Electrophysiological evidence of automatic early semantic processing.
Hinojosa, José A; Martín-Loeches, Manuel; Muñoz, Francisco; Casado, Pilar; Pozo, Miguel A
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a lower-upper case discrimination judgement (shallow processing requirements), whereas the other half carried out a semantic task, consisting in detecting animal names (deep processing requirements). Stimuli were identical in the two tasks. Reaction time measures revealed that the physical task was easier to perform than the semantic task. However, RP effects elicited by the physical and semantic tasks did not differ in either latency, amplitude, or topographic distribution. Thus, the results from the present study suggest that early semantic processing is automatically triggered whenever a linguistic stimulus enters the language processor.
Electrophysiological Evidence of Automatic Early Semantic Processing
ERIC Educational Resources Information Center
Hinojosa, Jose A.; Martin-Loeches, Manuel; Munoz, Francisco; Casado, Pilar; Pozo, Miguel A.
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a…
Intelligent Computational Systems. Opening Remarks: CFD Application Process Workshop
NASA Technical Reports Server (NTRS)
VanDalsem, William R.
1994-01-01
This discussion will include a short review of the challenges that must be overcome if computational physics technology is to have a larger impact on the design cycles of U.S. aerospace companies. Some of the potential solutions to these challenges may come from the information sciences fields. A few examples of potential computational physics/information sciences synergy will be presented, as motivation and inspiration for the Improving The CFD Applications Process Workshop.
Potential for driver attention monitoring system development
DOT National Transportation Integrated Search
1984-02-08
The following document provides an overview of the potential value of research : into driver attentional processes. Section 1 outlines the status of this research : into driver attentional processes and provides capsule descriptions of the : physical...
Physical disintegration of biochar: An overlooked process
USDA-ARS?s Scientific Manuscript database
Data collected from both artificially and field (naturally) weathered biochar suggest that a potentially significant pathway of biochar disappearance is through physical breakdown of the biochar structure. Through scanning electron microscopy (SEM) we characterized this physical weathering which inc...
The relationship between physical workload and quality within line-based assembly.
Ivarsson, Anna; Eek, Frida
2016-07-01
Reducing costs and improvement of product quality are considered important to ensure productivity within a company. Quality deviations during production processes and ergonomics have previously shown to be associated. This study explored the relationship between physical workload and real (found during production processes) and potential (need of extra time and assistance to complete tasks) quality deviations in a line-based assembly plant. The physical workload on and the work rotation between 52 workstations were assessed. As the outcome, real and potential quality deviations were studied during 10 weeks. Results show that workstations with higher physical workload had significantly more real deviations compared to lower workload stations. Static work posture had significantly more potential deviations. Rotation between high and low workload was related to fewer quality deviations compared to rotation between only high workload stations. In conclusion, physical ergonomics seems to be related to real and potential quality deviation within line-based assembly. Practitioner Summary: To ensure good productivity in manufacturing industries, it is important to reduce costs and improve product quality. This study shows that high physical workload is associated with quality deviations and need of extra time and assistance to complete tasks within line-based assembly, which can be financially expensive for a company.
NASA Astrophysics Data System (ADS)
Yang, Kun-Yuan; Heh, Jia-Sheng
2007-10-01
The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students' entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.
Overview of the CLIC detector and its physics potential
NASA Astrophysics Data System (ADS)
Ström, Rickard
2017-12-01
The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an…
Malina, Robert M
2014-06-01
Growth, maturation, and development dominate the daily lives of children and adolescents for approximately the first 2 decades of life. Growth and maturation are biological processes, while development is largely a behavioral process. The 3 processes occur simultaneously and interact. They can be influenced by physical activity and also can influence activity, performance, and fitness. Allowing for these potential interactions, 10 questions on growth and maturation that have relevance to physical activity, performance, and fitness are presented. The questions are not mutually exclusive and address several broadly defined topical areas: exercise and growth, body weight status (body mass index, adiposity rebound, "unhealthy weight gain"), movement proficiency (hypothesized barrier, role in obesity), individual differences, tracking, maturity-associated variation in performance, and corresponding variation in physical activity. Central to the discussion of each is the need for a biocultural approach recognizing the interactions of biology and behavior as potential influences on the variables of interest.
NASA Astrophysics Data System (ADS)
Pochampally, Kishore K.; Gupta, Surendra M.; Kamarthi, Sagar V.
2004-02-01
Although there are many quantitative models in the literature to design a reverse supply chain, every model assumes that all the recovery facilities that are engaged in the supply chain have enough potential to efficiently re-process the incoming used products. Motivated by the risk of re-processing used products in facilities of insufficient potentiality, this paper proposes a method to identify potential facilities in a set of candidate recovery facilities operating in a region where a reverse supply chain is to be established. In this paper, the problem is solved using a newly developed method called physical programming. The most significant advantage of using physical programming is that it allows a decision maker to express his preferences for values of criteria (for comparing the alternatives), not in the traditional form of weights but in terms of ranges of different degrees of desirability, such as ideal range, desirable range, highly desirable range, undesirable range, and unacceptable range. A numerical example is considered to illustrate the proposed method.
Image processing applications: From particle physics to society
NASA Astrophysics Data System (ADS)
Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.
2017-01-01
We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.
NASA Astrophysics Data System (ADS)
Thomas, Gregory P.
2013-05-01
Problems persist with physics learning in relation to students' understanding and use of representations for making sense of physics concepts. Further, students' views of physics learning and their physics learning processes have been predominantly found to reflect a 'surface' approach to learning that focuses on mathematical aspects of physics learning that are often passed on via textbooks and lecture-style teaching. This paper reports on a teacher's effort to stimulate students' metacognitive reflection regarding their views of physics learning and their physics learning processes via a pedagogical change that incorporated the use of a representational framework and metaphors. As a consequence of the teacher's pedagogical change, students metacognitively reflected on their views of physics and their learning processes and some reported changes in their views of what it meant to understand physics and how they might learn and understand physics concepts. The findings provide a basis for further explicit teaching of representational frameworks to students in physics education as a potential means of addressing issues with their physics learning.
2003-09-30
Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer ( GIFTS ) Hyperspectral Data Dr. Allen H.-L. Huang...ssec.wisc.edu Award Number: N000140110850 Grant Number: 144KE70 http://www.ssec.wisc.edu/ gifts /navy/ LONG-TERM GOALS This Office of Naval...objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS hyperspectral data processing system with the potential for a
Schendan, Haune E; Kutas, Malra
2007-08-01
Transfer appropriate processing (TAP) accounts propose that memory is a function of the degree to which the same neural processes transfer appropriately from the study experience to the memory test. However, in prior research, study and test stimuli were often similar physically. In two experiments, event-related brain potentials (ERPs) were recorded to fragmented objects during an indirect memory test to isolate transfer of a specific perceptual process from overlap of physical features between experiences. An occipitotemporoparietal P2(00) at 200 msec showed implicit memory effects only when similar perceptual grouping processes of good continuation were repeatedly engaged-despite physical feature differences--as TAP accounts hypothesize. This result provides direct neurophysiological evidence for the critical role of process transfer across experiences for memory.
The relative importance of physical and biological energy in landscape evolution
NASA Astrophysics Data System (ADS)
Turowski, J. M.; Schwanghart, W.
2017-12-01
Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary parameters needed to calculate the ratio (NPP, runoff, elevation) are available globally. We find that biological processes are more important in arid and semiarid regions. The wide-spread lack of water strongly limits the energy available for fluvial erosion, while biota are geomorphic engineers less sensitive to water shortage.
Cyber / Physical Security Vulnerability Assessment Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Douglas G.; Simpkins, Bret E.
Abstract Both physical protection and cyber security domains offer solutions for the discovery of vulnerabilities through the use of various assessment processes and software tools. Each vulnerability assessment (VA) methodology provides the ability to identify and categorize vulnerabilities, and quantifies the risks within their own areas of expertise. Neither approach fully represents the true potential security risk to a site and/or a facility, nor comprehensively assesses the overall security posture. The technical approach to solving this problem was to identify methodologies and processes that blend the physical and cyber security assessments, and develop tools to accurately quantify the unaccounted formore » risk. SMEs from both the physical and the cyber security domains developed the blending methodologies, and cross trained each other on the various aspects of the physical and cyber security assessment processes. A local critical infrastructure entity volunteered to host a proof of concept physical/cyber security assessment, and the lessons learned have been leveraged by this effort. The four potential modes of attack an adversary can use in approaching a target are; Physical Only Attack, Cyber Only Attack, Physical Enabled Cyber Attack, and the Cyber Enabled Physical Attack. The Physical Only and the Cyber Only pathway analysis are two of the most widely analyzed attack modes. The pathway from an off-site location to the desired target location is dissected to ensure adversarial activity can be detected and neutralized by the protection strategy, prior to completion of a predefined task. This methodology typically explores a one way attack from the public space (or common area) inward towards the target. The Physical Enabled Cyber Attack and the Cyber Enabled Physical Attack are much more intricate. Both scenarios involve beginning in one domain to affect change in the other, then backing outward to take advantage of the reduced system effectiveness, before penetrating further into the defenses. The proper identification and assessment of the overlapping areas (and interaction between these areas) in the VA process is necessary to accurately assess the true risk.« less
Dissociation between morality and disgust: an event-related potential study.
Yang, Qun; Li, An; Xiao, Xiao; Zhang, Ye; Tian, Xuehong
2014-10-01
This study explored the neural correlates of morality and disgust, particularly, how the mechanisms that mediate our avoidance of physically disgusting and morally abhorrent behaviors are neurologically dissociated during the time-course of processing. Twelve participants were asked to judge the acceptability of different types of behaviors, which varied in their level of moral wrongness and physical disgust, while event-related potentials (ERPs) were recorded. The main results showed that the two morally wrong conditions elicited greater amplitudes of P300-400 at frontal sites than the neutral condition and the physically disgusting, but not morally wrong, condition. The physically disgusting conditions (with and without moral content) elicited significantly more positive deflections in the 500-600 ms timeframe than the neutral condition at central-posterior sites. These findings indicate that our aversion to harmful substances in the physical environment and offensive behaviors in the social environment may be neurologically dissociable in the temporal dimension. Furthermore, the detection of moral violations may be processed earlier in time than that of physical disgust. Copyright © 2014 Elsevier B.V. All rights reserved.
The Design Process of Physical Security as Applied to a U.S. Border Port of Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.
1999-02-22
This paper details the application of a standard physical security system design process to a US Border Port of Entry (PoE) for vehicle entry/exit. The physical security design methodology is described as well as the physical security similarities to facilities currently at a US Border PoE for vehicles. The physical security design process description includes the various elements that make up the methodologies well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry/exit of illegal contraband and personnel are described. The potential to enhance the functionsmore » of drug/contraband detection in the Pre-Primary Inspection area through the application of emerging technologies are also addressed.« less
NASA Astrophysics Data System (ADS)
Keiler, M.
2003-04-01
Reports on catastrophes with high damage caused by natural hazards seem to have increased in number recently. A new trend in dealing with these natural processes leads to the integration of risk into natural hazards evaluations and approaches of integral risk management. The risk resulting from natural hazards can be derived from the combination of parameters of physical processes (intensity and recurrence probability) and damage potential (probability of presence and expected damage value). Natural hazard research focuses mainly on the examination, modelling and estimation of individual geomorphological processes as well as on future developments caused by climate change. Even though damage potential has been taken into account more frequently, quantifying statements are still missing. Due to the changes of the socio-economic structures in mountain regions (urban sprawl, population growth, increased mobility and tourism) these studies are mandatory. This study presents a conceptual method that records the damage potential (probability of physical presence, evaluation of buildings) and shows the development of the damage potential resulting from avalanches since 1950. The study area is the community of Galtür, Austria. 36 percent of the existing buildings are found in officially declared avalanche hazard zones. The majority of these buildings are either agricultural or accommodation facilities. Additionally, the effects of physical planning and/or technical measures on the spatial development of the potential damage are illustrated. The results serve to improve risk determination and point out an unnoticed increase of damage potential and risk in apparently safe settlement areas.
SDE decomposition and A-type stochastic interpretation in nonequilibrium processes
NASA Astrophysics Data System (ADS)
Yuan, Ruoshi; Tang, Ying; Ao, Ping
2017-12-01
An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.
Remotely controlled fusion of selected vesicles and living cells: a key issue review
NASA Astrophysics Data System (ADS)
Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.
2018-03-01
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-05-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-01-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
NASA Astrophysics Data System (ADS)
Solarz, R. W.
1985-02-01
Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.
ERP differences between processing of physical characteristics and personality attributes
2012-01-01
Background Limited data from behavioral and brain-imaging studies indicate that personality traits and physical characteristics are processed differently by the brain. Additionally, electrophysiological results of studies comparing the processing of positive and negative words have produced mixed results. It is therefore not clear how physical and personality attributes with emotional valence (i.e., positive and negative valence) are processed. Thus, this study aimed to examine the neural activity associated with words describing personality traits and physical characteristics with positive or negative emotional valence using Event Related Potentials (ERPs). Methods A sample of 15 healthy adults (7 men, 8 women) participated in a computerized word categorization task. Participants were asked to categorize visual word stimuli as physical characteristics or personality traits, while ERPs were recorded synchronously. Results Behavioral reaction times to negative physical stimuli were shorter compared to negative personality words, however reaction times did not significantly differ for positive stimuli. Electrophysiological results showed that personality stimuli elicited larger P2 and LPC (Late Positive Component) amplitudes compared to physical stimuli, regardless of negative or positive valence. Moreover, negative as compared with positive stimuli elicited larger P2 and LPC amplitudes. Conclusion Personality and physical stimuli were processed differently regardless of positive or negative valence. These findings suggest that personality traits and physical characteristics are differentially classified and are associated with different motivational significance. PMID:22967478
ERIC Educational Resources Information Center
Rodriguez, Christina M.
2010-01-01
According to Social Information Processing theory, parents' cognitive processes influence their decisions to engage in physical maltreatment, although cognitions occur in the context of other aspects of the parents' life. The present study investigated whether cognitive processes (external locus of control, inappropriate developmental…
Iberall, A. S.
1985-01-01
A groundwork is laid for a formulation of the modern human social system as a field continuum. As in a simple material physical field, the independent implied relationships of materials or processes in flux have to be based on local conservations of mass, energy, and momentum. In complex fields, the transport fluctuations of momentum are transformed into action modes (e.g., [unk] pdq = ΣHi = H, a characteristic quantum of action over a characteristic cycle time). In complex living systems, a fourth local conservation of population number, the demographic variable, has to be added as a renormalized variable. Modern man, settled in place via agriculture, urbanized, and engaged largely in trade and war, invents a fifth local conservation—value-in-trade, the economic variable. The potentials that drive these five fluxes are also enumerated. Among the more evident external and internal physical-chemical potentials, the driving potentials include a sheaf of internal potential-like components that represent the command-control system emergent as politics. In toto, culture represents the social solvent with the main processes of economics and politics being driven by a social pressure. PMID:16593594
Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1986-01-01
The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
2018-04-01
In the context of the White Book of Physical and Rehabilitation Medicine (PRM) in Europe, this paper deals with the fundamentals of PRM from a physiological perspective, looking at the human mechanisms both physical and behavioral which are at the base of PRM physicians' work. After a discussion on the development and evolution of PRM that leads to its unique and specific approach, the mechanisms considered include: - repairing processes (and potential of recovery evaluation): repairing processes are mainly related to the quantity and natural history of diseases and impairments, while potential of recovery is also linked to the individual and environmental factors; PRM physicians work on impairments to favor healing or recovery, and propose rehabilitation if there is a potential of recovery: this is related to the prognostic role of PRM physicians; - learning processes: PRM is the specialty of teaching new physical ways and behavioral approaches to make patients participate at best through improvement of impairments and modification of activities; in this perspective, during repair and rehabilitation processes, PRM physicians and the rehabilitation team are teachers of new motor and behavioral strategies; - compensatory processes (adaptation/habilitation/rehabilitation): PRM physicians teach patients how to adapt to the new (acquired) health condition using compensatory mechanisms based on other body structures/functions, behavioral changes and/or assistive devices (or technical aids) (prosthesis and orthosis); during growth PRM physicians aim at allowing a complete (and compensatory) development of the intact function, not to be impaired by the original disease; compensatory processes are related to activities; - management skills: PRM physicians are managers of people and resources; they manage patients and their caregivers, to teach and allow them to reach the best possible participation, also focusing on maintenance; they lead the team, with the aim to make it function at best for the sake of the patient; finally, they manage resource allocation for the functioning of patients and team; - communication skills: PRM physicians need to develop very good communication skills, so to teach, inform and educate patients and their caregivers: this will allow the proper behavioural changes and also the correct physical compensations.
Effects of chemical, physical, and technological processes on the nature of food allergens.
Poms, Roland E; Anklam, Elke
2004-01-01
A review is presented of studies of different processing techniques and their effect on the allergenicity and antigenicity of certain allergenic foods. An overview of investigated technologies is given with regard to their impact on the protein structure and their potential application in the production of hypoallergenic foods. The use of physical processes (such as heating, high pressure, microparticulation, ultrafiltration, and irradiation), chemical processes (such as proteolysis, fermentation, and refining by extraction), and biotechnological approaches, as well as the effects of these processes on individual allergenic foods, are included. Additionally, the implications of food processing for food allergen analysis with respect to food safety assessment and industrial quality control are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierrehumbert, Raymond
There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.
Gender Encounters: Becoming Teachers of Physical Education
ERIC Educational Resources Information Center
Wrench, Alison; Garrett, Robyne
2017-01-01
Pre-service teachers of physical education (PE) bring understandings about gender and bodies to their university studies. These understandings are partially informed by biographies and experiences and bear potential to mediate learning and processes of becoming teachers. In this paper we explore technologies of power/knowledge and technologies of…
Communicative Interaction Processes Involving Non-Vocal Physically Handicapped Children.
ERIC Educational Resources Information Center
Harris, Deberah
1982-01-01
Communication prostheses are critical components of the nonvocal child's communication process, but are only one component. This article focuses on the steps involved in communicative interaction processes and the potential barriers to the development of effective interaction and analysis of nonvocal communicative interactions. A discussion of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, H.
There are deep similarities between Whitehead's idea of the process by which nature unfolds and the ideas of quantum theory. Whitehead says that the world is made of ''actual occasions'', each of which arises from potentialities created by prior actual occasions. These actual occasions are happenings modeled on experiential events, each of which comes into being and then perishes, only to be replaced by a successor. It is these experience-like happenings that are the basic realities of nature, according to Whitehead, not the persisting physical particles that Newtonian physics took be the basic entities. Similarly, Heisenberg says that what ismore » really happening in a quantum process is the emergence of an actual from potentialities created by prior actualities. In the orthodox Copenhagen interpretation of quantum theory the actual things to which the theory refer are increments in ''our knowledge''. These increments are experiential events. The particles of classical physics lose their fundamental status: they dissolve into diffuse clouds of possibilities. At each stage of the unfolding of nature the complete cloud of possibilities acts like the potentiality for the occurrence of a next increment in knowledge, whose occurrence can radically change the cloud of possibilities/potentialities for the still-later increments in knowledge. The fundamental difference between these ideas about nature and the classical ideas that reigned from the time of Newton until this century concerns the status of the experiential aspects of nature. These are things such as thoughts, ideas, feelings, and sensations. They are distinguished from the physical aspects of nature, which are described in terms of quantities explicitly located in tiny regions of space and time. According to the ideas of classical physics the physical world is made up exclusively of things of this latter type, and the unfolding of the physical world is determined by causal connections involving only these things. Thus experiential-type things could be considered to influence the flow of physical events only insofar as they themselves were completely determined by physical things. In other words, experiential-type qualities. insofar as they could affect the flow of physical events, could--within the framework of classical physics--not be free: they must be completely determined by the physical aspects of nature that are, by themselves,sufficient to determine the flow of physical events.« less
NASA Astrophysics Data System (ADS)
Suryoputro, M. R.; Sari, A. D.; Burhanudin, R.; Sugarindra, M.
2017-12-01
This study discussed the implementation of ergonomics and value stream mapping issues to reduce the existing waste in the process of buffing upright panel in the XYZ music manufacturing company. Aimed to identify the 9 waste based on the identification in terms of production processes and ergonomic factors, namely environmental health and safety, defects, overproduction, waiting, not utilizing employee knowledge skill and ability, transportation, inventory, motion, and excess process. In addition, ergonomics factors were identified, for example posture using REBA, job safety analysis, and physical workload. This study results indicated that the process is having 21.4% of the potential dangers that could not be accepted and thus potentially lead to lost time. Continued with the physical workload, the score of % cardiovascular load value is still below 30%, which means that the physical workload is normal and allows the addition of work. Meanwhile, in the calculation of posture investigation, the REBA resulted that there was a motion waste identified on the edge buff machine and ryoto with the score of 10 and 8. In conclusion, the results shown that there were 20 overall waste produced, then thus waste were reduced based on the identification and discussion of proposed improvements.
In-space fabrication of thin-film structures
NASA Technical Reports Server (NTRS)
Lippman, M. E.
1972-01-01
A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.
Biomedically relevant chemical and physical properties of coal combustion products.
Fisher, G L
1983-01-01
The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824
Downstream processing of stevioside and its potential applications.
Puri, Munish; Sharma, Deepika; Tiwari, Ashok K
2011-01-01
Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana Bertoni, which is commercially produced by conventional (chemical/physical) processes. This article gives an overview of the stevioside structure, various analysis technique, new technologies required and the advances achieved in recent years. An enzymatic process is established, by which the maximum efficacy and benefit of the process can be achieved. The efficiency of the enzymatic process is quite comparable to that of other physical and chemical methods. Finally, we believe that in the future, the enzyme-based extraction will ensure more cost-effective availability of stevioside, thus assisting in the development of more food-based applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Computational Modeling of Hydrodynamics and Scour around Underwater Munitions
NASA Astrophysics Data System (ADS)
Liu, X.; Xu, Y.
2017-12-01
Munitions deposited in water bodies are a big threat to human health, safety, and environment. It is thus imperative to predict the motion and the resting status of the underwater munitions. A multitude of physical processes are involved, which include turbulent flows, sediment transport, granular material mechanics, 6 degree-of-freedom motion of the munition, and potential liquefaction. A clear understanding of this unique physical setting is currently lacking. Consequently, it is extremely hard to make reliable predictions. In this work, we present the computational modeling of two importance processes, i.e., hydrodynamics and scour, around munition objects. Other physical processes are also considered in our comprehensive model. However, they are not shown in this talk. To properly model the dynamics of the deforming bed and the motion of the object, an immersed boundary method is implemented in the open source CFD package OpenFOAM. Fixed bed and scour cases are simulated and compared with laboratory experiments. The future work of this project will implement the coupling between all the physical processes.
Asset Mapping: A Tool to Enhance Your CSPAP Efforts
ERIC Educational Resources Information Center
Allar, Ishonté; Bulger, Sean
2018-01-01
Comprehensive school physical activity programs (CSPAPs) are one way to help students achieve most, if not all, of the recommended 60 minutes of daily moderate-to-vigorous physical activity (MVPA). Early in the process, one can use asset mapping to help enhance CSPAP efforts. Asset maps provide a valuable opportunity to identify potential partners…
DOT National Transportation Integrated Search
1977-09-01
The objective of this research is to make use of a physically based social system model to study the determinants of city sizes and their interactions in a nation. In particular, it was required that attention be paid to how new transportation system...
Top 10 Research Questions Related to Children Physical Activity Motivation
Chen, Ang
2017-01-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents’ physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children’s physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children’s physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children’s physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person–environment interactions, and those attempting to dissect the motivation as an outcome of social–cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children’s physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond. PMID:24592774
Top 10 research questions related to children physical activity motivation.
Chen, Ang
2013-12-01
Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children's physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children's physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children's physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person-environment interactions, and those attempting to dissect the motivation as an outcome of social-cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children's physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond.
Swisher, Laura Lee; Hiller, Peggy
2010-05-01
In June 2009, the House of Delegates (HOD) of the American Physical Therapy Association (APTA) passed a major revision of the APTA Code of Ethics for physical therapists and the Standards of Ethical Conduct for the Physical Therapist Assistant. The revised documents will be effective July 1, 2010. The purposes of this article are: (1) to provide a historical, professional, and theoretical context for this important revision; (2) to describe the 4-year revision process; (3) to examine major features of the documents; and (4) to discuss the significance of the revisions from the perspective of the maturation of physical therapy as a doctoring profession. PROCESS OF REVISION: The process for revision is delineated within the context of history and the Bylaws of APTA. FORMAT, STRUCTURE, AND CONTENT OF REVISED CORE ETHICS DOCUMENTS: The revised documents represent a significant change in format, level of detail, and scope of application. Previous APTA Codes of Ethics and Standards of Ethical Conduct for the Physical Therapist Assistant have delineated very broad general principles, with specific obligations spelled out in the Ethics and Judicial Committee's Guide for Professional Conduct and Guide for Conduct of the Physical Therapist Assistant. In contrast to the current documents, the revised documents address all 5 roles of the physical therapist, delineate ethical obligations in organizational and business contexts, and align with the tenets of Vision 2020. The significance of this revision is discussed within historical parameters, the implications for physical therapists and physical therapist assistants, the maturation of the profession, societal accountability and moral community, potential regulatory implications, and the inclusive and deliberative process of moral dialogue by which changes were developed, revised, and approved.
ERIC Educational Resources Information Center
Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan
2011-01-01
Comparisons of word and picture processing using event-related potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical…
DISSOLVED-COLLOIDAL PARTITIONING OF MOBILIZED METALS DURING RESUSPENSION OF MARINE SEDIMENTS
Sediments in many urban estuaries are contaminated by potentially toxic heavy metals. Over time, many of these metals accumulate in the sediment due to physico-chemical processes which remove them from the water column. Marine sediments are regularly subjected to physical process...
Green Synthesis of Metallic Nanoparticles via Biological Entities
Shah, Monaliben; Fawcett, Derek; Sharma, Shashi; Tripathy, Suraj Kumar; Poinern, Gérrard Eddy Jai
2015-01-01
Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm). At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications. PMID:28793638
Early Life Crises of Habitable Planets
Pierrehumbert, Raymond
2018-05-11
There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.
Perceptions of Physical Inspections as a Tool to Protect Housing Quality and Promote Health Equity.
Holtzen, Holly; Klein, Elizabeth G; Keller, Brittney; Hood, Nancy
2016-01-01
Physical inspections that assess how well affordable housing properties meet quality and safety standards help to ensure that low-income tenants live in a healthy built environment. This study was part of a larger Health Impact Assessment (HIA) conducted between January 2012 and November 2013 to inform policymakers about the potential health consequences of a proposed policy decision to align the physical inspections required by housing funding agencies, which would result in a reduction of the frequency of physical inspections. Key informant interviews (n=18) of property managers and tenants were used to explore the inspection process, identification of housing quality issues, and potential effects on the health of affordable housing tenants and the impact on property management practices. Results indicate that physical inspection frequency may be an important trigger for property managers and tenants to adhere to proper maintenance schedules.
Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context
NASA Astrophysics Data System (ADS)
Crouch, Catherine
2014-03-01
Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of materials, and present initial assessment data evaluating both content learning and student attitudes.
2011-01-01
Background The OPERA trial is large cluster randomised trial testing a physical activity intervention to address depression amongst people living in nursing and residential homes for older people. A process evaluation was commissioned alongside the trial and we report the protocol for this process evaluation. Challenges included the cognitive and physical ability of the participants, the need to respect the privacy of all home residents, including study non-participants, and the physical structure of the homes. Evaluation activity had to be organised around the structured timetable of homes, leaving limited opportunities for data collection. The aims of this process evaluation are to provide findings that will assist in the interpretation of the clinical trial results, and to inform potential implementation of the physical activity intervention on a wider scale. Methods/design Quantitative data on recruitment of homes and individuals is being collected. For homes in the intervention arm, data on dose and fidelity of the intervention delivered; including individual rates of participation in exercise classes are collected. In the control homes, uptake and delivery of depression awareness training is monitored. These data will be combined with qualitative data from an in-depth study of a purposive sample of eight homes (six intervention and two control). Discussion Although process evaluations are increasingly funded alongside trials, it is still rare to see the findings published, and even rarer to see the protocol for such an evaluation published. Process evaluations have the potential to assist in interpreting and understanding trial results as well as informing future roll-outs of interventions. If such evaluations are funded they should also be reported and reviewed in a similar way to the trial outcome evaluation. Trial Registration ISRCTN No: ISRCTN43769277 PMID:21288341
ERIC Educational Resources Information Center
Wickrama, K. A. S.; Elder, Glen H.; Abraham, W. Todd
2007-01-01
Context and Purpose: This study's objectives are to: investigate potential additive and multiplicative influences of rurality and race/ethnicity on chronic physical illness in a nationally representative sample of youth; and examine intra-Latino processes using a Latino sub-sample. Specifically, we examine how rurality and individual psychosocial…
Wildfire potential evaluation during a drought event with a regional climate model and NDVI
Y. Liu; J. Stanturf; S. Goodrick
2010-01-01
Regional climate modeling is a technique for simulating high-resolution physical processes in the atmosphere, soil and vegetation. It can be used to evaluate wildfire potential by either providing meteorological conditions for computation of fire indices or predicting soil moisture as a direct measure of fire potential. This study examines these roles using a regional...
Physics students' approaches to learning and cognitive processes in solving physics problems
NASA Astrophysics Data System (ADS)
Bouchard, Josee
This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.
Tal, Aner; Wansink, Brian
2011-01-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088
Tal, Aner; Wansink, Brian
2011-03-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.
Advanced magnetic resonance imaging of the physical processes in human glioblastoma.
Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce
2014-09-01
The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.
A Vision on the Status and Evolution of HEP Physics Software Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canal, P.; Elvira, D.; Hatcher, R.
2013-07-28
This paper represents the vision of the members of the Fermilab Scientific Computing Division's Computational Physics Department (SCD-CPD) on the status and the evolution of various HEP software tools such as the Geant4 detector simulation toolkit, the Pythia and GENIE physics generators, and the ROOT data analysis framework. The goal of this paper is to contribute ideas to the Snowmass 2013 process toward the composition of a unified document on the current status and potential evolution of the physics software tools which are essential to HEP.
Quantization of charged fields in the presence of critical potential steps
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2016-02-01
QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.
Direct quantum process tomography via measuring sequential weak values of incompatible observables.
Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook
2018-01-15
The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.
Forecasting in the presence of expectations
NASA Astrophysics Data System (ADS)
Allen, R.; Zivin, J. G.; Shrader, J.
2016-05-01
Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.
Physical explosion analysis in heat exchanger network design
NASA Astrophysics Data System (ADS)
Pasha, M.; Zaini, D.; Shariff, A. M.
2016-06-01
The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.
Foundations of anticipatory logic in biology and physics.
Bettinger, Jesse S; Eastman, Timothy E
2017-12-01
Recent advances in modern physics and biology reveal several scenarios in which top-down effects (Ellis, 2016) and anticipatory systems (Rosen, 1980) indicate processes at work enabling active modeling and inference such that anticipated effects project onto potential causes. We extrapolate a broad landscape of anticipatory systems in the natural sciences extending to computational neuroscience of perception in the capacity of Bayesian inferential models of predictive processing. This line of reasoning also comes with philosophical foundations, which we develop in terms of counterfactual reasoning and possibility space, Whitehead's process thought, and correlations with Eastern wisdom traditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khong, Nicholas M H; Yusoff, Fatimah Md; Jamilah, B; Basri, Mahiran; Maznah, I; Chan, Kim Wei; Armania, Nurdin; Nishikawa, Jun
2018-06-15
Efficiency and effectiveness of collagen extraction process contribute to huge impacts to the quality, supply and cost of the collagen produced. Jellyfish is a potential sustainable source of collagen where their applications are not limited by religious constraints and threats of transmittable diseases. The present study compared the extraction yield, physico-chemical properties and toxicology in vitro of collagens obtained by the conventional acid-assisted and pepsin-assisted extraction to an improved physical-aided extraction process. By increasing physical intervention, the production yield increased significantly compared to the conventional extraction processes (p < .05). Collagen extracted using the improved process was found to possess similar proximate and amino acids composition to those extracted using pepsin (p > .05) while retaining high molecular weight distributions and polypeptide profiles similar to those extracted using only acid. Moreover, they exhibited better appearance, instrumental colour and were found to be non-toxic in vitro and free of heavy metal contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goldstein, Bernard D; Brooks, Bryan W; Cohen, Steven D; Gates, Alexander E; Honeycutt, Michael E; Morris, John B; Orme-Zavaleta, Jennifer; Penning, Trevor M; Snawder, John
2014-06-01
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives.
Goldstein, Bernard D.; Brooks, Bryan W.; Cohen, Steven D.; Gates, Alexander E.; Honeycutt, Michael E.; Morris, John B.; Orme-Zavaleta, Jennifer; Penning, Trevor M.; Snawder, John
2014-01-01
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives. PMID:24706166
ERIC Educational Resources Information Center
Henderson, Charles; Dancy, Melissa; Niewiadomska-Bugaj, Magdalena
2012-01-01
During the fall of 2008 a web survey, designed to collect information about pedagogical knowledge and practices, was completed by a representative sample of 722 physics faculty across the United States (50.3% response rate). This paper presents partial results to describe how 20 potential predictor variables correlate with faculty knowledge about…
Todd A. Ontl; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka
2015-01-01
Bioenergy crops have the potential to enhance soil carbon (C) pools from increased aggregation and the physical protection of organic matter; however, our understanding of the variation in these processes over heterogeneous landscapes is limited. In particular, little is known about the relative importance of soil properties and root characteristics for the physical...
On the potential energy in a gravitationally bound two-body system
NASA Astrophysics Data System (ADS)
Wilhelm, Klaus; Dwivedi, Bhola N.
2015-01-01
The potential energy problem in a gravitationally bound two-body system is studied in the framework of a recently proposed impact model of gravity (Wilhelm et al., 2013). The concept of a closed system has been modified, before the physical processes resulting in the liberation of the potential energy can be described. The energy is extracted from the background flux of hypothetical interaction entities.
Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level
NASA Astrophysics Data System (ADS)
Varfolomeeva, Vera V.; Terentev, Alexey V.
2018-01-01
Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.
Understanding flavour at the LHC
Nir, Yosef
2018-05-22
Huge progress in flavour physics has been achieved by the two B-factories and the Tevatron experiments. This progress has, however, deepened the new physics flavour puzzle: If there is new physics at the TeV scale, why aren't flavour changing neutral current processes enhanced by orders of magnitude compared to the standard model predictions? The forthcoming ATLAS and CMS experiments can potentially solve this puzzle. Perhaps even more surprisingly, these experiments can potentially lead to progress in understanding the standard model flavour puzzle: Why is there smallness and hierarchy in the flavour parameters? Thus, a rich and informative flavour program is awaiting us not only in the flavour-dedicated LHCb experiment, but also in the high-pT ATLAS and CMS experiments.
Rodriguez, Christina M
2010-02-01
According to Social Information Processing theory, parents' cognitive processes influence their decisions to engage in physical maltreatment, although cognitions occur in the context of other aspects of the parents' life. The present study investigated whether cognitive processes (external locus of control, inappropriate developmental expectations) predicted child abuse potential and overreactive disciplinary style beyond personal contextual factors characteristic of the parent (hostility, stress, and coping). 363 parents were recruited online. Results highlight the relative importance of the contextual characteristics (particularly stress, avoidant coping, and irritability) relative to cognitive processes in predicting abuse potential and overreactive discipline strategies, although an external locus of control also significantly contributed. Findings do not support that parents' developmental expectations uniquely predict elevated abuse risk. Results indicate stressed parents who utilize avoidance coping strategies are more likely to use overreactive discipline and report increased abuse potential. Findings are discussed with regard to implications for prevention/intervention efforts.
Sexual selection and physical attractiveness : Implications for mating dynamics.
Gangestad, S W
1993-09-01
Sexual selection processes have received much attention in recent years, attention reflected in interest in human mate preferences. Among these mate preferences are preferences for physical attractiveness. Preferences in and of themselves, however, do not fully explain the nature of the relationships that individuals attain. A tacit negotiation process underlies relationship formation and maintenance. The notion that preferences for physical attractiveness evolved under parasite-driven "good genes" sexual selection leads to predictions about the nature of trade-offs that individuals make between mates' physical attractiveness and investment potential. These predictions and relevant data are explored, with a primary emphasis on women's preferences for men's qualities. In addition, further implications of trade-offs are examined, most notably (a) the impact of environmental variations on the nature of mating and (b) some effects of trade-offs on infidelity and male attempts to control women.
NASA Astrophysics Data System (ADS)
Teevasuthornsakul, Chalongchai; Manosuttirit, Artnarong; Suwanno, Chirasak; Sutsaguan, Lanchakorn
2010-07-01
This research focused on the processes and physics instruction of 25 schools located in Bangkok and up-country in Thailand in order to explain why many of their students have passed the first round of the National Physics Academic Olympiads consistently. The high schools in Thailand can apply and support their students and develop their potential in physics. The development of physics professional is the cornerstone of a developing country and increase physics quality base on sciences development in the future in Thailand. The duration of collecting all data was from May 2007 to May 2009. The methodology for this research was the qualitative research method. The researchers interviewed managers, teachers and students at each school location or used semi-structured interview forms. The researchers used the Investigator Triangulation approach to check the qualitative data and the Cause and Effect Analysis approach to analyze situation factors. The results showed that in processes were include 1) enhanced the students with the Academic Olympiads to develop the capacities of students; 2) motivated the students with processes such as good instruction in physics and special privilege in continuing studies in university; and 3) tutorial systems and drill and practice systems support students into subsequent rounds. 4) Admiration activities accommodated the students continually and suitably. Most of the teaching styles used in their lectures, in both basic contents and practice, encouraged students to analyze entrance examination papers, little laboratory. While students say that" They just know that a physics laboratory is very important to study physics after they passed Olympic camp."
Klein, Fabian; Iffland, Benjamin; Schindler, Sebastian; Wabnitz, Pascal; Neuner, Frank
2015-12-01
Recent studies have shown that the perceptual processing of human faces is affected by context information, such as previous experiences and information about the person represented by the face. The present study investigated the impact of verbally presented information about the person that varied with respect to affect (neutral, physically threatening, socially threatening) and reference (self-referred, other-referred) on the processing of faces with an inherently neutral expression. Stimuli were presented in a randomized presentation paradigm. Event-related potential (ERP) analysis demonstrated a modulation of the evoked potentials by reference at the EPN (early posterior negativity) and LPP (late positive potential) stage and an enhancing effect of affective valence on the LPP (700-1000 ms) with socially threatening context information leading to the most pronounced LPP amplitudes. We also found an interaction between reference and valence with self-related neutral context information leading to more pronounced LPP than other related neutral context information. Our results indicate an impact of self-reference on early, presumably automatic processing stages and also a strong impact of valence on later stages. Using a randomized presentation paradigm, this study confirms that context information affects the visual processing of faces, ruling out possible confounding factors such as facial configuration or conditional learning effects.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.
1979-01-01
A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.
Pekmezi, Dori; Marcus, Bess; Meneses, Karen; Baskin, Monica L; Ard, Jamy D; Martin, Michelle Y; Adams, Natasia; Robinson, Cody; Demark-Wahnefried, Wendy
2013-01-01
Aim To address high rates of inactivity and related chronic diseases among African–American women. Materials & methods Eleven focus groups on physical activity barriers for African–American women in the deep south (USA) were conducted (n = 56). Feedback guided an intervention development process. The resulting Home-Based Individually Tailored Physical Activity Print intervention was vetted with the target population in a 1-month, single arm, pre–post test demonstration trial (n = 10). Results Retention was high (90%). Intent-to-treat analyses indicated increases in motivational readiness for physical activity (70% of sample) and physical activity (7-day Physical Activity Recall) from baseline (mean: 89.5 min/week, standard deviation: 61.17) to 1 month (mean: 155 min/week, standard deviation: 100.86). Small improvements in fitness (6-Min Walk Test), weight and psychosocial process measures were also found. Conclusion Preliminary findings show promise and call for future randomized controlled trials with larger samples to determine efficacy. Such low-cost, high-reach approaches to promoting physical activity have great potential for addressing health disparities and benefiting public health. PMID:23638785
ATLAS fast physics monitoring: TADA
NASA Astrophysics Data System (ADS)
Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration
2017-10-01
The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.
Pekmezi, Dori; Marcus, Bess; Meneses, Karen; Baskin, Monica L; Ard, Jamy D; Martin, Michelle Y; Adams, Natasia; Robinson, Cody; Demark-Wahnefried, Wendy
2013-05-01
To address high rates of inactivity and related chronic diseases among African-American women. Eleven focus groups on physical activity barriers for African-American women in the deep south (USA) were conducted (n = 56). Feedback guided an intervention development process. The resulting Home-Based Individually Tailored Physical Activity Print intervention was vetted with the target population in a 1-month, single arm, pre-post test demonstration trial (n = 10). Retention was high (90%). Intent-to-treat analyses indicated increases in motivational readiness for physical activity (70% of sample) and physical activity (7-day Physical Activity Recall) from baseline (mean: 89.5 min/week, standard deviation: 61.17) to 1 month (mean: 155 min/week, standard deviation: 100.86). Small improvements in fitness (6-Min Walk Test), weight and psychosocial process measures were also found. Preliminary findings show promise and call for future randomized controlled trials with larger samples to determine efficacy. Such low-cost, high-reach approaches to promoting physical activity have great potential for addressing health disparities and benefiting public health.
Bevans, Katherine B; Fitzpatrick, Leslie-Anne; Sanchez, Betty M; Riley, Anne W; Forrest, Christopher
2010-12-01
This study was conducted to empirically evaluate specific human, curricular, and material resources that maximize student opportunities for physical activity during physical education (PE) class time. A structure-process-outcome model was proposed to identify the resources that influence the frequency of PE and intensity of physical activity during PE. The proportion of class time devoted to management was evaluated as a potential mediator of the relations between resource availability and student activity levels. Data for this cross-sectional study were collected from interviews conducted with 46 physical educators and the systematic observation of 184 PE sessions in 34 schools. Regression analyses were conducted to test for the main effects of resource availability and the mediating role of class management. Students who attended schools with a low student-to-physical educator ratio had more PE time and engaged in higher levels of physical activity during class time. Access to adequate PE equipment and facilities was positively associated with student activity levels. The availability of a greater number of physical educators per student was found to impact student activity levels by reducing the amount of session time devoted to class management. The identification of structure and process predictors of student activity levels in PE will support the allocation of resources and encourage instructional practices that best support increased student activity levels in the most cost-effective way possible. Implications for PE policies and programs are discussed. © 2010, American School Health Association.
Quantitative Appearance Inspection for Film Coated Tablets.
Yoshino, Hiroyuki; Yamashita, Kazunari; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2016-01-01
The decision criteria for the physical appearance of pharmaceutical products are subjective and qualitative means of evaluation that are based entirely on human interpretation. In this study, we have developed a comprehensive method for the quantitative analysis of the physical appearance of film coated tablets. Three different kinds of film coated tablets with considerable differences in their physical appearances were manufactured as models, and their surface roughness, contact angle, color measurements and physicochemical properties were investigated as potential characteristics for the quantitative analysis of their physical appearance. All of these characteristics were useful for the quantitative evaluation of the physical appearances of the tablets, and could potentially be used to establish decision criteria to assess the quality of tablets. In particular, the analysis of the surface roughness and film coating properties of the tablets by terahertz spectroscopy allowed for an effective evaluation of the tablets' properties. These results indicated the possibility of inspecting the appearance of tablets during the film coating process.
Control of the Physical and Technical Properties of Water in Technological Processes
NASA Astrophysics Data System (ADS)
Klopotov, V. D.; Gorlenko, N. P.; Sarkisov, Yu S.; Kulchenko, A. K.; Klopotov, A. A.
2016-08-01
The physical and technical properties of water activated by the electrochemical treatment in a two-chamber electrolizer are investigated. The regularities of changes inthe values of acidity, redox potential, ionic composition, concentration of oxygen, structural organization of catholyte and anolyte are revealed. The possibility of controlling the properties of the liquid for more efficient extraction of polymetallic minerals by flotation is described.
AUV based study on physical and ecological processes at fronts
NASA Astrophysics Data System (ADS)
Tippenhauer, Sandra; Wulff, Thorben; Von Appen, Wilken-Jon
2017-04-01
Small-scale processes and their effects get more and more attention when it comes to understanding processes and changes in the (Arctic) ocean. Here we present a study on physical processes and ecological responses at submesoscale frontal systems in the Fram Strait investigated using an autonomous underwater vehicle (AUV). The AUV is equipped with physical and biogeochemical sensors such as an acoustic Doppler current profiler, a turbulence probe, a conductivity-temperature-depth probe, and sensors for Oxygen, Nitrate, Chlorophyll a, and photosynthetically active radiation (PAR). The study is designed such that the AUV covers tracks of several kilometers length in cross-frontal direction with the front roughly located in the middle of the track. On its way, the AUV records high-resolution vertical or zigzag profiles of the physical and biogeochemical properties in the upper 50 m which includes the euphotic zone. In both, physical and biogeochemical terms, the measurements revealed a complex structure of the water column. At the fronts the distribution of phytoplankton and nutrients was highly inhomogeneous, possibly due to wind-driven frontogenesis or the growth of mixed layer eddies. To set the observations into a larger context we also examine ship-based and satellite data. We investigate how the observed patterns of the potential vorticity and the biogeochemical properties may be formed and which processes could lead to a smoothing of the observed gradients.
Viester, Laura; Verhagen, Evert A L M; Bongers, Paulien M; van der Beek, Allard J
2014-11-01
To evaluate the process of a health promotion program, aiming to improve physical activity levels and diet among construction workers. The process evaluation was conducted after the RE-AIM framework for the evaluation of the public health impact of health promotion interventions. Effectiveness was assessed on motivational stage-of-change, self-efficacy, and decisional balance for physical activity and dietary behavior. The external validity of the trial was satisfactory with representative reach of workers and adoption of workplace units in the participating construction company. The extent to which the program was implemented as intended was modest. The intervention was effective on participants' progress through stages of behavior change. Based on the RE-AIM dimensions, it is concluded that for construction workers, the program is feasible and potentially effective, but adjustments are required before widespread implementation.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1984-01-01
The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.
Quantum effects in the understanding of consciousness.
Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A
2014-06-01
This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.
NASA Technical Reports Server (NTRS)
Wright, K. H., Jr.; Stone, N. H.; Samir, U.
1983-01-01
In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.
"It's gym, like g-y-m not J-i-m": Exploring the role of place in the gendering of physical activity.
Coen, Stephanie E; Rosenberg, Mark W; Davidson, Joyce
2018-01-01
Physical activity is a highly gendered health behaviour, with women less likely than men to meet internationally accepted physical activity guidelines. In this article, we take up recent arguments on the potential of indoor spaces to illuminate processes shaping health, together with social theories of gender, to conceptualize the place of the gym as a window into understanding and intervening in wider gender disparities in physical activity. Using a triangulated strategy of qualitative methods, including semi-structured interviews, drawing, and journaling with men and women in a mid-sized Canadian city, we examine how gender influences exercise practices and mobilities in gym environments. Results of our thematic analysis reveal three socio-spatial processes implicated in the gendering of physical activity: 1) embodying gender ideals, 2) policing gender performance, and 3) spatializing gender relations. A fourth theme illustrates the situated agency some individuals enact to disrupt gendered divisions. Although women were unduly disadvantaged, both women and men experienced significant limitations on their gym participation due to the presiding gendered social context of the gym. Gender-transformative interventions that go beyond engaging women to comprehensively contend with the place-based gender relations that sustain gender hegemony are needed. While gyms are potentially sites for health promotion, they are also places where gendered inequities in health opportunities emerge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aspects of food processing and its effect on allergen structure.
Paschke, Angelika
2009-08-01
The article summarizes current physical and chemical methods in food processing as storage, preparation, separation, isolation or purification and thermal application on the one hand as well as enzymatic treatment on the other and their impact on the properties of food proteins. Novel methods of food processing like high pressure, electric field application or irradiation and their impact on food allergens are presented. The EU project REDALL (Reduced Allergenicity of Processed Foods, Containing Animal Allergens: QLK1-CT-2002-02687) showed that by a combination of enzyme and heat treatment the allergic potential of hen's egg decreased about 100 fold. Clinical reactions do not appear anymore. An AiF-FV 12024 N project worked with fruits like mango, lychee and apple. Processed mango and lychee had no change in allergenic potential during heating while e. g. canning. Apple almost lost its allergenic potential after pasteurization in juice production.
Human-centered design of a cyber-physical system for advanced response to Ebola (CARE).
Dimitrov, Velin; Jagtap, Vinayak; Skorinko, Jeanine; Chernova, Sonia; Gennert, Michael; Padir, Taşkin
2015-01-01
We describe the process towards the design of a safe, reliable, and intuitive emergency treatment unit to facilitate a higher degree of safety and situational awareness for medical staff, leading to an increased level of patient care during an epidemic outbreak in an unprepared, underdeveloped, or disaster stricken area. We start with a human-centered design process to understand the design challenge of working with Ebola treatment units in Western Africa in the latest Ebola outbreak, and show preliminary work towards cyber-physical technologies applicable to potentially helping during the next outbreak.
A test harness for accelerating physics parameterization advancements into operations
NASA Astrophysics Data System (ADS)
Firl, G. J.; Bernardet, L.; Harrold, M.; Henderson, J.; Wolff, J.; Zhang, M.
2017-12-01
The process of transitioning advances in parameterization of sub-grid scale processes from initial idea to implementation is often much quicker than the transition from implementation to use in an operational setting. After all, considerable work must be undertaken by operational centers to fully test, evaluate, and implement new physics. The process is complicated by the scarcity of like-to-like comparisons, availability of HPC resources, and the ``tuning problem" whereby advances in physics schemes are difficult to properly evaluate without first undertaking the expensive and time-consuming process of tuning to other schemes within a suite. To address this process shortcoming, the Global Model TestBed (GMTB), supported by the NWS NGGPS project and undertaken by the Developmental Testbed Center, has developed a physics test harness. It implements the concept of hierarchical testing, where the same code can be tested in model configurations of varying complexity from single column models (SCM) to fully coupled, cycled global simulations. Developers and users may choose at which level of complexity to engage. Several components of the physics test harness have been implemented, including a SCM and an end-to-end workflow that expands upon the one used at NOAA/EMC to run the GFS operationally, although the testbed components will necessarily morph to coincide with changes to the operational configuration (FV3-GFS). A standard, relatively user-friendly interface known as the Interoperable Physics Driver (IPD) is available for physics developers to connect their codes. This prerequisite exercise allows access to the testbed tools and removes a technical hurdle for potential inclusion into the Common Community Physics Package (CCPP). The testbed offers users the opportunity to conduct like-to-like comparisons between the operational physics suite and new development as well as among multiple developments. GMTB staff have demonstrated use of the testbed through a comparison between the 2017 operational GFS suite and one containing the Grell-Freitas convective parameterization. An overview of the physics test harness and its early use will be presented.
Need for improvements in physical pretreatment of source-separated household food waste.
Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J
2013-03-01
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Being qua becoming: Aristotle's "Metaphysics", quantum physics, and Process Philosophy
NASA Astrophysics Data System (ADS)
Johnson, David Kelley
In Aristotle's First Philosophy, science and philosophy were partners, but with the rise of empiricism, went their separate ways. Metaphysics combined the rational and irrational (i.e. final cause/unmoved mover) elements of existence to equate being with substance, postulating prime matter as pure potential that was actuated by form to create everything. Modern science reveres pure reason and postulates its theory of being by a rigorous scientific methodology. The Standard Model defines matter as energy formed into fundamental particles via forces contained in fields. Science has proved Aristotle's universe wrong in many ways, but as physics delves deeper into the quantum world, empiricism is reaching its limits concerning fundamental questions of existence. To achieve its avowed mission of explaining existence completely, physics must reunite with philosophy in a metascience modeled on the First Philosophy of Aristotle. One theory of being that integrates quantum physics and metaphysics is Process Philosophy.
ERIC Educational Resources Information Center
Vowles, Kevin E.; McNeil, Daniel W.; Gross, Richard T.; McDaniel, Michael L.; Mouse, Angela; Bates, Mick; Gallimore, Paula; McCall, Cindy
2007-01-01
Psychosocial treatments for chronic pain are effective. There is a need, however, to understand the processes involved in determining how these treatments contribute to behavior change. Control and acceptance strategies represent two potentially important processes involved in treatment, although they differ significantly in approach. Results from…
Downdraft outflows: climatological potential to influence fire behaviour
Brian E. Potter; Jaime R. Hernandez
2017-01-01
Sudden wind shifts caused by atmospheric gust fronts can lead to firefighter entrapments and fatalities. In this study, we describe the physical processes involved in the related phenomena of convective downdrafts, gust fronts and downbursts. We focus on the dominant process, evaporative cooling in a dry surface layer, as characterised by the measure known as downdraft...
Circulating MicroRNAs as Potential Biomarkers of Exercise Response
Polakovičová, Mája; Musil, Peter; Laczo, Eugen; Hamar, Dušan; Kyselovič, Ján
2016-01-01
Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs). miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs) associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation. PMID:27782053
A Scientific Workflow System for Satellite Data Processing with Real-Time Monitoring
NASA Astrophysics Data System (ADS)
Nguyen, Minh Duc
2018-02-01
This paper provides a case study on satellite data processing, storage, and distribution in the space weather domain by introducing the Satellite Data Downloading System (SDDS). The approach proposed in this paper was evaluated through real-world scenarios and addresses the challenges related to the specific field. Although SDDS is used for satellite data processing, it can potentially be adapted to a wide range of data processing scenarios in other fields of physics.
Survey of advanced nuclear technologies for potential applications of sonoprocessing.
Rubio, Floren; Blandford, Edward D; Bond, Leonard J
2016-09-01
Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Training program for driver licensing screening for medical impairment
DOT National Transportation Integrated Search
1977-08-01
The purpose of the contract was to create a complete curriculum package, for training motor vehicle license examiners to identify individuals with potentially unsafe physical or mental conditions. The present report describes the process followed in ...
Potential implementation of reservoir computing models based on magnetic skyrmions
NASA Astrophysics Data System (ADS)
Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin
2018-05-01
Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.
NASA Astrophysics Data System (ADS)
Eggl, S.; Hestroffer, D.; Thuillot, W.
2013-09-01
The Chelyabinsk event on February 15th, 2013 has shown once again that even small near earth objects (NEOs) can become a real safety concern. Eventhough we believe to have the capabilities to avert larger potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can confirm this claim. The target selection process for such deflection demonstrations is a demanding task, as physical, dynamical and engineering aspects have to be considered in great detail. One of the top priorities of such a demonstration mission is, of course, that a harmless asteroid should not be turned into a potentially hazardous object (PHO). Given the potentially large uncertainties in the asteroid's physical parameters as well as the additional uncertainties introduced during the deflection attempt, an in depth analysis of the impact probabilities over the next century becomes necessary, in order to exclude an augmentation of potential risks. Assuming worst case scenarios regard- ing the orbital, physical and mitigation induced uncertainties, we provide a keyhole and impact risk analysis of a list of potential targets for the mitigation demomission proposed in the framework of the NEO-Shield project.
ERIC Educational Resources Information Center
Lopes, J. Bernardino; Costa, Nilza
2007-01-01
Modelling is an inherent process for the construction and use of science concepts that mobilize diverse specific competences. The aims of this work are to put forward a means of evaluating modelling competences that is relevant for physics teaching and science education research and to identify the potentials and constraints in the development of…
Holmes, Morgan; Bodie, Kelly; Porter, Geoffrey; Sullivan, Victoria; Tarasuk, Joy; Trembley, Jodie; Trudeau, Maureen
2010-01-01
Optimizing human and physical resources is a major concern for cancer care decision-makers and practitioners. This issue is particularly acute in the context of ambulatory out patient chemotherapy clinics, especially when - as is the case almost everywhere in the industrialized world - the number of people requiring systemic therapy is increasing while budgets, staffing and physical space remain static. Recent initiatives at three hospital-based chemotherapy units - in Halifax, Toronto and Kingston - shed light on the value of process analysis and reorganization for using existing human and physical resources to their full potential, improving patient flow and enhancing patient satisfaction. The steps taken in these settings are broadly applicable to other healthcare settings and would likely result in similar benefits in those environments.
Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts
NASA Technical Reports Server (NTRS)
Palmer, R. J. Jr; Friedmann, E. I.
1990-01-01
Two cryptoendolithic microbial communities, lichens in the Ross Desert of Antarctica and cyanobacteria in the Negev Desert, inhabit porous sandstone rocks of similar physical structure. Both rock types adsorb water vapor by physical mechanisms unrelated to biological processes. Yet the two microbial communities respond differently to water stress: cryptoendolithic lichens begin to photosynthesize at a matric water potential of -46.4 megaPascals (MPa) [70% relative humidity (RH) at 8 degrees C], resembling thallose desert lichens. Cryptoendolithic cyanobacteria, like other prokaryotes, photosynthesize only at very high matric water potentials [> -6.9 MPa, 90% RH at 20 degrees C].
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
Rodriguez, Christina M; Russa, Mary Bower; Kircher, John C
2015-08-01
Although frustration has long been implicated in promoting aggression, the potential for poor frustration tolerance to function as a risk factor for physical child abuse risk has received minimal attention. Instead, much of the extant literature has examined the role of anger in physical abuse risk, relying on self-reports of the experience or expression of anger, despite the fact that this methodology is often acknowledged as vulnerable to bias. Therefore, the present investigation examined whether a more implicit, analog assessment of frustration tolerance specifically relevant to parenting would reveal an association with various markers of elevated physical child abuse risk in a series of samples that varied with regard to age, parenting status, and abuse risk. An analog task was designed to evoke parenting-relevant frustration: the task involved completing an unsolvable task while listening to a crying baby or a toddler's temper tantrum; time scores were generated to gauge participants' persistence in the task when encountering such frustration. Across these studies, low frustration tolerance was associated with increased physical child abuse potential, greater use of parent-child aggression in discipline encounters, dysfunctional disciplinary style, support for physical discipline use and physical discipline escalation, and increased heart rate. Future research directions that could better inform intervention and prevention programs are discussed, including working to clarify the processes underlying frustration intolerance and potential interactive influences that may exacerbate physical child abuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
O’Donnell, Matthew Brook; Strecher, Victor J.; Falk, Emily B.
2016-01-01
Feelings can shape how people respond to persuasive messages. In health communication, adaptive affective responses to potentially threating messages constitute one key to intervention success. The current study tested dispositional mindfulness, characterized by awareness of the present moment, as a predictor of adaptive affective responses to potentially threatening health messages and desirable subsequent health outcomes. Both general and discrete negative affective states (i.e., shame) were examined in relation to mindfulness and intervention success. Individuals (n=67) who reported less than 195 weekly minutes of exercise were recruited. At baseline, participants’ dispositional mindfulness and exercise outcomes were assessed, including self-reported exercise motivation and physical activity. A week later, all participants were presented with potentially threatening and self-relevant health messages encouraging physical activity and discouraging sedentary lifestyle, and their subsequent affective response and exercise motivation were assessed. Approximately one month later, changes in exercise motivation and physical activity were assessed again. In addition, participants’ level of daily physical activity was monitored by a wrist worn accelerometer throughout the entire duration of the study. Higher dispositional mindfulness predicted greater increases in exercise motivation one month after the intervention. Importantly, this effect was fully mediated by lower negative affect and shame specifically, in response to potentially threatening health messages among highly mindful individuals. Baseline mindfulness was also associated with increased self-reported vigorous activity, but not with daily physical activity as assessed by accelerometers. These findings suggest potential benefits of considering mindfulness as an active individual difference variable in theories of affective processing and health communication. PMID:28344683
Kang, Yoona; O'Donnell, Matthew Brook; Strecher, Victor J; Falk, Emily B
2017-04-01
Feelings can shape how people respond to persuasive messages. In health communication, adaptive affective responses to potentially threating messages constitute one key to intervention success. The current study tested dispositional mindfulness, characterized by awareness of the present moment, as a predictor of adaptive affective responses to potentially threatening health messages and desirable subsequent health outcomes. Both general and discrete negative affective states (i.e., shame) were examined in relation to mindfulness and intervention success. Individuals (n=67) who reported less than 195 weekly minutes of exercise were recruited. At baseline, participants' dispositional mindfulness and exercise outcomes were assessed, including self-reported exercise motivation and physical activity. A week later, all participants were presented with potentially threatening and self-relevant health messages encouraging physical activity and discouraging sedentary lifestyle, and their subsequent affective response and exercise motivation were assessed. Approximately one month later, changes in exercise motivation and physical activity were assessed again. In addition, participants' level of daily physical activity was monitored by a wrist worn accelerometer throughout the entire duration of the study. Higher dispositional mindfulness predicted greater increases in exercise motivation one month after the intervention. Importantly, this effect was fully mediated by lower negative affect and shame specifically, in response to potentially threatening health messages among highly mindful individuals. Baseline mindfulness was also associated with increased self-reported vigorous activity, but not with daily physical activity as assessed by accelerometers. These findings suggest potential benefits of considering mindfulness as an active individual difference variable in theories of affective processing and health communication.
Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes
USDA-ARS?s Scientific Manuscript database
Second generation feedstock, especially nonfood lignocellulosic biomass, has been seen as a potential source for biofuel production. Cost intensive pretreatment operations, including physical, chemical, biological, and slow enzymatic hydrolysis, make the overall process of lignocellulosic conversio...
The Impact of Attention on Judgments of Frequency and Duration
Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter
2015-01-01
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested. PMID:26000712
The impact of attention on judgments of frequency and duration.
Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter
2015-01-01
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested.
Weschke, Sarah; Niedeggen, Michael
2013-01-01
The affective and cognitive mechanisms elicited by the experience of social exclusion—or ostracism—have recently been explored using behavioral and neurocognitive methods. Most of the studies took advantage of the Cyberball paradigm, a virtual ball tossing game with presumed co-players connected via the internet. Consistent behavioral findings indicate that exclusion obviously threatens fundamental social needs (belonging, self-esteem, meaningful existence, and control) and lowers mood. In this study, we followed the question whether the credibility of the setting affects the processing of social exclusion. In contrast to a control group (standard Cyberball setup), co-players were physically present in an experimental group. Although the credibility of the virtual ball tossing game was significantly enhanced in the experimental group, self-reported negative mood and need threat were not enhanced compared to the control group. Event-related brain potentials (ERPs), however, indicated a differential processing of social exclusion. The N2 amplitude triggered by occasional ball receptions was significantly reduced in the experimental group. This effect was restricted for an early time range (130–210 ms), and did not extend to the following P3 components. The ERP effect in the N2 time range can be related to a differential social reward processing in ostracism if co-players are physically present. The lack of a corresponding correlate in the behavioral data indicates that some facets of ostracism processing are not covered by questionnaire data. PMID:23951269
Gestalt perception modulates early visual processing.
Herrmann, C S; Bosch, V
2001-04-17
We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.
Fundamental Physical Limits for the Size of Future Planetary Surface Exploration Systems
NASA Astrophysics Data System (ADS)
Andrews, F.; Hobbs, S. E.; Honstvet, I.; Snelling, M.
2004-04-01
With the current interest in the potential use of Nanotechnology for spacecraft, it becomes increasingly likely that environmental sensor probes, such as the "lab-on-a-chip" concept, will take advantage of this technology and become orders of magnitude smaller than current sensor systems. This paper begins to investigate how small these systems could theoretically become, and what are the governing laws and limiting factors that determine that minimum size. The investigation focuses on the three primary subsystems for a sensor network of this nature Sensing, Information Processing and Communication. In general, there are few fundamental physical laws that limit the size of the sensor system. Limits tend to be driven by factors other than the laws of physics. These include user requirements, such as the acceptable probability of error, and the potential external environment.
ERIC Educational Resources Information Center
Xiang, Qiao
2014-01-01
As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while…
Nicholas A. Sutfin; Ellen E. Wohl; Kathleen A. Dwire
2016-01-01
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long-term (> 102 years) storage. Research in ecosystem processing emphasizes the...
A review-application of physical vapor deposition (PVD) and related methods in the textile industry
NASA Astrophysics Data System (ADS)
Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood
2015-09-01
Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.
Regenerator matrix physical property data
NASA Technical Reports Server (NTRS)
Fucinari, C. A.
1980-01-01
Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.
The environmental and medical geochemistry of potentially hazardous materials produced by disasters
Plumlee, Geoffrey S.; Morman, Suzette A.; Meeker, G.P.; Hoefen, Todd M.; Hageman, Philip L.; Wolf, Ruth E.
2014-01-01
Many natural or human-caused disasters release potentially hazardous materials (HM) that may pose threats to the environment and health of exposed humans, wildlife, and livestock. This chapter summarizes the environmentally and toxicologically significant physical, mineralogical, and geochemical characteristics of materials produced by a wide variety of recent disasters, such as volcanic eruptions, hurricanes and extreme storms, spills of mining/mineral-processing wastes or coal extraction by-products, and the 2001 attacks on and collapse of the World Trade Center towers. In describing these characteristics, this chapter also illustrates the important roles that geochemists and other earth scientists can play in environmental disaster response and preparedness. In addition to characterizing in detail the physical, chemical, and microbial makeup of HM generated by the disasters, these roles also include (1) identifying and discriminating potential multiple sources of the materials; (2) monitoring, mapping, and modeling dispersal and evolution of the materials in the environment; (3) understanding how the materials are modified by environmental processes; (4) identifying key characteristics and processes that influence the materials' toxicity to exposed humans and ecosystems; (5) estimating shifts away from predisaster environmental baseline conditions; and (6) using geochemical insights learned from past disasters to help estimate, prepare for, and increase societal resilience to the environmental and related health impacts of future disasters.
Valadas Ponte, Diogo; Schäfer, Lothar
2013-12-01
We describe similarities in the ontology of quantum physics and of Carl Gustav Jung's psychology. In spite of the fact that physics and psychology are usually considered as unrelated, in the last century, both of these disciplines have led at the same time to revolutionary changes in the Western understanding of the cosmic order, discovering a non-empirical realm of the universe that doesn't consist of material things but of forms. These forms are real, even though they are invisible, because they have the potential to appear in the empirical world and act in it. We present arguments that force us to believe, that the empirical world is an emanation out of a cosmic realm of potentiality, whose forms can appear as physical structures in the external world and as archetypal concepts in our mind. Accordingly, the evolution of life now appears no longer as a process of the adaptation of species to their environment, but as the adaptation of minds to increasingly complex forms that exist in the cosmic potentiality. The cosmic connection means that the human mind is a mystical mind.
Valadas Ponte, Diogo; Schäfer, Lothar
2013-01-01
We describe similarities in the ontology of quantum physics and of Carl Gustav Jung’s psychology. In spite of the fact that physics and psychology are usually considered as unrelated, in the last century, both of these disciplines have led at the same time to revolutionary changes in the Western understanding of the cosmic order, discovering a non-empirical realm of the universe that doesn’t consist of material things but of forms. These forms are real, even though they are invisible, because they have the potential to appear in the empirical world and act in it. We present arguments that force us to believe, that the empirical world is an emanation out of a cosmic realm of potentiality, whose forms can appear as physical structures in the external world and as archetypal concepts in our mind. Accordingly, the evolution of life now appears no longer as a process of the adaptation of species to their environment, but as the adaptation of minds to increasingly complex forms that exist in the cosmic potentiality. The cosmic connection means that the human mind is a mystical mind. PMID:25379259
Weed, Mike; Coren, Esther; Fiore, Jo; Wellard, Ian; Mansfield, Louise; Chatziefstathiou, Dikaia; Dowse, Suzanne
2012-03-01
There is no evidence that previous Olympic Games have raised physical activity levels in adult populations. However, it may be premature to assume that this lack of previous evidence for an inherent effect is an indication that there is no potential to proactively harness the Games to generate a physical activity or sport legacy. Given that the political goal of achieving a physical activity legacy had already been set, the policy-led aim of this systematic review was to examine the processes by which the London 2012 Olympic and Paralympic Games might deliver a physical activity (as opposed to sport) legacy. Searches were conducted on five databases: SPORTS DISCUS, CINAHL, PsychLNFO, MEDLINE and Web of Knowledge. There are two key findings: first, that communities that are not positively engaged with hosting the 2012 Games in London are likely to be beyond the reach of any initiatives seeking to harness the Games to develop legacies in any area; second, major events such as London 2012 can, if promoted in the right way, generate a 'festival effect' that may have the potential to be harnessed to promote physical activity among the least active. The 'festival effect' derives from the promotion of the 2012 Games as a national festival that is bigger than and beyond sport, but that is also rooted in the lives of local and cultural communities, thus creating a strong desire to participate in some way in an event that is both nationally significant and locally or culturally relevant. Physical activity policy makers and professionals should seek to satisfy this desire to participate through providing physical activity (rather than sport) opportunities presented as fun community events or programmes. The key to generating a physical activity legacy among the least active adults through this process is to de-emphasise the sporting element of the 2012 Games and promote the festival element.
Temperature and composition profile during double-track laser cladding of H13 tool steel
NASA Astrophysics Data System (ADS)
He, X.; Yu, G.; Mazumder, J.
2010-01-01
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Guterman, Neil B; Lee, Shawna J; Taylor, Catherine A; Rathouz, Paul J
2009-12-01
This study set out to examine whether mothers' individual perceptions of their neighborhood social processes predict their risk for physical child abuse and neglect directly and/or indirectly via pathways involving parents' reported stress and sense of personal control in the parenting role. In-home and phone interview data were examined cross-sectionally from a national birth cohort sample of 3,356 mothers across 20 US cities when the index child was 3 years of age. Mothers' perceptions of neighborhood social processes, parenting stress, and personal control were examined as predictors, and three subscales of the Parent-To-Child Conflict Tactics Scale (CTS-PC) were employed as proxies of physical child abuse and neglect risk. Structural equation modeling (SEM) was employed to test direct and indirect pathways (via parenting stress and control) from perceived neighborhood processes to proxy measures of physical child abuse and neglect. Multiple group SEM was conducted to test for differences across major ethnic groups: African American, Hispanic, and White. Although perceived negative neighborhood processes had only a mild direct role in predicting risk for physical child abuse, and no direct role on child neglect, these perceptions had a discernable indirect role in predicting risk via parenting stress and personal control pathways. Parenting stress exerted the clearest direct role on both physical abuse and neglect risk. This predictor model did not significantly differ across ethnic groups. Although neighborhood conditions may not play a clear directly observable role on physical child abuse and neglect risk, the indirect role they play underscores the importance of parents' perceptions of their neighborhoods, and especially the role they play via parents' reported stress and personal control. Such findings suggest that targeting parents' sense of control and stress in relation to their immediate social environment holds particular potential to reduce physical child abuse and neglect risk. Addressing parents' perceptions of their neighborhood challenges may serve to reduce parenting risk via improving parents' felt control and stress.
Physical scales in the Wigner-Boltzmann equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedjalkov, M., E-mail: mixi@iue.tuwien.ac.at; Selberherr, S.; Ferry, D.K.
2013-01-15
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. Itmore » is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. - Highlights: Black-Right-Pointing-Pointer Dimensionless parameters determine the ratio of quantum or classical WB evolution. Black-Right-Pointing-Pointer The scaling theorem evaluates the decoherence effect due to scattering. Black-Right-Pointing-Pointer Evolution processes are grouped into classes of equivalence.« less
The influence of intuition and communication language in generating student conceptions
NASA Astrophysics Data System (ADS)
Handhika, J.; Cari, C.; Suparmi, A.; Sunarno, W.
2017-11-01
This research aims to describe the influence of intuition and communication language in generating student conceptions. The conception diagnostic test is used to reveal student conception. The diagnostic test results described and communication language profiled by giving instruction to students to make sentences using physics quantities. Sentences expressed by students are reduced and profiled potential effects. Obtained information that (1) Students generalize non-scientific experience (based on feeling) into the physics problem. This process caused misconception. Communication language can make the students difficult to understand the concept because of the difference meaning of communication and physics language.
Graphene growth process modeling: a physical-statistical approach
NASA Astrophysics Data System (ADS)
Wu, Jian; Huang, Qiang
2014-09-01
As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.
NASA Astrophysics Data System (ADS)
Triyastuti, M. S.; Kumoro, A. C.; Djaeni, M.
2017-03-01
Roselle contains anthocyanin that is potential for food colorant. Occasionally, roselle extract is provided in dry powder prepared under high temperature. In this case, the anthocyanin color degrades due to the intervention of heat. The foammat drying with egg white is a potential method to speed up the drying process as well as minimize color degradation. This research aims to study the physical properties of roselle extract under foam mat drying. As indicators, the powder size and color intensity were observed. The result showed that at high temperatures, roselle powder under foam mat drying has the fine size with porous structure. However, at the higher the drying temperature the color retention decreased.
Fundamental Neutron Physics: Theory and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudkov, Vladimir
The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity- and time reversal invariance-violating processes in neutron-induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity- and time reversal-violating effects in the consistent way. A major emphasis of our research during themore » funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three-nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects, and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Cul, G.D.; Toth, L.M.; Bond, W.D.
The concern that there might be some physical-chemical process which would lead to a separation of the poisoning actinides ({sup 232}Th, {sup 238}U) from the fissionable ones ({sup 239}Pu, {sup 235}U) in waste storage tanks at Oak Ridge National Laboratory has led to a paper study of potential separations processes involving these elements. At the relatively high pH values (>8), the actinides are normally present as precipitated hydroxides. Mechanisms that might then selectively dissolve and reprecipitate the actinides through thermal processes or additions of reagents were addressed. Although redox reactions, pH changes, and complexation reactions were all considered, only themore » last type was regarded as having any significant probability. Furthermore, only carbonate accumulation, through continual unmonitored air sparging of the tank contents, could credibly account for gross transport and separation of the actinide components. From the large amount of equilibrium data in the literature, concentration differences in Th, U, and Pu due to carbonate complexation as a function of pH have been presented to demonstrate this phenomenon. While the carbonate effect does represent a potential separations process, control of long-term air sparging and solution pH, accompanied by routine determinations of soluble carbonate concentration, should ensure that this separations process does not occur.« less
Analysis of weather patterns associated with air quality degradation and potential health impacts
Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...
Recent Developments in Positron Emission Tomography (PET) Instrumentation
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.
1986-04-01
This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.
The soil management assessment framework: A potential soil health assessment tool
USDA-ARS?s Scientific Manuscript database
The Soil Management Assessment Framework (SMAF) was developed in the 1990s utilizing Systems Engineering and Ecology experiences with scoring functions to normalize disparate soil physical, chemical, and biological indicator data representing critical properties and processes associated with soil qu...
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas
2015-01-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas
2015-03-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.
Physical scales in the Wigner–Boltzmann equation
Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.
2013-01-01
The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchand, R.; Miyake, Y.; Usui, H.
2014-06-15
Five spacecraft-plasma models are used to simulate the interaction of a simplified geometry Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. By considering similarities and differences between results obtained with different numerical approaches under well defined conditions, the consistency and validity of our models can be assessed. The impact on model predictions of physical effects of importance in the SPP mission is also considered by comparing results obtained with and without these effects. Simulation results are presented and compared with increasing levels of complexity in the physics of interaction between solar environmentmore » and the SPP spacecraft. The comparisons focus particularly on spacecraft floating potentials, contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. The physical effects considered include spacecraft charging, photoelectron and secondary electron emission, and the presence of a background magnetic field. Model predictions obtained with our different computational approaches are found to be in agreement within 2% when the same physical processes are taken into account and treated similarly. The comparisons thus indicate that, with the correct description of important physical effects, our simulation models should have the required skill to predict details of satellite-plasma interaction physics under relevant conditions, with a good level of confidence. Our models concur in predicting a negative floating potential V{sub fl}∼−10V for SPP at perihelion. They also predict a “saturated emission regime” whereby most emitted photo- and secondary electron will be reflected by a potential barrier near the surface, back to the spacecraft where they will be recollected.« less
Akyon, Benay; Stachler, Elyse; Wei, Na; Bibby, Kyle
2015-05-19
Treatment of produced water, i.e. wastewater from hydraulic fracturing, for reuse or final disposal is challenged by both high salinity and the presence of organic compounds. Organic compounds in produced water may foul physical-chemical treatment processes or support microbial corrosion, fouling, and sulfide release. Biological approaches have potential applications in produced water treatment, including reducing fouling of physical-chemical treatment processes and decreasing biological activity during produced water holding; however, conventional activated sludge treatments are intolerant of high salinity. In this study, a biofilm treatment approach using constructed microbial mats was evaluated for biodegradation performance, microbial community structure, and metabolic potential in both simulated and real produced water. Results demonstrated that engineered microbial mats are active at total dissolved solids (TDS) concentrations up to at least 100,000 mg/L, and experiments in real produced water showed a biodegradation capacity of 1.45 mg COD/gramwet-day at a TDS concentration of 91,351 mg/L. Additionally, microbial community and metagenomic analyses revealed an adaptive microbial community that shifted based upon the sample being treated and has the metabolic potential to degrade a wide array of contaminants, suggesting the potential of this approach to treat produced waters with varying composition.
NASA Astrophysics Data System (ADS)
Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.
2015-12-01
Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.
Real-Space Multiple-Scattering Theory and Its Applications at Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Wang, Yang
In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential,more » also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.« less
Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.
Ciarrocchi, Esther; Belcari, Nicola
2017-12-01
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
Towards physical principles of biological evolution
NASA Astrophysics Data System (ADS)
Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.
2018-03-01
Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice for adequate modeling of the biological level of complexity, and new developments within physics itself are likely to be required.
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
Pope, L.M.; Arruda, J.A.; Fromm, C.H.
1988-01-01
The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)
HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS
The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...
Computing by physical interaction in neurons.
Aur, Dorian; Jog, Mandar; Poznanski, Roman R
2011-12-01
The electrodynamics of action potentials represents the fundamental level where information is integrated and processed in neurons. The Hodgkin-Huxley model cannot explain the non-stereotyped spatial charge density dynamics that occur during action potential propagation. Revealed in experiments as spike directivity, the non-uniform charge density dynamics within neurons carry meaningful information and suggest that fragments of information regarding our memories are endogenously stored in structural patterns at a molecular level and are revealed only during spiking activity. The main conceptual idea is that under the influence of electric fields, efficient computation by interaction occurs between charge densities embedded within molecular structures and the transient developed flow of electrical charges. This process of computation underlying electrical interactions and molecular mechanisms at the subcellular level is dissimilar from spiking neuron models that are completely devoid of physical interactions. Computation by interaction describes a more powerful continuous model of computation than the one that consists of discrete steps as represented in Turing machines.
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
The effectiveness of pretreatment physics plan review for detecting errors in radiation therapy.
Gopan, Olga; Zeng, Jing; Novak, Avrey; Nyflot, Matthew; Ford, Eric
2016-09-01
The pretreatment physics plan review is a standard tool for ensuring treatment quality. Studies have shown that the majority of errors in radiation oncology originate in treatment planning, which underscores the importance of the pretreatment physics plan review. This quality assurance measure is fundamentally important and central to the safety of patients and the quality of care that they receive. However, little is known about its effectiveness. The purpose of this study was to analyze reported incidents to quantify the effectiveness of the pretreatment physics plan review with the goal of improving it. This study analyzed 522 potentially severe or critical near-miss events within an institutional incident learning system collected over a three-year period. Of these 522 events, 356 originated at a workflow point that was prior to the pretreatment physics plan review. The remaining 166 events originated after the pretreatment physics plan review and were not considered in the study. The applicable 356 events were classified into one of the three categories: (1) events detected by the pretreatment physics plan review, (2) events not detected but "potentially detectable" by the physics review, and (3) events "not detectable" by the physics review. Potentially detectable events were further classified by which specific checks performed during the pretreatment physics plan review detected or could have detected the event. For these events, the associated specific check was also evaluated as to the possibility of automating that check given current data structures. For comparison, a similar analysis was carried out on 81 events from the international SAFRON radiation oncology incident learning system. Of the 356 applicable events from the institutional database, 180/356 (51%) were detected or could have been detected by the pretreatment physics plan review. Of these events, 125 actually passed through the physics review; however, only 38% (47/125) were actually detected at the review. Of the 81 events from the SAFRON database, 66/81 (81%) were potentially detectable by the pretreatment physics plan review. From the institutional database, three specific physics checks were particularly effective at detecting events (combined effectiveness of 38%): verifying the isocenter (39/180), verifying DRRs (17/180), and verifying that the plan matched the prescription (12/180). The most effective checks from the SAFRON database were verifying that the plan matched the prescription (13/66) and verifying the field parameters in the record and verify system against those in the plan (23/66). Software-based plan checking systems, if available, would have potential effectiveness of 29% and 64% at detecting events from the institutional and SAFRON databases, respectively. Pretreatment physics plan review is a key safety measure and can detect a high percentage of errors. However, the majority of errors that potentially could have been detected were not detected in this study, indicating the need to improve the pretreatment physics plan review performance. Suggestions for improvement include the automation of specific physics checks performed during the pretreatment physics plan review and the standardization of the review process.
Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum
NASA Astrophysics Data System (ADS)
Guarnieri, F.; Moon, W.; Wettlaufer, J. S.
2017-09-01
Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with a negative constant drift, described by a Fokker-Planck equation with a potential V (x ) =-[b ln(x ) +a x ] , for b >0 and a <0 . The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process that has been extensively studied for its applications in physics, biology, and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schrödinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a constant negative drift. We conclude with a comparison to other analytical methods and with numerical solutions.
Pérez-Mitta, Gonzalo; Albesa, Alberto G.; Trautmann, Christina; Toimil-Molares, María Eugenia
2017-01-01
The ability of living systems to respond to stimuli and process information has encouraged scientists to develop integrated nanosystems displaying similar functions and capabilities. In this regard, biological pores have been a source of inspiration due to their exquisite control over the transport of ions within cells, a feature that ultimately plays a major role in multiple physiological processes, e.g. transduction of physical stimuli into nervous signals. Developing abiotic nanopores, which respond to certain chemical, biological or physical inputs producing “iontronic” signals, is now a reality thanks to the combination of “soft” surface science with nanofabrication techniques. The interplay between the functional richness of predesigned molecular components and the remarkable physical characteristics of nanopores plays a critical role in the rational integration of molecular functions into nanopore environments, permitting us to envisage nanopore-based biomimetic integrated nanosystems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined “iontronic” response can be amplified by exploiting nanoconfinement and physico-chemical effects such as charge distribution, steric constraints, equilibria displacement, or local changes in ionic concentration, to name but a few examples. While in past decades the focus has been mostly on their fundamental aspects and the in-depth study of their interesting transport properties, for several years now nanopore research has started to shift towards specific practical applications. This work is dedicated to bringing together the latest developments in the use of nanopores as “iontronic” transducing elements. Our aim is to show the wide potential of abiotic nanopores in sensing and signal transduction and also to promote the potential of this technology among doctoral students, postdocs, and researchers. We believe that even a casual reader of this perspective will not fail to be impressed by the wealth of opportunities that solid-state nanopores can offer to the transduction of biological, physical and chemical stimuli. PMID:28572900
The processing and transmission of EEG data
NASA Technical Reports Server (NTRS)
Schulze, A. E.
1974-01-01
Interest in sleep research was stimulated by the discovery of a number of physiological changes that occur during sleep and by the observed effects of sleep on physical and mental performance and status. The use of the relatively new methods of EEG measurement, transmission, and automatic scoring makes sleep analysis and categorization feasible. Sleep research involving the use of the EEG as a fundamental input has the potential of answering many unanswered questions involving physical and mental behavior, drug effects, circadian rhythm, and anesthesia.
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.
1986-01-01
The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.
Schulz, André; Strelzyk, Florian; Ferreira de Sá, Diana S; Naumann, Ewald; Vögele, Claus; Schächinger, Hartmut
2013-11-01
Little is known about the impact of stress and stress hormones on the processing of visceral-afferent signals. Clinical data suggest that cortisol may lower the threshold for interoceptive stimuli, while a pharmacological administration of cortisol decreases the sensitivity for physical symptoms. To clarify the role of cortisol for the processing of interoceptive signals, we investigated 16 healthy men on two occasions, once during the infusion of 4 mg of cortisol and once during the infusion of a placebo substance. Heartbeat-evoked potentials (HEP; derived from resting EEG and ECG, during open and closed eyes), which are psychophysiological indicators for the cortical processing of cardioceptive signals, were measured over 6-min periods once before, and four times after the infusion (1-7, 11-17, 21-27 and 31-37 min). We found that HEP amplitudes were higher during open than during closed eyes between 1 and 17 min after cortisol infusion. There was no effect of cortisol on heart rate. We conclude that cortisol may rapidly modulate the cortical processing of cardioceptive neural signals. These results may have relevance for the effects of stress on the development and maintenance of psychosomatic symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mechanical catalysis on the centimetre scale
Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M.; Pfeifer, Rolf
2015-01-01
Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales. PMID:25652461
Mechanical catalysis on the centimetre scale.
Miyashita, Shuhei; Audretsch, Christof; Nagy, Zoltán; Füchslin, Rudolf M; Pfeifer, Rolf
2015-03-06
Enzymes play important roles in catalysing biochemical transaction paths, acting as logical machines through the morphology of the processes. A key challenge in elucidating the nature of these systems, and for engineering manufacturing methods inspired by biochemical reactions, is to attain a comprehensive understanding of the stereochemical ground rules of enzymatic reactions. Here, we present a model of catalysis that can be performed magnetically by centimetre-sized passive floating units. The designed system, which is equipped with permanent magnets only, passively obeys the local causalities imposed by magnetic interactions, albeit it shows a spatial behaviour and an energy profile analogous to those of biochemical enzymes. In this process, the enzyme units trigger physical conformation changes of the target by levelling out the magnetic potential barrier (activation potential) to a funnel type and, thus, induce cascading conformation changes of the targeted substrate units reacting in parallel. The inhibitor units, conversely, suppress such changes by increasing the potential. Because the model is purely mechanical and established on a physics basis in the absence of turbulence, each performance can be explained by the morphology of the unit, extending the definition of catalysis to systems of alternative scales.
Risk analysis for biological hazards: What we need to know about invasive species
Stohlgren, T.J.; Schnase, J.L.
2006-01-01
Risk analysis for biological invasions is similar to other types of natural and human hazards. For example, risk analysis for chemical spills requires the evaluation of basic information on where a spill occurs; exposure level and toxicity of the chemical agent; knowledge of the physical processes involved in its rate and direction of spread; and potential impacts to the environment, economy, and human health relative to containment costs. Unlike typical chemical spills, biological invasions can have long lag times from introduction and establishment to successful invasion, they reproduce, and they can spread rapidly by physical and biological processes. We use a risk analysis framework to suggest a general strategy for risk analysis for invasive species and invaded habitats. It requires: (1) problem formation (scoping the problem, defining assessment endpoints); (2) analysis (information on species traits, matching species traits to suitable habitats, estimating exposure, surveys of current distribution and abundance); (3) risk characterization (understanding of data completeness, estimates of the “potential” distribution and abundance; estimates of the potential rate of spread; and probable risks, impacts, and costs); and (4) risk management (containment potential, costs, and opportunity costs; legal mandates and social considerations and information science and technology needs).
Future climate risk from compound events
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Westra, Seth; van den Hurk, Bart J. J. M.; Seneviratne, Sonia I.; Ward, Philip J.; Pitman, Andy; AghaKouchak, Amir; Bresch, David N.; Leonard, Michael; Wahl, Thomas; Zhang, Xuebin
2018-06-01
Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a `compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.
Human auditory event-related potentials predict duration judgments.
Bendixen, Alexandra; Grimm, Sabine; Schröger, Erich
2005-08-05
Internal clock models postulate a pulse accumulation process underlying timing activities, with more accumulated pulses resulting in longer perceived durations. We investigated whether this accumulation is reflected in the amplitude of event-related brain potentials (ERPs) elicited by auditory stimuli with durations of 400-600 ms. In a duration discrimination paradigm, we found more negative amplitudes to physically identical stimuli when they were judged as longer than the memorized standard duration (500 ms) as compared to being classified as shorter. This sustained negativity was already developing during the first 100 ms after stimulus onset. It could not be explained as a bias to respond with a particular hand (lateralized readiness potential), but rather reflects a processing difference between the tones to be judged as shorter or longer. Our results are in line with models of time processing which assume that higher numbers of accumulated pulses of a temporal processor result in an increase in perceived duration.
MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Perks, J; Rasmussen, K
2014-06-15
3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methodsmore » as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.« less
Lulé, Dorothée; Schulze, Ulrike M E; Bauer, Kathrin; Schöll, Friederike; Müller, Sabine; Fladung, Anne-Katharina; Uttner, Ingo
2014-06-01
Psychopathological changes and dysfunction in emotion processing have been described for anorexia nervosa (AN). Yet, findings are applicable to adult patients only. Furthermore, potential for discriminative power in clinical practice in relation to clinical parameters has to be discussed. The aim of this study was to investigate psychopathology and emotional face processing in adolescent female patients with AN. In a sample of 15 adolescent female patients with AN (16.2 years, SD ± 1.26) and 15 age and sex matched controls we assessed alexithymia, depression, anxiety and empathy in addition to emotion labelling and social information processing. AN patients had significantly higher alexithymia, higher levels of depression, and state and trait anxiety compared to controls. There was a trend for a lower ability to recognize disgust. Happiness as a positive emotion was recognized better. All facial expressions were recognized significantly faster by AN patients. Associations of pathological eating behaviour and trait anxiety were seen. In accordance with the stress reduction hypothesis, typical psychopathology of alexithymia, anxiety and depression is prevalent in female adolescent AN patients. It is present detached from physical stability. Pathogenesis of AN is multifactorial and already fully present in adolescence. An additional reinforcement process can be discussed. For clinical practice, those parameters might have a better potential for early prognostic factors related to AN than physical parameters and possible implication for intervention is given.
Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...
We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream...
Model-independent determination of the triple Higgs coupling at e + e – colliders
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; ...
2018-03-20
Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less
Model-independent determination of the triple Higgs coupling at e + e – colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon
Here, the observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e +e –→Zhh. We showmore » that, by combining the measurement of this process with other measurements available at a 500 GeV e +e – collider, it is possible to quote model-independent limits on the effective field theory parameter c 6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e +e – data.« less
Model-independent determination of the triple Higgs coupling at e+e- colliders
NASA Astrophysics Data System (ADS)
Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping
2018-03-01
The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.
``Recycling'' Geophysics: Monitoring and Isotopic Analysis of Engineered Biological Systems
NASA Astrophysics Data System (ADS)
Doherty, R.; Singh, K. P.; Ogle, N.; Ntarlagiannis, D.
2010-12-01
The emerging sub discipline of biogeophysics has provoked debate on the mechanisms of microbial processes that may contribute to geophysical signatures. At field scales geophysical signatures are often non unique due to the many parameters (physical, chemical, and biological) that are involved. It may be easier to apply geophysical techniques such as electrodic potential (EP), self potential (SP) and induced polarization (IP) to engineered biological systems where there is a degree of control over the design of the physical and chemical domain. Here we present results of a column experiment that was designed to anaerobically biodegrade dissolved organic matter in landfill leachate. The column utilises a recycled porous media (concrete) to help sequester organic carbon. Electrodic potential, self potential and induced polarisation are used in conjunction with chemical and isotopic techniques to monitor the effectiveness of this approach. Preliminary carbon and oxygen isotopic analysis on concrete from the column in contact with leachate show isotopic enrichment suggesting abiotic precipitation of carbonates.
Software tool for physics chart checks.
Li, H Harold; Wu, Yu; Yang, Deshan; Mutic, Sasa
2014-01-01
Physics chart check has long been a central quality assurance (QC) measure in radiation oncology. The purpose of this work is to describe a software tool that aims to accomplish simplification, standardization, automation, and forced functions in the process. Nationally recognized guidelines, including American College of Radiology and American Society for Radiation Oncology guidelines and technical standards, and the American Association of Physicists in Medicine Task Group reports were identified, studied, and summarized. Meanwhile, the reported events related to physics chart check service were analyzed using an event reporting and learning system. A number of shortfalls in the chart check process were identified. To address these problems, a software tool was designed and developed under Microsoft. Net in C# to hardwire as many components as possible at each stage of the process. The software consists of the following 4 independent modules: (1) chart check management; (2) pretreatment and during treatment chart check assistant; (3) posttreatment chart check assistant; and (4) quarterly peer-review management. The users were a large group of physicists in the author's radiation oncology clinic. During over 1 year of use the tool has proven very helpful in chart checking management, communication, documentation, and maintaining consistency. The software tool presented in this work aims to assist physicists at each stage of the physics chart check process. The software tool is potentially useful for any radiation oncology clinics that are either in the process of pursuing or maintaining the American College of Radiology accreditation.
Impact of (α, n) reactions on weak r-process in neutrino-driven winds
NASA Astrophysics Data System (ADS)
Bliss, J.; Arcones, A.; Montes, F.; Pereira, J.
2017-05-01
After a successful core-collapse supernova, a neutrino-driven wind develops where it is possible to synthesize lighter heavy elements (30 < Z < 45). In the early galaxy, the origin of these elements is associated with the r-process and to an additional process. Here we assume that the additional process corresponds to the weak r-process (sometimes referred to as alpha-process) taking place in neutrino-driven winds. Based on a trajectory obtained from hydrodynamical simulations we study the astrophysics and nuclear physics uncertainties of a weak r-process with our main focus on the (α, n) reactions. These reactions are critical to redistribute the matter and allow it to move from light to heavy elements after nuclear statistical equilibrium freezes out. In this first sensitivity study, we vary all (α, n) reactions by given constant factors which are justified based on the uncertainties of the statistical model and its nuclear physics input, mainly alpha optical potentials for weak r-process conditions. Our results show that (α, n) rate uncertainties are indeed crucial to predict abundances. Therefore, further studies will follow to identify individual critical reactions. Since the nucleosynthesis path is close to stability, these reactions can be measured in the near future. Since much of the other nuclear data for the weak r-process are known, the reduction in nuclear physics uncertainties provided by these experiments will allow astronomical observations to directly constrain the astronomical conditions in the wind.
Potential-field sounding using Euler's homogeneity equation and Zidarov bubbling
Cordell, Lindrith
1994-01-01
Potential-field (gravity) data are transformed into a physical-property (density) distribution in a lower half-space, constrained solely by assumed upper bounds on physical-property contrast and data error. A two-step process is involved. The data are first transformed to an equivalent set of line (2-D case) or point (3-D case) sources, using Euler's homogeneity equation evaluated iteratively on the largest residual data value. Then, mass is converted to a volume-density product, constrained to an upper density bound, by 'bubbling,' which exploits circular or radial expansion to redistribute density without changing the associated gravity field. The method can be developed for gravity or magnetic data in two or three dimensions. The results can provide a beginning for interpretation of potential-field data where few independent constraints exist, or more likely, can be used to develop models and confirm or extend interpretation of other geophysical data sets.
Bacterial membranes: the effects of chill storage and food processing. An overview.
Russell, Nicholas J
2002-11-15
The shelf life of food is extended by refrigeration because the metabolic processes of food-associated microorganisms are slowed by the lowered temperature. Nonetheless, cold-adapted psychrotrophic food-poisoning and food-spoilage bacteria remain a concern because they possess cold-adapted proteins and membrane lipids that facilitate growth at low temperatures. The use of membrane-disrupting novel preservation techniques, such as ultrasound, high hydrostatic pressure or pulsed electric field, offer the potential for an extension of shelf life. This review considers the interacting and potentially synergistic effects of chill storage or mild heat treatment on membrane properties, with the disruptive effects of membrane-targeted physical treatments.
A survey of dusty plasma physics
NASA Astrophysics Data System (ADS)
Shukla, P. K.
2001-05-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in several laboratory experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty-first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multidisciplinary areas of science.
Vossen, Emmie; Van Gestel, Nicolette; Van der Heijden, Beatrice I J M; Rouwette, Etiënne A J A
2017-05-01
This study aimed to explore if and why the return-to-work (RTW) experiences of various workplace stakeholders in the Netherlands and Denmark differ between physical and mental health conditions, and to understand the consequences of potentially different experiences for the RTW process in both health conditions. We studied 21 cases of long-term sickness absence, and held a total of 61 semi-structured interviews with the various actors involved in these cases. Physical cases were seen as "easy" and mental cases as "difficult" to manage, based on the visibility and predictability of health complaints. On this ground, assessing work ability and following required RTW actions were perceived as more urgent in mental than in physical cases. Despite these perceptions, in practice, the assessment of work ability seemed to impair the RTW process in mental cases (but not in physical ones), and the (non-)uptake of RTW actions appeared to have similar results in both mental and physical cases. With these outcomes, the effectiveness of a differential approach is questioned, and the relevance of a bidirectional dialog on work ability and a phased RTW plan is highlighted, regardless of the absence cause. Our study also demonstrates how policymakers need to strike a balance between obligatory and permissive legislation to better involve workplaces in RTW issues. Implications for rehabilitation Both physically and mentally sick-listed employees could benefit from a bidirectional dialog on work ability as well as from a phased RTW plan. A greater role for employers in the RTW process should be accompanied with a support for sick-listed employees, in both physical and mental sickness absence cases. Dutch and Danish RTW legislation could be improved by carefully balancing obligatory and permissive rules and regulations to involve workplaces in RTW matters.
NASA Astrophysics Data System (ADS)
Poppe, Christian; Dörr, Dominik; Henning, Frank; Kärger, Luise
2018-05-01
Wet compression moulding (WCM) provides large-scale production potential for continuously fiber reinforced components as a promising alternative to resin transfer moulding (RTM). Lower cycle times are possible due to parallelization of the process steps draping, infiltration and curing during moulding (viscous draping). Experimental and theoretical investigations indicate a strong mutual dependency between the physical mechanisms, which occur during draping and mould filling (fluid-structure-interaction). Thus, key process parameters, like fiber orientation, fiber volume fraction, cavity pressure and the amount and viscosity of the resin are physically coupled. To enable time and cost efficient product and process development throughout all design stages, accurate process simulation tools are desirable. Separated draping and mould filling simulation models, as appropriate for the sequential RTM-process, cannot be applied for the WCM process due to the above outlined physical couplings. Within this study, a two-dimensional Darcy-Propagation-Element (DPE-2D) based on a finite element formulation with additional control volumes (FE/CV) is presented, verified and applied to forming simulation of a generic geometry, as a first step towards a fluid-structure-interaction model taking into account simultaneous resin infiltration and draping. The model is implemented in the commercial FE-Solver Abaqus by means of several user subroutines considering simultaneous draping and 2D-infiltration mechanisms. Darcy's equation is solved with respect to a local fiber orientation. Furthermore, the material model can access the local fluid domain properties to update the mechanical forming material parameter, which enables further investigations on the coupled physical mechanisms.
Poston, Lucilla; Briley, Annette L; Barr, Suzanne; Bell, Ruth; Croker, Helen; Coxon, Kirstie; Essex, Holly N; Hunt, Claire; Hayes, Louise; Howard, Louise M; Khazaezadeh, Nina; Kinnunen, Tarja; Nelson, Scott M; Oteng-Ntim, Eugene; Robson, Stephen C; Sattar, Naveed; Seed, Paul T; Wardle, Jane; Sanders, Thomas A B; Sandall, Jane
2013-07-15
Complex interventions in obese pregnant women should be theoretically based, feasible and shown to demonstrate anticipated behavioural change prior to inception of large randomised controlled trials (RCTs). The aim was to determine if a) a complex intervention in obese pregnant women leads to anticipated changes in diet and physical activity behaviours, and b) to refine the intervention protocol through process evaluation of intervention fidelity. We undertook a pilot RCT of a complex intervention in obese pregnant women, comparing routine antenatal care with an intervention to reduce dietary glycaemic load and saturated fat intake, and increase physical activity. Subjects included 183 obese pregnant women (mean BMI 36.3 kg/m2). Compared to women in the control arm, women in the intervention arm had a significant reduction in dietary glycaemic load (33 points, 95% CI -47 to -20), (p < 0.001) and saturated fat intake (-1.6% energy, 95% CI -2.8 to -0. 3) at 28 weeks' gestation. Objectively measured physical activity did not change. Physical discomfort and sustained barriers to physical activity were common at 28 weeks' gestation. Process evaluation identified barriers to recruitment, group attendance and compliance, leading to modification of intervention delivery. This pilot trial of a complex intervention in obese pregnant women suggests greater potential for change in dietary intake than for change in physical activity, and through process evaluation illustrates the considerable advantage of performing an exploratory trial of a complex intervention in obese pregnant women before undertaking a large RCT. ISRCTN89971375.
Ajslev, Jeppe; Brandt, Mikkel; Møller, Jeppe Lykke; Skals, Sebastian; Vinstrup, Jonas; Jakobsen, Markus Due; Sundstrup, Emil; Madeleine, Pascal; Andersen, Lars Louis
2016-05-26
Previous research has shown that reducing physical workload among workers in the construction industry is complicated. In order to address this issue, we developed a process evaluation in a formative mixed-methods design, drawing on existing knowledge of the potential barriers for implementation. We present the design of a mixed-methods process evaluation of the organizational, social, and subjective practices that play roles in the intervention study, integrating technical measurements to detect excessive physical exertion measured with electromyography and accelerometers, video documentation of working tasks, and a 3-phased workshop program. The evaluation is designed in an adapted process evaluation framework, addressing recruitment, reach, fidelity, satisfaction, intervention delivery, intervention received, and context of the intervention companies. Observational studies, interviews, and questionnaires among 80 construction workers organized in 20 work gangs, as well as health and safety staff, contribute to the creation of knowledge about these phenomena. At the time of publication, the process of participant recruitment is underway. Intervention studies are challenging to conduct and evaluate in the construction industry, often because of narrow time frames and ever-changing contexts. The mixed-methods design presents opportunities for obtaining detailed knowledge of the practices intra-acting with the intervention, while offering the opportunity to customize parts of the intervention.
Beswa, Daniso; Dlamini, Nomusa R; Amonsou, Eric O; Siwela, Muthulisi; Derera, John
2016-01-15
Pro-vitamin A-biofortified maize snacks with added leafy vegetable may have a potential as nutritious and health-promoting products, especially in addressing vitamin A deficiency, which is prevalent in developing regions. The objective of the study was to determine the effects of adding amaranth leaf powder on the physical, antioxidant properties and pro-vitamin A content of extruded pro-vitamin A-biofortified maize snacks. Extruded snacks were processed using four pro-vitamin A-biofortified maize varieties that were composited with amaranth leaf powder at 0%, 1% and 3% (w/w) substitution levels. At higher amaranth concentration, the expansion ratio of the snacks decreased, while their hardness increased by as much as 93%. The physical quality of the snacks may therefore need improvement. As amaranth was increased, the phenolic content and antioxidant activity of the snacks increased as well as the pro-vitamin A content. Pro-vitamin A-biofortified maize with added amaranth has a potential for use in nutritious and healthy extruded snacks. There are limited studies reporting on processing pro-vitamin A maize with complementary plant foods, which is common with white maize in southern Africa; thus the current study serves as a baseline. © 2015 Society of Chemical Industry.
Programmable Potentials: Approximate N-body potentials from coarse-level logic.
Thakur, Gunjan S; Mohr, Ryan; Mezić, Igor
2016-09-27
This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the "coefficients" of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.
Programmable Potentials: Approximate N-body potentials from coarse-level logic
NASA Astrophysics Data System (ADS)
Thakur, Gunjan S.; Mohr, Ryan; Mezić, Igor
2016-09-01
This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out.
Programmable Potentials: Approximate N-body potentials from coarse-level logic
Thakur, Gunjan S.; Mohr, Ryan; Mezić, Igor
2016-01-01
This paper gives a systematic method for constructing an N-body potential, approximating the true potential, that accurately captures meso-scale behavior of the chemical or biological system using pairwise potentials coming from experimental data or ab initio methods. The meso-scale behavior is translated into logic rules for the dynamics. Each pairwise potential has an associated logic function that is constructed using the logic rules, a class of elementary logic functions, and AND, OR, and NOT gates. The effect of each logic function is to turn its associated potential on and off. The N-body potential is constructed as linear combination of the pairwise potentials, where the “coefficients” of the potentials are smoothed versions of the associated logic functions. These potentials allow a potentially low-dimensional description of complex processes while still accurately capturing the relevant physics at the meso-scale. We present the proposed formalism to construct coarse-grained potential models for three examples: an inhibitor molecular system, bond breaking in chemical reactions, and DNA transcription from biology. The method can potentially be used in reverse for design of molecular processes by specifying properties of molecules that can carry them out. PMID:27671683
Potential Ambient Energy-Harvesting Sources and Techniques
ERIC Educational Resources Information Center
Yildiz, Faruk
2009-01-01
Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…
Electrochemical study of aluminum corrosion in boiling high purity water
NASA Technical Reports Server (NTRS)
Draley, J. E.; Legault, R. A.
1969-01-01
Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... integration of systems, technologies, programs, equipment, supporting processes, and implementing procedures...-in-depth methodologies to minimize the potential for an insider to adversely affect, either directly... protection of digital computer and communication systems and networks. (ii) Site-specific conditions that...
Personal Variables and Bias in Educational Decision-Making.
ERIC Educational Resources Information Center
Huebner, E. Scott; And Others
1984-01-01
Findings regarding the influence of four potential sources of bias (sex, socioeconimic status, race, physical attractiveness) upon decision-making stages of the assessment process are selectively reviewed. It is concluded that, though further research is needed, convincing evidence of bias in later stages of decision making has yet to be…
Role and potential mechanisms of anabolic resistance in sarcopenia
USDA-ARS?s Scientific Manuscript database
There is a pressing need to understand the aging process to better cope with its associated physical and societal costs. The age-related muscle wasting known as sarcopenia is a major contributor to the problems faced by the elderly. By hindering mobility and reducing strength, it greatly diminishes ...
Airborne-Fiber Optics Manufacturing Technology, Aircraft Installation Processes.
1980-08-19
but the impact is minor. With simpler equipment and techniques there may be a J’ 1 -, long- term savings potential. Overall costs and benefits of...4/72 1 * lh427 ,. . . ... .. - - . .. . 4.0 ASSEMBLY OF FIBER OPTIC CABLES AND HARNESSES 4.1 CABLE IDENTIFICATION (Marking) 4.1.1 Physically identify...FIBER OPTICS MANUFACTURING TECHNOLOGY Aircraft Installation Processes G Kosmos ~ ~ 19 August 1980 I 2 Final Report: May 1978 - June 1980 . 1 Prepared for
Stupacher, Jan; Witte, Matthias; Hove, Michael J; Wood, Guilherme
2016-12-01
The fusion of rhythm, beat perception, and movement is often summarized under the term "entrainment" and becomes obvious when we effortlessly tap our feet or snap our fingers to the pulse of music. Entrainment to music involves a large network of brain structures, and neural oscillations at beat-related frequencies can help elucidate how this network is connected. Here, we used EEG to investigate steady-state evoked potentials (SSEPs) and event-related potentials (ERPs) during listening and tapping to drum clips with different rhythmic structures that were interrupted by silent breaks of 2-6 sec. This design allowed us to address the question of whether neural entrainment processes persist after the physical presence of musical rhythms and to link neural oscillations and event-related neural responses. During stimulus presentation, SSEPs were elicited in both tasks (listening and tapping). During silent breaks, SSEPs were only present in the tapping task. Notably, the amplitude of the N1 ERP component was more negative after longer silent breaks, and both N1 and SSEP results indicate that neural entrainment was increased when listening to drum rhythms compared with an isochronous metronome. Taken together, this suggests that neural entrainment to music is not solely driven by the physical input but involves endogenous timing processes. Our findings break ground for a tighter linkage between steady-state and transient evoked neural responses in rhythm processing. Beyond music perception, they further support the crucial role of entrained oscillatory activity in shaping sensory, motor, and cognitive processes in general.
Uchino, Bert N.; Bowen, Kimberly; Carlisle, McKenzie; Birmingham, Wendy
2012-01-01
Contemporary models postulate the importance of psychological mechanisms linking perceived and received social support to physical health outcomes. In this review, we examine studies that directly tested the potential psychological mechanisms responsible for links between social support and health-relevant physiological processes (1980s to 2010). Inconsistent with existing theoretical models, no evidence was found that psychological mechanisms such as depression, perceived stress, and other affective processes are directly responsible for links between support and health. We discuss the importance of considering statistical/design issues, emerging conceptual perspectives, and limitations of our existing models for future research aimed at elucidating the psychological mechanisms responsible for links between social support and physical health outcomes. PMID:22326104
Hughes, Alicia M; Gordon, Rola; Chalder, Trudie; Hirsch, Colette R; Moss-Morris, Rona
2016-11-01
There is an abundance of research into cognitive processing biases in clinical psychology including the potential for applying cognitive bias modification techniques to assess the causal role of biases in maintaining anxiety and depression. Within the health psychology field, there is burgeoning interest in applying these experimental methods to assess potential cognitive biases in relation to physical health conditions and health-related behaviours. Experimental research in these areas could inform theoretical development by enabling measurement of implicit cognitive processes that may underlie unhelpful illness beliefs and help drive health-related behaviours. However, to date, there has been no systematic approach to adapting existing experimental paradigms for use within physical health research. Many studies fail to report how materials were developed for the population of interest or have used untested materials developed ad hoc. The lack of protocol for developing stimuli specificity has contributed to large heterogeneity in methodologies and findings. In this article, we emphasize the need for standardized methods for stimuli development and replication in experimental work, particularly as it extends beyond its original anxiety and depression scope to other physical conditions. We briefly describe the paradigms commonly used to assess cognitive biases in attention and interpretation and then describe the steps involved in comprehensive/robust stimuli development for attention and interpretation paradigms using illustrative examples from two conditions: chronic fatigue syndrome and breast cancer. This article highlights the value of preforming rigorous stimuli development and provides tools to aid researchers engage in this process. We believe this work is worthwhile to establish a body of high-quality and replicable experimental research within the health psychology literature. Statement of contribution What is already known on this subject? Cognitive biases (e.g., tendencies to attend to negative information and/or interpret ambiguous information in negative ways) have a causal role in maintaining anxiety and depression. There is mixed evidence of cognitive biases in physical health conditions and chronic illness; one reason for this may be the heterogeneous stimuli used to assess attention and interpretation biases in these conditions. What does this study add? Steps for comprehensive/robust stimuli development for attention and interpretation paradigms are presented. Illustrative examples are provided from two conditions: chronic fatigue syndrome and breast cancer. We provide tools to help researchers develop condition-specific materials for experimental studies. © 2016 The British Psychological Society.
Feng, Yi; Hong, Yan-Long; Xian, Jie-Chen; Du, Ruo-Fei; Zhao, Li-Jie; Shen, Lan
2014-09-01
Traditional processes are mostly adopted in traditional Chinese medicine (TCM) preparation production and the quality of products is mostly controlled by terminal. Potential problems of the production in the process are unpredictable and is relied on experience in most cases. Therefore, it is hard to find the key points affecting the preparation process and quality control. A pattern of research and development of traditional Chinese medicine preparation process based on the idea of Quality by Design (QbD) was proposed after introducing the latest research achievement. Basic theories of micromeritics and rheology were used to characterize the physical property of TCM raw material. TCM preparation process was designed in a more scientific and rational way by studying the correlation among enhancing physical property of raw material, preparation process and product quality of preparation. So factors affecting the quality of TCM production would be found out and problems that might occur in the pilot process could be predicted. It would be a foundation for the R&D and production of TCM preparation as well as support for the "process control" of TCMIs gradually realized in the future.
Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives
NASA Astrophysics Data System (ADS)
Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni
2018-03-01
This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.
Liang, Yicheng; Peng, Hao
2015-02-07
Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.
Yogic exercises and health--a psycho-neuro immunological approach.
Kulkarni, D D; Bera, T K
2009-01-01
Relaxation potential of yogic exercises seems to play a vital role in establishing psycho-physical health in reversing the psycho-immunology of emotions under stress based on breath and body awareness. However, mechanism of yogic exercises for restoring health and fitness components operating through psycho-neuro-immunological pathways is unknown. Therefore, a hybrid model of human information processing-psycho-neuroendocrine (HIP-PNE) network has been proposed to reveal the importance of yogic information processing. This study focuses on two major pathways of information processing involving cortical and hypothalamo-pituitary-adrenal axis (HPA) interactions with a deep reach molecular action on cellular, neuro-humoral and immune system in reversing stress mediated diseases. Further, the proposed HIP-PNE model has ample of experimental potential for objective evaluation of yogic view of health and fitness.
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Torri, Dino; Santi, Elisa; Bacaro, Giovanni; Marchesini, Ivan
2014-05-01
Landslide phenomena and erosion processes are widespread and cause every year extensive damages to the environment and sensible reduction of ecosystem services. These processes are in competition among them, and their complex interaction control the landscapes evolution. Landslide phenomena and erosion processes can be strongly influenced by land use, vegetation, soil characteristics and anthropic actions. Such type of phenomena are mainly model separately using empirical and physically based approaches. The former rely upon the identification of simple empirical laws correlating/relating the occurrence of instability processes to some of their potential causes. The latter are based on physical descriptions of the processes, and depending on the degree of complexity they can integrate different variables characterizing the process and their trigger. Those model often couple an hydrological model with an erosion or a landslide model. The spatial modeling schemas are heterogeneous, but mostly the raster (i.e. matrices of data) or the conceptual (i.e. cascading planes and channels) description of the terrain are used. The two model types are generally designed and applied at different scales. Empirical models, less demanding in terms of input data cannot consider explicitly the real process triggering mechanisms and commonly they are exploited to assess the potential occurrence of instability phenomena over large areas (small scale assessment). Physically-based models are high-demanding in term of input data, difficult to obtain over large areas if not with large uncertainty, and their applicability is often limited to small catchments or single slopes (large scale assessment). More those models, even if physically-based, are simplified description of the instability processes and can neglect significant issues of the real triggering mechanisms. For instance the influence of vegetation has been considered just partially. Although in the literature a variety of model approaches have been proposed to model separately landslide and erosion processes, only few attempts were made to model both jointly, mostly integrating pre-existing models. To overcome this limitation we develop a new model called LANDPLANER (LANDscape, Plants, LANdslide and ERosion), specifically design to describe the dynamic response of slopes (or basins) under different changing scenarios including: (i) changes of meteorological factors, (ii) changes of vegetation or land-use, (iii) and changes of slope morphology. The was applied in different study area in order to check its basic assumptions, and to test its general operability and applicability. Results show a reasonable model behaviors and confirm its easy applicability in real cases.
New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals
NASA Astrophysics Data System (ADS)
Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie
2017-11-01
Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.
Gawke, Jason C; Gorgievski, Marjan J; van der Linden, Dimitri
2012-01-01
This study investigated physical, psychological and social job characteristics as potential risk factors for complaints of the arms, neck and shoulders (CANS) and mediating effects of muscular tension and need for recovery. Data were collected among 105 computer workers using questionnaires and electromyography (EMG), and were analyzed with linear regression analyses. Task interdependence, information processing and lower social support predicted more CANS. Physical job demands had no predictive power over and above psychological and social Stressors. Both muscular tension and need for recovery partially mediated the job characteristics-CANS relationships. Occupational health professionals should not neglect psychological and social job characteristics as potentially important predictors of CANS in specific occupational groups, such as office workers. Our findings imply that CANS interventions should not be restricted to ergonomic improvements, but should be accompanied by improvement of the job design from a psychological and social perspective and reactive intervention aimed at decreasing short-term physical strain (muscular tension) and mental strain (need for recovery).
Mordecai, Yaniv; Dori, Dov
2017-07-17
The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.
Physical Processes Controlling Earth's Climate
NASA Technical Reports Server (NTRS)
Genio, Anthony Del
2013-01-01
As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.
The effectiveness of pretreatment physics plan review for detecting errors in radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, Olga; Zeng, Jing; Novak, Avrey
Purpose: The pretreatment physics plan review is a standard tool for ensuring treatment quality. Studies have shown that the majority of errors in radiation oncology originate in treatment planning, which underscores the importance of the pretreatment physics plan review. This quality assurance measure is fundamentally important and central to the safety of patients and the quality of care that they receive. However, little is known about its effectiveness. The purpose of this study was to analyze reported incidents to quantify the effectiveness of the pretreatment physics plan review with the goal of improving it. Methods: This study analyzed 522 potentiallymore » severe or critical near-miss events within an institutional incident learning system collected over a three-year period. Of these 522 events, 356 originated at a workflow point that was prior to the pretreatment physics plan review. The remaining 166 events originated after the pretreatment physics plan review and were not considered in the study. The applicable 356 events were classified into one of the three categories: (1) events detected by the pretreatment physics plan review, (2) events not detected but “potentially detectable” by the physics review, and (3) events “not detectable” by the physics review. Potentially detectable events were further classified by which specific checks performed during the pretreatment physics plan review detected or could have detected the event. For these events, the associated specific check was also evaluated as to the possibility of automating that check given current data structures. For comparison, a similar analysis was carried out on 81 events from the international SAFRON radiation oncology incident learning system. Results: Of the 356 applicable events from the institutional database, 180/356 (51%) were detected or could have been detected by the pretreatment physics plan review. Of these events, 125 actually passed through the physics review; however, only 38% (47/125) were actually detected at the review. Of the 81 events from the SAFRON database, 66/81 (81%) were potentially detectable by the pretreatment physics plan review. From the institutional database, three specific physics checks were particularly effective at detecting events (combined effectiveness of 38%): verifying the isocenter (39/180), verifying DRRs (17/180), and verifying that the plan matched the prescription (12/180). The most effective checks from the SAFRON database were verifying that the plan matched the prescription (13/66) and verifying the field parameters in the record and verify system against those in the plan (23/66). Software-based plan checking systems, if available, would have potential effectiveness of 29% and 64% at detecting events from the institutional and SAFRON databases, respectively. Conclusions: Pretreatment physics plan review is a key safety measure and can detect a high percentage of errors. However, the majority of errors that potentially could have been detected were not detected in this study, indicating the need to improve the pretreatment physics plan review performance. Suggestions for improvement include the automation of specific physics checks performed during the pretreatment physics plan review and the standardization of the review process.« less
Kramers problem in evolutionary strategies
NASA Astrophysics Data System (ADS)
Dunkel, J.; Ebeling, W.; Schimansky-Geier, L.; Hänggi, P.
2003-06-01
We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corresponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas the Fisher-Eigen process is based on a global coupling (nonlocal interaction). If considered in the context of numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologically inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolutionary strategy.
Autonomous perception and decision making in cyber-physical systems
NASA Astrophysics Data System (ADS)
Sarkar, Soumik
2011-07-01
The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and buildings, distributed energy systems, advanced health care procedures and future ground and air transportation systems.
Characterisation of FOGs in grease trap waste from the processing of chickens in Thailand.
Nitayapat, Nuttakan; Chitprasert, Pakamon
2014-06-01
Industrial firms that kill and process chickens generate wastewater that contains fat, oil, and grease (FOG). The FOGs are located in the fatty waste that is collected by floatation in grease traps. Chemical and physical characterisation of FOGs would provide useful information that would help in the development of methods designed to decrease the extent of pollution caused by disposal of the waste and to utilise commercially some of its lipid constituents. Employing these methods would enhance the profitability and competitive potential of these commercial organisations. Samples of grease trap waste from 14 firms in central Thailand have been examined. Due to the very different schemes of waste management employed by these firms, the physical appearance of their fatty wastes showed considerable variation. The chemical and physical properties of the FOGs present in these wastes showed considerable variation also. Large amounts of free fatty acids (10-70% as oleic acid) were detected in most of the 14 wastes and palmitic, cis-9-oleic, cis,cis-9,12-linoleic, stearic, and palmitoleic acids were the predominant species of free and esterified acids. Most of the FOGs were solid at temperatures below 40 °C. Many of them contained traces of heavy metals (Cu and Pb) and some contained traces of the pesticides dimethoate and cypermethrin. The content of these potentially hazardous substances would have to be considered very carefully before discarding the fatty wastes and during the development of methods designed to isolate their potentially profitable lipid constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brennan, Kevin F.
1999-02-01
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.
NASA Astrophysics Data System (ADS)
Cui, Jie; Li, Zhiying; Krems, Roman V.
2015-10-01
We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the -H →-X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He.
Unlocking Potentials of Microwaves for Food Safety and Quality
Tang, Juming
2015-01-01
Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. PMID:26242920
Unlocking Potentials of Microwaves for Food Safety and Quality.
Tang, Juming
2015-08-01
Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.
2011-01-01
For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.
Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology
NASA Astrophysics Data System (ADS)
Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.
2008-01-01
For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.
Improved understanding of the relationship between hydraulic properties and streaming potentials
NASA Astrophysics Data System (ADS)
Cassiani, G.; Brovelli, A.
2009-12-01
Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.
NASA Astrophysics Data System (ADS)
Stassun, Keivan; Holley-Bockelmann, K.; Berlind, A. A.
2013-01-01
We briefly review the current status of underrepresented minorities in the physical sciences: The underrepresentation of Black-, Hispanic-, and Native-Americans is an order of magnitude problem. We then describe the Fisk-Vanderbilt Masters-to-PhD Bridge program as a successful model for effective partnerships with minority-serving institutions toward addressing this problem. Since 2004 the program has admitted 60 students, 54 of them underrepresented minorities (60% female), with a retention rate of 92%. The program leads the nation in master’s degrees in physics for African Americans, is one of the top ten producers of physics master’s degrees among all US citizens in general, and has become the nation’s top producer of underrepresented minority PhDs in physics, astronomy, and materials science. We summarize the main features of the program including two of its core strategies: (1) partnering a minority-serving institution and a major research university through collaborative research, and (2) using the master’s degree as a deliberate stepping stone to the PhD. We also specifically discuss one of the emerging core theories of the program: the concept of properly identifying students with 'unrealized or unrecognized potential'. We discuss our methods to recognize and select for unrealized potential during the admissions process, and how we cultivate that unrealized potential toward development of successful scientists and leaders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Norris, E; Dunsmuir, S; Duke-Williams, O; Stamatakis, E; Shelton, N
2018-02-02
Physically active lessons integrating movement into academic content are a way to increase children's physical activity levels. Virtual Traveller was a physically active lesson intervention set in Year 4 (aged 8-9) primary school classes in Greater London, UK. Implemented by classroom teachers, it was a six-week intervention providing 10-min physically active Virtual Field Trips three times a week. The aim of this paper is to report the process evaluation of the Virtual Traveller randomized controlled trial according to RE-AIM framework criteria (Reach, Effectiveness, Adoption, Implementation and Maintenance). A mixed methods approach to evaluation was conducted with five intervention group classes. Six sources of data were collected via informed consent logs, teacher session logs, teacher and pupil questionnaires, teacher interviews and pupil focus groups. High participation and low attrition rates were identified (Reach) alongside positive evaluations of Virtual Traveller sessions from pupil and teachers (Effectiveness). Participants were from more deprived and ethnic backgrounds than local and national averages, with Virtual Traveller having the potential to be a free intervention (Adoption). 70% of sessions were delivered overall (Implementation) but no maintenance of the programme was evident at three month follow-up (Maintenance). Mixed method evaluation of Virtual Traveller showed potential for it to be implemented as a low-cost physically active lesson intervention in UK primary schools. Copyright © 2018 Elsevier Ltd. All rights reserved.
Potential Physical Disabilities in Computerized Journalism Education.
ERIC Educational Resources Information Center
Jackson, Nancy Beth
Computers, depending on how they are used, can be both a boon and a menace to health and performance. With the increasing presence of computers on campus, journalism educators must make sure they are not creating a new class of disabled persons among their students and disabling themselves in the process. Journalism schools across the United…
The Video Display Terminal Health Hazard Debate.
ERIC Educational Resources Information Center
Clark, Carolyn A.
A study was conducted to identify the potential health hazards of visual display terminals for employees and then to develop a list of recommendations for improving the physical conditions of the workplace. Data were collected by questionnaires from 55 employees in 10 word processing departments in Topeka, Kansas. A majority of the employees…
Guiding principles for management of forested, agricultural, and urban watersheds
Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard
2015-01-01
Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...
Formation of the Creativity of Students in the Context of the Education Informatization
ERIC Educational Resources Information Center
Ramankulov, Sherzod; Usembaeva, Indira; Berdi, Dinara; Omarov, Bakhitzhan; Baimukhanbetov, Bagdat; Shektibayev, Nurdaulet
2016-01-01
Information and communication technologies are an effective means of formation of the creative potential of future physics teachers, as with their science-based application in the educational process at the university they allow fully activating learning activities of students, and provide conditions for their creative self-realization in the…
Feel, Imagine and Learn!--Haptic Augmented Simulation and Embodied Instruction in Physics Learning
ERIC Educational Resources Information Center
Han, In Sook
2010-01-01
The purpose of this study was to investigate the potentials and effects of an embodied instructional model in abstract concept learning. This embodied instructional process included haptic augmented educational simulation as an instructional tool to provide perceptual experiences as well as further instruction to activate those previous…
Compositing Visualization Tools for Improving Design Decisions
ERIC Educational Resources Information Center
Chung, Wayne C.
2005-01-01
Today's designers deal with a range of communication modes. These modes vary from hand gestures to sketches, physical models, and computer-generated images. It has been the norm to use these mediums throughout the process to visualize the intended design so that the potential users, designers, team members, and clients can understand the end…
Security Systems Commissioning: An Old Trick for Your New Dog
ERIC Educational Resources Information Center
Black, James R.
2009-01-01
Sophisticated, software-based security systems can provide powerful tools to support campus security. By nature, such systems are flexible, with many capabilities that can help manage the process of physical protection. However, the full potential of these systems can be overlooked because of unfamiliarity with the products, weaknesses in security…
Band Instrument Selection and Assignment: A Review of the Literature
ERIC Educational Resources Information Center
Millican, J. Si
2017-01-01
This review of the literature examines the process of matching students with band instruments as presented in academic research journals and practitioner publications. While some directors may evaluate the potential impact of students' physical characteristics such as lip size and shape, teeth and jaw structure, body build, and so forth, other…
USDA-ARS?s Scientific Manuscript database
Biochar supplements to degraded soils have the potential to improve crop yield and soil quality. We hypothesize that the biochar chemical production process can be tailored to form designer biochars that have specific chemical characteristics matched to selective chemical and/or physical issues of a...
Solid-State Photomultiplier with Integrated Front End Electronics
NASA Astrophysics Data System (ADS)
Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory
2009-10-01
The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.
Radiomics in radiooncology - Challenging the medical physicist.
Peeken, Jan C; Bernhofer, Michael; Wiestler, Benedikt; Goldberg, Tatyana; Cremers, Daniel; Rost, Burkhard; Wilkens, Jan J; Combs, Stephanie E; Nüsslin, Fridtjof
2018-04-01
Noticing the fast growing translation of artificial intelligence (AI) technologies to medical image analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges are addressed when implementing big data concepts with high-throughput image data processing like radiomics and machine learning in a radiooncology environment to support clinical decisions. Based on the experience of our interdisciplinary radiomics working group, techniques for processing minable data, extracting radiomics features and associating this information with clinical, physical and biological data for the development of prediction models are described. A special emphasis was placed on the potential clinical significance of such an approach. Clinical studies demonstrate the role of radiomics analysis as an additional independent source of information with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, genetic and dosimetric data ('panomics') challenges the medical physicist as member of the radiooncology team. The new field of big data processing in radiooncology offers opportunities to support clinical decisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To cope with this challenge national and international organizations for medical physics should organize more training opportunities in artificial intelligence technologies in radiooncology. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Zhu, Jianjun; Yu, Chengfu; Bao, Zhenzhou; Jiang, Yanping; Zhang, Wei; Chen, Yuanyuan; Qiu, Boyu; Zhang, Jianjun
2017-11-01
Previous research has focused primarily on corporal punishment as a cause and adolescents' physical aggression as an outcome. However, there is a large gap in knowledge of the potentially bidirectional association and explanatory mechanism underlying the association between corporal punishment and physical aggression. The current study, using a longitudinal design across three time points (the fall semester of 7th grade, the fall of 8th grade, and the fall of 9th grade), aimed to a) examine the reciprocal processes between corporal punishment and physical aggression, and b) explore whether deviant peer affiliation may explain such reciprocal connections. Only adolescents participating in all the three time points were included in this study, resulting in a final sample of 342 adolescents (175 boys, 167 girls) who completed questionnaires regarding corporal punishment, deviant peer affiliation, and aggression. Gender, age and socioeconomic status were controlled for in the analyses. Autoregressive cross-lagged models showed that the results did not support the direct reciprocal effect between corporal punishment and physical aggression among Chinese adolescents. A direct longitudinal link from corporal punishment to physical aggression was found, however, the inverse association was not significant. Moreover, regarding the longitudinal underlying process, in one direction, corporal punishment at 7th grade predicted higher levels of deviant peer affiliation at 8th grade. In turn, higher deviant peer affiliation at 8th grade predicted increased physical aggression at 9th grade. At the same time, in the other direction, adolescent physical aggression at 7th grade significantly predicted deviant peer affiliation at 8th grade. In turn, higher deviant peer affiliation at 8th grade predicted decreased corporal punishment at 9th grade. Identifying the direct and underlying reciprocal processes between corporal punishment and adolescent physical aggression has important implications for an integrative framework of theory and prevention.
NASA Astrophysics Data System (ADS)
Sklar, L. S.; Mahmoudi, M.
2016-12-01
Landscape evolution models rarely represent sediment size explicitly, despite the importance of sediment size in regulating rates of bedload sediment transport, river incision into bedrock, and many other processes in channels and on hillslopes. A key limitation has been the lack of a general model for predicting the size of sediments produced on hillslopes and supplied to channels. Here we present a framework for such a model, as a first step toward building a `geomorphic transport law' that balances mechanistic realism with computational simplicity and is widely applicable across diverse landscapes. The goal is to take as inputs landscape-scale boundary conditions such as lithology, climate and tectonics, and predict the spatial variation in the size distribution of sediments supplied to channels across catchments. The model framework has two components. The first predicts the initial size distribution of particles produced by erosion of bedrock underlying hillslopes, while the second accounts for the effects of physical and chemical weathering during transport down slopes and delivery to channels. The initial size distribution can be related to the spacing and orientation of fractures within bedrock, which depend on the stresses and deformation experienced during exhumation and on rock resistance to fracture propagation. Other controls on initial size include the sizes of mineral grains in crystalline rocks, the sizes of cemented particles in clastic sedimentary rocks, and the potential for characteristic size distributions produced by tree throw, frost cracking, and other erosional processes. To model how weathering processes transform the initial size distribution we consider the effects of erosion rate and the thickness of soil and weathered bedrock on hillslope residence time. Residence time determines the extent of size reduction, for given values of model terms that represent the potential for chemical and physical weathering. Chemical weathering potential is parameterized in terms of mean annual precipitation and temperature, and the fraction of soluble minerals. Physical weathering potential can be parameterized in terms of topographic attributes, including slope, curvature and aspect. Finally, we compare model predictions with field data from Inyo Creek in the Sierra Nevada Mtns, USA.
Health Impacts of Climate Change in Vanuatu: An Assessment and Adaptation Action Plan
Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan
2013-01-01
Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change. PMID:23618474
Linking Local Scale Ecosystem Science to Regional Scale Management
NASA Astrophysics Data System (ADS)
Shope, C. L.; Tenhunen, J.; Peiffer, S.
2012-04-01
Ecosystem management with respect to sufficient water yield, a quality water supply, habitat and biodiversity conservation, and climate change effects requires substantial observational data at a range of scales. Complex interactions of local physical processes oftentimes vary over space and time, particularly in locations with extreme meteorological conditions. Modifications to local conditions (ie: agricultural land use changes, nutrient additions, landscape management, water usage) can further affect regional ecosystem services. The international, inter-disciplinary TERRECO research group is intensively investigating a variety of local processes, parameters, and conditions to link complex physical, economic, and social interactions at the regional scale. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. The data are used to parameterize suite of models describing local to landscape level water, sediment, nutrient, and monetary relationships. We focus on using the agricultural and hydrological SWAT model to synthesize the experimental field data and local-scale models throughout the catchment. The approach of our study was to describe local scientific processes, link potential interrelationships between different processes, and predict environmentally efficient management efforts. The Haean catchment case study shows how research can be structured to provide cross-disciplinary scientific linkages describing complex ecosystems and landscapes that can be used for regional management evaluations and predictions.
Yamada, Hiroyuki; Suryanarayanan, Raj
2007-08-01
The antiviral compound, 2-amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl)ester (MCC-478), can exist in several anhydrous polymorphic forms and also as a hemihydrate. The XRD patterns of the tablets, containing each form of the active pharmaceutical ingredient (API), revealed at least one peak unique to each form. A semiquantitative microdiffractometric method was developed to nondestructively characterize the physical form of the API in intact film-coated tablets. This was accomplished even though the weight fraction of the API was <0.2 and that of mannitol, a highly crystalline excipient, was approximately 0.6. The method was used to determine the effect of aqueous film-coating process on the physical form of the API. The final dosage form was also monitored following storage at 40 degrees C/75% RH for 6 months. There was no phase transformation of the API either due to the film-coating process or following accelerated storage. This technique has potential utility not only for process control during manufacture, but also for the quality control of the final product. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan
2011-01-01
Comparisons of word and picture processing using Event-Related Potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical differences. Native Mandarin Chinese speakers viewed pictures (line drawings) and Chinese characters (Experiment 1), native English speakers viewed pictures and English words (Experiment 2), and naïve Chinese readers (native English speakers) viewed pictures and Chinese characters (Experiment 3) in a semantic categorization task. The varying pattern of differences in the ERPs elicited by pictures and words across the three experiments provided evidence for i) script-specific processing arising between 150–200 ms post-stimulus onset, ii) domain-specific but script-independent processing arising between 200–300 ms post-stimulus onset, and iii) processing that depended on stimulus meaningfulness in the N400 time window. The results are interpreted in terms of differences in the way visual features are mapped onto higher-level representations for pictures and words in alphabetic and logographic writing systems. PMID:21439991
Laboratory space physics: Investigating the physics of space plasmas in the laboratory
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2018-05-01
Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.
Physical-chemical processes of diamond grinding
NASA Astrophysics Data System (ADS)
Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu
2017-10-01
The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.
Plasma processes in water under effect of short duration pulse discharges
NASA Astrophysics Data System (ADS)
Gurbanov, Elchin
2013-09-01
It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.
Understanding the recent changes in the Southern Ocean carbon cycle: A multidisciplinary approach
NASA Astrophysics Data System (ADS)
Manizza, M.; Kahru, M.; Menemenlis, D.; Nevison, C. D.; Mitchell, B. G.; Keeling, R. F.
2016-12-01
The Southern Ocean represents a key area of the global ocean for the uptake of the CO2 originating from fossil fuels emissions. In these waters, cold temperatures combined with high rates of biological production drive the carbon uptake that accounts for about one-third of the global ocean uptake.Recent studies showed that changes in the Southern Annular Mode (SAM) index, mainly a proxy of the intensity of westerly winds, had a significant impact on the temporal variability of the CO2 uptake in the Southern Ocean. In order to shed light on this problem we propose to use both satellite-derived estimates of ocean productivity and carbon export in combinations of ocean physical and biogeochemical state estimates focusing on the 2006-2013 period. While the estimates of carbon fixation and export based on remote sensing will provide key information on the spatial and temporal variations of the biological carbon pump, the ocean state estimates will provide additional information on physical and carbon cycle processes, including the air-sea CO2 fluxes of the Southern Ocean in the 2006-2013 period where model solutions have been optimized.These physical estimates will be used to force an ocean biogeochemical model (ECCO2-Darwin) that will compute the CO2 uptake for each year. The physical model, forced with optimized atmospheric forcing, aims to realistically simulate interannual ocean climate variability that drives changes in both physical and biogeochemical processes ultimately impacting the carbon uptake of the Southern Ocean, and potentially responding to the SAM index variations.Although in this study great emphasis is given to the role of physical climate variations at driving the CO2 uptake of these polar waters, we will integrate model results with estimates from remote sensing techniques to better understand role of the biological carbon pump and its variability potentially responding to the SAM index changes.
Physical processes associated with current collection by plasma contactors
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, Victoria A.
1990-01-01
Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.
Multicomponent micropatterned sol-gel materials by capillary molding
NASA Astrophysics Data System (ADS)
Lochhead, Michael J.; Yager, Paul
1997-10-01
A physically and chemically benign method for patterning multiple sol-gel materials onto a single substrate is described. Structures are demonstrated for potential micro- optical chemical sensor, biosensor, and waveguiding applications. Fabrication is based on the micro molding in capillaries (MIMIC) approach. A novel mold design allows several sols to be cast simultaneously. Closely spaced, organically modified silica ridges containing fluorescent dyes are demonstrated. Ridges have cross sectional dimensions from one to 50 micrometers and are centimeters in length. Processing issues, particularly those related to mold filling, are discussed in detail. Because sol-gel MIMIC avoids the harsh physical and chemical environments normally associated with patterning, the approach allows full exploitation of sol- gel processing advantages, such as the ability to entrap sensitive organic dopant molecules in the sol-gel matrix.
Febriana, Sri Awalia; Soebono, Hardyanto; Coenraads, Pieter-Jan
2014-02-01
Shoe manufacturing workers are exposed daily to an extensive range of potential physical and chemical occupational hazards. Shoe manufacturing in Indonesia is one of the industrial sectors that has shown sustained growth amongst the newly industrialized countries (NICs). In this study, we investigated the possible potential exposure of the workers to physical and occupational hazards and determined the prevalence of occupational skin diseases at a shoe manufacturing factory in Indonesia. A cross-sectional study on the observation of the working process and an inventory and risk assessment of exposure to the chemicals used. Classification of chemicals as potential sensitizers/irritants and qualitative assessments of these chemicals were done. Workers were examined and interviewed using the Nordic Occupational Skin Questionnaire-2002/LONG. The risk of Occupational skin diseases (OSD) at the shoe factory was mainly related to the exposure of the workers' skin to potential physical and chemical hazards in hot and humid environmental conditions. From a total of 514 workers, 8.5 % reported current OSD and 4.8 % reported a history of OSD. Occupational skin diseases were diagnosed in 29 % of the workers by dermatologists and 7.6 % had an occupational contact dermatitis (OCD). Of the 39 workers with contact dermatitis, 33 consented to being patch tested, 14 (3 %) workers showed a positive results and considered as having an occupational allergic contact dermatitis (OACD) and 25 (4.9 %) had an occupational irritant contact dermatitis (OICD). We observed a repeated and prolonged exposure of the workers to numerous physical and chemical skin hazards at this factory.
Finite Element Analysis in Concurrent Processing: Computational Issues
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Watson, Brian; Vanderplaats, Garrett
2004-01-01
The purpose of this research is to investigate the potential application of new methods for solving large-scale static structural problems on concurrent computers. It is well known that traditional single-processor computational speed will be limited by inherent physical limits. The only path to achieve higher computational speeds lies through concurrent processing. Traditional factorization solution methods for sparse matrices are ill suited for concurrent processing because the null entries get filled, leading to high communication and memory requirements. The research reported herein investigates alternatives to factorization that promise a greater potential to achieve high concurrent computing efficiency. Two methods, and their variants, based on direct energy minimization are studied: a) minimization of the strain energy using the displacement method formulation; b) constrained minimization of the complementary strain energy using the force method formulation. Initial results indicated that in the context of the direct energy minimization the displacement formulation experienced convergence and accuracy difficulties while the force formulation showed promising potential.
Southern Ocean phytoplankton physiology in a changing climate.
Petrou, Katherina; Kranz, Sven A; Trimborn, Scarlett; Hassler, Christel S; Ameijeiras, Sonia Blanco; Sackett, Olivia; Ralph, Peter J; Davidson, Andrew T
2016-09-20
The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO 2 ), potentially harbouring even greater potential for additional sequestration of CO 2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO 2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO. Copyright © 2016 Elsevier GmbH. All rights reserved.
Close-range laser scanning in forests: towards physically based semantics across scales.
Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E
2018-04-06
Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.
Application of nuclear physics in medical physics and nuclear medicine
NASA Astrophysics Data System (ADS)
Hoehr, Cornelia
2016-09-01
Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.
The effect of a brief mindfulness induction on processing of emotional images: an ERP study.
Eddy, Marianna D; Brunyé, Tad T; Tower-Richardi, Sarah; Mahoney, Caroline R; Taylor, Holly A
2015-01-01
The ability to effectively direct one's attention is an important aspect of regulating emotions and a component of mindfulness. Mindfulness practices have been established as effective interventions for mental and physical illness; however, the underlying neural mechanisms of mindfulness and how they relate to emotional processing have not been explored in depth. The current study used a within-subjects repeated measures design to examine if focused breathing, a brief mindfulness induction, could modulate event-related potentials (ERPs) during emotional image processing relative to a control condition. We related ERP measures of processing positive, negative, and neutral images (the P300 and late positive potential - LPP) to state and trait mindfulness measures. Overall, the brief mindfulness induction condition did not influence ERPs reflecting emotional processing; however, in the brief mindfulness induction condition, those participants who reported feeling more decentered (a subscale of the Toronto Mindfulness Scale) after viewing the images had reduced P300 responses to negative versus neutral images.
Characterizing the Mineralogy of Potential Lunar Landing Sites
NASA Technical Reports Server (NTRS)
Pieters, Carle; Head, James W., III; Mustard, Jack; Boardman, Joe; Buratti, Bonnie; Clark, Roger; Green, Rob; Head, James W, III; McCord, Thomas B.; Mustard, Jack;
2006-01-01
Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
Vermeiren, Peter; Muñoz, Cynthia C; Ikejima, Kou
2016-12-15
Micro- and macroplastic accumulation threatens estuaries worldwide because of the often dense human populations, diverse plastic inputs and high potential for plastic degradation and storage in these ecosystems. Nonetheless, our understanding of plastic sources and sinks remains limited. We designed conceptual models of the local and estuary-wide transport of plastics. We identify processes affecting the position of plastics in the water column; processes related to the mixing of fresh and salt water; and processes resulting from the influences of wind, topography, and organism-plastic interactions. The models identify gaps in the spatial context of plastic-organisms interactions, the chemical behavior of plastics in estuaries, effects of wind on plastic suspension-deposition cycles, and the relative importance of processes affecting the position in the water column. When interpreted in the context of current understanding, sinks with high management potential can be identified. However, source-sink patterns vary among estuary types and with local scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of a brief mindfulness induction on processing of emotional images: an ERP study
Eddy, Marianna D.; Brunyé, Tad T.; Tower-Richardi, Sarah; Mahoney, Caroline R.; Taylor, Holly A.
2015-01-01
The ability to effectively direct one’s attention is an important aspect of regulating emotions and a component of mindfulness. Mindfulness practices have been established as effective interventions for mental and physical illness; however, the underlying neural mechanisms of mindfulness and how they relate to emotional processing have not been explored in depth. The current study used a within-subjects repeated measures design to examine if focused breathing, a brief mindfulness induction, could modulate event-related potentials (ERPs) during emotional image processing relative to a control condition. We related ERP measures of processing positive, negative, and neutral images (the P300 and late positive potential – LPP) to state and trait mindfulness measures. Overall, the brief mindfulness induction condition did not influence ERPs reflecting emotional processing; however, in the brief mindfulness induction condition, those participants who reported feeling more decentered (a subscale of the Toronto Mindfulness Scale) after viewing the images had reduced P300 responses to negative versus neutral images. PMID:26441766
Farholm, Anders; Sørensen, Marit; Halvari, Hallgeir
2017-12-01
There has been increasing interest for investigating the role of motivation in physical activity among people with severe mental illness (SMI). Autonomous motivation has been suggested to have a potentially important role in adoption and maintenance of physical activity. However, the knowledge about factors that facilitate autonomous motivation among people with SMI is scarce. The aim of this study was to examine factors associated with motivation for physical activity as well as the relationships between motivation, physical activity and health-related quality of life in individuals with SMI that were currently physically active. A cross-sectional design was used, and 88 participants were recruited from a public health network promoting physical activity for people with SMI. They answered a questionnaire package consisting of scales measuring psychological need support - psychological need satisfaction - and motivation for physical activity, physical activity and health-related quality of life. The majority of participants reported to be in regular physical activity. Associations between variables were tested according to the self-determination theory process model. Structural equation modelling yielded good fit of the process model to the data. Specifically, a need-supportive environment was positively associated with psychological need satisfaction, while psychological need satisfaction was positively associated with autonomous motivation and mental health-related quality of life, and negatively associated with controlled motivation and amotivation. Physical activity was positively associated with autonomous motivation and physical health-related quality of life, and negatively associated with amotivation. This study indicates that individuals with SMI can be regularly physically active when provided with suitable opportunities. Furthermore, the present results suggest that it is vital for health-care practitioners to emphasise creating a need-supportive environment when organising physical activity because such an environment is associated with both increased autonomous motivation for physical activity and mental health-related quality of life. © 2016 Nordic College of Caring Science.
Tan, Xiao-Fei; Liu, Shao-Bo; Liu, Yun-Guo; Gu, Yan-Ling; Zeng, Guang-Ming; Hu, Xin-Jiang; Wang, Xin; Liu, Shao-Heng; Jiang, Lu-Hua
2017-03-01
There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO 2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coil Realizability Criteria for Stellarator Surface Currents
NASA Astrophysics Data System (ADS)
Boozer, A.; Hirshman, S.; Brooks, A.
1998-11-01
The method of automatic optimization(P. Merkel, Nucl. Fusion 27 (1987) 867.) for the design of stellarator coils (NESCOIL code) typically yields a two-dimensional surface current potential φ from which current filaments can be extracted, using the relation Ks = n × nabla φ. Until now, the realizability of coils obtained in this way has been largely decoupled from the physics optimization process which originally provided the matching surface on which B_normal = 0 (thus determining φ). For quasi-axisymmetric stellarators (QAS)(A. Reiman, et al., to be published.) or quasi- omnigeneous stellarators(S. P. Hirshman, D. A. Spong, et al., Phys. Rev. Lett. 80 (1998) 528.) with finite parallel plasma currents, it is often found that the current potential becomes too complicated to be consistent with realizable coils. We have developed analytic measures of the complexity of the current potential. These measures can be incorporated into the physics optimizer and can limit the plasma boundaries to those which are likely to produce realizable coils.
NASA Astrophysics Data System (ADS)
Li, H.; Plink-Bjorklund, P.
2017-12-01
Studies (e.g., Jerolmack and Paola, 2010) have suggested that autogenic processes act as a filter for high-frequency environmental signals, and the underlying assumption is that autogenic processes can cause fluctuations in sediment and water discharge that modify or shred the signal. This assumption, however, fails to recognize that autogenic processes and their final products are dynamic and that they can respond to allogenic forcings. We compile a database containing published field studies, physical experiments, and numerical modeling works, and analyze the data under different boundary conditions. Our analyses suggest different conclusions. Autogenic processes are intrinsic to the sedimentary system, and they possess distinct patterns under steady boundary conditions. Upon changing boundary conditions, the autogenic patterns are also likely to change (depending on the magnitude of the change in the boundary conditions). Therefore, the pattern change provides us with the opportunity to restore the high-frequency signals that may not pass through the transfer zone. Here we present the theoretical basis for using autogenic deposits to infer high-frequency signals as well as modern and ancient field examples, physical experiments, and modeling works to illustrate the autogenic response to allogenic forcings. The field studies show the potential of using autogenic deposits to restore short-term climatic variability. The experiments demonstrate that autogenic processes in rivers are closely linked to sediment and water discharge. The modeling examples reveal the counteracting effects of some autogenic processes to form a self-organized pattern under a set of specific boundary conditions. We also highlight the limitations and challenges that need more research efforts to restore high-frequency signals. Some critical issues include the magnitude of the signals, the effect of the interference between different signals, and the incompleteness of the autogenic deposits.
de Oliveira, Erick F; Cossu, Andrea; Tikekar, Rohan V; Nitin, Nitin
2017-06-01
The reduction of microbial load in food and water systems is critical for their safety and shelf life. Conventionally, physical processes such as heat or light are used for the rapid inactivation of microbes, while natural compounds such as lactic acid may be used as preservatives after the initial physical process. This study demonstrates the enhanced and rapid inactivation of bacteria based on a synergistic combination of sublethal levels of stresses induced by UV-A light and two food-grade organic acids. A reduction of 4.7 ± 0.5 log CFU/ml in Escherichia coli O157:H7 was observed using a synergistic combination of UV-A light, gallic acid (GA), and lactic acid (LA), while the individual treatments and the combination of individual organic acids with UV-A light resulted in a reduction of less than 1 log CFU/ml. Enhanced inactivation of bacteria on the surfaces of lettuce and spinach leaves was also observed based on the synergistic combination. Mechanistic investigations suggested that the treatment with a synergistic combination of GA plus LA plus UV-A (GA+LA+UV-A) resulted in significant increases in membrane permeability and intracellular thiol oxidation and affected the metabolic machinery of E. coli In addition, the antimicrobial activity of the synergistic combination of GA+LA+UV-A was effective only against metabolically active E. coli O157:H7. In summary, this study illustrates the potential of simultaneously using a combination of sublethal concentrations of natural antimicrobials and a low level of physical stress in the form of UV-A light to inactivate bacteria in water and food systems. IMPORTANCE There is a critical unmet need to improve the microbial safety of the food supply, while retaining optimal nutritional and sensory properties of food. Furthermore, there is a need to develop novel technologies that can reduce the impact of food processing operations on energy and water resources. Conventionally, physical processes such as heat and light are used for inactivating microbes in food products, but these processes often significantly reduce the sensory and nutritional properties of food and are highly energy intensive. This study demonstrates that the combination of two natural food-grade antimicrobial agents with a sublethal level of physical stress in the form of UV-A light can greatly increase microbial load inactivation. In addition, this report elucidates the potential mechanisms for this synergistic interaction among physical and chemical stresses. Overall, these results provide a novel approach to develop antimicrobial solutions for food and water systems. Copyright © 2017 American Society for Microbiology.
Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks
NASA Astrophysics Data System (ADS)
Karpatne, A.; Kumar, V.
2017-12-01
Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.
Physically based modeling in catchment hydrology at 50: Survey and outlook
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Putti, Mario
2015-09-01
Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.
Flavour physics and the Large Hadron Collider beauty experiment.
Gibson, Valerie
2012-02-28
An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.
Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping
2015-01-01
Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. © 2014 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Field, Robert; Kim, Daehyun; Kelley, Max; LeGrande, Allegra; Worden, John; Schmidt, Gavin
2014-05-01
Observational and theoretical arguments suggest that satellite retrievals of the stable isotope composition of water vapor could be useful for climate model evaluation. The isotopic composition of water vapor is controlled by the same processes that control water vapor amount, but the observed distribution of isotopic composition is distinct from amount itself . This is due to the fractionation that occurs between the abundant H216O isotopes (isotopologues) and the rare and heavy H218O and HDO isotopes during evaporation and condensation. The fractionation physics are much simpler than the underlying moist physics; discrepancies between observed and modeled isotopic fields are more likely due to problems in the latter. Isotopic measurements therefore have the potential for identifying problems that might not be apparent from more conventional measurements. Isotopic tracers have existed in climate models since the 1980s but it is only since the mid 2000s that there have been enough data for meaningful model evaluation in this sense, in the troposphere at least. We have evaluated the NASA GISS ModelE2 general circulation model over the tropics against water isotope (HDO/H2O) retrievals from the Aura Tropospheric Emission Spectrometer (TES), alongside more conventional measurements. A small ensemble of experiments was performed with physics perturbations to the cumulus and planetary boundary layer schemes, done in the context of the normal model development process. We examined the degree to which model-data agreement could be used to constrain a select group of internal processes in the model, namely condensate evaporation, entrainment strength, and moist convective air mass flux. All are difficult to parameterize, but exert strong influence over model performance. We found that the water isotope composition was significantly more sensitive to physics changes than precipitation, temperature or relative humidity through the depth of the tropical troposphere. Among the processes considered, this was most closely, and fairly exclusively, related to mid-tropospheric entrainment strength. This demonstrates that water isotope retrievals have considerable potential alongside more conventional measurements for climate model evaluation and development.
Preparing to Teach: Redeeming the Potentialities of the Present through "Conversations of Practice"
ERIC Educational Resources Information Center
Ek, Andrew; Macintyre Latta, Margaret A.
2013-01-01
A prospective teacher and a teacher educator enter into a yearlong conversation seeking greater curricular physicality and materiality within its enactment. Dewey's (1938) temporal educative relation of teaching and learning as an ever-present process is helpful, asking both parties to dwell mindfully at the intersections of teaching/learning…
The Manufacturing Process of Bamboo Pellets
Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Xing' e Liu
2012-01-01
Bamboo was a kind of biomass materials and had great potential as a bio-energy resource of the future in China. The physical and combustion properties of bamboo pellets were determined and the effects of moisture content (MC) and sizes of particle on these properties were investigated in this research. The results showed that MC and sizes of particle affected these...
Biosafety practices associated with potential agents of biocrime and biowarfare.
Burnett, LouAnn C
2006-12-01
Conducting research in a manner that guards against theft and intentional misuse of biological materials requires a process of hazard identification and risk assessment to most effectively identify and implement a risk management plan. Procedures describing physical security, personnel reliability, and material control and accountability define a security plan for this type of research.
ERIC Educational Resources Information Center
Dalgin, Rebecca Spirito; Bellini, James
2008-01-01
This study investigated the impact of disclosure of invisible disabilities (physical and psychiatric) within the employment interview process. Both the type of disability and the extent of disclosure were manipulated in an analogue experimental design. Employers (N = 60) were exposed to a short interview vignette of a potential candidate and were…
ERIC Educational Resources Information Center
McElroy, Erika M.; Rodriguez, Christina M.
2008-01-01
Objective: Utilizing the conceptual framework of the Social Information Processing (SIP) model ([Milner, 1993] and [Milner, 2000]), associations between cognitive risk factors and child physical abuse risk and maladaptive discipline style and practices were examined in an at-risk population. Methods: Seventy-three mothers of 5-12-year-old…
Functional correlation approach to operational risk in banking organizations
NASA Astrophysics Data System (ADS)
Kühn, Reimer; Neu, Peter
2003-05-01
A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.
Röthlisberger, Fabian; Boes, Stefan; Rubinelli, Sara; Schmitt, Klaus; Scheel-Sailer, Anke
2017-06-26
The admission process of patients to a hospital is the starting point for inpatient services. In order to optimize the quality of the health services provision, one needs a good understanding of the patient admission workflow in a clinic. The aim of this study was to identify challenges and potential improvements in the admission process of spinal cord injury patients at a specialized rehabilitation clinic from the perspective of an interdisciplinary team of health professionals. Semi-structured interviews with eight health professionals (medical doctors, physical therapists, occupational therapists, nurses) at the Swiss Paraplegic Centre (acute and rehabilitation clinic) were conducted based on a maximum variety purposive sampling strategy. The interviews were analyzed using a thematic analysis approach. The interviewees described the challenges and potential improvements in this admission process, focusing on five themes. First, the characteristics of the patient with his/her health condition and personality and his/her family influence different areas in the admission process. Improvements in the exchange of information between the hospital and the patient could speed up and simplify the admission process. In addition, challenges and potential improvements were found concerning the rehabilitation planning, the organization of the admission process and the interdisciplinary work. This study identified five themes of challenges and potential improvements in the admission process of spinal cord injury patients at a specialized rehabilitation clinic. When planning adaptations of process steps in one of the areas, awareness of effects in other fields is necessary. Improved pre-admission information would be a first important step to optimize the admission process. A common IT-system providing an interdisciplinary overview and possibilities for interdisciplinary exchange would support the management of the admission process. Managers of other hospitals can supplement the results of this study with their own process analyses, to improve their own patient admission processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Walter H.; Miller, Martin C.; Williams, Greg D.
2006-02-01
Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister). The overall objectives of this effort are to synthesize what is known about disposal effects on Dungeness crabs (Phase 1) and to offer approaches to quantify the effects, including approaches to gain a population-level perspective on any effects found in subsequent studies (Phase 2). This report documents Phase 1, which included (1) development of a conceptual model to integrate knowledge about crab biology and the physical processes occurring during disposal, (2) application of physics-based numerical modeling of the disposal event to understandmore » the physical forces and processes to which a crab might be exposed during disposal, (3) conduct of a vulnerability analysis to identify the potential mechanisms by which crabs may be injured, and (4) recommendations of topics and approaches for future studies to assess the potential population-level effects of disposal on Dungeness crabs. The conceptual model first recognizes that disposal of dredged materials is a physically dynamic process with three aspects: (1) convective descent and bottom encounter, (2) dynamic collapse and spreading, and (3) mounding. Numerical modeling was used to assess the magnitude of the potentially relevant forces and extent of mounding in single disposal events. The modeling outcomes show that predicted impact pressure, shear stress, and mound depth are greatly reduced by discharge in deep water, and somewhat reduced at longer discharge duration. The analysis of numerical modeling results and vulnerabilities indicate that the vulnerability of crabs to compression forces under any of the disposal scenarios is low. For the deep-water disposal scenarios, the maximum forces and mounding do not appear to be sufficiently high enough to warrant concern for surge currents or burial at the depths involved (over 230 ft). For the shallow-water (45 to 65 ft), short-duration disposal scenarios, the shear force and surge currents estimated from the modeling and observed previously in the field at Palos Verdes, California appear to be sufficiently high to mobilize and transport the bottom sediment and at least juvenile crab. Behavioral response to surge currents probably occurs and may reduce the occurrence and extent of movement and any associated impacts. There evidence that burial by dredged materials can effect crab survival, but confounding factors in previous experiments preclude conclusions about thresholds and extent of effects. We recommend that future studies focus on burial effects during shallow water, short duration disposal events and take into account the potential for behavioral responses to mitigate any effects.« less
Chen, Zhao; Jiang, Xiuping
2017-03-01
Animal wastes have high nutritional value as biological soil amendments of animal origin for plant cultivation in sustainable agriculture; however, they can be sources of some human pathogens. Although composting is an effective way to reduce pathogen levels in animal wastes, pathogens may still survive under certain conditions and persist in the composted products, which potentially could lead to fresh produce contamination. According to the U.S. Food and Drug Administration Food Safety Modernization Act, alternative treatments are recommended for reducing or eliminating human pathogens in raw animal manure. Physical heat treatments can be considered an effective method to inactivate pathogens in animal wastes. However, microbial inactivation in animal wastes can be affected by many factors, such as composition of animal wastes, type and physiological stage of the tested microorganism, and heat source. Following some current processing guidelines for physical heat treatments may not be adequate for completely eliminating pathogens from animal wastes. Therefore, this article primarily reviews the microbiological safety and economic value of physically heat-treated animal wastes as biological soil amendments.
Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.
2016-03-15
Model accuracy and use are limited by uncertainty in the physical properties and boundary conditions of the system, uncertainty in historical and future conditions, and generalizations made in the mathematical relationships used to describe the physical processes of groundwater flow and transport. Because of these limitations, model results should be considered in relative rather than absolute terms. Nonetheless, model results do provide useful information on the relative scale of response of the system to changes in pumping distribution, sea-level rise, and mitigation activities.
Nuclear physics with antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dover, C.B.
1984-01-01
Transparencies of an invited talk presented at the Nashville meeting of the American Physical Society, October 18-20, 1984, are included. Topics include: (1) Salient features of two-body N anti N interactions (N anti N reversible NN, annihilation mechanisms (quark models), and optical model phenomenology); (2) anti N-nucleus interactions - elastic, inelastic, etc. (new cross section data, optical potentials, signatures of spin-isospin dependence of N anti N force, and (anti p, p) reactions); and (3) anti N-nucleus annihilation processes (features of cascade or fluid dynamics calculations, searches for baryonium and other exotics, meson interferometry, and (anti p, NN) reactions. (WHK)
Classical and Quantum Thermal Physics
NASA Astrophysics Data System (ADS)
Prasad, R.
2016-11-01
List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.
Sacks, Gary; Swinburn, Boyd A; Lawrence, Mark A
2008-06-05
As obesity prevention becomes an increasing health priority in many countries, including Australia and New Zealand, the challenge that governments are now facing is how to adopt a systematic policy approach to increase healthy eating and regular physical activity. This article sets out a structure for systematically identifying areas for obesity prevention policy action across the food system and full range of physical activity environments. Areas amenable to policy intervention can be systematically identified by considering policy opportunities for each level of governance (local, state, national, international and organisational) in each sector of the food system (primary production, food processing, distribution, marketing, retail, catering and food service) and each sector that influences physical activity environments (infrastructure and planning, education, employment, transport, sport and recreation). Analysis grids are used to illustrate, in a structured fashion, the broad array of areas amenable to legal and regulatory intervention across all levels of governance and all relevant sectors. In the Australian context, potential regulatory policy intervention areas are widespread throughout the food system, e.g., land-use zoning (primary production within local government), food safety (food processing within state government), food labelling (retail within national government). Policy areas for influencing physical activity are predominantly local and state government responsibilities including, for example, walking and cycling environments (infrastructure and planning sector) and physical activity education in schools (education sector). The analysis structure presented in this article provides a tool to systematically identify policy gaps, barriers and opportunities for obesity prevention, as part of the process of developing and implementing a comprehensive obesity prevention strategy. It also serves to highlight the need for a coordinated approach to policy development and implementation across all levels of government in order to ensure complementary policy action.
Physical activity and cognitive trajectories in cognitively normal adults: the adult children study.
Pizzie, Rachel; Hindman, Halley; Roe, Catherine M; Head, Denise; Grant, Elizabeth; Morris, John C; Hassenstab, Jason J
2014-01-01
Increased physical activity may protect against cognitive decline, the primary symptom of Alzheimer disease. In this study, we examined the relationship between physical activity and trajectories of cognitive functioning over serial assessments. Cognitively normal (Clinical Dementia Rating 0) middle-aged and older adults (N=173; mean age, 60.7 ± 7.8 y) completed a self-report measure of physical activity and a battery of standard neuropsychological tests assessing processing speed, attention, executive functioning, and verbal memory. At baseline, individuals with higher physical activity levels performed better on tests of episodic memory and visuospatial functioning. Over subsequent follow-up visits, higher physical activity was associated with small performance gains on executive functioning and working memory tasks in participants with one or more copies of the apolipoprotein ε4 allele (APOE4). In APOE4 noncarriers, slopes of cognitive performance over time were not related to baseline physical activity. Our results suggest that cognitively normal older adults who report higher levels of physical activity may have slightly better cognitive performance, but the potential cognitive benefits of higher levels of physical activity over time may be most evident in individuals at genetic risk for Alzheimer disease.
Recommendations to Improve the Accuracy of Estimates of Physical Activity Derived from Self Report
Ainsworth, Barbara E; Caspersen, Carl J; Matthews, Charles E; Mâsse, Louise C; Baranowski, Tom; Zhu, Weimo
2013-01-01
Context Assessment of physical activity using self-report has the potential for measurement error that can lead to incorrect inferences about physical activity behaviors and bias study results. Objective To provide recommendations to improve the accuracy of physical activity derived from self report. Process We provide an overview of presentations and a compilation of perspectives shared by the authors of this paper and workgroup members. Findings We identified a conceptual framework for reducing errors using physical activity self-report questionnaires. The framework identifies six steps to reduce error: (1) identifying the need to measure physical activity, (2) selecting an instrument, (3) collecting data, (4) analyzing data, (5) developing a summary score, and (6) interpreting data. Underlying the first four steps are behavioral parameters of type, intensity, frequency, and duration of physical activities performed, activity domains, and the location where activities are performed. We identified ways to reduce measurement error at each step and made recommendations for practitioners, researchers, and organizational units to reduce error in questionnaire assessment of physical activity. Conclusions Self-report measures of physical activity have a prominent role in research and practice settings. Measurement error can be reduced by applying the framework discussed in this paper. PMID:22287451
Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela
2016-05-01
During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age. © 2016 Anatomical Society.
NASA Astrophysics Data System (ADS)
Fryirs, K.
2016-12-01
In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.
Knepper, D.H.; Langer, W.H.; Miller, S.
1995-01-01
Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-06-08
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
NASA Astrophysics Data System (ADS)
Abel, Tom
2013-01-01
Gravitational instability of small density fluctuations, possibly created during an early inflationary period, is the key process leading to the formation of all structure in the Universe. New numerical algorithms have recently enabled much progress in understanding the relevant physical processes dominating the first billion years of structure formation. Computational cosmologists are attempting to simulate on their supercomputers how galaxies come about. In recent years first attempts trying to follow the formation and eventual death of every single star in these model galaxies has become to be within reach. The models now include gravity for both dark matter and baryonic matter, hydrodynamics, follow the radiation from massive stars and its impact in shaping the surrounding material, gas chemistry and all the key radiative atomic and molecular physics determining the thermal state of the model gas. In a small number of cases even the rold of magnetic fields on galactic scales is being studied. At the same time we are learning more about the limitations of certain numerical techniques and developing new schemes to more accurately follow the interplay of these many different physical processes. This talk is in two parts. First we consider a birds eye view of the relevant physical processes relevant for structure formation and potential approaches in solving the relevant equations efficiently and accurately on modern supercomputers. Secondly, we focus in on one of those processes. Namely the intricate and fascinating dynamics of the likely collsionless fluid dynamics of dark matter. A novel way of following the intricate evolution of such collisionless fluids in phase space is allowing us to construct new numerical methods to help understand the nature of dark matter halos as well as problems in astrophysical and terrestial plasmas.
NASA Astrophysics Data System (ADS)
Xu, Y.; Goriely, S.; Balabanski, D. L.; Chesnevskaya, S.; Guardo, G. L.; La Cognata, M.; Lan, H. Y.; Lattuada, D.; Luo, W.; Matei, C.
2018-05-01
The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the impact of nuclear ingredients, especially the nuclear potential, level density and strength function, to the astrophysical re-action rates of (p,γ), (α,γ), (γ,p), and (γ,α) reactions are systematically studied. The calculations are performed basad on the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12≤Z≤110. In particular, both of the Wood-Saxon potential and the microscopic folding potential are taken into account. It is found that both the capture and photonuclear reaction rates are very sensitive to the nuclear potential, thus the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.
Consumption of meat in relation to physical functioning in the Seniors-ENRICA cohort.
Struijk, Ellen A; Banegas, José R; Rodríguez-Artalejo, Fernando; Lopez-Garcia, Esther
2018-04-05
Meat is an important source of high-quality protein and vitamin B but also has a relatively high content of saturated and trans fatty acids. Although protein and vitamin B intake seems to protect people from functional limitations, little is known about the effect of habitual meat consumption on physical function. The objective of this study was to examine the prospective association between the intake of meat (processed meat, red meat, and poultry) and physical function impairment in older adults. Data were collected for 2982 participants in the Seniors-ENRICA cohort, who were aged ≥60 years and free of physical function impairment. In 2008-2010, their habitual diet was assessed through a validated computer-assisted face-to-face diet history. Study participants were followed up through 2015 to assess self-reported incident impairment in agility, mobility, and performance-based lower-extremity function. Over a median follow-up of 5.2 years, we identified 625 participants with impaired agility, 455 with impaired mobility, and 446 with impaired lower-extremity function. After adjustment for potential confounders, processed meat intake was associated with a higher risk of impaired agility (hazard ratio [HR] for highest vs. lowest tertile: 1.33; 95% confidence interval [CI]: 1.08-1.64; p trend = 0.01) and of impaired lower-extremity function (HR for highest vs. lowest tertile: 1.31; 95% CI: 1.02-1.68; p trend = 0.04). No significant associations were found for red meat and poultry. Replacing one serving per day of processed meat with one serving per day of red meat, poultry, or with other important protein sources (fish, legumes, dairy, and nuts) was associated with lower risk of impaired agility and lower-extremity function. A higher consumption of processed meat was associated with a higher risk of impairment in agility and lower-extremity function. Replacing processed meat by other protein sources may slow the decline in physical functioning in older adults.
Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets
NASA Astrophysics Data System (ADS)
Deconto, R. M.; Pollard, D.
2017-12-01
New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jie; Krems, Roman V.; Li, Zhiying
2015-10-21
We consider a problem of extrapolating the collision properties of a large polyatomic molecule A–H to make predictions of the dynamical properties for another molecule related to A–H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A–X. We assume that the effect of the −H →−X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can bemore » used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C{sub 6}H{sub 5}CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C{sub 6}H{sub 6} collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C{sub 6}H{sub 5}CN with He.« less
Investigative study of holographic recording materials development
NASA Technical Reports Server (NTRS)
1972-01-01
The potential of certain cis-trans isomers and doped LiNbO3 for the holographic read/write/erase memory application was investigated. The cis-trans work involved the photochemical investigation of a number of potential materials as well as specific molecular engineering efforts on alpha-methyl stilbene and its derivatives. These efforts resulted in an increase in the change in index of refraction, and thereby, in potential recording utility, of an order of magnitude. The work on LiNbO3 was directed toward a preliminary investigation of the dynamics of the writing process. Several samples and a variety of writing conditions were investigated. An unexpected and as yet unexplained improvement in material behavior with continued recycling was observed. In addition, some effort was devoted to an analysis of the physical conditions under which several current theories of the optical damage process are valid.
NASA Astrophysics Data System (ADS)
Xu, Yi; Luo, Wen; Balabanski, Dimiter; Goriely, Stephane; Matei, Catalin; Tesileanu, Ovidiu
2017-09-01
The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the astrophysical reaction rates of (γ,n), (γ,p), and (γ,α) reactions are computed within the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12 < Z < 110. The nuclear structure ingredients involved in the calculation are determined from experimental data whenever available and, if not, from global microscopic nuclear models. In particular, both of the Wood-Saxon potential and the double folding potential with density dependent M3Y (DDM3Y) effective interaction are used for the calculations. It is found that the photonuclear reaction rates are very sensitive to the nuclear potential, and the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.
Bryant, Christina; Lewis, Prudence; Bennell, Kim L; Ahamed, Yasmin; Crough, Denae; Jull, Gwendolen A; Kenardy, Justin; Nicholas, Michael K; Keefe, Francis J
2014-10-01
Physical therapists are well established as providers of treatments for common, painful, and disabling conditions, such as knee osteoarthritis (OA). Thus, they are well placed to deliver treatments that integrate physical and psychosocial elements. Attention is usually given to outcomes of such programs, but few studies have examined the processes and outcomes of training physical therapists to deliver such treatments. The aim of this study was to describe the processes in training physical therapists: (1) to deliver a standardized pain coping skills treatment and (2) to evaluate the effectiveness of that training. This study was an analysis of data relating to therapist performance in a randomized clinical trial. Eleven physical therapists were trained to deliver a 10-session pain coping skills training program for people with knee OA as part of a randomized controlled trial (N=222). The initial training was provided in a workshop format and included extensive, ongoing supervision by a psychologist and rigorous use of well-defined performance criteria to assess competence. Adherence to the program, ratings of performance, and use of advanced skills were all measured against these criteria in a sample (n=74, 10%) of the audio recordings of the intervention sessions. Overall, the physical therapists achieved a very high standard of treatment delivery, with 96.6% adherence to the program and mean performance ratings all in the satisfactory range. These results were maintained throughout the intervention and across all sessions. Only 10% of the delivered sessions were analyzed, and the physical therapists who took part in the study were a self-selected group. This study demonstrated that a systematic approach to training and accrediting physical therapists to deliver a standardized pain coping skills program can result in high and sustained levels of adherence to the program. Training fidelity was achieved in this group of motivated clinicians, but the supervision provided was time intensive. The data provide a promising indicator of greater potential for psychologically informed practice to be a feature of effective health care. © 2014 American Physical Therapy Association.
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
Predicting the future trend of popularity by network diffusion.
Zeng, An; Yeung, Chi Ho
2016-06-01
Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.
Predicting the future trend of popularity by network diffusion
NASA Astrophysics Data System (ADS)
Zeng, An; Yeung, Chi Ho
2016-06-01
Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.
Klemann, Cornelius J H M; Xicoy, Helena; Poelmans, Geert; Bloem, Bas R; Martens, Gerard J M; Visser, Jasper E
2018-07-01
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.
Gajewski, Patrick D; Falkenstein, Michael
2015-08-01
Aging is associated with compromised executive control functions. Several lines of evidence point to beneficial effects of physical activity on cognition which indicate that regular physical activity may counteract the age-related decline of some executive functions. Here, we investigate the effects of lifelong physical activity (about 50 years) on interference processing in two matched groups of 20 physically high active and 20 low active healthy older men using event-related potentials (ERPs). In a low interference block of the Stroop task, participants had to indicate the meaning of color-words, while color was either compatible or incompatible with the meaning. In the high interference block, participants were asked to respond according to the ink color of the word and to ignore its meaning. Physically active seniors showed faster reaction times, lower individual variability in reaction times, and higher accuracy compared to low active seniors, particularly in the high interference block. This result was confirmed in the classic paper-and-pencil version of the Stroop task showing higher interference score in the low active than high active individuals. ERPs revealed a shorter latency of the P2 and generally more negative amplitudes of the fronto-central N2 and N450 components in the high active group compared to the low active group. The amount of interference was negatively correlated with objectively measured fitness and self-reported physical activity. The positive effect of physical fitness on interference processing in the behavioral data was related to N2 and N450 amplitudes. Taken together, this suggests that seniors reporting long-term physical activity may exhibit generally enhanced activity in the frontal cortex which enables more efficient interference resolution in the Stroop task. Copyright © 2015 Elsevier Inc. All rights reserved.
Trainable hardware for dynamical computing using error backpropagation through physical media.
Hermans, Michiel; Burm, Michaël; Van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-24
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
Trainable hardware for dynamical computing using error backpropagation through physical media
NASA Astrophysics Data System (ADS)
Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-01
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
NASA Astrophysics Data System (ADS)
Critchell, Kay; Lambrechts, Jonathan
2016-03-01
Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.
Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements
NASA Astrophysics Data System (ADS)
Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.
2017-12-01
Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.
2017-01-01
The cyber-physical gap (CPG) is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework. PMID:28714910
Mechanical forces as information: an integrated approach to plant and animal development
Hernández-Hernández, Valeria; Rueda, Denisse; Caballero, Lorena; Alvarez-Buylla, Elena R.; Benítez, Mariana
2014-01-01
Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes. PMID:24959170
Mechanical forces as information: an integrated approach to plant and animal development.
Hernández-Hernández, Valeria; Rueda, Denisse; Caballero, Lorena; Alvarez-Buylla, Elena R; Benítez, Mariana
2014-01-01
Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes.
Women living with a spinal cord injury: perceptions about their changed bodies.
Chau, Lisa; Hegedus, Lenke; Praamsma, Monate; Smith, Katey; Tsukada, Michiko; Yoshida, Karen; Renwick, Rebecca
2008-02-01
In this article we illuminate the narratives of women living with a spinal cord injury (SCI) with regard to (a) learning how to live with a changed body and (b) exploring the factors that influence how they feel toward their new bodies. An SCI produces immediate physical impairments resulting in a changed body, which can then have physical, emotional, and social consequences to these women. Through its focus on enhancing the body, physical therapy can help to promote a positive view of the self within the changed body. Our analysis of these women's experiences resulted in a fluid, three-phase framework of learning to live with a changed body that generally moves from (a) discomfort, to (b) moving toward comfort, to (c) comfort. Physical therapy can potentially influence the process of women's gaining comfort with their changed bodies following an SCI. The framework provides a basis for future research on adaptation following SCI.
Tovar, Alison; Must, Aviva; Metayer, Nesly; Gute, David M; Pirie, Alex; Hyatt, Raymond R; Economos, Christina D
2013-04-01
Our goal was to explore the perceived determinants of obesity in Brazilian, Latin American and Haitian women. This is part of an ongoing community-based participatory intervention. Focus groups by immigrant group were conducted and themes extracted. Women expressed differences in beliefs, attitudes, and barriers regarding diet and physical activity in the US versus their home country. Participants thought food in the US is "less natural," there is less time for preparation, and there is more variety. The weather is a barrier to physical activity in the US and work is more physically demanding. Job-related efforts were not considered physical activity. They reported higher levels of stress, less control of their time and less social support in the US. Providing immigrants with appropriate support and education early in the acculturation process has the potential to help prevent obesity.
Uncertainty Quantification in Aeroelasticity
NASA Astrophysics Data System (ADS)
Beran, Philip; Stanford, Bret; Schrock, Christopher
2017-01-01
Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.
A physical activity program to mobilize older people: a practical and sustainable approach.
Jancey, Jonine M; Clarke, Ann; Howat, Peter A; Lee, Andy H; Shilton, Trevor; Fisher, John
2008-04-01
Despite the documented benefits of physical activity, it remains difficult to motivate older adults to start and maintain regular physical activity. This study tested an innovative intervention for mobilizing older adults into a neighborhood-based walking program. Researchers recruited a total of 260 healthy but insufficiently active adults aged 65 to 74 years and randomly selected from the Australian electoral roll from 30 Perth metropolitan neighborhoods. Social cognitive theory guided the design of the program. Researchers collected both qualitative and quantitative data to inform the development, together with ongoing process evaluation. A total of 65% of participants completed the program. Their mean weekly walking time for recreation increased by about 100 min, and 80% of participants reported that they would continue to walk twice per week upon program completion. This practical program is potentially effective and sustainable with respect to mobilizing physically inactive older people.
Brady, Anne O; Straight, Chad R; Evans, Ellen M
2014-07-01
The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.
Effect of natural phenolics on the thermal and processing behaviour of poly(3-hydroxybutyrate)
NASA Astrophysics Data System (ADS)
Auriemma, Maria; Piscitelli, Amodio; Pasquino, Rossana; Cerruti, Pierfrancesco; Angelini, Stefania; Scarinzi, Gennaro; Malinconico, Mario; Grizzuti, Nino
2015-12-01
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its relatively poor mechanical properties and narrow processing window. In this paper, different natural phenol-based additives, including tannic acid (TA), grape bagasse extract (EP), and a lignocellulosic biomass (LC) were used as thermal and processing stabilizers for PHB. The thermal stability of both neat and doped PHB samples was studied by rheology and calorimetry. The experimental results showed that neat PHB massively degrades and that the addition of phenol additives enhances the thermal stability of PHB, preserving the polymer molecular weight after processing. This finding was in agreement with the slower decay in viscosity observed through rheological tests. Physical and chemical interactions between polymer and additive were considered as key factors to interpret the experimental data. LC affected the melt crystallization kinetics of PHB enhancing crystallization upon cooling. This finding suggests that LC was a heterogeneous nucleating agent, potentially able to control the physical aging of PHB. The described results are of interest for the development of sustainable alternatives to synthetic polymer additives, by increasing the applicability of bio-based materials.
Experiments on Dust Grain Charging
NASA Technical Reports Server (NTRS)
Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.
2004-01-01
Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.
Chen, Biye; Lewis, Michael J; Grandison, Alistair S
2014-09-01
The composition and physical properties of raw milk from a commercial herd were studied over a 1 year period in order to understand how best to utilise milk for processing throughout the year. Protein and fat levels demonstrated seasonal trends, while minerals and many physical properties displayed considerable variations, which were apparently unrelated to season. However, rennet clotting time, ethanol stability and foaming ability were subject to seasonal variation. Many significant interrelationships in physico-chemical properties were found. It is clear that the milk supply may be more suited to the manufacture of different products at different times of the year or even on a day to day basis. Subsequent studies will report on variation in production and quality of products manufactured from the same milk samples described in the current study and will thus highlight potential advantages of seasonal processing of raw milk. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chemiresistive and Gravimetric Dual-Mode Gas Sensor toward Target Recognition and Differentiation.
Chen, Yan; Zhang, Hao; Feng, Zhihong; Zhang, Hongxiang; Zhang, Rui; Yu, Yuanyuan; Tao, Jin; Zhao, Hongyuan; Guo, Wenlan; Pang, Wei; Duan, Xuexin; Liu, Jing; Zhang, Daihua
2016-08-24
We demonstrate a dual-mode gas sensor for simultaneous and independent acquisition of electrical and mechanical signals from the same gas adsorption event. The device integrates a graphene field-effect transistor (FET) with a piezoelectric resonator in a seamless manner by leveraging multiple structural and functional synergies. Dual signals resulting from independent physical processes, i.e., mass attachment and charge transfer can reflect intrinsic properties of gas molecules and potentially enable target recognition and quantification at the same time. Fabrication of the device is based on standard Integrated Circuit (IC) foundry processes and fully compatible with system-on-a-chip (SoC) integration to achieve extremely small form factors. In addition, the ability of simultaneous measurements of mass adsorption and charge transfer guides us to a more precise understanding of the interactions between graphene and various gas molecules. Besides its practical functions, the device serves as an effective tool to quantitatively investigate the physical processes and sensing mechanisms for a large library of sensing materials and target analytes.
Imaging energy landscapes with concentrated diffusing colloidal probes
NASA Astrophysics Data System (ADS)
Bahukudumbi, Pradipkumar; Bevan, Michael A.
2007-06-01
The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).
Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions
NASA Astrophysics Data System (ADS)
Petersen, D.; Beasley, W. H.
2014-12-01
Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.
NASA Astrophysics Data System (ADS)
Manuhara, Godras Jati; Praseptiangga, Danar; Muhammad, Dimas Rahadian Aji; Maimuni, Bawani Hindami
2016-02-01
Shorter and easier processing of semi-refined kappa carrageenan extracted from Euchema cottonii red seaweed result in cheaper price of the polysaccharide. In this study, edible film was prepared from the semi-refined carrageenan without any salt addition. The effect of the carrageenan concentration (1.0, 1.5, and 2.0% w/v) on physical and mechanical properties of the edible film was studied. Edible film thickness and tensile strength increased but elongation at break and water vapor transmission rate (WVTR) decreased as the concentration increased. Based on the characteristic of the edible film, formulation using 2% carrageenan was recommended. The edible film demonstrated the characteristic as follow: 0.054 mm thickness, 21.14 MPa tensile strength, 12.36% elongation at break, and 9.56 g/m2.hour WVTR. It was also noted the carrageenan-based edible film indicated potential physical and mechanical characteristics for nano coating applications on minimally processed food.
Polymer waveguide grating sensor integrated with a thin-film photodetector
Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo
2014-01-01
This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407
Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S
2015-01-01
Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.
Formative evaluation on a physical activity health promotion program for the group home setting.
Dixon-Ibarra, Alicia; Driver, Simon; VanVolkenburg, Haley; Humphries, Kathleen
2017-02-01
Physical inactivity and high rates of chronic conditions is a public health concern for adults with intellectual disability. Few health promotion programs target the group home setting which is the pre-dominant form of residential accommodation for persons with intellectual disability. A process evaluation of a physical activity health promotion program, Menu-Choice, was conducted with five group home sites for adults with intellectual and developmental disabilities. Menu-Choice assists group home staff in including physical activity goals within resident schedules. The physical activity program was designed based on theoretical frameworks, community-based participatory approaches, and established health promotion guidelines for adults with disabilities. Fourteen program coordinators (age M 39; 77% females), 22 staff (age M 39; 82% females), and 18 residents (age M 59; 72% females; 56% ambulatory) participated. Results from the fidelity survey and program completion highlight potential challenges with implementation. Findings will assist with the refinement of the program for continued implementation trials in the group home community. Published by Elsevier Ltd.
Serum Micronutrient Concentrations and Decline in Physical Function Among Older Persons
Bartali, Benedetta; Frongillo, Edward A.; Guralnik, Jack M.; Stipanuk, Martha H.; Allore, Heather G.; Cherubini, Antonio; Bandinelli, Stefania; Ferrucci, Luigi; Gill, Thomas M.
2009-01-01
Context Maintaining independence of older persons is a public health priority, and identifying the factors that contribute to decline in physical function is needed to prevent or postpone the disablement process. The potential deleterious effect of poor nutrition on decline in physical function in older persons is unclear. Objective To determine whether a low serum concentration of micronutrients is associated with subsequent decline in physical function among older men and women living in the community. Design, Setting, and Participants Longitudinal study of 698 community-living persons 65 years or older who were randomly selected from a population registry in Tuscany, Italy. Participants completed the baseline examination from November 1, 1998, through May 28, 2000, and the 3-year follow-up assessments from November 1, 2001, through March 30, 2003. Main Outcome Measure Decline in physical function was defined as a loss of at least 1 point in the Short Physical Performance Battery during the 3-year follow-up. Odds ratios (ORs) were calculated for the lowest quartile of each nutrient using the other 3 quartiles combined as the reference group. Two additional and complementary analytical approaches were used to confirm the validity of the results. Results The mean decline in the Short Physical Performance Battery score was 1.1 point. In a logistic regression analysis that was adjusted for potential confounders, only a low concentration of vitamin E (<1.1 μg/mL [<24.9 μmol/L]) was significantly associated with subsequent decline in physical function (OR, 1.62; 95% confidence interval, 1.11-2.36; P=.01 for association of lowest α-tocopherol quartile with at least a 1-point decline in physical function). In a general linear model, the concentration of vitamin E at baseline, when analyzed as a continuous measure, was significantly associated with the Short Physical Performance Battery score at follow-up after adjustment for potential confounders and Short Physical Performance Battery score at baseline (β=.023; P=.01). In a classification and regression tree analysis, age older than 81 years and vitamin E (in participants aged 70-80 years) were identified as the strongest determinants of decline in physical function (physical decline in 84% and 60%, respectively; misclassification error rate, 0.33). Conclusions These results provide empirical evidence that a low serum concentration of vitamin E is associated with subsequent decline in physical function among community-living older adults. Clinical trials may be warranted to determine whether an optimal concentration of vitamin E reduces functional decline and the onset of disability in older persons. PMID:18212315
Physical and chemical characterization of waste wood derived biochars.
Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt
2015-02-01
Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification-produced biochars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Avoiding Drought Risks and Social Conflict Under Climate Change
NASA Astrophysics Data System (ADS)
Towler, E.; Lazrus, H.; Paimazumder, D.
2014-12-01
Traditional drought research has mainly focused on physical drought risks and less on the cultural processes that also contribute to how drought risks are perceived and managed. However, as society becomes more vulnerable to drought and climate change threatens to increase water scarcity, it is clear that drought research would benefit from a more interdisciplinary approach. To assess avoided drought impacts from reduced climate change, drought risks need to be assessed in the context of both climate prediction as well as improved understanding of socio-cultural processes. To this end, this study explores a risk-based framework to combine physical drought likelihoods with perceived risks from stakeholder interviews. Results are presented from a case study on how stakeholders in south-central Oklahoma perceive drought risks given diverse cultural beliefs, water uses, and uncertainties in future drought prediction. Stakeholder interviews (n=38) were conducted in 2012 to understand drought risks to various uses of water, as well as to measure worldviews from the cultural theory of risk - a theory that explains why people perceive risks differently, potentially leading to conflict over management decisions. For physical drought risk, drought projections are derived from a large ensemble of future climates generated from two RCPs that represent higher and lower emissions trajectories (i.e., RCP8.5 and RCP4.5). These are used to develop a Combined Drought Risk Matrix (CDRM) that characterizes drought risks for different water uses as the products of both physical likelihood (from the climate ensemble) and risk perception (from the interviews). We use the CRDM to explore the avoided drought risks posed to various water uses, as well as to investigate the potential for reduction of conflict over water management.
Impact of food processing and detoxification treatments on mycotoxin contamination.
Karlovsky, Petr; Suman, Michele; Berthiller, Franz; De Meester, Johan; Eisenbrand, Gerhard; Perrin, Irène; Oswald, Isabelle P; Speijers, Gerrit; Chiodini, Alessandro; Recker, Tobias; Dussort, Pierre
2016-11-01
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Macroscopic Quantum-Type Potentials in Theoretical Systems Biology
Nottale, Laurent
2014-01-01
We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided. PMID:24709901
Principles for the wise use of computers by children.
Straker, L; Pollock, C; Maslen, B
2009-11-01
Computer use by children at home and school is now common in many countries. Child computer exposure varies with the type of computer technology available and the child's age, gender and social group. This paper reviews the current exposure data and the evidence for positive and negative effects of computer use by children. Potential positive effects of computer use by children include enhanced cognitive development and school achievement, reduced barriers to social interaction, enhanced fine motor skills and visual processing and effective rehabilitation. Potential negative effects include threats to child safety, inappropriate content, exposure to violence, bullying, Internet 'addiction', displacement of moderate/vigorous physical activity, exposure to junk food advertising, sleep displacement, vision problems and musculoskeletal problems. The case for child specific evidence-based guidelines for wise use of computers is presented based on children using computers differently to adults, being physically, cognitively and socially different to adults, being in a state of change and development and the potential to impact on later adult risk. Progress towards child-specific guidelines is reported. Finally, a set of guideline principles is presented as the basis for more detailed guidelines on the physical, cognitive and social impact of computer use by children. The principles cover computer literacy, technology safety, child safety and privacy and appropriate social, cognitive and physical development. The majority of children in affluent communities now have substantial exposure to computers. This is likely to have significant effects on child physical, cognitive and social development. Ergonomics can provide and promote guidelines for wise use of computers by children and by doing so promote the positive effects and reduce the negative effects of computer-child, and subsequent computer-adult, interaction.
Szucs, Dénes; Soltész, Fruzsina
2007-11-05
In the numerical Stroop paradigm (NSP) participants compare simultaneously presented Arabic digits based on either their numerical or on their physical size dimension. Responses are faster when the numerical and size dimensions are congruent with each other (facilitation), and responses are slower when the numerical and size dimensions are incongruent with each other (interference). We aimed to find out whether facilitation and interference appears during the course of perceptual or response processing. To this end, facilitation and interference effects in the amplitude of event-related brain potentials (ERPs) were examined. The onset of motor preparation was determined by monitoring the lateralized readiness potential. In numerical comparison one facilitation effect was related to perceptual processing at the level of the magnitude representation. A second facilitation effect and interference effects appeared during response processing. In size comparison facilitation and interference appeared exclusively during response processing. In both tasks, ERP interference effects were probably related to contextual analysis and to the conflict monitoring and selection for action activity of the anterior cingulate cortex. The results demonstrate that facilitation and interference effects in the NSP appear during multiple stages of processing, and that they are related to different cognitive processes. Therefore these effects should be clearly separated in studies of the NSP. A model of the processes involved in the NSP is provided and implications for studies of the NSP are drawn.
ERIC Educational Resources Information Center
Althoff, Sally A.
This monograph offers information, suggestions, and proposals to teachers, students, and citizens to increase their understanding of the aging process in both its physical and psychosociological aspects. Part I, What Is Aging? examines various aspects of aging, some of its major characteristics, and what it is like to grow old in the U.S. today.…
Process for control of cell division
NASA Technical Reports Server (NTRS)
Cone, C. D., Jr. (Inventor)
1977-01-01
A method of controlling mitosis of biological cells was developed, which involved inducing a change in the intracellular ionic hierarchy accompanying the cellular electrical transmembrane potential difference (Esubm) of the cells. The ionic hierarchy may be varied by imposing changes on the relative concentrations of Na(+), K(+) and Cl(-), or by directly imposing changes in the physical Esubm level across the cell surface.
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
Holland, Troy; Fletcher, Thomas H.
2017-02-22
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Troy; Fletcher, Thomas H.
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Lunar material resources: An overview
NASA Technical Reports Server (NTRS)
Carter, James L.
1992-01-01
The analysis of returned lunar samples and a comparison of the physical and chemical processes operating on the Moon and on the Earth provide a basis for predicting both the possible types of material resources (especially minerals and rocks) and the physical characteristics of ore deposits potentially available on the Moon. The lack of free water on the Moon eliminates the classes of ore deposits that are most exploitable on Earth; namely, (1) hydrothermal, (2) secondary mobilization and enrichment, (3) precipitation from a body of water, and (4) placer. The types of lunar materials available for exploitation are whole rocks and their contained minerals, regolith, fumarolic and vapor deposits, and nonlunar materials, including solar wind implantations. Early exploitation of lunar material resources will be primarily the use of regolith materials for bulk shielding; the extraction from regolith fines of igneous minerals such as plagioclase feldspars and ilmenite for the production of oxygen, structural metals, and water; and possibly the separation from regolith fines of solar-wind-implanted volatiles. The only element, compound, or mineral, that by itself has been identified as having the economic potential for mining, processing, and return to Earth is helium-3.
The role of erosion, abrasion and attrition in tooth wear.
Barbour, Michele E; Rees, Gareth D
2006-01-01
There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.
Hydrodynamic instabilities of flows involving melting in under-saturated porous media
NASA Astrophysics Data System (ADS)
Sajjadi, M.; Azaiez, J.
2016-03-01
The process of melting in partially saturated porous media is modeled for flow displacements prone to hydrodynamic instabilities due to adverse mobility ratios. The effects of the development of instabilities on the melting process are investigated through numerical simulations as well as analytical solution to unravel the physics of the flow. The effects of melting parameters, namely, the melting potential of the fluid, the rate of heat transfer to the frozen phase, and the saturation of the frozen material along with the parameters defining the viscous forces, i.e., the thermal and solutal log mobility ratios are examined. Results are presented for different scenarios and the enhancement or attenuation of instabilities are discussed based on the dominant physical mechanisms. Beside an extensive qualitative analysis, the performance of different displacement scenarios is compared with respect to the melt production and the extent of contribution of instability to the enhancement of melting. It is shown that the hydrodynamic instabilities tend in general to enhance melting but the rate of enhancement depends on the interplay between the instabilities and melting at the thermal front. A larger melting potential and a smaller saturation of the frozen material tend to increase the contribution of instability to melting.
A biotechnology perspective of fungal proteases.
de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira
2015-06-01
Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.
Modeling RF-induced Plasma-Surface Interactions with VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.
The onset of plasma potential locking
Hopkins, Matthew M.; Yee, Benjamin T.; Baalrud, Scott D.; ...
2016-06-22
In this study, we provide insight into the role and impact that a positively biased electrode (anode) has on bulk plasma potential. Using two-dimensional Particle-in-Cell simulations, we investigate the plasma potential as an anode transitions from very small (“probe” mode) to large (“locking” mode). Prior theory provides some guidance on when and how this transition takes place. Initial experimental results are also compared. The simulations demonstrate that as the surface area of the anode is increased transitions in plasma potential and sheath polarity occur, consistent with experimental observations and theoretical predictions. It is expected that understanding this basic plasma behaviormore » will be of interest to basic plasma physics communities, diagnostic developers, and plasma processing devices where control of bulk plasma potential is important.« less
Development of a Charge-Implicit ReaxFF Potential for Hydrocarbon Systems.
Kański, Michał; Maciążek, Dawid; Postawa, Zbigniew; Ashraf, Chowdhury M; van Duin, Adri C T; Garrison, Barbara J
2018-01-18
Molecular dynamics (MD) simulations continue to make important contributions to understanding chemical and physical processes. Concomitant with the growth of MD simulations is the need to have interaction potentials that both represent the chemistry of the system and are computationally efficient. We propose a modification to the ReaxFF potential for carbon and hydrogen that eliminates the time-consuming charge equilibration, eliminates the acknowledged flaws of the electronegativity equalization method, includes an expanded training set for condensed phases, has a repulsive wall for simulations of energetic particle bombardment, and is compatible with the LAMMPS code. This charge-implicit ReaxFF potential is five times faster than the conventional ReaxFF potential for a simulation of keV particle bombardment with a sample size of over 800 000 atoms.
Acoustic levitation technique for containerless processing at high temperatures in space
NASA Technical Reports Server (NTRS)
Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.
1988-01-01
High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.
Hybrid Circuits with Nanofluidic Diodes and Load Capacitors
NASA Astrophysics Data System (ADS)
Ramirez, P.; Garcia-Morales, V.; Gomez, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S.
2017-06-01
The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution p H values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanopore-based biosensors and bioelectronic interfaces.
Generalized laws of thermodynamics in the presence of correlations.
Bera, Manabendra N; Riera, Arnau; Lewenstein, Maciej; Winter, Andreas
2017-12-19
The laws of thermodynamics, despite their wide range of applicability, are known to break down when systems are correlated with their environments. Here we generalize thermodynamics to physical scenarios which allow presence of correlations, including those where strong correlations are present. We exploit the connection between information and physics, and introduce a consistent redefinition of heat dissipation by systematically accounting for the information flow from system to bath in terms of the conditional entropy. As a consequence, the formula for the Helmholtz free energy is accordingly modified. Such a remedy not only fixes the apparent violations of Landauer's erasure principle and the second law due to anomalous heat flows, but also leads to a generally valid reformulation of the laws of thermodynamics. In this information-theoretic approach, correlations between system and environment store work potential. Thus, in this view, the apparent anomalous heat flows are the refrigeration processes driven by such potentials.
P3 event-related potentials and childhood maltreatment in successful and unsuccessful psychopaths
Gao, Yu; Raine, Adrian; Schug, Robert A.
2011-01-01
Although P3 event-related potential abnormalities have been found in psychopathic individuals, it is unknown whether successful (uncaught) psychopaths and unsuccessful (caught) psychopaths show similar deficits. In this study, P3 amplitude and latency were assessed from a community sample of 121 male adults using an auditory three-stimulus oddball task. Psychopathy was assessed using the Psychopathy Checklist-Revised (Hare, 2003) while childhood physical maltreatment was assessed using the Conflict Tactic Scale (Strauss, 1979). Results revealed that compared to normal controls, unsuccessful psychopaths showed reduced parietal P3 amplitudes to target stimuli and reported experienced more physical abuse in childhood. In contrast, successful psychopaths exhibited larger parietal P3 amplitude and shorter frontal P3 latency to irrelevant nontarget stimuli than unsuccessful psychopaths. This is the first report of electrophysiological processing differences between successful and unsuccessful psychopaths, possibly indicating neurocognitive and psychosocial distinctions between these two subtypes of psychopathy. PMID:21820788
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
Surface Modeling to Support Small-Body Spacecraft Exploration and Proximity Operations
NASA Technical Reports Server (NTRS)
Riedel, Joseph E.; Mastrodemos, Nickolaos; Gaskell, Robert W.
2011-01-01
In order to simulate physically plausible surfaces that represent geologically evolved surfaces, demonstrating demanding surface-relative guidance navigation and control (GN&C) actions, such surfaces must be made to mimic the geological processes themselves. A report describes how, using software and algorithms to model body surfaces as a series of digital terrain maps, a series of processes was put in place that evolve the surface from some assumed nominal starting condition. The physical processes modeled in this algorithmic technique include fractal regolith substrate texturing, fractally textured rocks (of empirically derived size and distribution power laws), cratering, and regolith migration under potential energy gradient. Starting with a global model that may be determined observationally or created ad hoc, the surface evolution is begun. First, material of some assumed strength is layered on the global model in a fractally random pattern. Then, rocks are distributed according to power laws measured on the Moon. Cratering then takes place in a temporal fashion, including modeling of ejecta blankets and taking into account the gravity of the object (which determines how much of the ejecta blanket falls back to the surface), and causing the observed phenomena of older craters being progressively buried by the ejecta of earlier impacts. Finally, regolith migration occurs which stratifies finer materials from coarser, as the fine material progressively migrates to regions of lower potential energy.
Strong-field physics with mid-infrared lasers
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.
2002-04-01
Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 μm wavelength CO2 laser reaches a 100 times higher ponderomotive potential than the 1 μm wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO2 lasers are in operation. Further more, proposals for the 100 TW, 100 fs CO2 lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO2 lasers, sub-petawatt projects, and prospective applications in strong-field science. .
Entangling spin-spin interactions of ions in individually controlled potential wells
NASA Astrophysics Data System (ADS)
Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David
2014-03-01
Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.
STRONG FIELD PHYSICS WITH MID INFRARED LASERS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
POGORELSKY,I.V.
2001-08-27
Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 {micro}m wavelength CO{sub 2} laser reaches a 100 times higher ponderomotive potential than the 1 {micro}m wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO{sub 2} lasers aremore » in operation. Further more, proposals for the 100 TW, 100 fs CO{sub 2} lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO{sub 2} lasers, sub-petawatt projects, and prospective applications in strong-field science.« less
Kwasnicka, Dominika; Vandelanotte, Corneel; Rebar, Amanda; Gardner, Benjamin; Short, Camille; Duncan, Mitch; Crook, Dawn; Hagger, Martin S
2017-05-26
Most people do not engage in sufficient physical activity to confer health benefits and to reduce risk of chronic disease. Healthcare professionals frequently provide guidance on physical activity, but often do not meet guideline levels of physical activity themselves. The main objective of this study is to develop and test the efficacy of a tailored intervention to increase healthcare professionals' physical activity participation and quality of life, and to reduce work-related stress and absenteeism. This is the first study to compare the additive effects of three forms of a tailored intervention using different techniques from behavioural theory, which differ according to their focus on motivational, self-regulatory and/or habitual processes. Healthcare professionals (N = 192) will be recruited from four hospitals in Perth, Western Australia, via email lists, leaflets, and posters to participate in the four group randomised controlled trial. Participants will be randomised to one of four conditions: (1) education only (non-tailored information only), (2) education plus intervention components to enhance motivation, (3) education plus components to enhance motivation and self-regulation, and (4) education plus components to enhance motivation, self-regulation and habit formation. All intervention groups will receive a computer-tailored intervention administered via a web-based platform and will receive supporting text-messages containing tailored information, prompts and feedback relevant to each condition. All outcomes will be assessed at baseline, and at 3-month follow-up. The primary outcome assessed in this study is physical activity measured using activity monitors. Secondary outcomes include: quality of life, stress, anxiety, sleep, and absenteeism. Website engagement, retention, preferences and intervention fidelity will also be evaluated as well as potential mediators and moderators of intervention effect. This is the first study to examine a tailored, technology-supported intervention aiming to increase physical activity in healthcare professionals. The study will evaluate whether including additional theory-based behaviour change techniques aimed at promoting motivation, self-regulation and habit will lead to increased physical activity participation relative to information alone. The online platform developed in this study has potential to deliver efficient, scalable and personally-relevant intervention that can be translated to other occupational settings. Australian New-Zealand Clinical Trial Registry: ACTRN12616000462482, submitted 29/03/2016, prospectively registered 8/04/2016.
Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
Kaya, Muammer
2016-11-01
This paper reviews the existing and state of art knowledge for electronic waste (e-waste) recycling. Electrical and/or electronic devices which are unwanted, broken or discarded by their original users are known as e-waste. The main purpose of this article is to provide a comprehensive review of e-waste problem, strategies of e-waste management and various physical, chemical and metallurgical e-waste recycling processes, their advantages and disadvantages towards achieving a cleaner process of waste utilization, with special attention towards extraction of both metallic values and nonmetallic substances. The hazards arise from the presence of heavy metals Hg, Cd, Pb, etc., brominated flame retardants (BFRs) and other potentially harmful substances in e-waste. Due to the presence of these substances, e-waste is generally considered as hazardous waste and, if improperly managed, may pose significant human and environmental health risks. This review describes the potential hazards and economic opportunities of e-waste. Firstly, an overview of e-waste/printed circuit board (PCB) components is given. Current status and future perspectives of e-waste/PCB recycling are described. E-waste characterization, dismantling methods, liberation and classification processes are also covered. Manual selective dismantling after desoldering and metal-nonmetal liberation at -150μm with two step crushing are seen to be the best techniques. After size reduction, mainly physical separation processes employing gravity, electrostatic, magnetic separators, froth floatation, etc. have been critically reviewed here for separation of metals and nonmetals, along with useful utilizations of the nonmetallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining. Suitable PCB recycling flowsheets for industrial applications are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives. Recycling technology aims to take today's waste and turn it into conflict-free, sustainable polymetallic secondary resources (i.e. Urban Mining) for tomorrow. Recycling technology must ensure that e-waste is processed in an environmentally friendly manner, with high efficiency and lowered carbon footprint, at a fraction of the costs involved with setting multibillion dollar smelting facilities. Taking into consideration our depleting natural resources, this Urban Mining approach offers quite a few benefits. This results in increased energy efficiency and lowers demand for mining of new raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
X ray timing observations and gravitational physics
NASA Technical Reports Server (NTRS)
Michelson, Peter F.; Wood, Kent S.
1989-01-01
Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.
NASA Astrophysics Data System (ADS)
Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen
2018-02-01
We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.
Conley, Kevin M.; Bolin, Delmas J.; Carek, Peter J.; Konin, Jeff G.; Neal, Timothy L.; Violette, Danielle
2014-01-01
Objective To present athletic trainers with recommendations for the content and administration of the preparticipation physical examination (PPE) as well as considerations for determining safe participation in sports and identifying disqualifying conditions. Background Preparticipation physical examinations have been used routinely for nearly 40 years. However, considerable debate exists as to their efficacy due to the lack of standardization in the process and the lack of conformity in the information that is gathered. With the continuing rise in sports participation at all levels and the growing number of reported cases of sudden death in organized athletics, the sports medicine community should consider adopting a standardized process for conducting the PPE to protect all parties. Recommendations Recommendations are provided to equip the sports medicine community with the tools necessary to conduct the PPE as effectively and efficiently as possible using available scientific evidence and best practices. In addition, the recommendations will help clinicians identify those conditions that may threaten the health and safety of participants in organized sports, may require further evaluation and intervention, or may result in potential disqualification. PMID:24499039
Memristive crypto primitive for building highly secure physical unclonable functions
NASA Astrophysics Data System (ADS)
Gao, Yansong; Ranasinghe, Damith C.; Al-Sarawi, Said F.; Kavehei, Omid; Abbott, Derek
2015-08-01
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations in Complementary Metal Oxide Semiconductor (CMOS) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper, we exploit the extremely large information density available in nanocrossbar architectures and the significant resistance variations of memristors to develop an on-chip memristive device based strong PUF (mrSPUF). Our novel architecture demonstrates desirable characteristics of PUFs, including uniqueness, reliability, and large number of challenge-response pairs (CRPs) and desirable characteristics of strong PUFs. More significantly, in contrast to most existing PUFs, our PUF can act as a reconfigurable PUF (rPUF) without additional hardware and is of benefit to applications needing revocation or update of secure key information.
Memristive crypto primitive for building highly secure physical unclonable functions.
Gao, Yansong; Ranasinghe, Damith C; Al-Sarawi, Said F; Kavehei, Omid; Abbott, Derek
2015-08-04
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations in Complementary Metal Oxide Semiconductor (CMOS) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper, we exploit the extremely large information density available in nanocrossbar architectures and the significant resistance variations of memristors to develop an on-chip memristive device based strong PUF (mrSPUF). Our novel architecture demonstrates desirable characteristics of PUFs, including uniqueness, reliability, and large number of challenge-response pairs (CRPs) and desirable characteristics of strong PUFs. More significantly, in contrast to most existing PUFs, our PUF can act as a reconfigurable PUF (rPUF) without additional hardware and is of benefit to applications needing revocation or update of secure key information.
Memristive crypto primitive for building highly secure physical unclonable functions
Gao, Yansong; Ranasinghe, Damith C.; Al-Sarawi, Said F.; Kavehei, Omid; Abbott, Derek
2015-01-01
Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations in Complementary Metal Oxide Semiconductor (CMOS) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper, we exploit the extremely large information density available in nanocrossbar architectures and the significant resistance variations of memristors to develop an on-chip memristive device based strong PUF (mrSPUF). Our novel architecture demonstrates desirable characteristics of PUFs, including uniqueness, reliability, and large number of challenge-response pairs (CRPs) and desirable characteristics of strong PUFs. More significantly, in contrast to most existing PUFs, our PUF can act as a reconfigurable PUF (rPUF) without additional hardware and is of benefit to applications needing revocation or update of secure key information. PMID:26239669
Planetary nebulae: 20 years of Hubble inquiry
NASA Astrophysics Data System (ADS)
Balick, Bruce
2012-08-01
The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.
Pinela, José; Ferreira, Isabel C F R
2017-07-03
Minimally processed fruits and vegetables are one of the major growing sectors in food industry. This growing demand for healthy and convenient foods with fresh-like properties is accompanied by concerns surrounding efficacy of the available sanitizing methods to appropriately deal with food-borne diseases. In fact, chemical sanitizers do not provide an efficient microbial reduction, besides being perceived negatively by the consumers, dangerous for human health, and harmful to the environment, and the conventional thermal treatments may negatively affect physical, nutritional, or bioactive properties of these perishable foods. For these reasons, the industry is investigating alternative nonthermal physical technologies, namely innovative packaging systems, ionizing and ultraviolet radiation, pulsed light, high-power ultrasound, cold plasma, high hydrostatic pressure, and dense phase carbon dioxide, as well as possible combinations between them or with other preservation factors (hurdles). This review discusses the potential of these novel or emerging technologies for decontamination and shelf-life extension of fresh and minimally processed fruits and vegetables. Advantages, limitations, and challenges related to its use in this sector are also highlighted.
Fitzgerald, Amanda; Fitzgerald, Noelle; Aherne, Cian
2012-08-01
This systematic review investigated the relationship between peer and/or friend variables and physical activity among adolescents by synthesising cross-sectional, longitudinal, and experimental research conducted in the US. Seven electronic databases were searched to identify related articles published within the last 10 years and the articles reviewed included adolescents between 10 and 18 years. Studies reporting a measure of physical activity for adolescents and at least one potential peer and/or friend variable were included. Research demonstrated that peers and friends have an important role to play in the physical activity behavior of adolescents. Six processes were identified through which peers and/or friends may have an influence on physical activity including: peer and/or friend support, presence of peers and friends, peer norms, friendship quality and acceptance, peer crowds, and peer victimization. The theoretical significance of these results is assessed and the development of peer-related physical activity programs for adolescents is discussed. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
General physical activity levels influence positive and negative priming effects in young adults.
Kamijo, Keita; Takeda, Yuji
2009-03-01
To investigate the relationship between general physical activity level and the cognitive functions of executive control in young adults using behavioral measures and event-related brain potentials. Forty young adults (mean age=21.1 yrs; 19 females) were differentiated on the basis of their regular physical activity level into two groups: active and sedentary. They performed a spatial priming task consisting of three conditions: control, positive, and negative priming. Spatial priming effects, which are related to executive control and occur automatically, were assessed as indicators of cognitive functioning. Negative priming effects on reaction time and P3 latency in the active group were larger than in the sedentary group. By contrast, positive priming effects were only observed in the sedentary group. The cognitive effects of regular physical activity could be observed using a relatively simple paradigm. The results indicate that regular physical activity has a beneficial effect on the cognitive processes on executive control in young adults. The present study provides additional evidence of the beneficial effects of regular physical activity on cognitive functioning in young adults.
Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course
NASA Astrophysics Data System (ADS)
Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel
2018-04-01
Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an opportunity to develop students' understanding of the nature and importance of experimental physics within the discipline as a whole. Here, we present and compare both a longitudinal and pseudolongitudinal analysis of students' responses to a research-based assessment targeting students' views about experimental physics—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS)—across multiple, required lab courses at a single institution. We find that, while pseudolongitudinal averages showed increases in students' E-CLASS scores in each consecutive course, analysis of longitudinal data indicates that this increase was not driven by a cumulative impact of laboratory instruction. Rather, the increase was driven by a selection effect in which students who persisted into higher-level lab courses already had more expertlike beliefs, attitudes, and expectations than their peers when they started the lower-level courses.
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)
1980-01-01
Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.
Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review.
Gomes, Taisa G; Hadi, Sámed I I A; Costa Alves, Gabriel S; Mendonça, Simone; De Siqueira, Felix G; Miller, Robert N G
2018-03-21
Jatropha curcas is an important oilseed plant, with considerable potential in the development of biodiesel. Although Jatropha seed cake, the byproduct of oil extraction, is a residue rich in nitrogen, phosphorus, potassium, and carbon, with high protein content suitable for application in animal feed, the presence of toxic phorbol esters limits its application in feed supplements and fertilizers. This review summarizes the current methods available for detoxification of this residue, based upon chemical, physical, biological, or combined processes. The advantages and disadvantages of each process are discussed, and future directions involving genomic and proteomic approaches for advancing our understanding of biodegradation processes involving microorganisms are highlighted.
Henry, Teague; Gesell, Sabina B.; Ip, Edward H.
2016-01-01
Background Social networks influence children and adolescents’ physical activity. The focus of this paper is to examine the differences in the effects of physical activity on friendship selection, with eye to the implications on physical activity interventions for young children. Network interventions to increase physical activity are warranted but have not been conducted. Prior to implementing a network intervention in the field, it is important to understand potential heterogeneities in the effects that activity level have on network structure. In this study, the associations between activity level and cross sectional network structure, and activity level and change in network structure are assessed. Methods We studied a real-world friendship network among 81 children (average age 7.96 years) who lived in low SES neighborhoods, attended public schools, and attended one of two structured aftercare programs, of which one has existed and the other was new. We used the exponential random graph model (ERGMs) and its longitudinal extension to evaluate the association between activity level and various demographic factors in having, forming, and dissolving friendship. Due to heterogeneity between the friendship networks within the aftercare programs, separate analyses were conducted for each network. Results There was heterogeneity in the effect of physical activity on both cross sectional network structure and the formation and dissolution processes, both across time and between networks. Conclusions Network analysis could be used to assess the unique structure and dynamics of a social network before an intervention is implemented, so as to optimize the effects of the network intervention for increasing childhood physical activity. Additionally, if peer selection processes are changing within a network, a static network intervention strategy for childhood physical activity could become inefficient as the network evolves. PMID:27867518
DC magnetron sputtered polyaniline-HCl thin films for chemical sensing applications.
Menegazzo, Nicola; Boyne, Devon; Bui, Holt; Beebe, Thomas P; Booksh, Karl S
2012-07-03
Thin films of conducting polymers exhibit unique chemical and physical properties that render them integral parts in microelectronics, energy storage devices, and chemical sensors. Overall, polyaniline (PAni) doped in acidic media has shown metal-like electronic conductivity, though exact physical and chemical properties are dependent on the polymer structure and dopant type. Difficulties arising from poor processability render production of doped PAni thin films particularly challenging. In this contribution, DC magnetron sputtering, a physical vapor deposition technique, is applied to the preparation of conductive thin films of PAni doped with hydrochloric acid (PAni-HCl) in an effort to circumvent issues associated with conventional thin film preparation methods. Samples manufactured by the sputtering method are analyzed along with samples prepared by conventional drop-casting. Physical characterization (atomic force microscopy, AFM) confirm the presence of PAni-HCl and show that films exhibit a reduced roughness and potentially pinhole-free coverage of the substrate. Spectroscopic evidence (UV-vis, FT-IR, and X-ray photoelectron spectroscopy (XPS)) suggests that structural changes and loss of conductivity, not uncommon during PAni processing, does occur during the preparation process. Finally, the applicability of sputtered films to gas-phase sensing of NH(3) was investigated with surface plasmon resonance (SPR) spectroscopy and compared to previous contributions. In summary, sputtered PAni-HCl films exhibit quantifiable, reversible behavior upon exposure to NH(3) with a calculated LOD (by method) approaching 0.4 ppm NH(3) in dry air.
Belansky, Elaine S; Cutforth, Nick; Chavez, Robert; Crane, Lori A; Waters, Emily; Marshall, Julie A
2013-03-01
School environment and policy changes have increased healthy eating and physical activity; however, there has been modest success in translating research findings to practice. The School Environment Project tested whether an adapted version of Intervention Mapping (AIM) resulted in school change. Using a pair randomized design, 10 rural elementary schools were assigned to AIM or the School Health Index (SHI). Baseline measures were collected fall 2005, AIM was conducted 2005-2006, and follow-up measures were collected fall 2006 and 2007. Outcome measures included number and type of effective environment and policy changes implemented; process measures included the extent to which 11 implementation steps were used. AIM schools made an average of 4.4 effective changes per school with 90% still in place a year later. SHI schools made an average of 0.6 effective changes with 66% in place a year later. Implementation steps distinguishing AIM from SHI included use of external, trained facilitators; principal involvement; explicitly stating the student behavior goals; identifying effective environment and policy changes; prioritizing potential changes based on importance and feasibility; and developing an action plan. The AIM process led to environment and policy changes known to increase healthy eating and physical activity. © 2013, American School Health Association.
Potential for the Vishniac instability in ionizing shock waves propagating into cold gases
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Pasley, J.
2018-05-01
The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.
Synthesis of silver nanoparticles: chemical, physical and biological methods
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B.
2014-01-01
Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries. PMID:26339255
Towards Plasma-Based Water Purification: Challenges and Prospects for the Future
NASA Astrophysics Data System (ADS)
Foster, John
2016-10-01
Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.
Birmingham, Wendy
2011-01-01
Background Relationships have been linked to significant physical health outcomes. However, little is known about the more specific processes that might be responsible for such links. Purpose The main aim of this study was to examine a previously unexplored and potentially important form of partner knowledge (i.e., attitude familiarity) on relationship processes and cardiovascular function. Methods In this study, 47 married couples completed an attitude familiarity questionnaire and ambulatory assessments of daily spousal interactions and blood pressure. Results Attitude familiarity was associated with better interpersonal functioning between spouses in daily life (e.g., greater partner responsiveness). Importantly, attitude familiarity was also related to lower overall ambulatory systolic blood pressure and diastolic blood pressure. Conclusions These data suggest that familiarity with a spouse’s attitudes may be an important factor linking relationships to better interpersonal and physical health outcomes. PMID:20878291
New physics with the lepton flavor violating decay τ →3 μ
NASA Astrophysics Data System (ADS)
Calcuttawala, Zaineb; Kundu, Anirban; Nandi, Soumitra; Patra, Sunando Kumar
2018-05-01
Lepton flavor violating (LFV) processes are a smoking gun signal of new physics (NP). If the semileptonic B decay anomalies are indeed due to some NP, such operators can potentially lead to LFV decays involving the second and the third generation leptons, like τ →3 μ . In this paper, we explore how far the nature of NP can be unraveled at the next generation B -factories like Belle-II, provided the decay τ →3 μ has been observed. We use four observables with which the differentiation among NP operators may be achieved to a high confidence level. Possible presence of multiple NP operators are also analyzed with the optimal observable technique. While the analysis can be improved even further if the final state muon polarizations are measured, we present this work as a motivational tool for the experimentalists, as well as a template for the analysis of similar processes.
Limits of predictions in thermodynamic systems: a review
NASA Astrophysics Data System (ADS)
Marsland, Robert, III; England, Jeremy
2018-01-01
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.
1998-01-01
This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.
NASA Astrophysics Data System (ADS)
Park, Seyong; Yoon, Young Soo
2016-09-01
In this paper, we report the first successful fabrication of CdWO4 thin film scintillators deposited on quartz glass substrates by using an electron-beam physical vapor deposition method. The films were dense, uniform, and crack-free. CdWO4 thin-film samples of varying thicknesses were investigated by using structural and optical characterization techniques. An optimized thickness for the CdWO4 thin-film scintillators was discovered. The scintillation and the optical properties were found to depend strongly on the annealing process. The annealing process resulted in thin films with a distinct crystal structure and with improved transparency and scintillation properties. For potential applications in gamma-ray energy storage systems, photoluminescence measurements were performed using gamma rays at a dose rate of 10 kGy h-1.
Duration perception of emotional stimuli: Using evaluative conditioning to avoid sensory confounds.
Kliegl, Katrin M; Watrin, Luc; Huckauf, Anke
2015-01-01
It has been found that emotional pictures are estimated to last longer than neutral ones. However, emotional and neutral stimuli often differ in their physical characteristics, too. Since this might also affect time perception, we present a method disentangling a possible confounding regarding the processing of physically different stimulus material. In the evaluative condition paradigm, participants, at first, learnt the association of neutral images with a certain Landolt ring and of emotional images with another Landolt ring with a different gap position. The conditioned Landolt rings were subsequently used in a temporal bisection task. In two experiments, the results revealed a temporal overestimation of Landolt rings conditioned with emotional pictures compared to neutral pictures showing that the temporal overestimation of emotional stimuli cannot be attributed to perceptual differences between neutral and emotional stimuli. The method provides the potential for investigating emotional effects on various perceptual processes.
Biodegradability of Plastics: Challenges and Misconceptions.
Kubowicz, Stephan; Booth, Andy M
2017-11-07
Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.
Riiser, Kirsti; Helseth, Sølvi; Ellingsen, Hanna; Fallang, Bjørg; Løndal, Knut
2017-08-04
Interventions delivered in after-school programmes (ASPs) have the potential to become a means of ensuring adequate physical activity among schoolchildren. This requires a motivational climate, allowing for self-determined play. If trained, ASP staff may represent a valuable resource for supporting such play. Increasing knowledge and supportive skills among ASP staff may also potentially increase their motivation for work. The purpose of this article is to describe the development of the 'Active Play in ASP' intervention, which aims to promote physical activity among first graders attending ASP, and to present a protocol for a matched-pair cluster-randomised trial to evaluate the intervention. Informed by experiences from practice, evidence-based knowledge and theory, the intervention was developed in a stepwise process including focus group meetings and a small-scale pilot test. The intervention contains a course programme for ASP staff to increase their skills in how to support physical activity through play. In a cluster randomised controlled trial, the ASPs will be matched and randomly allocated to receive the 7-month intervention or to a control group. Outcomes will be assessed at baseline, after 7 and 19 months. First graders attending the ASPs included are eligible. The primary outcome will be accelerometer-determined minutes in moderate to vigorous physical activity in the ASP. The study uses a mixed methods approach including observations and interviews to provide rich descriptions of the concept of children's physical activity in ASP. Moreover, the trial will assess whether the ASP staff benefits from participation in the intervention in terms of increased work motivation. Lastly, process evaluations of programme fidelity, satisfaction and suggestions on improvement will be performed. The study is approved by the Data Protection Official for Research (reference no 46008). Results will be presented in conferences and peer-reviewed journals. Clinical Trials (NCT02954614), pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus
NASA Astrophysics Data System (ADS)
Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.
2013-12-01
Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement when the physical processes are treated similarly. The comparisons considered here indicate that, with the correct parameterization of important physical effects such as photoemission and secondary electron emission, our simulation models should have the required skill to predict details of satellite-plasma interaction physics with a high level of confidence. This work was supported by the International Space Science Institute in Bern Switzerland. The potential profile around the Solar Probe Plus spacecraft in orbital flow, from the iPic3D code. The physical model includes photo- and secondary electrons and a static magnetic field.
How an interacting many-body system tunnels through a potential barrier to open space
Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.
2012-01-01
The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703
Physics, biology and the origin of life: the physicians' view.
Goodman, Geoffrey; Gershwin, M Eric
2011-12-01
Physicians have a great interest in discussions of life and its origin, including life's persistence through successive cycles of self-replication under extreme climatic and man-made trials and tribulations. We review here the fundamental processes that, contrary to human intuition, life may be seen heuristically as an ab initio, fundamental process at the interface between the complementary forces of gravitation and quantum mechanics. Analogies can predict applications of quantum mechanics to human physiology in addition to that already being applied, in particular to aspects of brain activity and pathology. This potential will also extend eventually to, for example, autoimmunity, genetic selection and aging. We present these thoughts in perspective against a background of changes in some physical fundamentals of science, from the earlier times of the natural philosophers of medicine to the technological medical gurus of today. Despite the enormous advances in medical science, including integration of technological changes that have led to the newer clinical applications of magnetic resonance imaging and PET scans and of computerized drug design, there is an intellectual vacuum as to how the physics of matter became translated to the biology of life. The essence and future of medicine continue to lie in cautious, systematic and ethically bound practice and scientific research based on fundamental physical laws accepted as true until proven false.
Panza, Francesco; Lozupone, Madia; Solfrizzi, Vincenzo; Sardone, Rodolfo; Dibello, Vittorio; Di Lena, Luca; D’Urso, Francesca; Stallone, Roberta; Petruzzi, Massimo; Giannelli, Gianluigi; Quaranta, Nicola; Bellomo, Antonello; Greco, Antonio; Daniele, Antonio; Seripa, Davide; Logroscino, Giancarlo
2018-01-01
Frailty, a critical intermediate status of the aging process that is at increased risk for negative health-related events, includes physical, cognitive, and psychosocial domains or phenotypes. Cognitive frailty is a condition recently defined by operationalized criteria describing coexisting physical frailty and mild cognitive impairment (MCI), with two proposed subtypes: potentially reversible cognitive frailty (physical frailty/MCI) and reversible cognitive frailty (physical frailty/pre-MCI subjective cognitive decline). In the present article, we reviewed the framework for the definition, different models, and the current epidemiology of cognitive frailty, also describing neurobiological mechanisms, and exploring the possible prevention of the cognitive frailty progression. Several studies suggested a relevant heterogeneity with prevalence estimates ranging 1.0–22.0% (10.7–22.0% in clinical-based settings and 1.0–4.4% in population-based settings). Cross-sectional and longitudinal population-based studies showed that different cognitive frailty models may be associated with increased risk of functional disability, worsened quality of life, hospitalization, mortality, incidence of dementia, vascular dementia, and neurocognitive disorders. The operationalization of clinical constructs based on cognitive impairment related to physical causes (physical frailty, motor function decline, or other physical factors) appears to be interesting for dementia secondary prevention given the increased risk for progression to dementia of these clinical entities. Multidomain interventions have the potential to be effective in preventing cognitive frailty. In the near future, we need to establish more reliable clinical and research criteria, using different operational definitions for frailty and cognitive impairment, and useful clinical, biological, and imaging markers to implement intervention programs targeted to improve frailty, so preventing also late-life cognitive disorders. PMID:29562543
ERIC Educational Resources Information Center
Machado, Juliana; Braga, Marco Antônio Barbosa
2016-01-01
A characterization of the modelling process in science is proposed for science education, based on Mario Bunge's ideas about the construction of models in science. Galileo's "Dialogues" are analysed as a potentially fruitful starting point to implement strategies aimed at modelling in the classroom in the light of that proposal. It is…
John Aber; Ronald P. Neilson; Steve McNulty; James M. Lenihan; Dominque Bachelet; Raymond J. Drapek
2001-01-01
The purpose of this article is to review the state of prediction of forest ecosystem response to envisioned changes in the physical and chemical climate. These results are offered as one part of the forest sector analysis of the National Assessment of the Potential Consequences of Climate Variability and Change. This article has three sections. The first offers a very...
Multivariate Quantitative Chemical Analysis
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Capezza, Mary
1995-01-01
Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.
Hinman, R S; Nelligan, R K; Bennell, K L; Delany, C
2017-12-01
To explore the experience of patients and physical therapists with Skype for exercise management of knee osteoarthritis (OA). This was a qualitative study. The Donabedian model for quality assessment in health care (structure, process, and outcomes) informed semistructured individual interview questions. The study involved 12 purposively sampled patients with knee OA who received physical therapist-prescribed exercise over Skype, and all therapists (n = 8) who delivered the intervention in a clinical trial were interviewed about their experiences. Interviews were audio recorded and transcribed. Two investigators undertook coding and analysis using a thematic approach. Six themes arose from both patients and therapists. The themes were Structure: technology (easy to use, variable quality, set-up assistance helpful) and patient convenience (time efficient, flexible, increased access); Process: empowerment to self-manage (facilitated by home environment and therapists focusing on effective treatment) and positive therapeutic relationships (personal undivided attention from therapists, supportive friendly interactions); and Outcomes: satisfaction with care (satisfying, enjoyable, patients would recommend, therapists felt Skype more useful as adjunct to usual practice) and patient benefits (reduced pain, improved function, improved confidence and self-efficacy). A seventh theme arose from therapists regarding process: adjusting routine treatment (need to modify habits, discomfort without hands-on, supported by research environment). Patients and physical therapists described mostly positive experiences using Skype as a service delivery model for physical therapist-supervised exercise management of moderate knee OA. Such a model is feasible and acceptable and has the potential to increase access to supervised exercise management for people with knee OA, either individually or in combination with traditional in-clinic visits. © 2017, American College of Rheumatology.
Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects
NASA Astrophysics Data System (ADS)
Grover, Valerie Ann
The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.
A Fundamental Study of Inorganic Clathrate and Other Open-Framework Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolas, George
Due to formidable synthetic challenges, many materials of scientific and technological interest are first obtained as microcrystalline powders. High purity, high yield processing techniques are often lacking and thus care must be taken in interpretation of the observed structural, chemical, and physical properties of powder or polycrystalline materials, which can be strongly influenced by extrinsic properties. Furthermore, the preparation of high-quality single crystals for many materials by traditional techniques can be especially challenging in cases where the elemental constituents have greatly differing melting points and/or vapor pressures, when the desired compound is thermodynamically metastable, or where growth with participation ofmore » the melt is generally not possible. New processing techniques are therefore imperative in order to investigate the intrinsic properties of these materials and elucidate their fundamental physical properties. Intermetallic clathrates constitute one such class of materials. The complex crystal structures of intermetallic clathrates are characterized by mainly group 14 host frameworks encapsulating guest-ions in polyhedral cages. The unique features of clathrate structures are intimately related to their physical properties, offering ideal systems for the study of structure-property relationships in crystalline solids. Moreover, intermetallic clathrates are being actively investigated due to their potential for application in thermoelectrics, photovoltaics and opto-electronics, superconductivity, and magnetocaloric technologies. We have developed different processing techniques in order to synthesize phase-pure high yield clathrates reproducibly, as well as grow single crystals for the first time. We also employed these techniques to synthesize new “open-framework” compounds. These advances in materials processing and crystal growth allowed for the investigation of the physical properties of a variety of different clathrate compositions for the first time.« less
The Earth Microbiome Project and modeling the planets microbial potential (Invited)
NASA Astrophysics Data System (ADS)
Gilbert, J. A.
2013-12-01
The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires recognition and accommodation of sources of uncertainty.
NASA Astrophysics Data System (ADS)
Eisner, R. K.
2015-12-01
This presentation will describe a collaborative dialogue process between earth scientists and emergency management officials that focused on translation of science into policy, building long term trust based relationships between sectors and unified presentation of hazards, risks and consequence management to public officials and the general public. The author will describe the structure and process of the California Earthquake Prediction Evaluation Council (CEPEC) in assessing the credibility of long and short term earthquake predictions, assessment of risk, and the formulation of public communication strategies and preparatory actions by government agencies. For nearly 4 decades, earth scientists, politically appointed state officials and emergency managers have engaged in ongoing discussions of the policy implications of research on potential seismic risk. Some discussions were scheduled and occurred over months, and others were ad hoc and occurred in the minutes between potential precursory incidents and possible large events. The effectiveness of this process was dependent on building respect for ones counterparts expertise, bias and responsibilities, clear communication of data, uncertainty and knowledge of the physical models assumed, history and probabilities; and the physical and political consequences of possible events; and the costs and economic and social disruption of alternative preparedness actions. But, the dialogue included political and social scientists, representatives of the print and broadcast media, political and management officials from federal, state and local governments. The presentation will provide an assessment of the effectiveness of the collaborative dialogue process and lessons on sustaining a long term partnership among the participating federal, state and local officials.
Exploration and validation of clusters of physically abused children.
Sabourin Ward, Caryn; Haskett, Mary E
2008-05-01
Cluster analysis was used to enhance understanding of heterogeneity in social adjustment of physically abused children. Ninety-eight physically abused children (ages 5-10) were clustered on the basis of social adjustment, as measured by observed behavior with peers on the school playground and by teacher reports of social behavior. Seventy-seven matched nonabused children served as a comparison sample. Clusters were validated on the basis of observed parental sensitivity, parents' self-reported disciplinary tactics, and children's social information processing operations (i.e., generation of solutions to peer relationship problems and attributions of peer intentions in social situations). Three subgroups of physically abused children emerged from the cluster analysis; clusters were labeled Socially Well Adjusted, Hanging in There, and Social Difficulties. Examination of cluster differences on risk and protective factors provided substantial evidence in support of the external validity of the three-cluster solution. Specifically, clusters differed significantly in attributions of peer intent and in parenting (i.e., sensitivity and harshness of parenting). Clusters also differed in the ways in which they were similar to, or different from, the comparison group of nonabused children. Results supported the contention that there were clinically relevant subgroups of physically abused children with potentially unique treatment needs. Findings also pointed to the relevance of social information processing operations and parenting context in understanding diversity among physically abused children. Pending replication, findings provide support for the importance of considering unique treatment of needs among physically abused children. A singular approach to intervention is unlikely to be effective for these children. For example, some physically abused children might need a more intensive focus on development of prosocial skills in relationships with peers while the prosocial skills of other abused children will be developmentally appropriate. In contrast, most physically abused children might benefit from training in social problem-solving skills. Findings also point to the importance of promoting positive parenting practices in addition to reducing harsh discipline of physically abusive parents.
NASA Technical Reports Server (NTRS)
Tao, Wei Kuo; Chen, C.-S.; Jia, Y.; Baker, D.; Lang, S.; Wetzel, P.; Lau, W. K.-M.
2001-01-01
Several heavy precipitation episodes occurred over Taiwan from August 10 to 13, 1994. Precipitation patterns and characteristics are quite different between the precipitation events that occurred from August 10 and I I and from August 12 and 13. In Part I (Chen et al. 2001), the environmental situation and precipitation characteristics are analyzed using the EC/TOGA data, ground-based radar data, surface rainfall patterns, surface wind data, and upper air soundings. In this study (Part II), the Penn State/NCAR Mesoscale Model (MM5) is used to study the precipitation characteristics of these heavy precipitation events. Various physical processes (schemes) developed at NASA Goddard Space Flight Center (i.e., cloud microphysics scheme, radiative transfer model, and land-soil-vegetation surface model) have recently implemented into the MM5. These physical packages are described in the paper, Two way interactive nested grids are used with horizontal resolutions of 45, 15 and 5 km. The model results indicated that Cloud physics, land surface and radiation processes generally do not change the location (horizontal distribution) of heavy precipitation. The Goddard 3-class ice scheme produced more rainfall than the 2-class scheme. The Goddard multi-broad-band radiative transfer model reduced precipitation compared to a one-broad band (emissivity) radiation model. The Goddard land-soil-vegetation surface model also reduce the rainfall compared to a simple surface model in which the surface temperature is computed from a Surface energy budget following the "force-re store" method. However, model runs including all Goddard physical processes enhanced precipitation significantly for both cases. The results from these runs are in better agreement with observations. Despite improved simulations using different physical schemes, there are still some deficiencies in the model simulations. Some potential problems are discussed. Sensitivity tests (removing either terrain or radiative processes) are performed to identify the physical processes that determine the precipitation patterns and characteristics for heavy rainfall events. These sensitivity tests indicated that terrain can play a major role in determining the exact location for both precipitation events. The terrain can also play a major role in determining the intensity of precipitation for both events. However, it has a large impact on one event but a smaller one on the other. The radiative processes are also important for determining, the precipitation patterns for one case but. not the other. The radiative processes can also effect the total rainfall for both cases to different extents.
NASA Astrophysics Data System (ADS)
Yu, Fei; Ma, Xiaoyu; Deng, Wanling; Liou, Juin J.; Huang, Junkai
2017-11-01
A physics-based drain current compact model for amorphous InGaZnO (a-InGaZnO) thin-film transistors (TFTs) is proposed. As a key feature, the surface potential model accounts for both exponential tail and deep trap densities of states, which are essential to describe a-InGaZnO TFT electrical characteristics. The surface potential is solved explicitly without the process of amendment and suitable for circuit simulations. Furthermore, based on the surface potential, an explicit closed-form expression of the drain current is developed. For the cases of the different operational voltages, surface potential and drain current are verified by numerical results and experimental data, respectively. As a result, our model can predict DC characteristics of a-InGaZnO TFTs.
Interfacial solvation thermodynamics
NASA Astrophysics Data System (ADS)
Ben-Amotz, Dor
2016-10-01
Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.
Adaptive electric potential sensors for smart signal acquisition and processing
NASA Astrophysics Data System (ADS)
Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.
2007-07-01
Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.
Hydrology beyond closing the water balance: energy conservative scaling of gradient flux relations
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Loritz, Ralf; Jackisch, Conrad
2017-04-01
The value of physically-based models has been doubted since their idea was introduced by Freeze and Harlan. Physically-based models like typically rely on the Darcy-Richards concept for soil water dynamics, the Penman-Monteith equation for soil-vegetation-atmosphere exchange processes and hydraulic approaches for overland and stream flow. Each of these concepts is subject to limitations arising from our imperfect understanding of the related processes and is afflicted by the restricted transferability of process descriptions from idealized laboratory conditions to heterogeneous natural systems. Particularly the non-linearity of soil water characteristics in concert with the baffling heterogeneity subsurface properties is usually seen as the dead end for a meaningful application of physically based models outside of well observed research catchments and, more importantly, for an upscaling of point scale flux - gradient relation-ships. This study provides evidence that an energy conservative scaling of topographic gradients and soil water retention curves allows derivation of useful effective catchment scale topography and retention curve from distributed data, which allow successful simulations of the catchment water balance in two distinctly different landscapes. The starting point of our approach is that subsurface water fluxes are driven by differences in potential energy and chemical/capillary binding energy. The relief of a single hillslope controls the potential energy gradients driving downslope flows of free water, while catchment scale variability in hillslope relief is associated with differences in driving potential energy. It is more important to note that the soil water retention curve characterises the density of capillary binding energy of soil water (usually named soil water potential) at a given soil water content. Spatially variable soil water characteristics hence reflect fluctuations in capillary binding energy of soil water at a given soil water content among different sites. Essentially we propose that a meaning full effective representation of the driving topographic gradient needs to represent the mean distribution of geo-potential energy in a catchment, which leads us to the hypsometric integral. Similarly, we postulate that effective soil water characteristics should characterise the average relation between soil water content and capillary binding energy of soil water. For a given set of soil water retention curve derived from a set of undisturbed soil samples this can be achieved by grouping the observation points of all soil samples, averaging the soil water content at a given matric potential/binding energy density and fitting a parametric relation. We demonstrate that a single hillslope with the proposed effective topography and soil water retention curve is sufficient to simulate the water balance and runoff formation of two distinctly different catchments in the Attert experimental watershed.
Ventral striatal activity links adversity and reward processing in children.
Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce
2017-08-01
Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lotfy, Kh.
2018-05-01
In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.
The characteristics of bioethanol fuel made of vegetable raw materials
NASA Astrophysics Data System (ADS)
Muhaji; Sutjahjo, D. H.
2018-01-01
The aim of this research is to identify the most potential vegetable raw as the material to make a bioethanol fuel as the alternative energy for gasoline. This study used experimental method. The high-level bioethanol was obtained through the process of saccharification, fermentation and stratified distillation. ASTM standards were used as the method of testing the chemical element (D 5501, D 1744, D 1688, D 512, D 2622, D 381), and physical test (D 1613, D 240, D 1298-99, D 445, and D 93). The result of the analysis showed that from the seven bioethanols being studied there is one bioethanol from Saccharum of icinarum linn that has physical and chemical properties close to the standard of bioethanol. Meanwhile, the others only meet some of the physical and chemical properties of the standard bioethanol.
HEP Community White Paper on Software Trigger and Event Reconstruction: Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Johannes; et al.
Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for softwaremore » and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.« less
HEP Community White Paper on Software Trigger and Event Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Johannes; et al.
Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for softwaremore » and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.« less
TH-D-16A-01: Medical Physics Workshop: Editorial Vision and Guidance On Writing and Reviewing Papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, J; Das, S; Goodsitt, M
On January 1, 2014, editorial leadership of Medical Physics passed from esteemed long-time Editor Bill Hendee to a collective editorial group composed of the three presenters listed above. In this presentation, we would like to outline our vision for the future of Medical Physics and review recent work-in-progress initiatives to implement this vision. Finally, we will close with guidance to authors on how to write a good Medical Physics paper. Vision for Medical Physics and current initiatives: Jeff Williamson, Editor-in-Chief We cannot improve on Dr. Hendee's succinct vision statement “to continue the Journal's tradition of publishing the very best sciencemore » that propels our discipline forward and improves our contribution to patient care.” More concretely, the Journal should be s the preeminent forum for electronic exchange of cutting edge medical physics science. We seek to identify the best contributions in (a) high impact clinical physics innovations; (b) clinical translation and validation of basic science innovations; or (c) cutting edge basic science developments with potential for patient care improvements. Among the challenges and opportunities we face are: are electronic-only and open access publishing; trends towards more interactive, social-media based scientific communities; and diversification of the medical physics research, authorship, and readership domains, including clinical applications quite foreign to core ABR clinical competencies. To address these issues over the next 3 years, we have reduced the size of our Editorial Board and focused its efforts on improving the Journal's impact through 4 working groups (WGs): WG-1: Review process quality and selectivity Creation of 120 member Board of Associate Editors to improve review uniformity by placing Ms. management in fewer hands New reviewer guidelines and templates Answer: “what is the scope of medical physics research?” Recursive taxonomy for tagging review expertise and article contents WG-2 Improving reader experience Redesigning http://MedPhys.org to host interactive features and gateway to electronic issue archive Experimentation with interactive features beginning with “Point/Counterpoint” Data mining and Journal quality evaluation Find out who are audiences are Identify characteristics of high impact articles Measure effectiveness of innovations Outreach to related communities Special issues presenting high-impact work in designated subcommunities Addressing the needs of new research constituencies: engineers, biophysicists, clinicians Guidelines and templates for reviewers and associate editors: Shiva Das, Therapy Physics Editor We will discuss the Med. Phys. review process and a new initiative to create review templates that attempts to address current shortcomings. Template design is informed by the literature on of the review process effectiveness and practices of other journals. Its goals are to provide authors more constructive criticism to improve the manuscript; quantifying perceived importance and potential impact; and providing structured sections that prompt the reviewer to addresses important technical and editorial elements. While the template is recommended to be used, reviewers could alternatively enter their comments in the older free-form style. The expectations of the template are that it will enable consistently thorough, high quality reviews that accurately separate acceptable vs. substandard submissions but continue our tradition of helping authors to enhance papers with high potential. Ultimately, the goal is to reduce variability and subjectivity in the peer-review process, in turn leading to articles with higher research and clinical impact. We will also discuss interesting perspectives from several journals on aspects of the peer-review process such as public input via comments, influence of author-suggested reviewers, and bias in reviewer selection. Writing good scientific papers and responding to critiques: Mitch Goodsitt, Imaging Physics Editor The essential components of the abstract, introduction, methods, discussion and conclusion sections, as well as the desired writing style and style of the figures and tables will be reviewed. Publishable Medical Physics Ms. must include a clear and concise statement of the novelty and clinical and/or scientific importance of their work. Examples of novelty include: new technical solution to an important clinical problem; new generalizable knowledge; or first demonstration that an existing engineering solution solves a clinical problem. Authors must also include: sufficient background information and rationale; enough detail that the work can be reproduced by others; sufficient statistical analysis to refute or validate their hypothesis, how it compares to; is distinct from, and improves upon others' work; and the limitations of their study. When the authors receive critiques from the referees and associate editor, the authors should provide a detailed point-bypoint response to each comment. We now ask that the authors' rebuttal include the text of the original criticism, the authors' response, and the modified text along with the line numbers in the revised article. We also ask that the new text be highlighted in a different font color in the revised submission. These changes and others will be discussed. Their purpose is to facilitate the review process.« less
NASA Astrophysics Data System (ADS)
Mathur, Deepak
2015-01-01
This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to invoking dissociative attachment in quantification of stress levels in humans. The prognosis is extremely good for more intense interaction of AMO physics and biology; by way of future predictions attention is drawn to only two of very many opportunities for such interactions: application of attosecond techniques and tunnelling experiments to biological problems.
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior
Hall, Peter A.; Fong, Geoffrey T.
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196
Hartman, Sheri J; Nelson, Sandahl H; Myers, Emily; Natarajan, Loki; Sears, Dorothy D; Palmer, Barton W; Weiner, Lauren S; Parker, Barbara A; Patterson, Ruth E
2018-01-01
Increasing physical activity can improve cognition in healthy and cognitively impaired adults; however, the benefits for cancer survivors are unknown. The current study examined a 12-week physical activity intervention, compared with a control condition, on objective and self-reported cognition among breast cancer survivors. Sedentary breast cancer survivors were randomized to an exercise arm (n = 43) or a control arm (n = 44). At baseline and at 12 weeks, objective cognition was measured with the National Institutes of Health Cognitive Toolbox, and self-reported cognition using the Patient-Reported Outcomes Measurement Information System scales. Linear mixed-effects regression models tested intervention effects for changes in cognition scores. On average, participants (n = 87) were aged 57 years (standard deviation, 10.4 years) and were 2.5 years (standard deviation, 1.3 years) post surgery. Scores on the Oral Symbol Digit subscale (a measure of processing speed) evidenced differential improvement in the exercise arm versus the control arm (b = 2.01; P < .05). The between-group differences in improvement on self-reported cognition were not statistically significant but were suggestive of potential group differences. Time since surgery moderated the correlation, and participants who were ≤2 years post surgery had a significantly greater improvement in Oral Symbol Digit score (exercise vs control (b = 4.00; P < .01), but no significant improvement was observed in patients who were >2 years postsurgery (b = -1.19; P = .40). A significant dose response was observed with greater increased physical activity associated with objective and self-reported cognition in the exercise arm. The exercise intervention significantly improved processing speed, but only among those who had been diagnosed with breast cancer within the past 2 years. Slowed processing speed can have substantial implications for independent functioning, supporting the potential importance of early implementation of an exercise intervention among patients with breast cancer. Cancer 2018;124:192-202. © 2017 American Cancer Society. © 2017 American Cancer Society.
Yang, Ke-Ping; Su, Whei-Ming; Huang, Chen-Kuan
2009-12-01
Physical stress and mental stress are increasingly common phenomena in our rapidly changing and stressful modern society. Research has found meditation to produce positive and demonstrable stress reduction effects on brain and immune functions. This study is grounded in traditional Chinese philosophical mores that teach a process summarized by the keynote activities of "calm, still, quiet, consider, and get" and the potential of this process to reduce stress in adolescents. The purpose of this study was to examine the effects of meditation on the physical and mental health of junior college students. This research employed a quasi-experimental design. Participants included 242 freshmen from a junior college in Taiwan selected using a convenience sampling technique. Participants were then randomly separated into experimental (n = 119) and control (n = 123) groups. The project duration was 18 weeks, during which the experimental group received 2 hours of meditation treatment per week, for a total of 36 hours. Both groups completed pretest and posttest Life Adaptation Scale forms, which included questionnaires addressing information on physical and mental distress and positive and negative coping strategies. Data were analyzed using analysis of covariance. Findings showed that the effect of the experiment treatment was significant when student physical and mental distress pretest scores were controlled. Physical and mental symptoms in the experimental group were lower than those in the control group. Meditation can help students to adapt to life stressors. This study also provides support for traditional Chinese wisdom, which promotes meditation as one way to improve health.
Duncan, Michael J; Eyre, Emma L J; Oxford, Samuel W
2017-03-23
Integrated neuromuscular training (INT) has been suggested as an effective means to enhance athletic potential in children. However, few studies have reported the effects of school based INT programs. This study examined the effect of INT on process and product fundamental movement skill measures and physical self-efficacy in 6-7 year old children. Ninety-four children from 2 primary schools were randomised into either a 10 week INT program or a control group CON (n =41) group. Results indicated significantly greater increases in process FMS scores in INT vs CON (P = 0.001). For product measures of FMS, 10m sprint time, counter movement jump, seated medicine ball throw and standing long jump (all P = 0.001), all significantly increased to a greater extent in the INT group vs CON. A significant group (INT vs CON) X time (pre vs post) X gender interaction for physical self-efficacy revealed increased physical self-efficacy pre to post INT, compared to CON but only for boys (P = 0.001). For girls, physical self-efficacy was not significantly different pre to post the 10 week period for INT and CON groups. The results of this study suggest that replacing 1 of the 2 weekly statutory PE lessons with an integrated neuromuscular training programme over a 10 week period results in positive improvements in fundamental movement skill quality and outcomes in 6-7 year old children. INT also appears to increase physical self-esteem to a greater extent than statutory PE but only in boys.
Lithologic Controls on Critical Zone Processes in a Variably Metamorphosed Shale-Hosted Watershed
NASA Astrophysics Data System (ADS)
Eldam Pommer, R.; Navarre-Sitchler, A.
2017-12-01
Local and regional shifts in thermal maturity within sedimentary shale systems impart significant variation in chemical and physical rock properties, such as pore-network morphology, mineralogy, organic carbon content, and solute release potential. Even slight variations in these properties on a watershed scale can strongly impact surface and shallow subsurface processes that drive soil formation, landscape evolution, and bioavailability of nutrients. Our ability to map and quantify the effects of this heterogeneity on critical zone processes is hindered by the complex coupling of the multi-scale nature of rock properties, geochemical signatures, and hydrological processes. This study addresses each of these complexities by synthesizing chemical and physical characteristics of variably metamorphosed shales in order to link rock heterogeneity with modern earth surface and shallow subsurface processes. More than 80 samples of variably metamorphosed Mancos Shale were collected in the East River Valley, Colorado, a headwater catchment of the Upper Colorado River Basin. Chemical and physical analyses of the samples show that metamorphism decreases overall rock porosity, pore anisotropy, and surface area, and introduces unique chemical signatures. All of these changes result in lower overall solute release from the Mancos Shale in laboratory dissolution experiments and a change in rock-derived solute chemistry with decreasing organic carbon and cation exchange capacity (Ca, Na, Mg, and K). The increase in rock competency and decrease in reactivity of the more thermally mature shales appear to subsequently control river morphology, with lower channel sinuosity associated with areas of the catchment underlain by metamorphosed Mancos Shale. This work illustrates the formative role of the geologic template on critical zone processes and landscape development within and across watersheds.
TH-C-204-01: Vision for Medical Physics and Status of Current Initiatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, J.
In this presentation, the Editors will outline our vision for the future of Medical Physics and review recent work-in-progress initiatives to implement this vision. Finally, we will close with guidance to authors on how to write a good Medical Physics paper. A major focus will be the transition to a new publisher in 2017 following a more than 40-year association with American Institute of Physics Publishing (AIPP). Vision for Medical Physics and status of current initiatives: Jeff Williamson, Editor-in-Chief The broad vision of Medical Physics is “to continue the Journal’s tradition of publishing the very best science that propels ourmore » discipline forward and improves our contribution to patient care.” More concretely, the Journal should be the preeminent forum for exchange of cutting edge medical physics science. We seek to identify the best contributions in (a) high impact clinical physics innovations; (b) clinical translation and validation of basic science innovations; and (c) cutting edge basic science developments with potential for patient care improvements. Among the challenges and opportunities, we face are: electronic-only and open access publishing; competition from new radiological science journals; trends towards more interactive, social-media based scientific communities; and diversification of the medical physics research, authorship, and readership domains, including clinical applications quite foreign to core ABR clinical competencies. Recently implemented and ongoing initiatives include: Revised Table of Contents (TOC) and more contemporary topical submission categories Structured review template in HTML format Comprehensive hierarchical taxonomy for identifying reviewer expertise Formal process for soliciting high quality and impact Review and Vision 20/20 Articles We have recruited four Review Article Co-editors: John Rowlands and Ingrid Reiser (imaging physics) and Joao Seco and Tim Zhu (therapy physics). The Co-Editors will identify timely topics and solicit high profile authors to submit review manuscripts. To submit an article, authors will need to work with an assigned Co-Editor to develop a mutually acceptable outline and abstract. 5) A new and exciting class of articles: Medical Physics Dataset Articles (MPDAs) MPDAs describe scientifically or clinically valuable open-access datasets with high potential for contributing to the research of medical physicists working on related problems. In contrast to Research Articles, MPDAs should not include hypothesis testing; or data analyses supporting generalizable conclusions. The publically accessible dataset must be permanently archived before the MPDA can be published. This initiative is being led by Joe Deasy. Update on new publisher transition: The transition of AAPM scientific publishing operations to a major publishing house is a major opportunity to expand Medical Physics readership and its scholarly impact. The advantages include: (a) common manuscript management and web hosting platforms for Medical Physics and its sister journal, JACMP; (b) greater than 4-fold expansion of subscribing institutions; and (c) resources to mount data-driven, highly targeted marketing campaigns to enhance citation and download rates. A transition update of this epochal development, which has only begun as of this writing (3/31/16), will be given. Improving manuscript quality via structured reviews, enhanced scientific category taxonomy, and outreach: Shiva Das, Therapy Physics Editor Medical Physics is committed to continuous improvement with the ultimate goal of improving the potential impact of accepted manuscripts. In order to do so, Medical Physics must be able to tap into important/emerging areas and be able to select high quality contributions consistently via discerning reviews. Improving the quality of reviews is crucial to selecting high quality manuscripts and also to improving manuscript impact via feedback in the review process. With this in mind, Medical Physics is in the process of: (a) fostering outreach to important areas that are currently underrepresented in Medical Physics; (b) implementing a structured template review form; and (c) implementing a comprehensive scientific category taxonomy to identify reviewers who are best suited to an article. Outreach efforts have begun to various scientific areas. Strategies to increase submissions from these areas will be discussed. As a consequence of this effort, a special issue on particle therapy is under development. A review template was implemented in late 2014 on a limited test basis. Based on reviewer feedback, the template was restructured and shortened to capture essential review elements. The restructured template is due to be released shortly. The new scientific category taxonomy is in the process of being deployed to reviewers and associate editors. Salient aspects of the structured review template and scientific category taxonomy will be discussed in this talk. Writing good scientific papers and responding to critiques: Mitch Goodsitt, Imaging Physics Editor The essential components of the abstract, introduction, methods, discussion and conclusion sections of manuscripts, as well as the desired writing style and style of the figures and tables will be reviewed. Publishable Medical Physics manuscripts must include clear and concise statements of the novelty and clinical and/or scientific importance of the authors’ work. Examples of novelty include: new technical solution to an important clinical problem; new generalizable knowledge; and first demonstration that an existing engineering solution solves a clinical problem. Please note that we encourage authors of recently published conference proceedings (e.g., SPIE, IEEE) papers on novel medical physics related work to submit more substantial versions of that work to our journal. All submissions must include: sufficient background information and rationale; enough detail for others to reproduce the authors’ work; sufficient statistical analysis to refute or validate the authors’ hypotheses; a description of how the present work compares to, is distinct from, and improves upon others’ work; and sections devoted to the limitations of the study and future directions. Writing should be polished. Poor wording, grammar and composition frustrate the review process. Our journal does not have copyeditors for revising manuscripts. When authors receive critiques from the referees and associate editor, the authors should provide a detailed point-by-point response to each comment. The authors’ rebuttal should include the text of the original criticism, the authors’ response, and a pasted copy of the modified text along with the line numbers in the revised article. The new text should be highlighted in a different font color in the revised submission. Following these recommendations will improve submissions and facilitate the review process.« less
Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold
Cao, Xu; Ma, Linlin; Yang, Fan
2014-01-01
Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247
NASA Astrophysics Data System (ADS)
Denissenkov, Pavel; Perdikakis, Georgios; Herwig, Falk; Schatz, Hendrik; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Nikas, Stylianos; Spyrou, Artemis
2018-05-01
The first-peak s-process elements Rb, Sr, Y and Zr in the post-AGB star Sakurai's object (V4334 Sagittarii) have been proposed to be the result of i-process nucleosynthesis in a post-AGB very-late thermal pulse event. We estimate the nuclear physics uncertainties in the i-process model predictions to determine whether the remaining discrepancies with observations are significant and point to potential issues with the underlying astrophysical model. We find that the dominant source in the nuclear physics uncertainties are predictions of neutron capture rates on unstable neutron rich nuclei, which can have uncertainties of more than a factor 20 in the band of the i-process. We use a Monte Carlo variation of 52 neutron capture rates and a 1D multi-zone post-processing model for the i-process in Sakurai's object to determine the cumulative effect of these uncertainties on the final elemental abundance predictions. We find that the nuclear physics uncertainties are large and comparable to observational errors. Within these uncertainties the model predictions are consistent with observations. A correlation analysis of the results of our MC simulations reveals that the strongest impact on the predicted abundances of Rb, Sr, Y and Zr is made by the uncertainties in the (n, γ) reaction rates of 85Br, 86Br, 87Kr, 88Kr, 89Kr, 89Rb, 89Sr, and 92Sr. This conclusion is supported by a series of multi-zone simulations in which we increased and decreased to their maximum and minimum limits one or two reaction rates per run. We also show that simple and fast one-zone simulations should not be used instead of more realistic multi-zone stellar simulations for nuclear sensitivity and uncertainty studies of convective–reactive processes. Our findings apply more generally to any i-process site with similar neutron exposure, such as rapidly accreting white dwarfs with near-solar metallicities.
Making data matter: Voxel printing for the digital fabrication of data across scales and domains.
Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri
2018-05-01
We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.
Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units*
Hardy, David J.; Stone, John E.; Schulten, Klaus
2009-01-01
Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights” over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds. PMID:20161132
NASA Astrophysics Data System (ADS)
Carroll, W.; Lev, S. M.; Szlavecz, K.; Landa, E. R.; Casey, R.; Snodgrass, J. W.
2006-05-01
Increased development around urban centers has altered the biogeochemistry of near surface systems. One major impact of development has been an increase in the availability of potentially toxic trace metals in soils and surface waters. A primary source of trace metals to near surface environments in urban systems is roadway runoff and dust. The potential hazard that roadway runoff and dust pose to biota is not well understood and is an area of extensive investigation in the multi-disciplinary field of environmental biogeochemistry. Because earthworms ingest, transport, process and excrete large amounts of soil on a daily basis, earthworms can have a profound impact on soil chemistry and the bioavailability of potentially toxic trace metals. Therefore, it is important to investigate how earthworms are affecting the distribution and bioavailability of potentially toxic metals in the soils that they re-work. Results from a set of mesocosm experiments using the native endogeic earthworm species Eisenoides loennbergi and soils from the Red Run watershed in Baltimore County, MD, exhibit evidence of the physical and chemical earthworm weathering processes over time periods as short as 3 week. The target element for this experiment was Zn which is highly enriched in roadway dust. In this study, 200 g of soil was amended with roadway dust. The total mass of Zn introduced was 20 mg making the target concentration 159 ppm. Six replicates were prepared with leaf litter added as a food source. Ten earthworms were then introduced into the soils. Two duplicate batches were then held at constant moisture (70%) and temperature (16 degrees C) for three weeks. An additional four were let run for six weeks. Control samples for both time periods show no change in either total Zn or extractable (1 M MgCl2) Zn concentration. The amended samples however, display evidence of extensive mixing and an increase in the extractable Zn that can be attributed to earthworm weathering processes. The results from this initial experimental work suggest that there is an important physical component to trace metal fate and transport in urban soils that is earthworm dominated and that earthworm processing can alter the extractable fraction of roadway dust.
NASA Astrophysics Data System (ADS)
Abdullah, Nurulhuda; Manaf, Siti Nor Qamarina; Hassan, Aziana Abu
2017-12-01
This paper describes the chemical deproteinization process of natural rubber latex (NRL) using chemical denaturants namely urea and sodium dodecyl sulfate (SDS). Commercial high ammoniated natural rubber latex (HANRL) was incubated with both denaturants - urea and SDS for selected period of time before centrifugation and characterization. The role of SDS in NRL deproteinization process was further elucidated by manipulating the concentration of SDS at 0.3 phr and 0.5 phr during the incubation process. It was found that the physical properties of NRL especially stability, were governed by the amount of SDS, whereby higher concentration of SDS used led to greater NRL stability. However, too much concentration of SDS in the system might cause detrimental effect on the properties of low protein NRL. The effects of additional anionic surfactant namely potassium laurate on the physical properties of low protein NRL and its stabilization were also scrutinized. Characterizations include nitrogen determination by Kjeldahl method, zeta potential, and morphological analysis by Field Emission Scanning Electron Microscopy (FESEM).
Cusping, transport and variance of solutions to generalized Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Carnaffan, Sean; Kawai, Reiichiro
2017-06-01
We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.
Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture.
Zhai, Haibo; Rubin, Edward S
2018-04-17
This study develops an integrated technical and economic modeling framework to investigate the feasibility of ionic liquids (ILs) for precombustion carbon capture. The IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is modeled as a potential physical solvent for CO 2 capture at integrated gasification combined cycle (IGCC) power plants. The analysis reveals that the energy penalty of the IL-based capture system comes mainly from the process and product streams compression and solvent pumping, while the major capital cost components are the compressors and absorbers. On the basis of the plant-level analysis, the cost of CO 2 avoided by the IL-based capture and storage system is estimated to be $63 per tonne of CO 2 . Technical and economic comparisons between IL- and Selexol-based capture systems at the plant level show that an IL-based system could be a feasible option for CO 2 capture. Improving the CO 2 solubility of ILs can simplify the capture process configuration and lower the process energy and cost penalties to further enhance the viability of this technology.
Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle
Romanick, Mark; Brown-Borg, Holly M.
2013-01-01
With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. PMID:23523469
Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail
2017-01-01
Residual fermented dairy products resulting from process defects or from expired shelf life products are considered as waste. Thus, dairies wastewater treatment plants (WWTP) suffer high input effluents polluting load. In this study, fermented residuals separation from the plant wastewater is proposed. In the aim to meet the municipal WWTP input limits, a pretreatment combining physical-chemical and biological processes was investigated to reduce residual fermented dairy products polluting effect. Yoghurt (Y) and fermented milk products (RL) were considered. Raw samples chemical oxygen demand (COD) values were assessed at 152 and 246 g.L -1 for Y and RL products, respectively. Following the thermal coagulation, maximum removal rates were recorded at 80 °C. Resulting whey stabilization contributed to the removal rates enhance to reach 72% and 87% for Y and RL samples; respectively. Residual whey sugar content was fermented using Candida strains. Bacterial growth and strains degrading potential were discussed. C. krusei strain achieved the most important removal rates of 78% and 85% with Y and RL medium, respectively. Global COD removal rates exceeded 93%.
Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.
Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang
2012-01-01
Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.
Impact of physical maltreatment on the regulation of negative affect and aggression.
Shackman, Jessica E; Pollak, Seth D
2014-11-01
Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.
Tovar, Alison; Must, Aviva; Metayer, Nesly; Gute, David M.; Pirie, Alex; Hyatt, Raymond R.; Economos, Christina D.
2012-01-01
Our goal was to explore the perceived determinants of obesity in Brazilian, Latin American and Haitian women. This is part of an ongoing community-based participatory intervention. Focus groups by immigrant group were conducted and themes extracted. Women expressed differences in beliefs, attitudes, and barriers regarding diet and physical activity in the US versus their home country. Participants thought food in the US is “less natural,” there is less time for preparation, and there is more variety. The weather is a barrier to physical activity in the US and work is more physically demanding. Job-related efforts were not considered physical activity. They reported higher levels of stress, less control of their time and less social support in the US. Providing immigrants with appropriate support and education early in the acculturation process has the potential to help prevent obesity. PMID:22736266
Indirect handle on the down-quark Yukawa coupling.
Goertz, Florian
2014-12-31
To measure the Yukawa couplings of the up and down quarks, Yu,d, seems to be far beyond the capabilities of current and (near) future experiments in particle physics. By performing a general analysis of the potential misalignment between quark masses and Yukawa couplings, we derive predictions for the magnitude of induced flavor-changing neutral currents (FCNCs), depending on the shift in the physical Yukawa coupling of first-generation quarks. We find that a change of more than 50% in Yd would generically result in ds transitions in conflict with kaon physics. This could already be seen as evidence for a nonvanishing direct coupling of the down quark to the newly discovered Higgs boson. The nonobservation of certain--already well-constrained--processes is thus turned into a powerful indirect measure of otherwise basically unaccessible physical parameters of the effective standard model. Similarly, improvements in limits on FCNCs in the up-type quark sector can lead to valuable information on Yu.
Impact of physical maltreatment on the regulation of negative affect and aggression
SHACKMAN, JESSICA E.; POLLAK, SETH D.
2015-01-01
Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children’s allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders. PMID:24914736
Materials interface engineering for solution-processed photovoltaics.
Graetzel, Michael; Janssen, René A J; Mitzi, David B; Sargent, Edward H
2012-08-16
Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.
Coupling biology and oceanography in models.
Fennel, W; Neumann, T
2001-08-01
The dynamics of marine ecosystems, i.e. the changes of observable chemical-biological quantities in space and time, are driven by biological and physical processes. Predictions of future developments of marine systems need a theoretical framework, i.e. models, solidly based on research and understanding of the different processes involved. The natural way to describe marine systems theoretically seems to be the embedding of chemical-biological models into circulation models. However, while circulation models are relatively advanced the quantitative theoretical description of chemical-biological processes lags behind. This paper discusses some of the approaches and problems in the development of consistent theories and indicates the beneficial potential of the coupling of marine biology and oceanography in models.
Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.
Bhalla, Aditya; Bansal, Namita; Kumar, Sudhir; Bischoff, Kenneth M; Sani, Rajesh K
2013-01-01
Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaur, Vinod K.
The article begins with a reference to the first rational approaches to explaining the earth's magnetic field notably Elsasser's application of magneto-hydrodynamics, followed by brief outlines of the characteristics of planetary magnetic fields and of the potentially insightful homopolar dynamo in illuminating the basic issues: theoretical requirements of asymmetry and finite conductivity in sustaining the dynamo process. It concludes with sections on Dynamo modeling and, in particular, the Geo-dynamo, but not before some of the evocative physical processes mediated by the Lorentz force and the behaviour of a flux tube embedded in a perfectly conducting fluid, using Alfvén theorem, are explained, as well as the traditional intermediate approaches to investigating dynamo processes using the more tractable Kinematic models.
Zhu, Renbo; Ma, Guojun; Cai, Yongsheng; Chen, Yuxiang; Yang, Tong; Duan, Boyu; Xue, Zhengliang
2016-04-01
Stainless steel plant dust is a hazardous by-product of the stainless steelmaking industry. It contains large amounts of Fe, Cr, and Ni, and can be potentially recycled as a raw material of inorganic black pigment in the ceramic industry to reduce environmental contamination and produce value-added products. In this paper, ceramic tiles prepared with black pigment through recycling of stainless steel plant dust were characterized in terms of physical properties, such as bulk density, water absorption, apparent porosity, and volume shrinkage ratio, as well as the long-term leaching behavior of heavy metals (Cr, Ni, Pb, Cd, and Zn). The results show that good physical properties of ceramic tiles can be obtained with 8% pigments addition, sample preparation pressure of 25 MPa, and sintering at 1200 ºC for 30 min. The major controlling leaching mechanism for Cr and Pb from the ceramic tiles is initial surface wash-off, while the leaching behavior of Cd, Ni, and Zn from the stabilized product is mainly controlled by matrix diffusion. The reutilization process is safe and effective to immobilize the heavy metals in the stainless steel plant dust. Stainless steel plant dust is considered as a hazardous material, and it can be potentially recycled for black pigment preparation in the ceramic industry. This paper provides the characteristics of the ceramic tiles with black pigment through recycling stainless steel plant dust, and the long-term leaching behavior and controlling leaching mechanisms of heavy metals from the ceramic tile. The effectiveness of the treatment process is also evaluated.
NASA Astrophysics Data System (ADS)
Kiss, T. S.; Erdélyi, R.
2018-04-01
This study aims to provide further evidence for the potential influence of the global solar magnetic field on localized chromospheric jets, the macrospicules (MS). To find a connection between the long-term variation of properties of MS and other solar activity proxies, including, e.g., the temporal variation of the frequency shift of solar global oscillations, sunspot area, etc., a database overarching seven years of observations was compiled. This database contains 362 MS, based on observations at the 30.4 nm of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Three of the five investigated physical properties of MS show a clear long-term temporal variation after smoothing the raw data. Wavelet analysis of the temporal variation of maximum length, maximum area, and average velocity is carried out. The results reveal a strong pattern of periodicities at around 2 years (also referred to as quasi-biennial oscillations—QBOs). A comparison with solar activity proxies that also possess the properties of QBOs provides some interesting features: the minima and maxima of QBOs of MS properties occur at around the same epoch as the minima and maxima of these activity proxies. For most of the time span investigated, the oscillations are out of phase. This out-of-phase behavior was also corroborated by a cross-correlation analysis. These results suggest that the physical processes that generate and drive the long-term evolution of the global solar activity proxies may be coupled to the short-term local physical processes driving the macrospicules, and, therefore modulate the properties of local dynamics.
NASA Technical Reports Server (NTRS)
Cooper, John F.
2006-01-01
Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.
NASA Technical Reports Server (NTRS)
Congo, Richard T.
1990-01-01
As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.
Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta
2015-07-01
Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.
Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander
2016-01-01
The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. The residual seal force tester can analyze a variety of different container closure systems independent of the capping equipment. An adequate and safe residual seal force range for each container closure system configuration can be established with the residual seal force tester and additional methods like computed tomography scans and leak testing. In the residual seal force range studied, the physical container closure integrity of the container closure system was warranted. © PDA, Inc. 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.
2017-11-21
Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less
Tendons – time to revisit inflammation
Rees, Jonathan D; Stride, Matthew; Scott, Alex
2014-01-01
It is currently widely accepted among clinicians that chronic tendinopathy is caused by a degenerative process devoid of inflammation. Current treatment strategies are focused on physical treatments, peritendinous or intratendinous injections of blood or blood products and interruption of painful stimuli. Results have been at best, moderately good and at worst a failure. The evidence for non-infammatory degenerative processes alone as the cause of tendinopathy is surprisingly weak. There is convincing evidence that the inflammatory response is a key component of chronic tendinopathy. Newer anti-inflammatory modalities may provide alternative potential opportunities in treating chronic tendinopathies and should be explored further. PMID:23476034
NASA Astrophysics Data System (ADS)
Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.
2017-07-01
Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.
ERIC Educational Resources Information Center
Sigurðardóttir, Anna Kristín; Hjartarson, Torfi
2016-01-01
The physical environment in schools has in the literature of late been gaining recognition as a potential factor supporting educational change. This article draws a single case out of a research sample of 20 schools in Iceland to relate an inventive design process as the school was being developed and study the current state of established school…
Developments of the studies on the polymerization under microgravity
NASA Astrophysics Data System (ADS)
Li, Ping; Yi, Zongchun
Microgravity has been recognized as a new and useful way of processing materials for pharmacology biology and microelectronic In microgravity there is no direction for gravity sensitive processes which take part in crystal growth convection sedimentation physical--chemical processes in biological objects The absent of gravity leads to the possibility of synthesis of new materials which cannot be prepared on Earth The perspective for possible biotechnological applications gave an impetus to a series of experiments on polymerization in space by NASA Rocket-Space Corporation RSC ENERGIYA the Institute of Bioorganic Chemistry Uzbekistan and so on The influence of microgravity on polymerization is based on the exclusion of convection and sedimentation processes in curing polymer Under microgravity condition a frontal polymerization process and creation of high homogeneous polyacrilamide gel were observed 1 Thus a much better resolution result of proteins by electrophoresis on orbital PAG matrices was obtained than that on terrestrial PAG matrices A deeper understanding of conditions responsible for generation of physical properties of PAG synthesized on the Earth was a strong motivation for seeking gravity-sensitive mechanisms of polymerization The polymerization under microgravity can potentially applied on functional polymer The conductive polymer such as polypyrrole is usually utilized especially for microelectronics The polymerization of pyrrole in microgravity conditions was made to prepare polymer particles having shapes
How conduit models can be used to interpret volcano monitoring data
NASA Astrophysics Data System (ADS)
Thomas, M. E.; Neuberg, J. W.; Karl, S.; Collinson, A.; Pascal, K.
2012-04-01
During the last decade there have been major advances in the field of volcano monitoring, but to be able to take full advantage of these advances it is vital to link the monitoring data with the physical processes that give rise to the recorded signals. To obtain a better understanding of these physical processes it is necessary to understand the conditions of the system at depth. This can be achieved through numerical modelling. We present the results of conduit models representative of a silicic volcanic system and demonstrate how processes identified and interpreted from these models may manifest in the recorded monitoring data. Links are drawn to seismicity, deformation, and gas emissions. A key point is how these data compliment each other, and through utilising conduit models we are able to interpret how these different data may be recorded in response to a particular process. This is an invaluable tool as it is far easier to draw firm conclusions on what is happening at a volcano if there are several different data sets that suggest the same processes are occurring. Some of these interpretations appear useful in forecasting potentially catastrophic changes in eruptive behaviour, such as a dome collapse leading to violent explosive behaviour, and the role of monitoring data in this capacity will also be addressed.
High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing
NASA Astrophysics Data System (ADS)
Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.
2015-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.
Effects of Physical Exercise on the P300 of Elderly With Alzheimer's Disease.
Pedroso, Renata Valle; Cancela, José Maria; Ayán, Carlos; Stein, Angelica Miki; Fuzaro, Gilson; Costa, José Luiz Riani; Fraga, Francisco J; Santos-Galduróz, Ruth Ferreira
2018-06-01
Evidence regarding the benefits of physical activity on the mental processing information of patients with Alzheimer's disease assessed objectively is scarce and can be observed through event-related potentials, such as the P300. The aim of the study was to identify the effects of physical exercises on mental processing information in the elderly with Alzheimer's disease through neurophysiological measures (P300 amplitude and latency) and reaction time. A total of 31 patients with Alzheimer's disease participated in this study: 14 in functional exercise (FE) group and 17 in social gathering (SG) group who carried out three 1-hour sessions per week of FE and SG activities, respectively, for a 12-week period. All groups performed an auditory oddball task. A healthy elderly control group also participated. Significant (P < .05) improvements were observed as a reduction of reaction time after intervention in the FE group (pre = 421.5 ms and post = 360.9 ms). Also, an increase of P300 amplitude at central midline (pre = 5.9 μV and post = 6.9 μV) and parietal midline (pre = 4.7 μV and post = 5.7 μV) was observed in the FE. Finally, a decrease in the P300 latency at frontal midline (pre = 377 ms and post = 367 ms) was observed in the SG after the intervention. Physical exercise decreases reaction time and suggests a recovery in cortical activity, whereas SG activities could probably facilitate information processing.
Properties of Extruded PS-212 Type Self-Lubricating Materials
NASA Technical Reports Server (NTRS)
Waters, W. J.; Sliney, H. E.; Soltis, R. F.
1993-01-01
Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
In this presentation, the Editors will outline our vision for the future of Medical Physics and review recent work-in-progress initiatives to implement this vision. Finally, we will close with guidance to authors on how to write a good Medical Physics paper. A major focus will be the transition to a new publisher in 2017 following a more than 40-year association with American Institute of Physics Publishing (AIPP). Vision for Medical Physics and status of current initiatives: Jeff Williamson, Editor-in-Chief The broad vision of Medical Physics is “to continue the Journal’s tradition of publishing the very best science that propels ourmore » discipline forward and improves our contribution to patient care.” More concretely, the Journal should be the preeminent forum for exchange of cutting edge medical physics science. We seek to identify the best contributions in (a) high impact clinical physics innovations; (b) clinical translation and validation of basic science innovations; and (c) cutting edge basic science developments with potential for patient care improvements. Among the challenges and opportunities, we face are: electronic-only and open access publishing; competition from new radiological science journals; trends towards more interactive, social-media based scientific communities; and diversification of the medical physics research, authorship, and readership domains, including clinical applications quite foreign to core ABR clinical competencies. Recently implemented and ongoing initiatives include: Revised Table of Contents (TOC) and more contemporary topical submission categories Structured review template in HTML format Comprehensive hierarchical taxonomy for identifying reviewer expertise Formal process for soliciting high quality and impact Review and Vision 20/20 Articles We have recruited four Review Article Co-editors: John Rowlands and Ingrid Reiser (imaging physics) and Joao Seco and Tim Zhu (therapy physics). The Co-Editors will identify timely topics and solicit high profile authors to submit review manuscripts. To submit an article, authors will need to work with an assigned Co-Editor to develop a mutually acceptable outline and abstract. 5) A new and exciting class of articles: Medical Physics Dataset Articles (MPDAs) MPDAs describe scientifically or clinically valuable open-access datasets with high potential for contributing to the research of medical physicists working on related problems. In contrast to Research Articles, MPDAs should not include hypothesis testing; or data analyses supporting generalizable conclusions. The publically accessible dataset must be permanently archived before the MPDA can be published. This initiative is being led by Joe Deasy. Update on new publisher transition: The transition of AAPM scientific publishing operations to a major publishing house is a major opportunity to expand Medical Physics readership and its scholarly impact. The advantages include: (a) common manuscript management and web hosting platforms for Medical Physics and its sister journal, JACMP; (b) greater than 4-fold expansion of subscribing institutions; and (c) resources to mount data-driven, highly targeted marketing campaigns to enhance citation and download rates. A transition update of this epochal development, which has only begun as of this writing (3/31/16), will be given. Improving manuscript quality via structured reviews, enhanced scientific category taxonomy, and outreach: Shiva Das, Therapy Physics Editor Medical Physics is committed to continuous improvement with the ultimate goal of improving the potential impact of accepted manuscripts. In order to do so, Medical Physics must be able to tap into important/emerging areas and be able to select high quality contributions consistently via discerning reviews. Improving the quality of reviews is crucial to selecting high quality manuscripts and also to improving manuscript impact via feedback in the review process. With this in mind, Medical Physics is in the process of: (a) fostering outreach to important areas that are currently underrepresented in Medical Physics; (b) implementing a structured template review form; and (c) implementing a comprehensive scientific category taxonomy to identify reviewers who are best suited to an article. Outreach efforts have begun to various scientific areas. Strategies to increase submissions from these areas will be discussed. As a consequence of this effort, a special issue on particle therapy is under development. A review template was implemented in late 2014 on a limited test basis. Based on reviewer feedback, the template was restructured and shortened to capture essential review elements. The restructured template is due to be released shortly. The new scientific category taxonomy is in the process of being deployed to reviewers and associate editors. Salient aspects of the structured review template and scientific category taxonomy will be discussed in this talk. Writing good scientific papers and responding to critiques: Mitch Goodsitt, Imaging Physics Editor The essential components of the abstract, introduction, methods, discussion and conclusion sections of manuscripts, as well as the desired writing style and style of the figures and tables will be reviewed. Publishable Medical Physics manuscripts must include clear and concise statements of the novelty and clinical and/or scientific importance of the authors’ work. Examples of novelty include: new technical solution to an important clinical problem; new generalizable knowledge; and first demonstration that an existing engineering solution solves a clinical problem. Please note that we encourage authors of recently published conference proceedings (e.g., SPIE, IEEE) papers on novel medical physics related work to submit more substantial versions of that work to our journal. All submissions must include: sufficient background information and rationale; enough detail for others to reproduce the authors’ work; sufficient statistical analysis to refute or validate the authors’ hypotheses; a description of how the present work compares to, is distinct from, and improves upon others’ work; and sections devoted to the limitations of the study and future directions. Writing should be polished. Poor wording, grammar and composition frustrate the review process. Our journal does not have copyeditors for revising manuscripts. When authors receive critiques from the referees and associate editor, the authors should provide a detailed point-by-point response to each comment. The authors’ rebuttal should include the text of the original criticism, the authors’ response, and a pasted copy of the modified text along with the line numbers in the revised article. The new text should be highlighted in a different font color in the revised submission. Following these recommendations will improve submissions and facilitate the review process.« less
TH-C-204-03: Writing Good Scientific Papers and Responding to Critiques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, M.
In this presentation, the Editors will outline our vision for the future of Medical Physics and review recent work-in-progress initiatives to implement this vision. Finally, we will close with guidance to authors on how to write a good Medical Physics paper. A major focus will be the transition to a new publisher in 2017 following a more than 40-year association with American Institute of Physics Publishing (AIPP). Vision for Medical Physics and status of current initiatives: Jeff Williamson, Editor-in-Chief The broad vision of Medical Physics is “to continue the Journal’s tradition of publishing the very best science that propels ourmore » discipline forward and improves our contribution to patient care.” More concretely, the Journal should be the preeminent forum for exchange of cutting edge medical physics science. We seek to identify the best contributions in (a) high impact clinical physics innovations; (b) clinical translation and validation of basic science innovations; and (c) cutting edge basic science developments with potential for patient care improvements. Among the challenges and opportunities, we face are: electronic-only and open access publishing; competition from new radiological science journals; trends towards more interactive, social-media based scientific communities; and diversification of the medical physics research, authorship, and readership domains, including clinical applications quite foreign to core ABR clinical competencies. Recently implemented and ongoing initiatives include: Revised Table of Contents (TOC) and more contemporary topical submission categories Structured review template in HTML format Comprehensive hierarchical taxonomy for identifying reviewer expertise Formal process for soliciting high quality and impact Review and Vision 20/20 Articles We have recruited four Review Article Co-editors: John Rowlands and Ingrid Reiser (imaging physics) and Joao Seco and Tim Zhu (therapy physics). The Co-Editors will identify timely topics and solicit high profile authors to submit review manuscripts. To submit an article, authors will need to work with an assigned Co-Editor to develop a mutually acceptable outline and abstract. 5) A new and exciting class of articles: Medical Physics Dataset Articles (MPDAs) MPDAs describe scientifically or clinically valuable open-access datasets with high potential for contributing to the research of medical physicists working on related problems. In contrast to Research Articles, MPDAs should not include hypothesis testing; or data analyses supporting generalizable conclusions. The publically accessible dataset must be permanently archived before the MPDA can be published. This initiative is being led by Joe Deasy. Update on new publisher transition: The transition of AAPM scientific publishing operations to a major publishing house is a major opportunity to expand Medical Physics readership and its scholarly impact. The advantages include: (a) common manuscript management and web hosting platforms for Medical Physics and its sister journal, JACMP; (b) greater than 4-fold expansion of subscribing institutions; and (c) resources to mount data-driven, highly targeted marketing campaigns to enhance citation and download rates. A transition update of this epochal development, which has only begun as of this writing (3/31/16), will be given. Improving manuscript quality via structured reviews, enhanced scientific category taxonomy, and outreach: Shiva Das, Therapy Physics Editor Medical Physics is committed to continuous improvement with the ultimate goal of improving the potential impact of accepted manuscripts. In order to do so, Medical Physics must be able to tap into important/emerging areas and be able to select high quality contributions consistently via discerning reviews. Improving the quality of reviews is crucial to selecting high quality manuscripts and also to improving manuscript impact via feedback in the review process. With this in mind, Medical Physics is in the process of: (a) fostering outreach to important areas that are currently underrepresented in Medical Physics; (b) implementing a structured template review form; and (c) implementing a comprehensive scientific category taxonomy to identify reviewers who are best suited to an article. Outreach efforts have begun to various scientific areas. Strategies to increase submissions from these areas will be discussed. As a consequence of this effort, a special issue on particle therapy is under development. A review template was implemented in late 2014 on a limited test basis. Based on reviewer feedback, the template was restructured and shortened to capture essential review elements. The restructured template is due to be released shortly. The new scientific category taxonomy is in the process of being deployed to reviewers and associate editors. Salient aspects of the structured review template and scientific category taxonomy will be discussed in this talk. Writing good scientific papers and responding to critiques: Mitch Goodsitt, Imaging Physics Editor The essential components of the abstract, introduction, methods, discussion and conclusion sections of manuscripts, as well as the desired writing style and style of the figures and tables will be reviewed. Publishable Medical Physics manuscripts must include clear and concise statements of the novelty and clinical and/or scientific importance of the authors’ work. Examples of novelty include: new technical solution to an important clinical problem; new generalizable knowledge; and first demonstration that an existing engineering solution solves a clinical problem. Please note that we encourage authors of recently published conference proceedings (e.g., SPIE, IEEE) papers on novel medical physics related work to submit more substantial versions of that work to our journal. All submissions must include: sufficient background information and rationale; enough detail for others to reproduce the authors’ work; sufficient statistical analysis to refute or validate the authors’ hypotheses; a description of how the present work compares to, is distinct from, and improves upon others’ work; and sections devoted to the limitations of the study and future directions. Writing should be polished. Poor wording, grammar and composition frustrate the review process. Our journal does not have copyeditors for revising manuscripts. When authors receive critiques from the referees and associate editor, the authors should provide a detailed point-by-point response to each comment. The authors’ rebuttal should include the text of the original criticism, the authors’ response, and a pasted copy of the modified text along with the line numbers in the revised article. The new text should be highlighted in a different font color in the revised submission. Following these recommendations will improve submissions and facilitate the review process.« less
Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.
2002-06-01
Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less
Spatial and temporal laser pulse design for material processing on ultrafast scales
NASA Astrophysics Data System (ADS)
Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.
2014-01-01
The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.
Collisionless current sheet equilibria
NASA Astrophysics Data System (ADS)
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Linnman, Clas; Appel, Lieuwe; Fredrikson, Mats; Gordh, Torsten; Söderlund, Anne; Långström, Bengt; Engler, Henry
2011-01-01
There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer 11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that 11C-D-deprenyl is a promising tracer for these purposes. PMID:21541010
Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.
Hsieh, Yu-Hsun; Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Lin, Wan-Jhen; Wu, Wen-Wei
2015-02-07
Metal silicide nanowires (NWs) are very interesting materials with diverse physical properties. Among the silicides, manganese silicide nanostructures have attracted wide attention due to their several potential applications, including in microelectronics, optoelectronics, spintronics and thermoelectric devices. In this work, we exhibited the formation of pure manganese silicide and manganese silicide/silicon nanowire heterostructures through solid state reaction with line contacts between manganese pads and silicon NWs. Dynamical process and phase characterization were investigated by in situ transmission electron microscopy (in situ TEM) and spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), respectively. The growth dynamics of the manganese silicide phase under thermal effects were systematically studied. Additionally, Al2O3, serving as the surface oxide, altered the growth behavior of the MnSi nanowire, enhancing the silicide/Si epitaxial growth and effecting the diffusion process in the silicon nanowire as well. In addition to fundamental science, this significant study has great potential in advancing future processing techniques in nanotechnology and related applications.
Diagnosis by integrating model-based reasoning with knowledge-based reasoning
NASA Technical Reports Server (NTRS)
Bylander, Tom
1988-01-01
Our research investigates how observations can be categorized by integrating a qualitative physical model with experiential knowledge. Our domain is diagnosis of pathologic gait in humans, in which the observations are the gait motions, muscle activity during gait, and physical exam data, and the diagnostic hypotheses are the potential muscle weaknesses, muscle mistimings, and joint restrictions. Patients with underlying neurological disorders typically have several malfunctions. Among the problems that need to be faced are: the ambiguity of the observations, the ambiguity of the qualitative physical model, correspondence of the observations and hypotheses to the qualitative physical model, the inherent uncertainty of experiential knowledge, and the combinatorics involved in forming composite hypotheses. Our system divides the work so that the knowledge-based reasoning suggests which hypotheses appear more likely than others, the qualitative physical model is used to determine which hypotheses explain which observations, and another process combines these functionalities to construct a composite hypothesis based on explanatory power and plausibility. We speculate that the reasoning architecture of our system is generally applicable to complex domains in which a less-than-perfect physical model and less-than-perfect experiential knowledge need to be combined to perform diagnosis.
NASA Astrophysics Data System (ADS)
Fujitani, Y.; Sumino, Y.
2018-04-01
A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.
Memories for life: a review of the science and technology
O'Hara, Kieron; Morris, Richard; Shadbolt, Nigel; Hitch, Graham J; Hall, Wendy; Beagrie, Neil
2006-01-01
This paper discusses scientific, social and technological aspects of memory. Recent developments in our understanding of memory processes and mechanisms, and their digital implementation, have placed the encoding, storage, management and retrieval of information at the forefront of several fields of research. At the same time, the divisions between the biological, physical and the digital worlds seem to be dissolving. Hence, opportunities for interdisciplinary research into memory are being created, between the life sciences, social sciences and physical sciences. Such research may benefit from immediate application into information management technology as a testbed. The paper describes one initiative, memories for life, as a potential common problem space for the various interested disciplines. PMID:16849265
[Depression, social support and compliance in patients with chronic heart failure].
Reutlinger, Julia; Müller-Tasch, Thomas; Schellberg, Dieter; Frankenstein, Lutz; Zugck, Christian; Herzog, Wolfgang; Lossnitzer, Nicole
2010-01-01
Depressive patients with chronic heart failure (CHF) show less social integration and greater physical impairment as well as poorer compliance than non depressive CHF patients. Using multiple regression analyses, this study (n=84) investigated a potential mediating effect of depression on the relationship between compliance and both social support and physical functioning. Results did not support the hypothesized mediating effect of depression. However, the variables age, depression, left ventricular ejection fraction (LVEF) and social support were associated with self-reported compliance. Therefore, a lack of social support and depression should be considered as possible reasons, if patients are noncompliant during the treatment process. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, D; McCarthy, A; Galavis, P
Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# tomore » check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria database queries, and eventual automated plan checks.« less
NASA Astrophysics Data System (ADS)
Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong
2017-08-01
Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.
Wetted Foam Liquid DT Layer ICF Experiments at the NIF
NASA Astrophysics Data System (ADS)
Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.
2016-10-01
A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12
Causal discovery in the geosciences-Using synthetic data to learn how to interpret results
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, Imme; Deng, Yi
2017-02-01
Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.
Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.
Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P
2018-02-01
Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.
Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode
NASA Astrophysics Data System (ADS)
Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.
2017-12-01
Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.
Rodriguez, Christina M.; Smith, Tamika L.; Silvia, Paul J.
2015-01-01
The Social Information Processing (SIP) model postulates that parents undergo a series of stages in implementing physical discipline that can escalate into physical child abuse. The current study utilized a multimethod approach to investigate whether SIP factors can predict risk of parent-child aggression (PCA) in a diverse sample of expectant mothers and fathers. SIP factors of PCA attitudes, negative child attributions, reactivity, and empathy were considered as potential predictors of PCA risk; additionally, analyses considered whether personal history of PCA predicted participants’ own PCA risk through its influence on their attitudes and attributions. Findings indicate that, for both mothers and fathers, history influenced attitudes but not attributions in predicting PCA risk, and attitudes and attributions predicted PCA risk; empathy and reactivity predicted negative child attributions for expectant mothers, but only reactivity significantly predicted attributions for expectant fathers. Path models for expectant mothers and fathers were remarkably similar. Overall, the findings provide support for major aspects of the SIP model. Continued work is needed in studying the progression of these factors across time for both mothers and fathers as well as the inclusion of other relevant ecological factors to the SIP model. PMID:26631420
Huotilainen, Eero; Jaanimets, Risto; Valášek, Jiří; Marcián, Petr; Salmi, Mika; Tuomi, Jukka; Mäkitie, Antti; Wolff, Jan
2014-07-01
The process of fabricating physical medical skull models requires many steps, each of which is a potential source of geometric error. The aim of this study was to demonstrate inaccuracies and differences caused by DICOM to STL conversion in additively manufactured medical skull models. Three different institutes were requested to perform an automatic reconstruction from an identical DICOM data set of a patients undergoing tumour surgery into an STL file format using their software of preference. The acquired digitized STL data sets were assessed and compared and subsequently used to fabricate physical medical skull models. The three fabricated skull models were then scanned, and differences in the model geometries were assessed using established CAD inspection software methods. A large variation was noted in size and anatomical geometries of the three physical skull models fabricated from an identical (or "a single") DICOM data set. A medical skull model of the same individual can vary markedly depending on the DICOM to STL conversion software and the technical parameters used. Clinicians should be aware of this inaccuracy in certain applications. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Hödl, Iris; Mari, Lorenzo; Bertuzzo, Enrico; Suweis, Samir; Besemer, Katharina; Rinaldo, Andrea; Battin, Tom J
2014-01-01
Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre-scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in ‘ripple-like’ and ‘star-like’ architectures – as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size-structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single-species bacterial biofilms. PMID:23879839
A computerized test system for thermal-mechanical fatigue crack growth
NASA Technical Reports Server (NTRS)
Marchand, N.; Pelloux, R. M.
1986-01-01
A computerized testing system to measure fatigue crack growth under thermal-mechanical fatigue conditions is described. Built around a servohydraulic machine, the system is capable of a push-pull test under stress-controlled or strain-controlled conditions in the temperature range of 25 to 1050 C. Temperature and mechanical strain are independently controlled by the closed-loop system to simulate the complex inservice strain-temperature relationship. A d-c electrical potential method is used to measure crack growth rates. The correction procedure of the potential signal to take into account powerline and RF-induced noises and thermal changes is described. It is shown that the potential drop technique can be used for physical mechanism studies and for modelling crack tip processes.
Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter
2014-01-01
This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959
Theoretical and experimental investigations of the potential of osmotic energy for power production.
Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter
2014-08-08
This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn
Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2)more » convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.« less
NASA Astrophysics Data System (ADS)
van den Elsen, E.; Doerr, S.; Ritsema, C. J.
2009-04-01
In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.
Radiation-tolerant imaging device
Colella, N.J.; Kimbrough, J.R.
1996-11-19
A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO{sub 2} insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron`s generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO{sub 2} layer. 7 figs.
Radiation-tolerant imaging device
Colella, Nicholas J.; Kimbrough, Joseph R.
1996-01-01
A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO.sub.2 insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron's generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO.sub.2 layer.
Childhood Maltreatment Predicts Allostatic Load in Adulthood
Widom, Cathy Spatz; Horan, Jacqueline; Brzustowicz, Linda
2015-01-01
Childhood maltreatment has been linked to numerous negative health outcomes. However, few studies have examined mediating processes using longitudinal designs or objectively measured biological data. This study sought to determine whether child abuse and neglect predicts allostatic load (a composite indicator of accumulated stress-induced biological risk) and to examine potential mediators. Using a prospective cohort design, children (ages 0-11) with documented cases of abuse and neglect were matched with non-maltreated children and followed up into adulthood with in-person interviews and a medical status exam (mean age 41). Allostatic load was assessed with nine physical health indicators. Child abuse and neglect predicted allostatic load, controlling for age, sex, and race. The direct effect of child abuse and neglect persisted despite the introduction of potential mediators of internalizing and externalizing problems in adolescence and social support and risky lifestyle in middle adulthood. These findings reveal the long-term impact of childhood abuse and neglect on physical health over 30 years later. PMID:25700779
RF Models for Plasma-Surface Interactions in VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.
Predictors of cognitive and physical fatigue in post-acute mild-moderate traumatic brain injury.
Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Hanson, Karen L; Sorg, Scott F; Orff, Henry; Clark, Alexandra L
2017-10-01
Post-traumatic fatigue (PTF) is a common, disabling, and often chronic symptom following traumatic brain injury (TBI). Yet, the impact of chronic cognitive and physical fatigue and their associations with psychiatric, sleep, cognitive, and psychosocial sequelae in mild-moderate TBI remain poorly understood. Sixty Veterans with a history of mild-moderate TBI and 40 Veteran controls (VC) were administered the Modified Fatigue Impact Scale, a validated measure of TBI-related cognitive and physical fatigue as well as measures of neuropsychiatric, psychosocial, sleep, and objective cognitive functioning. Compared to VC, TBI Veterans endorsed significantly greater levels of cognitive and physical fatigue. In TBI, psychiatric symptoms, sleep disturbance, and post-traumatic amnesia (PTA) were associated with both cognitive and physical fatigue, while loss of consciousness (LOC) and poor attention/processing speed were related to elevations in cognitive fatigue only. In regression analyses, anxiety, sleep disturbance, and LOC significantly predicted cognitive fatigue, while only post-traumatic stress symptoms and PTA contributed to physical fatigue. Cognitive and physical fatigue are problematic symptoms following mild-moderate TBI that are differentially associated with specific injury and psychiatric sequelae. Findings provide potential symptom targets for interventions aimed at ameliorating fatigue, and further underscore the importance of assessing and treating fatigue as a multi-dimensional symptom following TBI.
Nakamura, Priscila M; Papini, Camila B; Teixeira, Inaian P; Chiyoda, Alberto; Luciano, Eliete; Cordeira, Kelly Lynn; Kokubun, Eduardo
2015-01-01
Interventions in primary health care settings have been effective in increasing physical fitness. In 2001, the Programa de Exercício Físico em Unidades de Saúde (Physical Exercise in Health Primary Care Program-PEHPCP) was launched in Rio Claro City, Brazil. The intervention consisted of biweekly, 60-minute group sessions in all primary health care settings in the city. This study evaluated the effect of PEHPCP on physical fitness and on the aging process after a decade of ongoing implementation. There were 409 women (50 ± 26 y old) and 31 men (64 ± 10 y old) who were eligible for this study. Every 4 months, participants completed the American Alliance for Health, Physical Education, Recreation and Dance standardized tests. Program participation was associated with a reduced effect, compared with baseline, of the natural decline of physical fitness caused by aging, as represented by changes in the following measures: coordination test time, -0.44 seconds; agility and dynamic balance test time; -1.81 seconds; aerobic capacity test time, 3.57 seconds; and muscle strength exercises, +0.60 repetitions. No significant effect on flexibility was found. The PEHPCP showed potential in improving muscle strength, coordination, aerobic capacity, and agility and dynamic balance in participants and in maintaining flexibility in participants.
[Improvement of physical fitness as anti-aging intervention].
Castillo Garzón, Manuel J; Ortega Porcel, Francisco B; Ruiz Ruiz, Jonatan
2005-02-05
Several recent important studies have clearly shown that a low physical fitness represents a potent risk factor and even a predictor of both cardiovascular and all-causes morbidity and mortality. As a consequence, physical fitness assessment should be performed at the clinical level since, when properly assessed, it is a highly valuable health and life expectancy indicator. Based on the results of fitness assessment in a particular person and knowing his/her life style and daily physical activity, an individually adapted training program can be prescribed. This training program will allow that person to develop his/her maximal physical potential while improving his/her physical and mental health and attenuating the deleterious consequences of aging. In fact, physical exercise is today proposed as a highly effective means to treat and prevent major morbidity and mortality causes in industrialized countries. Most of these causes are associated with the aging process. In order to be effective, this type of intervention should be directed to improve the aerobic capacity and strength. In addition, it should be complemented with work directed to improve the general coordination and flexibility. Finally, diet optimization and use of nutritional supplements and legal ergogenic aids are key elements to improve the functional capacity and health, all of which is synonymous of anti-aging interventions.
Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California
NASA Astrophysics Data System (ADS)
Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.
2017-12-01
Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.
Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Six, N. Frank (Technical Monitor)
2002-01-01
Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.
Physical and material properties of an emulsion-based lipstick produced via a continuous process.
Beri, A; Pichot, R; Norton, I T
2014-04-01
Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aim of this work was to investigate the effect of a continuous process (scraped surface heat exchanger (SSHE) and pin stirrer (PS)) on the physical and material properties of an emulsion-based lipstick by altering the processing conditions of both the SSHE and PS. Emulsion formation was achieved using a SSHE and PS. Emulsions were analysed using nuclear magnetic resonance restricted diffusion (droplet size), texture analysis and rheology (mechanical properties). Results showed that a higher impeller rotational velocity (IRV) (1500 r.p.m.) and a lower exit temperature (52°C) produce the smallest droplets (~ 4 μm), due to greater disruptive forces and a higher viscosity of the continuous phase. The addition of a PS reduces the droplet size (14-6 μm) if the SSHE has a low IRV (500 r.p.m.), due to greater droplet disruption as the emulsion passes through the PS unit. Results also show that if the jacket temperature of a SSHE is 65°C, so that crystallization occurs in both process and post-production, droplets can be integrated into the network resulting in a stiffer wax network (G' - 0.12, in comparison to 0.02 MPa). This is due to small crystals creating a shell around water droplets which can form connections with the continuous network forming a structured network. The addition of a pin stirrer can disrupt a formed network reducing the stiffness of the emulsion (0.3-0.05 MPa). This work suggests the potential use of a continuous process in producing an emulsion-based lipstick, particularly when wax crystals are produced in the process. Future work should consider the moisturizing or lubricating properties of wax continuous emulsions and the release of hydrophilic compounds from the aqueous phase.
A stochastic diffusion process for Lochner's generalized Dirichlet distribution
Bakosi, J.; Ristorcelli, J. R.
2013-10-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N stochastic variables with Lochner’s generalized Dirichlet distribution as its asymptotic solution. Individual samples of a discrete ensemble, obtained from the system of stochastic differential equations, equivalent to the Fokker-Planck equation developed here, satisfy a unit-sum constraint at all times and ensure a bounded sample space, similarly to the process developed in for the Dirichlet distribution. Consequently, the generalized Dirichlet diffusion process may be used to represent realizations of a fluctuating ensemble of N variables subject to a conservation principle.more » Compared to the Dirichlet distribution and process, the additional parameters of the generalized Dirichlet distribution allow a more general class of physical processes to be modeled with a more general covariance matrix.« less
Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho
2017-06-01
This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
A New Way of Using the Interactive Whiteboard in a High School Physics Classroom: A Case Study
NASA Astrophysics Data System (ADS)
Gregorcic, Bor; Etkina, Eugenia; Planinsic, Gorazd
2017-02-01
In recent decades, the interactive whiteboard (IWB) has become a relatively common educational tool in Western schools. The IWB is essentially a large touch screen, that enables the user to interact with digital content in ways that are not possible with an ordinary computer-projector-canvas setup. However, the unique possibilities of IWBs are rarely leveraged to enhance teaching and learning beyond the primary school level. This is particularly noticeable in high school physics. We describe how a high school physics teacher learned to use an IWB in a new way, how she planned and implemented a lesson on the topic of orbital motion of planets, and what tensions arose in the process. We used an ethnographic approach to account for the teacher's and involved students' perspectives throughout the process of teacher preparation, lesson planning, and the implementation of the lesson. To interpret the data, we used the conceptual framework of activity theory. We found that an entrenched culture of traditional white/blackboard use in physics instruction interferes with more technologically innovative and more student-centered instructional approaches that leverage the IWB's unique instructional potential. Furthermore, we found that the teacher's confidence in the mastery of the IWB plays a crucial role in the teacher's willingness to transfer agency within the lesson to the students.
A process-based hierarchical framework for monitoring glaciated alpine headwaters
Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.
2012-01-01
Recent studies have demonstrated the geomorphic complexity and wide range of hydrologic regimes found in alpine headwater channels that provide complex habitats for aquatic taxa. These geohydrologic elements are fundamental to better understand patterns in species assemblages and indicator taxa and are necessary to aquatic monitoring protocols that aim to track changes in physical conditions. Complex physical variables shape many biological and ecological traits, including life history strategies, but these mechanisms can only be understood if critical physical variables are adequately represented within the sampling framework. To better align sampling design protocols with current geohydrologic knowledge, we present a conceptual framework that incorporates regional-scale conditions, basin-scale longitudinal profiles, valley-scale glacial macroform structure, valley segment-scale (i.e., colluvial, alluvial, and bedrock), and reach-scale channel types. At the valley segment- and reach-scales, these hierarchical levels are associated with differences in streamflow and sediment regime, water source contribution and water temperature. Examples of linked physical-ecological hypotheses placed in a landscape context and a case study using the proposed framework are presented to demonstrate the usefulness of this approach for monitoring complex temporal and spatial patterns and processes in glaciated basins. This approach is meant to aid in comparisons between mountain regions on a global scale and to improve management of potentially endangered alpine species affected by climate change and other stressors.
Validation of automated detection of physical and mental stress during work in a Hühnermobil 225.
Quendler, Elisabeth; Trieb, Katharina; Nimmerichter, Alfred
2017-05-11
Introduction. The effects of the use of mobile henhouses and their equipment on the physical and mental stress of farmers in the organic egg production, and the reliability of the sensor-based detection of these in work processes are insufficiently known. There are neither measurement results nor key figures, according to operation and gender especially, available in the literature. Objective. The aim of this case study is to quantify the physical and mental stress of work processes on the basis of heart rate and the Baevsky Stress Index, as measured by the ECG- and activity sensor Movisens®, which is used mainly in the sports and rehabilitation sectors. To analyse the impact, daily routine work was divided into operations and the data collected for this purpose analysed descriptively and analytically. Conclusions. In summary, it can be concluded that measurement technology has the potential to capture the activity-related exceedances of the endurance limit of the work severity by means of the heart rate reliably, to identify risk areas of employment and to quantify stress situations. The accuracy and reliability of data acquisition with Movisens® should be validated by a larger sample size and further measurements. In particular, the algorithm for calculating the data to quantify the mental and physical stress without movement needs to be improved significantly through further development.
Good Job, Bad Job: Occupational Perceptions Among Latino Poultry Workers
Mora, Dana C.; Arcury, Thomas A.; Quandt, Sara A.
2016-01-01
Objectives Immigrant workers frequently take jobs that are physically demanding, provide low wages, and result in injuries (e.g., poultry production and processing). Through a qualitative approach, this paper elicits poultry workers’ evaluations of their jobs and set them in the larger context of their lives. Methods Semi-structured interviews were conducted with 65 poultry workers in western North Carolina. Workers were asked to discuss job characteristics, physical and psychological impacts of their employment, and perceived health risks. Results Immigrant workers valued the stability, benefits, upward mobility, and pay offered. They disliked the physical demands, the potential perceived effects of the job on their health, and the interactions with bosses and peers. Conclusion Workers’ willingness to endure dirty, dangerous, and demanding (3-D) conditions of poultry must be understood in the context of other employment options, structural violence, and their focus on immediate family needs that positive aspects of these jobs can fulfill. PMID:27195478
Temporomandibular disorders. Part 2: conservative management
Shaffer, Stephen M; Brismée, Jean-Michel; Sizer, Phillip S; Courtney, Carol A
2014-01-01
Appropriate management of temporomandibular disorders (TMD) requires an understanding of the underlying dysfunction associated with the temporomandibular joint (TMJ) and surrounding structures. A comprehensive examination process, as described in part 1 of this series, can reveal underlying clinical findings that assist in the delivery of comprehensive physical therapy services for patients with TMD. Part 2 of this series focuses on management strategies for TMD. Physical therapy is the preferred conservative management approach for TMD. Physical therapists are professionally well-positioned to step into the void and provide clinical services for patients with TMD. Clinicians should utilize examination findings to design rehabilitation programs that focus on addressing patient-specific impairments. Potentially appropriate plan of care components include joint and soft tissue mobilization, trigger point dry needling, friction massage, therapeutic exercise, patient education, modalities, and outside referral. Management options should address both symptom reduction and oral function. Satisfactory results can often be achieved when management focuses on patient-specific clinical variables. PMID:24976744
Recovering recyclable materials from shredder residue
NASA Astrophysics Data System (ADS)
Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.; Brockmeier, Norman F.
1994-02-01
Each year, about 11 million tons of metals are recovered in the United States from about 10 million discarded automobiles. The recovered metals account for about 75 percent of the total weight of the discarded vehicles. The balance of the material, known as shredder residue, amounts to about three million tons annually and is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This article discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. The status of the technology and the process economics are reviewed here.
Jong, Stephanie T; Brown, Helen Elizabeth; Croxson, Caroline H D; Wilkinson, Paul; Corder, Kirsten L; van Sluijs, Esther M F
2018-05-21
Process evaluations are critical for interpreting and understanding outcome trial results. By understanding how interventions function across different settings, process evaluations have the capacity to inform future dissemination of interventions. The complexity of Get others Active (GoActive), a 12-week, school-based physical activity intervention implemented in eight schools, highlights the need to investigate how implementation is achieved across a variety of school settings. This paper describes the mixed methods GoActive process evaluation protocol that is embedded within the outcome evaluation. In this detailed process evaluation protocol, we describe the flexible and pragmatic methods that will be used for capturing the process evaluation data. A mixed methods design will be used for the process evaluation, including quantitative data collected in both the control and intervention arms of the GoActive trial, and qualitative data collected in the intervention arm. Data collection methods will include purposively sampled, semi-structured interviews and focus group interviews, direct observation, and participant questionnaires (completed by students, teachers, older adolescent mentors, and local authority-funded facilitators). Data will be analysed thematically within and across datasets. Overall synthesis of findings will address the process of GoActive implementation, and through which this process affects outcomes, with careful attention to the context of the school environment. This process evaluation will explore the experience of participating in GoActive from the perspectives of key groups, providing a greater understanding of the acceptability and process of implementation of the intervention across the eight intervention schools. This will allow for appraisal of the intervention's conceptual base, inform potential dissemination, and help optimise post-trial sustainability. The process evaluation will also assist in contextualising the trial effectiveness results with respect to how the intervention may or may not have worked and, if it was found to be effective, what might be required for it to be sustained in the 'real world'. Furthermore, it will offer suggestions for the development and implementation of future initiatives to promote physical activity within schools. ISRCTN, ISRCTN31583496 . Registered on 18 February 2014.
Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador
2014-10-30
The membrane potential of nonexcitable cells, defined as the electrical potential difference between the cell cytoplasm and the extracellular environment when the current is zero, is controlled by the individual electrical conductance of different ion channels. In particular, inward- and outward-rectifying voltage-gated channels are crucial for cell hyperpolarization/depolarization processes, being amenable to direct physical study. High (in absolute value) negative membrane potentials are characteristic of terminally differentiated cells, while low membrane potentials are found in relatively depolarized, more plastic cells (e.g., stem, embryonic, and cancer cells). We study theoretically the hyperpolarized and depolarized values of the membrane potential, as well as the possibility to obtain a bistability behavior, using simplified models for the ion channels that regulate this potential. The bistability regions, which are defined in the multidimensional state space determining the cell state, can be relevant for the understanding of the different model cell states and the transitions between them, which are triggered by changes in the external environment.
Beaulieu, Kristine; Hopkins, Mark; Blundell, John; Finlayson, Graham
2017-12-28
The current obesogenic environment promotes physical inactivity and food consumption in excess of energy requirements, two important modifiable risk factors influencing energy balance. Habitual physical activity has been shown to impact not only energy expenditure, but also energy intake through mechanisms of appetite control. This review summarizes recent theory and evidence underpinning the role of physical activity in the homeostatic and non-homeostatic mechanisms controlling appetite. Energy intake along the spectrum of physical activity levels (inactive to highly active) appears to be J-shaped, with low levels of physical activity leading to dysregulated appetite and a mismatch between energy intake and expenditure. At higher levels, habitual physical activity influences homeostatic appetite control in a dual-process action by increasing the drive to eat through greater energy expenditure, but also by enhancing post-meal satiety, allowing energy intake to better match energy expenditure in response to hunger and satiety signals. There is clear presumptive evidence that physical activity energy expenditure can act as a drive (determinant) of energy intake. The influence of physical activity level on non-homeostatic appetite control is less clear, but low levels of physical activity may amplify hedonic states and behavioural traits favouring overconsumption indirectly through increased body fat. More evidence is required to understand the interaction between physical activity, appetite control and diet composition on passive overconsumption and energy balance. Furthermore, potential moderators of appetite control along the spectrum of physical activity, such as body composition, sex, and type, intensity and timing of physical activity, remain to be fully understood. Copyright © 2018 Elsevier Inc. All rights reserved.
Potential of powdered activated mustard cake for decolorising raw sugar.
Singh, Kaman; Bharose, Ram; Verma, Sudhir Kumar; Singh, Vimalesh Kumar
2013-01-15
Carbon decolorisation has become customary in the food processing industries; however, it is not economical. Extensive research has therefore been directed towards investigating potential substitutes for commercial activated carbons which might have the advantage of offering an effective, lower-cost replacement for existing bone char or coal-based granular activated carbon (GAC). The physical (bulk density and hardness), chemical (pH and mineral content) and adsorption characteristics (iodine test, molasses test and raw sugar decolorisation efficiency) of powdered activated mustard cake (PAMC) made from de-oiled mustard cake were determined and compared to commercial adsorbents. Although the colour removal efficiency of the PAMC is lower than that of commercial materials, it is cost effective and eco-friendly compared to the existing decolorisation/refining processes. To reduce the load on GAC/activated carbon/charcoal, PAMC could be used on an industrial scale. A decolorisation mechanism has been postulated on the basis of oxygen surface functionalities and surface charge of the PAMC and, accordingly, charge transfer interaction seems to be responsible for the decolorisation mechanism. In addition, a complex interplay of electrostatics and dispersive interaction seem to be involved during the decolorisation process. A low-cost agricultural waste product in the form of de-oiled mustard cake was converted to an efficient adsorbent, PAMC, for use in decolorising raw as well as coloured sugar solutions. The physical, chemical, adsorption characteristics and raw sugar decolorisation efficiency of PAMC were determined and compared to those of commercial adsorbents. The colour removal efficiency of the PAMC is lower than that of commercial materials but it is cost effective and eco-friendly as compared to existing decolorisation/refining processes. The availability of the raw material for the production of PAMC further demands its use on an industrial scale. Copyright © 2012 Society of Chemical Industry.
Improving Automated Endmember Identification for Linear Unmixing of HyspIRI Spectral Data.
NASA Astrophysics Data System (ADS)
Gader, P.
2016-12-01
The size of data sets produced by imaging spectrometers is increasing rapidly. There is already a processing bottleneck. Part of the reason for this bottleneck is the need for expert input using interactive software tools. This process can be very time consuming and laborious but is currently crucial to ensuring the quality of the analysis. Automated algorithms can mitigate this problem. Although it is unlikely that processing systems can become completely automated, there is an urgent need to increase the level of automation. Spectral unmixing is a key component to processing HyspIRI data. Algorithms such as MESMA have been demonstrated to achieve results but require carefully, expert construction of endmember libraries. Unfortunately, many endmembers found by automated algorithms for finding endmembers are deemed unsuitable by experts because they are not physically reasonable. Unfortunately, endmembers that are not physically reasonable can achieve very low errors between the linear mixing model with those endmembers and the original data. Therefore, this error is not a reasonable way to resolve the problem on "non-physical" endmembers. There are many potential approaches for resolving these issues, including using Bayesian priors, but very little attention has been given to this problem. The study reported on here considers a modification of the Sparsity Promoting Iterated Constrained Endmember (SPICE) algorithm. SPICE finds endmembers and abundances and estimates the number of endmembers. The SPICE algorithm seeks to minimize a quadratic objective function with respect to endmembers E and fractions P. The modified SPICE algorithm, which we refer to as SPICED, is obtained by adding the term D to the objective function. The term D pressures the algorithm to minimize sum of the squared differences between each endmember and a weighted sum of the data. By appropriately modifying the, the endmembers are pushed towards a subset of the data with the potential for becoming exactly equal to the data points. The algorithm has been applied to spectral data and the differences between the endmembers resulting from ecorded. The results so far are that the endmembers found SPICED are approximately 25% closer to the data with indistinguishable reconstruction error compared to those found using SPICE.
ERIC Educational Resources Information Center
Simpson, James R.
This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…
Dementia Grief: A Theoretical Model of a Unique Grief Experience
Blandin, Kesstan; Pepin, Renee
2016-01-01
Previous literature reveals a high prevalence of grief in dementia caregivers before physical death of the person with dementia that is associated with stress, burden, and depression. To date, theoretical models and therapeutic interventions with grief in caregivers have not adequately considered the grief process, but instead have focused on grief as a symptom that manifests within the process of caregiving. The Dementia Grief Model explicates the unique process of pre-death grief in dementia caregivers. In this paper we introduce the Dementia Grief Model, describe the unique characteristics dementia grief, and present the psychological states associated with the process of dementia grief. The model explicates an iterative grief process involving three states – separation, liminality, and re-emergence – each with a dynamic mechanism that facilitates or hinders movement through the dementia grief process. Finally, we offer potential applied research questions informed by the model. PMID:25883036
Development of smartphone applications for nutrition and physical activity behavior change.
Hebden, Lana; Cook, Amelia; van der Ploeg, Hidde P; Allman-Farinelli, Margaret
2012-08-22
Young adults (aged 18 to 35) are a population group at high risk for weight gain, yet we know little about how to intervene in this group. Easy access to treatment and support with self-monitoring of their behaviors may be important. Smartphones are gaining in popularity with this population group and software applications ("apps") used on these mobile devices are a novel technology that can be used to deliver brief health behavior change interventions directly to individuals en masse, with potentially favorable cost-utility. However, existing apps for modifying nutrition or physical activity behaviors may not always reflect best practice guidelines for weight management. This paper describes the process of developing four apps aimed at modifying key lifestyle behaviors associated with weight gain during young adulthood, including physical activity, and consumption of take-out foods (fast food), fruit and vegetables, and sugar-sweetened drinks. The development process involved: (1) deciding on the behavior change strategies, relevant guidelines, graphic design, and potential data collection; (2) selecting the platform (Web-based versus native); (3) creating the design, which required decisions about the user interface, architecture of the relational database, and programming code; and (4) testing the prototype versions with the target audience (young adults aged 18 to 35). The four apps took 18 months to develop, involving the fields of marketing, nutrition and dietetics, physical activity, and information technology. Ten subjects provided qualitative feedback about using the apps. The slow running speed of the apps (due to a reliance on an active Internet connection) was the primary issue identified by this group, as well as the requirement to log in to the apps. Smartphone apps may be an innovative medium for delivering individual health behavior change intervention en masse, but researchers must give consideration to the target population, available technologies, existing commercial apps, and the possibility that their use will be irregular and short-lived.
Development of Smartphone Applications for Nutrition and Physical Activity Behavior Change
Cook, Amelia; van der Ploeg, Hidde P; Allman-Farinelli, Margaret
2012-01-01
Background Young adults (aged 18 to 35) are a population group at high risk for weight gain, yet we know little about how to intervene in this group. Easy access to treatment and support with self-monitoring of their behaviors may be important. Smartphones are gaining in popularity with this population group and software applications (“apps”) used on these mobile devices are a novel technology that can be used to deliver brief health behavior change interventions directly to individuals en masse, with potentially favorable cost-utility. However, existing apps for modifying nutrition or physical activity behaviors may not always reflect best practice guidelines for weight management. Objective This paper describes the process of developing four apps aimed at modifying key lifestyle behaviors associated with weight gain during young adulthood, including physical activity, and consumption of take-out foods (fast food), fruit and vegetables, and sugar-sweetened drinks. Methods The development process involved: (1) deciding on the behavior change strategies, relevant guidelines, graphic design, and potential data collection; (2) selecting the platform (Web-based versus native); (3) creating the design, which required decisions about the user interface, architecture of the relational database, and programming code; and (4) testing the prototype versions with the target audience (young adults aged 18 to 35). Results The four apps took 18 months to develop, involving the fields of marketing, nutrition and dietetics, physical activity, and information technology. Ten subjects provided qualitative feedback about using the apps. The slow running speed of the apps (due to a reliance on an active Internet connection) was the primary issue identified by this group, as well as the requirement to log in to the apps. Conclusions Smartphone apps may be an innovative medium for delivering individual health behavior change intervention en masse, but researchers must give consideration to the target population, available technologies, existing commercial apps, and the possibility that their use will be irregular and short-lived. PMID:23611892
NASA Astrophysics Data System (ADS)
D'Addato, Sergio; Chiara Spadaro, Maria
2018-03-01
Experimental activity on core@shell, metal@oxide, and oxide nanoparticles (NPs) grown with physical synthesis, and more specifically by low pressure gas aggregation sources (LPGAS) is reviewed, through a selection of examples encompassing some potential applications in nanotechnology. After an introduction to the applications of NPs, a brief description of the main characteristics of the growth process of clusters and NPs in LPGAS is given. Thereafter, some relevant case studies are reported: • Formation of native oxide shells around the metal cores in core@shell NPs. • Experimental efforts to obtain magnetic stabilization in magnetic core@shell NPs by controlling their structure and morphology. • Recent advancements in NP source design and new techniques of co-deposition, with relevant results in the realization of NPs with a greater variety of functionalities. • Recent results on reducible oxide NPs, with potentialities in nanocatalysis, energy storage, and other applications. Although this list is far from being exhaustive, the aim of the authors is to provide the reader a descriptive glimpse into the physics behind the growth and studies of low pressure gas-phase synthesized NPs, with their ever-growing potentialities for the rational design of new functional materials.
NASA Technical Reports Server (NTRS)
Robinson, A. C.; Gorman, H. J.; Hillman, M.; Lawhon, W. T.; Maase, D. L.; Mcclure, T. A.
1976-01-01
The potential U.S. market for tertiary municipal wastewater treatment facilities which make use of water hyacinths was investigated. A baseline design was developed which approximates the "typical" or "average" situation under which hyacinth-based systems can be used. The total market size for tertiary treatment was then estimated for those geographical regions in which hyacinths appear to be applicable. Market penetration of the baseline hyacinth system when competing with conventional chemical and physical processing systems was approximated, based primarily on cost differences. A limited analysis was made of the sensitivity of market penetration to individual changes in these assumptions.
Characterizing the scientific potential of satellite sensors. [San Francisco, California
NASA Technical Reports Server (NTRS)
1984-01-01
Analytical and programming support is to be provided to characterize the potential of the LANDSAT thematic mapper (TM) digital imagery for scientific investigations in the Earth sciences and in terrestrial physics. In addition, technical support to define lower atmospheric and terrestrial surface experiments for the space station and technical support to the Research Optical Sensor (ROS) study scientist for advanced studies in remote sensing are to be provided. Eleven radiometric calibration and correction programs are described. Coherent noise and bright target saturation correction are discussed along with image processing on the LAS/VAX and Hp-300/IDIMS. An image of San Francisco, California from TM band 2 is presented.
NASA Astrophysics Data System (ADS)
Gyürky, Gy.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Szücs, T.
2018-01-01
In a recent work, the cross section measurement of the 64Zn(p,α)61Cu reaction was used to prove that the standard α-nucleus optical potentials used in astrophysical network calculation fail to reproduce the experimental data at energies relevant for heavy element nucleosynthesis. In the present paper the analysis of the obtained experimental data are continued by comparing the results with the predictions using different parameters. It is shown that the recently suggested modification of the standard optical potential leads to a better description of the data.
Recent Observational Progress on Accretion Disks Around Compact Objects
NASA Astrophysics Data System (ADS)
Miller, Jon M.
2016-04-01
Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.
The study of single crystals for space processing and the effect of zero gravity
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, J.R.; Duke, T.W.; Harwell, M.A.
Potential effects of oil drilling-fluid discharges upon Thalassia seagrass ecosystems were examined to provide general insights and raise ecotoxicological issues relevant to problems of addressing a priori, ecolgical effects of anthropogenic actions. Microcosm experiments have demonstrated effects upon both autotrophic and heterotrophic species, as well as the processes of primary productivity and decomposition. Significant ecological changes may result from disturbance effects related to the physical presence of higher particle loads, in addition to effects resulting from toxic features of drilling fluids.
Gravity, Magnetic and Electromagnetic Gradiometry; Strategic technologies in the 21st century
NASA Astrophysics Data System (ADS)
Veryaskin, Alexey V.
2018-02-01
Gradiometry is a multidisciplinary area that combines theoretical and applied physics, ultra-low noise electronics, precision engineering, and advanced signal processing. Applications include the search for oil, gas, and mineral resources, GPS-free navigation, defence, space missions, and medical research. This book provides readers with a comprehensive introduction, history, potential applications, and current developments in relation to some of the most advanced technologies in the 21st Century.
Loprinzi, Paul D; Cardinal, Bradley J
2013-01-01
The degree to which breast cancer survivors use behavioral processes of change has not been investigated. Additionally, the relationship between behavioral processes and other theory-based mediators of adult physical activity behavior has not been extensively studied among breast cancer survivors. The objectives of this study were to: (1) determine the extent to which breast cancer survivors use behavioral processes associated with physical activity behavior change, and (2) examine the inter-relationships between behavioral processes, self-efficacy, and physical activity behavior among breast cancer survivors. Sixty-nine breast cancer survivors completed surveys examining behavioral processes and exercise-specific self-efficacy. Six months later they completed a self-report physical activity questionnaire. Findings showed the majority of breast cancer survivors did not use approximately half of the behavioral processes on a regular basis, and self-efficacy completely mediated the relationship between behavioral processes and physical activity. Health care professionals may help enhance self-efficacy and ultimately increase physical activity behavior in breast cancer survivors by teaching behavior skills such as enlisting social support.
How consumer physical activity monitors could transform human physiology research.
Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn
2017-03-01
A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.
How consumer physical activity monitors could transform human physiology research
Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn
2017-01-01
A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867