as outcomes, but these outcomes require large sample sizes and sufficient follow-up to detect change. Biomarkers that can predict the response of sarcopenia to intervention after a short time would greatly assist our ability to select candidate interventions in short proof-of-concept trials. Further development of trial methods is required to accelerate progress in this important area of medicine for older people.

  15. Novel pharmacological targets from Indian cone snails.

    PubMed

    Ramasamy, M Santhana; Manikandan, S

    2011-02-01

    The oceans are a source of combinatorial library of unique natural products, 'not found in the terrestrial environment'. Marine invertebrates such as sponges, molluscs, bryozoans, tunicates (Urochordata) and their associated microorganisms are the major representatives of promising bioactive compounds. Among these, the predatory molluscan cone snails have evolved with highly structured small and complex array of peptides (more than 50,000) linked to their prey capture and defence. These peptides have become a valuable source of neuro pharmacological targets as many of them selectively modulate ion channels and transporters. A group of scientists from United States, Europe, Australia, Israel and China have been characterized drugs for neuropathic pain and pharmacological targets from the peptides of a few cone snail species. Several are now in Clinical and preclinical development. Less than 1% of the cono peptides are pharmacologically characterized. India has a diversity of 20-30% of total cone snail species distributed worldwide. A group of Indian Scientists have made promising drug discovery programs from Conus peptides. This review will focus on the Conus peptides from Indian cone snails species, their neuro pharmacological targets and future directions.

  16. The Pharmacological Potential of Mushrooms

    PubMed Central

    2005-01-01

    This review describes pharmacologically active compounds from mushrooms. Compounds and complex substances with antimicrobial, antiviral, antitumor, antiallergic, immunomodulating, anti-inflammatory, antiatherogenic, hypoglycemic, hepatoprotective and central activities are covered, focusing on the review of recent literature. The production of mushrooms or mushroom compounds is discussed briefly. PMID:16136207

  17. The role of prostanoids in the urinary bladder function and a potential use of prostanoid-targeting pharmacological agents in bladder overactivity treatment.

    PubMed

    Dobrek, Łukasz; Thor, Piotr J

    2015-01-01

    Overactive bladder (OAB) is a syndrome involving urinary urgency with accompanying increased daytime urinary frequency and nocturia, with or without urgency urinary incontinence, in the absence of an urinary tract infection or other obvious pathology. The detailed OAB pathophysiology remains unclear. There is evidence that OAB pathogenesis also includes abnormal bladder paracrine activity, associated with release of local prostanoids. Those agents contribute to disturbances of peripheral neuronal bladder control resulting in detrusor instability. Thus, pharmacological agents abolishing prostanoid-induced bladder overactivity seem to be a potential, future OAB therapeutical option. This paper shortly describes the rationale for nonsteroidal antiinflammatory drugs (NSAIDs) and EP-1 receptor antagonists administration in future OAB pharmacotherapy.

  18. New drugs targeting the cardiac ultra-rapid delayed-rectifier current (I Kur): rationale, pharmacology and evidence for potential therapeutic value.

    PubMed

    Ford, John W; Milnes, James T

    2008-08-01

    There is a clear unmet medical need for new pharmacologic therapies for the treatment of atrial fibrillation (AF) with improved efficacy and safety. This article reviews the development of new and novel Kv1.5/ultra-rapid delayed-rectifier current (I Kur) inhibitors and presents evidence that Kv1.5 modulation provides an atrial-selective mechanism for treating AF. Academia and industry have invested heavily in Kv1.5 (>500 scientific publications and >50 patents published since 1993); however, to realize the full value of this therapeutic drug target, clinical efficacy and safety data are required for a selective Kv1.5 modulator. The reward for demonstrating clinical efficacy and safety in a pivotal Phase 3 trial, on regulatory approval, is "first in class" status.

  19. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson's disease.

    PubMed

    Jörg, Manuela; May, Lauren T; Mak, Frankie S; Lee, Kiew Ching K; Miller, Neil D; Scammells, Peter J; Capuano, Ben

    2015-01-22

    A relatively new strategy in drug discovery is the development of dual acting ligands. These molecules are potentially able to interact at two orthosteric binding sites of a heterodimer simultaneously, possibly resulting in enhanced subtype selectivity, higher affinity, enhanced or modified physiological response, and reduced reliance on multiple drug administration regimens. In this study, we have successfully synthesized a series of classical heterobivalent ligands as well as a series of more integrated and "drug-like" dual acting molecules, incorporating ropinirole as a dopamine D2 receptor agonist and ZM 241385 as an adenosine A2A receptor antagonist. The best compounds of our series maintained the potency of the original pharmacophores at both receptors (adenosine A2A and dopamine D2). In addition, the integrated dual acting ligands also showed promising results in preliminary blood-brain barrier permeability tests, whereas the classical heterobivalent ligands are potentially more suited as pharmacological tools.

  20. Pharmacological Targeting of the Hsp70 Chaperone

    PubMed Central

    Patury, Srikanth; Miyata, Yoshinari; Gestwicki, Jason E.

    2009-01-01

    The molecular chaperone, heat shock protein 70 (Hsp70), acts at multiple steps in a protein’s life cycle, including during the processes of folding, trafficking, remodeling and degradation. To accomplish these various tasks, the activity of Hsp70 is shaped by a host of co-chaperones, which bind to the core chaperone and influence its functions. Genetic studies have strongly linked Hsp70 and its co-chaperones to numerous diseases, including cancer, neurodegeneration and microbial pathogenesis, yet the potential of this chaperone as a therapeutic target remains largely underexplored. Here, we review the current state of Hsp70 as a drug target, with a special emphasis on the important challenges and opportunities imposed by its co-chaperones, protein-protein interactions and allostery. PMID:19860737

  1. Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms.

    PubMed

    Heilig, Markus; Egli, Mark

    2006-09-01

    Alcoholism is a major public health problem and resembles, in many ways, other chronic relapsing medical conditions. At least 2 separate dimensions of its symptomatology offer targetable pathophysiological mechanisms. Systems that mediate positive reinforcement by alcohol are likely important targets in early stages of the disease, particularly in genetically susceptible individuals. In contrast, long term neuroadaptive changes caused by chronic alcohol use primarily appear to affect systems mediating negative affective states, and gain importance following a prolonged history of dependence. Feasibility of pharmacological treatment in alcoholism has been demonstrated by a first wave of drugs which consists of 3 currently approved medications, the aldehyde dehydrogenase blocker disulfiram, the opioid antagonist naltrexone (NTX) and the functional glutamate antagonist acamprosate (ACM). The treatment toolkit is likely to be expanded in the near future. This will improve overall efficacy and allow individualized treatment, ultimately taking in account the patient's genetic makeup. In a second wave, early human efficacy data are available for the 5HT3 antagonist ondansetron, the GABA-B agonist baclofen and the anticonvulsant topiramate. The third wave is comprised of compounds predicted to be effective based on a battery of animal models. Using such models, a short list of additional targets has accumulated sufficient preclinical validation to merit clinical development. These include the cannabinoid CB1 receptor, receptors modulating glutamatergic transmission (mGluR2, 3 and 5), and receptors for stress-related neuropeptides corticotropin releasing factor (CRF), neuropeptide Y (NPY) and nociceptin. Once novel treatments are developed, the field faces a major challenge to assure their delivery to patients.

  2. Ayahuasca: Pharmacology, neuroscience and therapeutic potential.

    PubMed

    Domínguez-Clavé, Elisabet; Soler, Joaquim; Elices, Matilde; Pascual, Juan C; Álvarez, Enrique; de la Fuente Revenga, Mario; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-09-01

    Ayahuasca is the Quechua name for a tea obtained from the vine Banisteriopsis caapi, and used for ritual purposes by the indigenous populations of the Amazon. The use of a variation of the tea that combines B. caapi with the leaves of the shrub Psychotria viridis has experienced unprecedented expansion worldwide for its psychotropic properties. This preparation contains the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine (DMT) from P. viridis, plus β-carboline alkaloids with monoamine-oxidase-inhibiting properties from B. caapi. Acute administration induces a transient modified state of consciousness characterized by introspection, visions, enhanced emotions and recollection of personal memories. A growing body of evidence suggests that ayahuasca may be useful to treat substance use disorders, anxiety and depression. Here we review the pharmacology and neuroscience of ayahuasca, and the potential psychological mechanisms underlying its therapeutic potential. We discuss recent findings indicating that ayahuasca intake increases certain mindfulness facets related to acceptance and to the ability to take a detached view of one's own thoughts and emotions. Based on the available evidence, we conclude that ayahuasca shows promise as a therapeutic tool by enhancing self-acceptance and allowing safe exposure to emotional events. We postulate that ayahuasca could be of use in the treatment of impulse-related, personality and substance use disorders and also in the handling of trauma. More research is needed to assess the full potential of ayahuasca in the treatment of these disorders.

  3. Pharmacological potentials of Syzygium cumini: a review.

    PubMed

    Srivastava, Shalini; Chandra, Deepak

    2013-07-01

    In the last few years there has been an exponential growth in the field of herbal medicine, and these drugs are gaining popularity in both developing and developed countries because of their natural origin and lesser side effects. Syzygium cumini (syn. Eugenia jambolana, Syzygium jambolana, Eugenia cumini, Syzygium jambos), commonly known as jamun in India, is an evergreen tree distributed throughout the Indian subcontinent, Southeast Asia and East Africa. It is mainly utilised as a fruit producer and for its timber. Medicinally, the fruit is reported to have antidiabetic, antihyperlipidaemic, antioxidant, antiulcer, hepatoprotective, antiallergic, antiarthritic, antimicrobial, anti-inflammatory, antifertility, antipyretic, antiplaque, radioprotective, neuropsychopharmacological, nephroprotective and antidiarrhoeal activities. Among these beneficial physiological effects, the antidiabetic property of S. cumini has the most promising nutraceutical value. The health-beneficial effects of S. cumini are mainly attributed to various phytoconstituents such as tannins, alkaloids, steroids, flavonoids, terpenoids, fatty acids, phenols, minerals, carbohydrates and vitamins present in the fruit. This review paper presents an overview of experimental evidence for the pharmacological potential of S. cumini.

  4. Gaq proteins: molecular pharmacology and therapeutic potential.

    PubMed

    Kamato, Danielle; Mitra, Partha; Davis, Felicity; Osman, Narin; Chaplin, Rebecca; Cabot, Peter J; Afroz, Rizwana; Thomas, Walter; Zheng, Wenhua; Kaur, Harveen; Brimble, Margaret; Little, Peter J

    2017-04-01

    Seven transmembrane G protein-coupled receptors (GPCRs) have gained much interest in recent years as it is the largest class among cell surface receptors. G proteins lie in the heart of GPCRs signalling and therefore can be therapeutically targeted to overcome complexities in GPCR responses and signalling. G proteins are classified into four families (Gi, Gs, G12/13 and Gq); Gq is further subdivided into four classes. Among them Gαq and Gαq/11 isoforms are most crucial and ubiquitously expressed; these isoforms are almost 88% similar at their amino acid sequence but may exhibit functional divergences. However, uncertainties often arise about Gαq and Gαq/11 inhibitors, these G proteins might also have suitability to the invention of novel-specific inhibitors for each isoforms. YM-254890 and UBO-QIC are discovered as potent inhibitors of Gαq functions and also investigated in thrombin protease-activated receptor (PAR)-1 inhibitors and platelet aggregation inhibition. The most likely G protein involved in PAR-1 stimulates responses is one of the Gαq family isoforms. In this review, we highlight the molecular structures and pharmacological responses of Gαq family which may reflect the biochemical and molecular role of Gαq and Gαq/11. The advanced understanding of Gαq and Gαq/11 role in GPCR signalling may shed light on our understanding on cell biology, cellular physiology and pathophysiology and also lead to the development of novel therapeutic agents for a number of diseases.

  5. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products.

  6. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells—a Potential Target for Pharmacological Intervention in Cardiovascular Diseases

    PubMed Central

    Vukićević, Tanja; Schulz, Maike; Faust, Dörte; Klussmann, Enno

    2016-01-01

    Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments. PMID:26903868

  7. The potential of translational bioinformatics approaches for pharmacology research.

    PubMed

    Li, Lang

    2015-10-01

    The field of bioinformatics has allowed the interpretation of massive amounts of biological data, ushering in the era of 'omics' to biomedical research. Its potential impact on pharmacology research is enormous and it has shown some emerging successes. A full realization of this potential, however, requires standardized data annotation for large health record databases and molecular data resources. Improved standardization will further stimulate the development of system pharmacology models, using translational bioinformatics methods. This new translational bioinformatics paradigm is highly complementary to current pharmacological research fields, such as personalized medicine, pharmacoepidemiology and drug discovery. In this review, I illustrate the application of transformational bioinformatics to research in numerous pharmacology subdisciplines.

  8. The role of targeted chemical proteomics in pharmacology

    PubMed Central

    Sutton, Chris W

    2012-01-01

    Traditionally, proteomics is the high-throughput characterization of the global complement of proteins in a biological system using cutting-edge technologies (robotics and mass spectrometry) and bioinformatics tools (Internet-based search engines and databases). As the field of proteomics has matured, a diverse range of strategies have evolved to answer specific problems. Chemical proteomics is one such direction that provides the means to enrich and detect less abundant proteins (the ‘hidden’ proteome) from complex mixtures of wide dynamic range (the ‘deep’ proteome). In pharmacology, chemical proteomics has been utilized to determine the specificity of drugs and their analogues, for anticipated known targets, only to discover other proteins that bind and could account for side effects observed in preclinical and clinical trials. As a consequence, chemical proteomics provides a valuable accessory in refinement of second- and third-generation drug design for treatment of many diseases. However, determining definitive affinity capture of proteins by a drug immobilized on soft gel chromatography matrices has highlighted some of the challenges that remain to be addressed. Examples of the different strategies that have emerged using well-established drugs against pharmaceutically important enzymes, such as protein kinases, metalloproteases, PDEs, cytochrome P450s, etc., indicate the potential opportunity to employ chemical proteomics as an early-stage screening approach in the identification of new targets. PMID:22074351

  9. New drugs in psychiatry: focus on new pharmacological targets

    PubMed Central

    Caraci, Filippo; Leggio, Gian Marco; Salomone, Salvatore; Drago, Filippo

    2017-01-01

    The approval of psychotropic drugs with novel mechanisms of action has been rare in recent years. To address this issue, further analysis of the pathophysiology of neuropsychiatric disorders is essential for identifying new pharmacological targets for psychotropic medications. In this report, we detail drug candidates being examined as treatments for psychiatric disorders. Particular emphasis is placed on agents with novel mechanisms of action that are being tested as therapies for depression, schizophrenia, or Alzheimer’s disease. All of the compounds considered were recently approved for human use or are in advanced clinical trials. Drugs included here are new antipsychotic medications endowed with a preferential affinity at dopamine D3 receptor (cariprazine) or at glutamatergic or cannabinoid receptors, as well as vortioxetine, a drug approved for managing the cognitive deficits associated with major depression. New mechanistic approaches for the treatment of depression include intravenous ketamine or esketamine or intranasal esketamine. As for Alzheimer’s disease, the possible value of passive immunotherapy with agents such as aducanumab is considered to be a potential disease-modifying approach that could slow or halt the progressive decline associated with this devastating disorder.

  10. Pharmacological potentials of Premna integrifolia L.

    PubMed Central

    Mali, Prashant Y.

    2016-01-01

    Premna integrifolia Linn. (Verbenaceae) is an important constituent of the formulation of ten roots of herbs known as Daśamūla and is widely used for treating various ailments in the Indian system of medicine. Aim of this review is to provide comprehensive information on the pharmacological activities of various parts of P. integrifolia. All the relevant universally accepted electronic databases were searched with respect to the terms “Agnimanthā”, “Headache tree”, “Premna integrifolia”, “Premna obtusifolia”, “Premna serratifolia” including Indian classical texts, pharmacopoeias, Ayurvedic books, journals, etc., for information without specific timeline. Complete information of the plant has been collected manually since the year 1964 and has been arranged chronologically. The collected data reflects that many ethno-medicinal claims have been confirmed through the modern in-vitro and in-vivo pharmacological studies using different extracts and their isolates of P. integrifolia. The isolation of active constituents, their biological actions, clinical safety and validation of traditional uses of P. integrifolia could provide leads for further scientific research. The information collected here will be useful to set-up research protocols for modern drugs and Ayurvedic formulation development. PMID:27143797

  11. The dynamic TRPA1 channel: a suitable pharmacological pain target?

    PubMed

    Garrison, Sheldon R; Stucky, Cheryl L

    2011-10-01

    Acute pain detection is vital to navigate and survive in one's environment. Protection and preservation occur because primary afferent nociceptors transduce adverse environmental stimuli into electrical impulses that are transmitted to and interpreted within high levels of the central nervous system. Therefore, it is critical that the molecular mechanisms that convert noxious information into neural signals be identified, and their specific functional roles delineated in both acute and chronic pain settings. The Transient Receptor Potential (TRP) channel family member TRP ankyrin 1 (TRPA1) is an excellent candidate molecule to explore and intricately understand how single channel properties can tailor behavioral nociceptive responses. TRPA1 appears to dynamically respond to an amazingly wide range of diverse stimuli that include apparently unrelated modalities such as mechanical, chemical and thermal stimuli that activate somatosensory neurons. How such dissimilar stimuli activate TRPA1, yet result in modality-specific signals to the CNS is unclear. Furthermore, TRPA1 is also involved in persistent to chronic painful states such as inflammation, neuropathic pain, diabetes, fibromyalgia, bronchitis and emphysema. Yet how TRPA1's role changes from an acute sensor of physical stimuli to its contribution to these diseases that are concomitant with implacable, chronic pain is unknown. TRPA1's involvement in the nociceptive machinery that relays the adverse stimuli during painful disease states is of considerable interest for drug delivery and design by many pharmaceutical entities. In this review, we will assess the current knowledge base of TRPA1 in acute nociception and persistent inflammatory pain states, and explore its potential as a therapeutic pharmacological target in chronic pervasive conditions such neuropathic pain, persistent inflammation and diabetes.

  12. The Dynamic TRPA1 Channel: A Suitable Pharmacological Pain Target?

    PubMed Central

    Garrison, Sheldon R.; Stucky, Cheryl L.

    2014-01-01

    Acute pain detection is vital to navigate and survive in one’s environment. Protection and preservation occur because primary afferent nociceptors transduce adverse environmental stimuli into electrical impulses that are transmitted to and interpreted within high levels of the central nervous system. Therefore, it is critical that the molecular mechanisms that convert noxious information into neural signals be identified and their specific functional roles delineated in both acute and chronic pain settings. The Transient Receptor Potential (TRP) channel family member TRP ankyrin 1 (TRPA1) is an excellent candidate molecule to explore and intricately understand how single channel properties can tailor behavioral nociceptive responses. TRPA1 appears to dynamically respond to an amazingly wide range of diverse stimuli that include apparently unrelated modalities such as mechanical, chemical and thermal stimuli that activate somatosensory neurons. How such dissimilar stimuli activate TRPA1, yet result in modality-specific signals to the CNS is unclear. Furthermore, TRPA1 is also involved in persistent to chronic painful states such as inflammation, neuropathic pain, diabetes, fibromyalgia, bronchitis and emphysema. Yet how TRPA1’s role changes from an acute sensor of physical stimuli to its contribution to these diseases that are concomitant with implacable, chronic pain is unknown. TRPA1’s involvement in the nociceptive machinery that relays the adverse stimuli during painful disease states is of considerable interest for drug delivery and design by many pharmaceutical entities. In this review, we will assess the current knowledge base of TRPA1 in acute nociception and persistent inflammatory pain states, and explore its potential as a therapeutic pharmacological target in chronic pervasive conditions such neuropathic pain, persistent inflammation and diabetes. PMID:21466445

  13. Identification of a Pharmacological Target for Genioglossus Reactivation throughout Sleep

    PubMed Central

    Grace, Kevin P.; Hughes, Stuart W.; Horner, Richard L.

    2014-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is a significant public health problem caused by repeated episodes of upper airway closure that occur only during sleep. Attempts to treat OSA pharmacologically have been unsuccessful because there has not been identification of a target operating at cranial motor nuclei, blockade of which can reactivate pharyngeal muscle activity throughout sleep. Increasing potassium conductance is a common mechanism by which state-dependent neuromodulators reduce motoneuron excitability. Therefore, we aimed to determine if potassium channel blockade is an effective strategy to reactivate the pharyngeal musculature throughout sleep. Design, Participants, and Interventions: In rats chronically instrumented for recording sleep-wake states and respiratory motor activities, we locally microperfused pharmacological agents into the hypoglossal motor pool to modulate potassium channels of three major classes: inwardly rectifying, two-pore domain, and voltage-gated. Measurements and Results: Microperfusion of the inwardly rectifying potassium channel blocker, barium, as well as the voltage-gated potassium channel blockers, tetraethylammonium and 4-aminopyridine, increased tonic and respiratory-related genioglossus activities throughout nonrapid eye movement (non-REM) and rapid eye movement (REM) sleep to 133-300% of levels present during baseline wakefulness. In contrast, microperfusion of methanandamide (TWIK-related acid-sensitive potassium [TASK] channel blocker/cannabinoid receptor agonist) activated genioglossus in wakefulness but not in sleep. Conclusions: These findings establish proof-of-principle that targeted blockade of certain potassium channels at the hypoglossal motor pool is an effective strategy for reversing upper airway hypotonia and causing sustained reactivation of genioglossus throughout nonrapid eye movement and rapid eye movement sleep. These findings identify an important new direction for translational approaches to

  14. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer.

    PubMed

    Chuang, Hsiao-Ching; Huang, Po-Hsien; Kulp, Samuel K; Chen, Ching-Shih

    2017-03-01

    The clear importance of mutated KRAS as a therapeutic target has driven the investigation of multiple approaches to inhibit oncogenic KRAS signaling at different molecular levels. However, no KRAS-targeted therapy has reached the clinic to date, which underlies the intrinsic difficulty in developing effective, direct inhibitors of KRAS. Thus, this article provides an overview of the history and recent progress in the development of pharmacological strategies to target oncogenic KRAS with small molecule agents. Mechanistically, these KRAS-targeted agents can be classified into the following four categories. (1) Small-molecule RAS-binding ligands that prevent RAS activation by binding within or outside the nucleotide-binding motif. (2) Inhibitors of KRAS membrane anchorage. (3) Inhibitors that bind to RAS-binding domains of RAS-effector proteins. (4) Inhibitors of KRAS expression. The advantage and limitation of each type of these anti-KRAS agents are discussed.

  15. Zoological pharmacology: current status, issues, and potential.

    PubMed

    Hunter, Robert P; Isaza, Ramiro

    2002-10-04

    Lack of approved pharmaceutical agents and/or pharmacokinetic data in the literature for exotic, wildlife, and zoo species is a major issue for veterinarians. These practitioners must take approved agents (veterinary or human) and extrapolate their use to non-approved species with little or no scientific basis to support this decision. There is little information concerning pharmacokinetic parameters for drugs in non-domestic species. Zoo veterinarians often have to formulate the medication(s) into a meal, hoping that the animal will ingest it. Due to lack of patient compliance, the veterinarian may have to resort to other means of drug administration. Additionally, due to the value of these animals, the traditional method of 'trial and error' for treatment selection and resulting compliance is often inappropriate, and lends itself to a mentality where no zoo veterinarian wants to be the first to administer an agent/formulation in an untested species. This review intends to present the current state of zoological pharmacology and the direction it may be heading.

  16. Advances and Future Challenges in Adenoviral Vector Pharmacology and Targeting

    PubMed Central

    Khare, Reeti; Chen, Christopher Y; Weaver, Eric A; Barry, Michael A

    2011-01-01

    Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral “sinks” must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect. PMID:21453281

  17. Critical parameters in targeted drug development: the pharmacological audit trail.

    PubMed

    Banerji, Udai; Workman, Paul

    2016-08-01

    The Pharmacological Audit Trail (PhAT) comprises a set of critical questions that need to be asked during discovery and development of an anticancer drug. Key aspects include: (1) defining a patient population; (2) establishing pharmacokinetic characteristics; (3) providing evidence of target engagement, pathway modulation, and biological effect with proof of concept pharmacodynamic biomarkers; (4) determining intermediate biomarkers of response; (5) assessing tumor response; and (6) determining how to overcome resistance by combination or sequential therapy and new target/drug discovery. The questions asked in the PhAT should be viewed as a continuum and not used in isolation. Different drug development programmes derive different types of benefit from these questions. The PhAT is critical in making go-no-go decisions in the development of currently studied drugs and will continue to be relevant to discovery and development of future generations of anticancer agents.

  18. [Methylphenidate: pharmacology, indication and potential of abuse].

    PubMed

    Tagaya, Hirokuni

    2010-08-01

    Methylphenidate enhances dopaminergic neurotransmission in the central nervous system by same manner with cocaine and amphetamine that bind to the dopamine transporter and inhibit dopamine uptake. Methylphenidate improves social functions as well as clinical symptoms of patients suffered of narcolepsy and attention deficit hyperactivity disorder (ADHD), though it has the potential of abuse. It is reported that approximately 4% of older teens and emerging adults in the US annually misusing methylphenidate. Non-medical/illegal use of methylphenidate causes many consequences including addiction, negative reactions and medical complications. Growing number of illegal trades of methylphenidate and medical complications caused by misuse of methylphenidate urged Japanese government to introduce regulations limiting access to prescribed methylphenidate in 2008.

  19. Crataegus pinnatifida: chemical constituents, pharmacology, and potential applications.

    PubMed

    Wu, Jiaqi; Peng, Wei; Qin, Rongxin; Zhou, Hong

    2014-01-30

    Crataegus pinnatifida (Hawthorn) is widely distributed in China and has a long history of use as a traditional medicine. The fruit of C. pinnatifida has been used for the treatment of cardiodynia, hernia, dyspepsia, postpartum blood stasis, and hemafecia and thus increasing interest in this plant has emerged in recent years. Between 1966 and 2013, numerous articles have been published on the chemical constituents, pharmacology or pharmacologic effects and toxicology of C. pinnatifida. To review the pharmacologic advances and to discuss the potential perspective for future investigation, we have summarized the main literature findings of these publications. So far, over 150 compounds including flavonoids, triterpenoids, steroids, monoterpenoids, sesquiterpenoids, lignans, hydroxycinnamic acids, organic acids and nitrogen-containing compounds have been isolated and identified from C. pinnatifida. It has been found that these constituents and extracts of C. pinnatifida have broad pharmacological effects with low toxicity on, for example, the cardiovascular, digestive, and endocrine systems, and pathogenic microorganisms, supporting the view that C. pinnatifida has favorable therapeutic effects. Thus, although C. pinnatifida has already been widely used as pharmacological therapy, due to its various active compounds, further research is warranted to develop new drugs.

  20. Pharmacological Targeting of the Hepcidin/Ferroportin Axis

    PubMed Central

    Sebastiani, Giada; Wilkinson, Nicole; Pantopoulos, Kostas

    2016-01-01

    The iron regulatory hormone hepcidin limits iron fluxes to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Hepcidin insufficiency causes hyperabsorption of dietary iron, hyperferremia and tissue iron overload, which are hallmarks of hereditary hemochromatosis. Similar responses are also observed in iron-loading anemias due to ineffective erythropoiesis (such as thalassemias, dyserythropoietic anemias and myelodysplastic syndromes) and in chronic liver diseases. On the other hand, excessive hepcidin expression inhibits dietary iron absorption and leads to hypoferremia and iron retention within tissue macrophages. This reduces iron availability for erythroblasts and contributes to the development of anemias with iron-restricted erythropoiesis (such as anemia of chronic disease and iron-refractory iron-deficiency anemia). Pharmacological targeting of the hepcidin/ferroportin axis may offer considerable therapeutic benefits by correcting iron traffic. This review summarizes the principles underlying the development of hepcidin-based therapies for the treatment of iron-related disorders, and discusses the emerging strategies for manipulating hepcidin pathways. PMID:27445804

  1. The pharmacology and therapeutic potential of (−)-huperzine A

    PubMed Central

    Tun, Maung Kyaw Moe; Herzon, Seth B

    2012-01-01

    (−)-Huperzine A (1) is an alkaloid isolated from a Chinese club moss. Due to its potent neuroprotective activities, it has been investigated as a candidate for the treatment of neurodegenerative diseases, including Alzheimer’s disease. In this review, we will discuss the pharmacology and therapeutic potential of (−)-huperzine A (1). Synthetic studies of (−)-huperzine A (1) aimed at enabling its development as a pharmaceutical will be described. PMID:27186124

  2. Drug Target Mining and Analysis of the Chinese Tree Shrew for Pharmacological Testing

    PubMed Central

    Liu, Jie; Lee, Wen-hui; Zhang, Yun

    2014-01-01

    The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research. PMID:25105297

  3. The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands

    PubMed Central

    Pawson, Adam J.; Sharman, Joanna L.; Benson, Helen E.; Faccenda, Elena; Alexander, Stephen P.H.; Buneman, O. Peter; Davenport, Anthony P.; McGrath, John C.; Peters, John A.; Southan, Christopher; Spedding, Michael; Yu, Wenyuan; Harmar, Anthony J.

    2014-01-01

    The International Union of Basic and Clinical Pharmacology/British Pharmacological Society (IUPHAR/BPS) Guide to PHARMACOLOGY (http://www.guidetopharmacology.org) is a new open access resource providing pharmacological, chemical, genetic, functional and pathophysiological data on the targets of approved and experimental drugs. Created under the auspices of the IUPHAR and the BPS, the portal provides concise, peer-reviewed overviews of the key properties of a wide range of established and potential drug targets, with in-depth information for a subset of important targets. The resource is the result of curation and integration of data from the IUPHAR Database (IUPHAR-DB) and the published BPS ‘Guide to Receptors and Channels’ (GRAC) compendium. The data are derived from a global network of expert contributors, and the information is extensively linked to relevant databases, including ChEMBL, DrugBank, Ensembl, PubChem, UniProt and PubMed. Each of the ∼6000 small molecule and peptide ligands is annotated with manually curated 2D chemical structures or amino acid sequences, nomenclature and database links. Future expansion of the resource will complete the coverage of all the targets of currently approved drugs and future candidate targets, alongside educational resources to guide scientists and students in pharmacological principles and techniques. PMID:24234439

  4. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  5. Pharmacologic management of Cushing syndrome : new targets for therapy.

    PubMed

    Sonino, Nicoletta; Boscaro, Marco; Fallo, Francesco

    2005-01-01

    The successful treatment of Cushing syndrome depends on specific therapy directed against the etiology of hypercortisolism. In addition to surgical procedures, various drugs have been employed in the management of this difficult disease. Compounds with neuromodulatory properties have been effective in only a limited number of cases of hypothalamic-pituitary-dependent Cushing disease, the most common form of Cushing syndrome. These agents include serotonin antagonists (cyproheptadine, ketanserin, ritanserin), dopamine agonists (bromocriptine, cabergoline), GABA agonists (valproic acid [sodium valproate]), and somatostatin analogs (octreotide). Interesting new avenues at the pituitary level involve the potential use of thiazolidinedione compounds, such as rosiglitazone, and of retinoic acid, which are ligands of different nuclear hormone receptors involved in hypothalamic-pituitary regulation. The most exciting news, however, in the pharmacologic approach to Cushing syndrome refers to the adrenal corticotropin (adrenocorticotropic hormone; ACTH)-independent forms, in which aberrant adrenal receptors, through the binding of their respective ligands, could lead to chronic cortisol overproduction. They include receptors for gastric inhibitory peptide (GIP), beta-adrenergic agonists, luteinizing hormone (LH)/human chorionic gonadotropin, serotonin (5-HT(4) receptor), vasopressin (V(1) receptor), and angiotensin II (AT(1) receptor). In GIP-dependent Cushing syndrome, the most frequent subtype of ACTH-independent macronodular adrenal hyperplasia associated with the presence of aberrant adrenocortical hormone receptors described so far, octreotide administration before each meal showed clinical efficacy only in the first few months, probably because of somatostatin receptor downregulation in GIP-secreting cells. Long-term medical treatments with propranolol and the gonadotropin-releasing hormone analog leuprorelin (leuprolide acetate) were effective in patients with

  6. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes.

    PubMed

    Wang, Hansen; Pati, Sandipan; Pozzo-Miller, Lucas; Doering, Laurie C

    2015-01-01

    Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.

  7. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes

    PubMed Central

    Wang, Hansen; Pati, Sandipan; Pozzo-Miller, Lucas; Doering, Laurie C.

    2015-01-01

    Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases. PMID:25767435

  8. Targeting EMT in cancer: opportunities for pharmacological intervention.

    PubMed

    Davis, Felicity M; Stewart, Teneale A; Thompson, Erik W; Monteith, Gregory R

    2014-09-01

    The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach.

  9. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands

    PubMed Central

    Southan, Christopher; Sharman, Joanna L.; Benson, Helen E.; Faccenda, Elena; Pawson, Adam J.; Alexander, Stephen P. H.; Buneman, O. Peter; Davenport, Anthony P.; McGrath, John C.; Peters, John A.; Spedding, Michael; Catterall, William A.; Fabbro, Doriano; Davies, Jamie A.

    2016-01-01

    The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options. PMID:26464438

  10. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands.

    PubMed

    Southan, Christopher; Sharman, Joanna L; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Alexander, Stephen P H; Buneman, O Peter; Davenport, Anthony P; McGrath, John C; Peters, John A; Spedding, Michael; Catterall, William A; Fabbro, Doriano; Davies, Jamie A

    2016-01-04

    The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options.

  11. Chemogenomics knowledgebase and systems pharmacology for hallucinogen target identification-Salvinorin A as a case study.

    PubMed

    Xu, Xiaomeng; Ma, Shifan; Feng, Zhiwei; Hu, Guanxing; Wang, Lirong; Xie, Xiang-Qun

    2016-11-01

    Drug abuse is a serious problem worldwide. Recently, hallucinogens have been reported as a potential preventative and auxiliary therapy for substance abuse. However, the use of hallucinogens as a drug abuse treatment has potential risks, as the fundamental mechanisms of hallucinogens are not clear. So far, no scientific database is available for the mechanism research of hallucinogens. We constructed a hallucinogen-specific chemogenomics database by collecting chemicals, protein targets and pathways closely related to hallucinogens. This information, together with our established computational chemogenomics tools, such as TargetHunter and HTDocking, provided a one-step solution for the mechanism study of hallucinogens. We chose salvinorin A, a potent hallucinogen extracted from the plant Salvia divinorum, as an example to demonstrate the usability of our platform. With the help of HTDocking program, we predicted four novel targets for salvinorin A, including muscarinic acetylcholine receptor 2, cannabinoid receptor 1, cannabinoid receptor 2 and dopamine receptor 2. We looked into the interactions between salvinorin A and the predicted targets. The binding modes, pose and docking scores indicate that salvinorin A may interact with some of these predicted targets. Overall, our database enriched the information of systems pharmacological analysis, target identification and drug discovery for hallucinogens.

  12. Potential Benefits of Non-Pharmacological Therapies in Fibromyalgia

    PubMed Central

    Sueiro Blanco, F.; Estévez Schwarz, I.; Ayán, C.; Cancela, JM.; Martín, V.

    2008-01-01

    Fibromyalgia (FM) is an incurable common syndrome of non-articular origin, and with no effective treatment by now. A great deal of research has sought to assess the efficacy of different therapies, especially non-pharmacological and low-cost ones, in the reduction of the intensity of symptoms. Despite the availability of a wide range of alternative therapies nowadays, there is little scientific evidence of the potential benefits of most of them, with results being contradictories. The purpose of this paper is to review some of the less well known alternative therapies in FM treatment, to describe the more relevant clinical studies published in this matter, and to analyze the potential effects of the main alternative therapies, in order to verify their efficacy. PMID:19088863

  13. Novel Pharmacological Targets for the Rhythm Control Management of Atrial Fibrillation

    PubMed Central

    Burashnikov, Alexander; Antzelevitch, Charles

    2011-01-01

    Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that “upstream therapy”, aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF. PMID:21867730

  14. Pharmacological hypothermia: a potential for future stroke therapy?

    PubMed

    Liu, Kaiyin; Khan, Hajra; Geng, Xiaokun; Zhang, Jun; Ding, Yuchuan

    2016-06-01

    Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.

  15. What goes around comes around: novel pharmacological targets in the gut–brain axis

    PubMed Central

    González-Arancibia, Camila; Escobar-Luna, Jorge; Barrera-Bugueño, Camila; Díaz-Zepeda, Camilo; González-Toro, María P.; Olavarría-Ramírez, Loreto; Zanelli-Massai, Francesca; Gotteland, Martin; Bravo, Javier A.; Julio-Pieper, Marcela

    2016-01-01

    The gut and the brain communicate bidirectionally through anatomic and humoral pathways, establishing what is known as the gut–brain axis. Therefore, interventions affecting one system will impact on the other, giving the opportunity to investigate and develop future therapeutic strategies that target both systems. Alterations in the gut–brain axis may arise as a consequence of changes in microbiota composition (dysbiosis), modifications in intestinal barrier function, impairment of enteric nervous system, unbalanced local immune response and exaggerated responses to stress, to mention a few. In this review we analyze and discuss several novel pharmacological targets within the gut–brain axis, with potential applications to improve intestinal and mental health. PMID:27134664

  16. Potential for pharmacological manipulation of human embryonic stem cells

    PubMed Central

    Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle

    2013-01-01

    The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22515554

  17. Telomeres and telomerase: Pharmacological targets for new anticancer strategies?

    PubMed

    Pendino, F; Tarkanyi, I; Dudognon, C; Hillion, J; Lanotte, M; Aradi, J; Ségal-Bendirdjian, E

    2006-03-01

    Telomeres are located at the ends of eukaryotic chromosomes. Human telomerase, a cellular reverse transcriptase, is a ribonucleoprotein enzyme that catalyzes the synthesis and extension of telomeric DNA. It is composed of at least, a template RNA component (hTR; human Telomerase RNA) and a catalytic subunit, the telomerase reverse transcriptase (hTERT). The absence of telomerase is associated with telomere shortening and aging of somatic cells, while high telomerase activity is observed in over 85% of human cancer cells, strongly indicating its key role during tumorigenesis. Several details regarding telomere structure and telomerase regulation have already been elucidated, providing new targets for therapeutic exploitation. Further support for anti-telomerase approaches comes from recent studies indicating that telomerase is endowed of additional functions in the control of growth and survival of tumor cells that do not depend only on the ability of this enzyme to maintain telomere length. This observation suggests that inhibiting telomerase or its synthesis may have additional anti-proliferative and apoptosis inducing effect, independently of the reduction of telomere length during cell divisions. This article reviews the basic information about the biology of telomeres and telomerase and attempts to present various approaches that are currently under investigation to inhibit its expression and its activity. We summarize herein distinct anti-telomerase approaches like antisense strategies, reverse transcriptase inhibitors, and G-quadruplex interacting agents, and also review molecules targeting hTERT expression, such as retinoids and evaluate them for their therapeutic potential. "They conceive a certain theory, and everything has to fit into that theory. If one little fact will not fit it, they throw it aside. But it is always the facts that will not fit in that are significant". "Death on the Nile". Agatha Christie.

  18. Targeting melanocortin receptors as potential novel therapeutics.

    PubMed

    Getting, Stephen J

    2006-07-01

    Adrenocorticotrophic hormone (ACTH(1-39)) and the melanocortins (alpha, beta and gamma-melanocyte-stimulating hormone [MSH]) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR), leading to adenylyl cyclase activation and subsequent cAMP accumulation within the target cell. To date, 5 melanocortin receptors (MCR) have been identified and termed MC1R to MC5R, they have been shown to have a wide and varied distribution throughout the body, being found in the central nervous system (CNS), periphery and immune cells. Melanocortins have a multitude of actions including: (i) modulating disease pathologies including arthritis, asthma, obesity; (ii) affecting functions, for example erectile dysfunction, skin tanning; and (iii) organ systems, for example cardiovascular system. Recently a mechanistic approach has been identified with alpha-MSH preventing NF-kappaB activation via the preservation and expression of IkappaBalphaprotein. This leads to a reduction of pro-inflammatory mediators including cytokines and inhibition of adhesion molecule expression, with subsequent reduction in leukocyte emigration. Development of selective ligands with an appropriate pharmacokinetic profile will enable a pharmacological evaluation of the potential beneficial effects of the melanocortins. In this review I have discussed the potential mechanistic action for the melanocortins and some of the disease pathologies shown to be modulated. This review proposes targeting the MCR with the ultimate aim of controlling many of the diseases that we face today.

  19. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration.

    PubMed

    Fan, Fuqin; He, Zhixiang; Kong, Lu-Lu; Chen, Qinghua; Yuan, Quan; Zhang, Shihao; Ye, Jinjin; Liu, Hao; Sun, Xiufeng; Geng, Jing; Yuan, Lunzhi; Hong, Lixin; Xiao, Chen; Zhang, Weiji; Sun, Xihuan; Li, Yunzhan; Wang, Ping; Huang, Lihong; Wu, Xinrui; Ji, Zhiliang; Wu, Qiao; Xia, Ning-Shao; Gray, Nathanael S; Chen, Lanfen; Yun, Cai-Hong; Deng, Xianming; Zhou, Dawang

    2016-08-17

    Tissue repair and regenerative medicine address the important medical needs to replace damaged tissue with functional tissue. Most regenerative medicine strategies have focused on delivering biomaterials and cells, yet there is the untapped potential for drug-induced regeneration with good specificity and safety profiles. The Hippo pathway is a key regulator of organ size and regeneration by inhibiting cell proliferation and promoting apoptosis. Kinases MST1 and MST2 (MST1/2), the mammalian Hippo orthologs, are central components of this pathway and are, therefore, strong target candidates for pharmacologically induced tissue regeneration. We report the discovery of a reversible and selective MST1/2 inhibitor, 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino)benzenesulfonamide (XMU-MP-1), using an enzyme-linked immunosorbent assay-based high-throughput biochemical assay. The cocrystal structure and the structure-activity relationship confirmed that XMU-MP-1 is on-target to MST1/2. XMU-MP-1 blocked MST1/2 kinase activities, thereby activating the downstream effector Yes-associated protein and promoting cell growth. XMU-MP-1 displayed excellent in vivo pharmacokinetics and was able to augment mouse intestinal repair, as well as liver repair and regeneration, in both acute and chronic liver injury mouse models at a dose of 1 to 3 mg/kg via intraperitoneal injection. XMU-MP-1 treatment exhibited substantially greater repopulation rate of human hepatocytes in the Fah-deficient mouse model than in the vehicle-treated control, indicating that XMU-MP-1 treatment might facilitate human liver regeneration. Thus, the pharmacological modulation of MST1/2 kinase activities provides a novel approach to potentiate tissue repair and regeneration, with XMU-MP-1 as the first lead for the development of targeted regenerative therapeutics.

  20. Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy.

    PubMed

    Fairclough, Rebecca J; Perkins, Kelly J; Davies, Kay E

    2012-06-01

    DMD is a devastatingly progressive muscle wasting disorder of childhood that significantly shortens life expectancy. Despite efforts to develop an effective therapy that dates back over a century, clinical interventions are still restricted to management of symptoms rather than a cure. The rationale to develop effective therapies changed in 1986 with the discovery of the dystrophin gene. Since then extensive research into both the molecular basis and pathophysiology of DMD has paved the way not only for development of strategies which aim to correct the primary defect, but also towards the identification of countless therapeutic targets with the potential to alleviate the downstream pathology. In addition to gene and cell-based therapies, which aim to deliver the missing gene and/or protein, an exciting spectrum of pharmacological approaches aimed at modulating therapeutic targets within DMD muscle cells through the use of small drugs are also being developed. This review presents promising pharmacological approaches aimed at targeting the primary defect, including suppression of nonsense mutations and functional compensation by upregulation of the dystrophin homologue, utrophin. Downstream of the primary membrane fragility, inflammation and fibrosis are reduced by blocking NF-κB, TGF-α and TGF-β, and free radical damage has been targeted using antioxidants and dietary/nutritional supplements. There are new hopes that ACE and PDE5 inhibitors can protect against skeletal as well as cardiac pathology, and modulating Ca2+ influx, NO, BMP, protein degradation and the mitochondrial permeability pore hold further promise in tackling the complex pathogenesis of this multifaceted disorder.

  1. Chemical modulators working at pharmacological interface of target proteins.

    PubMed

    Jeon, Young Ho; Lee, Jin Young; Kim, Sunghoon

    2012-03-15

    For last few decades, the active site cleft and substrate-binding site of enzymes as well as ligand-binding site of the receptors have served as the main pharmacological space for drug discovery. However, rapid accumulation of proteome and protein network analysis data has opened a new therapeutic space that is the interface between the interacting proteins. Due to the complexity of the interaction modes and the numbers of the participating components, it is still challenging to identify the chemicals that can accurately control the protein-protein interactions at desire. Nonetheless, the number of chemical drugs and candidates working at the interface of the interacting proteins are rapidly increasing. This review addresses the current case studies and state-of-the-arts in the development of small chemical modulators controlling the interactions of the proteins that have pathological implications in various human diseases such as cancer, immune disorders, neurodegenerative and infectious diseases.

  2. Pharmacological Chaperoning: A Potential Treatment for PMM2-CDG.

    PubMed

    Yuste-Checa, Patricia; Brasil, Sandra; Gámez, Alejandra; Underhaug, Jarl; Desviat, Lourdes R; Ugarte, Magdalena; Pérez-Cerdá, Celia; Martinez, Aurora; Pérez, Belén

    2017-02-01

    The congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2. This exercise identified eight compounds that increased the thermal stability of PMM2. Of these, four compounds functioned as potential PCs that significantly increased the stability of several destabilizing and oligomerization mutants and also increased PMM activity in a disease model of cells overexpressing PMM2 mutations. Structural analysis revealed one of these compounds to provide an excellent starting point for chemical optimization since it passed tests based on a number of pharmacochemical quality filters. The present results provide the first proof-of-concept of a possible treatment for PMM2-CDG and describe a promising chemical structure as a starting point for the development of new therapeutic agents for this severe orphan disease.

  3. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish.

    PubMed

    Zada, David; Tovin, Adi; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2016-11-01

    Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS), a psychomotor retardation associated with mutations in the thyroid-hormone (TH) transporter MCT8 (monocarboxylate transporter 8). AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8(-/-)) zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8(-/-) larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8(-/-) larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8(-/-) larvae. Intriguingly, triiodothyronine (T3) treatment rescued hypomyelination in mct8(-/-) embryos before the maturation of the blood-brain barrier (BBB), but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8(-/-) larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders.

  4. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish

    PubMed Central

    2016-01-01

    ABSTRACT Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS), a psychomotor retardation associated with mutations in the thyroid-hormone (TH) transporter MCT8 (monocarboxylate transporter 8). AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8−/−) zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8−/− larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8−/− larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8−/− larvae. Intriguingly, triiodothyronine (T3) treatment rescued hypomyelination in mct8−/− embryos before the maturation of the blood–brain barrier (BBB), but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8−/− larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders. PMID:27664134

  5. [Pharmacology].

    PubMed

    González, José; Orero, Ana; Olmo, Vicente; Martínez, David; Prieto, José; Bahlsen, Jose Antonio; Zaragozá, Francisco; Honorato, Jesús

    2011-06-01

    Two of the main characteristics of western societies in the last fifty years have been the medicalization of the human life and the environmental degradation. The first one has forced human being to consider medicines use related to what would be rational, reasonable and well-reasoned. The second one brought us to a new ecologist conscience. In relation to the "human social system", the effects of medication can be considered very positive as a whole, particularly those related to the amazing increase of expectative and quality of life. But, along with those unquestionable beneficial effects, medicines have also caused some negative effects for other biotic and abiotic systems, such as microbian alterations and their undesirable consequences which have involved the massive use of antibiotics in medicine and veterinary, the uncontrolled elimination of millions of doses of all kind of drugs, additives and excipients, etc., as well as atmospheric contamination and degradation of forests and deep oceans which can have been caused by investigation and production of determinated drugs. In this context Pharmacology appears as a scientific discipline that studies the research (R), development (D), production (P), and utilization (U) of drugs and medical substances in relation to the environment. From a farmaecologic perspective the drugs utilization has its development in three main contexts, all of them closely related: prescription quality, farmaceutical care, and patient's active participation in his own disease and treatment.

  6. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases.

    PubMed

    D'Orazio, Nicolantonio; Gammone, Maria Alessandra; Gemello, Eugenio; De Girolamo, Massimo; Cusenza, Salvatore; Riccioni, Graziano

    2012-04-01

    Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA) and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer's disease, Parkinson's disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS) have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA). An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological properties and

  7. Marine Bioactives: Pharmacological Properties and Potential Applications against Inflammatory Diseases

    PubMed Central

    D’Orazio, Nicolantonio; Gammone, Maria Alessandra; Gemello, Eugenio; De Girolamo, Massimo; Cusenza, Salvatore; Riccioni, Graziano

    2012-01-01

    Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA) and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS) have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA). An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological properties and

  8. The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments

    PubMed Central

    Farzaei, Mohammad H; Bahramsoltani, Roodabeh; Abdollahi, Mohammad; Rahimi, Roja

    2016-01-01

    Irritable bowel syndrome (IBS) is the most common disorder referred to gastroenterologists and is characterized by altered bowel habits, abdominal pain, and bloating. Visceral hypersensitivity (VH) is a multifactorial process that may occur within the peripheral or central nervous systems and plays a principal role in the etiology of IBS symptoms. The pharmacological studies on selective drugs based on targeting specific ligands can provide novel therapies for modulation of persistent visceral hyperalgesia. The current paper reviews the cellular and molecular mechanisms underlying therapeutic targeting for providing future drugs to protect or treat visceroperception and pain sensitization in IBS patients. There are a wide range of mediators and receptors participating in visceral pain perception amongst which substances targeting afferent receptors are attractive sources of novel drugs. Novel therapeutic targets for the management of VH include compounds which alter gut-brain pathways and local neuroimmune pathways. Molecular mediators and receptors participating in pain perception and visceroperception include histamine-1 receptors, serotonin (5-hydrodytryptamine) receptors, transient receptor potential vanilloid type I, tachykinins ligands, opioid receptors, voltage-gated channels, tyrosine receptor kinase receptors, protease-activated receptors, adrenergic system ligands, cannabinoid receptors, sex hormones, and glutamate receptors which are discussed in the current review. Moreover, several plant-derived natural compounds with potential to alleviate VH in IBS have been highlighted. VH has an important role in the pathology and severity of complications in IBS. Therefore, managing VH can remarkably modulate the symptoms of IBS. More preclinical and clinical investigations are needed to provide efficacious and targeted medicines for the management of VH. PMID:27431236

  9. Obesity: Current and potential pharmacotherapeutics and targets.

    PubMed

    Narayanaswami, Vidya; Dwoskin, Linda P

    2017-02-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed.

  10. Pharmacology and therapeutic potential of sigma(1) receptor ligands.

    PubMed

    Cobos, E J; Entrena, J M; Nieto, F R; Cendán, C M; Del Pozo, E

    2008-12-01

    Sigma (sigma) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of sigma receptors, termed sigma(1) and sigma(2). Of these two subtypes, the sigma(1) receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for sigma(1) receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates sigma(1) receptors. Certain neurosteroids are known to interact with sigma(1) receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca(2+) signaling. Sigma(1) receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, sigma(1) receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of sigma(1) receptors, focussing on sigma(1) ligand neuropharmacology and the role of sigma(1) receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of sigma(1) ligands.

  11. Gender differences, polypharmacy, and potential pharmacological interactions in the elderly

    PubMed Central

    Venturini, Carina Duarte; Engroff, Paula; Ely, Luísa Scheer; de Araújo Zago, Luísa Faria; Schroeter, Guilherme; Gomes, Irenio; De Carli, Geraldo Attilio; Morrone, Fernanda Bueno

    2011-01-01

    OBJECTIVE: This study aims to analyze pharmacological interactions among drugs taken by elderly patients and their age and gender differences in a population from Porto Alegre, Brazil. METHODS: We retrospectively analyzed the database provided by the Institute of Geriatric and Gerontology, Porto Alegre, Brazil. The database was composed of 438 elderly and includes information about the patients' disease, therapy regimens, utilized drugs. All drugs reported by the elderly patients were classified using the Anatomical Therapeutic and Chemical Classification System. The drug-drug interactions and their severity were assessed using the Micromedex® Healthcare Series. RESULTS: Of the 438 elderly patients in the data base, 376 (85.8%) used pharmacotherapy, 274 were female, and 90.4% of females used drugs. The average number of drugs used by each individual younger than 80 years was 3.2±2.6. Women younger than 80 years old used more drugs than men in the same age group whereas men older than 80 years increased their use of drugs in relation to other age groups. Therefore, 32.6% of men and 49.2% of women described at least one interaction, and 8.1% of men and 10.6% of women described four or more potential drug-drug interactions. Two-thirds of drug-drug interactions were moderate in both genders, and most of them involved angiotensin-converting enzyme inhibitor, non-steroidal anti-inflammatory, loop and thiazide diuretics, and β-blockers. CONCLUSION: Elderly patients should be closely monitored, based on drug class, gender, age group and nutritional status. PMID:22086515

  12. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature.

    PubMed

    Poornima, Paramasivan; Kumar, Jothi Dinesh; Zhao, Qiaoli; Blunder, Martina; Efferth, Thomas

    2016-09-01

    Despite massive investments in drug research and development, the significant decline in the number of new drugs approved or translated to clinical use raises the question, whether single targeted drug discovery is the right approach. To combat complex systemic diseases that harbour robust biological networks such as cancer, single target intervention is proved to be ineffective. In such cases, network pharmacology approaches are highly useful, because they differ from conventional drug discovery by addressing the ability of drugs to target numerous proteins or networks involved in a disease. Pleiotropic natural products are one of the promising strategies due to their multi-targeting and due to lower side effects. In this review, we discuss the application of network pharmacology for cancer drug discovery. We provide an overview of the current state of knowledge on network pharmacology, focus on different technical approaches and implications for cancer therapy (e.g. polypharmacology and synthetic lethality), and illustrate the therapeutic potential with selected examples green tea polyphenolics, Eleutherococcus senticosus, Rhodiola rosea, and Schisandra chinensis). Finally, we present future perspectives on their plausible applications for diagnosis and therapy of cancer.

  13. Cancer TARGETases: DSB repair as a pharmacological target.

    PubMed

    Samadder, Pounami; Aithal, Rakesh; Belan, Ondrej; Krejci, Lumir

    2016-05-01

    Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.

  14. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets.

    PubMed

    Hendriksen, Hendrikus; Olivier, Berend; Oosting, Ronald S

    2014-06-05

    The development of new pharmacological therapies starts with target discovery. Finding new therapeutic targets for anxiety disorders is a difficult process. Most of the currently described drugs for post-traumatic stress disorder (PTSD) are based on the inhibition of serotonin reuptake. The mechanism of action of selective serotonin reuptake inhibitors was already described in 1977 (Benkert et al., 1977). Now, almost 40 years later, we still rely on the same mechanism of action and more effective pharmacological therapies, based on other working mechanisms, are not on the market yet. Finding new molecular switches that upon modulation cure or alleviate the disorder is hampered by a lack of valid animal models. Many of the characteristics of psychiatric disorders are typically human and hence animal models feature only part of the underlying pathology. In this review we define a set of criteria for animal models of PTSD. First, we describe the symptomatology and pathology of PTSD and the current pharmacological and non-pharmacological treatment options. Next, we compare three often-used animal models and analyze how these models comply with the set of criteria. Finally, we discuss how resolving the underlying mechanisms of effective non-pharmacological treatments (environmental enrichment, re-exposure) may aid therapeutic target discovery.

  15. In silico pharmacology for drug discovery: applications to targets and beyond

    PubMed Central

    Ekins, S; Mestres, J; Testa, B

    2007-01-01

    Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching, pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools and data analysis tools that use a computer. Such methods have seen frequent use in the discovery and optimization of novel molecules with affinity to a target, the clarification of absorption, distribution, metabolism, excretion and toxicity properties as well as physicochemical characterization. The first part of this review discussed the methods that have been used for virtual ligand and target-based screening and profiling to predict biological activity. The aim of this second part of the review is to illustrate some of the varied applications of in silico methods for pharmacology in terms of the targets addressed. We will also discuss some of the advantages and disadvantages of in silico methods with respect to in vitro and in vivo methods for pharmacology research. Our conclusion is that the in silico pharmacology paradigm is ongoing and presents a rich array of opportunities that will assist in expediating the discovery of new targets, and ultimately lead to compounds with predicted biological activity for these novel targets. PMID:17549046

  16. Androgen receptor in human health: a potential therapeutic target.

    PubMed

    Siddique, Hifzur Rahman; Nanda, Sanjeev; Parray, Aijaz; Saleem, Mohammad

    2012-12-01

    Androgen is a key for the activation of Androgen Receptor (AR) in most of the disease conditions, however androgen-independent activation of AR is also found in aggressive type human malignancies. An intense search for the inhibitors of AR is underway to cure AR-dependent diseases. In addition to targeting various components of AR signaling pathway, compounds which directly target AR are under preclinical and clinical investigation. Various In vitro and preclinical animal studies suggest that different natural compounds have potential to act against AR. Some natural compounds have been found to be pharmacologically effective against AR irrespective of varying routs of administration viz; oral, intra-peritoneal and intravenous. This mini-review summarizes the studies conducted with different natural agents in determining their pharmacological utility against AR signaling.

  17. A Review on Protocatechuic Acid and Its Pharmacological Potential

    PubMed Central

    Kakkar, Sahil; Bais, Souravh

    2014-01-01

    Flavonoids and polyphenols are heterocyclic molecules that have been associated with beneficial effects on human health, such as reducing the risk of various diseases like cancer, diabetes, and cardiovascular and brain diseases. Protocatechuic acid (PCA) is a type of widely distributed naturally occurring phenolic acid. PCA has structural similarity with gallic acid, caffeic acid, vanillic acid, and syringic acid which are well-known antioxidant compounds. More than 500 plants contain PCA as active constituents imparting various pharmacological activity and these effects are due to their antioxidant activities, along with other possible mechanisms, such as anti-inflammatory properties and interaction with several enzymes. Over the past two decades, there have been an increasing number of publications on polyphenols and flavonoids, which demonstrate the importance of understanding the chemistry behind the antioxidant activities of both natural and synthesized compounds, considering the benefits from their dietary ingestion as well as pharmacological use. This work aims to review the pharmacological effects of PCA molecules in humans and the structural aspects that contribute to these effects. PMID:25006494

  18. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases.

    PubMed

    Neves, Ana Luisa; Chilloux, Julien; Sarafian, Magali H; Rahim, Mohd Badrin Abdul; Boulangé, Claire L; Dumas, Marc-Emmanuel

    2015-12-01

    Consisting of trillions of non-pathogenic bacteria living in a symbiotic relationship with their mammalian host, the gut microbiota has emerged in the past decades as one of the key drivers for cardiometabolic diseases (CMD). By degrading dietary substrates, the gut microbiota produces several metabolites that bind human pharmacological targets, impact subsequent signalling networks and in fine modulate host's metabolism. In this review, we revisit the pharmacological relevance of four classes of gut microbial metabolites in CMD: short-chain fatty acids (SCFA), bile acids, methylamines and indoles. Unravelling the signalling mechanisms of the microbial-mammalian metabolic axis adds one more layer of complexity to the physiopathology of CMD and opens new avenues for the development of microbiota-based pharmacological therapies.

  19. Neuroinflammation: a potential therapeutic target.

    PubMed

    Craft, Jeffrey M; Watterson, D Martin; Van Eldik, Linda J

    2005-10-01

    The increased appreciation of the importance of glial cell-propagated inflammation (termed 'neuroinflammation') in the progression of pathophysiology for diverse neurodegenerative diseases, has heightened interest in the rapid discovery of neuroinflammation-targeted therapeutics. Efforts include searches among existing drugs approved for other uses, as well as development of novel synthetic compounds that selectively downregulate neuroinflammatory responses. The use of existing drugs to target neuroinflammation has largely met with failure due to lack of efficacy or untoward side effects. However, the de novo development of new classes of therapeutics based on targeting selective aspects of glia activation pathways and glia-mediated pathophysiologies, versus targeting pathways of quantitative importance in non-CNS inflammatory responses, is yielding promising results in preclinical animal models. The authors briefly review selected clinical and preclinical data that reflect the prevailing approaches targeting neuroinflammation as a pathophysiological process contributing to onset or progression of neurodegenerative diseases. The authors conclude with opinions based on recent experimental proofs of concept using preclinical animal models of pathophysiology. The focus is on Alzheimer's disease, but the concepts are transferrable to other neurodegenerative disorders with an inflammatory component.

  20. Translocator protein (18 kDa) as a pharmacological target in adipocytes to regulate glucose homeostasis.

    PubMed

    Li, Jiehan; Papadopoulos, Vassilios

    2015-09-01

    As a major regulator in obesity and its associated metabolic complications, the proper functioning of adipocytes is crucial for health maintenance, thus serving as an important target for the development of anti-obese and anti-diabetic therapies. There is increasing evidence that mitochondrial malfunction is a pivotal event in disturbing adipocyte cell homeostasis. Among major mitochondrial structure components, the high-affinity drug- and cholesterol-binding outer mitochondrial membrane translocator protein (18 kDa; TSPO) has shown importance across a broad spectrum of mitochondrial functions. Recent studies demonstrated the presence of TSPO in white adipocyte mitochondria of mice, and administration of TSPO drug ligands to obese mice reduced weight gain and lowered glucose level. Therefore, it is of great interest to assess whether TSPO in adipocytes could serve as a drug target to regulate adipocyte activities with potential influence on weight control and glucose metabolism. Two structurally distinct TSPO drug ligands, PK 11195 and FGIN-1-27, improved the intracellular dynamics of 3T3-L1 adipocytes, such as the production and release of adipokines, glucose uptake, and adipogenesis. TSPO knockdown in either differentiated adipocytes or preadipocytes impaired these functions. Findings from 3T3-L1 cells were related to human primary cells, where TSPO expression was tightly associated with the metabolic state of primary adipocytes and the differentiation of primary preadipocytes. These results suggest that TSPO expression is essential to safeguard healthy adipocyte functions, and that TSPO activation in adipocytes improves their metabolic status in regulating glucose homeostasis. Adipocyte TSPO may serve as a pharmacologic target for the treatment of obesity and diabetes.

  1. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma

    PubMed Central

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-01-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  2. A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data

    PubMed Central

    Xu, Xue; Li, Yan; Zhao, Huihui; Fang, Yupeng; Li, Xiuxiu; Zhou, Wei; Wang, Wei; Wang, Yonghua

    2012-01-01

    In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes. PMID:22666371

  3. Pharmacological Potential of the Endogenous Dipeptide Kyotorphin and Selected Derivatives

    PubMed Central

    Perazzo, Juliana; Castanho, Miguel A. R. B.; Sá Santos, Sónia

    2017-01-01

    The endogenous peptide kyotorphin (KTP) has been extensively studied since it was discovered in 1979. The dipeptide is distributed unevenly over the brain but the majority is concentrated in the cerebral cortex. The putative KTP receptor has not been identified yet. As many other neuropeptides, KTP clearance is mediated by extracellular peptidases and peptide transporters. From the wide spectrum of biological activity of KTP, analgesia was by far the most studied. The mechanism of action is still unclear, but researchers agree that KTP induces Met-enkephalins release. More recently, KTP was proposed as biomarker of Alzheimer disease. Despite all that, KTP limited pharmacological value prompted researchers to develop derivatives more lipophilic and therefore more prone to cross the blood–brain barrier (BBB), and also more resistant to enzymatic degradation. Conjugation of KTP with functional molecules, such as ibuprofen, generated a new class of compounds with additional biological properties. Moreover, the safety profile of these derivatives compared to opioids and their efficacy as neuroprotective agents greatly increases their pharmacological value. PMID:28127286

  4. Growth hormone, insulin-like growth factor 1, and insulin signaling-a pharmacological target in body wasting and cachexia.

    PubMed

    Trobec, Katja; von Haehling, Stephan; Anker, Stefan D; Lainscak, Mitja

    2011-12-01

    Cachexia is an irreversible process that can develop in the course of chronic disease. It is characterized by the remodeling of the metabolic, inflammatory, and endocrine pathways. Insulin, growth hormone (GH), and insulin-like growth factor 1 (IGF-1) are involved in glucose, protein, and fat metabolism, which regulates body composition. In body wasting and cachexia, their signaling is impaired and causes anabolic/catabolic imbalance. Important mechanisms include inflammatory cytokines and neurohormonal activation. Remodeled post-receptor insulin, GH, and IGF-1 pathways constitute a potential target for pharmacological treatment in the setting of body wasting and cachexia. Peroxisome proliferator-activated receptor gamma agonists, drugs inhibiting angiotensin II action (angiotensin II antagonists and inhibitors of angiotensin-converting enzyme), and testosterone, which interfere with post-receptor pathways of insulin, GH, and IGF-1, were investigated as pharmacological intervention targets and various clinically important implications were reported. There are several other potential targets, but their treatment feasibility and applicability is yet to be established.

  5. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    PubMed Central

    Zamponi, Gerald W.; Striessnig, Joerg; Koschak, Alexandra

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type CaV1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (CaV3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (CaV2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., CaV1.2 and CaV1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective CaV1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson’s disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and

  6. Arginine kinase: a potential pharmacological target in trypanosomiasis.

    PubMed

    Pereira, Claudio A

    2014-01-01

    Trypanosomatids parasites have complex life cycles which involve a wide diversity of milieus with very different physicochemical properties. Arginine kinase is one of the key enzymes, responsible for the parasites' metabolic plasticity, which maintains the cell energy homeostasis during environment changes. Arginine kinase catalyzes the reversible phosphorylation between phosphoarginine and ADP. The phosphagen phosphoarginine sustains high levels of cellular activity until metabolic events, such as glycolysis and oxidative phosphorylation, are switched on. In different unicellular and multicellular organisms including trypanosomatids, it was demonstrated that arginine kinase is an important component in resistance mechanisms to different stress factors, such as reactive oxygen species, trypanocidal drugs, pH and starvation. In addition, few arginine kinase inhibitors were identified during the lasts years, some of them with trypanocidal activity, such as polyphenolic compounds. All these unique features, in addition to the fact that arginine kinase is completely absent in mammals, make this pathway a favorable start point for rational drug design for the treatment of human trypanosomamiases.

  7. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers.

    PubMed

    Costa, Veronica; Lugert, Sebastian; Jagasia, Ravi

    2015-01-01

    Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.

  8. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview

    PubMed Central

    Soni, Priyanka; Siddiqui, Anees Ahmad; Dwivedi, Jaya; Soni, Vishal

    2012-01-01

    India has a great wealth of various naturally occurring plant drugs which have great potential pharmacological activities. Datura stramonium (D. stramonium) is one of the widely well known folklore medicinal herbs. The troublesome weed, D. stramonium is a plant with both poisonous and medicinal properties and has been proven to have great pharmacological potential with a great utility and usage in folklore medicine. D. stromonium has been scientifically proven to contain alkaloids, tannins, carbohydrates and proteins. This plant has contributed various pharmacological actions in the scientific field of Indian systems of medicines like analgesic and antiasthmatic activities. The present paper presents an exclusive review work on the ethnomedical, phytochemical, pharmacological activities of this plant. PMID:23593583

  9. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview.

    PubMed

    Soni, Priyanka; Siddiqui, Anees Ahmad; Dwivedi, Jaya; Soni, Vishal

    2012-12-01

    India has a great wealth of various naturally occurring plant drugs which have great potential pharmacological activities. Datura stramonium (D. stramonium) is one of the widely well known folklore medicinal herbs. The troublesome weed, D. stramonium is a plant with both poisonous and medicinal properties and has been proven to have great pharmacological potential with a great utility and usage in folklore medicine. D. stromonium has been scientifically proven to contain alkaloids, tannins, carbohydrates and proteins. This plant has contributed various pharmacological actions in the scientific field of Indian systems of medicines like analgesic and antiasthmatic activities. The present paper presents an exclusive review work on the ethnomedical, phytochemical, pharmacological activities of this plant.

  10. Pharmacological potential of biogenic amine–polyamine interactions beyond neurotransmission

    PubMed Central

    Sánchez-Jiménez, F; Ruiz-Pérez, M V; Urdiales, J L; Medina, M A

    2013-01-01

    Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23347064

  11. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology

    PubMed Central

    Gao, Li; Wang, Xiao-dong; Niu, Yang-yang; Duan, Dan-dan; Yang, Xue; Hao, Jian; Zhu, Cui-hong; Chen, Dan; Wang, Ke-xin; Qin, Xue-mei; Wu, Xiong-zhi

    2016-01-01

    Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan–Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc. PMID:27143508

  12. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology.

    PubMed

    Gao, Li; Wang, Xiao-Dong; Niu, Yang-Yang; Duan, Dan-Dan; Yang, Xue; Hao, Jian; Zhu, Cui-Hong; Chen, Dan; Wang, Ke-Xin; Qin, Xue-Mei; Wu, Xiong-Zhi

    2016-05-04

    Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan-Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc.

  13. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.

    PubMed

    Penberthy, W Todd

    2007-04-01

    established mechanisms of necrosis. Chronic elevation of TNFalpha leading to necrotic events by NAD depletion in autoimmune disease likely occurs via combination of persistent IDO activation and iNOS-peroxynitrate activation of PARP1 both of which deplete NAD. Pharmacological doses of NAD precursors repeatedly provide dramatic therapeutic benefit for rheumatoid arthritis, type 1 diabetes, multiple sclerosis, colitis, other autoimmune diseases, and schizophrenia in either the clinic or animal models. Collectively these observations support the idea that autoimmune disease may in part be considered as localized pellagra manifesting symptoms particular to the inflamed target tissues. Thus pharmacological doses of NAD precursors (nicotinic acid/niacin, nicotinamide/niacinamide, or nicotinamide riboside) should be considered as potentially essential to the therapeutic success of any IDO-inducing regimen for treating autoimmune diseases. Distinct among the NAD precursors, nicotinic acid specifically activates the g-protein coupled receptor (GPCR) GPR109a to produce the IDO-inducing tolerogenic prostaglandins PGE(2) and PGD(2). Next, PGD(2) is converted to the anti-inflammatory prostaglandin, 15d-PGJ(2). These prostaglandins exert potent anti-inflammatory activities through endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPARgamma respectively. Nicotinamide prevents type 1 diabetes and ameliorates multiple sclerosis in animal models, while nothing is known about the therapeutic potential of nicotinamide riboside. Alternatively the direct targeting of the non-redox NAD-dependent proteins using resveratrol to activate SIRT1 or PJ34 in order to inhibit PARP1 and prevent autoimmune pathogenesis are also given consideration.

  14. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Cheung, Ho Yee; Chan, Chun Wai

    2015-01-01

    This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine. PMID:26246843

  15. Pharmacological targeting of dopamine D3 receptors: Possible clinical applications of selective drugs.

    PubMed

    Pich, Emilio Merlo; Collo, Ginetta

    2015-09-01

    Dopamine D3 receptors have been pharmacologically engaged in humans since the development of the first antipsychotics and ergot-derivative dopamine (DA) agonists, even without knowing it. These agents were generally non-selective, developed primarily to target D2 receptors. In the last 10 years the understanding of the clinical implication of D3 receptors has been progressing also due to the identification of D3 gene polymorphisms, the use of more selective PET ligands such as [(11)C]-(+)-PHNO and the learning regarding the clinical use of the D3-preferential D2/D3 agonists ropinirole and pramipexole. A new specific neuroplasticity role of D3 receptor regarding dendrite arborisation outgrowth in dopaminergic neurons was also proposed to support, at least in part, the slowing of disease observed in subjects with Parkinson׳s Disease treated with DA agonists. Similar mechanisms could be at the basis of the antidepressant-like effects observed with DA agonists when co-administered with standard of care. Severe adverse event occurring with the use of anti-parkinsonian DA agonists in predisposed subjects, i.e., impulse control disorders, are now suggested to be putatively related to overactive D3 receptors. Not surprisingly, blockade of D3 receptors was proposed as treatment for addictive disorders, a goal that could be potentially achieved by repositioning buspirone, an anxiolytic drug with D3-preferential antagonistic features, or with novel selective D3 antagonists or partial agonists currently in development for schizophrenia. At the moment ABT-925 is the only selective D3 antagonist tested in schizophrenic patients in Phase II, showing an intriguing cognitive enhancing effects supported by preclinical data. Finally, exploratory pharmacogenetic analysis suggested that ABT-925 could be effective in a subpopulation of patients with a polymorphism on the D3 receptor, opening to a possible personalised medicine approach.

  16. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  17. Insights on the neuromodulatory propensity of Selaginella (Sanjeevani) and its potential pharmacological applications.

    PubMed

    Chandran, Girish; Muralidhara

    2014-02-01

    Exploiting the potential of natural compounds to attenuate endogenous redox status to achieve neuroprotection is a novel concept in human disease therapy. This has necessitated a need to identify newer efficient phytochemicals possessing propensity to act on various biochemical therapeutic targets with low or no toxicity. Selaginella is a lithophytic pteridophyte which grows on constantly irrigated rocks in high altitude zones in different parts of the world. It is appraised to be "Sanjeevani" (the resurrection herb) based on its mythological reference in the Indian epic "Ramayana". Due to the presence of a unique disaccharide, trehalose, most species of Selaginella can survive severe drought conditions, maintaining the plant's structural stability and resurrect during rains. Several species of the genus are used in ethnic medicine for the therapy of jaundice, chronic trachitis, lung cancer, labor pain and wound healing. The major natural compounds in the genus Selaginella are characteristic flavonoid-dimers, called 'biflavonoids'. Although various biological effects of Selaginella have been documented in vitro, studies on its neuromodulatory properties are nonexisting despite the presence of potentially therapeutic biflavonoids. We have reviewed the existing literature on the possible pharmacological properties of Selaginella. Further, recent evidence gathered from our laboratory on the neuromodulatory propensity of S. delicatula employing in vivo models of chemically induced neurodegenerative diseases in rodents and Drosophila are discussed. Our findings point to a mechanism which modulates redox status and mitochondrial dysfunction suggesting their possible therapeutic use in oxidative stress-mediated neurodegenerative diseases including Parkinson's disease.

  18. Pharmacological Screening of Annona cherimola for Antihyperlipidemic Potential

    PubMed Central

    Verma, Adarsh M; Kumar, Ajay P; Shekar, Raja K; Kumar, Kranthi A; Chakrapani; Rani, Roja A

    2011-01-01

    High blood cholesterol levels are consistently associated with higher risk of coronary heart disease, and other life-threatening cardiovascular and cerebro-vascular damage, including fatal strokes. In the present study methanolic extract of Annona cherimola was evaluated for its antihyperlipidemic potential. Acute hyperlipidemia was induced by single administration of Triton WR 1339 (Tyloxapol) intra-peritoneally. There was a significant dose dependent decrease in plasma total cholesterol, triglycerides and LDL-cholesterol at the same time considerable increase in HDL-cholesterol levels upon administration of methanolic extract at the dose of 250 mg/kg and 500 mg/kg. Fenofibrate was used as reference standard. Atherogenic index as well as LDL/HDL cholesterol ratio was lowered significantly in case of methanolic extract treated groups compared to normal control which reflects the antihyperlipidemic potential of Annona cherimola PMID:24826004

  19. Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases

    PubMed Central

    Edelmann, Mariola J.; Nicholson, Benjamin; Kessler, Benedikt M.

    2011-01-01

    Recent advances in the development and discovery of pharmacological interventions within the ubiquitin–proteasome system (UPS) have uncovered an enormous potential for possible novel treatments of neurodegenerative disease, cancer, immunological disorder and microbial infection. Interference with proteasome activity, although initially considered unlikely to be exploitable clinically, has already proved to be very effective against haematological malignancies, and more specific derivatives that target subsets of proteasomes are emerging. Recent small-molecule screens have revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes, many of which have been evaluated for their potential use as therapeutics, either as single agents or in synergy with other drugs. Here, we discuss recent advances in the characterisation of novel UPS modulators (in particular, inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they pave the way towards new therapeutic approaches for the treatment of proteotoxic disease, cancer and microbial infection. PMID:22088887

  20. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni

    PubMed Central

    Bais, Swarna; Churgin, Matthew A.; Fang-Yen, Christopher; Greenberg, Robert M.

    2015-01-01

    Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7–8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics. PMID:26655809

  1. Pharmacology and inotropic potential of forskolin in the human heart.

    PubMed Central

    Bristow, M R; Ginsburg, R; Strosberg, A; Montgomery, W; Minobe, W

    1984-01-01

    We evaluated the effects of the diterpene compound forskolin in human myocardial adenylate cyclase preparations, isolated trabeculae and papillary muscles derived from failing human hearts, and acutely instrumented dogs. Forskolin was a potent, powerful activator of human myocardial adenylate cyclase and produced maximal effects that were 4.82 (normally functioning left ventricle) and 6.13 (failing left ventricle) fold greater than isoproterenol. In contrast to isoproterenol, forskolin retained full activity in membrane preparations derived from failing hearts. In cyclase preparations, forskolin demonstrated unique substrate and Mg2+ kinetic properties that could be distinguished from hormone receptor-coupled agonists or fluoride ion. The adenylate cyclase stimulatory effect of forskolin was synergistic with isoproterenol, apparently due to the location of forskolin activation being beyond the level of hormone receptor-agonist in the receptor-cyclase complex. Forskolin was a potent positive inotrope in failing human myocardium, producing a stimulation of contraction that was similar to isoproterenol. Finally, in open chest dogs forskolin was a positive inotropic agent that reduced preload and afterload. We conclude that forskolin belongs to a class of agents that may have therapeutic potential in the treatment of congestive heart failure. Images PMID:6330174

  2. Pharmacological actions and potential uses of Momordica charantia: a review.

    PubMed

    Grover, J K; Yadav, S P

    2004-07-01

    Since ancient times, plants and herbal preparations have been used as medicine. Research carried out in last few decades has certified several such claims of use of several plants of traditional medicine. Popularity of Momordica charantia (MC) in various systems of traditional medicine for several ailments (antidiabetic, abortifacient, anthelmintic, contraceptive, dysmenorrhea, eczema, emmenagogue, antimalarial, galactagogue, gout, jaundice, abdominal pain, kidney (stone), laxative, leprosy, leucorrhea, piles, pneumonia, psoriasis, purgative, rheumatism, fever and scabies) focused the investigator's attention on this plant. Over 100 studies using modern techniques have authenticated its use in diabetes and its complications (nephropathy, cataract, insulin resistance), as antibacterial as well as antiviral agent (including HIV infection), as anthelmintic and abortifacient. Traditionally it has also been used in treating peptic ulcers, interestingly in a recent experimental studies have exhibited its potential against Helicobacter pylori. Most importantly, the studies have shown its efficacy in various cancers (lymphoid leukemia, lymphoma, choriocarcinoma, melanoma, breast cancer, skin tumor, prostatic cancer, squamous carcinoma of tongue and larynx, human bladder carcinomas and Hodgkin's disease). There are few reports available on clinical use of MC in diabetes and cancer patients that have shown promising results.

  3. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  4. Tianeptine: potential influences on neuroplasticity and novel pharmacological effects.

    PubMed

    Uzbay, Tayfun I

    2008-05-15

    Tianeptine is an atypical antidepressant drug. In contrast to tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs), it has been suggested that tianeptine decreases serotonin's activity and amount in serotonergic synapses of the central nervous system by increasing serotonin reuptake. Tianeptine, which has a mechanism of action opposite to that of SSRIs, necessitated a re-evaluation of the biochemical basis of depression and revealed that it cannot be explained by the monoamine hypothesis only. Recent studies by tianeptine have been focused on neuroplasticity. Neuroplasticity hypothesis of depression has the potential to make important contributions to the diagnosis, as well as it may be helpful in the explanation of the drug effects, which cannot be explained by neurochemical mechanisms. In addition, recent interesting results indicating anticonvulsant and analgesic activity of tianeptine and its possible interaction with adenosine A(1) receptors were obtained. In this review, novel central actions of tianeptine and the relationship between stress, neuroplasticity and drug effects were evaluated in the light of the current literature.

  5. Role of the liver X receptors in skin physiology: Putative pharmacological targets in human diseases.

    PubMed

    Ouedraogo, Zangbéwendé Guy; Fouache, Allan; Trousson, Amalia; Baron, Silvère; Lobaccaro, Jean-Marc A

    2017-03-01

    Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases.

  6. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery.

    PubMed

    Islam, Md Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.

  7. Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery

    PubMed Central

    Islam, Md. Mirazul; Mohamed, Zahurin

    2015-01-01

    The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery. PMID:26579539

  8. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer12

    PubMed Central

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2015-01-01

    STAT3 activation is associated with poor prognosis in human colorectal cancer (CRC). Our previous data demonstrated that regorafenib (Stivarga) is a pharmacological agonist of SH2 domain-containing phosphatase 1 (SHP-1) that enhances SHP-1 activity and induces apoptosis by targeting STAT3 signals in CRC. This study aimed to find a therapeutic drug that is more effective than regorafenib for CRC treatment. Here, we showed that SC-43 was more effective than regorafenib at inducing apoptosis in vitro and suppressing tumorigenesis in vivo. SC-43 significantly increased SHP-1 activity, downregulated p-STAT3Tyr705 level, and induced apoptosis in CRC cells. An SHP-1 inhibitor or knockdown of SHP-1 by siRNA both significantly rescued the SC-43–induced apoptosis and decreased p-STAT3Tyr705 level. Conversely, SHP-1 overexpression increased the effects of SC-43 on apoptosis and p-STAT3Tyr705 level. These data suggest that SC-43–induced apoptosis mediated through the loss of p-STAT3Tyr705 was dependent on SHP-1 function. Importantly, SC-43–enhanced SHP-1 activity was because of the docking potential of SC-43, which relieved the autoinhibited N-SH2 domain of SHP-1 and inhibited p-STAT3Tyr705 signals. Importantly, we observed that a significant negative correlation existed between SHP-1 and p-STAT3Tyr705expression in CRC patients (P = .038). Patients with strong SHP-1 and weak p-STAT3Tyr705 expression had significantly higher overall survival compared with patients with weak SHP-1 and strong p-STAT3Tyr705 expression (P = .029). In conclusion, SHP-1 is suitable to be a useful prognostic marker and a pharmacological target for CRC treatment. Targeting SHP-1-STAT3 signaling by SC-43 may serve as a promising pharmacotherapy for CRC. PMID:26476076

  9. Exploiting Long Noncoding RNAs as Pharmacological Targets to Modulate Epigenetic Diseases

    PubMed Central

    Prabhakar, Bindu; Zhong, Xiao-bo; Rasmussen, Theodore P.

    2017-01-01

    Long non-coding RNAs (lncRNAs) constitute the largest class of non-coding transcripts in the human genome. Results from next-generation sequencing and bioinformatics advances indicate that the human genome contains more non-coding RNA genes than protein-coding genes. Validated functions of lncRNAs suggest that they are master regulators of gene expression and often exert their influences via epigenetic mechanisms by modulating chromatin structure. Specific lncRNAs can regulate transcription in gene clusters. Since the functions of protein-coding genes in clusters are often tied to specific pathways, lncRNAs constitute attractive pharmacological targets. Here we review the current knowledge of lncRNA functions in human cells and their roles in disease processes. We also present forward-looking perspectives on how they might be manipulated pharmacologically for the treatment of a variety of human diseases, in which regulation of gene expression by epigenetic mechanisms plays a major role. PMID:28356895

  10. Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes.

    PubMed

    Imbrici, Paola; Liantonio, Antonella; Gradogna, Antonella; Pusch, Michael; Camerino, Diana Conte

    2014-10-01

    CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks.

  11. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  12. Potential Therapeutic Targets in Uterine Sarcomas

    PubMed Central

    Cuppens, Tine; Tuyaerts, Sandra; Amant, Frédéric

    2015-01-01

    Uterine sarcomas are rare tumors accounting for 3,4% of all uterine cancers. Even after radical hysterectomy, most patients relapse or present with distant metastases. The very limited clinical benefit of adjuvant cytotoxic treatments is reflected by high mortality rates, emphasizing the need for new treatment strategies. This review summarizes rising potential targets in four distinct subtypes of uterine sarcomas: leiomyosarcoma, low-grade and high-grade endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Based on clinical reports, promising approaches for uterine leiomyosarcoma patients include inhibition of VEGF and mTOR signaling, preferably in combination with other targeted or cytotoxic compounds. Currently, the only targeted therapy approved in leiomyosarcoma patients is pazopanib, a multitargeted inhibitor blocking VEGFR, PDGFR, FGFR, and c-KIT. Additionally, preclinical evidence suggests effect of the inhibition of histone deacetylases, tyrosine kinase receptors, and the mitotic checkpoint protein aurora kinase A. In low-grade endometrial stromal sarcomas, antihormonal therapies including aromatase inhibitors and progestins have proven activity. Other potential targets are PDGFR, VEGFR, and histone deacetylases. In high-grade ESS that carry the YWHAE/FAM22A/B fusion gene, the generated 14-3-3 oncoprotein is a putative target, next to c-KIT and the Wnt pathway. The observation of heterogeneity within uterine sarcoma subtypes warrants a personalized treatment approach. PMID:26576131

  13. Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting

    SciTech Connect

    Schlom, J.; Hand, P.H.; Greiner, J.W.; Colcher, D.; Shrivastav, S.; Carrasquillo, J.A.; Reynolds, J.C.; Larson, S.M.; Raubitschek, A. )

    1990-02-01

    Tumor targeting by monoclonal antibodies (MAbs) can be enhanced by (a) increasing the percentage of injected dose taken up by the tumor and/or (b) increasing the tumor:nontumor ratios. Several groups have demonstrated that one can increase tumor to nontumor ratios by the use of antibody fragments or the administration of second antibodies. Several other modalities are also possible: (a) the use of recombinant interferons to up-regulate the expression of specific tumor associated antigens such as carcinoembryonic antigen or TAG-72 on the surface of carcinoma cells and thus increase MAb tumor binding has proved successful in both in vitro and in vivo studies; (b) the intracavitary administration of MAbs. Recent studies have demonstrated that when radiolabeled B72.3 is administered i.p. to patients with carcinoma of the peritoneal cavity, it localizes tumor masses with greater efficiency than does concurrent i.v. administered antibody. Studies involving the comparative pharmacology of intracavitary administration of radiolabeled MAb in patients and several animal models will be discussed; (c) it has been reported that prior exposure of hepatoma to external beam radiation will increase radiolabeled MAb tumor targeting. We and others have not been able to duplicate this phenomenon with a human colon cancer xenograft model and radiolabeled MAbs to two different colon carcinoma associated antigens. The possible reasons for these differences will be discussed; (d) the cloning and expression of recombinant MAbs with human constant regions and subsequent size modification constructs will also undoubtedly alter the pharmacology of MAb tumor binding in both diagnostic and therapeutic applications. 66 references.

  14. Axonal voltage-gated ion channels as pharmacological targets for pain.

    PubMed

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette; Krarup, Christian

    2013-05-15

    Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage-gated K(+) channels and blockers of hyperpolarization-activated cyclic nucleotide-gated channels that were found to reduce neuronal activity were also found to be effective in neuropathic and inflammatory pain states. The isoforms of these channels present on nociceptive axons have limited specificity. The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation. This drives the need for further development of subtype-specific voltage-gated ion channels modulators, as well as clinically available neurophysiological techniques for monitoring axonal ion channel function in peripheral nerves.

  15. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  16. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    PubMed

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  17. Concordance of preclinical and clinical pharmacology and toxicology of monoclonal antibodies and fusion proteins: soluble targets

    PubMed Central

    Martin, Pauline L; Bugelski, Peter J

    2012-01-01

    Monoclonal antibodies (mAbs) and fusion proteins directed towards soluble targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 14 currently approved mAbs and fusion proteins targeted to soluble targets. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency ‘Scientific Discussions’ and United States Food and Drug Administration ‘Pharmacology/Toxicology Reviews’ and package inserts (United States Prescribing Information). Data on the following approved biopharmaceuticals were included: adalimumab, anakinra, bevacizumab, canakinumab, certolizumab pegol, denosumab, eculizumab, etanercept, golimumab, infliximab, omalizumab, ranibizumab, rilonacept and ustekinumab. Some related biopharmaceuticals in late-stage development were also included for comparison. Good concordance with human pharmacodynamics was found for both non-human primates (NHPs) receiving the human biopharmaceutical and mice receiving rodent homologues (surrogates). In contrast, there was limited concordance for human adverse effects in genetically deficient mice, mice receiving surrogates or NHPs receiving the human pharmaceutical. In summary, the results of this survey show that although both mice and NHPs have good predictive value for human pharmacodynamics, neither species have good predictive value for human adverse effects. No evidence that NHPs have superior predictive value was found. PMID:22168335

  18. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets?

    PubMed Central

    Striessnig, Jörg; Ortner, Nadine J.; Pinggera, Alexandra

    2015-01-01

    Inhibition of voltage-gated L-type calcium channels by organic calcium channel blockers is a well-established pharmacodynamic concept for the treatment of hypertension and cardiac ischemia. Since decades these antihypertensives (such as the dihydropyridines amlodipine, felodipine or nifedipine) belong to the most widely prescribed drugs 
world-wide. Their tolerability is excellent because at therapeutic doses their pharmacological effects in humans are limited to the cardiovascular system. During the last years substantial progress has been made to reveal the physiological role of different L-type calcium channel isoforms in many other tissues, including the brain, endocrine and sensory cells. 
Moreover, there is accumulating evidence about their involvement in various human diseases, such as Parkinson's disease, neuropsychiatric disorders and hyperaldosteronism. In this review we discuss the pathogenetic role of L-type calcium channels, potential new indications for existing or isoform-selective compounds and strategies to minimize potential side effects. PMID:25966690

  19. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones

    PubMed Central

    Spratley, Samantha J.

    2016-01-01

    Missense mutations in the lysosomal hydrolase β‐galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small‐molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27638604

  20. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders.

    PubMed

    Devinsky, Orrin; Cilio, Maria Roberta; Cross, Helen; Fernandez-Ruiz, Javier; French, Jacqueline; Hill, Charlotte; Katz, Russell; Di Marzo, Vincenzo; Jutras-Aswad, Didier; Notcutt, William George; Martinez-Orgado, Jose; Robson, Philip J; Rohrback, Brian G; Thiele, Elizabeth; Whalley, Benjamin; Friedman, Daniel

    2014-06-01

    To present a summary of current scientific evidence about the cannabinoid, cannabidiol (CBD) with regard to its relevance to epilepsy and other selected neuropsychiatric disorders. We summarize the presentations from a conference in which invited participants reviewed relevant aspects of the physiology, mechanisms of action, pharmacology, and data from studies with animal models and human subjects. Cannabis has been used to treat disease since ancient times. Δ(9) -Tetrahydrocannabinol (Δ(9) -THC) is the major psychoactive ingredient and CBD is the major nonpsychoactive ingredient in cannabis. Cannabis and Δ(9) -THC are anticonvulsant in most animal models but can be proconvulsant in some healthy animals. The psychotropic effects of Δ(9) -THC limit tolerability. CBD is anticonvulsant in many acute animal models, but there are limited data in chronic models. The antiepileptic mechanisms of CBD are not known, but may include effects on the equilibrative nucleoside transporter; the orphan G-protein-coupled receptor GPR55; the transient receptor potential of vanilloid type-1 channel; the 5-HT1a receptor; and the α3 and α1 glycine receptors. CBD has neuroprotective and antiinflammatory effects, and it appears to be well tolerated in humans, but small and methodologically limited studies of CBD in human epilepsy have been inconclusive. More recent anecdotal reports of high-ratio CBD:Δ(9) -THC medical marijuana have claimed efficacy, but studies were not controlled. CBD bears investigation in epilepsy and other neuropsychiatric disorders, including anxiety, schizophrenia, addiction, and neonatal hypoxic-ischemic encephalopathy. However, we lack data from well-powered double-blind randomized, controlled studies on the efficacy of pure CBD for any disorder. Initial dose-tolerability and double-blind randomized, controlled studies focusing on target intractable epilepsy populations such as patients with Dravet and Lennox-Gastaut syndromes are being planned. Trials in

  1. Targeting Membrane Lipid a Potential Cancer Cure?

    PubMed Central

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Wai-Leng; Chuah, Lay-Hong; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing

    2017-01-01

    Cancer mortality and morbidity is projected to increase significantly over the next few decades. Current chemotherapeutic strategies have significant limitations, and there is great interest in seeking novel therapies which are capable of specifically targeting cancer cells. Given that fundamental differences exist between the cellular membranes of healthy cells and tumor cells, novel therapies based on targeting membrane lipids in cancer cells is a promising approach that deserves attention in the field of anticancer drug development. Phosphatidylethanolamine (PE), a lipid membrane component which exists only in the inner leaflet of cell membrane under normal circumstances, has increased surface representation on the outer membrane of tumor cells with disrupted membrane asymmetry. PE thus represents a potential chemotherapeutic target as the higher exposure of PE on the membrane surface of cancer cells. This feature as well as a high degree of expression of PE on endothelial cells in tumor vasculature, makes PE an attractive molecular target for future cancer interventions. There have already been several small molecules and membrane-active peptides identified which bind specifically to the PE molecules on the cancer cell membrane, subsequently inducing membrane disruption leading to cell lysis. This approach opens up a new front in the battle against cancer, and is of particular interest as it may be a strategy that may be prove effective against tumors that respond poorly to current chemotherapeutic agents. We aim to highlight the evidence suggesting that PE is a strong candidate to be explored as a potential molecular target for membrane targeted novel anticancer therapy. PMID:28167913

  2. Pharmacologic Management of Duchenne Muscular Dystrophy: Target Identification and Preclinical Trials

    PubMed Central

    Kornegay, Joe N.; Spurney, Christopher F.; Nghiem, Peter P.; Brinkmeyer-Langford, Candice L.; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets. PMID:24936034

  3. Aniracetam: its novel therapeutic potential in cerebral dysfunctional disorders based on recent pharmacological discoveries.

    PubMed

    Nakamura, Kazuo

    2002-01-01

    Aniracetam is a pyrrolidinone-type cognition enhancer that has been clinically used in the treatment of behavioral and psychological symptoms of dementia following stroke and in Alzheimer's disease. New discoveries in the behavioral pharmacology, biochemistry and pharmacokinetics of aniracetam provided new indications for this drug in the treatment of various CNS disorders or disease states. This article reviews these new findings and describes the effects of aniracetam in various rodent models of mental function impairment or cerebral dysfunction. Also, several metabolites of aniracetam have been reported to affect learning and memory in animals. It is, therefore, conceivable that major metabolites of aniracetam contribute to its pharmacological effects. The animal models, used in pharmacological evaluation of aniracetam included models of hypoattention, hypovigilance-arousal, impulsiveness, hyperactivity, fear and anxiety, depression, impaired rapid-eye movement sleep, disturbed temporal regulation, behavioral performance, and bladder hyperactivity. These are models of clinical disorders or symptoms that may include personality disorders, anxiety, depression, posttraumatic stress disorder, attention-deficit/hyperactivity disorder, autism, negative symptoms of schizophrenia, and sleep disorders. At present, there is no convincing evidence that promising effects of aniracetam in the animal models will guarantee its clinical efficacy. It is conceivable, however, that clinical trials will demonstrate beneficial effects of aniracetam in the above listed disease states. New findings regarding the mechanism of action of aniracetam, its central target sites, and its effects on signal transduction are also discussed in this review article.

  4. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    SciTech Connect

    Sarró, Eduard; Jacobs-Cachá, Conxita; Itarte, Emilio; Meseguer, Anna

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  5. [Derivatives of 1,4-dihydropyridines as "priviledged structures" and their pharmacological potential].

    PubMed

    Żorniak, Michał; Mitręga, Katarzyna; Krzemiński, Tadeusz F

    2011-01-01

    Derivatives of 1,4-dihydropyridine belong to group of calcium channel blockers and remain large group of antihypertensive agents. Particular chemical structure and presence of highly reactive binding groups make 1,4-dihydropyridines "privileged structures", which can be modified and change their pharmacological effects. This fact applies to new derivatives as well as metabolites of those drugs. Particularly interesting are outcomes of experiments with metabolites of furnidypine, which tend to cause different pharmacological effect, as well as have different profile of adverse effects from mother drug. Our paper concerns with potential new possibilities of using derivatives of 1,4-dihydropyridines, as well as their metabolites, as agents of more "optimised" effect.

  6. Galanin receptor antagonists : a potential novel pharmacological treatment for mood disorders.

    PubMed

    Ogren, Sven Ove; Kuteeva, Eugenia; Hökfelt, Tomas; Kehr, Jan

    2006-01-01

    The pathophysiology of mood disorders involves several genetic and social predisposing factors, as well as a dysregulated response to chronic stress. Accumulated evidence during the last two decades has implicated disturbances in brain serotonin and/or noradrenaline (norepinephrine) neurotransmission in the aetiology of depression. In fact, current pharmacological treatment for mood disorders is based on the use of drugs that act mainly by enhancing brain serotonin and noradrenaline neurotransmission by blockade of the active reuptake mechanism for these neurotransmitters. However, current antidepressant drugs have a delayed onset of therapeutic action, and a substantial number of patients do not respond adequately to them. In addition, these drugs have a number of adverse effects that limit patient compliance. In view of this, there is an intense search to identify novel (receptor) targets for antidepressant therapy. Recent studies have indicated that several neuropeptides and their receptors are potential candidates for the development of novel antidepressant treatment. In this context, galanin is of particular interest, since it is co-localised with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus, nuclei known to play a major role in affective disorders and in the action of antidepressant drugs. The actions of galanin are mediated by three receptor subtypes (GAL1, GAL2 and GAL3), which are coupled to different intracellular effector systems. Studies in rats have shown that galanin administered intracerebroventricularly is a potent inhibitor of mesencephalic serotonergic neurotransmission, as indicated by a long-lasting reduction in the release of serotonin in the hippocampus. This inhibitory effect is related to activation of the galanin receptors located on the dorsal raphe neurons. Moreover, intracerebroventricular galanin alters the gene expression of serotonin 5-HT1A autoreceptors in the dorsal raphe and also changes their

  7. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport.

    PubMed

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-09-01

    There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.

  8. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin.

    PubMed

    Kegelman, Timothy P; Wu, Bainan; Das, Swadesh K; Talukdar, Sarmistha; Beckta, Jason M; Hu, Bin; Emdad, Luni; Valerie, Kristoffer; Sarkar, Devanand; Furnari, Frank B; Cavenee, Webster K; Wei, Jun; Purves, Angela; De, Surya K; Pellecchia, Maurizio; Fisher, Paul B

    2017-01-10

    Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.

  9. Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase 3β Reinforces the Nrf2 Antioxidant Defense against Podocytopathy.

    PubMed

    Zhou, Sijie; Wang, Pei; Qiao, Yingjin; Ge, Yan; Wang, Yingzi; Quan, Songxia; Yao, Ricky; Zhuang, Shougang; Wang, Li Juan; Du, Yong; Liu, Zhangsuo; Gong, Rujun

    2016-08-01

    Evidence suggests that the glycogen synthase kinase 3 (GSK3)-dictated nuclear exclusion and degradation of Nrf2 is pivotal in switching off the self-protective antioxidant stress response after injury. Here, we examined the mechanisms underlying this regulation in glomerular disease. In primary podocytes, doxorubicin elicited cell death and actin cytoskeleton disorganization, concomitant with overactivation of GSK3β (the predominant GSK3 isoform expressed in glomerular podocytes) and minimal Nrf2 activation. SB216763, a highly selective small molecule inhibitor of GSK3, exerted a protective effect that depended on the potentiated Nrf2 antioxidant response, marked by increased Nrf2 expression and nuclear accumulation and augmented production of the Nrf2 target heme oxygenase-1. Ectopic expression of the kinase-dead mutant of GSK3β in cultured podocytes reinforced the doxorubicin-induced Nrf2 activation and prevented podocyte injury. Conversely, a constitutively active GSK3β mutant blunted the doxorubicin-induced Nrf2 response and exacerbated podocyte injury, which could be abolished by treatment with SB216763. In murine models of doxorubicin nephropathy or nephrotoxic serum nephritis, genetic targeting of GSK3β by doxycycline-inducible podocyte-specific knockout or pharmacologic targeting by SB216763 significantly attenuated albuminuria and ameliorated histologic signs of podocyte injury, including podocytopenia, loss of podocyte markers, podocyte de novo expression of desmin, and ultrastructural lesions of podocytopathy (such as foot process effacement). This beneficial outcome was likely attributable to an enhanced Nrf2 antioxidant response in glomerular podocytes because the selective Nrf2 antagonist trigonelline abolished the proteinuria-reducing and podocyte-protective effect. Collectively, our results suggest the GSK3β-regulated Nrf2 antioxidant response as a novel therapeutic target for protecting podocytes and treating proteinuric glomerulopathies.

  10. An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Messing, Albee

    2016-01-01

    The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small

  11. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    PubMed Central

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  12. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design.

    PubMed

    Miglianico, Marie; Nicolaes, Gerry A F; Neumann, Dietbert

    2016-04-14

    As a central regulator of metabolism, the AMP-activated protein kinase (AMPK) is an established therapeutic target for metabolic diseases. Beyond the metabolic area, the number of medical fields that involve AMPK grows continuously, expanding the potential applications for AMPK modulators. Even though indirect AMPK activators are used in the clinics for their beneficial metabolic outcome, the few described direct agonists all failed to reach the market to date, which leaves options open for novel targeting methods. As AMPK is not actually a single molecule and has different roles depending on its isoform composition, the opportunity for isoform-specific targeting has notably come forward, but the currently available modulators fall short of expectations. In this review, we argue that with the amount of available structural and ligand data, computer-based drug design offers a number of opportunities to undertake novel and isoform-specific targeting of AMPK.

  13. Synthesis and pharmacological evaluation of carboxycoumarins as a new antitumor treatment targeting lactate transport in cancer cells.

    PubMed

    Draoui, Nihed; Schicke, Olivier; Fernandes, Antony; Drozak, Xavier; Nahra, Fady; Dumont, Amélie; Douxfils, Jonathan; Hermans, Emmanuel; Dogné, Jean-Michel; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Sonveaux, Pierre; Feron, Olivier; Riant, Olivier

    2013-11-15

    Under hypoxia, cancer cells consume glucose and release lactate at a high rate. Lactate was recently documented to be recaptured by oxygenated cancer cells to fuel the TCA cycle and thereby to support tumor growth. Monocarboxylate transporters (MCT) are the main lactate carriers and therefore represent potential therapeutic targets to limit cancer progression. In this study, we have developed and implemented a stepwise in vitro screening procedure on human cancer cells to identify new potent MCT inhibitors. Various 7-substituted carboxycoumarins and quinolinone derivatives were synthesized and pharmacologically evaluated. Most active compounds were obtained using a palladium-catalyzed Buchwald-Hartwig type coupling reaction, which proved to be a quick and efficient method to obtain aminocarboxycoumarin derivatives. Inhibition of lactate flux revealed that the most active compound 19 (IC50 11 nM) was three log orders more active than the CHC reference compound. Comparison with warfarin, a conventional anticoagulant coumarin, further showed that compound 19 did not influence the prothrombin time which, together with a good in vitro ADME profile, supports the potential of this new family of compounds to act as anticancer drugs through inhibition of lactate flux.

  14. Tumour macrophages as potential targets of bisphosphonates

    PubMed Central

    2011-01-01

    Tumour cells communicate with the cells of their microenvironment via a series of molecular and cellular interactions to aid their progression to a malignant state and ultimately their metastatic spread. Of the cells in the microenvironment with a key role in cancer development, tumour associated macrophages (TAMs) are among the most notable. Tumour cells release a range of chemokines, cytokines and growth factors to attract macrophages, and these in turn release numerous factors (e.g. VEGF, MMP-9 and EGF) that are implicated in invasion-promoting processes such as tumour cell growth, flicking of the angiogenic switch and immunosuppression. TAM density has been shown to correlate with poor prognosis in breast cancer, suggesting that these cells may represent a potential therapeutic target. However, there are currently no agents that specifically target TAM's available for clinical use. Bisphosphonates (BPs), such as zoledronic acid, are anti-resorptive agents approved for treatment of skeletal complication associated with metastatic breast cancer and prostate cancer. These agents act on osteoclasts, key cells in the bone microenvironment, to inhibit bone resorption. Over the past 30 years this has led to a great reduction in skeletal-related events (SRE's) in patients with advanced cancer and improved the morbidity associated with cancer-induced bone disease. However, there is now a growing body of evidence, both from in vitro and in vivo models, showing that zoledronic acid can also target tumour cells to increase apoptotic cell death and decrease proliferation, migration and invasion, and that this effect is significantly enhanced in combination with chemotherapy agents. Whether macrophages in the peripheral tumour microenvironment are exposed to sufficient levels of bisphosphonate to be affected is currently unknown. Macrophages belong to the same cell lineage as osteoclasts, the major target of BPs, and are highly phagocytic cells shown to be sensitive to

  15. Animal models of asthma: innovative methods of lung research and new pharmacological targets.

    PubMed

    Braun, Armin; Tschernig, Thomas

    2006-06-01

    Allergic diseases like bronchial asthma are increasing in societies with western lifestyle. In the last years substantial progress was made in the understanding of the underlying mechanisms and explanations like the hygiene hypothesis were developed. However the exact mechanisms of the physiological and immunological events in the lung leading to bronchial asthma are still not fully understood. Therefore, animal models of asthma have been established and improved to study the complex cellular interactions in vivo. Since mice became the most frequently used animal species the methods for detecting lung physiology, e.g. lung function measurements were adapted to the small size of the murine lung. Laser-dissection and precision cut lung slices have become common techniques to get a view into distinct lung compartments and cells. In addition genomic and proteomic approaches are now used widely. On the other hand a major conclusion of the workshop stated that more than one species is necessary in research and for pharmacological screening in asthma and COPD. The resulting new understanding in the mechanisms of asthma pathogenesis has lead to a rapid identification of novel pharmaceutical targets for treatment of the disease.

  16. Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target1,2,3

    PubMed Central

    Abizaid, Alfonso

    2015-01-01

    Abstract The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles originate from the receptor’s constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1 receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation, inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur, in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped that improved treatments for a variety of disorders, including Parkinson’s disease, schizophrenia, addiction, obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments. PMID:26464979

  17. Targeted drug delivery to bone: pharmacokinetic and pharmacological properties of acidic oligopeptide-tagged drugs.

    PubMed

    Takahashi-Nishioka, Tatsuo; Yokogawa, Koichi; Tomatsu, Shunji; Nomura, Masaaki; Kobayashi, Shinjiro; Miyamoto, Ken-Ichi

    2008-03-01

    Site-specific drug delivery to bone is considered to be achievable by utilizing acidic amino acid homopeptides. We found that fluorescence-labeled acidic amino acid (L-Asp or L-Glu) homopeptides containing six or more residues bound strongly to hydroxyapatite, which is a major component of bone, and were selectively delivered to and retained in bone after systemic administration. We explored the applicability of this result for drug delivery by conjugation of estradiol and levofloxacin with an L-Asp hexapeptide. We also similarly tagged an enzyme, tissue-nonspecific alkaline phosphatase, to see whether this would improve the efficacy of enzyme replacement therapy. The L-Asp hexapeptide-tagged drugs, including the enzyme, were selectively delivered to bone in comparison with the untagged drugs. It was expected that the ester linkage to the hexapeptide would be susceptible to hydrolysis in situ, releasing the drug or enzyme from the acidic oligopeptide. An in vivo experiment confirmed the efficacy of L-Asp hexapeptide-tagged estradiol and levofloxacin, although there was some loss of bioactivity of estradiol and levofloxacin in vitro, suggesting that the acidic hexapeptide was partly removed by hydrolysis in the body after delivery to bone. The adverse effect of estradiol on the uterus was greatly reduced by conjugation to the hexapeptide. These results support the usefulness of acidic oligopeptides as bone-targeting carriers for therapeutic agents. We present some pharmacokinetic and pharmacological properties of the L-Asp hexapeptide-tagged drugs and enzyme.

  18. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    PubMed Central

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril AB; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; De Val, Sarah; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-01

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics. DOI: http://dx.doi.org/10.7554/eLife.21221.001 PMID:28137359

  19. Glycine transporter-1: a new potential therapeutic target for schizophrenia.

    PubMed

    Hashimoto, Kenji

    2011-01-01

    The hypofunction hypothesis of glutamatergic neurotransmission via N-methyl-D-aspartate (NMDA) receptors in the pathophysiology of schizophrenia suggests that increasing NMDA receptor function via pharmacological manipulation could provide a new therapeutic strategy for schizophrenia. The glycine modulatory site on NMDA receptor complex is the one of the most attractive therapeutic targets for schizophrenia. One means of enhancing NMDA receptor neurotransmission is to increase the availability of the obligatory co-agonist glycine at modulatory site on the NMDA receptors through the inhibition of glycine transporter-1 (GlyT-1) on glial cells. Some clinical studies have demonstrated that the GlyT-1 inhibitor sarcosine (N-methylglycine) shows antipsychotic activity in patients with schizophrenia. Currently, a number of pharmaceutical companies have been developing novel and selective GlyT-1 inhibitors for the treatment of schizophrenia. A recent double blind phase II study demonstrated that the novel GlyT-1 inhibitor RG1678 has a robust and clinically meaningful effect in patients with schizophrenia. In this article, the author reviews the recent findings on the GlyT-1 as a potential therapeutic target of schizophrenia.

  20. Cannabidiol potentiates pharmacological effects of Delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism.

    PubMed

    Hayakawa, Kazuhide; Mishima, Kenichi; Hazekawa, Mai; Sano, Kazunori; Irie, Keiichi; Orito, Kensuke; Egawa, Takashi; Kitamura, Yoshihisa; Uchida, Naoki; Nishimura, Ryoji; Egashira, Nobuaki; Iwasaki, Katsunori; Fujiwara, Michihiro

    2008-01-10

    Cannabidiol, a non-psychoactive component of cannabis, has been reported to have interactions with Delta(9)-tetrahydrocannabinol (Delta(9)-THC). However, such interactions have not sufficiently been clear and may have important implications for understanding the pharmacological effects of marijuana. In the present study, we investigated whether cannabidiol modulates the pharmacological effects of Delta(9)-THC on locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory in the eight-arm radial maze task in mice. In addition, we measured expression level of cannabinoid CB(1) receptor at striatum, cortex, hippocampus and hypothalamus. Delta(9)-THC (1, 3, 6 and 10 mg/kg) induced hypoactivity, catalepsy-like immobilisation and hypothermia in a dose-dependent manner. In addition, Delta(9)-THC (1, 3 and 6 mg/kg) dose-dependently impaired spatial memory in eight-arm radial maze. On the other hand, cannabidiol (1, 3, 10, 25 and 50 mg/kg) did not affect locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory on its own. However, higher dose of cannabidiol (10 or 50 mg/kg) exacerbated pharmacological effects of lower dose of Delta(9)-THC, such as hypoactivity, hypothermia and impairment of spatial memory. Moreover, cannabidiol (50 mg/kg) with Delta(9)-THC (1 mg/kg) enhanced the expression level of CB(1) receptor expression in hippocampus and hypothalamus. Cannabidiol potentiated pharmacological effects of Delta(9)-THC via CB(1) receptor-dependent mechanism. These findings may contribute in setting the basis for interaction of cannabinoids and to find a cannabinoid mechanism in central nervous system.

  1. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    PubMed

    Pertwee, Roger G

    2012-12-05

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'.

  2. A Biomedical Investigation of the Hepatoprotective Effect of Radix salviae miltiorrhizae and Network Pharmacology-Based Prediction of the Active Compounds and Molecular Targets

    PubMed Central

    Hong, Ming; Li, Sha; Wang, Ning; Tan, Hor-Yue; Cheung, Fan; Feng, Yibin

    2017-01-01

    Radix salviae miltiorrhizae (Danshen in Chinese), a classic traditional Chinese medicine (TCM) herb, has been used for centuries to treat liver diseases. In this study, the preventive and curative potential of Danshen aqueous extract on acute/chronic alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) was studied. The in vivo results indicated that Danshen could alleviate hepatic inflammation, fatty degeneration, and haptic fibrogenesis in ALD and NAFLD models. In the aspect of mechanism of action, the significant reduction in MDA levels in both ALD and NAFLD models implies the decreased levels of oxidative stress by Danshen. However, Danshen treatment could not activate the internal enzymatic antioxidant system in ALD and NAFLD models. To further explore the hepatoprotective mechanism of Danshen, an in silico-based network pharmacology approach was employed in the present study. The pharmacological network analysis result revealed that six potential active ingredients such as tanshinone iia, salvianolic acid b, and Danshensu may contribute to the hepatoprotective effects of Danshen on ALD and NAFLD. The action mechanism may relate with regulating the intracellular molecular targets such as PPARα, CYP1A2, and MMP2 for regulation of lipid metabolism, antioxidant and anti-fibrogenesis by these potential active ingredients. Our studies suggest that the combination of network pharmacology strategy with in vivo experimental study may provide a forceful tool for exploring the mechanism of action of traditional Chinese medicine (TCM) herb and developing novel bioactive ingredients. PMID:28335383

  3. The Potential Use of Pharmacological Agents to Modulate Orthodontic Tooth Movement (OTM)

    PubMed Central

    Kouskoura, Thaleia; Katsaros, Christos; von Gunten, Stephan

    2017-01-01

    The biological processes that come into play during orthodontic tooth movement (OTM) have been shown to be influenced by a variety of pharmacological agents. The effects of such agents are of particular relevance to the clinician as the rate of tooth movement can be accelerated or reduced as a result. This review aims to provide an overview of recent insights into drug-mediated effects and the potential use of drugs to influence the rate of tooth movement during orthodontic treatment. The limitations of current experimental models and the need for well-designed clinical and pre-clinical studies are also discussed. PMID:28228735

  4. Pharmacological Evaluation of Chrozophora tinctoria as Wound Healing Potential in Diabetic Rat's Model

    PubMed Central

    Semwal, Monika; Dubey, Susheel Kumar

    2016-01-01

    Objective. The study was designed to evaluate pharmacological potential of hydroalcoholic leaves extract of Chrozophora tinctoria intended for wound healing in diabetic rats' model. Methods. The method used to evaluate the pharmacological potential of hydroalcoholic leave extract was physical incision rat model. In this model, cutting of the skin and/or other tissues with a sharp blade has been made and the rapid disruption of tissue integrity with minimal collateral damage was observed shortly. Animals used in the study were divided into four groups that consist of six animals in each group. Group I serves as normal control, Group II serves as disease control, Group III was used as standard treatment (Povidone iodine 50 mg/kg b.w.), and Group IV was used for test drug (C. tinctoria 50 mg/kg b.w.). Result. The hydroalcoholic leave extract of Chrozophora tinctoria has been significantly observed to heal the wound (98%) in diabetic rats within 21 days, while standard drug (Povidone iodine) healed the wound about 95% in the same condition. The oral dose (50 mg/kg b.w.) of Chrozophora tinctoria was also found to improve the elevated blood glucose level in comparison to disease control group, which increased after the oral administration of Streptozotocin. Conclusion. The Chrozophora tinctoria has significant wound healing potential in the animal having physically damaged tissue in diabetic condition. PMID:28097147

  5. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    PubMed Central

    de Jonge, W J; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This ‘nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity. PMID:17502850

  6. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    PubMed Central

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’. PMID:23108552

  7. Do pharmacological approaches that prevent opioid tolerance target different elements in the same regulatory machinery?

    PubMed

    Garzón, Javier; Rodríguez-Muñoz, María; Sánchez-Blázquez, Pilar

    2008-06-01

    In the nervous system, the interaction of opioids like heroin and morphine with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of tolerance to these opioids, as well as physical dependence. Tolerance implies that higher doses of these drugs must be consumed in order to obtain an equivalent sensation, a situation that contributes notably to the social problems surrounding recreational opioid abuse. The mechanisms that promote opioid tolerance involve a series of adaptive changes in the MOR and in the post-receptor signalling elements. Pharmacological studies have consistently identified a number of signalling proteins relevant to morphine-induced tolerance, including the delta-opioid receptor (DOR), protein kinase C (PKC), protein kinase A (PKA), calcium/calmodulin-dependent kinase II (CaMKII), nitric oxide synthase (NOS), N-methyl-D-aspartate acid glutamate receptors (NMDAR), and regulators of G-signalling (RGS) proteins. Thus, it is feasible that these treatments which diminish morphine tolerance target distinct elements within the same regulatory machinery. In this scheme, the signals originated at the agonist-activated MORs would be recognised by elements such as the NMDARs, which in turn exert a negative feedback on MOR-evoked signalling. This process involves DOR regulation of MORs, MOR-induced activation of NMDARs (probably via the regulation of Src, recruiting PKC and Galpha subunits) and the NMDAR-mediated activation of CaMKII. The active CaMKII promotes the sequestering of morphine-activated Gbetagamma dimers by phosducin-like proteins (PhLP) and of Galpha subunits by RGS proteins and tolerance to opioids like morphine develops. Future efforts to study these phenomena should focus on fitting additional pieces into this puzzle in order to fully define the mechanism underlying the desensitization of MORs in neural cells.

  8. Evaluation of an Epitypified Ophiocordyceps formosana (Cordyceps s.l.) for Its Pharmacological Potential

    PubMed Central

    Wang, Yen-Wen; Hong, Tzu-Wen; Tai, Yu-Ling; Wang, Ying-Jing; Tsai, Sheng-Hong; Lien, Pham Thi Kim; Chou, Tzu-Ho; Lai, Jui-Ya; Chu, Richard; Ding, Shih-Torng; Irie, Kenji; Li, Tsai-Kun; Tzean, Shean-Shong; Shen, Tang-Long

    2015-01-01

    The substantial merit of Cordyceps s.l. spp. in terms of medicinal benefits is largely appreciated. Nevertheless, only few studies have characterized and examined the clinical complications of the use of health tonics containing these species. Here, we epitypified C. formosana isolates that were collected and characterized as Ophiocordyceps formosana based on morphological characteristics, molecular phylogenetic analyses, and metabolite profiling. Thus, we renamed and transferred C. formosana to the new protologue Ophiocordyceps formosana (Kobayasi & Shimizu) Wang, Tsai, Tzean & Shen comb. nov. Additionally, the pharmacological potential of O. formosana was evaluated based on the hot-water extract from its mycelium. The relative amounts of the known bioactive ingredients that are unique to Cordyceps s.l. species in O. formosana were found to be similar to the amounts in O. sinensis and C. militaris, indicating the potential applicability of O. formosana for pharmacological uses. Additionally, we found that O. formosana exhibited antioxidation activities in vitro and in vivo that were similar to those of O. sinensis and C. militaris. Furthermore, O. formosana also displayed conspicuously effective antitumor activity compared with the tested Cordyceps s.l. species. Intrinsically, O. formosana exhibited less toxicity than the other Cordyceps species. Together, our data suggest that the metabolites of O. formosana may play active roles in complementary medicine. PMID:26451152

  9. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy.

    PubMed

    Law, Betty Yuen Kwan; Mok, Simon Wing Fai; Wu, An Guo; Lam, Christopher Wai Kei; Yu, Margaret Xin Yi; Wong, Vincent Kam Wai

    2016-03-17

    Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.

  10. Design, synthesis and pharmacological evaluation of novel NO-releasing benzimidazole hybrids as potential antihypertensive candidate.

    PubMed

    Zhang, Yanchun; Xu, Jinyi; Li, Yunman; Yao, Hequan; Wu, Xiaoming

    2015-05-01

    Two series of novel NO-releasing benzimidazole derivatives (8a-e, 9a-g) were designed and synthesized by coupling nitro ester and furoxan NO-donor moieties with benzimidazole biphenyl skeleton. The NO-releasing assay indicated that all the target compounds had different level of NO-releasing ability. Furthermore, the isolated organ assay (rat aortic strips) was used to evaluate the antagonism of Ang II-induced vasoconstriction ability. It was observed that the pA2 values of compounds 8e and 9e were better than that of lead compound 6. Moreover, the pharmacological investigation showed that the antagonism of Ang II-induced pressure response by oral administration of compound 8e was obviously superior to that of lead compound 6, and comparable to that of the positive control losartan. These results suggested that NO-releasing hybrids may provide a promising approach for the discovery of novel antihypertensive agents.

  11. Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer

    PubMed Central

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is well-known to evoke cancer invasion/metastasis, leading to a high frequency of mortality in patients with metastatic colorectal cancer (mCRC). Protein tyrosine phosphatase (PTPase)-targeted therapy has been identified as a novel cancer therapeutic. Previously, we proved that sorafenib with anti-EMT potency prevents TGF-β1-induced EMT/invasion by directly activating SH2-domain-containing phosphatase 1 (SHP-1)-dependent p-STAT3Tyr705 suppression in hepatocellular carcinoma. Regorafenib has a closely related chemical structure as sorafenib and is approved for the pharmacotherapy of mCRC. Herein, we evaluate whether regorafenib activates PTPase SHP-1 in the same way as sorafenib to abolish EMT-related invasion/metastasis in CRC. Notably, regorafenib exerted potent anti-EMT activity to curb TGF-β1-induced EMT/invasion in vitro as well inhibited lung metastatic outgrowth of SW480 mesenchymal cells in vivo. Mechanistically, regorafenib-enhanced SHP-1 activity significantly impeded TGF-β1-induced EMT/invasion via low p-STAT3Tyr705 level as proved by a SHP-1 inhibitor or siRNA-mediated SHP-1 depletion. Conversely, overexpression of SHP-1 further enhanced the inhibitory effects of regorafenib on TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Regorafenib directly activates SHP-1 by potently relieving the autoinhibited N-SH2 domain of SHP-1 to inhibit TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Importantly, the clinical evidence indicated that SHP-1 was positively correlated with E-cadherin and that significantly determined the overall survival of CRC patients. This result further confirms our in vitro data that SHP-1 is a negative regulatory PTPase in EMT regulation and serves as a pharmacological target for mCRC therapy. Collectively, activating PTPase SHP-1 by regorafenib focusing on its anti-EMT activity might be a useful pharmacotherapy for mCRC. PMID:27580057

  12. Novel Pharmacological Activity of Artesunate and Artemisinin: Their Potential as Anti-Tubercular Agents

    PubMed Central

    Choi, Won Hyung

    2017-01-01

    Tuberculosis is a major infectious disease that globally causes the highest human mortality. From this aspect, this study was carried out to evaluate novel pharmacological activities/effects of artesunate and artemisinin causing anti-tubercular activity/effects against Mycobacterium tuberculosis (Mtb). The anti-Mtb activities/effects of artesunate and artemisinin were evaluated using different anti-Mtb indicator assays, such as the resazurin microtiter assay, the Mycobacteria Growth Indicator Tube (MGIT) 960 system assay, and the Ogawa slant medium assay, as well as in vivo tests. Artesunate showed selective anti-Mtb effects by strongly inhibiting the growth of Mtb compared to artemisinin, and consistently induced anti-Mtb activity/effects by effectively inhibiting Mtb in the MGIT 960 system and in Ogawa slant medium for 21 days with a single dose; its minimum inhibitory concentration was 300 µg/mL in in vitro testing. Furthermore, artesunate demonstrated an anti-tubercular effect/action with a daily dose of 3.5 mg/kg in an in vivo test for four weeks, which did not indicate or induce toxicity and side effects. These results demonstrate that artesunate effectively inhibits the growth and/or proliferation of Mtb through novel pharmacological activities/actions, as well as induces anti-Mtb activity. This study shows its potential as a potent candidate agent for developing new anti-tuberculosis drugs of an effective/safe next generation, and suggests novel insights into its effective use by repurposing existing drugs through new pharmacological activity/effects as one of the substantive alternatives for inhibiting tuberculosis. PMID:28287416

  13. TASK-3 as a Potential Antidepressant Target

    PubMed Central

    Gotter, Anthony L.; Santarelli, Vincent P.; Doran, Scott M.; Tannenbaum, Pamela L.; Kraus, Richard L.; Rosahl, Thomas W.; Meziane, Hamid; Montial, Marina; Reiss, Duane R.; Wessner, Keith; McCampbell, Alexander; Stevens, Joanne; Brunner, Joseph; Fox, Steven V.; Uebele, Victor N.; Bayliss, Douglas A.; Winrow, Christopher J.; Renger, John J.

    2011-01-01

    Modulation of TASK-3 (Kcnk9) potassium channels affect neurotransmitter release in thalamocortical centers and other sleep-related nuclei having the capacity to regulate arousal cycles and REM sleep changes associated with mood disorders and antidepressant action. Circumstantial evidence from this and previous studies suggest the potential for TASK-3 to be a novel antidepressant therapeutic target; TASK-3 knock-out mice display augmented circadian amplitude and exhibit sleep architecture characterized by suppressed REM activity. Detailed analysis of locomotor activity indicate that the amplitude of activity bout duration and bout number are augmented in TASK-3 mutants well beyond that seen wildtypes, findings substantiated by amplitude increases in body temperature and EEG recordings of sleep stage bouts. Polysomnographic analysis of TASK-3 mutants reveal increases in nocturnal active wake and suppressed REM sleep time while increased slow wave sleep typifies the inactive phase, findings that have implications for the cognitive impact of reduced TASK-3 activity. In direct measures of their resistance to despair behavior, TASK-3 knock-outs displayed significant decreases in immobility relative to wildtype controls in both tail suspension and forced swim tests. Treatment of wildtype animals with the antidepressant Fluoxetine markedly reduced REM sleep, while leaving active wake and slow wave sleep relatively intact. Remarkably, these effects were absent in TASK-3 mutants indicating that TASK-3 is either directly involved in the mechanism of this drug’s action, or participates in parallel pathways that achieve the same effect. Together, these results support the TASK-3 channel to act as a therapeutic target for antidepressant action. PMID:21885038

  14. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    PubMed Central

    Rivera-Acevedo, Ricardo E.; Pless, Stephan A.; Schwarz, Stephan K.W.; Ahern, Christopher A.

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing a pathway for large and otherwise relatively impermeant molecules. Further, we have shown recently that these nonselective cation channels, when activated by capsaicin, are potently and reversibly blocked by external application of quaternary ammonium compounds and local anesthetics. Here we describe a novel phenomenon in transient receptor potential channel pharmacology whereby their expression levels in Xenopus laevis oocytes, as assessed by the magnitude of macroscopic currents, are negatively correlated with extracellular blocker affinity: small current densities give rise to nanomolar blockade by quaternary ammoniums and this affinity decreases linearly as current density increases. Possible mechanisms to explain these data are discussed in light of similar observations in other channels and receptors. PMID:23428812

  15. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  16. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach

    PubMed Central

    2012-01-01

    Background Torcetrapib, a cholesteryl ester transfer protein (CETP) inhibitor which raises high-density lipoprotein (HDL) cholesterol and reduces low-density lipoprotein (LDL) cholesterol level, has been documented to increase mortality and cardiac events associated with adverse effects. However, it is still unclear the underlying mechanisms of the off-target effects of torcetrapib. Results In the present study, we developed a systems biology approach by combining a human reassembled signaling network with the publicly available microarray gene expression data to provide unique insights into the off-target adverse effects for torcetrapib. Cytoscape with three plugins including BisoGenet, NetworkAnalyzer and ClusterONE was utilized to establish a context-specific drug-gene interaction network. The DAVID functional annotation tool was applied for gene ontology (GO) analysis, while pathway enrichment analysis was clustered by ToppFun. Furthermore, potential off-targets of torcetrapib were predicted by a reverse docking approach. In general, 10503 nodes were retrieved from the integrative signaling network and 47660 inter-connected relations were obtained from the BisoGenet plugin. In addition, 388 significantly up-regulated genes were detected by Significance Analysis of Microarray (SAM) in adrenal carcinoma cells treated with torcetrapib. After constructing the human signaling network, the over-expressed microarray genes were mapped to illustrate the context-specific network. Subsequently, three conspicuous gene regulatory networks (GRNs) modules were unearthed, which contributed to the off-target effects of torcetrapib. GO analysis reflected dramatically over-represented biological processes associated with torcetrapib including activation of cell death, apoptosis and regulation of RNA metabolic process. Enriched signaling pathways uncovered that IL-2 Receptor Beta Chain in T cell Activation, Platelet-Derived Growth Factor Receptor (PDGFR) beta signaling pathway, IL

  17. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease

    PubMed Central

    Takahashi, Hiroto; Xia, Peng; Cui, Jiankun; Talantova, Maria; Bodhinathan, Karthik; Li, Wenjun; Holland, Emily A.; Tong, Gary; Piña-Crespo, Juan; Zhang, Dongxian; Nakanishi, Nobuki; Larrick, James W.; McKercher, Scott R.; Nakamura, Tomohiro; Wang, Yuqiang; Lipton, Stuart A.

    2015-01-01

    Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in ‘Big Pharma,’ ‘undruggable’ for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders. PMID:26477507

  18. Multi-target pharmacology: possibilities and limitations of the "skeleton key approach" from a medicinal chemist perspective.

    PubMed

    Talevi, Alan

    2015-01-01

    Multi-target drugs have raised considerable interest in the last decade owing to their advantages in the treatment of complex diseases and health conditions linked to drug resistance issues. Prospective drug repositioning to treat comorbid conditions is an additional, overlooked application of multi-target ligands. While medicinal chemists usually rely on some version of the lock and key paradigm to design novel therapeutics, modern pharmacology recognizes that the mid- and long-term effects of a given drug on a biological system may depend not only on the specific ligand-target recognition events but also on the influence of the repeated administration of a drug on the cell gene signature. The design of multi-target agents usually imposes challenging restrictions on the topology or flexibility of the candidate drugs, which are briefly discussed in the present article. Finally, computational strategies to approach the identification of novel multi-target agents are overviewed.

  19. Evaluating protein-protein interaction (PPI) networks for diseases pathway, target discovery, and drug-design using 'in silico pharmacology'.

    PubMed

    Chakraborty, Chiranjib; Doss C, George Priya; Chen, Luonan; Zhu, Hailong

    2014-01-01

    In silico pharmacology is a promising field in the current state-of drug discovery. This area exploits "protein-protein Interaction (PPI) network analysis for drug discovery using the drug "target class". To document the current status, we have discussed in this article how this an integrated system of PPI networks contribute to understand the disease pathways, present state-of-the-art drug target discovery and drug discovery process. This review article enhances our knowledge on conventional drug discovery and current drug discovery using in silico techniques, best "target class", universal architecture of PPI networks, the present scenario of disease pathways and protein-protein interaction networks as well as the method to comprehend the PPI networks. Taken all together, ultimately a snapshot has been discussed to be familiar with how PPI network architecture can used to validate a drug target. At the conclusion, we have illustrated the future directions of PPI in target discovery and drug-design.

  20. Pharmacologic targeting of S6K1 in PTEN-deficient neoplasia

    PubMed Central

    Liu, Hongqi; Feng, Xizhi; Ennis, Kelli N.; Behrmann, Catherine A.; Sarma, Pranjal; Jiang, Tony T.; Kofuji, Satoshi; Niu, Liang; Stratton, Yiwen; Thomas, Hala Elnakat; Yoon, Sang-Oh; Sasaki, Atsuo T.; Plas, David R.

    2017-01-01

    SUMMARY Genetic S6K1 inactivation can induce apoptosis in PTEN-deficient cells. We analyzed the therapeutic potential of S6K1 inhibitors in PTEN-deficient T cell leukemia and glioblastoma. Results revealed that the S6K1 inhibitor LY-2779964 was relatively ineffective as a single agent, while S6K1-targeting AD80 induced cytotoxicity selectively in PTEN-deficient cells. In vivo, AD80 rescued 50% of mice transplanted with PTEN-deficient leukemia cells. Cells surviving LY-2779964 treatment exhibited inhibitor-induced S6K1 phosphorylation due to increased mTOR-S6K1 co-association, which primed rapid recovery of S6K1 signaling. In contrast, AD80 avoided S6K1 phosphorylation and mTOR co-association, resulting in durable suppression of S6K1-induced signaling and protein synthesis. Kinome analysis revealed that AD80 coordinately inhibits S6K1 together with the TAM family tyrosine kinase AXL. TAM suppression by BMS-777607 or genetic knockdown potentiated cytotoxic responses to LY-2779964 in PTEN-deficient glioblastoma cells. These results reveal that combination targeting of S6K1 and TAMs is a potential strategy for treatment of PTEN-deficient malignancy. PMID:28249155

  1. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker

    PubMed Central

    Liu, Hailan; Liu, Jing-Yuan; Wu, Xi; Zhang, Jian-Ting

    2010-01-01

    Human fatty acid synthase (FASN) is a 270-kDa cytosolic dimeric enzyme that is responsible for palmitate synthesis. FASN is slowly emerging and rediscovered as a marker for diagnosis and prognosis of human cancers. Recent studies showed that FASN is an oncogene and inhibition of FASN effectively and selectively kill cancer cells. With recent publications of the FASN crystal structure and the new development of FASN inhibitors, targeting FASN opens a new window of opportunity for metabolically combating cancers. In this article, we will review critically the recent progresses in understanding the structure, function, and the role of FASN in cancers and pharmacologically targeting FASN for human cancer treatment. PMID:20706604

  2. Pharmacological targeting of chemokine (C-X-C motif) receptor 4 in porcine polytrauma and hemorrhage models

    PubMed Central

    Bach, Harold H.; Wong, Yee M.; LaPorte, Heather M.; Gamelli, Richard L.; Majetschak, Matthias

    2016-01-01

    BACKGROUND Recent evidence suggests that chemokine receptor CXCR4 regulates vascular α1-adrenergic receptor function and that the noncognate CXCR4 agonist ubiquitin has therapeutic potential after trauma/hemorrhage. Pharmacologic properties of ubiquitin in large animal trauma models, however, are poorly characterized. Thus, the aims of the present study were to determine the effects of CXCR4 modulation on resuscitation requirements after polytrauma, to assess whether ubiquitin influences survival times after lethal polytrauma-hemorrhage, and to characterize its dose-effect profile in porcine models. METHODS Anesthetized pigs underwent polytrauma (PT, femur fractures/lung contusion) alone (Series 1) or PT/hemorrhage (PT/H) to a mean arterial blood pressure of 30 mmHg with subsequent fluid resuscitation (Series 2 and 3) or 40% blood volume hemorrhage within 15 minutes followed by 2.5% blood volume hemorrhage every 15 minutes without fluid resuscitation (Series 4). In Series 1, ubiquitin (175 and 350 nmol/kg), AMD3100 (CXCR4 antagonist, 350 nmol/kg), or vehicle treatment 60 minutes after PT was performed. In Series 2, ubiquitin (175, 875, and 1,750 nmol/kg) or vehicle treatment 60 minutes after PT/H was performed. In Series 3, ubiquitin (175 and 875 nmol/kg) or vehicle treatment at 60 and 180 minutes after PT/H was performed. In Series 4, ubiquitin (875 nmol/kg) or vehicle treatment 30 minutes after hemorrhage was performed. RESULTS In Series 1, resuscitation fluid requirements were significantly reduced by 40% with 350-nmol/kg ubiquitin and increased by 25% with AMD3100. In Series 2, median survival time was 190 minutes with vehicle, 260 minutes with 175-nmol/kg ubiquitin, and longer than 420 minutes with 875-nmol/kg and 1,750-nmol/kg ubiquitin (p < 0.05 vs. vehicle). In Series 3, median survival time was 288 minutes with vehicle and 336 minutes and longer than 420 minutes (p < 0.05 vs. vehicle) with 175-nmol/kg and 875-nmol/kg ubiquitin, respectively. In Series 4

  3. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides.

    PubMed

    Cheng, Jiang; Zhou, Zhi-Wei; Sheng, Hui-Ping; He, Lan-Jie; Fan, Xue-Wen; He, Zhi-Xu; Sun, Tao; Zhang, Xueji; Zhao, Ruan Jin; Gu, Ling; Cao, Chuanhai; Zhou, Shu-Feng

    2015-01-01

    Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People's Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest. LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients. LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation. They protect retinal ganglion cells in experimental models of glaucoma. LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults. They also show potent immunoenhancing activities in vitro and in vivo. Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults. LBPs ameliorate the symptoms of mice with Alzheimer's disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities. They reduce irradiation- or chemotherapy-induced organ toxicities. LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis

  4. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides

    PubMed Central

    Cheng, Jiang; Zhou, Zhi-Wei; Sheng, Hui-Ping; He, Lan-Jie; Fan, Xue-Wen; He, Zhi-Xu; Sun, Tao; Zhang, Xueji; Zhao, Ruan Jin; Gu, Ling; Cao, Chuanhai; Zhou, Shu-Feng

    2015-01-01

    Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People’s Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs. Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions. LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest. LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients. LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation. They protect retinal ganglion cells in experimental models of glaucoma. LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults. They also show potent immunoenhancing activities in vitro and in vivo. Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults. LBPs ameliorate the symptoms of mice with Alzheimer’s disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities. They reduce irradiation- or chemotherapy-induced organ toxicities. LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis

  5. Glucagon-Like Peptide 1 Receptor: A Novel Pharmacological Target for Treating Human Bronchial Hyperresponsiveness.

    PubMed

    Rogliani, Paola; Calzetta, Luigino; Capuani, Barbara; Facciolo, Francesco; Cazzola, Mario; Lauro, Davide; Matera, Maria Gabriella

    2016-12-01

    Asthma is associated with several comorbidities, such as type 2 diabetes mellitus, which may lead to bronchial hyperresponsiveness (BHR). Because glucagon-like peptide (GLP) 1 regulates glucose homeostasis, we pharmacologically investigated the influence of the GLP1 receptor (GLP1-R) agonist, exendin-4, on BHR induced in human isolated airways. The effect of exendin-4 was assessed in human isolated airways undergoing overnight passive sensitization and high-glucose stimulation, two conditions mimicking ex vivo the BHR typical of patients with asthma and diabetes, respectively. GLP1-R activation modulated the bronchial contractile tone induced by transmural stimulation (maximum effect -56.7 ± 3.6%; onset of action, 28.2 ± 4.4 min). Exendin-4 prevented BHR induced by both high-glucose stimulation and passive sensitization (-37.8 ± 7.5% and -74.9 ± 3.9%, P < 0.05 versus control, respectively) through selective activation of GLP1-R and in an epithelium-independent manner. The cAMP-dependent protein kinase A inhibitor, KT5720, reduced the protective role of exendin-4 (P > 0.05 versus passively sensitized tissues). The GLP1-R stimulation by overnight incubation with exendin-4 induced the overexpression of adenylyl cyclase isoform V (+48.4 ± 1.3%, P < 0.05 versus passively sensitized tissues) and restored the cAMP levels depleted by this procedure (+330.8 ± 63.3%, P < 0.05 versus passively sensitized tissues). In conclusion, GLP1-R may represent a novel target for treating BHR by activating the cAMP-dependent protein kinase A pathway in human airways, and GLP1-R agonists could be used as a "new" class to treat patients with asthma and patients with type 2 diabetes mellitus with BHR.

  6. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models

    PubMed Central

    Schiffer, Mario; Teng, Beina; Gu, Changkyu; Shchedrina, Valentina A.; Kasaikina, Marina; Pham, Vincent A.; Hanke, Nils; Rong, Song; Gueler, Faikah; Schroder, Patricia; Tossidou, Irini; Park, Joon-Keun; Staggs, Lynne; Haller, Hermann; Erschow, Sergej; Hilfiker-Kleiner, Denise; Wei, Changli; Chen, Chuang; Tardi, Nicholas; Hakroush, Samy; Selig, Martin K.; Vasilyev, Aleksandr; Merscher, Sandra; Reiser, Jochen; Sever, Sanja

    2015-01-01

    Dysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to crosslink actin microfilaments into higher order structures have been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell. We found that use of the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus increased actin polymerization in injured podocytes, was sufficient to improve renal health in diverse models of both transient kidney disease and of CKD. In particular, administration of Bis-T-23 in these renal disease models restored the normal ultrastructure of podocyte foot processes, lowered proteinuria, lowered collagen IV deposits in the mesangial matrix, diminished mesangial matrix expansion and extended lifespan. These results further establish that alterations in the actin cytoskeleton of kidney podocytes is a common hallmark of CKD, while also underscoring the significant regenerative potential of injured glomeruli and that targeting the oligomerization cycle of dynamin represents an attractive potential therapeutic target to treat CKD. PMID:25962121

  7. Actin as a potential target for decavanadate.

    PubMed

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  8. Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation

    PubMed Central

    Amador, Ariadna; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag. PMID:27603791

  9. Bioluminescence-Based High-Throughput Screen Identifies Pharmacological Agents That Target Neurotransmitter Signaling in Small Cell Lung Carcinoma

    PubMed Central

    Improgo, Ma. Reina D.; Johnson, Christopher W.; Tapper, Andrew R.; Gardner, Paul D.

    2011-01-01

    Background Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative. Methods and Findings We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard pharmacological agents and RNA interference using two human SCLC cell lines. We then utilized the assay in a high-throughput screen using the LOPAC1280 compound library. The screening identified several drugs that target classic cancer signaling pathways as well as neuroendocrine markers in SCLC. In particular, perturbation of dopaminergic and serotonergic signaling inhibits SCLC cell viability. Conclusions The convergence of our pharmacological data with key SCLC pathway components reiterates the importance of neurotransmitter signaling in SCLC etiology and points to possible leads for drug development. PMID:21931655

  10. Impaired osteoblastogenesis in a murine model of dominant osteogenesis imperfecta: a new target for osteogenesis imperfecta pharmacological therapy.

    PubMed

    Gioia, Roberta; Panaroni, Cristina; Besio, Roberta; Palladini, Giovanni; Merlini, Giampaolo; Giansanti, Vincenzo; Scovassi, Ivana A; Villani, Simona; Villa, Isabella; Villa, Anna; Vezzoni, Paolo; Tenni, Ruggero; Rossi, Antonio; Marini, Joan C; Forlino, Antonella

    2012-07-01

    The molecular basis underlying the clinical phenotype in bone diseases is customarily associated with abnormal extracellular matrix structure and/or properties. More recently, cellular malfunction has been identified as a concomitant causative factor and increased attention has focused on stem cells differentiation. Classic osteogenesis imperfecta (OI) is a prototype for heritable bone dysplasias: it has dominant genetic transmission and is caused by mutations in the genes coding for collagen I, the most abundant protein in bone. Using the Brtl mouse, a well-characterized knockin model for moderately severe dominant OI, we demonstrated an impairment in the differentiation of bone marrow progenitor cells toward osteoblasts. In mutant mesenchymal stem cells (MSCs), the expression of early (Runx2 and Sp7) and late (Col1a1 and Ibsp) osteoblastic markers was significantly reduced with respect to wild type (WT). Conversely, mutant MSCs generated more colony-forming unit-adipocytes compared to WT, with more adipocytes per colony, and increased number and size of triglyceride drops per cell. Autophagy upregulation was also demonstrated in mutant adult MSCs differentiating toward osteogenic lineage as consequence of endoplasmic reticulum stress due to mutant collagen retention. Treatment of the Brtl mice with the proteasome inhibitor Bortezomib ameliorated both osteoblast differentiation in vitro and bone properties in vivo as demonstrated by colony-forming unit-osteoblasts assay and peripheral quantitative computed tomography analysis on long bones, respectively. This is the first report of impaired MSC differentiation to osteoblasts in OI, and it identifies a new potential target for the pharmacological treatment of the disorder.

  11. The vesicular monoamine transporter-2: an important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse.

    PubMed

    Nickell, Justin R; Siripurapu, Kiran B; Vartak, Ashish; Crooks, Peter A; Dwoskin, Linda P

    2014-01-01

    Methamphetamine abuse escalates, but no approved therapeutics are available to treat addicted individuals. Methamphetamine increases extracellular dopamine in reward-relevant pathways by interacting at vesicular monoamine transporter-2 (VMAT2) to inhibit dopamine uptake and promote dopamine release from synaptic vesicles, increasing cytosolic dopamine available for reverse transport by the dopamine transporter (DAT). VMAT2 is the target of our iterative drug discovery efforts to identify pharmacotherapeutics for methamphetamine addiction. Lobeline, the major alkaloid in Lobelia inflata, potently inhibited VMAT2, methamphetamine-evoked striatal dopamine release, and methamphetamine self-administration in rats but exhibited high affinity for nicotinic acetylcholine receptors (nAChRs). Defunctionalized, unsaturated lobeline analog, meso-transdiene (MTD), exhibited lobeline-like in vitro pharmacology, lacked nAChR affinity, but exhibited high affinity for DAT, suggesting potential abuse liability. The 2,4-dicholorophenyl MTD analog, UKMH-106, exhibited selectivity for VMAT2 over DAT, inhibited methamphetamine-evoked dopamine release, but required a difficult synthetic approach. Lobelane, a saturated, defunctionalized lobeline analog, inhibited the neurochemical and behavioral effects of methamphetamine; tolerance developed to the lobelane-induced decrease in methamphetamine self-administration. Improved drug-likeness was afforded by the incorporation of a chiral N-1,2-dihydroxypropyl moiety into lobelane to afford GZ-793A, which inhibited the neurochemical and behavioral effects of methamphetamine, without tolerance. From a series of 2,5-disubstituted pyrrolidine analogs, AV-2-192 emerged as a lead, exhibiting high affinity for VMAT2 and inhibiting methamphetamine-evoked dopamine release. Current results support the hypothesis that potent, selective VMAT2 inhibitors provide the requisite preclinical behavioral profile for evaluation as pharmacotherapeutics for

  12. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  13. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    PubMed

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  14. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction

    PubMed Central

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results. PMID:26105141

  15. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling.

    PubMed

    Dema, Alessandro; Perets, Ekaterina; Schulz, Maike Svenja; Deák, Veronika Anita; Klussmann, Enno

    2015-12-01

    The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.

  16. Systems pharmacology of the nerve growth factor pathway: use of a systems biology model for the identification of key drug targets using sensitivity analysis and the integration of physiology and pharmacology

    PubMed Central

    Benson, Neil; Matsuura, Tomomi; Smirnov, Sergey; Demin, Oleg; Jones, Hannah M.; Dua, Pinky; van der Graaf, Piet H.

    2013-01-01

    The nerve growth factor (NGF) pathway is of great interest as a potential source of drug targets, for example in the management of certain types of pain. However, selecting targets from this pathway either by intuition or by non-contextual measures is likely to be challenging. An alternative approach is to construct a mathematical model of the system and via sensitivity analysis rank order the targets in the known pathway, with respect to an endpoint such as the diphosphorylated extracellular signal-regulated kinase concentration in the nucleus. Using the published literature, a model was created and, via sensitivity analysis, it was concluded that, after NGF itself, tropomyosin receptor kinase A (TrkA) was one of the most sensitive druggable targets. This initial model was subsequently used to develop a further model incorporating physiological and pharmacological parameters. This allowed the exploration of the characteristics required for a successful hypothetical TrkA inhibitor. Using these systems models, we were able to identify candidates for the optimal drug targets in the known pathway. These conclusions were consistent with clinical and human genetic data. We also found that incorporating appropriate physiological context was essential to drawing accurate conclusions about important parameters such as the drug dose required to give pathway inhibition. Furthermore, the importance of the concentration of key reactants such as TrkA kinase means that appropriate contextual data are required before clear conclusions can be drawn. Such models could be of great utility in selecting optimal targets and in the clinical evaluation of novel drugs. PMID:24427523

  17. Methylphenidate and μ opioid receptor interactions: a pharmacological target for prevention of stimulant abuse.

    PubMed

    Zhu, Jinmin; Spencer, Thomas J; Liu-Chen, Lee-Yuan; Biederman, Joseph; Bhide, Pradeep G

    2011-01-01

    Methylphenidate (MPH) is one of the most commonly used and highly effective treatments for attention deficit hyperactivity disorder (ADHD) in children and adults. As the therapeutic use of MPH has increased, so has its abuse and illicit street-use. Yet, the mechanisms associated with development of MPH-associated abuse and dependence are not well understood making it difficult to develop methods to help its mitigation. As a result, many ADHD patients especially children and youth, that could benefit from MPH treatment do not receive it and risk lifelong disabilities associated with untreated ADHD. Therefore, understanding the mechanisms associated with development of MPH addiction and designing methods to prevent it assume high public health significance. Using a mouse model we show that supra-therapeutic doses of MPH produce rewarding effects (surrogate measure for addiction in humans) in a conditioned place preference paradigm and upregulate μ opioid receptor (MOPR) activity in the striatum and nucleus accumbens, brain regions associated with reward circuitry. Co-administration of naltrexone, a non-selective opioid receptor antagonist, prevents MPH-induced MOPR activation and the rewarding effects. The MPH-induced MOPR activation and rewarding effect require activation of the dopamine D1 but not the D2-receptor. These findings identify the MOPR as a potential target for attenuating rewarding effects of MPH and suggest that a formulation that combines naltrexone with MPH could be a useful pharmaceutical approach to alleviate abuse potential of MPH and other stimulants.

  18. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  19. Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer

    PubMed Central

    Iskit, Sedef; Lieftink, Cor; Halonen, Pasi; Shahrabi, Aida; Possik, Patricia A.; Beijersbergen, Roderick L.; Peeper, Daniel S.

    2016-01-01

    Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer. PMID:27374095

  20. Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer.

    PubMed

    Iskit, Sedef; Lieftink, Cor; Halonen, Pasi; Shahrabi, Aida; Possik, Patricia A; Beijersbergen, Roderick L; Peeper, Daniel S

    2016-07-12

    Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.

  1. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms.

    PubMed

    Stone, Richard A; Pardue, Machelle T; Iuvone, P Michael; Khurana, Tejvir S

    2013-09-01

    Despite the high prevalence and public health impact of refractive errors, the mechanisms responsible for ametropias are poorly understood. Much evidence now supports the concept that the retina is central to the mechanism(s) regulating emmetropization and underlying refractive errors. Using a variety of pharmacologic methods and well-defined experimental eye growth models in laboratory animals, many retinal neurotransmitters and neuromodulators have been implicated in this process. Nonetheless, an accepted framework for understanding the molecular and/or cellular pathways that govern postnatal eye development is lacking. Here, we review two extensively studied signaling pathways whose general roles in refractive development are supported by both experimental and clinical data: acetylcholine signaling through muscarinic and/or nicotinic acetylcholine receptors and retinal dopamine pharmacology. The muscarinic acetylcholine receptor antagonist atropine was first studied as an anti-myopia drug some two centuries ago, and much subsequent work has continued to connect muscarinic receptors to eye growth regulation. Recent research implicates a potential role of nicotinic acetylcholine receptors; and the refractive effects in population surveys of passive exposure to cigarette smoke, of which nicotine is a constituent, support clinical relevance. Reviewed here, many puzzling results inhibit formulating a mechanistic framework that explains acetylcholine's role in refractive development. How cholinergic receptor mechanisms might be used to develop acceptable approaches to normalize refractive development remains a challenge. Retinal dopamine signaling not only has a putative role in refractive development, its upregulation by light comprises an important component of the retinal clock network and contributes to the regulation of retinal circadian physiology. During postnatal development, the ocular dimensions undergo circadian and/or diurnal fluctuations in magnitude

  2. Pharmacology of Myopia and Potential Role for Intrinsic Retinal Circadian Rhythms

    PubMed Central

    Stone, Richard A.; Pardue, Machelle T.; Iuvone, P. Michael; Khurana, Tejvir S.

    2013-01-01

    Despite the high prevalence and public health impact of refractive errors, the mechanisms responsible for ametropias are poorly understood. Much evidence now supports the concept that the retina is central to the mechanism(s) regulating emmetropization and underlying refractive errors. Using a variety of pharmacologic methods and well-defined experimental eye growth models in laboratory animals, many retinal neurotransmitters and neuromodulators have been implicated in this process. Nonetheless, an accepted framework for understanding the molecular and/or cellular pathways that govern postnatal eye development is lacking. Here, we review two extensively studied signaling pathways whose general roles in refractive development are supported by both experimental and clinical data: acetylcholine signaling through muscarinic and/or nicotinic acetylcholine receptors and retinal dopamine pharmacology. The muscarinic acetylcholine receptor antagonist atropine was first studied as an anti-myopia drug some two centuries ago, and much subsequent work has continued to connect muscarinic receptors to eye growth regulation. Recent research implicates a potential role of nicotinic acetycholine receptors; and the refractive effects in population surveys of passive exposure to cigarette smoke, of which nicotine is a constituent, support clinical relevance. Reviewed here, many puzzling results inhibit formulating a mechanistic framework that explains acetylcholine’s role in refractive development. How cholinergic receptor mechanisms might be used to develop acceptable approaches to normalize refractive development remains a challenge. Retinal dopamine signaling not only has a putative role in refractive development, its upregulation by light comprises an important component of the retinal clock network and contributes to the regulation of retinal circadian physiology. During postnatal development, the ocular dimensions undergo circadian and/or diurnal fluctuations in magnitude

  3. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans.

    PubMed

    McCormack, Shana; Polyak, Erzsebet; Ostrovsky, Julian; Dingley, Stephen D; Rao, Meera; Kwon, Young Joon; Xiao, Rui; Zhang, Zhe; Nakamaru-Ogiso, Eiko; Falk, Marni J

    2015-05-01

    Mitochondrial respiratory chain (RC) diseases are highly morbid multi-systemic conditions for which few effective therapies exist. Given the essential role of sirtuin and PPAR signaling in mediating both mitochondrial physiology and the cellular response to metabolic stress in RC complex I (CI) disease, we postulated that drugs that alter these signaling pathways either directly (resveratrol for sirtuin, rosiglitazone for PPARγ, fenofibrate for PPARα), or indirectly by increasing NAD(+) availability (nicotinic acid), might offer effective treatment strategies for primary RC disease. Integrated effects of targeting these cellular signaling pathways on animal lifespan and multi-dimensional in vivo parameters were studied in gas-1(fc21) relative to wild-type (N2 Bristol) worms. Specifically, animal lifespan, transcriptome profiles, mitochondrial oxidant burden, mitochondrial membrane potential, mitochondrial content, amino acid profiles, stable isotope-based intermediary metabolic flux, and total nematode NADH and NAD(+) concentrations were compared. Shortened gas-1(fc21) mutant lifespan was rescued with either resveratrol or nicotinic acid, regardless of whether treatments were begun at the early larval stage or in young adulthood. Rosiglitazone administration beginning in young adult stage animals also rescued lifespan. All drug treatments reversed the most significant transcriptome alterations at the biochemical pathway level relative to untreated gas-1(fc21) animals. Interestingly, increased mitochondrial oxidant burden in gas-1(fc21) was reduced with nicotinic acid but exacerbated significantly by resveratrol and modestly by fenofibrate, with little change by rosiglitazone treatment. In contrast, the reduced mitochondrial membrane potential of mutant worms was further decreased by nicotinic acid but restored by either resveratrol, rosiglitazone, or fenofibrate. Using a novel HPLC assay, we discovered that gas-1(fc21) worms have significant deficiencies of NAD

  4. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans

    PubMed Central

    McCormack, Shana; Polyak, Erzsebet; Ostrovsky, Julian; Dingley, Stephen D.; Rao, Meera; Kwon, Young Joon; Xiao, Rui; Zhang, Zhe; Nakamaru-Ogiso, Eiko; Falk, Marni J.

    2015-01-01

    Mitochondrial respiratory chain (RC) diseases are highly morbid multi-systemic conditions for which few effective therapies exist. Given the essential role of sirtuin and PPAR signaling in mediating both mitochondrial physiology and the cellular response to metabolic stress in RC complex I (CI) disease, we postulated that drugs that alter these signaling pathways either directly (resveratrol for sirtuin, rosiglitazone for PPARγ, fenofibrate for PPARα), or indirectly by increasing NAD+ availability (nicotinic acid), might offer effective treatment strategies for primary RC disease. Integrated effects of targeting these cellular signaling pathways on animal lifespan and multi-dimensional in vivo parameters were studied in gas-1(fc21) relative to wild-type (N2 Bristol) worms. Specifically, animal lifespan, transcriptome profiles, mitochondrial oxidant burden, mitochondrial membrane potential, mitochondrial content, amino acid profiles, stable isotope-based intermediary metabolic flux, and total nematode NADH and NAD+ concentrations were compared. Shortened gas-1(fc21) mutant lifespan was rescued with either resveratrol or nicotinic acid, regardless of whether treatments were begun at the early larval stage or in young adulthood. Rosiglitazone administration beginning in young adult stage animals also rescued lifespan. All drug treatments reversed the most significant transcriptome alterations at the biochemical pathway level relative to untreated gas-1(fc21) animals. Interestingly, increased mitochondrial oxidant burden in gas-1(fc21) was reduced with nicotinic acid but exacerbated significantly by resveratrol and modestly by fenofibrate, with little change by rosiglitazone treatment. In contrast, the reduced mitochondrial membrane potential of mutant worms was further decreased by nicotinic acid but restored by either resveratrol, rosiglitazone, or fenofibrate. Using a novel HPLC assay, we discovered that gas-1(fc21) worms have significant deficiencies of NAD+ and

  5. Understanding Molecular Recognition by G protein βγ Subunits on the Path to Pharmacological Targeting

    PubMed Central

    Lin, Yuan

    2011-01-01

    Heterotrimeric G proteins, composed of Gα and Gβγ subunits, transduce extracellular signals via G-protein-coupled receptors to modulate many important intracellular responses. The Gβγ subunits hold a central position in this signaling system and have been implicated in multiple aspects of physiology and the pathophysiology of disease. The Gβ subunit belongs to a large family of WD40 repeat proteins with a circular β-bladed propeller structure. This structure allows Gβγ to interact with a broad range of proteins to play diverse roles. How Gβγ interacts with and regulates such a wide variety of partners yet maintains specificity is an interesting problem in protein-protein molecular recognition in signal transduction, where signal transfer by proteins is often driven by modular conserved recognition motifs. Evidence has accumulated that one mechanism for Gβγ multitarget recognition is through an intrinsically flexible protein surface or “hot spot” that accommodates multiple modes of binding. Because each target has a unique recognition mode for Gβγ subunits, it suggests that these interactions could be selectively manipulated with small molecules, which could have significant therapeutic potential. PMID:21737569

  6. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    PubMed Central

    Young, Simon A.; Mina, John G.; Denny, Paul W.; Smith, Terry K.

    2012-01-01

    Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions. PMID:22400113

  7. Frovatriptan: A Review of Pharmacology, Pharmacokinetics and Clinical Potential in the Treatment of Menstrual Migraine

    PubMed Central

    Balbisi, Ebrahim A

    2006-01-01

    Frovatriptan is an orally active 5-hydroxytryptamine (5-HT) receptor agonist which binds with high affinity to 5-HT1B and 5-HT1D receptors. Earlier clinical trials demonstrated that frovatriptan 2.5 mg is significantly more effective than placebo in the acute management of migraine and its associated symptoms. More recently, frovatriptan was shown to be effective in the management of menstrual migraine. The incidence of menstrual migraine in subjects receiving frovatriptan 2.5 mg twice daily during the six day perimenstrual period was 41% compared with 67% with placebo. Frovatriptan treatment is generally well tolerated. The most commonly reported adverse effects were dizziness, paresthesia, dry mouth, and fatigue. Pharmacologic studies demonstrated that frovatriptan is cerebroselective. Its selectivity for cerebral vessels lessens the potential for undesirable peripheral effects. Frovatriptan has a terminal deposition half-life of approximately 26 hours, which appears to be independent of age, gender, and renal function. This imparts that frovatriptan may be particularly well suited to patients with prolonged migraines and those who suffer migraine recurrence. Frovatriptan does not alter cytochrome P450 (CYP450) isoenzymes, as such it is unlikely to affect the metabolism of other drugs. No dosage adjustments are necessary based on age, renal, or mild to moderate hepatic impairment. Apart from its efficacy in the acute management of migraine, frovatriptan is an effective agent when used as either acute therapy or as intermittent prophylaxis therapy of menstrual migraines, particularly in women who do not respond to conventional therapies. PMID:18360605

  8. Potential Pharmacologic Treatments for Cystinuria and for Calcium Stones Associated with Hyperuricosuria

    SciTech Connect

    Goldfarb, David S.

    2012-03-14

    Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to 'salt out' (or reduce the solubility of) calcium oxalate in vitro. A randomized, controlled trial of allopurinol in patients with hyperuricosuria and normocalciuria was also effective in preventing recurrent stones. Febuxostat, a nonpurine inhibitor of xanthine oxidase (also known as xanthine dehydrogenase or xanthine oxidoreductase) may have advantages over allopurinol and is being tested in a similar protocol, with the eventual goal of determining whether urate-lowering therapy prevents recurrent calcium stones. Treatments for cystinuria have advanced little in the past 30 years. Atomic force microscopy has been used recently to demonstrate that effective inhibition of cystine crystal growth is accomplished at low concentrations of L-cystine methyl ester and L-cystine dimethyl ester, structural analogs of cystine that provide steric inhibition of crystal growth. In vitro, L-cystine dimethyl ester had a significant inhibitory effect on crystal growth. The drug's safety and effectiveness will be tested in an Slc3a1 knockout mouse that serves as an animal model of cystinuria.

  9. Pregabalin's abuse potential: a mini review focusing on the pharmacological profile.

    PubMed

    Papazisis, Georgios; Tzachanis, Dimitrios

    2014-08-01

    Pregabalin, an analogue of the gamma-aminobutyric acid mammalian neurotransmitter and its structurally related compound gabapentin are known as α2δ ligands. They might act as inhibitory modulators of neuronal excitability that reduce ectopic neuronal activation of hyperexcited neurons while normal activation remains unchanged. However, the interaction with Ca²⁺ channel α2δ subunit is not sufficient to account for the broad clinical spectrum of pregabalin effects including the abuse potential. Pregabalin is approved for the treatment of partial epilepsy; generalized anxiety disorder; peripheral and central neuropathic pain and fibromyalgia. Its prescribing is rapidly increasing and total sales of the drug worldwide reached 4.6 billion US$ in 2012. Since entering widespread clinical use, reports of pregabalin abuse appeared more often, usually involving individuals with a history of abuse of other medications. The purpose of this mini review is to present available published data signaling pregabalin's abuse liability reflecting on the pharmacological characteristics that might enable this agent to trigger addictive behaviors.

  10. A review on phyto-pharmacological potentials of Euphorbia thymifolia L.

    PubMed Central

    Mali, Prashant Y.; Panchal, Shital S.

    2013-01-01

    Euphorbia thymifolia L. (Euphorbiaceae) is a small branched, hispidly pubescent, prostate annual herb, commonly known as laghududhika or choti-dudhi. The leaves, seeds and fresh juice of whole plant are used in worm infections, as stimulant, astringent. It is also used in bowel complaints and in many more diseases therapeutically. The present work is an extensive review of published literature concerning phytochemical and pharmacological potential of E. thymifolia. Data was searched and designed using various review modalities manually and using electronic search engines with reference to all aspects of E. thymifolia and was arranged chronologically. Complete information of the plant has been collected from the various books and journals since the last 32 years, internet databases, etc., were searched. Compiled data reflects the safety and therapeutic efficacy of the plant. This will be helpful for researchers to focus on the priority areas of research yet to be explored and in scientific use of the plant for its wide variety of traditional therapeutic claims and also as to find out new chemical entities responsible for its claimed traditional activities. PMID:24501446

  11. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity.

    PubMed

    Bell, Richard L; Sable, Helen J K; Colombo, Giancarlo; Hyytia, Petri; Rodd, Zachary A; Lumeng, Lawrence

    2012-11-01

    The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.

  12. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: Neurobiological and pharmacological validity

    PubMed Central

    Bell, Richard L.; Sable, Helen J.K.; Colombo, Giancarlo; Hyytia, Petri; Rodd, Zachary A.; Lumeng, Lawrence

    2012-01-01

    The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence. PMID:22841890

  13. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions

    PubMed Central

    Wardlaw, Joanna M.

    2015-01-01

    Small vessel disease encompasses lacunar stroke, white matter hyperintensities, lacunes and microbleeds. It causes a quarter of all ischemic strokes, is the commonest cause of vascular dementia, and the cause is incompletely understood. Vascular prophylaxis, as appropriate for large artery disease and cardioembolism, includes antithrombotics, and blood pressure and lipid lowering; however, these strategies may not be effective for small vessel disease, or are already used routinely so precluding further detailed study. Further, intensive antiplatelet therapy is known to be hazardous in small vessel disease through enhanced bleeding. Whether acetylcholinesterase inhibitors, which delay the progression of Alzheimer's dementia, are relevant in small vessel disease remains unclear. Potential prophylactic and treatment strategies might be those that target brain microvascular endothelium and the blood brain barrier, microvascular function and neuroinflammation. Potential interventions include endothelin antagonists, neurotrophins, nitric oxide donors and phosphodiesterase 5 inhibitors, peroxisome proliferator‐activated receptor‐gamma agonists, and prostacyclin mimics and phosphodiesterase 3 inhibitors. Several drugs that have relevant properties are licensed for other disorders, offering the possibility of drug repurposing. Others are in development. Since influencing multiple targets may be most effective, using multiple agents and/or those that have multiple effects may be preferable. We focus on potential small vessel disease mechanistic targets, summarize drugs that have relevant actions, and review data available from randomized trials on their actions and on the available evidence for their use in lacunar stroke. PMID:25727737

  14. Pharmacokinetics-pharmacology disconnection of herbal medicines and its potential solutions with cellular pharmacokinetic-pharmacodynamic strategy.

    PubMed

    Zhang, Jingwei; Zhou, Fang; Lu, Meng; Ji, Wei; Niu, Fang; Zha, Weibin; Wu, Xiaolan; Hao, Haiping; Wang, Guangji

    2012-06-01

    Recently, there is a global trend of using herbal medicines to treat various chronic diseases and promote health. But the controversy over the safety and efficacy of herbal medicines is a focus of attention, primarily because of the many unknown and unrevealed natures of herbal medicines, which strongly restricts their application and development. Pharmacokinetics is a bridge linking the herbal medicines and their pharmacological responses. It is assumed in traditional pharmacokinetics that an excellent drug should have appropriate pharmacokinetic behaviours and its pharmacological effect is related with plasma drug concentrations. However, most herbal medicines exhibit excellent pharmacological responses despite poor pharmacokinetic behaviours. As most drugs are intracellulartargeted, we put forward cellular pharmacokinetic-pharmacodynamic strategy, which is focused on the intracellular fate of drugs. This strategy could partially explain the marked pharmacological activities of herbal medicines from their intracellular pharmacokinetic behaviours, rather than their plasma concentrations. It is a helpful complementarity to traditional pharmacokinetics, and takes a potential role in the research and development of new herb-origined drugs. In this review, the pharmacokinetics-pharmacology disconnections of herbal medicines (such as ginseng, berberine and danshen) are retrospected. Then our proposed cellular pharmacokineticpharmacodynamic strategy, its characteristics, as well as its research procedures are described, followed by the subcellular distributions of drug transporters and metabolic enzymes which are the determinants of cellular pharmacokinetics-pharmacodynamics. Finally, our successful applications of cellular pharmacokinetic-pharmacodynamic strategy in elucidating ginsenoside Rh2 as an adjuvant agent and tanshinone IIA as an anticancer agent are illustrated.

  15. A Chronic Implant to Record Electroretinogram, Visual Evoked Potentials and Oscillatory Potentials in Awake, Freely Moving Rats for Pharmacological Studies

    PubMed Central

    Guarino, Irene; Loizzo, Stefano; Lopez, Luisa; Fadda, Antonello; Loizzo, Alberto

    2004-01-01

    Electroretinogram (ERG), widely used to study the pharmacological effects of drugs in animal models (e.g., diabetic retinopathy), is usually recorded in anesthetized rats. We report here a novel simple method to obtain chronic implantation of electrodes for simultaneous recording at the retinal and cortical levels in freely moving, unanesthetized animals. We recorded cortical (VEPs) and retinal (ERGs) responses evoked by light (flash) stimuli in awake rats and compared the results in the same rats anesthetized with urethane (0.6 mg/kg) before and after the monocular administration of scopolamine methyl bromide (1‰solution). We also compared the retinal responses with those derived from a classic acute corneal electrode. Anesthesia induced consistent changes of several VEP and ERG parameters like an increase of both latency and amplitude. In particular, the analysis of the variation of latency, amplitude, and spectral content of rapid oscillatory potentials could be important for a functional evaluation of the visual system in unanesthetized versus anesthetized animals. PMID:15656271

  16. Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles

    PubMed Central

    Yusuf, Mohammad; Khan, Riaz A; Khan, Maria; Ahmed, Bahar

    2012-01-01

    β-Carotene has been established as a known free radical scavenger with chain-breaking antioxidant properties. It has been documented for the treatment of epileptic convulsions at a 200 mg/kg body weight dose. The reported pathogenesis for epileptic convulsions is oxidative stress. Hence, experimental epileptic convulsions via oxidative stress was induced in albino mice epileptic models (maximal electroshock seizure and pentylenetetrazole [PTZ]). A dose concentration equivalent to 2 mg/kg was efficaciously administered in the form of brain-targeted polysorbate-80-coated poly(d,l-lactide-co-glycolide) nanoparticles. The nanoparticles were prepared by solvent evaporation technique and further characterized for their physical parameters, in-vitro release kinetics, and in-vivo brain release via various standard methods. Normal β-carotene nanoparticles (BCNP) and polysorbate-80-coated β-carotene nanoparticles (P-80-BCNP) of 169.8 ± 4.8 nm and 176.3 ± 3.2 nm in size, respectively, were formulated and characterized. Their zeta potential and polydispersity index were subsequently evaluated after 5 months of storage to confirm stability. In vivo activity results showed that a 2 mg unformulated β-carotene dose was ineffective as an anticonvulsant. However, salutary response was reported from BCNP at the same dose, as the hind limb duration decreased significantly in maximal electroshock seizure to 9.30 ± 0.86 seconds, which further decreased with polysorbate-80 coating to 2.10 ± 1.16 seconds as compared to normal control (15.8 ± 1.49 seconds) and placebo control (16.50 ± 1.43 seconds). In the PTZ model, the duration of general tonic–clonic seizures reduced significantly to 2.90 ± 0.98 seconds by the use of BCNP and was further reduced on P-80-BCNP to 1.20 ± 0.20 seconds as compared to PTZ control and PTZ-placebo control (8.09 ± 0.26 seconds). General tonic–clonic seizures latency was increased significantly to 191.0 ± 9.80 seconds in BCNP and was further

  17. The natural flavonoid pinocembrin: molecular targets and potential therapeutic applications

    PubMed Central

    Lan, Xi; Wang, Wenzhu; Li, Qiang; Wang, Jian

    2015-01-01

    Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications. PMID:25744566

  18. ING Proteins as Potential Anticancer Drug Targets

    PubMed Central

    Unoki, M.; Kumamoto, K.; Harris, C.C.

    2009-01-01

    Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies. PMID:19442116

  19. Hydrogen Peroxide: A Potential Wound Therapeutic Target.

    PubMed

    Zhu, Guanya; Wang, Qi; Lu, Shuliang; Niu, Yiwen

    2017-04-05

    Hydrogen peroxide (H2O2) is a topical antiseptic used in wound cleaning which kills pathogens through oxidation burst and local oxygen production. Hydrogen peroxide had been reported to be a reactive biochemical molecule synthesized by various cells which influences biological behavior through multiple mechanisms: alterations of membrane potential, generation of new molecules and changing intracellular redox balance which results in activation or inactivation of different signaling transduction pathways. Contrary to the traditional viewpoint that H2O2 probably impairs tissue through its high oxidative property, however, a proper level of H2O2 is considered as an important requirement for normal wound healing. Although the present clinical use of H2O2 is still limited to the elimination of microbial contamination and sometimes hemostasis, better understanding towards the sterilization ability and cell behavior regulatory function of H2O2 within wound will enhance the potential to exogenously augment and manipulate healing.

  20. Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system.

    PubMed

    Reid, Alicia C; Brazin, Jacqueline A; Morrey, Christopher; Silver, Randi B; Levi, Roberto

    2011-11-01

    Enhanced production of angiotensin II and excessive release of norepinephrine in the ischemic heart are major causes of arrhythmias and sudden cardiac death. Mast cell-dependent mechanisms are pivotal in the local formation of angiotensin II and modulation of norepinephrine release in cardiac pathophysiology. Cardiac mast cells increase in number in myocardial ischemia and are located in close proximity to sympathetic neurons expressing angiotensin AT1- and histamine H3-receptors. Once activated, cardiac mast cells release a host of potent pro-inflammatory and pro-fibrotic cytokines, chemokines, preformed mediators (e.g., histamine) and proteases (e.g., renin). In myocardial ischemia, angiotensin II (formed locally from mast cell-derived renin) and histamine (also released from local mast cells) respectively activate AT1- and H3-receptors on sympathetic nerve endings. Stimulation of angiotensin AT1-receptors is arrhythmogenic whereas H3-receptor activation is cardioprotective. It is likely that in ischemia/reperfusion the balance may be tipped toward the deleterious effects of mast cell renin, as demonstrated in mast cell-deficient mice, lacking mast cell renin and histamine in the heart. In these mice, no ventricular fibrillation occurs at reperfusion following ischemia, as opposed to wild-type hearts which all fibrillate. Preventing mast cell degranulation in the heart and inhibiting the activation of a local renin-angiotensin system, hence abolishing its detrimental effects on cardiac rhythmicity, appears to be more significant than the loss of histamine-induced cardioprotection. This suggests that therapeutic targets in the treatment of myocardial ischemia, and potentially congestive heart failure and hypertension, should include prevention of mast cell degranulation, mast cell renin inhibition, local ACE inhibition, ANG II antagonism and H3-receptor activation.

  1. Targeting gut microbiota: a potential promising therapy for diabetic kidney disease

    PubMed Central

    Chen, Zhonge; Zhu, Shuishan; Xu, Gaosi

    2016-01-01

    Conventional studies reveal a contributory role of gut microbiota in the process of diabetes mellitus (DM) and end-stage renal disease (ESRD). However, the mechanism through which gut microbiota influence diabetic kidney disease (DKD) is ignored. In the present article, we reviewed the changes in gut microbiota of patients with DM, DKD as well as ESRD, and how this may contribute to the progression of DKD. Although further studies are needed to either selectively change the composition of the gut microbiota or to pharmacologically control the metabolites of microbiota, the gut microbiota represents a new potential therapeutic target for DKD. PMID:27829988

  2. Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia.

    PubMed

    Khalife, J; Radomska, H S; Santhanam, R; Huang, X; Neviani, P; Saultz, J; Wang, H; Wu, Y-Z; Alachkar, H; Anghelina, M; Dorrance, A; Curfman, J; Bloomfield, C D; Medeiros, B C; Perrotti, D; Lee, L J; Lee, R J; Caligiuri, M A; Pichiorri, F; Croce, C M; Garzon, R; Guzman, M L; Mendler, J H; Marcucci, G

    2015-10-01

    High levels of microRNA-155 (miR-155) are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is, in part, controlled by the NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8-activating enzyme presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in the upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs the survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regulatory mechanisms. We show the targeting of this oncogenic microRNA with MLN4924, a compound presently being evaluated in clinical trials in AML. As high miR-155 levels have been consistently associated with aggressive clinical phenotypes, our work opens new avenues for microRNA-targeting therapeutic approaches to leukemia and cancer patients.

  3. A translational pharmacology approach to understanding the predictive value of abuse potential assessments.

    PubMed

    Horton, David B; Potter, David M; Mead, Andy N

    2013-09-01

    Within the drug development industry the assessment of abuse potential for novel molecules involves the generation and review of data from multiple sources, ranging from in-vitro binding and functional assays through to in-vivo nonclinical models in mammals, as well as collection of information from studies in humans. This breadth of data aligns with current expectations from regulatory agencies in both the USA and Europe. To date, there have been a limited number of reviews on the predictive value of individual models within this sequence, but there has been no systematic review on how each of these models contributes to our overall understanding of abuse potential risk. To address this, we analyzed data from 100 small molecules to compare the predictive validity for drug scheduling status of a number of models that typically contribute to the abuse potential assessment package. These models range from the assessment of in-vitro binding and functional profiles at receptors or transporters typically associated with abuse through in-vivo models including locomotor activity, drug discrimination, and self-administration in rodents. Data from subjective report assessments in humans following acute dosing of compounds were also included. The predictive value of each model was then evaluated relative to the scheduling status of each drug in the USA. In recognition of the fact that drug scheduling can be influenced by factors other than the pharmacology of the drug, we also evaluated the predictive value of each assay for the outcome of the human subjective effects assessment. This approach provides an objective and statistical assessment of the predictive value of many of the models typically applied within the pharmaceutical industry to evaluate abuse potential risk. In addition, the impact of combining information from multiple models was examined. This analysis adds to our understanding of the predictive value of each model, allows us to critically evaluate the

  4. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases.

    PubMed

    Sadek, Bassem; Saad, Ali; Sadeq, Adel; Jalal, Fakhreya; Stark, Holger

    2016-10-01

    The potential contributions of the brain histaminergic system in neurodegenerative diseases, and the possiblity of histamine-targeting treatments is attracting considerable interests. The histamine H3 receptor (H3R) is expressed mainly in the central nervous system, and is, consequently, an attractive pharmacological target. Although recently described clinical trials have been disappointing in attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCH), numerous H3R antagonists, including pitolisant, demonstrate potential in the treatment of narcolepsy, excessive daytime sleepiness associated with cognitive impairment, epilepsy, and Alzheimer's disease (AD). This review focuses on the recent preclinical as well as clinical results that support the relevance of H3R antagonists for the treatment of cognitive symptoms in neuropsychiatric diseases, namely AD, epilepsy and SCH. The review summarizes the role of histaminergic neurotransmission with focus on these brain disorders, as well as the effects of numerous H3R antagonists on animal models and humans.

  5. Medicinal Plants: A Potential Source of Compounds for Targeting Cell Division

    PubMed Central

    Zulkipli, Ihsan N; David, Sheba R; Rajabalaya, Rajan; Idris, Adi

    2015-01-01

    Modern medicinal plant drug discovery has provided pharmacologically active compounds targeted against a multitude of conditions and diseases, such as infection, inflammation, and cancer. To date, natural products from medicinal plants remain a solid niche as a source from which cancer therapies can be derived. Among other properties, one favorable characteristic of an anticancer drug is its ability to block the uncontrollable process of cell division, as cancer cells are notorious for their abnormal cell division. There are numerous other documented works on the potential anticancer activity of drugs derived from medicinal plants, and their effects on cell division are an attractive and growing therapeutic target. Despite this, there remains a vast number of unidentified natural products that are potentially promising sources for medical applications. This mini review aims to revise the current knowledge of the effects of natural plant products on cell division. PMID:26106261

  6. Pharmacologic vitreolysis with ocriplasmin: rationale for use and therapeutic potential in vitreo-retinal disorders.

    PubMed

    Khoshnevis, Matin; Sebag, J

    2015-04-01

    With increased knowledge about the origins and pathophysiology of vitreo-retinal disorders—and, in particular, the central role of anomalous posterior vitreous detachment in vitreo-maculopathies—a paradigm shift from surgery to pharmacotherapy is taking place with the development of pharmacologic vitreolysis. The first approved agent for pharmacologic vitreolysis therapy is ocriplasmin, a truncated form of the nonspecific serine protease plasmin. Twelve studies comprise the current ocriplasmin clinical trial program, demonstrating the efficacy and safety of a single intravitreal injection of ocriplasmin for the treatment of patients with symptomatic vitreo-macular adhesion or vitreo-macular traction, including patients with macular holes. Although post-approval implementation of ocriplamsin in clinical practice has shown success rates of up to 78%, there have been recent case reports of acute, transient visual dysfunction. There are thus new initiatives to further refine clinical indications for case selection and to identify possible untoward effects. Although more studies are warranted, it appears that ocriplasmin offers a good alternative to surgery. The future lies in pharmacologic vitreolysis, and the future of pharmacologic vitreolysis lies in prevention. Thus, long-term studies are needed to define a role for pharmacologic vitreolysis, in particular with ocriplasmin, in the prevention of progressive diabetic retinopathy and age-related macular degeneration.

  7. TLRs, future potential therapeutic targets for RA.

    PubMed

    Elshabrawy, Hatem A; Essani, Abdul E; Szekanecz, Zoltán; Fox, David A; Shahrara, Shiva

    2017-02-01

    Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.

  8. Pharmacological Properties of Protocatechuic Acid and Its Potential Roles as Complementary Medicine

    PubMed Central

    Semaming, Yoswaris; Pannengpetch, Patchareewan; Chattipakorn, Siriporn C.

    2015-01-01

    This paper reviews the reported pharmacological properties of protocatechuic acid (PCA, 3,4-dihydroxy benzoic acid), a type of phenolic acid found in many food plants such as olives and white grapes. PCA is a major metabolite of anthocyanin. The pharmacological actions of PCA have been shown to include strong in vitro and in vivo antioxidant activity. In in vivo experiments using rats and mice, PCA has been shown to exert anti-inflammatory as well as antihyperglycemic and antiapoptotic activities. Furthermore, PCA has been shown to inhibit chemical carcinogenesis and exert proapoptotic and antiproliferative effects in different cancerous tissues. Moreover, in vitro studies have shown PCA to have antimicrobial activities and also to exert synergistic interaction with some antibiotics against resistant pathogens. This review aims to comprehensively summarize the pharmacological properties of PCA reported to date with an emphasis on its biological properties and mechanisms of action which could be therapeutically useful in a clinical setting. PMID:25737736

  9. Strategies for Pharmacological Organoprotection during Extracorporeal Circulation Targeting Ischemia-Reperfusion Injury

    PubMed Central

    Salameh, Aida; Dhein, Stefan

    2015-01-01

    Surgical correction of congenital cardiac malformations or aortocoronary bypass surgery in many cases implies the use of cardiopulmonary-bypass (CPB). However, a possible negative impact of CPB on internal organs such as brain, kidney, lung and liver cannot be neglected. In general, CPB initiates a systemic inflammatory response (SIRS) which is presumably caused by contact of blood components with the surface of CPB tubing. Moreover, during CPB the heart typically undergoes a period of cold ischemia, and the other peripheral organs a global low flow hypoperfusion. As a result, a plethora of pro-inflammatory mediators and cytokines is released activating different biochemical pathways, which finally may result in the occurrence of microthrombosis, microemboli, in depletion of coagulation factors and haemorrhagic diathesis besides typical ischemia-reperfusion injuries. In our review we will focus on possible pharmacological interventions in patients to decrease negative effects of CPB and to improve post-operative outcome with regard to heart and other organs like brain, kidney, or lung. PMID:26733868

  10. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11

    PubMed Central

    Tough, David F; Lewis, Huw D; Rioja, Inmaculada; Lindon, Matthew J; Prinjha, Rab K

    2014-01-01

    The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy. PMID:25060293

  11. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  12. TCGA Bladder Cancer Study Reveals Potential Drug Targets - TCGA

    Cancer.gov

    Investigators with the TCGA Research Network have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease.

  13. TCGA bladder cancer study reveals potential drug targets

    Cancer.gov

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  14. Cancer Stem and Progenitor-Like Cells as Pharmacological Targets in Breast Cancer Treatment

    PubMed Central

    de Souza, Valéria B.; Schenka, André A.

    2015-01-01

    The present review is focused on the current role of neoplastic stem and progenitor-like cells as primary targets in the pharmacotherapy of cancer as well as in the development of new anticancer drugs. We begin by summarizing the main characteristics of these tumor-initiating cells and key concepts that support their participation in therapeutic failure. In particular, we discuss the differences between the major carcinogenesis models (ie, clonal evolution vs cancer stem cell (CSC) model) with emphasis on breast cancer (given its importance to the study of CSCs) and their implications for the development of new treatment strategies. In addition, we describe the main ways to target these cells, including the main signaling pathways that are more activated or altered in CSCs. Finally, we provide a comprehensive compilation of the most recently tested drugs. PMID:26609237

  15. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing.

    PubMed

    Gruber, Jan; Fong, Sheng; Chen, Ce-Belle; Yoong, Sialee; Pastorin, Giorgia; Schaffer, Sebastian; Cheah, Irwin; Halliwell, Barry

    2013-01-01

    Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology.

  16. Role of Clinical Pharmacology in the Development and Approval of Immunotherapies Targeting Immune Checkpoints.

    PubMed

    Rahman, A

    2016-12-01

    Immune surveillance plays a critical role in preventing the development and progression of cancer. Immune modulators, such as interferon-gamma or interleukin-2, have been a part of the cancer treatment armament over the past few decades. However, new understandings regarding the role of the costimulatory and coinhibitory molecules associated with T-cells and antigen-presenting cells as well as tumor necrosis factor receptors and ligands have ushered the new era of immunotherapy for cancer treatment. We now know that primary cancer cells evade screening by the innate immune system, proliferate, and form metastases by upregulating immune inhibitory pathways referred to as immune checkpoints. The recent development of therapies that target immune checkpoints, such as cytotoxic T lymphocyte antigen 4, programmed cell death 1, programmed cell death ligand 1, indoleamine 2,3-dioxygenase, T-cell immunoglobulin and mucin domain 3, and lymphocyte activation gene 3 precisely target the immune system and give new hope for treating various types of cancer. In select marker-enriched populations, immunotherapies provide high response rates as well as durable responses in terms of progression-free survival and overall survival. Numerous factors, such as patient's immune system, the expression of targets on both immune and cancer cells, maintenance of an effective drug exposure, and tolerability to these agents may play a role in this unique observation.

  17. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests.

    PubMed

    King, Glenn F; Hardy, Margaret C

    2013-01-01

    Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.

  18. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes.

    PubMed

    Jou, Mei-Jie

    2008-01-01

    Astrocytes, in addition to passively supporting neurons, have recently been shown to be actively involved in synaptic transmission and neurovascular coupling in the central nervous system (CNS). This review summarizes briefly our previous observations using fluorescent probes coupled with laser scanning digital imaging microscopy to visualize spatio-temporal alteration of mitochondrial reactive oxygen species (mROS) generation in intact astrocytes. mROS formation is enhanced by exogenous oxidants exposure, Ca2+ stress and endogenous pathological defect of mitochondrial respiratory complexes. In addition, mROS formation can be specifically stimulated by visible light or visible laser irradiation and can be augmented further by photodynamic coupling with photosensitizers, particularly with mitochondria-targeted photosensitizers. "Severe" oxidative insult often results in massive and homogeneous augmentation of mROS formation which causes cessation of mitochondrial movement, pathological fission and irreversible swelling of mitochondria and eventually apoptosis or necrosis of cells. Mitochondria-targeted antioxidants and protectors such as MitoQ, melatonin and nanoparticle C(60) effectively prevent "severe" mROS generation. Intriguingly, "minor" oxidative insults enhance heterogeneity of mROS and mitochondrial dynamics. "Minor" mROS formation-induced fission and fusion of mitochondria relocates mitochondrial network to form a mitochondria free gap, i.e., "firewall", which may play a crucial role in mROS-mediated protective "preconditioning" by preventing propagation of mROS during oxidative insults. These mROS-targeted strategies for either enhancement or prevention of mitochondrial oxidative stress in astrocytes may provide new insights for future development of therapeutic interventions in the treatment of cancer such as astrocytomas and gliomas and astrocyte-associated neurodegeneration, mitochondrial diseases and aging.

  19. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy

    PubMed Central

    Brueggemann, Lioubov I.; Kakad, Priyanka P.; Love, Robert B.; Solway, Julian; Dowell, Maria L.; Cribbs, Leanne L.

    2012-01-01

    Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2–7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists. PMID:21964407

  20. P2Y Receptors in the Mammalian Nervous System: Pharmacology, Ligands and Therapeutic Potential

    PubMed Central

    Weisman, Gary A.; Woods, Lucas T.; Erb, Laurie; Seye, Cheikh I.

    2015-01-01

    P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases. PMID:22963441

  1. Targeted Thromboelastographic (TEG) Blood Component and Pharmacologic Hemostatic Therapy in Traumatic and Acquired Coagulopathy

    PubMed Central

    Walsh, Mark; Fritz, Stephanie; Hake, Daniel; Son, Michael; Greve, Sarah; Jbara, Manar; Chitta, Swetha; Fritz, Braxton; Miller, Adam; Bader, Mary K; McCollester, Jonathon; Binz, Sophia; Liew-Spilger, Alyson; Thomas, Scott; Crepinsek, Anton; Shariff, Faisal; Ploplis, Victoria; Castellino, Francis J.

    2016-01-01

    Trauma-induced coagulopathy (TIC) is a recently described condition which traditionally has been diagnosed by the common coagulation tests (CCTs) such as prothrombin time/international normalized ratio (PT/INR), activated partial thromboplastin time (aPTT), platelet count, and fibrinogen levels. The varying sensitivity and specificity of these CCTs have led trauma coagulation researchers and clinicians to use Viscoelastic Tests (VET) such as Thromboelastography (TEG) to provide Targeted Thromboelastographic Hemostatic and Adjunctive Therapy (TTHAT) in a goal directed fashion to those trauma patients in need of hemostatic resuscitation. This review describes the utility of VETs, in particular, TEG, to provide TTHAT in trauma and acquired non-trauma-induced coagulopathy. PMID:26960340

  2. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing.

    PubMed

    Gendaszewska-Darmach, Edyta; Kucharska, Marta

    2011-06-01

    With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.

  3. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential.

    PubMed

    Hoult, J R; Payá, M

    1996-06-01

    1. More than 300 coumarins have been identified from natural sources, especially green plants. The pharmacological and biochemical properties and therapeutic applications of simple coumarins depend upon the pattern of substitution. More complex related compounds based on the coumarin nucleus include the dicoumarol/warfarin anticoagulants, aflatoxins and the psoralens (photosensitizing agents). 2. Coumarin itself (1,2-benzopyrone) has long-established efficacy in slow-onset long-term reduction of lymphoedema in man, as confirmed in recent double-blind trials against elephantiasis and postmastectomy swelling of the arm. The mechanism of action is uncertain, but may involve macrophage-induced proteolysis of oedema protein. However, coumarin has low absolute bioavailability in man (< 5%), due to extensive first-pass hepatic conversion to 7-hydroxycoumarin followed by glucuronidation. It may, therefore, be a prodrug. 3. Scoparone (6,7-dimethoxycoumarin) has been purified from the hypolipidaemic Chinese herb Artemisia scoparia and shown to reduce the proliferative responses of human peripheral mononuclear cells, to relax smooth muscle, to reduce total cholesterol and triglycerides and to retard the characteristic pathomorphological changes in hypercholesterolaemic diabetic rabbits. Various properties of scoparone were suggested to account for these findings, including ability to scavenge reactive oxygen species, inhibition of tyrosine kinases and potentiation of prostaglandin generation. 4. Osthole (7-methoxy-8-[3-methylpent-2-enyl]coumarin) from Angelica pubescens, used also in Chinese medicine, causes hypotension in vivo, and inhibits platelet aggregation and smooth muscle contraction in vitro. It may interfere with calcium influx and with cyclic nucleotide phosphodiesterases. 5. Cloricromene, a synthetic coumarin derivative, also possesses antithrombotic antiplatelet actions, inhibits PMN neutrophil function and causes vasodilatation. Some of these properties of

  4. Finding Potential Therapeutic Targets against Shigella flexneri through Proteome Exploration

    PubMed Central

    Hossain, Mohammad Uzzal; Khan, Md. Arif; Hashem, Abu; Islam, Md. Monirul; Morshed, Mohammad Neaz; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Background: Shigella flexneri is a gram negative bacteria that causes the infectious disease “shigellosis.” S. flexneri is responsible for developing diarrhea, fever, and stomach cramps in human. Antibiotics are mostly given to patients infected with shigella. Resistance to antibiotics can hinder its treatment significantly. Upon identification of essential therapeutic targets, vaccine and drug could be effective therapy for the treatment of shigellosis. Methods: The study was designed for the identification and qualitative characterization for potential drug targets from S. flexneri by using the subtractive proteome analysis. A set of computational tools were used to identify essential proteins those are required for the survival of S. flexneri. Total proteome (13,503 proteins) of S. flexneri was retrieved from NCBI and further analyzed by subtractive channel analysis. After identification of the metabolic proteins we have also performed its qualitative characterization to pave the way for the identification of promising drug targets. Results: Subtractive analysis revealed that a list of 53 targets of S. flexneri were human non-homologous essential metabolic proteins that might be used for potential drug targets. We have also found that 11 drug targets are involved in unique pathway. Most of these proteins are cytoplasmic, can be used as broad spectrum drug targets, can interact with other proteins and show the druggable properties. The functionality and drug binding site analysis suggest a promising effective way to design the new drugs against S. flexneri. Conclusion: Among the 53 therapeutic targets identified through this study, 13 were found highly potential as drug targets based on their physicochemical properties whilst only one was found as vaccine target against S. flexneri. The outcome might also be used as module as well as circuit design in systems biology. PMID:27920755

  5. Peritoneal Tumor Carcinomatosis: Pharmacological Targeting with Hyaluronan-Based Bioconjugates Overcomes Therapeutic Indications of Current Drugs

    PubMed Central

    Montagner, Isabella Monia; Merlo, Anna; Zuccolotto, Gaia; Renier, Davide; Campisi, Monica; Pasut, Gianfranco; Zanovello, Paola; Rosato, Antonio

    2014-01-01

    Peritoneal carcinomatosis still lacks reliable therapeutic options. We aimed at testing a drug delivery strategy allowing a controlled release of cytotoxic molecules and selective targeting of tumor cells. We comparatively assessed the efficacy of a loco-regional intraperitoneal treatment in immunocompromised mice with bioconjugates formed by chemical linking of paclitaxel or SN-38 to hyaluronan, against three models of peritoneal carcinomatosis derived from human colorectal, gastric and esophageal tumor cell xenografts. In vitro, bioconjugates were selectively internalized through mechanisms largely dependent on interaction with the CD44 receptor and caveolin-mediated endocytosis, which led to accumulation of compounds into lysosomes of tumor cells. Moreover, they inhibited tumor growth comparably to free drugs. In vivo, efficacy of bioconjugates or free drugs against luciferase-transduced tumor cells was assessed by bioluminescence optical imaging, and by recording mice survival. The intraperitoneal administration of bioconjugates in tumor-bearing mice exerted overlapping or improved therapeutic efficacy compared with unconjugated drugs. Overall, drug conjugation to hyaluronan significantly improved the profiles of in vivo tolerability and widened the field of application of existing drugs, over their formal approval or current use. Therefore, this approach can be envisaged as a promising therapeutic strategy for loco-regional treatment of peritoneal carcinomatosis. PMID:25383653

  6. Elucidation and pharmacological targeting of novel molecular drivers of follicular lymphoma progression

    PubMed Central

    Bisikirska, Brygida; Bansal, Mukesh; Shen, Yao; Teruya-Feldstein, Julie; Chaganti, Raju; Califano, Andrea

    2015-01-01

    Follicular lymphoma (FL), the most common indolent subtype of non-Hodgkin’s lymphoma, is associated with a relatively long overall survival rate ranging from 6 to 10 years from time of diagnosis. However, in 20–60% of FL patients, transformation to aggressive diffuse large B-cell lymphoma (DLBCL) reduces median survival to only 1.2 years. The specific functional and genetic determinants of FL transformation remain elusive, and genomic alterations underlying disease advancement have only been identified for a subset of cases. Therefore, to identify candidate drivers of FL transformation, we performed systematic analysis of a B-cell-specific regulatory model exhibiting FL transformation signatures using the Master Regulator Inference algorithm (MARINa). This analysis revealed FOXM1, TFDP1, ATF5, HMGA1, and NFYB to be candidate master regulators (MR) contributing to disease progression. Accordingly, validation was achieved through synthetic lethality assays in which RNAi-mediated silencing of MRs individually or in combination reduced the viability of (14;18)-positive DLBCL (t-DLBCL) cells. Furthermore, specific combinations of small molecule compounds targeting synergistic MR pairs induced loss of viability in t-DLBCL cells. Collectively, our findings indicate that MR analysis is a valuable method for identifying bona fide contributors to FL transformation and may therefore guide the selection of compounds to be used in combinatorial treatment strategies. PMID:26589882

  7. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia

    PubMed Central

    Giambruno, Roberto; Grover, Amit; Avellino, Roberto; Skucha, Anna; Vittori, Sarah; Kuznetsova, Ekaterina; Smil, David; Barsyte-Lovejoy, Dalia; Li, Fengling; Poda, Gennadiy; Schapira, Matthieu; Wu, Hong; Dong, Aiping; Senisterra, Guillermo; Stukalov, Alexey; Huber, Kilian V. M.; Schönegger, Andreas; Marcellus, Richard; Bilban, Martin; Bock, Christoph; Brown, Peter J.; Zuber, Johannes; Bennett, Keiryn L.; Al-awar, Rima; Delwel, Ruud; Nerlov, Claus

    2015-01-01

    The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short 30 kDa C/EBPα translational isoform, termed p30, represents the most common type of CEBPA mutations in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as its down-regulation inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a novel small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30-cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML. PMID:26167872

  8. [Molecular targets and novel pharmacological options to prevent myocardial hypertrophic remodeling].

    PubMed

    Coppini, Raffaele; Ferrantini, Cecilia; Poggesi, Corrado; Mugelli, Alessandro; Olivotto, Iacopo

    2016-03-01

    Myocardial hypertrophic remodeling is a pathophysiological feature of several cardiac conditions and is the hallmark of hypertrophic cardiomyopathy (HCM), the most common monogenic inherited disease of the heart. In recent years, preclinical and clinical studies investigated the underlying molecular mechanisms and intracellular signaling pathways involved in pathologic cardiomyocyte hypertrophy and highlighted a number of possible molecular targets of therapy aimed at preventing its development. Early prevention of myocardial hypertrophic remodeling is particularly sought after in HCM, as current therapeutic strategies are unable to remove the primary cause of disease, i.e. the disease-causing gene mutation. Studies on transgenic animal models or human myocardial samples from patients with HCM identified intracellular calcium overload as a central mechanism driving pathological hypertrophy. In this review, we analyze recent preclinical and clinical studies on animal models and patients with HCM aimed at preventing or modifying hypertrophic myocardial remodeling. Mounting evidence shows that prevention of pathological hypertrophy is a feasible strategy in HCM and will enter the clinical practice in the near future. Considering the close mechanistic similarities between HCM and secondary hypertrophy, these studies are also relevant for the common forms of cardiac hypertrophy, such as hypertensive or valvular heart disease.

  9. Receptors and ionic transporters in nuclear membranes: new targets for therapeutical pharmacological interventions.

    PubMed

    Bkaily, Ghassan; Avedanian, Levon; Al-Khoury, Johny; Ahmarani, Lena; Perreault, Claudine; Jacques, Danielle

    2012-08-01

    Work from our group and other laboratories showed that the nucleus could be considered as a cell within a cell. This is based on growing evidence of the presence and role of nuclear membrane G-protein coupled receptors and ionic transporters in the nuclear membranes of many cell types, including vascular endothelial cells, endocardial endothelial cells, vascular smooth muscle cells, cardiomyocytes, and hepatocytes. The nuclear membrane receptors were found to modulate the functioning of ionic transporters at the nuclear level, and thus contribute to regulation of nuclear ionic homeostasis. Nuclear membranes of the mentioned types of cells possess the same ionic transporters; however, the type of receptors is cell-type dependent. Regulation of cytosolic and nuclear ionic homeostasis was found to be dependent upon a tight crosstalk between receptors and ionic transporters of the plasma membranes and those of the nuclear membrane. This crosstalk seems to be the basis for excitation-contraction coupling, excitation-secretion coupling, and excitation - gene expression coupling. Further advancement in this field will certainly shed light on the role of nuclear membrane receptors and transporters in health and disease. This will in turn enable the successful design of a new class of drugs that specifically target such highly vital nuclear receptors and ionic transporters.

  10. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria.

    PubMed

    Vijayakumar, S; Manogar, P; Prabhu, S

    2016-10-01

    Cyanobacteria find several applications in pharmacology as potential candidates for drug design. The need for new compounds that can be used as drugs has always been on the rise in therapeutics. Cyanobacteria have been identified as promising targets of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structures. Cyanobacteria is now recognized as a vital source of bioactive molecules like Curacin A, Largazole and Apratoxin which have succeeded in reaching Phase II and Phase III into clinical trials. The discovery of several new clinical cannabinoid drugs in the past decade from diverse marine life should translate into a number of new drugs for cannabinoid in the years to come. Conventional cannabinoid drugs have high toxicity and as a result, they affect the efficacy of chemotherapy and patients' life very much. The present review focuses on how potential, safe and affordable drugs used for cannabinoid treatment could be developed from cyanobacteria.

  11. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.

    PubMed

    Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E

    2017-01-15

    Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway.

  12. Pharmacologically targeting beta-catenin for NF1 associated deficiencies in fracture repair.

    PubMed

    Baht, Gurpreet S; Nadesan, Puviindran; Silkstone, David; Alman, Benjamin A

    2017-02-22

    Patients with Neurofibromatosis type 1 display delayed fracture healing and the increased deposition of fibrous tissue at the fracture site. Severe cases can lead to non-union and even congenital pseudarthrosis. Neurofibromatosis type 1 is caused by a mutation in the NF1 gene and mice lacking the Nf1 gene show a fracture repair phenotype similar to that seen in patients. Tissue from the fracture site of patients with Neurofibromatosis type 1 and from mice deficient in the Nf1 gene both show elevated levels of β-catenin protein and activation of β-catenin mediated signaling. Constitutively elevated β-catenin leads to a delayed and fibrous fracture repair process, and (RS)-5-methyl-1-phenyl-1,3,4,6-tetrahydro-2,5-benzoxazocine (Nefopam, a centrally-acting, non-narcotic analgesic agent) inhibits β-catenin mediated signaling during skin wound repair. Here we investigate Nefopam's potential as a modulator of bone repair in mice deficient in Nf1. Mice were treated with Nefopam and investigated for bone fracture repair. Bone marrow stromal cells flushed from the long bones of unfractured mice were treated with Nefopam and investigated for osteogenic potential. Treatment with Nefopam was able to lower the β-catenin level and the Axin2 transcript level in the fracture calluses of Nf1 deficient mice. Cultures from the bone marrow of Nf1(-/-) mice had significantly lower osteoblastic colonies and mineralized nodules, which was increased when cells were cultured in the presence of Nefopam. Fracture calluses were harvested and analyzed 14days and 21days after injury. Nf1(-/-) calluses had less bone, less cartilage, and higher fibrous tissue content than control calluses. Treatment with Nefopam increased the bone and cartilage content and decreased the fibrous tissue content in Nf1(-/-) calluses. These findings present a potential treatment for patients with Neurofibromatosis 1 in the context of bone repair. Since Nefopam is already in use in patient care, it could be

  13. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    PubMed

    Panchal, Komal; Tiwari, Anand K

    2017-03-18

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.

  14. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    PubMed Central

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799

  15. Intracellular signaling as a potential target for antiplatelet therapy.

    PubMed

    Andre, Patrick

    2012-01-01

    Three classes of inhibitors of platelet aggregation have demonstrated substantial clinical benfits. Aspirin acts by irreversibly inhibiting COX-1 and therefore blocking the synthesis of proaggregatory thromboxane A (2) (TxA(2)). The indirect acting (ticlopidine, clopidogrel, prasugrel) and the direct acting (ticagrelor) antagonists of P2Y(12) block the thrombus stabilizing activity of ADP. Parenteral GP IIb-IIIa inhibitors directly block platelet-platelet interactions. Despite well-established benefits, all antiplatelet agents have important limitations: increased bleeding and gastrointestinal toxicities (aspirin), high incidence of thrombotic thrombocytopenic purpura (ticlopidine), potentially nonresponders (clopidogrel), severe bleeding (prasugrel, GP IIb-IIIa antagonists) and "complicated" relationships with aspirin ticagrelor). In this chapter, we present the genetic and pharmacological evidence that supports the development and expectations associated with novel antiplatelet strategies directed at intrasignaling pathways.

  16. New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia.

    PubMed

    Neves, Gilda; Antonio, Camila B; Betti, Andresa H; Pranke, Mariana A; Fraga, Carlos A M; Barreiro, Eliezer J; Noël, François; Rates, Stela M K

    2013-01-15

    Previous behavioral and receptor binding studies on N-phenylpiperazine derivatives by our group indicated that LASSBio-579, LASSBio-580 and LASSBio-581 could be potential antipsychotic lead compounds. The present study identified LASSBio-579 as the most promising among the three compounds, since it was the only one that inhibited apomorphine-induced climbing (5 mg/kg p.o.) and apomorphine-induced hypothermia (15 mg/kg p.o.). Furthermore, LASSBio-579 (0.5 mg/kg p.o.) was effective in the ketamine-induced hyperlocomotion test and prevented the prepulse inhibition deficits induced by apomorphine, DOI and ketamine with different potencies (1 mg/kg, 0.5 mg/kg and 5 mg/kg p.o., respectively). LASSBio-579 also induced a motor impairment, catalepsy and a mild sedative effect but only at doses 3-120 times higher than those with antipsychotic-like effects. In addition, LASSBio-579 (0.5 and 1 mg/kg p.o.) reversed the catalepsy induced by WAY 100,635, corroborating its action on both dopaminergic and serotonergic neurotransmission and pointing to the contribution of 5-HT(1A) receptor activation to its pharmacological profile. Moreover, co-administration of sub-effective doses of LASSBio-579 with sub-effective doses of clozapine or haloperidol prevented the apomorphine-induced climbing without induction of catalepsy. In summary, our results characterize LASSBio-579 as a multi-target ligand active in pharmacological animal models of schizophrenia, confirming that this compound could be included in development programs aiming at a new drug for treating schizophrenia.

  17. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite.

    PubMed

    Romano, Adele; Coccurello, Roberto; Giacovazzo, Giacomo; Bedse, Gaurav; Moles, Anna; Gaetani, Silvana

    2014-01-01

    The initial pharmaceutical interest for the endocannabinoid system as a target for antiobesity therapies has been restricted by the severe adverse effects of the CB1 antagonist rimonabant. This study points at oleoylethanolamide (OEA), a monounsaturated analogue, and functional antagonist of anandamide, as a potential and safer antiobesity alternative to CB1 antagonism. Mice treated with equal doses (5 or 10 mg/kg, i.p.) of OEA or rimonabant were analyzed for the progressive expression of spontaneous behaviors (eating, grooming, rearing, locomotion, and resting) occurring during the development of satiety, according to the paradigm called behavioral satiety sequence (BSS). Both drugs reduced food (wet mash) intake to a similar extent. OEA treatment decreased eating activity within the first 30 min and caused a temporary increase of resting time that was not accompanied by any decline of horizontal, vertical and total motor activity. Besides decreasing eating activity, rimonabant caused a marked increase of the time spent grooming and decreased horizontal motor activity, alterations that might be indicative of aversive nonmotivational effects on feeding. These results support the idea that OEA suppresses appetite by stimulating satiety and that its profile of action might be predictive of safer effects in humans as a novel antiobesity treatment.

  18. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Braig, Simone; Schmidt, B. U. Sebastian; Stoiber, Katharina; Händel, Chris; Möhn, Till; Werz, Oliver; Müller, Rolf; Zahler, Stefan; Koeberle, Andreas; Käs, Josef A.; Vollmar, Angelika M.

    2015-08-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes.

  19. Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation.

    PubMed

    Jensen, Bettina M; Metcalfe, Dean D; Gilfillan, Alasdair M

    2007-03-01

    The prevalence of allergic diseases is increasing worldwide. Hence, there is continued need for novel pharmacological therapies for the treatment of these disorders. As the mast cell is one of the essential cells that contributes to the inflammation associated with allergic diseases, this cell type remains an attractive target for such pharmacological intervention. Mast cells are major players in the early phase of the allergic response since they generate and release a variety of inflammatory mediators following antigen-dependent aggregation of IgE-bound FcepsilonRI (high affinity IgE-receptor) on the cell surface. These mediators also contribute to the late and chronic stages of allergic inflammation. Thus, the IgE/antigen response has been a major focus in the development of new drugs targeting mast cells. The essential role that stem cell factor (SCF) and its receptor, Kit, play in mast cell biology, however, may provide us with an alternative or adjunct therapy. SCF is necessary for mast cell development, proliferation and survival, but it is also known to play a role in homing and adhesion of mast cells. Furthermore, there is an increasing amount of literature demonstrating that SCF is necessary for optimal IgE/antigen-induced mast cell degranulation and cytokine production. Several drug candidates targeting SCF and/or Kit have been studied for their anti-allergic properties. These include anti-SCF antibodies, antisense oligonucleotides, Kit inhibitors, and inhibitors of downstream signaling molecules. In this review, we provide an overview of the role of SCF and Kit in mast cell activation and discuss potential drug candidates for targeting this response.

  20. Pharmacology of novel intraocular pressure-lowering targets that enhance conventional outflow facility: Pitfalls, promises and what lies ahead?

    PubMed

    Prasanna, Ganesh; Li, Byron; Mogi, Muneto; Rice, Dennis S

    2016-09-15

    Intraocular pressure (IOP) lowering drugs that are approved for the treatment of glaucoma and ocular hypertension have limited activity on increasing aqueous humor movement through the trabecular meshwork and Schlemm's canal (TM/SC). The TM/SC complex is considered the conventional outflow pathway and is a primary site of increased resistance to aqueous humor outflow in glaucoma. Novel mechanisms that enhance conventional outflow have shown promise in IOP reduction via modulation of several pathways including Rho kinase, nitric oxide/soluble guanylate cyclase/cGMP, adenosine A1, prostaglandin EP4/cAMP, and potassium channels. The clinical translatability of these pharmacological modulators based on pre-clinical efficacy models is currently being explored. In addition, identification of pathways from GWAS and other studies involving transgenic rodent models with elevated/reduced IOP phenotypes have begun to yield additional insights into IOP regulation and serve as a source for the next generation of IOP lowering targets. Lastly, improvements in drug delivery technologies to enable sustained IOP reduction are also discussed.

  1. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice

    PubMed Central

    Yu, Rosie Z; Graham, Mark J; Post, Noah; Riney, Stan; Zanardi, Thomas; Hall, Shannon; Burkey, Jennifer; Shemesh, Colby S; Prakash, Thazha P; Seth, Punit P; Swayze, Eric E; Geary, Richard S; Wang, Yanfeng; Henry, Scott

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3)-conjugated antisense oligonucleotides (ASOs) have greatly improved potency via receptor-mediated uptake. In the present study, the in vivo pharmacology of a 2′-O-(2-methoxyethyl)-modified ASO conjugated with GalNAc3 (ISIS 681257) together with its unmodified congener (ISIS 494372) targeting human apolipoprotein (a) (apo(a)), were studied in human LPA transgenic mice. Further, the disposition kinetics of ISIS 681257 was studied in CD-1 mice. ISIS 681257 demonstrated over 20-fold improvement in potency over ISIS 494372 as measured by liver apo(a) mRNA and plasma apo(a) protein levels. Following subcutaneous (SC) dosing, ISIS 681257 cleared rapidly from plasma and distributed to tissues. Intact ISIS 681257 was the major full-length oligonucleotide species in plasma. In tissues, however, GalNAc sugar moiety was rapidly metabolized and unconjugated ISIS 681257 accounted > 97% of the total exposure, which was then cleared slowly from tissues with a half-life of 7–8 days, similar to the half-life in plasma. ISIS 681257 is highly bound to plasma proteins (> 94% bound), which limited its urinary excretion. This study confirmed dose-dependent exposure to the parent drug ISIS 681257 in plasma and rapid conversion to unconjugated ASO in tissues. Safety data and the extended half-life support its further development and weekly dosing in phase 1 clinical studies. PMID:27138177

  2. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology

    PubMed Central

    Olmos-Alonso, Adrian; Schetters, Sjoerd T. T.; Sri, Sarmi; Askew, Katharine; Mancuso, Renzo; Vargas-Caballero, Mariana; Holscher, Christian; Perry, V. Hugh

    2016-01-01

    The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer’s disease. However, the study of microglial proliferation in Alzheimer’s disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer’s disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer’s-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer’s disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer’s disease. PMID:26747862

  3. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all

    PubMed Central

    Gohil, Kashmira J.; Patel, Jagruti A.; Gajjar, Anuradha K.

    2010-01-01

    In recent times, focus on plant research has increased all over the world. Centella asiatica is an important medicinal herb that is widely used in the orient and is becoming popular in the West. Triterpenoid, saponins, the primary constituents of Centella asiatica are manly believed to be responsible for its wide therapeutic actions. Apart from wound healing, the herb is recommended for the treatment of various skin conditions such as leprosy, lupus, varicose ulcers, eczema, psoriasis, diarrhoea, fever, amenorrhea, diseases of the female genitourinary tract and also for relieving anxiety and improving cognition. The present review attempts to provide comprehensive information on pharmacology, mechanisms of action, various preclinical and clinical studies, safety precautions and current research prospects of the herb. At the same time, studies to evaluate the likelihood of interactions with drugs and herbs on simultaneous use, which is imperative for optimal and safe utilization of the herb, are discussed. PMID:21694984

  4. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer.

    PubMed

    Azimi, Haniye; Khakshur, Ali Asghar; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    In the present article, we reviewed plants and phytochemical compounds demonstrating beneficial effects in pancreatic cancer to find new sources of pharmaceutical agents. For this purpose, Scopus, PubMed, Web of Science, and Google scholar were searched for plants or herbal components with beneficial effects in the treatment of pancreatic cancer. Data were collected up to January 2013. The search terms were "plant," "herb," "herbal therapy," or "phytotherapy" and "pancreatic cancer" or "pancreas." All of the human in vivo and in vitro studies were included. According to studies, among diverse plants and phytochemicals, 12 compounds including apigenin, genistein, quercetin, resveratrol, epigallocatechin gallate, benzyl isothiocyanate, sulforaphane, curcumin, thymoquinone, dihydroartemisinin, cucurbitacin B, and perillyl alcohol have beneficial action against pancreatic cancer cells through 4 or more mechanisms. Applying their plausible synergistic effects can be an imperative approach for finding new efficient pharmacological agents in the treatment of pancreatic cancer.

  5. The Pharmacological Potential of Non-ribosomal Peptides from Marine Sponge and Tunicates

    PubMed Central

    Agrawal, Shivankar; Adholeya, Alok; Deshmukh, Sunil K.

    2016-01-01

    Marine biodiversity is recognized by a wide and unique array of fascinating structures. The complex associations of marine microorganisms, especially with sponges, bryozoans, and tunicates, make it extremely difficult to define the biosynthetic source of marine natural products or to deduce their ecological significance. Marine sponges and tunicates are important source of novel compounds for drug discovery and development. Majority of these compounds are nitrogen containing and belong to non-ribosomal peptide (NRPs) or mixed polyketide–NRP natural products. Several of these peptides are currently under trial for developing new drugs against various disease areas, including inflammatory, cancer, neurodegenerative disorders, and infectious disease. This review features pharmacologically active NRPs from marine sponge and tunicates based on their biological activities. PMID:27826240

  6. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type

    PubMed Central

    Jorge-Finnigan, Ana; Brasil, Sandra; Underhaug, Jarl; Ruíz-Sala, Pedro; Merinero, Begoña; Banerjee, Ruma; Desviat, Lourdes R.; Ugarte, Magdalena; Martinez, Aurora; Pérez, Belén

    2013-01-01

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations. PMID:23674520

  7. Molecular sonography with targeted microbubbles: current investigations and potential applications.

    PubMed

    Hwang, Misun; Lyshchik, Andrej; Fleischer, Arthur C

    2010-06-01

    Sonography using targeted microbubbles affords a variety of diagnostic and potentially therapeutic clinical applications. It provides a whole new world of functional information at the cellular and molecular level. This information can then be used to diagnose and possibly prevent diseases at early stages as well as devise therapeutic strategies at the molecular level. It is also useful in monitoring tumor response to therapy and devising treatment timing and plans based on the molecular state of an individual's health. Moreover, targeted microbubble-enhanced sonography has several advantages over other imaging modalities, including widespread availability, low cost, fast acquisition times, and lack of radiation risk. These traits are likely to advance it as one of the imaging methods of choice in future clinical trials examining the impact of molecular imaging on treatment outcome. This review describes the fundamental concepts of targeted microbubble-enhanced sonography as well as its potential clinical applications.

  8. Natural antisense and noncoding RNA transcripts as potential drug targets.

    PubMed

    Wahlestedt, Claes

    2006-06-01

    Information on the complexity of mammalian RNA transcription has increased greatly in the past few years. Notably, thousands of sense transcripts (conventional protein-coding genes) have antisense transcript partners, most of which are noncoding. Interestingly, a number of antisense transcripts regulate the expression of their sense partners, either in a discordant (antisense knockdown results in sense-transcript elevation) or concordant (antisense knockdown results in concomitant sense-transcript reduction) manner. Two new pharmacological strategies based on the knockdown of antisense RNA transcripts by siRNA (or another RNA targeting principle) are proposed in this review. In the case of discordant regulation, knockdown of antisense transcript elevates the expression of the conventional (sense) gene, thereby conceivably mimicking agonist-activator action. In the case of concordant regulation, knockdown of antisense transcript, or concomitant knockdown of antisense and sense transcripts, results in an additive or even synergistic reduction of the conventional gene expression. Although both strategies have been demonstrated to be valid in cell culture, it remains to be seen whether they provide advantages in other contexts.

  9. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    PubMed Central

    Leong, Daniel J.; Choudhury, Marwa; Hirsh, David M.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2013-01-01

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment. PMID:24284399

  10. Enhancement of chemotherapeutic efficacy in hypermethylator breast cancer cells through targeted and pharmacologic inhibition of DNMT3b.

    PubMed

    Sandhu, Rupninder; Rivenbark, Ashley G; Coleman, William B

    2012-01-01

    A subset of primary breast cancers and breast cancer cell lines express a hypermethylation defect (characterized by DNMT hyperactivity and DNMT3b overexpression) which contributes to chemotherapy resistance and provides a target for development of new treatment strategies. The objective of the current study was to determine if targeting the epigenome enhances the sensitivity of breast cancer cells to cytotoxic chemotherapy. Hypermethylator breast cancer cell lines (MDA-MB-453, BT549, and Hs578T) were treated with 250 or 500 nM 5-aza-2'-deoxycytidine (5-aza) and/or were subjected to RNAi-mediated DNMT3b knockdown (KD), and then tested for sensitivity to doxorubicin hydrochloride (DOX), paclitaxel (PAX), and 5-fluorouracil (5-FU). In MDA-MB-453 cells, DNMT3b KD reduces the IC(50) for DOX from 0.086 to 0.048 μM (44% reduction), for PAX from 0.497 to 0.376 nM (24%), and for 5-FU from 0.817 to 0.145 mM (82%). Treatment with 250 nM 5-aza for 7 days did not increase the efficacy of DOX, PAX, or 5-FU, but 7-day treatment with 500 nM 5-aza sensitized cells, reducing the IC(50) for DOX to 0.035 μM (60%), PAX to 0.311 nM (37%), and 5-FU to 0.065 mM (92%). 5-aza treatment of DNMT3b KD cells reduced the IC(50) for DOX to 0.036 μM (59%), for PAX to 0.313 nM (37%) and for 5-FU to 0.067 (92%). Similar trends of enhancement of cell kill were seen in BT549 (13-60%) and Hs578T (29-70%) cells after RNAi-mediated DNMT3b KD and/or treatment with 5-aza. The effectiveness of DOX, PAX, and 5-FU is enhanced through targeted and/or pharmacological inhibition of DNMT3b, strongly suggesting that combined epigenetic and cytotoxic treatment will improve the efficacy of breast cancer chemotherapy.

  11. On the Design of Broad Based Screening Assays to Identify Potential Pharmacological Chaperones of Protein Misfolding Diseases†

    PubMed Central

    Naik, Subhashchandra; Zhang, Na; Gao, Phillip; Fisher, Mark T.

    2013-01-01

    Correcting aberrant folds that develop during protein folding disease states is now an active research endeavor that is attracting increasing attention from both academic and industrial circles. One particular approach focuses on developing or identifying small molecule correctors or pharmacological chaperones that specifically stabilize the native fold. Unfortunately, the limited screening platforms available to rapidly identify or validate potential drug candidates are usually inadequate or slow because the folding disease proteins in question are often transiently folded and/or aggregation-prone, complicating and/or interfering with the assay outcomes. In this review, we outline and discuss the numerous platform options currently being employed to identify small molecule therapeutics for folding diseases. Finally, we describe a new stability screening approach that is broad based and is easily applicable toward a very large number of both common and rare protein folding diseases. The label free screening method described herein couples the promiscuity of the GroEL binding to transient aggregation-prone hydrophobic folds with surface plasmon resonance enabling one to rapidly identify potential small molecule pharmacological chaperones. PMID:23339304

  12. Is VEGF a key target of cotinine and other potential therapies against Alzheimer disease?

    PubMed

    Echeverria, Valentin; Barreto, George E; Ávila-Rodriguez, Marco; Tarasov, Vadim V; Aliev, Gjumrakch

    2017-03-29

    The vascular endothelial growth factor (VEGF) is a neuroprotective cytokine that promotes neurogenesis and angiogenesis in the brain. In animal models, it has been shown that environmental enrichment and exercise, two non-pharmacological interventions that are beneficial decreasing the progression of Alzheimer disease (AD) and depressive-like behavior, enhance hippocampal VEGF expression and neurogenesis. Furthermore, the stimulation of VEGF expression promotes neurotransmission and synaptic plasticity processes such as neurogenesis. It is thought that these VEGF actions in the brain, may underly its beneficial therapeutic effects against psychiatric and other neurological conditions. In this review, evidence linking VEGF deficit with the development of AD as well as the potential role of VEGF signaling as a therapeutic target for cotinine and other interventions in neurodegenerative conditions are discussed. .

  13. CFTR pharmacology.

    PubMed

    Zegarra-Moran, Olga; Galietta, Luis J V

    2017-01-01

    CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.

  14. Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma

    PubMed Central

    Hanes, Robert; Grad, Iwona; Lorenz, Susanne; Stratford, Eva W.; Munthe, Else; Reddy, Chilamakuri Chandra Sekhar; Meza-Zepeda, Leonardo A.; Myklebost, Ola

    2016-01-01

    Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2. PMID:27409346

  15. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics?

    PubMed

    Knapp, Oliver; McArthur, Jeffrey R; Adams, David J

    2012-11-08

    Voltage-gated sodium channels (VGSC) are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  16. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    PubMed Central

    2011-01-01

    Long-term potentiation (LTP) in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents. PMID:21443797

  17. Recent Trends in Pharmacological Activity of Alkaloids in Animal Colitis: Potential Use for Inflammatory Bowel Disease

    PubMed Central

    Souza-Brito, Alba Regina Monteiro; Luiz-Ferreira, Anderson

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic and disrupted inflammation of the gastrointestinal tract. IBD have two main conditions, Crohn's disease and ulcerative colitis, and have been extensively investigated in recent years. Antibiotics derived from salicylates, steroids, immunosuppressors, and anti-TNF therapy are part of the therapeutic arsenal for IBD. However, very often patients stop responding to treatments over the time. In this context, searching for alternative agents is crucial for IBD clinical management. Natural products derived from medicinal plants are an interesting therapeutic alternative, since several studies have proven effective treatments in animal models of intestinal inflammation. Several naturally occurring compounds are potent antioxidants, both as free radical scavengers and as modulators of antioxidant enzymes expression and activity. A number of natural compounds have also been proved to inhibit the release of proinflammatory cytokines, decreasing the activation of nuclear factor κB (NF-κB), which is important to the inflammatory response in IBD. The alkaloids are substances of a very diverse class of plant secondary metabolites; an extensive list of biological activities has been attributed to alkaloids, such as being anticholinergic, antitumor, diuretic, antiviral, antihypertensive, antiulcer, analgesic, and anti-inflammatory. In the present work, studies on the pharmacological activity of alkaloids in experimental models of IBD were reviewed. PMID:28191024

  18. Immunomodulatory effects of fluoxetine: A new potential pharmacological action for a classic antidepressant drug?

    PubMed

    Di Rosso, María Emilia; Palumbo, María Laura; Genaro, Ana María

    2016-07-01

    Selective serotonin reuptake inhibitors are frequently used antidepressants. In particular, fluoxetine is usually chosen for the treatment of the symptoms of depression, obsessive-compulsive, panic attack and bulimia nervosa. Antidepressant therapy has been associated with immune dysfunction. However, there is contradictory evidence about the effect of fluoxetine on the immune system. Experimental findings indicate that lymphocytes express the serotonin transporter. Moreover it has been shown that fluoxetine is able to modulate the immune function through a serotonin-dependent pathway and through a novel independent mechanism. In addition, several studies have shown that fluoxetine can alter tumor cell viability. Thus, it was recently demonstrated in vivo that chronic fluoxetine treatment inhibits tumor growth by increasing antitumor T-cell activity. Here we briefly review some of the literature referring to how fluoxetine is able to modify, for better or worse, the functionality of the immune system. These results of our analysis point to the relevance of the novel pharmacological action of this drug as an immunomodulator helping to treat several pathologies in which immune deficiency and/or deregulation is present.

  19. Optimizing Interacting Potentials to Form Targeted Materials Structures

    SciTech Connect

    Torquato, Salvatore

    2015-09-28

    Conventional applications of the principles of statistical mechanics (the "forward" problems), start with particle interaction potentials, and proceed to deduce local structure and macroscopic properties. Other applications (that may be classified as "inverse" problems), begin with targeted configurational information, such as low-order correlation functions that characterize local particle order, and attempt to back out full-system configurations and/or interaction potentials. To supplement these successful experimental and numerical "forward" approaches, we have focused on inverse approaches that make use of analytical and computational tools to optimize interactions for targeted self-assembly of nanosystems. The most original aspect of our work is its inherently inverse approach: instead of predicting structures that result from given interaction potentials among particles, we determine the optimal potential that most robustly stabilizes a given target structure subject to certain constraints. Our inverse approach could revolutionize the manner in which materials are designed and fabricated. There are a number of very tangible properties (e.g. zero thermal expansion behavior), elastic constants, optical properties for photonic applications, and transport properties.

  20. Prediction of the Carcinogenic Potential of Human Pharmaceuticals Using Repeated Dose Toxicity Data and Their Pharmacological Properties

    PubMed Central

    van der Laan, Jan Willem; Buitenhuis, Wenny H. W.; Wagenaar, Laura; Soffers, Ans E. M. F.; van Someren, Eugene P.; Krul, Cyrille A. M.; Woutersen, Ruud A.

    2016-01-01

    In an exercise designed to reduce animal use, we analyzed the results of rat subchronic toxicity studies from 289 pharmaceutical compounds with the aim to predict the tumor outcome of carcinogenicity studies in this species. The results were obtained from the assessment reports available at the Medicines Evaluation Board of the Netherlands for 289 pharmaceutical compounds that had been shown to be non-genotoxic. One hundred forty-three of the 239 compounds not inducing putative preneoplastic lesions in the subchronic study did not induce tumors in the carcinogenicity study [true negatives (TNs)], whereas 96 compounds were categorized as false negatives (FNs) because tumors were observed in the carcinogenicity study. Of the remaining 50 compounds, 31 showed preneoplastic lesions in the subchronic study and tumors in the carcinogenicity study [true positives (TPs)], and 19 only showed preneoplastic lesions in subchronic studies but no tumors in the carcinogenicity study [false positives (FPs)]. In addition, we then re-assessed the prediction of the tumor outcome by integrating the pharmacological properties of these compounds. These pharmacological properties were evaluated with respect to the presence or absence of a direct or indirect proliferative action. We found support for the absence of cellular proliferation for 204 compounds (TN). For 67 compounds, the presence of cellular hyperplasia as evidence for proliferative action could be found (TP). Therefore, this approach resulted in an ability to predict non-carcinogens at a success rate of 92% and the ability to detect carcinogens at 98%. The combined evaluation of pharmacological and histopathological endpoints eventually led to only 18 unknown outcomes (17 categorized as FN and 1 as FP), thereby enhancing both the negative and positive predictivity of an evaluation based upon histopathological evaluation only. The data show the added value of a consideration of the pharmacological properties of compounds in

  1. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  2. Synaptic plasticity deficits in an experimental model of rett syndrome: long-term potentiation saturation and its pharmacological reversal.

    PubMed

    Weng, S-M; McLeod, F; Bailey, M E S; Cobb, S R

    2011-04-28

    Rett syndrome (RTT), a disorder caused almost exclusively by mutations in the X-linked gene, MECP2, has a phenotype thought to be primarily of neurological origin. Disruption of Mecp2 in mice results in a prominent RTT-like phenotype. One of the consequences of MeCP2 absence in the brain is altered functional and structural plasticity. We aimed to characterize synaptic effects related to plasticity in the hippocampus further and establish whether plasticity defects are amenable to pharmacological reversal. Using male mice in which Mecp2 expression was prevented by a stop cassette, we assessed synaptic plasticity in area CA1 at different phenotypic stages, scoring the mice weekly for overt RTT-like signs. Strongly symptomatic Mecp2(stop/y) mice displayed reduced long-term potentiation (LTP, 40.2±1.6% of wild-type), post-tetanic potentiation (PTP, 45±18.8% of wild-type) and paired-pulse facilitation (PPF, 78±0.1% of wild type) (all P<0.05), the impairment increasing with symptom severity score. These plasticity impairments were absent in presymptomatic mice. Repeated high frequency stimulation revealed pronounced LTP saturation in symptomatic Mecp2(stop/y) mice, suggesting an LTP 'ceiling' effect. Bath application of the weak NMDA receptor blocker memantine (1 μM) resulted in partial restoration of a short-term plasticity component. These data support that idea that progressive functional synaptic impairment is a key feature in the RTT brain and demonstrate the potential for the pharmacological restoration of plasticity function.

  3. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2015-04-01

    Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Sporozo ite infection of the liver is the first obl igate step of the Plasmodium...goal is to find drugs that prevent or control liver infection. Development of such drugs will be faci l itated by identification of parasite proteins...required for l iver infection. These proteins are potential drug targets for development of therapies that restrict Plasmodium liver infection. The

  4. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  5. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma.

    PubMed

    Thomas, Alexandra L; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J; Rajapakshe, Kimal; Krett, Nancy L; Gunaratne, Preethi H; Rosen, Steven T

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3'-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death.

  6. Wake potential of swift ion in amorphous carbon target

    NASA Astrophysics Data System (ADS)

    Al-Bahnam, Nabil janan; Ahmad, Khalid A.; Aboo Al-Numan, Abdullah Ibrahim

    2017-02-01

    The wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude-Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio ωp2 / ω02 = 10 to 0.1, has been studied alongside the Drude-Lorentz dielectric function and quantum dielectric function formalisms; the results evidently show that the wake potential dip depth decreases with more oscillations when the electron density ratio ωp2 / ω02 decreases from 10 to 0.1. One of the primary objectives of the present work is to construct a reasonably realistic procedure for simulating the response of target to swift ions by combining an expression for the induced wake potential along with several important dielectric function models; the aim of this research is to reduce computational complexity without sacrificing accuracy. This is regarded as being an efficient strategy in that it creates suitable computer simulation procedures which are relevant to actual solids. After comparing this method with other models, the main differences and similarities have been noted while the end results have proved encouraging.

  7. Selecting Potential Targetable Biomarkers for Imaging Purposes in Colorectal Cancer Using TArget Selection Criteria (TASC): A Novel Target Identification Tool.

    PubMed

    van Oosten, Marleen; Crane, Lucia Ma; Bart, Joost; van Leeuwen, Fijs W; van Dam, Gooitzen M

    2011-04-01

    Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients, which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring system might improve the selection of the correct biomarker for imaging purposes. In this review, we present the TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging. By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemokine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases, mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applications in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish its definitive value.

  8. Pharmacological targeting of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth in the mouse model of lymphangioleiomyomatosis.

    PubMed

    Atochina-Vasserman, Elena N; Abramova, Elena; James, Melane L; Rue, Ryan; Liu, Amy Y; Ersumo, Nathan Tessema; Guo, Chang-Jiang; Gow, Andrew J; Krymskaya, Vera P

    2015-12-15

    Pulmonary lymphangioleiomyomatosis (LAM), a rare progressive lung disease associated with mutations of the tuberous sclerosis complex 2 (Tsc2) tumor suppressor gene, manifests by neoplastic growth of LAM cells, induction of cystic lung destruction, and respiratory failure. LAM severity correlates with upregulation in serum of the prolymphangiogenic vascular endothelial growth factor D (VEGF-D) that distinguishes LAM from other cystic diseases. The goals of our study was to determine whether Tsc2 deficiency upregulates VEGF-D, and whether axitinib, the Food and Drug Administration-approved small-molecule inhibitor of VEGF receptor (VEGFR) signaling, will reduce Tsc2-null lung lesion growth in a mouse model of LAM. Our data demonstrate upregulation of VEGF-D in the serum and lung lining in mice with Tsc2-null lesions. Progressive growth of Tsc2-null lesions induces recruitment and activation of inflammatory cells and increased nitric oxide production. Recruited cells isolated from the lung lining of mice with Tsc2-null lesions demonstrate upregulated expression of provasculogenic Vegfa, prolymphangiogenic Figf, and proinflammatory Nos2, Il6, and Ccl2 genes. Importantly, axitinib is an effective inhibitor of Tsc2-null lesion growth and inflammatory cell recruitment, which correlates with reduced VEGF-D levels in serum and lung lining. Our data demonstrate that pharmacological inhibition of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth, attenuates recruitment and activation of inflammatory cells, and reduces VEGF-D levels systemically and in the lung lining. Our study suggests a potential therapeutic benefit of inhibition of VEGFR signaling for treatment of LAM.

  9. Prioritization of pharmaceuticals for potential environmental hazard through leveraging a large scale mammalian pharmacological dataset

    EPA Science Inventory

    To proceed in the investigation of potential effects of thousands of active pharmaceutical ingredients (API) which may enter the aquatic environment, a cohesive research strategy, specifically a prioritization is paramount. API are biologically active, with specific physiologica...

  10. Leveraging a large scale mammalian pharmacological dataset to prioritize potential environmental hazard of pharmaceuticals

    EPA Science Inventory

    The potential for pharmaceuticals in the environment to cause adverse ecological effects is of increasing concern. Given the thousands of active pharmaceutical ingredients (APIs) which can enter the aquatic environment through various means, a current challenge in aquatic toxicol...

  11. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  12. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction.

  13. Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma

    PubMed Central

    Zhang, Junyong; Liu, Zuojin; Lian, Zhengrong; Liao, Rui; Chen, Yi; Qin, Yi; Wang, Jinlong; Jiang, Qing; Wang, Xiaobo; Gong, Jianping

    2016-01-01

    Monoacylglycerol lipase (MAGL) is a key enzyme in lipid metabolism that is demonstrated to be involved in tumor progression through both energy supply of fatty acid (FA) oxidation and enhancing cancer cell malignance. The aim of this study was to investigate whether MAGL could be a potential therapeutic target and prognostic indicator for hepatocellular carcinoma (HCC). To evaluate the relationship between MAGL levels and clinical characteristics, a tissue microarray (TMA) of 353 human HCC samples was performed. MAGL levels in HCC samples were closely linked to the degree of malignancy and patient prognosis. RNA interference, specific pharmacological inhibitor JZL-184 and gene knock-in of MAGL were utilized to investigate the effects of MAGL on HCC cell proliferation, apoptosis, and invasion. MAGL played important roles in both proliferation and invasion of HCC cells through mechanisms that involved prostaglandin E2 (PGE2) and lysophosphatidic acid (LPA). JZL-184 administration significantly inhibited tumor growth in mice. Furthermore, we confirmed that promoter methylation of large tumor suppressor kinase 1 (LATS1) resulted in dysfunction of the Hippo signal pathway, which induced overexpression of MAGL in HCC. These results indicate that MAGL could be a potentially novel therapeutic target and prognostic indicator for HCC. PMID:27767105

  14. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment

    PubMed Central

    Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole

    2016-01-01

    Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225

  15. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    NASA Astrophysics Data System (ADS)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  16. 3D molecular modeling and evolutionary study of the Trypanosoma brucei DNA Topoisomerase IB, as a new emerging pharmacological target.

    PubMed

    Vlachakis, Dimitrios; Pavlopoulou, Athanasia; Roubelakis, Maria G; Feidakis, Christos; Anagnou, Nikolaos P; Kossida, Sophia

    2014-01-01

    In the present study, an outline is proposed that may lead to specific drug design targeting of the Trypanosoma brucei DNA Topoisomerase IB. In this direction, an unequivocally specific platform was designed for the development of selective modulators. The designed platform is focused on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all available published genomes indicated a broad distribution of DNA topoisomerases across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the mechanism of the T. brucei DNA Topoisomerase IB. Based on the above, we propose a comprehensive in silico 3D model for the structure of the T. brucei DNA Topoisomerase IB. Our approach provides an efficient intergraded platform with both evolutionary and structural insights for the rational design of pharmacophore models as well as novel modulators as the anti-T. brucei DNA Topoisomerase IB agents with therapeutic potential.

  17. Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of α-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia.

    PubMed

    Samadi, Abdelouahid; Soriano, Elena; Revuelta, Julia; Valderas, Carolina; Chioua, Mourad; Garrido, Ignacio; Bartolomé, Begoña; Tomassolli, Isabelle; Ismaili, Lhassane; González-Lafuente, Laura; Villarroya, Mercedes; García, Antonio G; Oset-Gasque, María J; Marco-Contelles, José

    2011-01-15

    The synthesis, structure, theoretical and experimental in vitro antioxidant properties using the DPPH, ORAC, and benzoic acid, as well as preliminary in vitro pharmacological activities of (Z)-α-aryl and heteroaryl N-alkyl-nitrones 6-15, 18, 19, 21, and 23, is reported. In the in vitro antioxidant activity, for the DPPH radical test, only nitrones bearing free phenol groups gave the best RSA (%) values, nitrones 13 and 14 showing the highest values in this assay. In the ORAC analysis, the most potent radical scavenger was nitrone indole 21, followed by the N-benzyl benzene-type nitrones 10 and 15. Interestingly enough, the archetypal nitrone 7 (PBN) gave a low RSA value (1.4%) in the DPPH test, or was inactive in the ORAC assay. Concerning the ability to scavenge the hydroxyl radical, all the nitrones studied proved active in this experiment, showing high values in the 94-97% range, the most potent being nitrone 14. The theoretical calculations for the prediction of the antioxidant power, and the potential of ionization confirm that nitrones 9 and 10 are among the best compounds in electron transfer processes, a result that is also in good agreement with the experimental values in the DPPH assay. The calculated energy values for the reaction of ROS (hydroxyl, peroxyl) with the nitrones predict that the most favourable adduct-spin will take place between nitrones 9, 10, and 21, a fact that would be in agreement with their experimentally observed scavenger ability. The in vitro pharmacological analysis showed that the neuroprotective profile of the target molecules was in general low, with values ranging from 0% to 18.7%, in human neuroblastoma cells stressed with a mixture of rotenone/oligomycin-A, being nitrones 18, and 6-8 the most potent, as they show values in the range 24-18.4%.

  18. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer

    PubMed Central

    Steffen, Jamin D.; Tholey, Renee M.; Langelier, Marie-France; Planck, Jamie L.; Schiewer, Matthew J.; Lal, Shruti; Bildzukewicz, Nikolai A.; Yeo, Charles J.; Knudsen, Karen E.; Brody, Jonathan R.; Pascal, John M.

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs raising important questions concerning long-term off-target effects. Here we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage dependent catalytic activation. Further, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anti-cancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Lastly, the development of a high-throughput (HT) PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors. PMID:24189460

  19. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer.

    PubMed

    Steffen, Jamin D; Tholey, Renee M; Langelier, Marie-France; Planck, Jamie L; Schiewer, Matthew J; Lal, Shruti; Bildzukewicz, Nikolai A; Yeo, Charles J; Knudsen, Karen E; Brody, Jonathan R; Pascal, John M

    2014-01-01

    PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harboring DNA repair deficiencies. However, current inhibitors target other PARPs, raising important questions about long-term off-target effects. Here, we propose a new strategy that targets PARP-1 allosteric regulation as a selective way of inhibiting PARP-1. We found that disruption of PARP-1 domain-domain contacts through mutagenesis held no cellular consequences on recruitment to DNA damage or a model system of transcriptional regulation, but prevented DNA-damage-dependent catalytic activation. Furthermore, PARP-1 mutant overexpression in a pancreatic cancer cell line (MIA PaCa-2) increased sensitivity to platinum-based anticancer agents. These results not only highlight the potential of a synergistic drug combination of allosteric PARP inhibitors with DNA-damaging agents in genomically unstable cancer cells (regardless of homologous recombination status), but also signify important applications of selective PARP-1 inhibition. Finally, the development of a high-throughput PARP-1 assay is described as a tool to promote discovery of novel PARP-1 selective inhibitors.

  20. Small molecules targeting glycogen synthase kinase 3 as potential drug candidates for the treatment of retinitis pigmentosa.

    PubMed

    Marchena, Miguel; Villarejo-Zori, Beatriz; Zaldivar-Diez, Josefa; Palomo, Valle; Gil, Carmen; Hernández-Sánchez, Catalina; Martínez, Ana; de la Rosa, Enrique J

    2017-12-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy that courses with progressive degeneration of retinal tissue and loss of vision. Currently, RP is an unpreventable, incurable condition. We propose glycogen synthase kinase 3 (GSK-3) inhibitors as potential leads for retinal cell neuroprotection, since the retina is also a part of the central nervous system and GSK-3 inhibitors are potent neuroprotectant agents. Using a chemical genetic approach, diverse small molecules with different potency and binding mode to GSK-3 have been used to validate and confirm GSK-3 as a pharmacological target for RP. Moreover, this medicinal chemistry approach has provided new leads for the future disease-modifying treatment of RP.

  1. Phosphorylation events during viral infections provide potential therapeutic targets

    PubMed Central

    Keating, Julie A.; Striker, Rob

    2012-01-01

    SUMMARY For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA-approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed. PMID:22113983

  2. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  3. Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.

    PubMed

    Cholon, Deborah M; Quinney, Nancy L; Fulcher, M Leslie; Esther, Charles R; Das, Jhuma; Dokholyan, Nikolay V; Randell, Scott H; Boucher, Richard C; Gentzsch, Martina

    2014-07-23

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). Newly developed "correctors" such as lumacaftor (VX-809) that improve CFTR maturation and trafficking and "potentiators" such as ivacaftor (VX-770) that enhance channel activity may provide important advances in CF therapy. Although VX-770 has demonstrated substantial clinical efficacy in the small subset of patients with a mutation (G551D) that affects only channel activity, a single compound is not sufficient to treat patients with the more common CFTR mutation, ΔF508. Thus, patients with ΔF508 will likely require treatment with both correctors and potentiators to achieve clinical benefit. However, whereas the effectiveness of acute treatment with this drug combination has been demonstrated in vitro, the impact of chronic therapy has not been established. In studies of human primary airway epithelial cells, we found that both acute and chronic treatment with VX-770 improved CFTR function in cells with the G551D mutation, consistent with clinical studies. In contrast, chronic VX-770 administration caused a dose-dependent reversal of VX-809-mediated CFTR correction in ΔF508 homozygous cultures. This result reflected the destabilization of corrected ΔF508 CFTR by VX-770, markedly increasing its turnover rate. Chronic VX-770 treatment also reduced mature wild-type CFTR levels and function. These findings demonstrate that chronic treatment with CFTR potentiators and correctors may have unexpected effects that cannot be predicted from short-term studies. Combining these drugs to maximize rescue of ΔF508 CFTR may require changes in dosing and/or development of new potentiator compounds that do not interfere with CFTR stability.

  4. Behavioral and pharmacological validation of an integrated fear-potentiated startle and prepulse inhibition paradigm.

    PubMed

    Zhang, Mengjiao; Li, Ming

    2016-07-01

    Fear-potentiated startle (FPS) and prepulse inhibition (PPI) of acoustic startle are two widely used paradigms specifically designed to capture the impact of negative emotion (e.g. fear) and preattentive function on startle response. Currently, there is no single paradigm that incorporates both FPS and PPI, making it impossible to examine the potential interactions between fear and attention in the regulation of startle response. In this study, we developed an integrated FPS and PPI test protocol and validated it with psychoactive drugs. In Experiment 1, male Sprague-Dawley rats were randomly assigned to one of five groups, receiving either Light -Shock conditioning trials, non-overlapping Lights and Shocks, Light alone, Shock alone, or no Light and Shock. They were then tested for startle response and PPI concurrently, under the Light or No Light. FPS was observed only in rats subjected to fear conditioning, whereas all rats showed PPI and startle habituation. Experiment 2 used this paradigm and demonstrated a dissociative effect between diazepam (an anxiolytic drug) and phencyclidine (a nonselective NMDA receptor antagonist) on FPS and PPI. Diazepam suppressed both FPS and PPI, while PCP selectively disrupted PPI but not FPS. The diazepam's anxiolytic effect on FPS was further confirmed in the elevated plus maze test. Together, our findings indicate that our paradigm combines FPS and PPI into a single paradigm, and that is useful to examine potential interactions between multiple psychological processes, to identify the common neural substrates and to screen new drugs with multiple psychoactive effects.

  5. CARD9 as a potential target in cardiovascular disease

    PubMed Central

    Peterson, Matthew R; Haller, Samantha E; Ren, Jun; Nair, Sreejayan; He, Guanglong

    2016-01-01

    Systemic inflammation and localized macrophage infiltration have been implicated in cardiovascular pathologies, including coronary artery disease, carotid atherosclerosis, heart failure, obesity-associated heart dysfunction, and cardiac fibrosis. Inflammation induces macrophage infiltration and activation and release of cytokines and chemokines, causing tissue dysfunction by instigating a positive feedback loop that further propagates inflammation. Cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) is a protein expressed primarily by dendritic cells, neutrophils, and macrophages, in which it mediates cytokine secretion. The purpose of this review is to highlight the role of CARD9 as a potential target in inflammation-related cardiovascular pathologies. PMID:27920495

  6. Candidate genes and potential targets for therapeutics in Wilms' tumour.

    PubMed

    Blackmore, Christopher; Coppes, Max J; Narendran, Aru

    2010-09-01

    Wilms' tumour (WT) is the most common malignant renal tumour of childhood. During the past two decades or so, molecular studies carried out on biopsy specimens and tumour-derived cell lines have identified a multitude of chromosomal and epigenetic alterations in WT. In addition, a significant amount of evidence has been gathered to identify the genes and signalling pathways that play a defining role in its genesis, growth, survival and treatment responsiveness. As such, these molecules and mechanisms constitute potential targets for novel therapeutic strategies for refractory WT. In this report we aim to review some of the many candidate genes and intersecting pathways that underlie the complexities of WT biology.

  7. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential.

    PubMed

    Stelma, Tamara; Chi, Alicia; van der Watt, Pauline J; Verrico, Annalisa; Lavia, Patrizia; Leaner, Virna D

    2016-04-01

    The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.

  8. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity.

    PubMed

    Kaur, Shamsherjit; Singh, Satinderpal; Chahal, Karan Singh; Prakash, Atish

    2014-11-01

    Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.

  9. Macrophages associated with tumors as potential targets and therapeutic intermediates.

    PubMed

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-04-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs.

  10. Molecular Mechanisms of Diabetic Retinopathy: Potential Therapeutic Targets

    PubMed Central

    Coucha, Maha; Elshaer, Sally L.; Eldahshan, Wael S.; Mysona, Barbara A.; El-Remessy, Azza B.

    2015-01-01

    Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease. PMID:25949069

  11. Macrophages associated with tumors as potential targets and therapeutic intermediates

    PubMed Central

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-01-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mφ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs. PMID:24827844

  12. Ion channels in postnatal neurogenesis: potential targets for brain repair.

    PubMed

    Swayne, Leigh Anne; Wicki-Stordeur, Leigh

    2012-01-01

    Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.

  13. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets.

    PubMed

    Ononye, S N; Shi, W; Wali, V B; Aktas, B; Jiang, T; Hatzis, C; Pusztai, L

    2014-12-01

    The functional redundancy of metabolic enzyme expression may present a new strategy for developing targeted therapies in cancer. To satisfy the increased metabolic demand required during neoplastic transformations and proliferation, cancer cells may rely on additional isoforms of a metabolic enzyme to satisfy the increased demand for metabolic precursors, which could subsequently render cancer cells more vulnerable to isoform-specific inhibitors. In this review, we provide a survey of common isoenzyme shifts that have been reported to be important in cancer metabolism and link those to metabolic pathways that currently have drugs in various stages of development. This phenomenon suggests a potentially new therapeutic strategy for the treatment of cancer by identifying shifts in the expression of metabolic isoenzymes between cancer and normal cells. We also delineate other putative metabolic isoenzymes that could be targets for novel targeted therapies for cancer. Changes in isoenzyme expression that occur during neoplastic transformations or in response to environmental pressure in cancer cells may result in isoenzyme diversity that may subsequently render cancer cells more vulnerable to isoform-specific inhibitors due to reliance on a single isoform to perform a vital enzymatic function.

  14. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    PubMed

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

  15. Pharmacological profile of a potential anxiolytic: AP159, a new benzothieno-pyridine derivative.

    PubMed

    Nagatani, T; Yamamoto, T; Takao, K; Hashimoto, S; Kasahara, K; Sugihara, T; Ueki, S

    1991-01-01

    AP159 [N-cyclohexyl-1,2,3,4-tetrahydrobenzo(b)thieno(2,3c)pyridine]-3- carboamide,hydrochloride) showed clear anti-conflict activity in rats in the absence of effects on muscle relaxation, potentiation of anesthesia (in mice) or anticonvulsant activity (in mice). This anti-conflict effect was antagonized by treatment with Ro15-1788. By contrast with the deficits produced by diazepam, AP159 did not impair passive avoidance. The latter drug also improved scopolamine-induced amnesia in the same task. AP159 did not inhibit 3H-flunitrazepam binding, but potently inhibited 3H-8OH-DPAT binding. This compound increased serotonin and 5HIAA content of the midbrain raphe nuclei and of the amygdala centralis. AP159 has been shown to be a novel non-BZP anxiolytic agent with no side effects in laboratory animals; it could be a clinically effective anxiolytic agent.

  16. Systems Pharmacology

    PubMed Central

    Boran, Aislyn D. W.; Iyengar, Ravi

    2011-01-01

    We examine how physiology and pathophysiology are studied from a systems perspective, using high-throughput experiments and computational analysis of regulatory networks. We describe the integration of these analyses with pharmacology, which leads to new understanding of drug action and enables drug discovery for complex diseases. Network studies of drug-target relationships can serve as an indication on the general trends in the approved drugs and the drug-discovery progress. There is a growing number of targeted therapies approved and in the pipeline, which meets a new set of problems with efficacy and adverse effects. The pitfalls of these mechanistically based drugs are described, along with how a systems view of drug action is increasingly important to uncover intricate signaling mechanisms that play an important part in drug action, resistance mechanisms, and off-target effects. Computational methodologies enable the classification of drugs according to their structures and to which proteins they bind. Recent studies have combined the structural analyses with analysis of regulatory networks to make predictions about the therapeutic effects of drugs for complex diseases and possible off-target effects. PMID:20687178

  17. Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis

    PubMed Central

    Song, Hongyan; Dong, Ronglian; Qiu, Baofeng; Jing, Jin; Zhu, Shunxing; Liu, Chun; Jiang, Yingmei; Wu, Liucheng; Wang, Shengcun; Miao, Jin; Shao, Yixiang

    2017-01-01

    The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis. PMID:28285502

  18. Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis.

    PubMed

    Song, Hongyan; Dong, Ronglian; Qiu, Baofeng; Jing, Jin; Zhu, Shunxing; Liu, Chun; Jiang, Yingmei; Wu, Liucheng; Wang, Shengcun; Miao, Jin; Shao, Yixiang

    2017-02-01

    The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.

  19. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury

    PubMed Central

    Mayeux, Philip R.; MacMillan-Crow, Lee Ann

    2012-01-01

    One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery. PMID:22274552

  20. MicroRNAs and Potential Targets in Osteosarcoma: Review

    PubMed Central

    Sampson, Valerie B.; Yoo, Soonmoon; Kumar, Asmita; Vetter, Nancy S.; Kolb, E. Anders

    2015-01-01

    Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease. PMID:26380245

  1. Reverse Auction: A Potential Strategy for Reduction of Pharmacological Therapy Cost

    PubMed Central

    Brandão, Sara Michelly Gonçalves; Issa, Victor Sarli; Ayub-Ferreira, Silvia Moreira; Storer, Samantha; Gonçalves, Bianca Gigliotti; Santos, Valter Garcia; Carvas Junior, Nelson; Guimarães, Guilherme Veiga; Bocchi, Edimar Alcides

    2015-01-01

    Background Polypharmacy is a significant economic burden. Objective We tested whether using reverse auction (RA) as compared with commercial pharmacy (CP) to purchase medicine results in lower pharmaceutical costs for heart failure (HF) and heart transplantation (HT) outpatients. Methods We compared the costs via RA versus CP in 808 HF and 147 HT patients followed from 2009 through 2011, and evaluated the influence of clinical and demographic variables on cost. Results The monthly cost per patient for HF drugs acquired via RA was $10.15 (IQ 3.51-40.22) versus $161.76 (IQ 86.05‑340.15) via CP; for HT, those costs were $393.08 (IQ 124.74-774.76) and $1,207.70 (IQ 604.48-2,499.97), respectively. Conclusion RA may reduce the cost of prescription drugs for HF and HT, potentially making HF treatment more accessible. Clinical characteristics can influence the cost and benefits of RA. RA may be a new health policy strategy to reduce costs of prescribed medications for HF and HT patients, reducing the economic burden of treatment. PMID:26200898

  2. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.

    PubMed

    Islam, Mohammed A

    2010-01-01

    Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.

  3. Medicinal potential of Morella serata (Lam.) Killick (Myricaceae) root extracts: biological and pharmacological activities

    PubMed Central

    2013-01-01

    Background Morella serata is a South African medicinal plant used in the treatment of microbial infections and to enhance male sexual performance. There is dearth of information in scientific literature on its efficacy and safety. Methods In the present study, the root extracts were investigated for the phytochemicals that may be present the antibacterial, anticandida activity using 96 wells microtitre plate method and cytotoxicity using brine shrimp (Artemia salina) lethality assay. Results The qualitative phytochemical screening revealed the presence of tannins, saponins, flavonoids, terpenoids and steroids. All the extracts including water inhibited both Gram positive and Gram negative bacteria strains at minimum inhibitory concentrations (MIC) ranging from 0.09 – 6.25 mgmL-1. The best activity was observed in the acetone extract inhibiting all the bacteria tested at MIC range of 0.09 – 0.78 mgmL-1 except Shigella flexneri KZN that was inhibited at 1.56 mgmL-1. Similarly, all the extracts suppressed the growth of all Candida species and Trichophyton mucoides at MIC ranging from 0.13 – 3.13 mgmL-1. The cytotoxicity assay revealed potent cytotoxic potential of M. serata methanol and ethanol root extracts by displaying LC50 of 0.26 and 0.18 μgmL-1 respectively. Conclusion The results obtained from the present study indicated broad spectrum antimicrobial activity and justifies the use of the plant in the treatment of infectious diseases. Also the species could be a good natural source of antitumor compounds considering its lethality against brine shrimp nauplii. PMID:23829770

  4. Pharmacological characterization of a novel gastrodin derivative as a potential anti-migraine agent.

    PubMed

    Wang, Ping-Han; Zhao, Li-Xue; Wan, Jing-Yu; Zhang, Liang; Mao, Xiao-Na; Long, Fang-Yi; Zhang, Shuang; Chen, Chu; Du, Jun-Rong

    2016-03-01

    Migraine is a highly prevalent neurovascular disorder in the brain. An optimal therapy for migraine has not yet been developed. Gastrodin (Gas), the main effective constitute from Gastrodiae Rhizoma (Tianma in Chinese), has been indicated for migraine treatment and prophylaxis more than 30 years, with demonstrated safety. However, Gas is a phenolic glycoside, with relatively low concentrations and weak efficacy in the central nervous system. To develop more effective anti-migraine agents, we synthesized a novel Gas derivative (Gas-D). In the present study, comparative pharmacodynamic evaluations of Gas and Gas-D were performed in a model of nitroglycerin (NTG)-induced migraine in rats and the hot-plate test in mice. Following behavioral testing in this migraine model, external jugular vein blood and the trigeminal nucleus caudalis (TNC) were collected to analyze plasma nitric oxide (NO) and calcitonin gene-related peptide (CGRP) concentrations and c-Fos expression in the TNC. The acute oral toxicity of Gas and Gas-D was also examined. We found that Gas-D had potent anti-migraine effects, likely attributable to inhibition of both trigeminal nerve activation at central sites and the peripheral release of CGRP following NO scavenging. Additionally, Gas-D exerted significant anti-nociceptive effect in response to thermal pain compared with Gas. Furthermore, a single dose of 2.048 g/kg Gas or Gas-D presented no acute oral toxicity in mice. Altogether, the potent anti-migraine and anti-hyperalgesic effects of Gas-D suggest that it might be a potentially novel drug candidate for migraine treatment or prophylaxis.

  5. Biological and Pharmacological Evaluation of Dimethoxycurcumin: A Metabolically Stable Curcumin Analogue with a Promising Therapeutic Potential.

    PubMed

    Teymouri, Manouchehr; Barati, Nastaran; Pirro, Matteo; Sahebkar, Amirhosein

    2016-12-20

    Dimethoxycurcumin (DiMC) is a synthetic analogue of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles. This article is protected by copyright. All rights reserved.

  6. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  7. Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures

    PubMed Central

    Mumoli, Laura; Palleria, Caterina; Gasparini, Sara; Citraro, Rita; Labate, Angelo; Ferlazzo, Edoardo; Gambardella, Antonio; De Sarro, Giovambattista; Russo, Emilio

    2015-01-01

    Brivaracetam (BRV), a high-affinity synaptic vesicle protein 2A ligand, reported to be 10–30-fold more potent than levetiracetam (LEV), is highly effective in a wide range of experimental models of focal and generalized seizures. BRV and LEV similarly bind to synaptic vesicle protein 2A, while differentiating for other pharmacological effects; in fact, BRV does not inhibit high voltage Ca2+ channels and AMPA receptors as LEV. Furthermore, BRV apparently exhibits inhibitory activity on neuronal voltage-gated sodium channels playing a role as a partial antagonist. BRV is currently waiting for approval both in the United States and the European Union as adjunctive therapy for patients with partial seizures. In patients with photosensitive epilepsy, BRV showed a dose-dependent effect in suppressing or attenuating the photoparoxysmal response. In well-controlled trials conducted to date, adjunctive BRV demonstrated efficacy and good tolerability in patients with focal epilepsy. BRV has a linear pharmacokinetic profile. BRV is extensively metabolized and excreted by urine (only 8%–11% unchanged). The metabolites of BRV are inactive, and hydrolysis of the acetamide group is the mainly involved metabolic pathway; hepatic impairment probably requires dose adjustment. BRV does not seem to influence other antiepileptic drug plasma levels. Six clinical trials have so far been completed indicating that BRV is effective in controlling seizures when used at doses between 50 and 200 mg/d. The drug is generally well-tolerated with only mild-to-moderate side effects; this is confirmed by the low discontinuation rate observed in these clinical studies. The most common side effects are related to central nervous system and include fatigue, dizziness, and somnolence; these apparently disappear during treatment. In this review, we analyzed BRV, focusing on the current evidences from experimental animal models to clinical studies with particular interest on potential use in clinical

  8. Cardiac calmodulin kinase: a potential target for drug design.

    PubMed

    Bányász, T; Szentandrássy, N; Tóth, A; Nánási, P P; Magyar, J; Chen-Izu, Y

    2011-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  9. Cardiac Calmodulin Kinase: A Potential Target for Drug Design

    PubMed Central

    Bányász, T.; Szentandrássy, N.; Tóth, A.; Nánási, P.P.; Magyar, J.; Chen-Izu, Y.

    2014-01-01

    Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as β-blockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and

  10. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets

    PubMed Central

    Li, Hai; You, Hong; Fan, Xu; Jia, Jidong

    2016-01-01

    Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages. PMID:27252881

  11. Alzheimer's associated inflammation, potential drug targets and future therapies.

    PubMed

    Stuchbury, G; Münch, G

    2005-03-01

    Alzheimer's disease is the most common cause of dementia in the elderly population. The most widely used treatment for Alzheimer's disease at present is acetylcholinesterase inhibitors, which aim to prolong cognitive function through increased synaptic activity, without providing neuroprotection. This treatment is only symptomatic and provides modest outcomes for patients. The recent elucidation of the inflammatory pathways involved in Alzheimer's disease however, has opened doors for better treatment and prevention by identification of areas of therapeutic intervention that target the cause of the disease rather than the symptoms. This review describes the inflammatory pathways that are thought to be present in Alzheimer's disease and some of the new therapies that have shown promise, via alteration or inhibition of these pathways. Some of the therapies included in this review, which have already demonstrated beneficial effects in the treatment of Alzheimer's disease, or have the potential to do so, are nonsteroidal anti-inflammatory drugs, statins, RAGE antagonists and antioxidants.

  12. [TREK-1: a potential target for novel antidepressants].

    PubMed

    Maruyama, Yoshiaki; Yamada, Mitsuhiko

    2007-08-01

    The neurotransmitter serotonin (5-HT: 5-hydroxytryptamin) was suggested to be involved in the pathogenesis of depression as well as in the mechanisms of antidepressant treatments. However, the molecular mechanisms underlying the pathophysiology or treatment of depression are still poorly understood. A recent paper has shown that deletion of the two-pore domain potassium channel TREK-1 results in an antidepressant-like phenotype. TREK-1 -deficient mice behave as if they have been treated with an antidepressant drug, such as fluoxetine. Moreover, TREK-1-deficient mice showed a reduced elevation of corticosterone level under stress, an increased efficacy of 5-HT neurotransmission and an increased fluoxetine-induced neurogenesis in the hippocampus. Selective serotonin reuptake inhibitors (SSRIs) inhibited not only the 5-HT transporter but also the TREK-1 channel. In this article, we review the molecular and functional properties of the TREK-1 channel, which is a potential target for novel antidepressants.

  13. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets

    PubMed Central

    Moss, Joe W. E.; Ramji, Dipak P.

    2017-01-01

    Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and whilst successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is therefore a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them. PMID:27357616

  14. Cognitive 'Omics': Pattern-Based Validation of Potential Drug Targets.

    PubMed

    Gyertyán, István

    2017-02-01

    Despite the abundance of cognitive enhancer mechanisms identified in basic research, drugs approved for cognitive disorders are scarce and of limited efficacy. Although the so-called 'gold-standard' animal assays are well suited to the study of fundamental learning processes, they fail to predict clinical efficacy against complex and robust cognitive defects. Preclinical validation of potential drug targets requires new approaches with higher translational value. Here I propose a rodent cognitive test system that encompasses several learning paradigms each modeling a certain human cognitive domain. Cognitive deficits are brought about by several impairing methods and a particular mechanism of action is tested on each defective cognitive function. The outcome is a cognitive efficacy pattern that should then be matched to the cognitive deficit patterns of the clinical disorders. The best fit will highlight the clinical indication with the greatest chance for success.

  15. Therapeutic potential of HMGB1-targeting agents in sepsis

    PubMed Central

    Wang, Haichao; Zhu, Shu; Zhou, Rongrong; Li, Wei; Sama, Andrew E.

    2008-01-01

    Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. The inflammatory response is partly mediated by innate immune cells (such as macrophages, monocytes and neutrophils), which not only ingest and eliminate invading pathogens but also initiate an inflammatory response upon recognition of pathogen-associated molecular patterns (PAMPs). The prevailing theories of sepsis as a dysregulated inflammatory response, as manifested by excessive release of inflammatory mediators such as tumour necrosis factor and high-mobility group box 1 protein (HMGB1), are supported by extensive studies employing animal models of sepsis. Here we review emerging evidence that support extracellular HMGB1 as a late mediator of experimental sepsis, and discuss the therapeutic potential of several HMGB1-targeting agents (including neutralising antibodies and steroid-like tanshinones) in experimental sepsis. PMID:18980707

  16. FAK and paxillin, two potential targets in pancreatic cancer

    PubMed Central

    Kanteti, Rajani; Batra, Surinder K.; Lennon, Frances E.; Salgia, Ravi

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies. PMID:26980710

  17. Potential drug targets for calcific aortic valve disease

    PubMed Central

    Hutcheson, Joshua D.; Aikawa, Elena; Merryman, W. David

    2014-01-01

    Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. We, therefore, discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets. PMID:24445487

  18. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed Central

    Suleman, Louise

    2016-01-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes. PMID:27785379

  19. Cardiorenal syndrome: pathophysiology and potential targets for clinical management.

    PubMed

    Hatamizadeh, Parta; Fonarow, Gregg C; Budoff, Matthew J; Darabian, Sirous; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2013-02-01

    Combined dysfunction of the heart and the kidneys, which can be associated with haemodynamic impairment, is classically referred to as cardiorenal syndrome (CRS). Cardiac pump failure with resulting volume retention by the kidneys, once thought to be the major pathophysiologic mechanism of CRS, is now considered to be only a part of a much more complicated phenomenon. Multiple body systems may contribute to the development of this pathologic constellation in an interconnected network of events. These events include heart failure (systolic or diastolic), atherosclerosis and endothelial cell dysfunction, uraemia and kidney failure, neurohormonal dysregulation, anaemia and iron disorders, mineral metabolic derangements including fibroblast growth factor 23, phosphorus and vitamin D disorders, and inflammatory pathways that may lead to malnutrition-inflammation-cachexia complex and protein-energy wasting. Hence, a pathophysiologically and clinically relevant classification of CRS based on the above components would be prudent. With the existing medical knowledge, it is almost impossible to identify where the process has started in any given patient. Rather, the events involved are closely interrelated, so that once the process starts at a particular point, other pathways of the network are potentially activated. Current therapies for CRS as well as ongoing studies are mostly focused on haemodynamic adjustments. The timely targeting of different components of this complex network, which may eventually lead to haemodynamic and vascular compromise and cause refractoriness to conventional treatments, seems necessary. Future studies should focus on interventions targeting these components.

  20. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets

    PubMed Central

    Clark, David W.

    2016-01-01

    Resistance to current chemotherapeutic or radiation-based cancer treatment strategies is a serious concern. Cancer stem cells (CSCs) are typically able to evade treatment and establish a recurrent tumor or metastasis, and it is these that lead to the majority of cancer deaths. Therefore, a major current goal is to develop treatment strategies that eliminate the resistant CSCs as well as the bulk tumor cells in order to achieve complete disease clearance. Aldehyde dehydrogenases (ALDHs) are important for maintenance and differentiation of stem cells as well as normal development. There is expanding evidence that ALDH expression increases in response to therapy and promotes chemoresistance and survival mechanisms in CSCs. This perspective will discuss a paper by Cojoc and colleagues recently published in Cancer Research, that indicates ALDHs play a key role in resistance to radiation therapy and tumor recurrence in prostate cancer. The authors suggest that ALDHs are a potential therapeutic target for treatment prostate cancer patients to limit radiation resistance and disease recurrence. The findings are consistent with work from other cancers showing ALDHs are major contributors of CSC signaling and resistance to anti-cancer treatments. This perspective will address representative work concerning the validity of ALDH and the associated retinoic acid signaling pathway as chemotherapeutic targets for prostate as well as other cancers. PMID:28149880

  1. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  2. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  3. Causes of CNS inflammation and potential targets for anticonvulsants.

    PubMed

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  4. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?

    PubMed

    Suleman, Louise

    2016-10-01

    Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes.

  5. PD-1 as a potential target in cancer therapy.

    PubMed

    McDermott, David F; Atkins, Michael B

    2013-10-01

    Recently, an improved understanding of the molecular mechanisms governing the host response to tumors has led to the identification of checkpoint signaling pathways involved in limiting the anticancer immune response. One of the most critical checkpoint pathways responsible for mediating tumor-induced immune suppression is the programmed death-1 (PD-1) pathway, normally involved in promoting tolerance and preventing tissue damage in settings of chronic inflammation. Many human solid tumors express PD ligand 1 (PD-L1), and this is often associated with a worse prognosis. Tumor-infiltrating lymphocytes from patients with cancer typically express PD-1 and have impaired antitumor functionality. Proof-of-concept has come from several preclinical studies in which blockade of PD-1 or PD-L1 enhanced T-cell function and tumor cell lysis. Three monoclonal antibodies against PD-1, and one against PD-L1, have reported phase 1 data. All four agents have shown encouraging preliminary activity, and those that have been evaluated in larger patient populations appear to have encouraging safety profiles. Additional data are eagerly awaited. This review summarizes emerging clinical data and potential of PD-1 pathway-targeted antibodies in development. If subsequent investigations confirm the initial results, it is conceivable that agents blocking the PD-1/PD-L1 pathway will prove valuable additions to the growing armamentarium of targeted immunotherapeutic agents.

  6. Pathophysiology of hemophilic arthropathy and potential targets for therapy.

    PubMed

    Pulles, Astrid E; Mastbergen, Simon C; Schutgens, Roger E G; Lafeber, Floris P J G; van Vulpen, Lize F D

    2017-01-01

    Hemophilia is a congenital clotting factor deficiency characterized by spontaneous and trauma-related bleeding. Spontaneous bleeding shows a predilection for joints, and repeated hemarthroses lead to a disabling condition called hemophilic arthropathy. Treatment of this condition consists of preventing joint bleeding on the one hand and orthopedic surgery as a last resort on the other. Up till now, there is no disease modifying therapy available to fill the gap between these extremes. This review provides an overview of the pathogenesis of hemophilic arthropathy in order to identify potential targets for therapy. Joint bleeding induces synovial inflammation, cartilage degeneration and bone damage. These processes interact with each other and result in a vicious circle. Hemarthrosis promotes synovial hypertrophy and neoangiogenesis, increasing the susceptibility to mechanical damage and subsequent bleeding. The inflamed synovium affects the cartilage, while cartilage is also directly affected by blood via the release of cytokines and metalloproteinases, and via hydroxyl radical formation inducing chondrocyte apoptosis. Apart from the inflammatory pathways, iron plays a pivotal role in this process, as does the fibrinolytic system. Considering its pathogenesis, potential targets for disease modifying therapy in hemophilic arthropathy are iron, inflammation, vascular remodeling, hyperfibrinolysis, bone remodeling and cartilage regeneration. So far, iron chelators, anti-inflammatory therapy, anti-fibrinolytics and bone remodeling agents have demonstrated beneficial effects, predominantly in a preclinical setting. There is still a long way to go before these interventions will translate into clinical practice. The most important challenges are: establishing a universal outcome measure to predict efficacy in humans, and determination of the optimal route and timing to administer disease modifying therapy.

  7. PEGylation and pharmacological characterization of a potential anti-tumor drug, an engineered arginine deiminase originated from Pseudomonas plecoglossicida.

    PubMed

    Zhang, Long; Liu, Menghan; Jamil, Serwanja; Han, Ruizhi; Xu, Guochao; Ni, Ye

    2015-02-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for arginine-auxotrophic tumors. PEGylation is one of the best methods to formulate a bioconjugated protein with extended physical stability and reduced immunogenicity. Here, PEGylation and pharmacological properties of an engineered ADI originated from Pseudomonas plecoglossicida were studied. Among polyethylene glycol (PEG) reagents with succinimidyl ester groups varying in size and linkers, three PEGylated products with high yield and catalytic activity were further characterized, named ADI-SS(20 kDa), ADI-SC(20 kDa), and ADI-SPA(20 kDa). In the pharmacodynamic/pharmacokinetic (PD/PK) studies with ADI-SPA(20 kDa), a remarkable improvement in circulating half-life compared with native ADI was observed. ADI-SPA(20 kDa) injections via intravenous, intramuscular and subcutaneous routes all exhibited superior efficacy than native ADI on depleting serum arginine. Additionally, our results demonstrated that single ADI-SPA(20 kDa) administration of 5 U/mouse via intravenous injection could maintain serum arginine at an undetectable level for 5 days with a half-life of 53.2 h, representing 11-fold improvement in half-life than that of the native ADI. In a mice H22 hepatocarcinoma model, ADI-SPA(20 kDa) dosage of 5 U per 5 days showed an inhibition rate of 95.02% on tumor growth during 15-day treatments.

  8. Identification of “Multiple Components-Multiple Targets-Multiple Pathways” Associated with Naoxintong Capsule in the Treatment of Heart Diseases Using UPLC/Q-TOF-MS and Network Pharmacology

    PubMed Central

    Ma, Xianghui; Lv, Bin; Li, Pan; Jiang, Xiaoqing; Zhou, Qian; Wang, Xiaoying; Gao, Xiumei

    2016-01-01

    Naoxintong capsule (NXT) is a commercial medicinal product approved by the China Food and Drug Administration which is used in the treatment of stroke and coronary heart disease. However, the research on the composition and mechanism of NXT is still lacking. Our research aimed to identify the absorbable components, potential targets, and associated pathways of NXT with network pharmacology method. We explored the chemical compositions of NXT based on UPLC/Q-TOF-MS. Then, we used the five principles of drug absorption to identify absorbable ingredients. The databases of PharmMapper, Universal Protein, and the Molecule Annotation System were used to predict the main targets and related pathways. By the five principles of drug absorption as a judgment rule, we identified 63 compositions that could be absorbed in the blood in all 81 chemical compositions. Based on the constructed networks by the significant regulated 123 targets and 77 pathways, the main components that mediated the efficacy of NXT were organic acids, saponins, and tanshinones. Radix Astragali was the critical herbal medicine in NXT, which contained more active components than other herbs and regulated more targets and pathways. Our results showed that NXT had a therapeutic effect on heart diseases through the pattern “multiple components-multiple targets-multiple pathways.” PMID:27123036

  9. Chaperone proteins and brain tumors: Potential targets and possible therapeutics1

    PubMed Central

    Graner, Michael W.; Bigner, Darell D.

    2005-01-01

    Chaperone proteins are most notable for the proteo- and cyotoprotective capacities they afford during cellular stress. Under conditions of cellular normalcy, chaperones still play integral roles in the folding of nascent polypeptides into functional entities, in assisting in intracellular/intraorganellar transport, in assembly and maintenance of multi-subunit protein complexes, and in aiding and abetting the degradation of senescent proteins. Tumors frequently have relatively enhanced needs for chaperone number and activity because of the stresses of rapid proliferation, increased metabolism, and overall genetic instability. Thus, it may be possible to take advantage of this reliance that tumor cells have on chaperones by pharmacologic and biologic means. Certain chaperones are abundant in the brain, which implies important roles for them. While it is presumed that the requirements of brain tumors for chaperone proteins are similar to those of any other cell type, tumor or otherwise, very little inquiry has been directed at the possibility of using chaperone proteins as therapeutic targets or even as therapeutic agents against central nervous system malignancies. This review highlights some of the research on the functions of chaperone proteins, on what can be done to modify those functions, and on the physiological responses that tumors and organisms can have to chaperone-targeted or chaperone-based therapies. In particular, this review will also underscore areas of research where brain tumors have been part of the field, although in general those instances are few and far between. This relative dearth of research devoted to chaperone protein targets and therapeutics in brain tumors reveals much untrodden turf to explore for potential treatments of these dreadfully refractive diseases. PMID:16053701

  10. Killing Two Cells with One Stone: Pharmacologic BCL-2 Family Targeting for Cancer Cell Death and Immune Modulation

    PubMed Central

    Ludwig, Lindsey M.; Nassin, Michele L.; Hadji, Abbas; LaBelle, James L.

    2016-01-01

    A crucial component of regulating organismal homeostasis is maintaining proper cell number and eliminating damaged or potentially malignant cells. Apoptosis, or programed cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic pathway is also especially important in the development and maintenance of the immune system. Apoptosis is essential for proper positive and negative selection during B- and T-cell development and for efficient contraction of expanded lymphocytes following an immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell death can lead to immunodeficiency while apoptotic resistance can lead to aberrant lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in a wide range of hematological malignancies, and targeting various components of the apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide array of compounds has been developed with the purpose of reactivating the intrinsic apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable attention as they gain greater clinical oncologic significance. As their use expands, it will be imperative to understand the effects these compounds have on immune homeostasis. Uncovering their potential immunomodulatory activity may allow for administration of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range of immune-based directives. This review will summarize the major proteins involved in the intrinsic apoptotic pathway and define their roles in normal immune development and disease. Clinical and preclinical BH3 mimetics are described within the context of what is currently known about their ability to affect immune function. Prospects for future antitumor immune amplification and immune modulation are then proposed. PMID:28066751

  11. Killing Two Cells with One Stone: Pharmacologic BCL-2 Family Targeting for Cancer Cell Death and Immune Modulation.

    PubMed

    Ludwig, Lindsey M; Nassin, Michele L; Hadji, Abbas; LaBelle, James L

    2016-01-01

    A crucial component of regulating organismal homeostasis is maintaining proper cell number and eliminating damaged or potentially malignant cells. Apoptosis, or programed cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic pathway is also especially important in the development and maintenance of the immune system. Apoptosis is essential for proper positive and negative selection during B- and T-cell development and for efficient contraction of expanded lymphocytes following an immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell death can lead to immunodeficiency while apoptotic resistance can lead to aberrant lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in a wide range of hematological malignancies, and targeting various components of the apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide array of compounds has been developed with the purpose of reactivating the intrinsic apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable attention as they gain greater clinical oncologic significance. As their use expands, it will be imperative to understand the effects these compounds have on immune homeostasis. Uncovering their potential immunomodulatory activity may allow for administration of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range of immune-based directives. This review will summarize the major proteins involved in the intrinsic apoptotic pathway and define their roles in normal immune development and disease. Clinical and preclinical BH3 mimetics are described within the context of what is currently known about their ability to affect immune function. Prospects for future antitumor immune amplification and immune modulation are then proposed.

  12. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    PubMed Central

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  13. CD6 as a potential target for treating multiple sclerosis.

    PubMed

    Li, Yan; Singer, Nora G; Whitbred, Joy; Bowen, Michael A; Fox, David A; Lin, Feng

    2017-03-07

    CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell-driven autoimmune conditions.

  14. Microbiome and Potential Targets for Chemoprevention of Esophageal Adenocarcinoma

    PubMed Central

    Neto, Antonio Galvao; Whitaker, April; Pei, Zhiheng

    2015-01-01

    Esophageal cancer is one of the deadliest cancers, with a dismal prognosis. It is increasingly recognized that esophageal cancer is a heterogeneous disease. It can be subdivided into two distinct groups: squamous cell carcinoma and adenocarcinoma, based on histological appearance. In the Western world, the incidence of squamous cell carcinoma was considerably higher than esophageal adenocarcinoma (EA) until the 1990s when, due to a dramatic increase, the incidence of EA surpassed that of squamous cell carcinoma. EA typically follows a well-established stepwise evolution from chronic inflammation due to reflux esophagitis (RE) that progresses to metaplasia (Barrett’s esophagus- BE) to dysplasia, which often culminates in EA. The pathophysiology of EA is complex and involves diverse factors, including gastroesophageal reflux, gastric acid secretion, dysfunction of the antireflux barrier, gastric emptying disturbances, and abnormalities in esophageal defense mechanisms. The current understanding of the etiology of EA is mainly derived from epidemiological studies of risk factors such as cigarette smoking, obesity, gastroesophageal reflux disorders (GERD), and low fruit and vegetable consumption. Numerous studies have been done but the factors that drive the dynamic increase in the incidence of EA remain elusive. The advent of widespread antibiotic use occurred in the 1950s, preceding the surge of EA. Based on this temporal sequence, it has been hypothesized that antibiotics alter the microbiome to which the esophagus is exposed in patients who have GERD and that chronic exposure to this abnormal microbiome (i.e., changes in species diversity or abundance) accounts for the increase in EA. If changes in the proposed factors alter the stepwise progression (RE-BE-dysplasia- EA), they may represent potential targets for chemoprevention. New discoveries will help improve our understanding of the biology and pathogenesis of these cancers, and aid in finding novel

  15. Uncovering pharmacological mechanisms of Wu-tou decoction acting on rheumatoid arthritis through systems approaches: drug-target prediction, network analysis and experimental validation.

    PubMed

    Zhang, Yanqiong; Bai, Ming; Zhang, Bo; Liu, Chunfang; Guo, Qiuyan; Sun, Yanqun; Wang, Danhua; Wang, Chao; Jiang, Yini; Lin, Na; Li, Shao

    2015-03-30

    Wu-tou decoction (WTD) has been extensively used for the treatment of rheumatoid arthritis (RA). Due to lack of appropriate methods, pharmacological mechanisms of WTD acting on RA have not been fully elucidated. In this study, a list of putative targets for compositive compounds containing in WTD were predicted by drugCIPHER-CS. Then, the interaction network of the putative targets of WTD and known RA-related targets was constructed and hub nodes were identified. After constructing the interaction network of hubs, four topological features of each hub, including degree, node betweenness, closeness and k-coreness, were calculated and 79 major hubs were identified as candidate targets of WTD, which were implicated into the imbalance of the nervous, endocrine and immune (NEI) systems, leading to the main pathological changes during the RA progression. Further experimental validation also demonstrated the preventive effects of WTD on inflammation and joint destruction in collagen-induced arthritis (CIA) rats and its regulatory effects on candidate targets both in vitro and in vivo systems. In conclusion, we performed an integrative analysis to offer the convincing evidence that WTD may attenuate RA partially by restoring the balance of NEI system and subsequently reversing the pathological events during RA progression.

  16. The Biology of the Sodium Iodide Symporter and its Potential for Targeted Gene Delivery

    PubMed Central

    Hingorani, M.; Spitzweg, C.; Vassaux, G.; Newbold, K.; Melcher, A.; Pandha, H.; Vile, R.; Harrington, K.

    2013-01-01

    The sodium iodide symporter (NIS) is responsible for thyroidal, salivary, gastric, intestinal and mammary iodide uptake. It was first cloned from the rat in 1996 and shortly thereafter from human and mouse tissue. In the intervening years, we have learned a great deal about the biology of NIS. Detailed knowledge of its genomic structure, transcriptional and post-transcriptional regulation and pharmacological modulation has underpinned the selection of NIS as an exciting approach for targeted gene delivery. A number of in vitro and in vivo studies have demonstrated the potential of using NIS gene therapy as a means of delivering highly conformal radiation doses selectively to tumours. This strategy is particularly attractive because it can be used with both diagnostic (99mTc, 125I, 124I) and therapeutic (131I, 186Re, 188Re, 211At) radioisotopes and it lends itself to incorporation with standard treatment modalities, such as radiotherapy or chemoradiotherapy. In this article, we review the biology of NIS and discuss its development for gene therapy. PMID:20201784

  17. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy.

    PubMed

    Montague, Karli; Malik, Bilal; Gray, Anna L; La Spada, Albert R; Hanna, Michael G; Szabadkai, Gyorgy; Greensmith, Linda

    2014-07-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.

  18. The pharmacology of TRP channels

    PubMed Central

    Holzer, Peter; Izzo, Angelo A

    2014-01-01

    This themed issue of the British Journal of Pharmacology contains review and research articles on recent advances in transient receptor potential (TRP) channel pharmacology. The review articles, written by a panel of distinguished experts, address the rapid progress in TRP channel research in fields as diverse as oncology, urology, dermatology, migraine, inflammation and pain. These reviews are complemented by original research reports focusing, among others, on the emerging roles of TRPV1 in osteoporosis and cystitis and on evodiamine as a lead structure for the development of potent TRPV1 agonists/desensitizers. Other papers highlight the differences in TRPV3 pharmacology between recombinant and native systems, the mechanisms of TRPM3 activation/inhibition and TRPP2 as a target of naringenin, a dietary flavonoid with anticancer actions. New therapeutic opportunities in pain may arise from the strategy to combine TRP channel and cell membrane impermeant sodium channel blockers to inhibit sensory nerve activity. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24773265

  19. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs.

    PubMed

    Munguia, Jason; Nizet, Victor

    2017-03-07

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms.

  20. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  1. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  2. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  3. Targeting CBLB as a Potential Therapeutic Approach for Disseminated Candidiasis

    PubMed Central

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad; Rajaram, Murugesan V.S.; Schlesinger, Larry S.; Tao, Lijian; Brown, Gordon D.; Langdon, Wallace Y.; Li, Belinda T.; Zhang, Jian

    2016-01-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here, we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and -2, two key pattern recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1/2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of Candida albicans, and deficiency of dectin-1, -2, or both, in Cblb−/− mice abrogates this protection. Importantly, silencing the Cblb gene in vivo protects mice from lethal systemic Candida albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and -2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  4. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    PubMed

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?

  5. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation

    PubMed Central

    Alves-Filho, Jose C.; Pålsson-McDermott, Eva M.

    2016-01-01

    Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signaling pathways, affecting both the enzymatic activity of PKM2 as a PK and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for this protein as a therapeutic target in inflammatory disorders. PMID:27148264

  6. TRAF6 Activation in Multiple Myeloma: A Potential Therapeutic Target

    PubMed Central

    Liu, Hong; Tamashiro, Samantha; Baritaki, Stavroula; Penichet, Manuel; Yu, Youhua; Chen, Haiming; Berenson, James; Bonavida, Benjamin

    2013-01-01

    Multiple myeloma (MM) is an incurable B-lymphocyte malignancy. New therapeutic options have become available during the past several years; however nearly all patients acquire resistance to currently available therapeutic agents. Mechanisms contributing to the pathogenesis and chemoresistance of MM include genetic abnormalities, chromosomal translocations, gene mutations, the interaction between MM cells and the bone marrow microenvironment, and defects in the apoptotic signaling pathways. Survival signaling pathways associated with the pathogenesis of MM and bone marrow stromal cells play crucial roles in promoting growth, survival, adhesion, immortalization, angiogenesis, and drug resistance. The receptor activator of nuclear factor-kappa B/receptor activator of nuclear factor-kappa B ligand/tumor necrosis factor receptor-associated factor (RANK/RANKL-TRAF6) signal pathway mediates osteolytic bone lesions through the activation of the NF-κB and Janus kinase/signal transducer and activator of transcription (JNK) pathways in osteoclast precursor cells and thus contributes to the main clinical manifestations of bone disease. TRAF6 has also been identified as a ligase for Akt ubiquitination and membrane recruitment and its phosphorylation on growth factor stimulation. The inhibition of TRAF6 by silencing RNA or by decoy peptides decreases MM tumor cell proliferation and increases apoptosis as well as bone resorption. Some proteasome inhibitors and benzoxadiazole derivatives showed inhibitory effects on the activity and function of TRAF6. Overall, we propose that TRAF6 may be considered as a potential therapeutic target for the treatment of MM. PMID:22440007

  7. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  8. Nrf2: a potential therapeutic target for diabetic neuropathy.

    PubMed

    Kumar, Anil; Mittal, Ruchika

    2017-03-28

    Different aspects involved in pathophysiology of diabetic neuropathy are related to inflammatory and apoptotic pathways. This article summarizes evidence that Nrf2 acts as a bridging link in various inflammatory and apoptotic pathways impacting progression of diabetic neuropathy. Nrf2 is involved in expression of various antioxidant proteins (such as detoxifying enzymes) via antioxidant response element (ARE) binding site. Under normal conditions, Nrf2 is inactive and remains in the cytosol. Hyperglycemia is a strong stimulus for oxidative stress and inflammation that downregulates the activity of Nrf2 through various neuroinflammatory pathways. Acute hyperglycemia increases the expression of Nrf2, but persistent hyperglycemia decreases its expression. This downregulation of Nrf2 causes various microvascular changes, which result in diabetic neuropathy. The key contribution of Nrf2 in progression of diabetic neuropathy has been summarized in the article. Despite involvement of Nrf2 in progression of diabetic neuropathy, targeting Nrf2 activators as a therapeutic potential will provide important new insights into the ways that influence treatment of diabetic neuropathy.

  9. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    PubMed Central

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  10. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery

    PubMed Central

    Barros, T P; Alderton, W K; Reynolds, H M; Roach, A G; Berghmans, S

    2008-01-01

    The zebrafish is a well-established model organism used in developmental biology. In the last decade, this technology has been extended to the generation of high-value knowledge on safety risks of novel drugs. Indeed, the larval zebrafish appear to combine advantages of whole organism phenotypic assays and those (rapid production of results with minimal resource engagement) of in vitro high-throughput screening techniques. Thus, if appropriately evaluated, it can offer undeniable advantages in drug discovery for identification of target and off-target effects. Here, we review some applications of zebrafish to identify potential safety liabilities, particularly before lead/candidate selection. For instance, zebrafish cardiovascular system can be used to reveal decreases in heart rate and atrial–ventricular dissociation, which may signal human ether-a-go-go-related gene (hERG) channel blockade. Another main area of interest is the CNS, where zebrafish behavioural assays have been and are further being developed into screening platforms for assessment of locomotor activity, convulsant and proconvulsant liability, cognitive impairment, drug dependence potential and impaired visual and auditory functions. Zebrafish also offer interesting possibilities for evaluating effects on bone density and gastrointestinal function. Furthermore, available knowledge of the renal system in larval zebrafish can allow identification of potential safety issues of drug candidates on this often neglected area in early development platforms. Although additional validation is certainly needed, the zebrafish is emerging as a versatile in vivo animal model to identify off-target effects that need investigation and further clarification early in the drug discovery process to reduce the current, high degree of attrition in development. PMID:18552866

  11. Serotonin receptors as potential targets for modulation of nicotine use and dependence.

    PubMed

    Fletcher, Paul J; Lê, Anh Dzung; Higgins, Guy A

    2008-01-01

    Nicotine use carries considerable health risks and plays a major role in a variety of diseases. Current pharmacological treatments to aid in smoking cessation include nicotine-replacement therapy and non-nicotinic strategies such as bupropion and varenicline. While these treatments benefit some individuals there is still a need for better and more effective treatment strategies. Nicotine is the major psychoactive substance in tobacco. Some behavioural effects of nicotine, including its reinforcing efficacy result in part from activation of mesolimbic dopamine neurons. Modulation of dopamine function is one potential treatment strategy that could treat nicotine dependence. Serotonergic neurons modulate the functioning of dopamine neurons in a complex fashion. Much of this complexity arises from the fact that serotonin (5-HT) exerts its effects through multiple receptor subtypes, some of which even act in apparent functional opposition to each other. This article reviews evidence, primarily from animal experiments, using behavioural procedures relevant to nicotine use on the potential for 5-HT receptors as targets for treating nicotine dependence. The 5-HT(1A, 2A, 2C, 3, 4, 6) receptor subtypes have received most experimental attention, with the 5-HT(1A) and 5-HT(2C) receptors being the best studied. Several studies have now shown that 5-HT(1A) receptor antagonists alleviate some of the behavioural signs induced by nicotine withdrawal. Electrophysiological and neurochemical studies show that stimulation of 5-HT(2C) receptors reduces the function of the mesolimbic dopamine pathway. 5-HT(2C) receptor agonists block the stimulatory action of nicotine on midbrain dopamine function. They also reduce several behavioural effects of nicotine including its discriminative stimulus properties and reinforcing effects. Although more work remains to be done, 5-HT(2C) receptor agonists perhaps hold the most promise as potential therapies for smoking cessation.

  12. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18

    PubMed Central

    Sehgal, Sheikh Arslan; Hassan, Mubashir; Rashid, Sajid

    2014-01-01

    Migraine, a complex debilitating neurological disorder is strongly associated with potassium channel subfamily K member 18 (KCNK18). Research has emphasized that high levels of KCNK18 may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like migraine. In the present study, a hybrid approach of molecular docking and virtual screening were followed by pharmacophore identification and structure modeling. Screening was performed using a two-dimensional similarity search against recommended migraine drugs, keeping in view the physicochemical properties of drugs. LigandScout tool was used for exploring pharmacophore properties and designing novel molecules. Here, we report the screening of four novel compounds that have showed maximum binding affinity against KCNK18, obtained through the ZINC database, and Drug and Drug-Like libraries. Docking studies revealed that Asp-46, Ile-324, Ile-44, Gly-118, Leu-338, Val-113, and Phe-41 are critical residues for receptor–ligand interaction. A virtual screening approach coupled with docking energies and druglikeness rules illustrated that ergotamine and PB-414901692 are potential inhibitor compounds for targeting KCNK18. We propose that selected compounds may be more potent than the previously listed drug analogs based on the binding energy values. Further analysis of these inhibitors through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful for designing novel therapeutic targets to cure migraine. PMID:24899801

  13. Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches

    NASA Astrophysics Data System (ADS)

    Surekha, Kanagarajan; Nachiappan, Mutharasappan; Prabhu, Dhamodharan; Choubey, Sanjay Kumar; Biswal, Jayashree; Jeyakanthan, Jeyaraman

    2017-01-01

    Dihydroorotate dehydrogenase (DHODH) plays a major role in the rate limiting step of de novo pyrimidine biosynthesis pathway and it is pronounced as a novel target for drug development of cancer. The currently available drugs against DHODH are ineffective and bear various side effects. Three-dimensional structure of the targeted protein was constructed using molecular modeling approach followed by 100 ns molecular dynamics simulations. In this study, High Throughput Virtual Screening (HTVS) was performed using various compound libraries to identify pharmacologically potential molecules. The top four identified lead molecules includes NCI_47074, HitFinder_7630, Binding_66981 and Specs_108872 with high docking score of -9.45, -8.29, -8.04 and -8.03 kcal/mol and the corresponding binding free energy were -16.25, -56.37, -26.93 and -48.04 kcal/mol respectively. Arg122, Arg185, Glu255 and Gly257 are the key residues found to be interacting with the ligands. Molecular dynamics simulations of DHODH-inhibitors complexes were performed to assess the stability of various conformations from complex structures of TtDHODH. Furthermore, stereoelectronic features of the ligands were explored to facilitate charge transfer during the protein-ligand interactions using Density Functional Theoretical approach. Based on in silico analysis, the ligand NCI_47074 ((2Z)-3-({6-[(2Z)-3-carboxylatoprop-2-enamido]pyridin-2-yl}carbamoyl)prop-2-enoate) was found to be the most potent lead molecule which was validated using energetic and electronic parameters and it could serve as a template for designing effective anticancerous drug molecule.

  14. The G Protein α Chaperone Ric-8 as a Potential Therapeutic Target

    PubMed Central

    Papasergi, Makaía M.; Patel, Bharti R.

    2015-01-01

    Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein–coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein–protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies. PMID:25319541

  15. Recent advances in molecular pharmacology of the histamine systems: physiology and pharmacology of histamine H3 receptor: roles in feeding regulation and therapeutic potential for metabolic disorders.

    PubMed

    Tokita, Shigeru; Takahashi, Kazuhiko; Kotani, Hidehito

    2006-05-01

    Histamine H3 receptors (H3Rs) are autoreceptors that negatively regulate the release of histamine and other neurotransmitters such as norepinephrine, dopamine, and acetylcholine in the central nervous system (CNS). Consistent with the wide-spread projection of histaminergic neurons from the lateral hypothalamus, H3Rs are widely distributed in the CNS and are believed to play a variety of physiological roles, including regulation of feeding, arousal, cognition, pain, and endocrine systems. To further understand the physiological roles of H3Rs in vivo, we produced H3R knockout (H3R-/-) mice and found that H3R-/- mice displayed hyperphagia and late-onset obesity associated with hyperinsulinemia and leptinemia, the fundamental marks of metabolic syndromes. A series of non-imidazole H3R antagonists/inverse agonists with improved selectivity and potency have been developed and were found to regulate feeding and body weight gain in laboratory animals. Taken together, these observations suggest that H3Rs are involved in the regulation of feeding behavior and body weight. Several H3R inverse agonists targeting cognitive disorders and dementia have entered clinical trials. These trials will give critical information about the physiological functions of H3Rs in humans.

  16. Discoidin Domain Receptors: Potential Actors and Targets in Cancer

    PubMed Central

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy. PMID:27014069

  17. Discoidin Domain Receptors: Potential Actors and Targets in Cancer.

    PubMed

    Rammal, Hassan; Saby, Charles; Magnien, Kevin; Van-Gulick, Laurence; Garnotel, Roselyne; Buache, Emilie; El Btaouri, Hassan; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy.

  18. Kinetic Analysis of Membrane Potential Dye Response to NaV1.7 Channel Activation Identifies Antagonists with Pharmacological Selectivity against NaV1.5.

    PubMed

    Finley, Michael; Cassaday, Jason; Kreamer, Tony; Li, Xinnian; Solly, Kelli; O'Donnell, Greg; Clements, Michelle; Converso, Antonella; Cook, Sean; Daley, Chris; Kraus, Richard; Lai, Ming-Tain; Layton, Mark; Lemaire, Wei; Staas, Donnette; Wang, Jixin

    2016-06-01

    The NaV1.7 voltage-gated sodium channel is a highly valued target for the treatment of neuropathic pain due to its expression in pain-sensing neurons and human genetic mutations in the gene encoding NaV1.7, resulting in either loss-of-function (e.g., congenital analgesia) or gain-of-function (e.g., paroxysmal extreme pain disorder) pain phenotypes. We exploited existing technologies in a novel manner to identify selective antagonists of NaV1.7. A full-deck high-throughput screen was developed for both NaV1.7 and cardiac NaV1.5 channels using a cell-based membrane potential dye FLIPR assay. In assay development, known local anesthetic site inhibitors produced a decrease in maximal response; however, a subset of compounds exhibited a concentration-dependent delay in the onset of the response with little change in the peak of the response at any concentration. Therefore, two methods of analysis were employed for the screen: one to measure peak response and another to measure area under the curve, which would capture the delay-to-onset phenotype. Although a number of compounds were identified by a selective reduction in peak response in NaV1.7 relative to 1.5, the AUC measurement and a subsequent refinement of this measurement were able to differentiate compounds with NaV1.7 pharmacological selectivity over NaV1.5 as confirmed in electrophysiology.

  19. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions

    PubMed Central

    Lushchak, Volodymyr I.

    2012-01-01

    Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health. PMID:22500213

  20. [Pharmacological characteristics of drugs targeted on calcium-sensing receptor.-properties of cinacalcet hydrochloride as allosteric modulator].

    PubMed

    Nagano, Nobuo; Tsutsui, Takaaki

    2016-06-01

    Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.

  1. Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders.

    PubMed

    Lewandowski, Sebastian A; Fredriksson, Linda; Lawrence, Daniel A; Eriksson, Ulf

    2016-11-01

    Neurological disorders account for a majority of non-malignant disability in humans and are often associated with dysfunction of the blood-brain barrier (BBB). Recent evidence shows that despite apparent variation in the origin of neural damage, the central nervous system has a common injury response mechanism involving platelet-derived growth factor (PDGF)-CC activation in the neurovascular unit and subsequent dysfunction of BBB integrity. Inhibition of PDGF-CC signaling with imatinib in mice has been shown to prevent BBB dysfunction and have neuroprotective effects in acute damage conditions, including traumatic brain injury, seizures or stroke, as well as in neurodegenerative diseases that develop over time, including multiple sclerosis and amyotrophic lateral sclerosis. Stroke and traumatic injuries are major risk factors for age-associated neurodegenerative disorders and we speculate that restoring BBB properties through PDGF-CC inhibition might provide a common therapeutic opportunity for treatment of both acute and progressive neuropathology in humans. In this review we will summarize what is known about the role of PDGF-CC in neurovascular signaling events and the variety of seemingly different neuropathologies it is involved in. We will also discuss the pharmacological means of therapeutic interventions for anti-PDGF-CC therapy and ongoing clinical trials. In summary: inhibition of PDGF-CC signaling can be protective for immediate injury and decrease the long-term neurodegenerative consequences.

  2. PTSD: from neurobiology to pharmacological treatments

    PubMed Central

    Kelmendi, Benjamin; Adams, Thomas G.; Yarnell, Stephanie; Southwick, Steven; Abdallah, Chadi G.; Krystal, John H.

    2016-01-01

    Posttraumatic stress disorder (PTSD) is a chronic debilitating psychiatric disorder characterized by symptoms of re-experience, avoidance, and hyperarousal that can arise immediately or many years after exposure to a traumatic event and injury. Although extensive research has been done over the past 30 years, the etiology of PTSD remains largely unknown. Several neurobiological systems have been implicated in the pathophysiology and vulnerability for developing PTSD; however, first-line pharmacotherapies are limited. Less than 30% achieve full remission, and even then, approved pharmacological treatments often take weeks for therapeutic effect. This article aims to review the pathophysiology of PTSD within multiple neurobiological systems and how these mechanisms are used as pharmacologic targets of treatment, as well as their potential for future targets of intervention. Highlights of the article We reviewed the neurobiological abnormalities in PTSD as they relate to well-established, preliminary, and future targets for pharmacological interventions. Abnormalities across different neurotransmitter systems have been implicated in the pathophysiology of PTSD but none of these systems function uniformly among all patients with PTSD First-line pharmacotherapy for PTSD provides a suboptimal response rates. Future pharmacological targets for PTSD include the cannabinoid and oxytocin systems, as well glutamatergic modulating agents. Drug development for PTSD should specifically address various dimensions of PTSD symptomatology. PMID:27837583

  3. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis.

  4. Pharmacology of iron transport.

    PubMed

    Byrne, Shaina L; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2013-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors.

  5. Pharmacology of Iron Transport

    PubMed Central

    Byrne, Shaina L.; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2013-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors. PMID:23020294

  6. Geriatric veterinary pharmacology.

    PubMed

    Kukanich, Butch

    2012-07-01

    Geriatric dogs and cats are an important group of patients in veterinary medicine. Healthy geriatric patients have similar physiology and presumably pharmacology as healthy adult animals. Geriatric patients with subclinical organ dysfunction are overtly healthy but have some organ dysfunction that may alter the clinical pharmacology of some drugs. Geriatric patients with an overt disease are expected to have altered drug pharmacology for some drugs based on the underlying disease. Diseases including cardiovascular, renal, hepatic, osteoarthritis, neurologic, and neoplastic are expected in the geriatric population and discussed, including the effects of the underlying disease and potential drug-drug interactions.

  7. Pharmacological Targeting of Phosphoinositide Lipid Kinases and Phosphatases in the Immune System: Success, Disappointment, and New Opportunities

    PubMed Central

    Blunt, Matthew D.; Ward, Stephen G.

    2012-01-01

    The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system. PMID:22876243

  8. Regulation of skeletal muscle plasticity by glycogen synthase kinase-3β: a potential target for the treatment of muscle wasting.

    PubMed

    Verhees, Koen J P; Pansters, Nicholas A M; Schols, Annemie M W J; Langen, Ramon C J

    2013-01-01

    Muscle wasting is a prevalent and disabling condition in chronic disease and cancer and has been associated with increased mortality and impaired efficacy of surgical and medical interventions. Pharmacological therapies to combat muscle wasting are currently limited but considered as an important unmet medical need. Muscle wasting has been attributed to increased muscle proteolysis, and in particular ubiquitin 26S-proteasome system (UPS)-dependent protein breakdown. However, rates of muscle protein synthesis are also subject to extensive (patho) physiological regulation, and the balance between synthesis and degradation ultimately determines net muscle protein turnover. As multinucleated muscle fibers accommodate threshold changes in muscle protein content by the accretion and loss of muscle nuclei, myonuclear turnover may additionally determine muscle mass. Current insights in the mechanisms dictating muscle mass plasticity not only reveal intricate interactions and crosstalk between these processes, but imply the existence of signaling molecules that act as molecular switchboards, which coordinate and integrate cellular responses upon conditions that evoke changes in muscle mass. These "master regulators" of skeletal muscle mass plasticity are preferred targets for pharmacological modulation of skeletal muscle wasting. In this review Glycogen synthase kinase-3β (GSK-3β) is highlighted as a master regulator of muscle mass plasticity since, in addition to its role in UPS-mediated muscle protein degradation, it also controls protein synthesis, and influences myonuclear accretion and cell death. Moreover, the regulation of GSK-3β activity as well as currently available pharmacological inhibitors are described and discussed in the context of multimodal treatment strategies aimed at the inhibition of GSK-3β, and optimal exploitation of its potential role as a central regulator of skeletal muscle mass plasticity for the treatment of muscle wasting.

  9. Harnessing the potential of epigenetic therapy to target solid tumors

    PubMed Central

    Ahuja, Nita; Easwaran, Hariharan; Baylin, Stephen B.

    2014-01-01

    Epigenetic therapies may play a prominent role in the future management of solid tumors. This possibility is based on the clinical efficacy of existing drugs in treating defined hematopoietic neoplasms, paired with promising new data from preclinical and clinical studies that examined these agents in solid tumors. We suggest that current drugs may represent a targeted therapeutic approach for reprogramming solid tumor cells, a strategy that must be pursued in concert with the explosion in knowledge about the molecular underpinnings of normal and cancer epigenomes. We hypothesize that understanding targeted proteins in the context of their enzymatic and scaffolding functions and in terms of their interactions in complexes with proteins that are targets of new drugs under development defines the future of epigenetic therapies for cancer. PMID:24382390

  10. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations.

  11. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  12. Pharmacology of cardiac potassium channels.

    PubMed

    Li, Gui-Rong; Dong, Ming-Qing

    2010-01-01

    Cardiac K(+) channels are cardiomyocyte membrane proteins that regulate K(+) ion flow across the cell membrane on the electrochemical gradient and determine the resting membrane potential and the cardiac action potential morphology and duration. Several K(+) channels have been well studied in the human heart. They include the transient outward K(+) current I(to1), the ultra-rapidly activating delayed rectifier current I(Kur), the rapidly and slowly activating delayed rectifier currents I(Kr) and I(Ks), the inward rectifier K(+) current I(K1), and ligand-gated K(+) channels, including adenosine-5'-triphosphate (ATP)-sensitive K(+) current (I(KATP)) and acetylcholine-activated current (I(KACh)). Regional differences of K(+) channel expression contribute to the variable morphologies and durations of cardiac action potentials from sinus node and atrial to ventricular myocytes, and different ventricular layers from endocardium and midmyocardium to epicardium. They also show different responses to endogenous regulators and/or pharmacological agents. K(+) channels are well-known targets for developing novel anti-arrhythmic drugs that can effectively prevent/inhibit cardiac arrhythmias. Especially, atrial-specific K(+) channel currents (I(Kur) and I(KACh)) are the targets for developing atrial-selective anti-atrial fibrillation drugs, which has been greatly progressed in recent years. This chapter concentrates on recent advances in intracellular signaling regulation and pharmacology of cardiac K(+) channels under physiological and pathophysiological conditions.

  13. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer.

    PubMed

    Shanmugam, Muthu K; Nguyen, An H; Kumar, Alan P; Tan, Benny K H; Sethi, Gautam

    2012-07-28

    Over the last two decades, extensive research on plant-based medicinal compounds has revealed exciting and important pharmacological properties and activities of triterpenoids. Fruits, vegetables, cereals, pulses, herbs and medicinal plants are all considered to be biological sources of these triterpenoids, which have attracted great attention especially for their potent anti-inflammatory and anti-cancer activities. Published reports in the past have described the molecular mechanism(s) underlying the various biological activities of triterpenoids which range from inhibition of acute and chronic inflammation, inhibition of tumor cell proliferation, induction of apoptosis, suppression of angiogenesis and metastasis. However systematic analysis of various pharmacological properties of these important classes of compounds has not been done. In this review, we describe in detail the pre-clinical chemopreventive and therapeutic properties of selected triterpenoids that inhibit multiple intracellular signaling molecules and transcription factors involved in the initiation, progression and promotion of various cancers. Molecular targets modulated by these triterpenoids comprise, cytokines, chemokines, reactive oxygen intermediates, oncogenes, inflammatory enzymes such as COX-2, 5-LOX and MMPs, anti-apoptotic proteins, transcription factors such as NF-κB, STAT3, AP-1, CREB, and Nrf2 (nuclear factor erythroid 2-related factor) that regulate tumor cell proliferation, transformation, survival, invasion, angiogenesis, metastasis, chemoresistance and radioresistance. Finally, this review also analyzes the potential role of novel synthetic triterpenoids identified recently which mimic natural triterpenoids in physical and chemical properties and are moving rapidly from bench to bedside research.

  14. Castration-resistant prostate cancer: potential targets and therapies.

    PubMed

    Parray, Aijaz; Siddique, Hifzur R; Nanda, Sanjeev; Konety, Badrinath R; Saleem, Mohammad

    2012-01-01

    The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease.

  15. Sirtuins as potential drug targets for metablic diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies of the sirtuin family of proteins, which possess NAD+/-dependent deacetylase and ADP ribosyltransferase activities, indicate that they regulate many biological functions, such as longevity and metabolism. These findings also suggest that sirtuins might serve as valuable drug targets f...

  16. PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis

    PubMed Central

    Kumar, Shiv; Kim, Jaebong

    2015-01-01

    Mitotic kinases are the key components of the cell cycle machinery and play vital roles in cell cycle progression. PLK-1 (Polo-like kinase-1) is a crucial mitotic protein kinase that plays an essential role in both the onset of G2/M transition and cytokinesis. The overexpression of PLK-1 is strongly correlated with a wide spectrum of human cancers and poor prognosis. The (si)RNA-mediated depletion of PLK-1 arrests tumor growth and triggers apoptosis in cancer cells without affecting normal cells. Therefore, PLK-1 has been selected as an attractive anticancer therapeutic drug target. Some small molecules have been discovered to target the catalytic and noncatalytic domains of PLK-1. These domains regulate the catalytic activation and subcellular localization of PLK-1. However, while PLK-1 inhibitors block tumor growth, they have been shown to cause severe adverse complications, such as toxicity, neutropenia, and bone marrow suppression during clinical trials, due to a lack of selectivity and specificity within the human kinome. To minimize these toxicities, inhibitors should be tested against all protein kinases in vivo and in vitro to enhance selectivity and specificity against targets. Here, we discuss the potency and selectivity of PLK-1-targeted inhibitors and their molecular interactions with PLK-1 domains. PMID:26557691

  17. Potential therapeutic targets in energy metabolism pathways of breast cancer.

    PubMed

    Islam, Rowshan Ara; Hossain, Sazzad; Chowdhury, Ezharul Hoque

    2017-03-30

    Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. This paper summarizes the roles of energy metabolism and their cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. As breast cancer is a highly heterogeneous disease, a clear understanding of the variations of energy metabolism in different molecular subtypes would help in treating each type with a very customized, safer and efficient treatment regimen, by targeting specific glucose metabolism and related pathways with gene silencing nucleic acid sequences or small molecule drugs, or the combination of both.

  18. Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants.

    PubMed

    Kirsch, T; Saalbach, G; Raikhel, N V; Beevers, L

    1996-06-01

    A protein of 80 kD from developing pea (Pisum sativum) cotyledons has previously been shown to exhibit characteristics of a vacuolar targeting receptor by means of its affinity for the amino-terminal vacuolar targeting sequence of proaleurain from barley (Hordeum vulgare). In this report we show that the same protein also binds to the amino-terminal targeting peptide of prosporamin from sweet potato (Ipomoea batatas) and to the carboxyl-terminal targeting determinant of pro-2S albumin from Brazil nut (Bertholletia excelsa). The receptor protein does not bind to the carboxyl-terminal propeptide (representing the targeting sequence) of barley lectin. The binding of the 80-kD protein to the sporamin determinant involves a motif (NPIR) that has been shown to be crucial for vacuolar targeting in vivo. The binding to the carboxyl-terminal targeting determinant of pro-2S albumin appears to involve the carboxyl-terminal propeptide and the adjacent five amino acids of the mature protein. The 80-kD protein does not bind to peptide sequences that have been shown to be incompetent in directing vacuolar targeting.

  19. A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry.

    PubMed

    Penarete-Vargas, Diana Marcela; Boisson, Anaïs; Urbach, Serge; Chantelauze, Hervé; Peyrottes, Suzanne; Fraisse, Laurent; Vial, Henri J

    2014-01-01

    Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an original chemical proteomic approach to identify parasite proteins targeted by albitiazolium during their native interaction in living parasites. We designed a bifunctional albitiazolium-derived compound (photoactivable and clickable) to covalently crosslink drug-interacting parasite proteins in situ followed by their isolation via click chemistry reactions. Mass spectrometry analysis of drug-interacting proteins and subsequent clustering on gene ontology terms revealed parasite proteins involved in lipid metabolic activities and, interestingly, also in lipid binding, transport, and vesicular transport functions. In accordance with this, the albitiazolium-derivative was localized in the endoplasmic reticulum and trans-Golgi network of P. falciparum. Importantly, during competitive assays with albitiazolium, the binding of choline/ethanolamine phosphotransferase (the enzyme involved in the last step of phosphatidylcholine synthesis) was substantially displaced, thus confirming the efficiency of this strategy for searching albitiazolium targets.

  20. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans.

    PubMed

    Rabiner, E A; Beaver, J; Makwana, A; Searle, G; Long, C; Nathan, P J; Newbould, R D; Howard, J; Miller, S R; Bush, M A; Hill, S; Reiley, R; Passchier, J; Gunn, R N; Matthews, P M; Bullmore, E T

    2011-08-01

    Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [(11)C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4-100 mg) or NTX (range, 2-50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50 = 7.10 ng ml(-1)) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration-RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption.

  1. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms.

  2. Castration-resistant prostate cancer: potential targets and therapies

    PubMed Central

    Parray, Aijaz; Siddique, Hifzur R; Nanda, Sanjeev; Konety, Badrinath R; Saleem, Mohammad

    2012-01-01

    The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease. PMID:22956858

  3. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2016-06-01

    the Plasmodium mammalian cycle . Identifying parasite proteins that are required for liver infection can lead to novel drugs against malaria. For the...mammalian cycle . Inhibiting this step can block malaria at an early step. However, few anti-malarials target liver infection by sporozoites. Our goal is...methods to synthesize TSP and TSP derivatives, we demonstrated that we could append a propargyl group to the piperidine ring nitrogen and that this

  4. Increasing the potential for malaria elimination by targeting zoophilic vectors

    PubMed Central

    Waite, Jessica L.; Swain, Sunita; Lynch, Penelope A.; Sharma, S. K.; Haque, Mohammed Asrarul; Montgomery, Jacqui; Thomas, Matthew B.

    2017-01-01

    Countries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings. We find in a high transmission region in India, malaria vector populations show a high propensity to feed on livestock (cattle) and rest in outdoor structures such as cattle shelters. We also find evidence for a shift in vector species complex towards increased zoophilic behavior in recent years. Using a malaria transmission model we demonstrate that in such regions dominated by zoophilic vectors, existing vector control tactics will be insufficient to achieve elimination, even if maximized. However, by increasing mortality in the zoophilic cycle, the elimination threshold can be reached. Current national vector control policy in India restricts use of residual insecticide sprays to domestic dwellings. Our study suggests substantial benefits of extending the approach to treatment of cattle sheds, or deploying other tactics that target zoophilic behavior. Optimizing use of existing tools will be essential to achieving the ambitious 2030 elimination target. PMID:28091570

  5. Healthspan Pharmacology

    PubMed Central

    2015-01-01

    Abstract The main goal of this paper is to present the case for shifting the focus of research on aging and anti-aging from lifespan pharmacology to what I like to call healthspan pharmacology, in which the desired outcome is the extension of healthy years of life rather than lifespan alone. Lifespan could be influenced by both genetic and epigenetic factors, but a long lifespan may not be a good indicator of an optimal healthspan. Without improving healthspan, prolonging longevity would have enormous negative socioeconomic outcomes for humans. Therefore, the goal of aging and anti-aging research should be to add healthy years to life and not merely to increase the chronological age. This article summarizes and compares two categories of pharmacologically induced lifespan extension studies in animal model systems from the last two decades—those reporting the effects of pharmacological interventions on lifespan extension alone versus others that include their effects on both lifespan and healthspan in the analysis. The conclusion is that the extrapolation of pharmacological results from animal studies to humans is likely to be more relevant when both lifespan and healthspan extension properties of pharmacological intervention are taken into account. PMID:26444965

  6. Healthspan Pharmacology.

    PubMed

    Jafari, Mahtab

    2015-12-01

    The main goal of this paper is to present the case for shifting the focus of research on aging and anti-aging from lifespan pharmacology to what I like to call healthspan pharmacology, in which the desired outcome is the extension of healthy years of life rather than lifespan alone. Lifespan could be influenced by both genetic and epigenetic factors, but a long lifespan may not be a good indicator of an optimal healthspan. Without improving healthspan, prolonging longevity would have enormous negative socioeconomic outcomes for humans. Therefore, the goal of aging and anti-aging research should be to add healthy years to life and not merely to increase the chronological age. This article summarizes and compares two categories of pharmacologically induced lifespan extension studies in animal model systems from the last two decades-those reporting the effects of pharmacological interventions on lifespan extension alone versus others that include their effects on both lifespan and healthspan in the analysis. The conclusion is that the extrapolation of pharmacological results from animal studies to humans is likely to be more relevant when both lifespan and healthspan extension properties of pharmacological intervention are taken into account.

  7. Unlock the Thermogenic Potential of Adipose Tissue: Pharmacological Modulation and Implications for Treatment of Diabetes and Obesity

    PubMed Central

    Peng, Xiao-Rong; Gennemark, Peter; O’Mahony, Gavin; Bartesaghi, Stefano

    2015-01-01

    Brown adipose tissue (BAT) is considered an interesting target organ for the treatment of metabolic disease due to its high metabolic capacity. Non-shivering thermogenesis, once activated, can lead to enhanced partitioning and oxidation of fuels in adipose tissues, and reduce the burden of glucose and lipids on other metabolic organs such as liver, pancreas, and skeletal muscle. Sustained long-term activation of BAT may also lead to meaningful bodyweight loss. In this review, we discuss three different drug classes [the thiazolidinedione (TZD) class of PPARγ agonists, β3-adrenergic receptor agonists, and fibroblast growth factor 21 (FGF21) analogs] that have been proposed to regulate BAT and beige recruitment or activation, or both, and which have been tested in both rodent and human. The learnings from these classes suggest that restoration of functional BAT and beige mass as well as improved activation might be required to fully realize the metabolic potential of these tissues. Whether this can be achieved without the undesired cardiovascular side effects exhibited by the TZD PPARγ agonists and β3-adrenergic receptor agonists remains to be resolved. PMID:26635723

  8. The endocannabinoid system: its roles in energy balance and potential as a target for obesity treatment.

    PubMed

    André, Aurore; Gonthier, Marie-Paule

    2010-11-01

    Obesity and cardiometabolic risk continue to be major public health concerns. A better understanding of the physiopathological mechanisms leading to obesity may help to identify novel therapeutic targets. The endocannabinoid system discovered in the early 1990s is believed to influence body weight regulation and cardiometabolic risk factors. This article aims to review the literature on the endocannabinoid system including the biological roles of its major components, namely, the cannabinoid receptors, their endogenous ligands the endocannabinoids and the ligand-metabolising enzymes. The review also discusses evidence that the endocannabinoid system constitutes a new physiological pathway occurring in the central nervous system and peripheral tissues that has a key role in the control of food intake and energy expenditure, insulin sensitivity, as well as glucose and lipid metabolism. Based on the important finding that there is a close association between obesity and the hyperactivity of the endocannabinoid system, interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development has become an important area of research. Among the pharmacological strategies proposed, the antagonism of the cannabinoid receptors has been particularly investigated and several clinical trials have been conducted. One challenging pharmacological task will be to target the endocannabinoid system in a more selective, and hence, safe way. As the management of obesity also requires lifestyle modifications in terms of healthy eating and physical activity, the targeting of the endocannabinoid system may represent a novel approach for a multifactorial therapeutic strategy.

  9. Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis☆

    PubMed Central

    Gupta, Anuradha; Misra, Amit; Deretic, Vojo

    2017-01-01

    One of the promising host-directed chemotherapeutic interventions in tuberculosis (TB) is based on inducing autophagy as an immune effector. Here we consider the strengths and weaknesses of potential autophagy-based pharmacological intervention. Using the existing drugs that induce autophagy is an option, but it has limitations given the broad role of autophagy in most cells, tissues, and organs. Thus, it may be desirable that the agent being used to modulate autophagy is applied in a targeted manner, e.g. delivered to affected tissues, with infected macrophages being an obvious choice. This review addresses the advantages and disadvantages of delivering drugs to induce autophagy in M. tuberculosis-infected macrophages. One option, already being tested in models, is to design particles for inhalation delivery to lung macrophages. The choice of drugs, drug release kinetics and intracellular residence times, non-target cell exposure and feasibility of use by patients is discussed. We term here this (still experimental) approach, of compartment-targeting, autophagy-based, host-directed therapy as “Track-II antituberculosis chemotherapy.” PMID:26829287

  10. [Dementia prevention: potential treatments and how to target high risk patients].

    PubMed

    Samaras, Nikolaos; Samaras, Dimitrios; Frangos, Emilia; Forster, Alexandre

    2013-05-22

    The burden related to the ever-increasing dementia prevalence in older individuals, imposes the implementation of prevention strategies. It is now known that brain lesions related to Alzheimer's disease precede the onset of the first symptoms. Consequently, prevention strategies should be implemented early, before clinically overt dementia. Blood and spine fluid tests, electroencephalogram, brain magnetic resonance and brain nuclear imaging should help physicians to better target "high-risk" patients prone to benefit from such strategies, already in a preclinical disease stage. Since no efficient pharmacological treatments exist for the time being, lifestyle factors such as nutritionand physical exercise are the cornerstones for dementia prevention.

  11. Biological targets for therapeutic interventions in COPD: clinical potential

    PubMed Central

    Pelaia, Girolamo; Vatrella, Alessandro; Gallelli, Luca; Renda, Teresa; Caputi, Mario; Maselli, Rosario; Marsico, Serafino A

    2006-01-01

    COPD is a widespread inflammatory respiratory disorder characterized by a progressive, poorly reversible airflow limitation. Currently available therapies are mostly based on those used to treat asthma. However, such compounds are not able to effectively reduce the gradual functional deterioration, as well as the ongoing airway and lung inflammation occurring in COPD patients. Therefore, there is an urgent need to improve the efficacy of the existing drug classes and to develop new treatments, targeting the main cellular and molecular mechanisms underlying disease pathogenesis. These therapeutic strategies will be highlighted in the present review. PMID:18046869

  12. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration

    PubMed Central

    Andreas, Kristin; Häupl, Thomas; Lübke, Carsten; Ringe, Jochen; Morawietz, Lars; Wachtel, Anja; Sittinger, Michael; Kaps, Christian

    2009-01-01

    Introduction Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration. Methods An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data. Results Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas

  13. Non-pharmacological treatment options for refractory epilepsy: an overview of human treatment modalities and their potential utility in dogs.

    PubMed

    Martlé, Valentine; Van Ham, Luc; Raedt, Robrecht; Vonck, Kristl; Boon, Paul; Bhatti, Sofie

    2014-03-01

    Refractory epilepsy is a common disorder both in humans and dogs and treatment protocols are difficult to optimise. In humans, different non-pharmacological treatment modalities currently available include surgery, the ketogenic diet and neurostimulation. Surgery leads to freedom from seizures in 50-75% of patients, but requires strict patient selection. The ketogenic diet is indicated in severe childhood epilepsies, but efficacy is limited and long-term compliance can be problematic. In the past decade, various types of neurostimulation have emerged as promising treatment modalities for humans with refractory epilepsy. Currently, none of these treatment options are used in routine daily clinical practice to treat dogs with the condition. Since many dogs with poorly controlled seizures do not survive, the search for alternative treatment options for canine refractory epilepsy should be prioritised. This review provides an overview of non-pharmacological treatment options for human refractory epilepsy. The current knowledge and limitations of these treatments in canine refractory epilepsy is also discussed.

  14. Brain: The Potential Diagnostic and Therapeutic Target for Glaucoma.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Kumar, Ashutosh; Saluja, Daman; Dada, Tanuj

    2016-01-01

    Glaucoma is a form of multifactorial ocular neurodegeneration with immensely complex etiology, pathogenesis and pathology. Though the mainstream therapeutic management of glaucoma is lowering of intraocular pressure, there is, as of now, no cure for the disease. New evidences ardently suggest brain involvement in all aspects of this malady. This consequently advocates the opinion that brain should be the spotlight of glaucoma research and may form the impending and promising target for glaucoma diagnosis and treatment. The present analysis endeavors at understanding glaucoma vis-à-vis brain structural and/or functional derangement and central nervous system (CNS) degeneration. Commencing with the premise of developing some understanding about the brain-nature of ocular structures; we discuss the nature of the cellular and molecular moieties involved in glaucoma and Alzheimer's disease. Substantial deal of literature implies that glaucoma may well be a disease of the brain, nevertheless, manifesting as progressive loss of vision. If that is the case, then targeting brain will be far more imperative in glaucoma therapeutics than any other remedial regimen currently being endorsed.

  15. Alternative pharmacologic therapy for aggressive central giant cell granuloma: denosumab.

    PubMed

    Schreuder, Willem H; Coumou, Annet W; Kessler, Peter A H W; de Lange, Jan

    2014-07-01

    In the search for new pharmacologic therapies for central giant cell granuloma (CGCG), proteins that are essential to osteoclastogenesis are intriguing potential targets. In the present case report, we describe a 25-year-old patient with an aggressive CGCG of the maxilla, who was successfully treated with the antiresorptive agent denosumab, after other pharmacologic treatment had failed to achieve regression or stabilization of the tumor. Denosumab could be a promising alternative to potentially mutilating surgery for CGCG. However, more research is needed before definite conclusions can be drawn about the potential role of this agent in the treatment of CGCG.

  16. Modular Nanotransporters for Targeted Intracellular Delivery of Drugs: Folate Receptors as Potential Targets

    PubMed Central

    Slastnikova, Tatiana A.; Rosenkranz, Andrey A.; Zalutsky, Michael R.; Sobolev, Alexander S.

    2015-01-01

    The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells. PMID:25312738

  17. Pharmacology of appetite suppression.

    PubMed

    Halford, J C; Blundell, J E

    2000-01-01

    Despite a rising worldwide epidemic of obesity there is currently only a very small number of anti-obesity drugs available to manage the problem. Large numbers of differing pharmacological agents reliably produce a reduction in food intake when administered acutely to animals, and when administered chronically they result in a significant decrease in body mass. Behavioural analysis of drug-induced anorexia in animals demonstrates that various compounds profoundly effect feeding behaviour in differing ways. This indicates the variety of mechanisms by which pharmacological agents can induce changes in food intake, body weight and eventually body composition. Some of the same drugs produce decreases in food intake and weight loss in humans. Some of these drugs do so by modifying the functioning of the appetite system as measured by subjective changes in feelings of hunger and fullness (indices of satiety). Such drugs can be considered as "appetite suppressants" with clinical potential as anti-obesity agents. Other drugs induce changes in food intake and body weight through various physiological mechanisms inducing feelings of nausea or even by side effect related malaise. Of the drugs considered suitable candidates for appetite suppressants are agents which act via peripherally satiety peptide systems (such as CCK, Bombesin/GRP, Enterostatin and GLP-1), or alter the CNS levels of various hypothalamic neuropeptides (NPY, Galanin, Orexin and Melanocortins) or levels of the key CNS appetite monoamine neurotransmitters such as serotonin (5-HT) and noradrenaline (NA). Recently, the hormone leptin has been regarded as a hormonal signal linking adipose tissue status with a number of key central nervous system circuits. The peptide itself stimulates leptin receptors and it links with POMC and MC-4 receptors. These receptors may also provide drug targets for the control of appetite. Any changes induced by a potential appetite suppressant should be considered in terms of the (i

  18. Introduction to the special issue: GIS-based mineral potential targeting

    NASA Astrophysics Data System (ADS)

    Yousefi, Mahyar; Nykänen, Vesa

    2017-04-01

    Mineral potential targeting using geographical information system is an efficient technique to delimit a study area for further exploration of mineral deposits. This introduction presents an overview of the mineral potential modeling methods and future perspectives of research in the fields of target generation and summarizes the papers that have been incorporated into this Special Issue of the Journal of African Earth Sciences.

  19. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.

    PubMed

    Stangeland, Biljana; Mughal, Awais A; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O; Langmoen, Iver A

    2015-09-22

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

  20. Pharmacological implications of the Ca2+/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders

    PubMed Central

    Caricati-Neto, Afonso; García, Antonio G; Bergantin, Leandro Bueno

    2015-01-01

    In this review, we discussed pharmacological implications of the Ca2+/cAMP signaling interaction in the antihypertensive and neurological/psychiatric disorders therapies. Since 1975, several clinical studies have reported that acute and chronic administration of L-type voltage-activated Ca2+ channels (VACCs) blockers, such as nifedipine, produces reduction in peripheral vascular resistance and arterial pressure associated with an increase in plasma noradrenaline levels and heart rate, typical of sympathetic hyperactivity. Despite this sympathetic hyperactivity has been initially attributed to adjust reflex of arterial pressure, the cellular and molecular mechanisms involved in this apparent sympathomimetic effect of the L-type VACCs blockers remained unclear for decades. In addition, experimental studies using isolated tissues richly innervated by sympathetic nerves (to exclude the influence of adjusting reflex) showed that neurogenic responses were completely inhibited by L-type VACCs blockers in concentrations above 1 μmol/L, but paradoxically potentiated in concentrations below 1 μmol/L. During almost four decades, these enigmatic phenomena remained unclear. In 2013, we discovered that this paradoxical increase in sympathetic activity produced by L-type VACCs blocker is due to interaction of the Ca2+/cAMP signaling pathways. Then, the pharmacological manipulation of the Ca2+/cAMP interaction produced by combination of the L-type VACCs blockers used in the antihypertensive therapy, and cAMP accumulating compounds used in the antidepressive therapy, could represent a potential cardiovascular risk for hypertensive patients due to increase in sympathetic hyperactivity. In contrast, this pharmacological manipulation could be a new therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases. PMID:26516591

  1. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay.

    PubMed

    Jensen, Anders A; Bräuner-Osborne, Hans

    2004-06-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics of the cell lines in the FMP assay were in good agreement with previous findings in electrophysiology studies of the transporters. The FMP assay was capable of distinguishing between substrates and non-substrate inhibitors and to discriminate between "full" and "partial" substrates at the transporters. Taking advantage of the prolific nature of the FMP assay, interactions of the EAATs with substrates and inhibitors were studied in some detail. This is the first report of a high throughput screening assay for EAATs. We propose that the assay will be of great use in future studies of the transporters. Although conventional electrophysiology set-ups might be superior in terms of studying sophisticated kinetic aspects of the uptake process, the FMP assay enables the collection of considerable amounts of highly reproducible data with relatively little labor. Furthermore, considering that the number of EAAT ligands presently available is limited, and that almost all of these are characterized by low potency and a low degree of subtype selectivity, future screening of compound libraries at the EAAT-cell lines in the FMP assay could help identify structurally and pharmacologically novel ligands for the transporters.

  2. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy.

    PubMed

    Mast, Natalia; Lin, Joseph B; Pikuleva, Irina A

    2015-09-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification.

  3. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy

    PubMed Central

    Mast, Natalia; Lin, Joseph B.

    2015-01-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. PMID:26082378

  4. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model neurons by pharmacological targeting of a network hub

    PubMed Central

    Blizinsky, Katherine D.; Diaz-Castro, Blanca; Forrest, Marc P.; Schürmann, Britta; Bach, Anthony P.; Martin-de-Saavedra, Maria Dolores; Wang, Lei; Csernansky, John G.; Duan, Jubao; Penzes, Peter

    2016-01-01

    The architecture of dendritic arbors contributes to neuronal connectivity in the brain. Conversely, abnormalities in dendrites have been reported in multiple mental disorders and are thought to contribute to pathogenesis. Rare copy number variations (CNVs) are genetic alterations that are associated with a wide range of mental disorders and are highly penetrant. The 16p11.2 microduplication is one of the CNVs most strongly associated with schizophrenia and autism, spanning multiple genes possibly involved in synaptic neurotransmission. However, disease-relevant cellular phenotypes of 16p11.2 microduplication and the driver gene(s) remain to be identified. We found increased dendritic arborization in isolated cortical pyramidal neurons from a mouse model of 16p11.2 duplication (dp/+). Network analysis identified MAPK3, which encodes ERK1 MAP kinase, as the most topologically important hub in protein–protein interaction networks within the 16p11.2 region and broader gene networks of schizophrenia-associated CNVs. Pharmacological targeting of ERK reversed dendritic alterations associated with dp/+ neurons, outlining a strategy for the analysis and reversal of cellular phenotypes in CNV-related psychiatric disorders. PMID:27402753

  5. The potential for targeting extracellular LOX proteins in human malignancy.

    PubMed

    Mayorca-Guiliani, Alejandro; Erler, Janine T

    2013-11-25

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network.

  6. The potential for targeting extracellular LOX proteins in human malignancy

    PubMed Central

    Mayorca-Guiliani, Alejandro; Erler, Janine T

    2013-01-01

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network. PMID:24348049

  7. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention.

    PubMed

    Battaglia, Valentina; DeStefano Shields, Christina; Murray-Stewart, Tracy; Casero, Robert A

    2014-03-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N (1)-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N (1)-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.

  8. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention

    PubMed Central

    Battaglia, Valentina; Shields, Christina DeStefano; Murray-Stewart, Tracy; Casero, Robert A.

    2013-01-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges requires a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N1-acetylpolyamine oxidase (APAO). Both catabolic pathways produce hydrogen peroxide (H2O2) and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy. PMID:23771789

  9. Mycobacterium tuberculosis chorismate mutase: A potential target for TB.

    PubMed

    Khanapur, Manjulatha; Alvala, Mallika; Prabhakar, Maddela; Shiva Kumar, K; Edwin, R K; Sri Saranya, P S V K; Patel, Raj Kumar; Bulusu, Gopalakrishnan; Misra, P; Pal, Manojit

    2017-03-15

    Mycobacterium tuberculosis chorismate mutase (MtbCM) catalyzes the rearrangement of chorismate to prephenate in the shikimate biosynthetic pathway to form the essential amino acids, phenylalanine and tyrosine. Two genes encoding chorismate mutase have been identified in Mtb. The secretory form,∗MtbCM (encoded by Rv1885c) is assumed to play a key role in pathogenesis of tuberculosis. Also, the inhibition of MtbCM may hinder the supply of nutrients to the organism. Indeed, the existence of chorismate mutase (CM) in bacteria, fungi and higher plants but not in human and low sequence homology among known CM makes it an interesting target for the discovery of anti-tubercular agents. The present article mainly focuses on the recent developments in the structure, function and inhibition of MtbCM. The understanding of various aspects of MtbCM as presented in the current article may facilitate the design and subsequent chemical synthesis of new inhibitors against ∗MtbCM, that could lead to the discovery and development of novel and potent anti-tubercular agents in future.

  10. AAC as a Potential Target Gene to Control Verticillium dahliae

    PubMed Central

    Su, Xiaofeng; Rehman, Latifur; Guo, Huiming; Li, Xiaokang; Zhang, Rui; Cheng, Hongmei

    2017-01-01

    Verticillium dahliae invades the roots of host plants and causes vascular wilt, which seriously diminishes the yield of cotton and other important crops. The protein AAC (ADP, ATP carrier) is responsible for transferring ATP from the mitochondria into the cytoplasm. When V. dahliae protoplasts were transformed with short interfering RNAs (siRNAs) targeting the VdAAC gene, fungal growth and sporulation were significantly inhibited. To further confirm a role for VdAAC in fungal development, we generated knockout mutants (ΔVdACC). Compared with wild-type V. dahliae (Vd wt), ΔVdAAC was impaired in germination and virulence; these impairments were rescued in the complementary strains (ΔVdAAC-C). Moreover, when an RNAi construct of VdAAC under the control of the 35S promoter was used to transform Nicotiana benthamiana, the expression of VdAAC was downregulated in the transgenic seedlings, and they had elevated resistance against V. dahliae. The results of this study suggest that VdAAC contributes to fungal development, virulence and is a promising candidate gene to control V. dahliae. In addition, RNAi is a highly efficient way to silence fungal genes and provides a novel strategy to improve disease resistance in plants. PMID:28075391

  11. Gene expression profiling in bladder cancer identifies potential therapeutic targets

    PubMed Central

    Hussain, Syed A.; Palmer, Daniel H.; Syn, Wing-Kin; Sacco, Joseph J.; Greensmith, Richard M.D.; Elmetwali, Taha; Aachi, Vijay; Lloyd, Bryony H.; Jithesh, Puthen V.; Arrand, John; Barton, Darren; Ansari, Jawaher; Sibson, D. Ross; James, Nicholas D.

    2017-01-01

    Despite advances in management, bladder cancer remains a major cause of cancer related complications. Characterisation of gene expression patterns in bladder cancer allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Hypergeometric analysis was used to identify canonical pathways and curated networks having statistically significant enrichment of differentially expressed genes. Osteopontin (OPN) expression was validated by immunohistochemistry. Hierarchical clustering defined signatures, which differentiated between cancer and healthy tissue, muscle-invasive or non-muscle invasive cancer and healthy tissue, grade 1 and grade 3. Pathways associated with cell cycle and proliferation were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer compared to healthy tissue. The present study contributes to a growing body of work on gene expression signatures in bladder cancer. The data support an important role for osteopontin in bladder cancer, and identify several pathways worthy of further investigation. PMID:28259975

  12. CD30 is a potential therapeutic target in malignant mesothelioma

    PubMed Central

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-01-01

    CD30 is a cytokine receptor belonging to the tumor necrosis factor superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin’s disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in non-lymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by immunohistochemistry. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with either tumor grade, stage or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment. PMID:25589494

  13. Erythropoietin Pathway: A Potential Target for the Treatment of Depression

    PubMed Central

    Ma, Chongyang; Cheng, Fafeng; Wang, Xueqian; Zhai, Changming; Yue, Wenchao; Lian, Yajun; Wang, Qingguo

    2016-01-01

    During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment. PMID:27164096

  14. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    PubMed Central

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. PMID:25691812

  15. Novel class of potential therapeutics that target ricin retrograde translocation.

    PubMed

    Redmann, Veronika; Gardner, Thomas; Lau, Zerlina; Morohashi, Keita; Felsenfeld, Dan; Tortorella, Domenico

    2013-12-23

    Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB) followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA) is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTA(E177Q)egfp) to identify compounds that target RTA retrograde translocation. Stabilizing RTA(E177Q)egfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds) with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  16. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab.

    PubMed

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL.

  17. Potential targets in the search for extraterrestrial life.

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1972-01-01

    Discussion of the potential for increasing understanding of the origins of terrestrial life by examination of other planets. If living organisms should be found on another planet, they could only have been transported from an inhabited planet or originated independently. The fundamental chemical and structural attributes of terrestrial organisms are so remarkably uniform that any living forms outside the terrestrial blueprint would almost certainly be regarded as alien organisms. It has been shown experimentally by various investigators that life can exist in an extremely wide range of temperatures and pressures. The presence of an atmosphere appears to be necessary.

  18. Galectin-3 as a Potential Target to Prevent Cancer Metastasis

    PubMed Central

    Ahmed, Hafiz; AlSadek, Dina M. M.

    2015-01-01

    Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395

  19. PTSD: from neurobiology to pharmacological treatments.

    PubMed

    Kelmendi, Benjamin; Adams, Thomas G; Yarnell, Stephanie; Southwick, Steven; Abdallah, Chadi G; Krystal, John H

    2016-01-01

    Posttraumatic stress disorder (PTSD) is a chronic debilitating psychiatric disorder characterized by symptoms of re-experience, avoidance, and hyperarousal that can arise immediately or many years after exposure to a traumatic event and injury. Although extensive research has been done over the past 30 years, the etiology of PTSD remains largely unknown. Several neurobiological systems have been implicated in the pathophysiology and vulnerability for developing PTSD; however, first-line pharmacotherapies are limited. Less than 30% achieve full remission, and even then, approved pharmacological treatments often take weeks for therapeutic effect. This article aims to review the pathophysiology of PTSD within multiple neurobiological systems and how these mechanisms are used as pharmacologic targets of treatment, as well as their potential for future targets of intervention.

  20. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy.

    PubMed

    Iwatsubo, Kousaku; Tsunematsu, Takashi; Ishikawa, Yoshihiro

    2003-06-01

    Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoform dependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.

  1. Substoichiometric inhibition of transthyretin misfolding by immune-targeting sparsely populated misfolding intermediates: a potential diagnostic and therapeutic for TTR amyloidoses

    PubMed Central

    Galant, Natalie J.; Bugyei-Twum, Antoinette; Rakhit, Rishi; Walsh, Patrick; Sharpe, Simon; Arslan, Pharhad Eli; Westermark, Per; Higaki, Jeffrey N.; Torres, Ronald; Tapia, José; Chakrabartty, Avijit

    2016-01-01

    Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis® and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting sparsely populated TTR misfolding intermediates (i.e. monomers), we achieved fibril inhibition at substoichiometric concentrations. We developed an antibody (misTTR) that targets TTR residues 89–97, an epitope buried in the tetramer but exposed in the monomer. Nanomolar misTTR inhibits fibrillogenesis of misfolded TTR under micromolar concentrations. Pan-specific TTR antibodies do not possess such fibril inhibiting properties. We show that selective targeting of misfolding intermediates is an alternative to native state stabilization and requires substoichiometric concentrations. MisTTR or its derivative may have both diagnostic and therapeutic potential. PMID:27122057

  2. Cancer Stem Cells: Potential Target for Bioactive Food Components

    PubMed Central

    Kim, Young S.; Farrar, William; Colburn, Nancy H.; Milner, John A.

    2015-01-01

    Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (−)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine, and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1), and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence. PMID:22704055

  3. IMP dehydrogenase from Pneumocystis carinii as a potential drug target.

    PubMed Central

    O'Gara, M J; Lee, C H; Weinberg, G A; Nott, J M; Queener, S F

    1997-01-01

    Mycophenolic acid, a specific inhibitor of IMP dehydrogenase (IMPDH; EC 1.1.1.205), is a potent inhibitor of Pneumocystis carinii growth in culture, suggesting that IMPDH may be a sensitive target for chemotherapy in this organism. The IMPDH gene was cloned as a first step to characterizing the enzyme and developing selective inhibitors. A 1.3-kb fragment containing a portion of the P. carinii IMPDH gene was amplified by PCR with two degenerate oligonucleotides based on conserved sequences in IMPDH from humans and four different microorganisms. Northern hybridization analysis showed the P. carinii IMPDH mRNA to be approximately 1.6 kb. The entire cDNA encoding P. carinii IMPDH was isolated and cloned. The deduced amino acid sequence of P. carinii IMPDH shared homology with bacterial (31 to 38%), protozoal (48 to 59%), mammalian (60 to 62%), and fungal (62%) IMPDH enzymes. The IMPDH cDNA was expressed by using a T7 expression system in an IMPDH-deficient strain of Escherichia coli (strain S phi 1101). E. coli S phi 1101 cells containing the P. carinii IMPDH gene were able to grow on medium lacking guanine, implying that the protein expressed in vivo was functional. Extracts of these E. coli cells contained IMPDH activity that had an apparent Km for IMP of 21.7 +/- 0.3 microM and an apparent Km for NAD of 314 +/- 84 microM (mean +/- standard error of the mean; n = 3), and the activity was inhibited by mycophenolic acid (50% inhibitory concentration, 24 microM; n = 2). PMID:8980752

  4. Tea polyphenols, their biological effects and potential molecular targets.

    PubMed

    Chen, D; Milacic, V; Chen, M S; Wan, S B; Lam, W H; Huo, C; Landis-Piwowar, K R; Cui, Q C; Wali, A; Chan, T H; Dou, Q P

    2008-04-01

    Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.

  5. Integrating pharmacology and clinical pharmacology in universities.

    PubMed

    Buckingham, Julia C

    2012-06-01

    Continuing development of safe and effective new medicines is critically important for global health, social prosperity and the economy. The drug discovery-development pipeline depends critically on close partnerships between scientists and clinicians and on educational programmes that ensure that the pharmacological workforce, in its broadest sense, is fit for purpose. Here I consider factors that have influenced the development of basic and clinical pharmacology in UK universities over the past 40 years and discuss ways in which basic pharmacologists, clinical pharmacologists and scientists from different disciplines can work together effectively, while retaining their professional identities and fostering developments in their disciplines. Specifically, I propose the establishment of Institutes of Drug Discovery and Development, whose activities could include development and implementation of a translational pharmacology research strategy, drawing on the collective expertise of the membership and the university as whole; provision of a forum for regular seminars and symposia to promote the discipline, encourage collaboration and develop a cohesive community; provision of a research advisory service, covering, for example, data management, applications for ethics permission, clinical trials design, statistics and regulatory affairs; liaison with potential funders and leadership of major funding bids, including funding for doctoral training; provision of advice on intellectual property protection and the commercialization of research; liaison with corporate partners to facilitate collaboration, knowledge transfer and effective translation; and leadership of undergraduate and postgraduate education in basic and clinical pharmacology and related sciences for medical and science students, including continuing professional development and transferable skills.

  6. The Potassium Channel KCa3.1 Represents a Valid Pharmacological Target for Astrogliosis-Induced Neuronal Impairment in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wei, Tianjiao; Yi, Mengni; Gu, Wen; Hou, Lina; Lu, Qin; Yu, Zhihua; Chen, Hongzhuan

    2017-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function. Astrogliosis plays a critical role in AD by instigating neuroinflammation, which leads ultimately to cognition decline. We previously showed that the intermediate-conductance Ca2+-activated potassium channel (KCa3.1) is involved in astrogliosis-induced by TGF-β in vitro. In the present study, we investigated the contribution of KCa3.1 channels to astrogliosis-mediated neuroinflammation, using TgAPP/PS1 mice as a model for AD. We found that KCa3.1 expression was increased in reactive astrocytes as well as in neurons in the brains of both TgAPP/PS1 mice and AD patients. Pharmacological blockade of KCa3.1 significantly reduced astrogliosis, microglial activation, neuronal loss, and memory deficits. KCa3.1 blockade inhibited astrocyte activation and reduced brain levels of IL-1β, TNF-α, iNOS, and COX-2. Furthermore, we used primary co-cultures of cortical neurons and astrocytes to demonstrate an important role for KCa3.1 in the process of astrogliosis-induced neuroinflammatory responses during amyloid-β (Aβ)-induced neuronal loss. KCa3.1 was found to be involved in the Aβ-induced activated biochemical profile of reactive astrocytes, which included activation of JNK MAPK and production of reactive oxygen species. Pharmacological blockade of KCa3.1 attenuated Aβ-induced reactive astrocytes and indirect, astrogliosis-mediated damage to neurons. Our data clearly indicate a role for astrogliosis in AD pathogenesis and suggest that KCa3.1 inhibition might represent a good therapeutic target for the treatment of AD. Highlights: (1) Blockade of KCa3.1 in APP/PS1 transgenic mice attenuated astrogliosis and neuron loss, and an attenuation of memory deficits. (2) Blockade of KCa3.1 attenuated Aβ-induced indirect, astrogliosis-mediated damage to neurons in vitro via activation of JNK and ROS. PMID:28105015

  7. Targeting glutamate homeostasis for potential treatment of nicotine dependence

    PubMed Central

    Alasmari, Fawaz; Al-Rejaie, Salim S.; AlSharari, Shakir D.; Sari, Youssef

    2015-01-01

    Several studies demonstrated that impairment in glutamatergic neurotransmission is linked to drug dependence and drug-seeking behavior. Increased extracellular glutamate concentration in mesocorticolimbic regions has been observed in animals developing nicotine dependence. Changes in glutamate release might be associated with stimulatory effect of nicotinic acetylcholine receptors (nAChRs) via nicotine exposure. We and others have shown increased extracellular glutamate concentration, which was associated with downregulation of the major glutamate transporter, glutamate transporter 1 (GLT-1), in brain reward regions of animals exposed to drug abuse, including nicotine and ethanol. Importantly, studies from our laboratory and others showed that upregulation of GLT-1 expression in the mesocorticolimbic brain regions may have potential therapeutic effects in drug dependence. In this review article, we discussed the effect of antagonizing presynaptic nAChRs in glutamate release, the upregulatory effect in GLT-1 expression and the role of glutamate receptors antagonists in the treatment of nicotine dependence. PMID:26589642

  8. DTMiner: identification of potential disease targets through biomedical literature mining

    PubMed Central

    Xu, Dong; Zhang, Meizhuo; Xie, Yanping; Wang, Fan; Chen, Ming; Zhu, Kenny Q.; Wei, Jia

    2016-01-01

    Motivation: Biomedical researchers often search through massive catalogues of literature to look for potential relationships between genes and diseases. Given the rapid growth of biomedical literature, automatic relation extraction, a crucial technology in biomedical literature mining, has shown great potential to support research of gene-related diseases. Existing work in this field has produced datasets that are limited both in scale and accuracy. Results: In this study, we propose a reliable and efficient framework that takes large biomedical literature repositories as inputs, identifies credible relationships between diseases and genes, and presents possible genes related to a given disease and possible diseases related to a given gene. The framework incorporates name entity recognition (NER), which identifies occurrences of genes and diseases in texts, association detection whereby we extract and evaluate features from gene–disease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of the NER phase is 0.87, which is higher than existing studies. The association detection phase takes drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which performs better than previous work. In addition, we released a web service for public use of the dataset. Availability and Implementation: The implementation of the proposed algorithms is publicly available at http://gdr-web.rwebox.com/public_html/index.php?page=download.php. The web service is available at http://gdr-web.rwebox.com/public_html/index.php. Contact: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27506226

  9. Target and Non-Target Processing during Oddball and Cyberball: A Comparative Event-Related Potential Study

    PubMed Central

    Weschke, Sarah; Niedeggen, Michael

    2016-01-01

    The phenomenon of social exclusion can be investigated by using a virtual ball-tossing game called Cyberball. In neuroimaging studies, structures have been identified which are activated during social exclusion. But to date the underlying mechanisms are not fully disclosed. In previous electrophysiological studies it was shown that the P3 complex is sensitive to exclusion manipulations in the Cyberball paradigm and that there is a correlation between P3 amplitude and self-reported social pain. Since this posterior event-related potential (ERP) was widely investigated using the oddball paradigm, we directly compared the ERP effects elicited by the target (Cyberball: “ball possession”) and non-target (Cyberball: “ball possession of a co-player) events in both paradigms. Analyses mainly focused on the effect of altered stimulus probabilities of the target and non-target events between two consecutive blocks of the tasks. In the first block, the probability of the target and non-target event was 33% (Cyberball: inclusion), in the second block target probability was reduced to 17%, and accordingly, non-target probability was increased to 66% (Cyberball: exclusion). Our results indicate that ERP amplitude differences between inclusion and exclusion are comparable to ERP amplitude effects in a visual oddball task. We therefore suggest that ERP effects–especially in the P3 range–in the Oddball and Cyberball paradigm rely on similar mechanisms, namely the probability of target and non-target events. Since the simulation of social exclusion (Cyberball) did not trigger a unique ERP response, the idea of an exclusion-specific neural alarm system is not supported. The limitations of an ERP-based approach will be discussed. PMID:27100787

  10. In silico search for multi-target therapies for osteoarthritis based on 10 common Huoxue Huayu herbs and potential applications to other diseases.

    PubMed

    Zheng, Chun-Song; Zhuang, Zhi-Qiang; Xu, Xiao-Jie; Ye, Jin-Xia; Ye, Hong-Zhi; Li, Xi-Hai; Wu, Guang-Wen; Xu, Hui-Feng; Liu, Xian-Xiang

    2014-03-01

    Huoxue Huayu (HXHY) has been widely used in traditional Chinese medicine (TCM) as a key therapeutic principle for osteoarthritis (OA), and related herbs have been widely prescribed to treat OA in the clinic. The aims of the present study were to explore a multi-target therapy for OA using 10 common HXHY herbs and to investigate their potential applications for treatment of other diseases. A novel computational simulation approach that integrates chemical structure, ligand clusters, chemical space and drug‑likeness evaluations, as well as docking and network analysis, was used to investigate the properties and effects of the herbs. The compounds contained in the studied HXHY herbs were divided into 10 clusters. Comparison of the chemical properties of these compounds to those of other compounds described in the DrugBank database indicated that the properties of the former are more diverse than those of the latter and that most of the HXHY-derived compounds do not violate the 'Lipinski's rule of five'. Docking analysis allowed for the identification of 39 potential bioactive compounds from HXHY herbs and 11 potential targets for these compounds. The identified targets were closely associated with 49 diseases, including neoplasms, musculoskeletal, nervous system and cardiovascular diseases. Ligand‑target (L‑T) and ligand‑target‑disease (L‑T‑D) networks were constructed in order to further elucidate the pharmacological effects of the herbs. Our findings suggest that a number of compounds from HXHY herbs are promising candidates for mult‑target therapeutic application in OA and may exert diverse pharmacological effects, affecting additional diseases besides OA.

  11. [Methotrexate pharmacology].

    PubMed

    Lagarce, L; Zenut, M; Lainé-Cessac, P

    2015-03-01

    Methotrexate is a folic acid analog, which is a thymidylate synthetase and dihydrofolate reductase inhibitor. It is used in oncology, dermatology and rheumatology and off labelling in the treatment of ectopic pregnancies. This paper is a review of methotrexate pharmacology with focus on data concerning ectopic pregnancies.

  12. Therapeutic Potential of Targeting the Oncogenic SHP2 Phosphatase

    PubMed Central

    2015-01-01

    The Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase associated with various kinds of leukemia and solid tumors. Thus, there is substantial interest in developing SHP2 inhibitors as potential anticancer and antileukemia agents. Using a structure-guided and fragment-based library approach, we identified a novel hydroxyindole carboxylic acid-based SHP2 inhibitor 11a-1, with an IC50 value of 200 nM and greater than 5-fold selectivity against 20 mammalian PTPs. Structural and modeling studies reveal that the hydroxyindole carboxylic acid anchors the inhibitor to the SHP2 active site, while interactions of the oxalamide linker and the phenylthiophene tail with residues in the β5–β6 loop contribute to 11a-1’s binding potency and selectivity. Evidence suggests that 11a-1 specifically attenuates the SHP2-dependent signaling inside the cell. Moreover, 11a-1 blocks growth factor mediated Erk1/2 and Akt activation and exhibits excellent antiproliferative activity in lung cancer and breast cancer as well as leukemia cell lines. PMID:25003231

  13. Pharmacological and Physiological Characterization of the Tremulous Jaw Movement Model of Parkinsonian Tremor: Potential Insights into the Pathophysiology of Tremor

    PubMed Central

    Collins-Praino, Lyndsey E.; Paul, Nicholas E.; Rychalsky, Kristen L.; Hinman, James R.; Chrobak, James J.; Senatus, Patrick B.; Salamone, John D.

    2011-01-01

    Tremor is a cardinal symptom of parkinsonism, occurring early on in the disease course and affecting more than 70% of patients. Parkinsonian resting tremor occurs in a frequency range of 3–7 Hz and can be resistant to available pharmacotherapy. Despite its prevalence, and the significant decrease in quality of life associated with it, the pathophysiology of parkinsonian tremor is poorly understood. The tremulous jaw movement (TJM) model is an extensively validated rodent model of tremor. TJMs are induced by conditions that also lead to parkinsonism in humans (i.e., striatal DA depletion, DA antagonism, and cholinomimetic activity) and reversed by several antiparkinsonian drugs (i.e., DA precursors, DA agonists, anticholinergics, and adenosine A2A antagonists). TJMs occur in the same 3–7 Hz frequency range seen in parkinsonian resting tremor, a range distinct from that of dyskinesia (1–2 Hz), and postural tremor (8–14 Hz). Overall, these drug-induced TJMs share many characteristics with human parkinsonian tremor, but do not closely resemble tardive dyskinesia. The current review discusses recent advances in the validation of the TJM model, and illustrates how this model is being used to develop novel therapeutic strategies, both surgical and pharmacological, for the treatment of parkinsonian resting tremor. PMID:21772815

  14. Comorbidity "depression" in heart failure - Potential target of patient education and self-management.

    PubMed

    De Vecchis, Renato; Manginas, Athanassios; Noutsias, Ewa; Tschöpe, Carsten; Noutsias, Michel

    2017-02-15

    The progress of the pharmacological and device treatment of heart failure (HF) has led to a substantial improvement of mortality and rehospitalization. Further potential for improvement may be heralded in the post-discharge management of HF patients, including patient education for self-management of HF. The study by Musekamp et al. is among the first publications providing evidence that improvements in self-management skills may improve outcomes of HF patients. It is concluded that multimodal approaches addressing comorbidities in HF patients with novel concepts, and by optimal and specific HF management, including patient education, may ultimately contribute to substantial improvement of HF prognosis.

  15. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  16. Pharmacologic vitreolysis.

    PubMed

    Rhéaume, Marc-André; Vavvas, Demetrios

    2010-01-01

    It is now well recognized that vitreous plays an important role in the pathogenesis of various retinal disorders. In many instances it can be addressed with pars plana vitrectomy, although this approach, like any surgery, has its limitations. The search for alternatives or adjunct to surgery has led to the development of pharmacologic vitreolysis. The use of intravitreal agents to alter the vitreous in order to reduce or eliminate its role in disease seems promising. The purpose of this article is to summarize the present knowledge on pharmacologic vitreolysis. A review of the different agents used and of ongoing trials will be presented. Also, current understanding of vitreous structure and its interaction with the retina will be discussed.

  17. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4.

    PubMed

    Bachtell, Ryan; Hutchinson, Mark R; Wang, Xiaohui; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2015-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drugprimed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse.

  18. Characterisation of Potential Antimicrobial Targets in Bacillus spp. I. Aminotransferases and Methionine Regeneration in Bacillus subtilis

    DTIC Science & Technology

    2002-07-01

    targets in Bacillus spp. I. Aminotransferases and methionine regeneration in Bacillus subtilis. Bradley J. Berger and Marvin H. Knodel Defence R&D...Characterisation of potential antimicrobial targets in Bacillus spp. I. Aminotransferases and methionine regeneration in Bacillus subtilis. Bradley J...examined in the gram-positive bacterium Bacillus subtilis. Homogenates of this bacterium were able to convert ketomethiobutyrate to methionine, utilising

  19. In Vivo Pharmacological Evaluations of Novel Olanzapine Analogues in Rats: A Potential New Avenue for the Treatment of Schizophrenia

    PubMed Central

    Jafari, Somayeh; Huang, Xu-Feng; Andrews, Jessica L.; Fernandez-Enright, Francesca

    2013-01-01

    that of Olz and OlzEt. Overall, OlzEt and OlzHomo may offer a better pharmacological profile than Olz for treating patients with schizophrenia. Clinical trials are needed to test this hypothesis. PMID:24349027

  20. Neurogenic Potential Assessment and Pharmacological Characterization of 6-Methoxy-1,2,3,4-tetrahydro-β-carboline (Pinoline) and Melatonin-Pinoline Hybrids.

    PubMed

    de la Fuente Revenga, Mario; Pérez, Concepción; Morales-García, José A; Alonso-Gil, Sandra; Pérez-Castillo, Ana; Caignard, Daniel-Henri; Yáñez, Matilde; Gamo, Ana M; Rodríguez-Franco, María Isabel

    2015-05-20

    6-Methoxy-1,2,3,4-tetrahydro-β-carboline (pinoline) and N-acetyl-5-methoxytryptamine (melatonin) are both structurally related to 5-hydroxytryptamine (serotonin). Here we describe the design, synthesis, and characterization of a series of melatonin rigid analogues resulting from the hybridization of both pinoline and melatonin structures. The pharmacological evaluation of melatonin-pinoline hybrids comprises serotonergic and melatonergic receptors, metabolic enzymes (monoamine oxidases), antioxidant potential, the in vitro blood-brain barrier permeability, and neurogenic studies. Pinoline at trace concentrations and 2-acetyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline (2) were able to stimulate early neurogenesis and neuronal maturation in an in vitro model of neural stem cells isolated from the adult rat subventricular zone. Such effects are presumably mediated via serotonergic and melatonergic stimulation, respectively.

  1. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs

    PubMed Central

    Keeble, J E; Moore, P K

    2002-01-01

    This review examines the biological significance, therapeutic potential and mechanism(s) of action of a range of nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAID) and related nitric oxide-releasing donating drugs (NODD). The slow release of nitric oxide (NO) from these compounds leads to subtle changes in the profile of pharmacological activity of the parent, non-steroidal anti-inflammatory drugs (NSAID). For example, compared with NSAID, NO-NSAID cause markedly diminished gastrointestinal toxicity and improved anti-inflammatory and anti-nociceptive efficacy. In addition, nitroparacetamol exhibits hepatoprotection as opposed to the hepatotoxic activity of paracetamol. The possibility that NO-NSAID or NODD may be of therapeutic benefit in a wide variety of disease states including pain and inflammation, thrombosis and restenosis, neurodegenerative diseases of the central nervous system, colitis, cancer, urinary incontinence, liver disease, impotence, bronchial asthma and osteoporosis is discussed. PMID:12237248

  2. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans.

    PubMed

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan; Sun, Shujuan

    2015-10-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs.

  3. Therapeutic Potential of Targeting TREM-1 in Inflammatory Diseases and Cancer.

    PubMed

    Bosco, Maria Carla; Raggi, Federica; Varesio, Luigi

    2016-01-01

    The triggering receptor expressed on myeloid cells (TREM)-1 is a member of the Ig-like immunoregulatory receptor family and a major amplifier of innate immune responses. TREM- 1 has been implicated in the development and perpetuation of a number of inflammatory disorders, and soluble TREM-1 levels are a clinically valuable diagnostic and prognostic biomarker in patients with sepsis and other types of acute and chronic inflammation- associated diseases, easily detectable in biological fluids. High TREM-1 expression in macrophages infiltrating human tumors and increased concentrations of soluble TREM-1 also correlate with aggressive tumor behavior and recurrence and are a relevant independent predictor of poor patient survival. Pharmacological inhibition of TREM-1 has proven effective in preclinical mouse models of infectious and non-infectious inflammatory disorders and malignancies, conferring survival advantages and protecting from organ damage or tumor growth by attenuating inflammatory responses. This review aims at providing a comprehensive overview of the state of the art on TREM-1 research. We review the literature addressing TREM-1 role in the amplification of myeloid cell inflammatory responses at pathologic sites and its relevance in the development, severity, and progression of inflammatory diseases and cancer. Furthermore, we discuss recent advances in the pharmacological use of TREM-1 inhibitors in mouse preclinical models, emphasizing their potential in new strategies for the treatment of acute and chronic inflammatory conditions and for therapeutic intervention in cancer. This information will be of value to investigators in the field of pharmacology, drawing attention to novel therapeutic opportunities to complement current treatment approaches.

  4. Direct AKAP-mediated protein-protein interactions as potential drug targets.

    PubMed

    Hundsrucker, C; Klussmann, E

    2008-01-01

    A-kinase-anchoring proteins (AKAPs) are a diverse family of about 50 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins such as further protein kinases, protein phosphatases and phosphodiesterases by direct protein-protein interactions to cellular compartments. Thus, AKAPs form the basis of signalling modules that integrate cellular signalling processes and limit these to defined sites. Disruption of AKAP functions by gene targeting, knockdown approaches and, in particular, pharmacological disruption of defined AKAP-dependent protein-protein interactions has revealed key roles of AKAPs in numerous processes, including the regulation of cardiac myocyte contractility and vasopressin-mediated water reabsorption in the kidney. Dysregulation of such processes causes diseases, including cardiovascular and renal disorders. In this review, we discuss AKAP functions elucidated by gene targeting and knockdown approaches, but mainly focus on studies utilizing peptides for disruption of direct AKAP-mediated protein-protein interactions. The latter studies point to direct AKAP-mediated protein-protein interactions as targets for novel drugs.

  5. Origins, practices and future of safety pharmacology.

    PubMed

    Bass, Alan; Kinter, Lewis; Williams, Patricia

    2004-01-01

    The origins of safety pharmacology are grounded upon observations that organ functions (like organ structures) can be toxicological targets in humans exposed to novel therapeutic agents, and that drug effects on organ functions (unlike organ structures) are not readily detected by standard toxicological testing. Safety pharmacology is " em leader those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relationship to exposure in the therapeutic range and above em leader " [International Conference on Harmonization (ICH) S7A guidelines; Safety Pharmacology Studies for Human Pharmaceuticals]. This publication provides a comprehensive review of the history of safety pharmacology, international regulatory guidelines that govern the practices of this important field, and the scientific challenges that are being faced by its rapid emergence in pharmaceutical development. The criticality of identifying undesired adverse effects of new drugs in nonclinical models, which reflect the overall human condition, is reflected in the importance of generating an integrated and accurate assessment of possible human risk. The conundrum posed by the challenge of formulating a reliable risk assessment is the importance of improving and enhancing the safe progression of new drugs to the marketplace, while preventing unnecessary delays (or discontinuances), based on nonclinical findings that are not relevant or interpretable in terms of clinical response or human risk.

  6. Thyroid hormone synthesis: a potential target of a Chinese herbal formula Haizao Yuhu Decoction acting on iodine-deficient goiter

    PubMed Central

    Mao, Xia; Yan, Chen; Guo, Xiaodong; Guo, Qiuyan; Liu, Zhenli; Song, Zhiqian; Lin, Na

    2016-01-01

    Haizao Yuhu Decoction (HYD), a famous multi-component herbal formula, has been widely used to treat various thyroid-related diseases, including iodine-deficient goiter. Herb pair Thallus Sargassi Pallidi (HZ) and Radix Glycyrrhizae (GC), one of the so-called “eighteen antagonistic medicaments”, contains in HYD. To explore pharmacological mechanisms of HYD acting on iodine-deficient goiter and to provide evidence for potential roles of herb pair HZ and GC in HYD, our genome-wide microarray detection and network analysis identified a list of goiter-related genes, mainly involved into the alterations in hypothalamus-pituitary-thyroid/gonad/growth axes. Then, the disease genes-drug genes interaction network illustrated the links between HYD regulating genes and goiter-related genes, and identified the candidate targets of HYD acting on goiter. Functionally, these candidate targets were closely correlated with thyroid hormone synthesis. Moreover, the potential regulating genes of herb pair HZ and GC were revealed to be crucial components in the pathway of thyroid hormone synthesis. The prediction results were all verified by following experiments based on goiter rats. Collectively, this integrative study combining microarray gene expression profiling, network analysis and experimental validations offers the convincing evidence that HYD may alleviate iodine-deficient goiter via regulating thyroid hormone synthesis, and explains the necessity of herb pair HZ and GC in HYD. Our work provides a novel and powerful means to clarify the mechanisms of action for multi-component drugs such as herbal formulae in a holistic way, which may improve drug development and applications. PMID:27384475

  7. Pharmacologic management of temporomandibular disorders.

    PubMed

    Hersh, Elliot V; Balasubramaniam, Ramesh; Pinto, Andres

    2008-05-01

    Although there are theoretically numerous pharmacologic targets for relieving temporomandibular disorder (TMD)-associated pains, evidence-based literature clearly establishing the efficacy and safety of drugs in the TMD population is limited at best. This article reviews the pharmacology, toxicology, and research supporting the use of a host of pharmacologic agents that have been used in patients who have TMD, including nonsteroidal anti-inflammatory drugs, corticosteroids, benzodiazepines, nonbenzodiazepine sedative hypnotics, opioids, skeletal muscle relaxants, capsaicin, transdermal lidocaine, antidepressants, and anticonvulsants. Recommendations regarding the proper use of each drug class are also made.

  8. The pharmacological properties of antidepressants.

    PubMed

    Racagni, Giorgio; Popoli, Maurizio

    2010-05-01

    Antidepressant drugs represent one of the main forms of effective treatment for the amelioration of depressive symptoms. Most available antidepressants increase extracellular levels of monoamines. However, it is now recognized that monoamine levels and availability are only part of the story, and that antidepressants whose mechanism of action is mainly based on the modulation of monoaminergic systems may not be able to satisfy the unmet needs of depression. Therefore, a number of compounds, developed for their potential antidepressant activity, are endowed with putative mechanisms of action not affecting traditional monoamine targets. This article briefly reviews, within a mechanistic perspective, the pharmacological profiles of representative antidepressants from each class, including monoamine oxidase inhibitors, tricyclics, norepinephrine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine and serotonin reuptake inhibitors, antidepressants interacting with dopaminergic, melatonergic, glutamatergic, or neuropeptide systems. The undesirable side effects of currently used antidepressants, which can often be a reason for lack of compliance, are also considered.

  9. SYNTHESIS OF AMINO AND HYDRAZINO DERIVATIVES OF ALICYCLIC AND HETEROCYCLIC SYSTEMS WITH POTENTIAL PHARMACOLOGICAL ACTIVITY ON C.N.S.

    DTIC Science & Technology

    probable formula I) was prepared, from 6-methyl- and 6-chloro- 3 -hydroxymethylene- 4 - chromanones by reaction with various dialkylaminoalkylhydrazines. A...In fulfillment of the research project directed toward the preparation of compounds with potential activity on C.N.S., a group of 10 pyrazoles

  10. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  11. Genetic and pharmacological modulation of giant depolarizing potentials in the neonatal hippocampus associates with increased seizure susceptibility

    PubMed Central

    Vargas, Ernesto; Petrou, Steven; Reid, Christopher A

    2013-01-01

    The expression of Na+–K+–2Cl− cotransporter (NKCC1) is responsible for high intracellular Cl− resulting in the excitatory action of GABAA receptor activation in the developing brain. Giant depolarizing potentials (GDPs) are spontaneous network oscillations that involve GABAA receptors and are thought to be important in establishing neuronal circuit wiring. Earlier work established that seizure susceptibility in the GABAAγ2R43Q epilepsy mouse is impacted by developmental consequences of impaired GABAA receptor function. We investigated the potential mechanism of the developmental influence by recording GDPs in the CA3 pyramidal neurons from brain slices of the neonatal GABAAγ2R43Q mouse. Interestingly, the number of GPDs was significantly lower in slices from mutant mouse compared with wild-type control, suggesting an involvement in setting seizure susceptibility. To test this idea we blocked NKCC1 with bumetanide in neonatal mice and reduced the number of GDPs to a level similar to that seen in the mutant mice. We found that neonatal treatment with bumetanide resulted in a similar level of susceptibility to thermally induced seizures as described for the GABAAγ2R43Q mouse. These results provide evidence that a human GABAA receptor epilepsy mutation exerts a developmental influence by modulating the number of GDPs. It also draws attention to the potential risk of early treatment with bumetanide. PMID:23006485

  12. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review.

    PubMed

    Jagani, Hitesh; Kasinathan, Narayanan; Meka, Sreenivasa Reddy; Josyula, Venkata Rao

    2016-08-01

    Bcl-2, an antiapoptotic protein, is considered as a potential target in cancer treatment since its oncogenic potential has been proven and is well documented. Antisense technology and RNA interference (RNAi) have been used to reduce the expression of the Bcl-2 gene in many types of cancer cells and are effective as adjuvant therapy along with the chemotherapeutic agents. The lack of appropriate delivery systems is considered to be the main hurdle associated with the RNAi. In this review, we discuss the antiapoptotic Bcl-2 protein, its oncogenic potential, and various approaches utilized to target Bcl-2 including suitable delivery systems employed for successful delivery of siRNA.

  13. Regenerative pharmacology in the treatment of genetic diseases: The paradigm of muscular dystrophy

    PubMed Central

    Mozzetta, Chiara; Minetti, Giulia; Puri, Pier Lorenzo

    2009-01-01

    Current evidence supports the therapeutic potential of pharmacological interventions that counter the progression of genetic disorders by promoting regeneration of the affected organs or tissues. The rationale behind this concept lies on the evidence that targeting key events downstream of the genetic defect can compensate, at least partially, the pathological consequence of the related disease. In this regard, the beneficial effect exerted on animal models of muscular dystrophy by pharmacological strategies that enhance muscle regeneration provides an interesting paradigm. In this review, we describe and discuss the potential targets of pharmacological strategies that promote regeneration of dystrophic muscles and alleviate the consequence of the primary genetic defect. Regenerative pharmacology provides an immediate and suitable therapeutic opportunity to slow down the decline of muscles in the present generation of dystrophic patients, with the perspective to hold them in conditions such that they could benefit of future, more definitive, therapies. PMID:18804548

  14. Individuals' attentional bias toward an envied target's name: an event-related potential study.

    PubMed

    Zhong, Jun; Liu, Yongfang; Zhang, Entao; Luo, Junlong; Chen, Jie

    2013-08-29

    Individuals may pay more attention to information about envied targets. Thus, we further investigate the neural correlates underlying the cognitive processing of envy-related stimuli. Participants read information about target persons characterized by two domains: levels of possession and self-relevance of comparison. Event-related potentials (ERPs) were then recorded for three target names (high-envy, moderate-envy, and low-envy) while participants performed a three-stimulus oddball task. The results showed that high- and moderate-envy target names elicited larger P300 amplitudes than did low-envy target names. Specifically, high-envy target names elicited larger P300 amplitudes than did low-envy target names at the left, central, and right sites; in contrast, moderate-envy target names elicited larger P300 amplitudes than did low-envy target names only at central sites. P300 amplitudes did not differ between high- and moderate-envy target names. Thus, we extend previous behavioral findings by showing that people preferentially attend toward envy-related stimuli, as reflected by enhanced P300 amplitudes.

  15. Implication of dorsostriatal D3 receptors in motivational processes: a potential target for neuropsychiatric symptoms in Parkinson’s disease

    PubMed Central

    Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Vachez, Yvan; Boulet, Sabrina; Savasta, Marc; Carnicella, Sebastien

    2017-01-01

    Beyond classical motor symptoms, motivational and affective deficits are frequently observed in Parkinson’s disease (PD), dramatically impairing the quality of life of patients. Using bilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats, we have been able to reproduce these neuropsychiatric/non-motor impairments. The present study describes how bilateral 6-OHDA SNc lesions affect the function of the main striatal dopaminergic (DA) receptor subtypes. Autoradiography was used to measure the levels of striatal DA receptors, and operant sucrose self-administration and neuropharmacological approaches were combined to investigate the causal implication of specific DA receptors subtypes in the motivational deficits induced by a dorsostriatal DA denervation. We found that D3 receptors (D3R) exclusively are down-regulated within the dorsal striatum of lesioned rats. We next showed that infusion of a D3R antagonist (SB-277011A) in non-lesioned animals specifically disrupts preparatory, but not consummatory behaviors. Our findings reveal an unexpected involvement of dorsostriatal D3R in motivational processes. They strongly suggest an implication of dorsostriatal D3R in the neuropsychiatric symptoms observed in PD, highlighting this receptor as a potential target for pharmacological treatment. PMID:28134302

  16. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  17. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    PubMed Central

    Orentas, Rimas J.; Yang, James J.; Wen, Xinyu; Wei, Jun S.; Mackall, Crystal L.; Khan, Javed

    2012-01-01

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues. PMID:23251904

  18. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction

    PubMed Central

    Viveros, Maria-Paz; Bermúdez-Silva, Francisco-Javier; Lopez-Rodriguez, Ana-Belén; Wagner, Edward J.

    2011-01-01

    The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug