Casterton, P L; Potts, L F; Klein, B D
1994-08-01
11 surfactant raw materials with potential applications in light-duty liquid cleaning products were evaluated in vitro using a human skin analogue (ATS SKIN(2) Model ZK1100) for predicting cytotoxicity (MTT reduction) and inflammation [prostaglandin E(2) (PGE(2)) release]. Two of the 11 raw materials, both in the same compound family, were selected to be individually combined with each of the other nine in a 90:10 (raw:selected raw) mixture. Selection criteria were based on desired performance characteristics and low irritation potential as suggested from the individual surfactant assay data. To determine whether irritation potential was mitigated, MTT and PGE(2) scores were again determined for each of the 18 combinations with the resulting data being compared with the untreated raw material data. A plot of the data indicated that one of two selected materials may have an 'anti-irritant' effect. For raw materials with intrinsic MTT scores of less than 50 mug/ml and with the original data corrected for possible dilution effects, a statistical comparison between individual raw materials and the two sets of combinations was done using a one-sample analysis. Both cytotoxicity (MTT) and inflammation (PGE(2)) were significantly decreased by the milder of the two selected raw materials. By factoring the data into future new product decisions, this methodology has become a useful and practical tool for Amway product development.
Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials
Rodrigues, Patrícia; Silvestre, José D.; Flores-Colen, Inês; Viegas, Cristina A.; de Brito, Jorge; Kurad, Rawaz; Demertzi, Martha
2017-01-01
Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH—Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP—Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability. PMID:28773011
Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine
Renth, Amanda N.
2012-01-01
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of “raw materials” used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies. PMID:22462759
Raw materials in the manufacture of biotechnology products: regulatory considerations.
Cordoba-Rodriguez, Ruth
2010-01-01
The Food and Drug Administration's Pharmaceutical cGMPs for the 21st Century initiative emphasizes science and risk-based approaches in the manufacture of drugs. These approaches are reflected in the International Conference on Harmonization (ICH) guidances ICH Q8, Q9, and Q10 and encourage a comprehensive assessment of the manufacture of a biologic, including all aspects of manufacture that have the potential to affect the finished drug product. Appropriate assessment and management of raw materials are an important part of this initiative. Ideally, a raw materials program should strive to assess and minimize the risk to product quality. With this in mind, risk-assessment concepts and control strategies will be discussed and illustrated by examples, with an emphasis on the impact of raw materials on cell substrates. Finally, the life cycle of the raw material will be considered, including its potential to affect the drug product life cycle. In this framework, the supply chain and the vendor-manufacturer relationship will be explored as important parts of an adequate raw materials control strategy.
John B. Grantham; Eldon Estep; John M. Pierovich; Harold Tarkow; Thomas C. Adams
1974-01-01
Results are reported of a preliminary investigation of feasibility of using wood residue to meet energy and raw material needs in the Pacific Coast States. Magnitude of needs was examined and volume of logging-residue and unused mill residue was estimated. Costs of obtaining and preprocessing logging residue for energy and pulp and particle board raw material were...
Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials
NASA Technical Reports Server (NTRS)
Mildenhall, Scott D.; McCool, Alex (Technical Monitor)
2001-01-01
The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.
Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing
NASA Astrophysics Data System (ADS)
Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs
2017-04-01
The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.
21 CFR 1303.23 - Procedure for fixing individual manufacturing quotas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... economic and physical availability of raw materials for use in manufacturing and for inventory purposes, yield and stability problems, potential disruptions to production (including possible labor strikes... current inventory position, the economic and physical availability of raw materials for use in...
21 CFR 1315.23 - Procedure for fixing individual manufacturing quotas.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The economic and physical availability of raw materials for use in manufacturing and for inventory purposes, (iv) Yield and stability problems, (v) Potential disruptions to production (including possible... cycle and current inventory position. (iii) The economic and physical availability of raw materials for...
Almeida-Warren, Katarina; Sommer, Volker; Piel, Alex K; Pascual-Garrido, Alejandra
2017-10-01
Chimpanzee termite fishing has been studied for decades, yet the selective processes preceding the manufacture of fishing tools remain largely unexplored. We investigate raw material selection and potential evidence of forward planning in the chimpanzees of Issa valley, western Tanzania. Using traditional archaeological methods, we surveyed the location of plants from where chimpanzees sourced raw material to manufacture termite fishing tools, relative to targeted mounds. We measured raw material abundance to test for availability and selection. Statistics included Chi-Squared, two-tailed Wilcoxon, and Kruskall-Wallace tests. Issa chimpanzees manufactured extraction tools only from bark, despite availability of other suitable materials (e.g., twigs), and selected particular plant species as raw material sources, which they often also exploit for food. Most plants were sourced 1-16 m away from the mound, with a maximum of 33 m. The line of sight from the targeted mound was obscured for a quarter of these plants. The exclusive use of bark tools despite availability of other suitable materials indicates a possible cultural preference. The fact that Issa chimpanzees select specific plant species and travel some distance to source them suggests some degree of selectivity and, potentially, forward planning. Our results have implications for the reconstruction of early hominin behaviors, particularly with regard to the use of perishable tools, which remain archaeologically invisible. © 2017 Wiley Periodicals, Inc.
Mimitsuka, Takashi; Na, Kyungsu; Morita, Ken; Sawai, Hideki; Minegishi, Shinichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu
2012-01-01
Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.
Development of an Assessment Method for Building Materials Under Euratom Scope.
de With, Govert
2017-11-01
In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses issues relevant for regulatory implementation.
Renewable resources in the chemical industry--breaking away from oil?
Nordhoff, Stefan; Höcker, Hans; Gebhardt, Henrike
2007-12-01
Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.
Use of raw materials in the United States from 1900 through 2014
Matos, Grecia R.
2017-08-22
The economic growth of an industrialized nation such as the United States requires raw materials for construction (buildings, bridges, highways, and so forth), defense, and processing and manufacture of goods and services. Since the beginning of the 20th century, the types and quantities of raw materials used have increased and changed significantly. This fact sheet quantifies the amounts of raw materials (other than food and fuel) that have been used in the U.S. economy annually for a period of 115 years, from 1900 through 2014. It provides a broad overview of the quantity (weight) of nonfood and nonfuel materials used in the economy and illustrates the use and significance of raw nonfuel minerals in particular as building blocks of society.These data have been compiled to help the public and policymakers understand the changing annual flow of raw materials put into use in the United States. Such information can be helpful in assessing the potential effects of materials use on the environment, assessing materials’ intensity of use, and examining the role that these materials play in the economy. The data presented indicate the substitution and shift in materials usage from renewable to nonrenewable materials during the 20th century. The disaggregated quantities by commodity (not shown in this fact sheet) may be tested against supply adequacy and end of life issues.
North Carolina Forest Resources and Industries
J.W. Cruikshank
1944-01-01
Dependable information on the supply of all raw materials is vital to the conduct of the war and to the success of current and future efforts at post-war planning. This economic survey of our forests which are an integral part of the Nation's reservoir of raw material is essential to a complete understanding of resource potentialities and of the industries...
Catalysis: A Potential Alternative to Kraft Pulping
Alan W. Rudie; Peter W. Hart
2014-01-01
A thorough analysis of the kraft pulping process makes it obvious why it has dominated for over a century as an industrial process with no replacement in sight. It uses low cost raw materials, collects and regenerates over 90% of the chemicals needed in the process, is indifferent to wood raw material and good at preserving the cellulose portion of the wood which is...
Catalysis: A Potential Alternative to Kraft Pulping
Alan W. Rudie; Peter W. Hart
2014-01-01
A thorough analysis of the kraft pulping process makes it obvious why it has dominated for over a century as an industrial process with no replacement in sight. It uses low-cost raw materials; collects and regenerates over 90% of the chemicals needed in the process; and is indifferent to wood raw material and good at preserving the cellulose portion of the wood, the...
Industrial bioconversion of renewable resources as an alternative to conventional chemistry.
Willke, Th; Vorlop, K-D
2004-12-01
There are numerous possibilities for replacing chemical techniques with biotechnological methods based on renewable resources. The potential of biotechnology (products, technologies, metabolic pathways) is for the most part well known. Often the costs are still the problem. Biotechnological advances have the best chances for replacing some fine chemicals. While the raw material costs are less of a consideration here, the environmental benefit is huge, as chemical-technical processes often produce a wide range of undesirable/harmful by-products or waste. In the case of bulk chemicals (<1 US dollar/kg) the product price is affected mainly by raw material costs. As long as fossil raw materials are still relatively inexpensive, alternatives based on renewable resources cannot establish themselves. Residues and waste, which are available even at no cost in some cases, are an exception. The introduction of new technologies for the efficient use of such raw materials is currently being promoted. The utilisation of residual wood, plant parts, waste fat, and crude glycerol, for example, provides great potential. For industrial chemicals (2-4 US dollars/kg), process and recovery costs play a greater role. Here, innovative production technologies and product recovery techniques (e.g. on-line product separation) can increase competitiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it; Giacobbe, Carlotta; Sardisco, Lorenza
Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a longmore » termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.« less
Rapid bacteriological screening of cosmetic raw materials by using bioluminescence.
Nielsen, P; Van Dellen, E
1989-01-01
Incoming cosmetic raw materials are routinely tested for microbial content. Standard plate count methods require up to 72 h. A rapid, sensitive, and inexpensive raw material screening method was developed that detects the presence of bacteria by means of ATP (bioluminescence). With a 24-h broth enrichment, the minimum bacterial ATP detection threshold of 1 cfu/g sample can be achieved using purified firefly luciferin-luciferase and an ATP releasing reagent. By using this rapid screen, microbiologically free material may be released for production within 24 h, while contaminated material undergoes further quantitative and identification testing. In order for a raw material to be validated for this method it must be evaluated for (1) a potential nonmicrobial light-contributing reaction resulting in a false positive or, (2) degradation of the ATP giving a false negative, and (3) confirmation that the raw material has not overwhelmed the buffering capacity of the enrichment broth. The key criteria for a rapid screen was the sensitivity to detect less than one colony forming unit per g product, the speed to do this within 24 h, and cost efficiency. Bioluminescence meets these criteria. With an enrichment step, it can detect less than one cfu/g sample. After the enrichment step, analysis time per sample is approximately 2 min and the cost for material and reagents is less than one dollar per sample.
Indonesian CPO availability analysis to support food and energy security: a system dynamic approach
NASA Astrophysics Data System (ADS)
Rahman, T.; Arkeman, Y.; Setyaningsih, D.; Saparita, R.
2017-05-01
The development of biofuels could be a solution to overcome the energy problem. One of biofuel that has the potential to be developed, namely palm oil biodiesel that is also the raw material for food. As a provider of CPO raw materials, the production of palm biodiesel could trigger competitions, from biofuels demand growth and utilization of agricultural resources. Thus, it needs to be analyzed to determine the adequency of CPO supply to fulfill the need of food and policy recomendation which sets the development of palm oil biodiesel can be synergies with food need especially for the supply of raw material CPO. To obtain the optimal policy in the synergy between the raw material of CPO for food and energy is a need to establish some policy scenarios that allow to be applied and then chosen the best policy alternative of all scenarios. The purpose of this research were to : 1) analysis the availability of CPO to meet the needs of food and energy, 2) provide policy recommendation with regard biodiesel development of food security. The model made used system dynamic method. Several scenarios that used in the model are: 1) existing condition, 2) The scenario increase biodiesel production capacity and increase land productivity, 3) reduction scenario CPO export by 30%, 4) scenario use othe raw material for biodiesel by 20%. The simulation results showed the availability of CPO raw materials would answer all needs of both food and biodiesel when there was an increase in productivity, diversification of raw materials, and also a reduction in palm oil exports. It was needed an integrated policy from upstream to downstream along with the consistency of implementation. Policy suggestions that could be considered were increased productivity through agricultural intensification, enforcement disincentive policies of CPO to exports, and development of non-CPO biodiesel raw materials and development of renewable energy.
Committee on renewable resources for industrial materials (Corrim)
Robert W. Meyer; Carol B. Ovens
1976-01-01
In recent years major emphasis has been placed on nonrenewable resources in relation to potential national problems that may arise from possible changes in materials supply or utilization. Renewable resources, however, have received disproportionately small attention in spite of their current importance as industrial raw materials and their potential for the future. In...
NASA Astrophysics Data System (ADS)
Wahini, M.; Miranti, M. G.; Lukitasari, F.; Novela, L.
2018-02-01
Rambutan (Nephelium Lappaceum L.) is a plant that identical with Southeast Asian countries, in some areas of Indonesia no exception, but rambutan seed is considered as a waste. Therefore, it needs to be optimized into raw materials of food and processed with high nutritional value and has economic value. The purpose of this research were: 1) to find the best rambutan seed immersion formula; 2) to know the nutritional value of the best immersed rambutan seed; 3) to produce raw material and various processed of rambutan seed product. The research method was quasi experiment with 6 treatments and 2 factorial design, materials for immersion was NaCl and Ca(OH)2. The results showed that: 1) the best rambutan seed immersion formula was using Ca(OH)2; 2) the best rambutan seed contains 1,6 ash, 31,2 protein, 26,9 fat; 3) the best rambutan seed produce flour and processed of seasoned nuts. This research indicates that rambutan seed is very potential to be an alternative high-value raw materials.
Utilization of flotation wastes of copper slag as raw material in cement production.
Alp, I; Deveci, H; Süngün, H
2008-11-30
Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.
Characterizing Salmonella Contamination in Two Rendering Processing Plants.
Gong, Chao; Jiang, Xiuping
2017-02-01
A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.
NASA Astrophysics Data System (ADS)
Kheloufi, A.; Bobocioiu, E.; Kerkar, F.; Kefaifi, A.; Anas, S.; Medjahed, S. A.; Belkacem, Y.; Keffous, A.
2017-03-01
We assess the potential use as raw material for photovoltaics of Algerian silica samples from the quartz veins of the Tirek deposit and quartz sandstones of the Ain Barda deposit. With 97-98% purity, they all require enrichment before their industrial utilization. Acid leaching and gravimetric separation are used to remove the impurities at the grain boundaries and within the crystal lattice. We obtain course, middle, and fine products. The acid leaching process and the gravimetric separation increase the content of SiO2 up to 99.68%; the residue concentration of iron, alumina and zirconium is decreased to 70, 72 and 58 ppm respectively. These values are in agreement with requirements for silica as raw material destined for solar-grade silicon production.
Agaves as a raw material: recent technologies and applications.
Narváez-Zapata, J A; Sánchez-Teyer, L F
2009-01-01
Agave plants are a valuable source of raw material due to its fibrous and complex sugar content of their leaves and core, and their bagasse waste can be use for several aims. This plant genus belongs to the Agavaceae family and until now more than 200 species have been described. A large number of Agave species are currently used as raw material in several biotechnological processes. This review shows the reported applications and patents on fields like alcoholic brewages with special reference to Tequila and Mezcal, the isolation and use of compounds such as saponins and agave fructans, and their potential biotechnological application on several human demands. The process to obtain fibers and cellulose, stock feeds, and several miscellaneous extractives are also reviewed. Some possibilities and problems of cultivation are discussed.
NASA Astrophysics Data System (ADS)
Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo
2014-05-01
Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.
Wood for structural and architectural purposes
C.W. Boyd; P. Koch; H.B. MeKean; C.R. Morschauser; S.B. Preston; F.F. Wangaard
1976-01-01
In recent years major emphasis has been placed on nonrenewable resources in relation to potential national problems that may arise from possible changes in materials supply or utilization. Renewable resources, however, have received disproportionately small attention in spite of their current importance as industrial raw materials and their potential for the future. In...
NASA Astrophysics Data System (ADS)
Aldabsheh, Islam; Garcia-Valles, Maite; Martinez, Salvador
2014-05-01
Environmental preservation has become a driving force behind the search for new sustainable and environmentally friendly composites to replace conventional concrete produced from ordinary Portland cement (OPC). Current researches concentrate on developing building products (geopolymers) through geopolymerization. The goal is to produce low cost construction materials for green housing. Geopolymerization is the process of polymerizing minerals with high silica and alumina at low temperature by the use of alkali solutions. Dissolution is the most important process for supplying the high initial Al and Si concentrations to produce the gel phase that is responsible for geopolymerization. This study has been focused on the influence of different micrometric particle sizes of three Jordanian raw materials on their dissolution behavior in sodium hydroxide solution. The samples are kaolinite, volcanic tuff and silica sand. The dissolution properties of each material, alone and mixed with the other two materials were studied in different concentrations (5 and 10 M) using (NaOH) at 25ºC, and shaking time for 24 and 168 h. To better understand the dissolution process, the alkaline solution was renewed after the desired time in order to know if the Al-Si raw material is completely dissolved or not. Different analytical techniques were used to characterize raw materials physically, mineralogically, chemically and thermally. All processed samples either centrifuged solutions or solid residues were fully characterized. The leached concentrations of Al and Si were determined by inductively coupled plasma (ICP). X-ray Diffraction Technique (XRD), Scanning Electron Microscopy (SEM), and Thermo Gravimetric Analysis (TGA) were used to evaluate the solid residue characterization compared with the original ones. The three aluminosilicate raw materials have indicated variable degrees of solubility under highly alkaline conditions. The method for the size reduction of the used raw materials achieved by using a ball mill increased the dissolution rate owing to the increased surface area of the material or particle exposed to the solvent. The used Jordanian raw materials are potential to be used for geopolymerization. This work was partly financed by SGR 2009SGR-00444
A review on the challenges for increassed production of castor
USDA-ARS?s Scientific Manuscript database
The oil produced by castor (Ricinus communis) is an important raw material for chemical industry for its unique properties such as the only commercial source of a hydroxilated fatty acid that composes around 90% of the oil. This crop has a remarkable potential for increasing importance as a raw mate...
Stauffer, F; Vanhoorne, V; Pilcer, G; Chavez, P-F; Rome, S; Schubert, M A; Aerts, L; De Beer, T
2018-06-01
Active Pharmaceutical Ingredients (API) raw material variability is not always thoroughly considered during pharmaceutical process development, mainly due to low quantities of drug substance available. However, synthesis, crystallization routes and production sites evolve during product development and product life cycle leading to changes in physical material attributes which can potentially affect their processability. Recent literature highlights the need for a global approach to understand the link between material synthesis, material variability, process and product quality. The study described in this article aims at explaining the raw material variability of an API using extensive material characterization on a restricted number of representative batches using multivariate data analysis. It is part of a larger investigation trying to link the API drug substance manufacturing process, the resulting physical API raw material attributes and the drug product continuous manufacturing process. Eight API batches produced using different synthetic routes, crystallization, drying, delumping processes and processing equipment were characterized, extensively. Seventeen properties from seven characterization techniques were retained for further analysis using Principal Component Analysis (PCA). Three principal components (PCs) were sufficient to explain 92.9% of the API raw material variability. The first PC was related to crystal length, agglomerate size and fraction, flowability and electrostatic charging. The second PC was driven by the span of the particle size distribution and the agglomerates strength. The third PC was related to surface energy. Additionally, the PCA allowed to summarize the API batch-to-batch variability in only three PCs which can be used in future drug product development studies to quantitatively evaluate the impact of the API raw material variability upon the drug product process. The approach described in this article could be applied to any other compound which is prone to batch-to-batch variability. Copyright © 2018 Elsevier B.V. All rights reserved.
System simulation application for determining the size of daily raw material purchases at PT XY
NASA Astrophysics Data System (ADS)
Napitupulu, H. L.
2018-02-01
Every manufacturing company needs to implement green production, including PT XY as a marine catchment processing industry in Sumatera Utara Province. The company is engaged in the processing of squid for export purposes. The company’s problem relates to the absence of a decision on the daily purchase amount of the squid. The purchase of daily raw materials in varying quantities has caused companies to face the problem of excess raw materials or otherwise the lack of raw materials. The low purchase of raw materials will result in reduced productivity, while large purchases will lead to increased cooling costs for storage of excess raw materials, as well as possible loss of damage raw material. Therefore it is necessary to determine the optimal amount of raw material purchases every day. This can be determined by applying simulation. Application of system simulations can provide the expected optimal amount of raw material purchases.
Maruki-Uchida, Hiroko; Sai, Masahiko; Sekimizu, Kazuhisa
2017-11-22
We evaluated the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay. Sake cake, a raw material used to make amazake, had high innate immunity-stimulating activity, whereas rice malt, another raw material used to make amazake, did not, even after fermentation. These results suggest that the silkworm muscle contraction assay is a useful tool to screen foods with high innate immune-stimulating activity and that amazake made from sake cake has immunomodulatory potential.
Code of Federal Regulations, 2010 CFR
2010-07-01
... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. The owner or operator of each new or existing raw material, clinker, or finished product...
Lime kiln dust as a potential raw material in portland cement manufacturing
Miller, M. Michael; Callaghan, Robert M.
2004-01-01
In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.
Gázquez, M J; Bolívar, J P; García-Tenorio, R; Vaca, F
2009-07-30
The present study was conducted to characterize several raw materials and co-products from the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology and physical composition. The main objective was to gain basic information for the future potential application of these co-products in fields such as agriculture, construction, civil engineering, etc. Microscopic studies were performed by applying scanning electron microscopy with X-ray microanalysis (SEM-XRMA) while the mineralogical compositions were analysed by means of the X-ray diffraction (XRD) technique. The concentrations of major elements such as Na, Al, Si, Ca, Ti, Fe, S and K were determined by X-ray fluorescence (XRF), while heavy metals and other trace elements were determined by ICP-MS. The physicochemical characterization of the raw materials used in the titanium dioxide industry, in addition to the characterization of the co-products generated, has enabled the evaluation of the degree of fractionation of different elements and compounds between the different co-products, as well as the control of the possible variations in the physicochemical composition of the raw materials throughout the time and the study of the influence of these variations in the characteristics of the obtained co-products. As a main conclusion of our study, it is possible to indicate that the levels of the pollutant elements associated to the co-products analysed were, in general, within safe limits and, therefore, they could potentially be used in composites as fertilizers or for building materials in road construction, etc. Nevertheless, for the specific application of each of these co-products in agriculture, construction and civil engineering, additional studies need to be performed to evaluate their appropriateness for the proposed application, together with specific studies on their health and environmental impact.
31 CFR 560.407 - Transactions related to Iranian-origin goods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... from third countries of goods containing Iranian-origin raw materials or components is not prohibited if those raw materials or components have been incorporated into manufactured products or... Iranian-origin raw materials or components are not prohibited if those raw materials or components have...
31 CFR 560.407 - Transactions related to Iranian-origin goods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... United States from third countries of goods containing Iranian-origin raw materials or components is not prohibited if those raw materials or components have been incorporated into manufactured products or... Iranian-origin raw materials or components are not prohibited if those raw materials or components have...
Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland
2015-11-01
Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.
Pittmann, T; Steinmetz, H
2016-08-01
Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.
TRACI allows the examination of the potential for impacts associated with the raw material usage and chemical releases resulting from the processes involved in producing a product. TRACI allows the user to examine the potential for impacts for a single life cycle stage, or the w...
Engineered Plants Make Potential Precursor to Raw Material for Plastics
Shanklin, John
2018-06-12
In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.
Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde
2016-01-20
Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Potential of powdered activated mustard cake for decolorising raw sugar.
Singh, Kaman; Bharose, Ram; Verma, Sudhir Kumar; Singh, Vimalesh Kumar
2013-01-15
Carbon decolorisation has become customary in the food processing industries; however, it is not economical. Extensive research has therefore been directed towards investigating potential substitutes for commercial activated carbons which might have the advantage of offering an effective, lower-cost replacement for existing bone char or coal-based granular activated carbon (GAC). The physical (bulk density and hardness), chemical (pH and mineral content) and adsorption characteristics (iodine test, molasses test and raw sugar decolorisation efficiency) of powdered activated mustard cake (PAMC) made from de-oiled mustard cake were determined and compared to commercial adsorbents. Although the colour removal efficiency of the PAMC is lower than that of commercial materials, it is cost effective and eco-friendly compared to the existing decolorisation/refining processes. To reduce the load on GAC/activated carbon/charcoal, PAMC could be used on an industrial scale. A decolorisation mechanism has been postulated on the basis of oxygen surface functionalities and surface charge of the PAMC and, accordingly, charge transfer interaction seems to be responsible for the decolorisation mechanism. In addition, a complex interplay of electrostatics and dispersive interaction seem to be involved during the decolorisation process. A low-cost agricultural waste product in the form of de-oiled mustard cake was converted to an efficient adsorbent, PAMC, for use in decolorising raw as well as coloured sugar solutions. The physical, chemical, adsorption characteristics and raw sugar decolorisation efficiency of PAMC were determined and compared to those of commercial adsorbents. The colour removal efficiency of the PAMC is lower than that of commercial materials but it is cost effective and eco-friendly as compared to existing decolorisation/refining processes. The availability of the raw material for the production of PAMC further demands its use on an industrial scale. Copyright © 2012 Society of Chemical Industry.
Biodegradation and flushing of MBT wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqui, A.A., E-mail: aasiddiqui.cv@amu.ac.in; Richards, D.J.; Powrie, W.
Highlights: • Stabilization was achieved for MBT wastes of different degrees of pretreatment. • About 92% reduction in the gas generation compared with raw MSW. • Pretreatment resulted in reduced TOC, nitrogen and heavy metals in leachate. • A large proportion of carbon and nitrogen remained in the waste material. - Abstract: Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratorymore » experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ∼320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.« less
21 CFR 1303.11 - Aggregate production quotas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... are manufactured from it, the economic and physical availability of raw materials for use in manufacturing and for inventory purposes, yield and stability problems, potential disruptions to production...
NASA Astrophysics Data System (ADS)
Alekhin, Artem A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Petuhova, Darya B.
2013-04-01
Due to the depletion of solid minerals ore reserves and the involvement in the production of the poor and refractory ores a process of continuous appreciation of minerals is going. In present time at the market of enrichment equipment are well represented optical sorters of various firms. All these sorters are essentially different from each other by parameters of productivity, classes of particles sizes for processed raw, nuances of decision algorithm, as well as by color model (RGB, YUV, HSB, etc.) chosen to describe the color of separating mineral samples. At the same time there is no dressability estimation method for mineral raw materials without direct semi-industrial test on the existing type of optical sorter, as well as there is no equipment realizing mentioned dressability estimation method. It should also be note the lack of criteria for choosing of one or another manufacturer (or type) of optical sorter. A direct consequence of this situation is the "opacity" of the color sorting method and the rejection of its potential customers. The proposed solution of mentioned problems is to develop the dressability estimation method, and to create an optical-electronic system for express analysis of mineral raw materials dressability by color sorting method. This paper has the description of structure organization and operating principles of experimental model optical-electronic system for express analysis of mineral raw material. Also in this work are represented comparison results of the proposed optical-electronic system and the real color sorter.
ROMI 3.1 Least-cost lumber grade mix solver using open source statistical software
Rebecca A. Buck; Urs Buehlmann; R. Edward Thomas
2010-01-01
The least-cost lumber grade mix solution has been a topic of interest to both industry and academia for many years due to its potential to help wood processing operations reduce costs. A least-cost lumber grade mix solver is a rough mill decision support system that describes the lumber grade or grade mix needed to minimize raw material or total production cost (raw...
Critical thinking: assessing the risks to the future security of supply of critical metals
NASA Astrophysics Data System (ADS)
Gunn, Gus
2015-04-01
Increasing world population, the spread of prosperity across the globe and the demands of new technologies have led to a revival of concerns about the availability of raw materials needed by society. Despite scare stories about resource depletion, physical exhaustion of minerals is considered to be unlikely. However, we do need to know which materials might be of concern so that we can develop strategies to secure adequate supplies and to mitigate the effects of supply disruption. This requirement has led to renewed interest in criticality, a term that is generally used to refer to metals and minerals of high economic importance that have a relatively high likelihood of supply disruption. The European Union (EU) developed a quantitative methodology for the assessment of criticality which led to the definition of 14 raw materials as critical to the EU economy (EC, 2010). This has succeeded in raising awareness of potential supply issues and in helping to prioritise requirements for new policies and supporting research. The EU has recently assessed a larger number of candidate materials of which 20 are now identified as critical to the EU (EC, 2014). These include metals such as indium, mostly used in flat-screen displays, antimony for flame retardants and cobalt for rechargeable batteries, alloys and a host of other products. Although there is no consensus on the methodology for criticality assessments and broad analyses at this scale are inevitably imperfect, they can, nevertheless, provide early warning of supply problems. However, in order to develop more rigorous and dynamic assessments of future availability detailed analysis of the whole life-cycle of individual metals to identify specific problems and develop appropriate solutions is required. New policies, such as the Raw Materials Initiative (2008) and the European Innovation Partnership on Raw Materials (2013), have been developed by the European Commission (EC) and are aimed at securing sustainable supplies of raw materials. These have led to major new programmes of research throughout the minerals value chain, in order to improve the raw materials knowledge base, to develop best practices and promote international collaboration. Although recycling will make an increasingly important contribution to supply, it can never meet the total requirement when demand is increasing. Therefore, new resources of primary materials, identified through geological research, will continue to be required. The availability of regional baseline datasets, comprising geological, geophysical and geochemical data, is fundamental to the identification of exploration targets. However, in order to focus exploration we also require robust mineral deposit models for the critical metals which hitherto these have been largely neglected because of their limited economic importance. For commodities such as the platinum-group metals (PGM), cobalt, niobium, indium, rare earth elements (REE) and cobalt we have some knowledge of the processes controlling their mobilisation and concentration under certain conditions although we have little understanding of the mechanisms of deposit formation elsewhere. We also need effective techniques to explore for these metals. This may involve the development of new geophysical techniques to explore on the sea-floor or beneath thick cover, or new analytical methods for the determination of these elements in exploration samples. Improved metallurgical techniques are also required for effective and energy-efficient recovery of critical metals from ores and concentrates. References European Commission (2010). Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. European Commission (2014). Report on Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials.
21 CFR 1315.11 - Assessment of annual needs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... substances which are manufactured from them, the economic and physical availability of raw materials for use in manufacturing and for inventory purposes, yield and stability problems, potential disruptions to...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
Zhong, Wen; Chen, Sha; Zhang, Jun; Wang, Yu-Sheng; Liu, An
2016-03-01
To investigate the effect of Chinese medicine raw materials and production technology on quality consistency of Chinese patent medicines with Gegen Qinlian decoction as an example, and establish a suitable method for the quality consistency control of Chinese patent medicines. The results showed that the effect of production technology on the quality consistency was generally not more than 5%, while the effect of raw materials was even more than 30%, indicating that the effect of raw materials was much greater than that of the production technology. In this study, blend technology was used to improve the quality consistency of raw materials. As a result, the difference between the product produced by raw materials and reference groups was less than 5%, thus increasing the quality consistence of finished products. The results showed that under the current circumstances, the main factor affecting the quality consistency of Chinese patent medicines was raw materials, so we shall pay more attention to the quality of Chinese medicine's raw materials. Finally, a blend technology can improve the quality consistency of Chinese patent medicines. Copyright© by the Chinese Pharmaceutical Association.
Tribological investigation of polyphosphonated vegetable oils and esters
USDA-ARS?s Scientific Manuscript database
Biobased lubricants are of great interest because they are produced from renewable farm-based raw materials and have the potential to provide a positive impact to the environment. However, realizing the full potential of biobased lubricants requires that the formulation be comprised exclusively of b...
TRACI: USER'S GUIDE AND SYSTEM DOCUMENTATION
TRACI allows the examination of the potential for impacts associated with the raw material usage and chemical releases resulting from the processes involved in producing a product. TRACI allows the user to examine the potential for impacts for a single life cycle stage, or the w...
21 CFR 1304.31 - Reports from manufacturers importing narcotic raw material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Reports from manufacturers importing narcotic raw... RECORDS AND REPORTS OF REGISTRANTS Reports § 1304.31 Reports from manufacturers importing narcotic raw material. (a) Every manufacturer which imports or manufactures from narcotic raw material (opium, poppy...
21 CFR 1304.31 - Reports from manufacturers importing narcotic raw material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Reports from manufacturers importing narcotic raw... RECORDS AND REPORTS OF REGISTRANTS Reports § 1304.31 Reports from manufacturers importing narcotic raw material. (a) Every manufacturer which imports or manufactures from narcotic raw material (opium, poppy...
29 CFR 779.333 - Goods sold for use as raw materials in other products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Goods sold for use as raw materials in other products. 779... Service Establishments Sales Not Made for Resale § 779.333 Goods sold for use as raw materials in other products. Goods are sold for resale where they are sold for use as a raw material in the production of a...
29 CFR 779.333 - Goods sold for use as raw materials in other products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Goods sold for use as raw materials in other products. 779... Service Establishments Sales Not Made for Resale § 779.333 Goods sold for use as raw materials in other products. Goods are sold for resale where they are sold for use as a raw material in the production of a...
40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Based Raw Materials N Table N-1 to Subpart N of Part 98 Protection of Environment ENVIRONMENTAL... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite... in units of metric tons of CO2 emitted per metric ton of carbonate-based raw material charged to the...
40 CFR 63.1346 - Standards for new or reconstructed raw material dryers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for new or reconstructed raw... Industry Emission Standards and Operating Limits § 63.1346 Standards for new or reconstructed raw material dryers. (a) New or reconstructed raw material dryers located at facilities that are major sources can not...
21 CFR 1315.22 - Procedure for applying for individual manufacturing quotas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... economic and physical availability of raw materials for use in manufacturing and for inventory purposes. (iv) Yield and stability problems. (v) Potential disruptions to production (including possible labor...
40 CFR 428.75 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.75 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
Study on optimum length of raw material in stainless steel high-lock nuts forging
NASA Astrophysics Data System (ADS)
Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong
2018-04-01
Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.
40 CFR 428.55 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.55 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.65 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.65 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
NASA Astrophysics Data System (ADS)
Correia, Victor; Allington, Ruth; Keane, Christopher
2016-04-01
A secure supply of raw materials is a European priority that extends beyond country borders and national policies. Recent European initiatives have pioneered the development of an EU strategy on raw materials emphasizing the concept of the "added value chain", which continues to pursue the three pillar strategy to: (1) ensure the fair and sustainable supply of raw materials from international markets, promoting international cooperation with developed and developing countries; (2) foster sustainable supply of raw materials from European sources, and (3) reduce consumption of primary raw materials by increasing resource efficiency and promoting recycling. This contribution presents the Horizon 2020 funded project INTRAW, the objective of which is to establish the European Union's International Observatory for Raw Materials. The creation and maintenance of the European Union's International Observatory for Raw Materials is designed to have a strong impact in two dimensions: 1. To narrow the existing gap in aspects of the raw materials knowledge infrastructure in the EU by providing a link with the same knowledge infrastructure in technologically advanced reference countries. This should contribute to the harmonization of mineral policies all over the EU, by providing data that enables evidence-based policies and appropriate, cost-effective management, planning and adaptation decisions by the public sector. This will benefit businesses, industry and society. The Observatory will also provide to policy makers in the EU and its Member States the data they need to facilitate discussion in multilateral forums. 2. To enable a better alignment of the R&I activities among the individual EU members and international cooperation countries AND between the European Union and international cooperation countries by boosting synergies with international research and innovation programmes. This way the EU's role and scientific capabilities in the raw materials area will be reinforced in the mid-term, and the conditions for sustainable access and supply of raw materials in the EU will benefit from the international cooperation. The authors will describe the key stages of the INTRAW project and explain how it aims to establish (and promote the continuation of) international cooperation at every stage of the raw materials value chain and to build a repository of information and analysis to support the development and strengthening of EU raw materials strategies. Key elements of the value chain upon which the project focuses are: industry and trade; education and outreach; and research and innovation. The roles of geoscientists in delivering the aims and objectives of INTRAW will be emphasised.
Heat inactivation of poliovirus in wastewater sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.L.; Ashley, C.S.; Moseley, R.H.
1976-09-01
The effect of raw and anaerobically digested sludge on heat inactivation of poliovirus was investigated. Raw sludge was found to be very protective of poliovirus plaque-forming ability at all temperatures studied, but digested sludge had variable effects that were highly dependent upon the experimental conditions. In low concentrations and at relatively low inactivation temperatures, digested sludge is nearly as protective of poliovirus as raw sludge. However, at higher temperatures and concentrations, digested sludge caused a significant acceleration of poliovirus inactivation. The difference between the protective capability of raw and digested sludge is not due to loss of protective material, becausemore » this component is present in the solids of digested sludge as well as in those of raw sludge. Instead, the difference is due to a virucidal agent acquired during digestion. Addition of this agent to the solids of either raw or digested sludge reverses the protective potential of these solids during heat treatment of poliovirus.« less
Process to create simulated lunar agglutinate particles
NASA Technical Reports Server (NTRS)
Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)
2011-01-01
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.../kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007...
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25... of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007 (c...
NASA Astrophysics Data System (ADS)
Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.
2017-05-01
This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Code of Federal Regulations, 2010 CFR
2010-07-01
... not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6... raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material) Chromium 0.0086 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6... raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material) Chromium 0.0086 0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... units (kg/kkg of raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material...
NASA Astrophysics Data System (ADS)
Lestariningsih, Titik; Ratri, Christin Rina; Wigayati, Etty Marty; Sabrina, Qolby
2016-02-01
Characterization of pore structure and crystal structure of the LiB(C2O4)2H2O or LIBOB compound has been performed in this study. These recent years, research regarding LiBOB electrolyte salt have been performed using analytical-grade raw materials, therefore this research was aimed to synthesized LiBOB electrolyte salt using the cheaper and abundant technical-grade raw materials. Lithium hydroxide (LiOH), oxalic acid dihydrate (H2C2O4.2H2O), and boric acid (H3BO3) both in technical-grade and analytical-grade quality were used as raw materials for the synthesis of LiBOB. Crystal structure characterization results of synthesized LiBOB from both technical-grade and analytical-grade raw materials have shown the existence of LiBOB and LiBOB hydrate phase with orthorombic structure. These results were also confirmed by FT-IR analysis, which showed the functional groups of LiBOB compounds. SEM analysis results showed that synthesized LiBOB has spherical structure, while commercial LiBOB has cylindrical structure. Synthesized LiBOB has a similar pore size of commercial LiBOB, i.e. 19 nm (mesoporous material). Surface area of synthesized LiBOB from analytical-grade raw materials and technical-grade materials as well as commercial LIBOB were 88.556 m2/g, 41.524 m2/g, and 108.776 m2/g, respectively. EIS analysis results showed that synthesized LiBOB from technical-grade raw materials has lower conductivity than synthesized LiBOB from analytical-grade raw materials.
The Problem of Technical Progress and Mineral Resources
ERIC Educational Resources Information Center
Lukashev, Konstantin I.
1974-01-01
Examines the estimates of known potential reserves of the major raw materials, future sources therof, the geological and technological problems associated with these, the manufacture of artifical minerals, and international cooperation in this sphere. (Author/GS)
Rosenberg, Amy S; Cherney, Barry; Brorson, Kurt; Clouse, Kathleen; Kozlowski, Steven; Hughes, Patricia; Friedman, Rick
2011-01-01
CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Viral contamination of biotech product facilities is a potentially devastating manufacturing risk and, unfortunately, is more common than is generally reported or previously appreciated. Although viral contaminants of biotech products are thought to originate principally from biological raw materials, all potential process risks merit evaluation. Limitations to existing methods for virus detection are becoming evident as emerging viruses have contaminated facilities and disrupted supplies of critical products. New technologies, such as broad-based polymerase chain reaction screens for multiple virus types, are increasingly becoming available to detect adventitious viral contamination and thus, mitigate risks to biotech products and processes. Further, the industry embrace of quality risk management that promotes improvements in testing stratagems, enhanced viral inactivation methods for raw materials, implementation and standardization of robust viral clearance procedures, and efforts to learn from both epidemiologic screening of raw material sources and from the experience of other manufacturers with regard to this problem will serve to enhance the safety of biotech products available to patients. Based on this evolving landscape, we propose a set of principles for manufacturers of biotech products: Pillars of Risk Mitigation for Viral Contamination of Biotech Products.
Plant biopolyester cutin: a tough way to its chemical synthesis.
Benítez, José J; García-Segura, Rafael; Heredia, Antonio
2004-09-06
The chemical synthesis of an aliphatic biopolyester identical to the natural cutin which constitutes the major component of the cuticle of fruits and leaves of higher plants is for the first time achieved and reported. Potential applications of this new material is of great interest because its physical properties, non-toxicity, biodegradability, and availability of raw material.
Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata; Przygoński, Krzysztof; Mildner-Szkudlarz, Sylwia
2015-05-15
The β-carboline compounds norharman and harman exhibit neuroactive activity in the human body. Chicory coffee has proved to be a source of β-carboline compounds. This study assessed the norharman and harman contents of traditional and novel raw materials for the production of chicory coffee, as well as in samples of chicory coffee with novel additives. The highest content of the β-carbolines among the traditional raw materials was recorded in roasted sugar beet (2.26 μg/g), while roasting the chicory caused a 25-fold increase in the content of norharman in this raw material (from 0.05 to 1.25 μg/g). In novel raw materials not subjected to the action of high temperature, β-carboline was not detected. Among the roasted novel raw materials, the highest contents of harman and norharman were found in artichokes. High harman levels were also recorded in roasted chokeberry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synopsis of utilization research on SRIC raw materials
John B. Crist
1983-01-01
The take-home message of this paper is this: Raw materials produced using SRIC are suitable for many reconstituted end products. Juvenility, rapid growth, and bark contents do not greatly hinder the usefulness of the raw materials. In the future, increased industrial acceptance of SRIC methods and materials should be a major thrust and is discussed.
Vieira, Fabrício Rocha; de Andrade, Meire Cristina Nogueira
2016-11-01
In recent years, oyster mushroom (Pleurotus ostreatus) has become one of the most cultivated mushrooms in the world, mainly in Brazil. Among many factors involved in a mushroom production, substrate preparation is the most critical step, which can be influenced by composting management techniques. Looking forward to optimizing the substrate preparation process, were tested different composting conditions (7 and 14 days of composting with or without conditioning), potential raw materials (decumbens grass, brizantha grass and sugarcane straw) and nitrogen supplementation (with or without wheat bran) on oyster mushroom yield and biological efficiency (BE). The substrate composted for 7 days with conditioning showed higher yield and biological efficiency of mushroom (24.04 and 100.54 %, respectively). Substrates without conditioning (7 and 14 days of composting) showed smaller mushroom yield and biological efficiency. Among the raw materials tested, brizantha grass showed higher mushroom yield followed by decumbens grass, sugarcane straw and wheat straw (28.5, 24.32, 23.5 and 19.27 %, respectively). Brizantha grass also showed higher biological efficiency followed by sugarcane straw, decumbens grass and wheat straw (123.95, 103.70, 96.90 and 86.44 %, respectively). Supplementation with wheat bran improved yield and biological efficiency in all substrate formulations tested; thus, oyster mushroom yield and biological efficiency were influenced by substrate formulation (raw materials), supplementation and composting conditions.
7 CFR 58.735 - Quality specifications for raw materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Quality specifications for raw materials. 58.735 Section 58.735 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... specifications for raw materials. (a) Cheddar colby, washed or soaked curd, granular or stirred curd cheese...
Future Sources of Organic Raw Materials.
ERIC Educational Resources Information Center
Shapiro, Irving S.
1978-01-01
Examines the need for industrial organization, academic institutions, and national governments to agree on cooperative roles in planning the future raw materials demands of the chemical industry. Political and social concerns, as well as technical and economic considerations, are important to the raw material future of the industry. (MA)
Exclusion of phospholipases (PLs)-producing bacteria in raw milk flushed with nitrogen gas (N(2)).
Munsch-Alatossava, Patricia; Gursoy, Oguz; Alatossava, Tapani
2010-01-01
Prolonged cold storage of raw milks favors the growth of psychrotrophs, which produce heat-resistant exoenzymes of considerable spoilage potential; the bacterial proteases and lipases affect raw milk quality; among them phospholipases (PLs) may target the milk fat globule. More importantly, bacterial PLs are key virulence factors for numerous species. Two studies examined the use of nitrogen (N(2)) gas and examined its effect on psychrotrophs, proteases and lipase producers when the milk was stored in closed vessels; however, the effect on PLs producers is unknown. Here we show that by considering an open system the PLs producers were sooner or later excluded in raw milk (whereas the PLs producers in the non-treated controls culminated at 10(8)CFU/ml), by effective gas treatments that bring oxygen (O(2)) levels in milk lower than 0.1ppm. No increase of the PLs producers among the anaerobes was noticed during the course of the experiments. In the experiments performed at 6.0 degrees C, the delay after which the PLs producers were no longer detectable seemed independent of the initial level of PLs producers in raw milk (lower than 10(3)CFU/ml). We anticipate that flushing pure N(2) gas in raw milk tanks, considered as open systems, along the cold chain of raw milk storage and transportation, may be an additional technique to control psychrotrophs, and may also constitute an interesting perspective for limiting their spoilage and pathogenic potential in food materials in general.
7 CFR 58.332 - Segregation of raw material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Segregation of raw material. 58.332 Section 58.332 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet...
7 CFR 58.332 - Segregation of raw material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Segregation of raw material. 58.332 Section 58.332 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet...
77 FR 2662 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... to batches of raw material that did not meet required tensile strength. This proposed AD would..., Avox Systems Inc., revealed that the deformation was attributed to two (2) batches of raw material that... regulator on the oxygen cylinder, which was attributed to batches of raw material that did not meet required...
77 FR 31174 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
..., which was attributed to batches of raw material that did not meet required tensile strength. This AD... the deformation was attributed to two (2) batches of raw material that did not meet the required... deformation of the pressure regulator on the oxygen cylinder, which was attributed to batches of raw material...
NASA Astrophysics Data System (ADS)
Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.
2018-03-01
It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.
76 FR 62447 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... narcotic raw material are not appropriate. With regard to all non-Narcotic Raw Material drugs on this...-phenethyl-4-piperidine (8333)... II Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate...
Qin, Kunming; Liu, Qidi; Cai, Hao; Cao, Gang; Lu, Tulin; Shen, Baojia; Shu, Yachun; Cai, Baochang
2014-01-01
Background: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. Materials and Methods: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Results: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. Conclusion: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM. PMID:25422559
Indonesian jellyfish as potential for raw materials of food and drug
NASA Astrophysics Data System (ADS)
Yusuf, S.; Fahmid, I. M.; Abdullah, N.; Zulhaeriah
2018-05-01
Jellyfish used to be considered as a pest of fish and a nuisance to fishing operations. Yet, forty years ago this jellyfish was found to be materials of food, medicine and cosmetics and the utilization of jellyfish is now familiar in Indonesia after being imported by China and Japan industry. This study aims to determine the potential development of jellyfish commodities as food and drugs from Indonesia with the target to improve the welfare of fishermen. This research used methods of rapid observation, limited interview, processing with immersion experiment and desiccation. In addition, various literatures were also used to enrich the knowledge about jellyfish business. Observation showed that the appearance of jellyfish in Indonesian waters varies based on the fertility of the waters affected by oceanographic conditions. Jellyfish contains low calorie and fat content, high protein and minerals as well as total collagen. Thus, jellyfish is a nutritious food source to be developed into food supplements, nutricosmetics and functional foods. Due to its large size, the jellyfish from Bunyu Island is more viable than jellyfish from Suppa Pinrang to be exported as raw material. Therefore, the manufacture of food and medicines from jellyfish materials is possible to be done in Indonesia.
Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations
Guerre, Philippe
2016-01-01
The purpose of this review is to present information about raw materials that can be used in pig and poultry diets and the factors responsible for variations in their mycotoxin contents. The levels of mycotoxins in pig and poultry feeds are calculated based on mycotoxin contamination levels of the raw materials with different diet formulations, to highlight the important role the stage of production and the raw materials used can have on mycotoxins levels in diets. Our analysis focuses on mycotoxins for which maximum tolerated levels or regulatory guidelines exist, and for which sufficient contamination data are available. Raw materials used in feed formulation vary considerably depending on the species of animal, and the stage of production. Mycotoxins are secondary fungal metabolites whose frequency and levels also vary considerably depending on the raw materials used and on the geographic location where they were produced. Although several reviews of existing data and of the literature on worldwide mycotoxin contamination of food and feed are available, the impact of the different raw materials used on feed formulation has not been widely studied. PMID:27886128
Raw material ‘criticality’—sense or nonsense?
NASA Astrophysics Data System (ADS)
Frenzel, M.; Kullik, J.; Reuter, M. A.; Gutzmer, J.
2017-03-01
The past decade has seen a resurgence of interest in the supply security of mineral raw materials. A key to the current debate is the concept of ‘criticality’. The present article reviews the criticality concept, as well as the methodologies used in its assessment, including a critical evaluation of their validity in view of classical risk theory. Furthermore, it discusses a number of risks present in global raw materials markets that are not captured by most criticality assessments. Proposed measures for the alleviation of these risks are also presented. We find that current assessments of raw material criticality are fundamentally flawed in several ways. This is mostly due to a lack of adherence to risk theory, and highly limits their applicability. Many of the raw materials generally identified as critical are probably not critical. Still, the flaws of current assessments do not mean that the general issue of supply security can simply be ignored. Rather, it implies that new assessments are required. While the basic theoretical framework for such assessments is outlined in this review, detailed method development will require a major collaborative effort between different disciplines along the raw materials value chain. In the opinion of the authors, the greatest longer-term challenge in the raw materials sector is to stop, or counteract the effects of, the escalation of unit energy costs of production. This issue is particularly pressing due to its close link with the renewable energy transition, requiring more metal and mineral raw materials per unit energy produced. The solution to this problem will require coordinated policy action, as well as the collaboration of scientists from many different fields—with physics, as well as the materials and earth sciences in the lead.
Grote, Simon; Kleinebudde, Peter
2018-04-01
The influence of raw material particle morphology on the tabletabilty of dry granules was investigated. Therefore, dibasic calcium phosphate anhydrous was used as a model material. One milled grade, 2 agglomerated grades with different porosities, and a functionalized structure, that is, an agglomerate formed by very small primary particles, were included. Particle size, density, and specific surface area of raw materials were measured. The starting materials and 2 fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force, granule size, and lubrication on tablet tensile strength was evaluated. All materials showed a loss in tabletability induced by a previous compaction step but to a varying extent. Only in case of the functionalized calcium phosphate morphology, this effect depended on the specific compaction force. In contrast to the other materials, the tabletability of functionalized calcium phosphate was influenced by the granule size. This effect was not related to an overlubrication as internal and external lubrication resulted in similar tensile strengths. A clear influence of the particle morphology on tablet strength was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. The functionalized dibasic calcium phosphate and the more porous agglomerate performed as potential filler/binder in the field of roll compaction/dry granulation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Health aspects of the curing of synthetic rubbers.
Fraser, D A; Rappaport, S
1976-01-01
A commonly used tread rubber formulation was cured in the laboratory under conditions simulating vulcanization in the Bag-O-Matic press. Volatile emissions were collected on charcoal and analyzed by combined GC-mass spectrometry. The compounds identified were either contaminants present in the raw material or reaction products. Some of these compounds were also identified in charcoal tube samples collected in the atmosphere of the industrial operations. Estimates based on the loss of weight of rubber during curing were used to predict airborne concentrations and compared to the concentrations actually found. The literature of the toxicity of raw materials and effluents was reviewed, and no acute or chronic toxicological effects would be anticipated. Information concerning potential carcinogenicity was not available and could not be evaluated. PMID:1026417
Contamination of the cement raw material in a quarry site by seawater intrusion, Darica-Turkey
NASA Astrophysics Data System (ADS)
Camur, M. Zeki; Doyuran, Vedat
2008-02-01
The open pit mining nearby shoreline is planned to be extended into below sea level in order to use additional reserves of the cement raw material (marl). The raw material is currently contaminated by seawater intrusion below a depth of 20 m up to the distance of 90 m from shoreline. Seawater intrusion related contamination of the material used for the cement production was investigated by means of diffusion process for the future two below sea level mining scenarios covering 43 years of period. According to the results, chloride concentrations higher than the tolerable limit of a cement raw material would be present in the material about 10-25 cm inward from each discontinuity surface, controlling groundwater flow, located between 170 and 300 m landward from the shoreline at below sea level mining depths of 0-30 m. The estimations suggest that total amounts of dilution required for the contaminated raw material to reduce its concentration level to the tolerance limit with uncontaminated raw material are about 113- to 124-fold for scenario I (13 years of below sea level mining after 30 years of above sea level mining) and about 126- to 138-fold for scenario II (43 years of simultaneous above and below sea level minings).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Silvio R., E-mail: rainho@fct.unesp.br; Souza, Agda E.; Carvalho, Claudio L.
Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), andmore » light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... because it is producing glycine from raw materials of Indian origin and exporting such merchandise to the... find that there is no record evidence that AICO self produces glycine from Indian raw materials... exported to the United States glycine that it produced only from Indian raw materials. For a complete...
78 FR 69130 - Importer of Controlled Substances; Notice of Application: Johnson Matthey, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... Concentrate (9670) II The company plans to import the listed controlled substances as raw materials, to be... requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). In reference to the non-narcotic raw material, the company plans to import gram amounts to be used as...
Insects: A nutritional alternative
NASA Technical Reports Server (NTRS)
Dufour, P. A.
1981-01-01
Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.
Morassi, Letícia L P; Bernardi, Angélica O; Amaral, Alexandra L P M; Chaves, Rafael D; Santos, Juliana L P; Copetti, Marina V; Sant'Ana, Anderson S
2018-04-01
This study aimed to determine the prevalence and populations of fungi in cake production chain. Besides, the growth potential of twelve fungal strains in different cake formulations was evaluated. Raw materials from two different batches (n=143), chocolate cakes (n=30), orange cakes (n=20), and processing environment air samples (n=147) were analyzed. Among the raw materials, wheat flour (3.2±0.3 log CFU per g) and corn meal (3.8±0.8 log CFU per g) belonging to batch #1 showed significant higher fungal counts (p<0.05). The fungal counts in the processing environment air reached up to 2.56 log CFU per m 3 (p<0.05). The predominant fungi species in the industrialized cakes were Aspergillus flavus (28.15%), Penicillium citrinum (18.45%), Penicillium paxilli (14.56%), and Aspergillus niger (6.8%), which were also detected in the raw materials and processing environment air. Only Penicillium glabrum and Penicillium citrinum showed visible mycelium (>3mm) in the free of preservative cake formulation at 19th and 44th days of storage at 25°C, respectively. Revealing the biodiversity of fungi in ingredients, air and final products, as well as challenging final products with representative fungal strains may assist to implement effective controlling measures as well as to gather data for the development of more robust cake formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review
NASA Astrophysics Data System (ADS)
Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah
2017-01-01
The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.
Gorazda, K; Tarko, B; Werle, S; Wzorek, Z
2018-03-01
Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials
NASA Astrophysics Data System (ADS)
Pękala, Agnieszka
2017-10-01
Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.
Battery related cobalt and REE flows in WEEE treatment.
Sommer, P; Rotter, V S; Ueberschaar, M
2015-11-01
In batteries associated with waste electrical and electronic equipment (WEEE), battery systems can be found with a higher content of valuable and critical raw materials like cobalt and rare earth elements (REE) relative to the general mix of portable batteries. Based on a material flow model, this study estimates the flows of REE and cobalt associated to WEEE and the fate of these metals in the end-of-life systems. In 2011, approximately 40 Mg REE and 325 Mg cobalt were disposed of with WEEE-batteries. The end-of-life recycling rate for cobalt was 14%, for REE 0%. The volume of waste batteries can be expected to grow, but variation in the battery composition makes it difficult to forecast the future secondary raw material potential. Nevertheless, product specific treatment strategies ought to be implemented throughout the stages of the value chain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dissolution and fractionation of nut shells in ionic liquids.
Carneiro, Aristides P; Rodríguez, Oscar; Macedo, Eugénia A
2017-03-01
The aim of this work was to study the dissolution of raw peanut and chestnut shells in ionic liquids. Dissolution of raw biomass up to 7wt% was achieved under optimized operatory conditions. Quantification of polysaccharides dissolved through quantitative 13 Cq NMR revealed extractions of the cellulosic material to ionic liquids as high as 87%. Regeneration experiments using an antisolvent mixture allowed to recover the cellulosic material and the ionic liquid. The overall mass balance presented very low loss rates (<8%), recoveries of 75% and 95% of cellulosic material from peanut and chestnut shells, respectively, and the recovery of more than 95% of the ionic liquid in both cases. These results show the high potential of using nut shells and ionic liquids for biorefining purposes. Moreover, high recovery of ionic liquids favors the process from an economical point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... Business Plan is to Purchase and Stockpile Raw Materials or Other Commodities In the case of a Company... stockpile quantities of a raw material or other commodity (``commodity stockpiling companies'' or ``CSCs... invest at least 85% of the net proceeds of the initial public offering in the raw material or other...
Peculiarities of non-autoclaved lime wall materials production using clays
NASA Astrophysics Data System (ADS)
Volodchenko, A. A.; Lesovik, V. S.; Cherepanova, I. A.; Volodchenko, A. N.; Zagorodnjuk, L. H.; Elistratkin, M. Y.
2018-03-01
At present, the development and implementation of energy saving technologies for building materials production, which correspond to modern trends of «green» technologies, become ever more popular. One of the most widely spread wall materials today is a lime brick and stones. The primary raw goods used in production of such materials are quarziferous rocks. However, they have some disadvantages, including low strength index at the intermediate phase of their production, especially in case with a raw brick, which is an issue in the production of high-hollow goods due to low strength index of raw materials and the nonoptimal matrix structure. The conducted experiments confirmed the possibility to control structurization of building composites due to application of nonconventional argillous raw materials. Besides, the material and mineral composition of nonconventional clay rocks ensures the optimal microstructure thus providing for the production of efficient wall building materials via energy saving technology.
One step sintering of homogenized bauxite raw material and kinetic study
NASA Astrophysics Data System (ADS)
Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying
2016-10-01
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.
Tracing and control of raw materials sourcing for vaccine manufacturers.
Faretra Peysson, Laurence
2010-05-01
The control of the raw materials used to manufacture vaccines is mandatory; therefore, a very clear process must be in place to guarantee that raw materials are traced. Those who make products or supplies used in vaccine manufacture (suppliers of culture media, diagnostic tests, etc.) must apply quality systems proving that they adhere to certain standards. ISO certification, Good Manufacturing Practices for production sites and the registration of culture media with a 'Certificate of Suitability' from the European Directorate for the Quality of Medicines and Healthcare are reliable quality systems pertaining to vaccine production. Suppliers must assure that each lot of raw materials used in a product that will be used in vaccine manufacture adheres to the level of safety and traceability required. Incoming materials must be controlled in a single 'Enterprise Resource Planning' system which is used to document important information, such as the assignment of lot number, expiration date, etc. Ingredients for culture media in particular must conform to certain specifications. The specifications that need to be checked vary according to the ingredient, based on the level of risk. The way a raw material is produced is also important, and any aspect relative to cross-contamination, such as the sanitary measures used in producing and storing the raw material must be checked as well. In addition, suppliers can reduce the risk of viral contamination of raw materials by avoiding purchases in countries where a relevant outbreak is currently declared. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.15... material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007 (c) The...
Map of critical raw material deposits in Europe
NASA Astrophysics Data System (ADS)
Guillaume, Bertrand
2016-04-01
Map of critical raw material deposits in Europe Guillaume BERTRAND1, Daniel CASSARD1, Nikolaos ARVANITIDIS2, Gerry STANLEY3 and the EuroGeoSurvey Mineral Resources Expert Group4. 1 - Bureau de Recherches Géologiques et Minières (BRGM), Georesources Divison, 3 avenue Claude Guillemin, 45060 Orléans cedex 2, FRANCE. 2 - Sveriges Geologiska Undersökning (SGU), Box 670, SE-751 28, Uppsala, SWEDEN 3 - Geological Survey of Ireland (GSI), Beggars Bush, Haddington Road, Dublin D04 K7X4, IRELAND 4 - EuroGeoSurveys, Rue Joseph II 36-38, 1000 Brussels, BELGIUM The Critical Raw Material (CRM) Deposit Map of Europe, prepared by EuroGeoSurvey's Mineral Resources Expert Group (MREG), shows European mineral deposits from the ProMine Mineral Deposit database containing critical commodities, according to the 2014 list of critical raw materials of the European Commission. EuroGeoSurveys (EGS), The Geological Surveys of Europe, is a not-for-profit organization representing 37 National Geological Surveys and some regional Geological Surveys in Europe. It provides the European Institutions with expert, independent, balanced and practical pan-European advice and information as an aid to problem-solving, policy development, regulatory and programme formulation in areas such as natural resources, energy and geo-hazards. The EGS MREG is actively involved in contributing to policy and strategy-making processes aimed at identifying, characterizing and safeguarding resource potential, especially for critical raw materials through data provision, research, technological development and innovation. The European Union aspires to reducing the import dependency of raw materials, especially CRM, that are essential to Europe's industries. In this respect, mineral resource information, data sharing and networking by European Geological Surveys is crucial. The Strategic Implementation Plan of the European Innovation Partnership on Raw Materials highlights the need for establishing and maintaining a common interoperable EU Geological Knowledge Base. Such a Knowledge Base will support exploration for indigenous mineral resources and strengthen policy and decision making. In 2010, the European Commission identified 14 non energy non-agricultural raw materials as being critical. Criticality is based on both the scarcity of supply and the importance to European industry. This list was updated in 2014 to include 7 new commodities with one being dropped from the original list. The list now comprises: antimony, beryllium, borates, chromium, cobalt, coking coal, fluorspar, gallium, germanium, graphite, indium, magnesite, magnesium, niobium, phosphate rock, platinum group metals, light and heavy rare earth elements (separately), silicon metal and tungsten. ProMine was a European Union (EU) co-funded project, which had as its main objective the stimulation of the extractive industry to deliver new products to manufacturing industry. A major deliverable of the project was the ProMine Mineral Deposit (MD) database that contains information related to almost 13,000 mineral deposits in Europe. In order to extract data to be displayed on the CRM map of Europe, the ProMine MD database was queried for all commodities on the EC CRM list which were in the medium to super-large deposit size. Following this, the dataset was circulated to MREG in order to verify, validate and update the list.
Oat raw materials and bakery products - amino acid composition and celiac immunoreactivity.
Mickowska, Barbara; Litwinek, Dorota; Gambuś, Halina
2016-01-01
The aim of this study was to compare the biochemical and immunochemical properties of avenins in some special oat raw materials and additionally the possibility of using them as a raw material for the gluten-free bakery products. The compared oat raw materials were - oat flakes, commercial oat flours (including gluten-free oat flour) and residual oat flour, which is by-product of β-glucan preparation. Biochemical characteristic included amino acid compositions and SDS-PAGE profiles of extracted avenins. The immunochemical reactivity with polyclonal anti-gluten and monoclonal anti-gliadin antibodies was evaluated qualitatively and quantitatively by immunoblotting and ELISA methods. Additionally, experimental bakery products made of examined raw materials were assessed according to their suitability for the celiac patients' diet. The highest protein content was measured in the β-glucan preparation "Betaven" and gluten-free oat flour. Proteins of all materials are rich in glutamic and aspartic acid, leucine and arginine. Proportions of amino acids in avenins extracted from most of oat raw materials are similar, excluding gluten-free oat flour, which has a very low avenin content and proportions of individual amino acids are different. The SDS-PAGE protein pattern consisted of proteins with molecular weight of about 25-35 kDa. Polyclonal anti-gluten anti-body recognized all protein fractions of molecular weight higher than 20 kDa. Quantitative ELISA analysis shows that the majority of samples has a gliadin-like protein content within the range of 80-260 mg/kg, excluding gluten-free flours and corresponding bakery products. Altogether, β-glucan preparation has extremely high level of gliadin-like proteins. In the examined oat raw materials and foods the contents of immunoreactive amino acid sequences exceeded the limit of 20 mg/kg (considered as gluten-free) except for gluten-free flours (oat and the prepared mixture) and the bakery products based on gluten-free flours. Unfortunately, the rest of oat raw materials and products cannot be considered gluten-free.
Fluorescence of aqueous solutions of commercial humic products
NASA Astrophysics Data System (ADS)
Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.
2012-01-01
We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.
Application of genomic tools for lesquerella crop improvement
USDA-ARS?s Scientific Manuscript database
Lesquerella, a potential new industrial oilseed crop, is valued for its unusual hydroxy fatty acid (20:1OH) which can be used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. As a step towards genetic engineering of lesquerella, we explored a lesqu...
Microbiological Spoilage of Spices, Nuts, Cocoa, and Coffee
NASA Astrophysics Data System (ADS)
Pinkas, Joan M.; Battista, Karen; Morille-Hinds, Theodora
Spices, nuts, cocoa, and coffee are raw materials that may be used alone or as ingredients in the manufacture of processed food products. The control of microbiological spoilage of these raw materials at the ingredient stage will enable the food processor to better assure the production of high-quality foods with an acceptable shelf life. While this chapter is limited to four materials, many of the spoilage control procedures recommended can also be applied to other raw materials of a similar nature.
Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene
2015-02-01
The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p < 0.001). Samples processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.
Emergy Analysis of Biogas Systems Based on Different Raw Materials
Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan
2013-01-01
Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134
Emergy analysis of biogas systems based on different raw materials.
Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan
2013-01-01
Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.
1999-09-01
Harrington , showed that with respect to mixed water analysis containing TDS at greater 1,000 ppm, the performance of the AS-5 column is not as robust...to note, these raw test materials were heterogeneous. Regardless of mixing time and mesh quality, dividing the raw test materials for laboratory...raw test material was prepared and shipped to seven laboratories for blind analysis. The suspension was prepared by 4 mixing the solid sample with
Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.
Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko
2017-09-01
Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.
NASA Astrophysics Data System (ADS)
Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong
2014-03-01
Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.
Enzymatic hydrolysis of potato pulp.
Lesiecki, Mariusz; Białas, Wojciech; Lewandowicz, Grażyna
2012-01-01
Potato pulp constitutes a complicated system of four types of polysaccharides: cellulose, hemicellulose, pectin and starch. Its composition makes it a potential and attractive raw material for the production of the second generation bioethanol. The aim of this research project was to assess the usefulness of commercial enzymatic preparations for the hydrolysis of potato pulp and to evaluate the effectiveness of hydrolysates obtained in this way as raw materials for ethanol fermentation. Sterilised potato pulp was subjected to hydrolysis with commercial enzymatic preparations. The effectiveness of the preparations declared as active towards only one fraction of potato pulp (separate amylase, pectinase and cellulase activity) and mixtures of these preparations was analysed. The monomers content in hydrolysates was determined using HPLC method. The application of amylolytic enzymes for potato pulp hydrolysis resulted in the release of only 18% of raw material with glucose as the dominant (77%) constituent of the formed product. In addition, 16% galactose was also determined in it. The hydrolysis of the cellulose fraction yielded up to 35% raw material and the main constituents of the obtained hydrolysate were glucose (46%) and arabinose (40%). Simultaneous application of amylolytic, cellulolytic and pectinolytic enzymes turned out to be the most effective way of carrying out the process as its efficiency in this case reached 90%. The obtained hydrolysate contained 63% glucose, 25% arabinose and 12% other simple substances. The application of commercial enzymatic preparations made it possible to perform potato pulp hydrolysis with 90% effectiveness. This was achieved by the application of a complex of amylolytic, cellulolytic and pectinolytic enzymes and the hydrolysate obtained in this way contained, primarily, glucose making it a viable substrate for ethanol fermentation.
NASA Astrophysics Data System (ADS)
Imron, M. A.; Ahkam, D. N. I.; Hidayat, A. W.
2017-12-01
The number of factories and home industries, both upper and lower middle class certainly adds waste generated, resulting in environmental pollution. The development of buildings is one of the largest contributors to global warming. For that, it takes technological innovations that lead to the criteria of green building. The application of green material is important aspects of environmentally friendly development, the selection of materials on the green material criteria of both roles should be applied continuously in order to realize the environmental sustainability of the material. Utilization Waste eggshell and bagasse which is a community waste, has the potential to become innovative environmentally friendly building materials. The eggshell is composed of 94% calcium carbonate, 1% magnesium carbonate, 1% calcium phosphate, and 4% organic material, especially protein, while the bagasse has a high content of silica (SiO2). In this study, the compounds are used as raw material for making alternative drywall in the form of DECO FRECASE. DECO FRECASE is an innovation of environmentally friendly building materials as an interior wall construction. Through DECO FRECASE, it is expected that building material innovation in Indonesia can be improved and of course environmental problems can be minimized by utilizing it as raw material for building construction.
Recycling of plastic waste: Presence of phthalates in plastics from households and industry.
Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F
2016-08-01
Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuous sawmill studies: protocols, practices, and profits
Robert Mayer; Jan Wiedenbeck
2005-01-01
In today's global economy, the "opportunity cost" associated with suboptimal utilization of raw material and mill resources is significant. As a result, understanding the profit potential associated with different types of logs is critically important for sawmill survival. The conventional sawmill study typically has been conducted on a substantially...
Lesquerella, a potential new oilseed crop for producing industrial bioproducts
USDA-ARS?s Scientific Manuscript database
Lesquerella (Physaria fendleri) is valued for its unusual hydroxy fatty acid (HFA) in seed and is a new industrial oilseed crop in the southwestern US. HFA and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The majority o...
Modifications of zein with isocyanates
USDA-ARS?s Scientific Manuscript database
Zein is the major storage protein in corn and a promising raw material for industrial products. However, for zein to reach its full commercial potential two main problems need to be overcome: its relatively high cost and its poor resistance to water. In this work, we modified zein with several isoc...
77 FR 31388 - Importer of Controlled Substances; Notice of Application; Noramco, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... material are not appropriate. 72 FR 3417 (2007). In regard to the non-narcotic raw material, any bulk... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import the raw Opium (9600...
40 CFR 428.105 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Chromium 0...
40 CFR 428.105 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Chromium 0...
Characterization of Thallium Bromide Detectors Made From Material Purified by the Filter Method
NASA Astrophysics Data System (ADS)
Onodera, Toshiyuki; Hitomi, Keitaro; Tada, Tsutomu; Shoji, Tadayoshi; Mochizuki, Katsumi
2013-10-01
Thallium bromide (TlBr) has been regarded as candidate detector materials for the gamma-ray spectrometers operating at room temperature. In this study, a simple and rapid method, the filter method, was performed to purify a raw TlBr material used for fabrication of TlBr detectors. The material was loaded on shards of crashed quartz and installed in a Pyrex tube, and was melted using a furnace. A purified material passing through interspaces of the shards of quartz was collected in a quartz ampoule located at the outlet of the Pyrex tube. After the purification, impurities colored black extracted from the raw material remained. TlBr crystals were then grown by the travelling molten zone method both from the raw material and the purified material. TlBr detectors were fabricated from the grown crystals, and were characterized by measuring mobility-lifetime products (μτ) for carriers and gamma-ray spectra ( 137Cs) at room temperature. μτ for electrons of a TlBr detector fabricated from the purified material was around 5 times higher than that of a detector fabricated from the raw material.
Ethanol Production from Traditional and Emerging Raw Materials
NASA Astrophysics Data System (ADS)
Rudolf, Andreas; Karhumaa, Kaisa; Hahn-Hägerdal, Bärbel
The ethanol industry of today utilizes raw materials rich in saccharides, such as sugar cane or sugar beets, and raw materials rich in starch, such as corn and wheat. The concern about supply of liquid transportation fuels, which has brought the crude oil price above 100 /barrel during 2006, together with the concern about global warming, have turned the interest towards large-scale ethanol production from lignocellulosic materials, such as agriculture and forestry residues. Baker's yeast Saccharomyces cerevisiae is the preferred fermenting microorganism for ethanol production because of its superior and well-documented industrial performance. Extensive work has been made to genetically improve S. cerevisiae to enable fermentation of lignocellulosic raw materials. Ethanolic fermentation processes are conducted in batch, fed-batch, or continuous mode, with or without cell recycling, the relative merit of which will be discussed.
Solutions for Critical Raw Materials under Extreme Conditions: A Review
Grilli, Maria Luisa; Bellezze, Tiziano; Gamsjäger, Ernst; Rinaldi, Antonio; Novak, Pavel; Balos, Sebastian; Piticescu, Radu Robert; Ruello, Maria Letizia
2017-01-01
In Europe, many technologies with high socio-economic benefits face materials requirements that are often affected by demand-supply disruption. This paper offers an overview of critical raw materials in high value alloys and metal-matrix composites used in critical applications, such as energy, transportation and machinery manufacturing associated with extreme working conditions in terms of temperature, loading, friction, wear and corrosion. The goal is to provide perspectives about the reduction and/or substitution of selected critical raw materials: Co, W, Cr, Nb and Mg. PMID:28772645
Hydrogenated cottonseed oil as raw material for biobased materials
USDA-ARS?s Scientific Manuscript database
There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...
Identification of Particles in Parenteral Drug Raw Materials.
Lee, Kathryn; Lankers, Markus; Valet, Oliver
2018-04-18
Particles in drug products are not good and are therefore regulated. These particles can come from the very beginning of the manufacturing process, from the raw materials. To prevent particles, it is important to understand what they are and where they come from so the raw material quality, processing, and shipping can be improved. Thus, it is important to correctly identify particles seen in raw materials. Raw materials need to be of a certain quality with respect to physical and chemical composition, and need to have no contaminants in the form of particles which could contaminate the product or indicate the raw materials are not pure enough to make a good quality product. Particles are often seen when handling raw materials due to color, size, or shape characteristics different from those in the raw materials. Particles may appear to the eye to be very different things than they actually are, so microscope, chemical, and elemental analyses are required for accuracy in proper identification. This paper shows how using three different spectroscopy tools correctly and together can be used to identify particles from extrinsic, intrinsic, and inherent particles. Sources of materials can be humans and the environment (extrinsic), from within the process (intrinsic), and part of the formulation (inherent). Microscope versions of Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and IR spectroscopy are excellent tools for identifying particles because they are fast and accurate techniques needing minimal sample preparation that can provide chemical composition as well as images that can be used for identification. The micro analysis capabilities allow for easy analysis of different portions of samples so multiple components can be identified and sample preparation can be reduced. Using just one of these techniques may not be sufficient to give adequate identification results so that the source of contamination can be adequately identified. The complementarity of the techniques provides the advantage of identifying various chemical and molecular components, as well as elemental and image analyses. Correct interpretation of the results from these techniques is also very important. Copyright © 2018, Parenteral Drug Association.
Nanocellulose in green food packaging.
Vilarinho, Fernanda; Sanches Silva, Ana; Vaz, M Fátima; Farinha, José Paulo
2018-06-13
The development of packaging materials with new functionalities and lower environmental impact is now an urgent need of our society. On one hand, the shelf-life extension of packaged products can be an answer to the exponential increase of worldwide demand for food. On the other hand, uncertainty of crude oil prices and reserves has imposed the necessity to find raw materials to replace oil-derived polymers. Additionally, consumers' awareness toward environmental issues increasingly pushes industries to look with renewed interest to "green" solutions. In response to these issues, numerous polymers have been exploited to develop biodegradable food packaging materials. Although the use of biopolymers has been limited due to their poor mechanical and barrier properties, these can be enhanced by adding reinforcing nanosized components to form nanocomposites. Cellulose is probably the most used and well-known renewable and sustainable raw material. The mechanical properties, reinforcing capabilities, abundance, low density, and biodegradability of nanosized cellulose make it an ideal candidate for polymer nanocomposites processing. Here we review the potential applications of cellulose based nanocomposites in food packaging materials, highlighting the several types of biopolymers with nanocellulose fillers that have been used to form bio-nanocomposite materials. The trends in nanocellulose packaging applications are also addressed.
The characteristics of bioethanol fuel made of vegetable raw materials
NASA Astrophysics Data System (ADS)
Muhaji; Sutjahjo, D. H.
2018-01-01
The aim of this research is to identify the most potential vegetable raw as the material to make a bioethanol fuel as the alternative energy for gasoline. This study used experimental method. The high-level bioethanol was obtained through the process of saccharification, fermentation and stratified distillation. ASTM standards were used as the method of testing the chemical element (D 5501, D 1744, D 1688, D 512, D 2622, D 381), and physical test (D 1613, D 240, D 1298-99, D 445, and D 93). The result of the analysis showed that from the seven bioethanols being studied there is one bioethanol from Saccharum of icinarum linn that has physical and chemical properties close to the standard of bioethanol. Meanwhile, the others only meet some of the physical and chemical properties of the standard bioethanol.
Chemistry Based on Renewable Raw Materials: Perspectives for a Sugar Cane-Based Biorefinery
Villela Filho, Murillo; Araujo, Carlos; Bonfá, Alfredo; Porto, Weber
2011-01-01
Carbohydrates are nowadays a very competitive feedstock for the chemical industry because their availability is compatible with world-scale chemical production and their price, based on the carbon content, is comparable to that of petrochemicals. At the same time, demand is rising for biobased products. Brazilian sugar cane is a competitive feedstock source that is opening the door to a wide range of bio-based products. This essay begins with the importance of the feedstock for the chemical industry and discusses developments in sugar cane processing that lead to low cost feedstocks. Thus, sugar cane enables a new chemical industry, as it delivers a competitive raw material and a source of energy. As a result, sugar mills are being transformed into sustainable biorefineries that fully exploit the potential of sugar cane. PMID:21637329
Chemistry based on renewable raw materials: perspectives for a sugar cane-based biorefinery.
Villela Filho, Murillo; Araujo, Carlos; Bonfá, Alfredo; Porto, Weber
2011-01-01
Carbohydrates are nowadays a very competitive feedstock for the chemical industry because their availability is compatible with world-scale chemical production and their price, based on the carbon content, is comparable to that of petrochemicals. At the same time, demand is rising for biobased products. Brazilian sugar cane is a competitive feedstock source that is opening the door to a wide range of bio-based products. This essay begins with the importance of the feedstock for the chemical industry and discusses developments in sugar cane processing that lead to low cost feedstocks. Thus, sugar cane enables a new chemical industry, as it delivers a competitive raw material and a source of energy. As a result, sugar mills are being transformed into sustainable biorefineries that fully exploit the potential of sugar cane.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Environmental Assessment for a Taxiway M Bypass Road at Travis Air Force Base, California
2011-10-01
California Species Scientific Name Species Common Name Protection Status Presence Plants Astragalus tener var. tener Alkali milk -vetch CNPS 1B...Downingia pusilla Dwarf downingia CNPS 2.2 Potential Astragalus tener var. ferrisiae Ferris’ milk -vetch CNPS 1B.1 Potential Fritillaria liliacea...Bypass Road and C Bunker Access Road improvements. Use of raw building materials for construction would be an irretrievable commitment of
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.517 General. Raw materials used for manufacturing cottage cheese shall meet the following quality...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.517 General. Raw materials used for manufacturing cottage cheese shall meet the following quality...
Code of Federal Regulations, 2012 CFR
2012-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2013 CFR
2013-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2011 CFR
2011-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2014 CFR
2014-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Bietti, Amilcare; Boschian, Giovanni; Crisci, Gino Mirocle; Danese, Ermanno; De Francesco, Anna Maria; Dini, Mario; Fontana, Federica; Giampietri, Alessandra; Grifoni, Renata; Guerreschi, Antonio; Liagre, Jérémie; Negrino, Fabio; Radi, Giovanna; Tozzi, Carlo; Tykot, Robert
2004-06-01
An opportunistic and local choice of raw materials is typically attested in the Lower and Middle Paleolithic industries throughout Italy. The quality of the raw material usually affected the flaking technology and quality of the products. In the Upper Paleolithic and the Mesolithic, raw material procurement strategies were more complex. Flint was exploited both locally, in areas where abundant outcrops of raw materials were available (such as the Lessini mountains), and in distant localities, after which it was transported or exchanged over medium/long distances. Different routes of exchange were thus followed in the various periods; good reconstruction of these routes have been provided by a study of the Garfagnana sites in Northern Tuscany, and the Mesolithic deposit of Mondeval de Sora (Dolomites). An interesting example of a Late Upper Paleolithic flint quarry and workshop were found in Abruzzo, in the San Bartolomeo shelter. The extended trade of obsidian from Lipari, Palmarola and Sardinia to the Italian Peninsula is attested in the Neolithic, with some differences concerning the age and different areas.
Zhang, Libo; Zheng, Wenxiu; Wang, Ziming; Ma, Yubo; Jiang, Ling; Wang, Tianfu
2018-08-01
The aim of this work was to study the degradation of lignin in raw wood via pretreatment with heteropoly acids as substitutes for traditional H 2 SO 4 in γ-valerolactone/water. By optimizing catalyst concentration, reaction time and temperature, the optimal lignin degradation conditions are obtained (130 °C, 3 h and 20 mM silicotungstic acid). SEM and FTIR measurements demonstrated the efficient lignin degradation ability of HPAs in the GVL/H 2 O solvent, with negligible damage to cellulose within the raw wood. Furthermore, an elaborated enzymatic hydrolysis study of the thus obtained cellulosic feedstock revealed its suitability for enzymatic digestion, with great potential as starting material for the production of fermentable sugar from biomass in future biorefinery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Materials § 58.231 General. All raw materials received at the drying plant shall meet the following quality...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Materials § 58.231 General. All raw materials received at the drying plant shall meet the following quality...
NASA Astrophysics Data System (ADS)
Rossetti, Piergiorgio; Antonella Dino, Giovanna; de la Feld, Marco; Pizza, Antonietta; Coulon, Frederic; Wagland, Stuart; Gomes, Diogo
2016-04-01
The issue of resource security has come to the forefront of the debate over recent years, partly due to considerable concern over the security of supply of the so called 'critical' materials, with rare earths attracting the greatest attention in the press. Their supply is fundamental to maintain and develop EU economy and its industries relied on a steady supply of Raw Materials. Thus considering the increasing scarcity and raising prices of both, energy raw materials and other raw materials, such as metals and minerals, the recycling and recovery of these materials from anthropogenic deposits such as landfills is of increasing relevance. Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimated 90% of them being "non-sanitary" pre-dating the EU Landfill Directive of 1999. Thus historical background makes the numerous old waste dumps as possible sources of critical and secondary raw materials (SRM and CRM). However, to date there is no inventory available of SRM and CRM present in EU landfills, and best management practices to recover SRM from landfill activities are inefficient. In this context, the EU SMART GROUND (SG) project (Grant Agreement No 641988) intends to foster resource recovery in landfills by improving both the availability and the accessibility of data and information on SRM in the EU and creating synergies among the different stakeholders involved in the SRM value chain. To do so, the project aims to collect and integrate in a single EU databank (SMART GROUND Data Bank) all the data from existing databases and new information retrieved during project activities. Such data will be collected from the different waste streams including municipal, industrial and mining wastes across EU landfills. It will improve data gathering on SRM from different types of waste, by defining new and integrated data acquisition methods and standards. At last, but not least, the project will also improve the SRM economic and employment potential, by i) providing training on the assessment of landfill sites material recovery to targeting end-users, ii) establishing a dedicated network of academic, industrial, regulators and other stakeholders committed to cost-effective research, technology transfer and training. The present contribution will provide an overview of the SMART GROUND project and highlights the results obtained during the first six months of project activity.
21 CFR 113.81 - Product preparation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Production and Process Controls § 113.81 Product preparation. (a) Before using raw materials and ingredients susceptible to microbiological contamination, the processor shall ensure that those materials and ingredients... by receiving the raw materials and ingredients under a supplier's guarantee that they are suitable...
Tenenbaum, S; DiNardo, J; Morris, W E; Wolf, B A; Schnetzinger, R W
1984-10-01
A quantitative in vitro method for phototoxic evaluation of chemicals has been developed and validated. The assay uses Saccharomyces cerevisiae, seeded in an agar overlay on top of a plate count agar base. 8-Methoxy psoralen is used as a reference standard against which materials are measured. Activity is quantified by cytotoxicity measured as zones of inhibition. Several known phototoxins (heliotropine, lyral, phantolid, and bergamot oil) and photoallergens (6-methyl coumarin and musk ambrette) are used to validate the assay. An excellent correlation is observed between in vivo studies employing Hartley albino guinea pigs and the in vitro assay for several fragrance raw materials and other chemicals. The in vitro assay exhibits a greater sensitivity from 2-500 fold. For three fragrance oils, the in vitro assay detects low levels of photobiological activity while the in vivo assay is negative. Although the in vitro assay does not discriminate between phototoxins and photoallergens, it can be used for screening of raw materials so that reduction in animal usage can be achieved while maintaining the protection of the consumer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.
The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.
Wealth generation through recycling of material for reuse
NASA Astrophysics Data System (ADS)
Chukwudum, Okechukw John; Patience I., E.
2018-06-01
Management of solid waste needs appropriate technology, which is economically affordable, socially accepted and environmentally friendly. The public needs to be sensitized on the potential wealth that their inorganic and organic wastes contain. The paper deals with the idea of recycling as a means of solid waste treatment and explores. In developing countries, where standards are often lower and raw materials very expensive, there is a wider scope for use of recycled material. The range of products varies from building materials to shoes, home to office equipment, sewage pipe to beauty aids. Recyclingand reuse issues overlap a range of disciplines.
USDA-ARS?s Scientific Manuscript database
Creeping Wild Rye (CWR), Leymus triticoides, is a salt-tolerant perennial grass used for mitigating the problems of saltilization and alkalization in drainage irrigation water and soil to minimize potential pollution of water streams. In this study, CWR was used as a raw material to manufacture med...
Thermophilic xylanases: from bench to bottle.
Basit, Abdul; Liu, Junquan; Rahim, Kashif; Jiang, Wei; Lou, Huiqiang
2018-01-17
Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing. Thermostable xylanases display high-specific activity at elevated temperatures and distinguish themselves in biochemical properties, structures, and modes of action from their mesophilic counterparts. Natural xylanases can be further improved through genetic engineering. Rapid progress with genome editing, writing, and synthetic biological techniques have provided unlimited potential to produce thermophilic xylanases in their natural hosts or cell factories including bacteria, yeasts, and filamentous fungi. This review will discuss the biotechnological potential of xylanases from thermophilic microorganisms and the ways they are being optimized and produced for various industrial applications.
Consumer-reported handling of raw poultry products at home: results from a national survey.
Kosa, Katherine M; Cates, Sheryl C; Bradley, Samantha; Chambers, Edgar; Godwin, Sandria
2015-01-01
Salmonella and Campylobacter cause an estimated combined total of 1.8 million foodborne infections each year in the United States. Most cases of salmonellosis and campylobacteriosis are associated with eating raw or undercooked poultry or with cross-contamination. Between 1998 and 2008, 20% of Salmonella and 16% of Campylobacter foodborne disease outbreaks were associated with food prepared inside the home. A nationally representative Web survey of U.S. adult grocery shoppers (n = 1,504) was conducted to estimate the percentage of consumers who follow recommended food safety practices when handling raw poultry at home. The survey results identified areas of low adherence to current recommended food safety practices: not washing raw poultry before cooking, proper refrigerator storage of raw poultry, use of a food thermometer to determine doneness, and proper thawing of raw poultry in cold water. Nearly 70% of consumers reported washing or rinsing raw poultry before cooking it, a potentially unsafe practice because "splashing" of contaminated water may lead to the transfer of pathogens to other foods and other kitchen surfaces. Only 17.5% of consumers reported correctly storing raw poultry in the refrigerator. Sixty-two percent of consumers own a food thermometer, and of these, 26% or fewer reported using one to check the internal temperature of smaller cuts of poultry and ground poultry. Only 11% of consumers who thaw raw poultry in cold water reported doing so correctly. The study results, coupled with other research findings, will inform the development of science-based consumer education materials that can help reduce foodborne illness from Salmonella and Campylobacter.
Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials
Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
“Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236
31 CFR 545.413 - Importation of goods from third countries; transshipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; transshipments. (a) Importation into the United States from third countries of goods containing raw materials or... raw materials or components have been incorporated into manufactured products or otherwise...
Competitive Advantage Market Analysis | Energy Analysis | NREL
Study An NREL market assessment of raw and intermediate materials, equipment, and products for equipment for c-Si PV Abundant raw materials for production of moisture barrier films, glass, aluminum
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58... derived from raw material meeting the requirements as listed under §§ 58.132 through 58.138 of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58... derived from raw material meeting the requirements as listed under §§ 58.132 through 58.138 of this...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ingredient means any material that is intended to furnish pharmacological activity or other direct effect in... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ingredient means any material that is intended to furnish pharmacological activity or other direct effect in... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ingredient means any material that is intended to furnish pharmacological activity or other direct effect in... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Physico-chemical characteristics of shallot New-Superior Varieties (NSV) from Indonesia
NASA Astrophysics Data System (ADS)
Sukasih, E.; Setyadjit; Musadad, D.
2018-01-01
Shallot is one of the priority agricultural commodities to be developed in Indonesia to reduce import and to stabilize domestic supply. The efforts include the selection of varieties, seed technology, agronomy, handling and processing to extend the supply and added value. Indonesian Agency for Agricultural Research and Development (IAARD) has purified, cross-pollinated, selected and released new varieties called New Superior Varieties (NSV) to farmers. The purpose of this research was to investigate the characteristic of fresh shallot NSV by understanding its potential for raw material of processed product. A completely randomized design (CRD) of single factor of ten local varieties of shallot such as Cv. Sembrani, Cv. Kuning, Cv. Pancasona, Cv. Bima, Cv. Trisula, Cv. Pikatan, Cv. Katumi, Cv. Kramat-2, Cv. Mentes and Cv. Majalok of three replication was used to arrange the experiment. The results showed that shallot New Superior Varieties (NSV) were significant by effect the physico-chemical parameters, such as diameter, length, weight of both in main bulb and tiller bulb, fat total, carbohydrate, crude fiber, starch content, antioxidant capacity and quercetin. Of the ten varieties of shallot characterized, the largest bulbs are Cv. Sembrani i.e 5.30 ± 0.3g per bulb, the best red color for shallot peeled was Cv. Kuning. Furthermore Cv. Pancasona have the highest protein content of 4.23 ± 0.2%, Cv. Mentes have the highest functional properties of quercetin 1766.4 ± 134 ppm. Shallot varieties such as Cv. Sembrani, Cv. Bima, Cv. Kuning and Cv. Trisula suitable for use as fresh product. Shallot varieties such as Cv. Pikatan, Cv. Pancasona, Cv. Katumi and Cv. Kramat-2 are suitable as raw materials for processed products. Cv. Mentes and Cv. Majalok were potential for raw materials of functional food and pharmaceutical industries.
NASA Astrophysics Data System (ADS)
Halavska, L.; Batrak, O.
2016-07-01
A new trend in the world is the clothing production using the new types of ecological raw materials application - milk, pineapple, coconut, hemp, banana, eucalyptus, clams, corn, bamboo, soya, nettle yarn. This makes it possible to create textile materials of new generation with unique antibacterial and antiseptic properties. Such materials have a positive preventive and sometimes therapeutic effect on people, and their health. Eco-raw materials clothing is able to protect the human body from the environment harmful effects: cold, heat, rain, dust, opportunely remove from underclothing layer the steam and gases, sweat; maintain in underclothing layer the necessary microclimate for normal organism functioning. Study of knitwear consumer properties, produced with eco-materials, is an urgent task of the world vector, directed on ecological environmental protection. This paper presents the research results of hygroscopicity and capillarity weft knitted fabrics, what knitted from different types of eco-raw materials: bamboo yarn, yarn containing soybean and nettle yarn. Character of influence of the liquid raising level changes depending on the experiment time and the knitting structure is revealed.
Albuquerque, Priscilla B S; Malafaia, Carolina B
2018-02-01
Since the last two decades, the use of synthetic materials has increased and become more frequent in this capitalist system. Polymers used as raw materials are usually disposed very rapidly and considered serious damages when they return to the environment. Because of this behaviour, there was an increasing in the global awareness by minimizing the waste generated, in addition to the scientific community concern for technological alternatives to solve this problem. Alternatively, biodegradable polymers are attracting special interest due to their inherent properties, which are similar to the ones of the conventional plastics. Bioplastics covers plastics made from renewable resources, including plastics that biodegrade under controlled conditions at the end of their use phase. Polyhydroxyalkanoates (PHAs) are polyesters composed of hydroxy acids, synthesized by a variety of microorganisms as intracellular carbon and energy storage. These environmentally friendly biopolymers have excellent potential in domestic, agricultural, industrial and medical field, however their production on a large scale is still limited. This review considered the most recent scientific publications on the production of bioplastics based on PHAs, their structural characteristics and the exploitation of different renewable sources of raw materials. In addition, there were also considered the main biotechnological applications of these biopolymers. Copyright © 2017 Elsevier B.V. All rights reserved.
Saint-Lary, Laure; Roy, Céline; Paris, Jean-Philippe; Martin, Jean-François; Thomas, Olivier P; Fernandez, Xavier
2016-06-01
Natural extracts used in fine fragrances (alcoholic perfumes) are rare and precious. As such, they represent an interesting target for fraudulent practices called adulterations. Absolutes, important materials used in the creation of perfumes, are obtained by organic solvent extraction of raw plant materials. Because the nonvolatile part of these natural extracts is not normalized and scarcely reported, highlighting potential adulterations present in this fraction appears highly challenging. For the first time, we investigated the use of nontargeted UHPLC-ToFMS metabolomics for this purpose, considering Viola odorata l., a plant largely used in the perfume industry, as a model. Significant differences in the metabolic fingerprints of the violet leaf absolutes were evidenced according to geographical locations, and/or adulterations. Additionally, markers of the geographical origin were detected through their molecular weight/most probable molecular formula and retention time, while adulterations were statistically validated. In this study, we thus clearly demonstrated the efficiency of UHPLC-ToFMS-based metabolomics in accelerating both the identification of the origin of raw materials as well as the search for potential adulterations in absolutes, natural products of high added value. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas
2014-07-01
Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fauza, G.; Prasetyo, H.; Amanto, B. S.
2018-05-01
Studies on an integrated production-inventory model for deteriorating items have been done extensively. Most of the studies define deterioration as physical depletion of some inventories over time. This definition may not represent the deterioration characteristics of food products. The quality of food production decreases over time while the quantity remains the same. Further, in the existing models, the raw material is replenished several times (or at least once) within one production cycle. In food industries, however, a food company, for several reasons (e.g., the seasonal raw materials, discounted price, etc.) sometimes will get more benefit if it orders raw materials in a large quantity. Considering this fact, this research, therefore, is aimed at developing a more representative inventory model by (i) considering the quality losses in food and (ii) adopting a general raw material procurement policy. A mathematical model is established to represent the proposed policy in which the total profit of the system is the objective function. To evaluate the performance of the model, a numerical test was conducted. The numerical test indicates that the developed model has better performance, i.e., the total profit is 2.3% higher compared to the existing model.
The 1995 Medical Device Technology raw materials survey.
Pearson, L S
1995-09-01
Using information supplied by manufacturers, this article reports on the use of raw materials and compounding and conversion practices in the European medical device manufacturing industry. The findings of the survey provide an indication of which materials are being used and how frequently, and the process of selecting suppliers.
Economic Evaluation of the Production Magnesium Oxide Nanoparticles via Liquid-Phase Route
NASA Astrophysics Data System (ADS)
Nandiyanto, A. B. D.; Fariansyah, R.; Ramadhan, M. F.; Abdullah, A. G.; Widiaty, I.
2018-02-01
The purpose of this study was to evaluate the production of magnesium oxide (MgO) nanoparticles. The evaluation was done in two perspectives: engineering and economic evaluation. The engineering perspective concerned about the analysis of the production rate based on the available apparatuses and raw materials, completed with mass balance calculation. The economic analysis was conducted based on several economic parameters: gross profit margin (GPM), internal return rate (IRR), payback period (PBP), cumulative net present value (CNPV), break even point (BEP), and profit to investment (PI). The engineering perspective showed that the production of MgO is feasibly done in small scale industry. This is verified by the potential production using current available apparatuses and raw materials in the market. Economic analysis obtained that the present project is profitable. But, for some cases, further studies must be done to get the present production process is attractive for investor.
Raw materials: U.S. grows more vulnerable to third world cartels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, N.
1974-01-18
The success of the Arab oil embargo may be encouraging producers of other scarce raw materials to form a cartel against the United States. Pessimistic and optimistic opinions abound. Most third world countries need to sell as much as they can. The political hues of most potential members of a cartel make an arrangement unlikely, such as in the case where Southern Rhodesia, South Africa, Turkey, and the USSR corner the exportable market of chromium, but a coalition is unlikely. The U. S. government has a powerful weapon against cartels in the form of a massive, billion stockpile of strategicmore » minerals. The nonenergy mineral position of the USA seems certain to weaken in the long haul. Technological advances, recycling, substitution, and changing lifestyles to pay for deferred social costs of past consumption and inequities in distribution seem to be in order. (MCW)« less
RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie
2011-06-01
Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast
NASA Astrophysics Data System (ADS)
Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.
2018-03-01
The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.
Cocoa Shell: A By-Product with Great Potential for Wide Application.
Panak Balentić, Jelena; Ačkar, Đurđica; Jokić, Stela; Jozinović, Antun; Babić, Jurislav; Miličević, Borislav; Šubarić, Drago; Pavlović, Nika
2018-06-09
Solving the problem of large quantities of organic waste, which represents an enormous ecological and financial burden for all aspects of the process industry, is a necessity. Therefore, there is an emerged need to find specific solutions to utilize raw materials as efficiently as possible in the production process. The cocoa shell is a valuable by-product obtained from the chocolate industry. It is rich in protein, dietary fiber, and ash, as well as in some other valuable bioactive compounds, such as methylxanthines and phenolics. This paper gives an overview of published results related to the cocoa shell, mostly on important bioactive compounds and possible applications of the cocoa shell in different areas. The cocoa shell, due to its nutritional value and high-value bioactive compounds, could become a desirable raw material in a large spectrum of functional, pharmaceutical, or cosmetic products, as well as in the production of energy or biofuels in the near future.
Creating a Learning-Friendly Curriculum.
ERIC Educational Resources Information Center
Donovan, Michael P.
1997-01-01
Argues against a type of program evaluation of undergraduate institutions that assumes students are products. Proposes that if students are products, then students are raw materials. Discusses the philosophical problems of considering students as raw materials. (DDR)
60. INTERIOR VIEW OF THE RAW MATERIALS BUILDING, LOOKING AT ...
60. INTERIOR VIEW OF THE RAW MATERIALS BUILDING, LOOKING AT THE POIDOMETER AND WEIGHING MACHINE. MAY 5, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL
Nagashima, Hiroaki; Watari, Akiko; Shinoda, Yasuharu; Okamoto, Hiroshi; Takuma, Shinya
2013-12-01
This case study describes the application of Quality by Design elements to the process of culturing Chinese hamster ovary cells in the production of a monoclonal antibody. All steps in the cell culture process and all process parameters in each step were identified by using a cause-and-effect diagram. Prospective risk assessment using failure mode and effects analysis identified the following four potential critical process parameters in the production culture step: initial viable cell density, culture duration, pH, and temperature. These parameters and lot-to-lot variability in raw material were then evaluated by process characterization utilizing a design of experiments approach consisting of a face-centered central composite design integrated with a full factorial design. Process characterization was conducted using a scaled down model that had been qualified by comparison with large-scale production data. Multivariate regression analysis was used to establish statistical prediction models for performance indicators and quality attributes; with these, we constructed contour plots and conducted Monte Carlo simulation to clarify the design space. The statistical analyses, especially for raw materials, identified set point values, which were most robust with respect to the lot-to-lot variability of raw materials while keeping the product quality within the acceptance criteria. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Tkaczyk, A. H.; Bartl, A.; Amato, A.; Lapkovskis, V.; Petranikova, M.
2018-05-01
The criticality of raw materials has become an important issue in recent years. As the supply of certain raw materials is essential for technologically-advanced economies, the European Commission and other international counterparts have started several initiatives to secure reliable and unhindered access to raw materials. Such efforts include the EU Raw Materials Initiative, European Innovation Partnership on Raw Materials, US Critical Materials Institute, and others. In this paper, the authors present a multi-faceted and multi-national review of the essentials for the critical raw materials (CRMs) Co, Nb, W, and rare earth elements (REEs). The selected CRMs are of specific interest as they are considered relevant for emerging technologies and will thus continue to be of increasing major economic importance. This paper presents a ‘sustainability evaluation’ for each element, including essential data about markets, applications and recycling, and possibilities for substitution have been summarized and analysed. All the presented elements are vital for the advanced materials and processes upon which modern societies rely. These elements exhibit superior importance in ‘green’ applications and products subject to severe conditions. The annual production quantities are quite low compared to common industrial metals. Of the considered CRMs, only Co and REE gross production exceed 100 000 t. At the same time, the prices are quite high, with W and Nb being in the range of 60 USD kg‑1 and some rare earth compounds costing almost 4000 USD kg‑1. Despite valiant effort, in practice some of the considered elements are de facto irreplaceable for many specialized applications, at today’s technological level. Often, substitution causes a significant loss of quality and performance. Furthermore, possible candidates for substitution may be critical themselves or available in considerably low quantities. It can be concluded that one preferred approach for the investigated elements could be the use of secondary resources derived from recycling. W exhibits the highest recycling rate (37%), whereas Co (16%), Nb (11%) and rare earths (~0%) lag behind. In order to promote recycling of these essential elements, financial incentives as well as an improvement of recycling technologies would be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Majid
This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0 m{sup 3} of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumptionmore » in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. - Highlights: • We conducted the first carbon footprint assessment of particleboard produced in Pakistan. • System boundary comprised raw materials acquisition, particleboard manufacture and distribution. • Off-site industrial operations were accounted for highest emissions (52%) followed by on-site operations (48%). • Natural gas, materials transport and UF resin use accounted for highest emissions. • Identified potential strategies for GHG emissions reductions from PB production in Pakistan.« less
Incentivizing secondary raw material markets for sustainable waste management.
Schreck, Maximilian; Wagner, Jeffrey
2017-09-01
Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
31 CFR 538.410 - Imports of Sudanese goods from third countries; transshipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; transshipments. (a) Importation into the United States from third countries of goods containing raw materials or components of Sudanese origin is not prohibited if those raw materials or components have been incorporated...
78 FR 69132 - Importer of Controlled Substances; Notice of Registration; Noramco, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... on applications to import narcotic raw material are not appropriate. 72 FR 3417(2007). In reference to the non-narcotic raw material, any bulk manufacturer who is presently, or is applying to be...
31 CFR 538.410 - Imports of Sudanese goods from third countries; transshipments.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; transshipments. (a) Importation into the United States from third countries of goods containing raw materials or components of Sudanese origin is not prohibited if those raw materials or components have been incorporated...
78 FR 51747 - Importer of Controlled Substances; Notice of Application; NORAMCO, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). In reference to the non-narcotic raw material, any bulk manufacturer who is presently, or is applying to be...
The U.S. Chemical Industry, the Raw Materials It Uses
ERIC Educational Resources Information Center
Chemical and Engineering News, 1972
1972-01-01
The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)
Cellulose acetate fibers prepared from different raw materials with rapid synthesis method.
Chen, Jinghuan; Xu, Jikun; Wang, Kun; Cao, Xuefei; Sun, Runcang
2016-02-10
Transesterification is a mild process to prepare cellulose acetate (CA) as compared with the traditional method. In this study, CA fibers were produced from six cellulose raw materials based on a simple and rapid transesterification method. The properties of the CA solutions and the obtained CA fibers were investigated in detail. Results showed that all of the cellulose raw materials were esterified within 15 min, and spinning dopes could be obtained by concentrating the CA solutions via vacuum distillation. The XRD, FT-IR, (1)H, (13)C and HSQC NMR analysis confirmed the successful synthesis of CA. The degree of substitution (DS) of the obtained CA was significantly affected by the degree of polymerization (DP) of cellulose raw materials, which further influenced the viscosity of CA solutions as well as the structural, thermal and mechanical properties of the CA fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method of fabricating a honeycomb structure
Holleran, Louis M.; Lipp, G. Daniel
1999-01-01
A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.
Method of fabricating a honeycomb structure
Holleran, L.M.; Lipp, G.D.
1999-08-03
A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.
Theoretical backgrounds of non-tempered materials production based on new raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.
2018-03-01
One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.
Properties of kenaf from various cultivars, growth and pulping conditions
James S. Han; Ernest S. Miyashita; Sara J. Spielvogel
1999-01-01
The physical properties of kenaf offer potential as an alternative raw material for the manufacture of paper. Investigations to date have not determined whether core and fiber should be pulped together or separately. Kenaf bast and core fibers of different cultivars were pulped under various kraft pulping conditions and physical properties: density, Canadian Standard...
Code of Federal Regulations, 2011 CFR
2011-07-01
... other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills, and open clinker piles. 63.1345 Section 63.1345 Protection of Environment... for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed...
Ushijima, Kensuke; Fukushima, Masami; Kanno, Shinya; Kanno, Itoko; Ohnishi, Mitsuhiro
2016-01-01
Scallop hepatopancreas, fishery waste, contains relatively high levels of Cd and organic nitrogen compounds, the latter of which represent a fertilizer. In this study, raw scallop hepatopancreas tissue was thermally treated with sawdust and red loam in the presence of an iron catalyst to produce compost-like materials (CLMs). Two CLM samples were prepared by varying the content of raw scallop hepatopancreas tissue: 46 wt.% for CLM-1 and 18 wt.% for CLM-2. Mixtures of control soil (CTL) and CLMs (CLM content: 10 and 25 wt.%) were examined for the growth of alfalfa (Medicago sativa L.) to evaluate the risks and benefits of using this material for fertilization. The Cd content in shoots and roots of alfalfa, that were grown in the presence of CLMs, was significantly higher than those for the plants grown in the CTL, indicating that Cd had accumulated in the plants from CLMs. The accumulation of Cd in the alfalfa roots was quite high in the case of the 25% CLM-1 sample. However, alfalfa growth was significantly promoted in the presence of 10% CLM-1. This can be attributed to the higher levels of nitrogen and humic substances, which serve as fertilizer components. Although the fertilization effect in case of CLM-1showed a potential benefit, the accumulation of Cd in alfalfa was clearly increased in the presence of both CLMs. In conclusion, the use of CLMs produced from raw scallop hepatopancreas tissue can be considered to have a desirable benefit from standpoint of its use as fertilizer, but is accompanied by a risk of the accumulation of Cd in alfalfa plants.
NASA Astrophysics Data System (ADS)
Hartono, Rachmad; Raharno, Sri; Yuwana Martawirya, Yatna; Arthaya, Bagus
2018-03-01
This paper described a methodology to monitor the availability of products in a production unit in the automotive component industry. Automotive components made are automotive components made through sheet metal working. Raw material coming into production unit in the form of pieces of plates that have a certain size. Raw materials that come stored in the warehouse. Data of raw each material in the warehouse are recorded and stored in a data base system. The material will then undergo several production processes in the production unit. When the material is taken from the warehouse, material data are also recorded and stored in a data base. The data recorded are the amount of material, material type, and date when the material is out of the warehouse. The material coming out of the warehouse is labeled with information related to the production processes that the material must pass. Material out of the warehouse is a product will be made. The products have been completed, are stored in the warehouse products. When the product is entered into the product warehouse, product data is also recorded by scanning the barcode contained on the label. By recording the condition of the product at each stage of production, we can know the availability of the product in a production unit in the form of a raw material, the product being processed and the finished product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
75 FR 65658 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw... a manufacturer of several controlled substances that are manufactured from raw opium, poppy straw... narcotic raw material are not appropriate. As noted in a previous notice published in the Federal Register...
7 CFR 58.519 - Dairy products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.519 Dairy products. (a) Raw skim milk. All raw skim milk obtained from a secondary source... used, shall be prepared from raw milk or skim milk that meets the same quality requirements outlined...
Hardwood pallet cant quality and pallet part yields
Hal L. Mitchell; Marshall White; Philip Araman; Peter Hamner
2005-01-01
Raw materials are the largest cost component in pallet manufacturing. The primary raw material used to produce pallet parts are pallet cants. Therefore, pallet cant quality directly impacts pallet part processing and material costs. By knowing the quality of the cants being processed, pallet manufacturers can predict these costs and improve manufacturing efficiency....
Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica.
Yang, Baoru; Liu, Pengzhan
2014-01-22
Fruits of emblic leafflower have been used as food and traditional medicine in Asia. A wide range of biological activities have been shown in modern research suggesting potential of the fruits as healthy food and raw material for bioactive ingredients of food. Hydrolyzable tannins are among the major bioactive components of the fruits. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid are the most abundant hydrolyzable tannins. The compositional profiles of tannins in the fruits vary depending on the cultivars as well as ripening stages. Fruits and tannin-rich extracts of fruits have shown antidiabetic, antimicrobial, anti-inflammatory, and immune-regulating activities in vitro and in animal studies. The fruits and fruit extracts have manifested protective effects on organs/tissues from damages induced by chemicals, stresses, and aging in animal models. The fruits and fruit extracts have potential in inhibiting the growth of cancer cells and reducing DNA damage induced by chemicals and radiation. Antioxidative activities are likely among the mechanisms of the biological activities and physiological effects. Human intervention/clinical studies are needed to investigate the bioavailability and metabolism of the tannins and to substantiate the health benefits in humans. Emblic leafflower may be a potential raw material for natural food preservatives.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... the Order because it is producing glycine from raw materials of Indian origin and exporting such... Order because it produced glycine from raw materials of Indian origin and exported such merchandise to...
Mondin, Andrea; Bogialli, Sara; Venzo, Alfonso; Favaro, Gabriella; Badocco, Denis; Pastore, Paolo
2014-01-01
The present paper reports the determination of the tri-amine N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) present in a raw material called LONZABAC used to formulate various, widely used commercial biocides. The active principle, TA, is present in LONZABAC together with other molecules at lower concentration levels. Three independent analytical approaches, namely solution NMR spectroscopy, liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and acid-base titration in mixed solvent, were used to overcome the problem of the non-availability of the active principle as high purity standard. NMR analysis of raw material, using a suitable internal standard, evidenced in all analyzed lots the presence of the active principle, the N-dodecyl-1,3-propanediamine (DA) and the n-dodecylamine (MA) and the absence of non-organic, NMR-inactive species. NMR peak integration led to a rough composition of the MA:DA:TA as 1:9:90. The LC/HRMS analysis allowed the accurate determination of DA and MA and confirmed in all samples the presence of the TA, which was estimated by difference: MA=1.4±0.3%, DA=11.1±0.7%, TA=87.5±1.3%. The obtained results were used to setup an easy, rapid and cheap acid-base titration method able to furnish a sufficiently accurate evaluation of the active principle both in the raw material and in diluted commercial products. For the raw material the results were: TA+MA=91.1±0.8% and DA-MA=8.9±0.8%, statistically coherent with LC/MS ones. The LC/MS approach demonstrated also its great potentialities to recognize trace of the biocide components both in environmental samples and in the formulated commercial products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nash, David J; Coulson, Sheila; Staurset, Sigrid; Ullyott, J Stewart; Babutsi, Mosarwa; Smith, Martin P
2016-07-01
This study utilises geochemical provenancing of silcrete raw materials, in combination with chaîne opératoire analyses, to explore lithic procurement and behavioural patterns in the northern Kalahari Desert during the Middle Stone Age (MSA). New data from the sites of Rhino Cave, Corner Cave, and ≠Gi in northwest Botswana, combined with earlier results from White Paintings Shelter, reveal that the long distance transport of silcrete for stone tool manufacture was a repeated and extensively used behaviour in this region. Silcrete was imported over distances of up to 295 km to all four sites, from locations along the Boteti River and around Lake Ngami. Significantly, closer known sources of silcrete of equivalent quality were largely bypassed. Silcrete artefacts were transported at various stages of production (as partially and fully prepared cores, blanks, and finished tools) and, with the exception of ≠Gi, in large volumes. The import occurred despite the abundance of locally available raw materials, which were also used to manufacture the same tool types. On the basis of regional palaeoenvironmental data, the timing of the majority of silcrete import from the Boteti River and Lake Ngami is constrained to regionally drier periods of the MSA. The results of our investigation challenge key assumptions underlying predictive models of human mobility that use distance-decay curves and drop-off rates. Middle Stone Age peoples in the Kalahari appear to have been more mobile than anticipated, and repeatedly made costly choices with regard to both raw material selection and items to be transported. We conclude that (i) base transport cost has been overemphasised as a restrictive factor in predictive models, and (ii) factors such as source availability and preference, raw material quality, and potential sociocultural influences significantly shaped prehistoric landscape use choices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anisotropic nature of radially strained metal tubes
NASA Astrophysics Data System (ADS)
Strickland, Julie N.
Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw yield strength to calculate these ratings. I set out to characterize the anisotropic nature of swaged metal. As expected, the tensile tests showed a difference between the axial and transverse tensile strength. The correlation was 12% difference in yield strength in the axial and transverse directions for strained material and 9% in strained and aged material. This means that the strength of the metal in the hoop (transverse) direction is approximately 10% stronger than in the axial direction, because the metal was work hardened during the swaging process. Therefore, the metal is more likely to fail in axial tension than in burst or collapse. I presented the findings from the microstructure examination, standard tensile tests, and SEM data. All of this data supported the findings of the mini-tensile tests. This information will help engineers set burst and collapse ratings and allow material scientists to predict the anisotropic characteristics of swaged steel tubes.
77 FR 34069 - Importer of Controlled Substances; Notice of Application; Research Triangle Institute
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... activities. Comments and requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). In regard to the non-narcotic raw material, any bulk manufacturer who is... [[Page 34072
Anacleto, Sara da Silva; Borges, Marcella Matos Cordeiro; de Oliveira, Hanna Leijoto; Vicente, Andressa Reis; de Figueiredo, Eduardo Costa; de Oliveira, Marcone Augusto Leal; Borges, Bárbara Juliana Pinheiro; de Oliveira, Marcelo Antonio; Borges, Warley de Souza; Borges, Keyller Bastos
2018-06-01
This study aimed to show that the physicochemical proprieties obtained by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and scanning electronic microscopy (SEM) can be useful tools for evaluating the quality of active pharmaceutical ingredients (APIs) and pharmaceutical products. In addition, a simple, sensitive, and efficient method employing HPLC-DAD was developed for simultaneous determination of lidocaine (LID), ciprofloxacin (CFX) and enrofloxacin (EFX) in raw materials and in veterinary pharmaceutical formulations. Compounds were separated using a Gemini C 18 (250 mm × 4.6 mm, 5 µm) Phenomenex ® column, at a temperature of 25 °C, with a mobile phase containing 10 mM of phosphoric acid (pH 3.29): acetonitrile (85.7:14.3, v/v) and a flow rate of 1.5 mL/min. Physicochemical characterization by TG, FTIR, and SEM of raw materials of LID, CFX, and EFX provided information useful for the evaluation, differentiation, and qualification of raw materials. Finally, the HPLC method was proved to be useful for evaluation of raw material and finished products, besides satisfying the need for an analytical method that allows simultaneous determination of EFX, CFX, and LID, which can also be extended to other matrices and applications.
Sørheim, O; Westad, F; Larsen, H; Alvseike, O
2009-03-01
The study aimed at examining the effects of freezing of raw materials, holding time for fresh raw materials post mortem and addition of 0.5-1.0% NaCl on the colour of ground beef under low oxygen (O2) modified atmosphere storage. The samples were exposed to 0.1-3.0% O2 at 4°C for up to 10 days, and analysed for O2 concentrations, instrumental and visual colour. Residual O2 in the headspace of the packages oxidizes myoglobin and discolours the meat. Meat may have the ability to scavenge residual O2, and ground beef differs from intact muscles by having a much higher capacity for O2 consumption. In this experiment, the use of frozen/thawed raw materials and addition of NaCl both decreased the rate of O2 consumption and increased discolouration. Using raw materials from 2 days rather than 7 days post mortem greatly increased the rate of removal of O2 and improved redness. In low O2 packaging, ground beef preferably should be stored for at least 2 days in an atmosphere with less than 0.1% residual O2 to produce a purple pigment predominantly consisting of deoxymyoglobin.
Igne, Benoit; Shi, Zhenqi; Drennen, James K; Anderson, Carl A
2014-02-01
The impact of raw material variability on the prediction ability of a near-infrared calibration model was studied. Calibrations, developed from a quaternary mixture design comprising theophylline anhydrous, lactose monohydrate, microcrystalline cellulose, and soluble starch, were challenged by intentional variation of raw material properties. A design with two theophylline physical forms, three lactose particle sizes, and two starch manufacturers was created to test model robustness. Further challenges to the models were accomplished through environmental conditions. Along with full-spectrum partial least squares (PLS) modeling, variable selection by dynamic backward PLS and genetic algorithms was utilized in an effort to mitigate the effects of raw material variability. In addition to evaluating models based on their prediction statistics, prediction residuals were analyzed by analyses of variance and model diagnostics (Hotelling's T(2) and Q residuals). Full-spectrum models were significantly affected by lactose particle size. Models developed by selecting variables gave lower prediction errors and proved to be a good approach to limit the effect of changing raw material characteristics. Hotelling's T(2) and Q residuals provided valuable information that was not detectable when studying only prediction trends. Diagnostic statistics were demonstrated to be critical in the appropriate interpretation of the prediction of quality parameters. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Materials, critical materials and clean-energy technologies
NASA Astrophysics Data System (ADS)
Eggert, R.
2017-07-01
Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.
Raw liquid waste treatment process
NASA Technical Reports Server (NTRS)
Humphrey, Marshall F. (Inventor)
1980-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Raw Liquid Waste Treatment System and Process
NASA Technical Reports Server (NTRS)
Humphrey, M. F. (Inventor)
1974-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, suspended in the sewage water is first separated from the water, in which at least organic matter remains dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material adsorbs the organic matter dissolved in the water and is thereafter supplied in a counter flow direction and combined with the incoming raw sewage to at least facilitate the separation of the non-dissolved settleable materials from the sewage water. Carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Use of outer planet satellites and asteroids as sources of raw materials for life support systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molton, P.M.; Divine, T.E.
1977-01-01
Industrialization of space and other space activities depend entirely on supply of materials from the Earth. This is a high cost route for materials supply. Space industrialization will require life support systems for maintenance and operation staff and these will of necessity be of a sophisticated nature. Use of raw materials obtained by an unmanned space shuttle, initially, and by manned shuttles later could significantly reduce the cost of life support in space. These raw materials could be obtained from small asteroids and satellites, and would consist of primary nutrients. Future development of such sources is discussed, including food productionmore » in automated asteroid-based facilities. The level of technology required is available now, and should become economical within a century.« less
Catalytic transformation of waste polymers to fuel oil.
Keane, Mark A
2009-01-01
Waste not, want not: The increase in waste polymer generation, which continues to exceed recycle, represents a critical environmental burden. However, plastic waste may be viewed as a potential resource and, with the correct treatment, can serve as hydrocarbon raw material or as fuel oil, as described in this Minireview.Effective waste management must address waste reduction, reuse, recovery, and recycle. The consumption of plastics continues to grow, and, while plastic recycle has seen a significant increase since the early 1990s, consumption still far exceeds recycle. However, waste plastic can be viewed as a potential resource and can serve, with the correct treatment, as hydrocarbon raw material or as fuel oil. This Minireview considers the role of catalysis in waste polymer reprocessing and provides a critical overview of the existing waste plastic treatment technologies. Thermal pyrolysis results in a random scissioning of the polymer chains, generating products with varying molecular weights. Catalytic degradation provides control over the product composition/distribution and serves to lower significantly the degradation temperature. Incineration of waste PVC is very energy demanding and can result in the formation of toxic chloro emissions. The efficacy of a catalytic transformation of PVC is also discussed.
[Amaranth bars enriched with fructans: acceptability and nutritional value].
Dias Capriles, Vanessa; Gomes Arêas, José Alfredo
2010-09-01
There is an increasing appeal for convenience foods with potential health benefits to the consumer. Raw materials with high nutritional value and functional properties must be used on the development of these food products. Amaranth is a gluten-free grain with high nutrition value. Inulin and oligofructose are prebiotic ingredients presenting effects as the enhancement of calcium absorption. Amaranth bars enriched with inulin and oligofructose were developed in the flavors: banana, Brazilian nuts and dried grape, coconut, peach, strawberry and wall nut. The proximate composition were determined and compared to commercial cereal bars, available in traditional (n=59), light (n=60), diet (n=8), with soy (n=10) and quinoa (n=1) categories. Amaranth bars present mean global acceptance values from 6.3 to 7.6 on a 9-point hedonic scale, nutritional advantages as compared to commercial cereal bars (caloric reduction and higher levels of dietary fiber). Although amaranth is an unknown raw material in Brazil, it shows good potential to be used in the manufacturing of ready-to-eat products. As they are gluten free, these amaranth bars are also an alternative product for celiacs, also contributing to the enhancement of calcium absorption, a problem frequently observed in these patients.
The potential and biological test on cloned cassava crop remains on local sheep
NASA Astrophysics Data System (ADS)
Ginting, R.; Umar, S.; Hanum, C.
2018-02-01
This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.
Sadhukhan, Jhuma; Joshi, Nimisha; Shemfe, Mobolaji; Lloyd, Jonathan R
2017-09-01
Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Life Cycle Assessment of Completely Recyclable Concrete.
De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele
2014-08-21
Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.
Life Cycle Assessment of Completely Recyclable Concrete
De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele
2014-01-01
Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete. PMID:28788174
Code of Federal Regulations, 2014 CFR
2014-07-01
... other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or to... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Code of Federal Regulations, 2013 CFR
2013-07-01
... other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or to... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
VIEW ALONG RAW MATERIAL CONVEYOR AT RIGHT WITH CRUSHED SHELL ...
VIEW ALONG RAW MATERIAL CONVEYOR AT RIGHT WITH CRUSHED SHELL CONVEYOR ABOVE. ENGINE AND RADIATOR AT LOWER LEFT. - F. & H. Benning Company Oyster Mill, 14430 Solomons Island Road (moved from 1014 Benning Road, Galesville, Anne Arundel County, Maryland), Solomons, Calvert County, MD
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of any raw material, intermediate product, finished product, by-product, or waste product. The term... contact with any raw material, intermediate product, finished product, by-product or waste product by... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin
2011-01-01
The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.
Raw materials exploitation in Prehistory of Georgia: sourcing, processing and distribution
NASA Astrophysics Data System (ADS)
Tushabramishvili, Nikoloz; Oqrostsvaridze, Avthandil
2016-04-01
Study of raw materials has a big importance to understand the ecology, cognition, behavior, technology, culture of the Paleolithic human populations. Unfortunately, explorations of the sourcing, processing and distribution of stone raw materials had a less attention until the present days. The reasons of that were: incomplete knowledge of the archaeologists who are doing the late period archaeology (Bronze Age-Medieval) and who are little bit far from the Paleolithic technology and typology; Ignorance of the stone artifacts made on different kind of raw-materials, except flint and obsidians. Studies on the origin of the stone raw materials are becoming increasingly important since in our days. Interesting picture and situation have been detected on the different sites and in different regions of Georgia. In earlier stages of Middle Paleolithic of Djruchula Basin caves the number of basalt, andesite, argillite etc. raw materials are quite big. Since 130 000 a percent of the flint raw-material is increasing dramatically. Flint is an almost lonely dominated raw-material in Western Georgia during thousand years. Since approximately 50 000 ago the first obsidians brought from the South Georgia, appeared in Western Georgia. Similar situation has been detected by us in Eastern Georgia during our excavations of Ziari and Pkhoveli open-air sites. The early Lower Paleolithic layers are extremely rich by limestone artifacts while the flint raw-materials are dominated in the Middle Paleolithic layers. Study of these issues is possible to achieve across chronologies, the origins of the sources of raw-materials, the sites and regions. By merging archaeology with anthropology, geology and geography we are able to acquire outstanding insights about those populations. New approach to the Paleolithic stone materials, newly found Paleolithic quarries gave us an opportunities to try to achieve some results for understanding of the behavior of Paleolithic populations, geology and geomorphology of different regions of Georgia. References: 1. 2015. Tushabramishvili N. Ziari. Online Archaeology 8. Tbilisi, Georgia. Pp. 41-43 2. 2012. M François-Xavier Le Bourdonnec, Sébastien Nomade, Gérard Poupeau, Hervé Guillou, Nikolos Tushabramishvili, Marie-Hélène Moncel, David Pleurdeau, Tamar Agapishvili, Pierre Voinchet, Ana Mgeladze, David Lordkipanidze). Multiple origins of Bondi Cave and Ortvale Klde (NW Georgia) obsidians and human mobility in Transcaucasia during the Middle and Upper Palaeolithic. Journal of Archaeological Science xxx (2012) 1-14 3. 2011. Mercier N., Valladas H., Meignen L., Joron J. L., Tushabramishvili N., Adler D.S., Bar Yosef O. Dating the early Middle Palaeolithic Laminar Industry from Djruchula cave, Republic of Georgia. Paléorient Volume 36. Issue 36-2, pp. 163-173 4. 2010. L. Meignen&Nicholas Tushabramishvili. Djruchula Cave, on the Southern Slopes of the Great Caucasus: An Extension of the Near Eastern Middle Paleolithic Blady Phenomenon to the North. Journal of The Israel Prehistoric Society 40 (2010), 35-61 5. 2007. Tushabramishvili N.,Pleurdeau D., Moncel M.-H., Mgeladze A. Le complexe Djruchula-Koudaro au sud Caucase (Géorgie). Remarques sur les assemblages lithiques pléistocenes de Koudaro I, Tsona et Djruchula . Anthropologie • 45/1 • pp. 1-18 6. Tushabramishvili, D., 1984. Paleolit Gruzii. (Palaeolithic of Georgia). Newsletter of the Georgian State Museum 37B, 5e27
Alternative of raw material’s suppliers using TOPSIS method in chicken slaughterhouse industry
NASA Astrophysics Data System (ADS)
Sari, R. M.; Rizkya, I.; Syahputri, K.; Anizar; Siregar, I.
2018-02-01
Chicken slaughterhouse industry is one of the fastest growing industries that depends on the freshness of raw materials. The raw materials quality arrive at the company depends heavily on the suppliers. Fresh chicken and frozen chicken meat are the main raw materials for this industry. Problems occurred by the suppliers are catering the amount of raw material needs that are not appropriate and also delay during delivery process. This condition causes disruption of the production process in the company. Therefore, it is necessary to determine the best suppliers to supply the main raw materials of fresh and frozen chicken meat on the slaughterhouse chicken industry. This study analyze the supplier’s capability by using TOPSIS method. This method use to find out the best supplier. The TOPSIS method is performed using the principle that chosen alternative must have the shortest distance from the positive solution and furthest from the ideal solution of the geometric point by using the Euclidean distance to determine the relative proximity of the optimum solution alternative. TOPSIS method found the rank of best supplier’s order is supplier A followed by supplier D, supplier B, supplier C, supplier E, supplier F, and supplier G. Based on the rank order obtained from each company, it will assist the company in prioritizing the order to the supplier with the best rank. Total supply from All suppliers are 885,994 kg per month. Based on the results of research, the top five suppliers have been sufficient to meet the needs of the company.
Adsorption of dyes using different types of clay: a review
NASA Astrophysics Data System (ADS)
Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon
2017-05-01
Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.
Haughton, Pippa N; Lyng, James G; Morgan, Desmond J; Cronin, Denis A; Fanning, Seamus; Whyte, Paul
2011-01-01
The efficacy of high-intensity light pulse (HILP) technology (3 Hz, maximum of 505 J/pulse, and a pulse duration of 360 μs) for the decontamination of raw chicken and associated packaging and surface materials was investigated. Its ability to reduce microbial counts on raw chicken through plastic films was also examined. Complete inactivation of Campylobacter spp., Escherichia coli, and Salmonella Enteritidis in liquid was achieved after 30 sec HILP treatment. Reductions of 3.56, 4.69, and 4.60 log₁₀ cfu/cm²) were observed after 5 sec HILP treatment of Campylobacter jejuni, E. coli, and Salmonella Enteritidis inoculated onto packaging materials and contact surfaces, respectively. The greatest reductions on inoculated chicken skin were 1.22, 1.69, and 1.27 log₁₀ cfu/g for C. jejuni, E. coli, and Salmonella Enteritidis, respectively. Corresponding reductions on inoculated skinless breast meat were 0.96, 1.13, and 1.35 log₁₀ cfu/g. The effectiveness of HILP treatment for reducing microbial levels on chicken increased as the film thickness decreased. HILP treatments of 2 sec did not significantly affect the color of raw chicken although treatments of 30 sec impacted color. This study has shown HILP to be an effective method for the decontamination of packaging and surface materials. Additionally, it has demonstrated the potential of HILP to be used as a decontamination method for packaged chicken.
Zhou, Joseph ZiQi; Waszkuc, Ted; Mohammed, Felicia
2008-01-01
Single laboratory validation of a method for determination of glucosamine in raw materials and dietary supplements containing glucosamine sulfate and/or glucosamine hydrochloride by with high-performance liquid Chromatography FMOC-Su derivatization. Tests with 2 blank matrixes containing SAMe, vitamin C, citric acid, chondroitin sulfates, methylsulfonylmethane, lemon juice concentrate, and other potential interferents showed the method to be selective and specific. Eight calibration curves prepared over 7 working days indicated excellent reproducibility with the linear range at least over 2.0–150 μg/mL, and determination coefficients >0.9999. Average spike recovery from the blank matrix (n = 8 over 2 days) was 93.5, 99.4, and 100.4% at respective spike levels of 15,100, and 150%, and from the sample matrix containing glucosamine (n = 3) was 99.9 and 102.8% at respective levels of 10 and 40%, with relative standard deviations <0.9%. The method was also applied to 12 various glucosamine finished products and raw materials. The stability tests confirmed that glucosamine–FMOC-Su derivative once formed is stable at room temperature for at least 5 days. Limit of quantitation was 1 μg/mL and limit of detection was 0.3 μg/mL. The method is ready to proceed for the collaborative study. PMID:15493664
Landfill mining: Development of a cost simulation model.
Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland
2016-04-01
Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. © The Author(s) 2016.
Bioaccessibility and bioavailability of phenolic compounds in bread: a review.
Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela
2017-07-19
Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.
Hennebel, Tom; Boon, Nico; Maes, Synthia; Lenz, Markus
2015-01-25
Europe is confronted with an increasing supply risk of critical raw materials. These can be defined as materials of which the risks of supply shortage and their impacts on the economy are higher compared to most of other raw materials. Within the framework of the EU Innovation Partnership on raw materials Initiative, a list of 14 critical materials was defined, including some bulk metals, industrial minerals, the platinum group metals and rare earth elements. To tackle the supply risk challenge, innovation is required with respect to sustainable primary mining, substitution of critical metals, and urban mining. In these three categories, biometallurgy can play a crucial role. Indeed, microbe-metal interactions have been successfully applied on full scale to win materials from primary sources, but are not sufficiently explored for metal recovery or recycling. On the one hand, this article gives an overview of the microbial strategies that are currently applied on full scale for biomining; on the other hand it identifies technologies, currently developed in the laboratory, which have a perspective for large scale metal recovery and the needs and challenges on which bio-metallurgical research should focus to achieve this ambitious goal. Copyright © 2013. Published by Elsevier B.V.
Biviano, Marilyn B.; Wagner, Lorie A.; Sullivan, Daniel E.
1999-01-01
Materials consumption estimates, such as apparent consumption of raw materials, can be important indicators of sustainability. Apparent consumption of raw materials does not account for material contained in manufactured products that are imported or exported and may thus under- or over-estimate total consumption of materials in the domestic economy. This report demonstrates a methodology to measure the amount of materials contained in net imports (imports minus exports), using lead as an example. The analysis presents illustrations of differences between apparent and total consumption of lead and distributes these differences into individual lead-consuming sectors.
An alternative approach to recovering valuable metals from zinc phosphating sludge.
Kuo, Yi-Ming
2012-01-30
This study used a vitrification process (with good potential for commercialization) to recover valuable metals from Zn phosphating sludge. The involved vitrification process achieves two major goals: it transformed hazardous Zn phosphating sludge into inert slag and it concentrated Fe (83.5%) and Zn (92.8%) into ingot and fine particulate-phase material, respectively. The Fe content in the ingot was 278,000 mg/kg, making the ingot a potential raw material for iron making. The fine particulate-phase material (collected from flue gas) contained abundant Zn (544,000 mg/kg) in the form of ZnO. The content (67.7%) of ZnO was high, so it can be directly sold to refineries. The recovered coarse particulate-phase material, with insufficient amount of ZnO, can be recycled as a feeding material for Zn re-concentration. Therefore, the vitrification process can not only treat hazardous materials but also effectively recover valuable metals. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ravisankar, R.; Naseerutheen, A.; Rajalakshmi, A.; Raja Annamalai, G.; Chandrasekaran, A.
2014-08-01
The characterization of archeological ceramic and pottery can be studied for the determination of firing temperature and the presence of raw materials by thermal analysis. Clay minerals are the main material for the production of ceramic and pottery and show some characteristic reactions such as dehydration, dehydroxylation and transformation. This is key point of criteria for the elucidation of firing temperature and raw material analysis. In the present work, DTA-TG, XRD and EDXRF technique are applied on representative potsherds from Vellore dist., Tamilnadu, India to derive the information about the production technology, raw materials and firing temperature. From the analysis, all the samples were considered to be fired from 800 °C to 900 °C and organic material might be added intestinally as a binder in the preparation of pottery.
Pulpwood production in the Northeast 1968
James T. Bones; Neal P. Kingsley
1969-01-01
This report is based on a canvass of all pulpmills in the Northeast that use wood-either round wood or chips-as a basic raw material for a variety of products. Mills that use woodpulp as a raw material for insulation board and hardboard were also included in the canvass. However, the canvass did not include mills that use waste paper, rags, or pulping material other...
77 FR 5846 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... import narcotic raw material are not appropriate, in accordance with 72 FR 3417 (2007). DEA has... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy... to use it as a base material in the bulk manufacture of another controlled substance. No comments or...
Indonesian Politics and Economics (Selected Translations).
1961-01-10
the’rise of industries to such a proportion, particularly’in England, that it brought about the " industrial revolution ".. ’ -: Surplus capital...only limited sources of raw materials. The industrial revolution , in iEngland required an inöreased supply of raw materials, and at the sam§ time the
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
The degradation of wheat straw lignin
NASA Astrophysics Data System (ADS)
Liang, Jiaqi
2017-03-01
Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.
Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).
Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V
2007-11-19
The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.
Kurd, Forouzan; Samavati, Vahid
2015-03-01
Polysaccharides from Spirulina platensis algae (SP) were extracted by ultrasound-assisted extraction procedure. The optimal conditions for ultrasonic extraction of SP were determined by response surface methodology. The four parameters were, extraction time (X1), extraction temperature (X2), ultrasonic power (X3) and the ratio of water to raw material (X4), respectively. The experimental data obtained were fitted to a second-order polynomial equation. The optimum conditions were extraction time of 25 min, extraction temperature 85°C, ultrasonic power 90 W and ratio of water to raw material 20 mL/g. Under these optimal conditions, the experimental yield was 13.583±0.51%, well matched with the predicted models with the coefficients of determination (R2) of 0.9971. Then, we demonstrated that SP polysaccharides had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Overall, SP may have potential applications in the medical and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.
Inspection of fecal contamination on strawberries using fluorescence imaging
NASA Astrophysics Data System (ADS)
Chuang, Yung-Kun; Yang, Chun-Chieh; Kim, Moon S.; Delwiche, Stephen R.; Lo, Y. Martin; Chen, Suming; Chan, Diane E.
2013-05-01
Fecal contamination of produce is a food safety issue associated with pathogens such as Escherichia coli that can easily pollute agricultural products via animal and human fecal matters. Outbreaks of foodborne illnesses associated with consuming raw fruits and vegetables have occurred more frequently in recent years in the United States. Among fruits, strawberry is one high-potential vector of fecal contamination and foodborne illnesses since the fruit is often consumed raw and with minimal processing. In the present study, line-scan LED-induced fluorescence imaging techniques were applied for inspection of fecal material on strawberries, and the spectral characteristics and specific wavebands of strawberries were determined by detection algorithms. The results would improve the safety and quality of produce consumed by the public.
A factory concept for processing and manufacturing with lunar material
NASA Technical Reports Server (NTRS)
Driggers, G. W.
1977-01-01
A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.
Synthetic Polymers from Readily Available Monosaccharides
NASA Astrophysics Data System (ADS)
Galbis, J. A.; García-Martín, M. G.
The low degradability of petroleum-based polymers and the massive use of these materials constitute a serious problem because of the environmental pollution that they can cause. Thus, sustained efforts have been extensively devoted to produce new polymers based on natural renewing resources and with higher degradability. Of the different natural sources, carbohydrates stand out as highly convenient raw materials because they are inexpensive, readily available, and provide great stereochemical diversity. New polymers, analogous to the more accredited technical polymers, but based on chiral monomers, have been synthesized from natural and available sugars. This chapter describes the potential of sugar-based monomers as precursors to a wide variety of macromolecular materials.
75 FR 10460 - Improving Tracing Procedures for E. coli O157:H7 Positive Raw Beef Product
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... Tracing Procedures for E. coli O157:H7 Positive Raw Beef Product AGENCY: Food Safety and Inspection... Agency procedures for identifying suppliers of source material used to produce raw beef product that FSIS... that raw beef is positive for E. coli O157:H7, and whether the Agency takes the appropriate steps to...
Influence of boiling point range of feedstock on properties of derived mesophase pitch
NASA Astrophysics Data System (ADS)
Yu, Ran; Liu, Dong; Lou, Bin; Chen, Qingtai; Zhang, Yadong; Li, Zhiheng
2018-06-01
The composition of raw material was optimized by vacuum distillation. The carbonization behavior of two kinds of raw material was followed by polarizing microscope, softening point, carbon yield and solubility. Two kinds of mesophase pitch have been monitored by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), elemental analysis and 1H nuclear magnetic resonance (1H-NMR). The analysis results suggested that raw material B (15wt% of A was distillated out and the residue named B) could form large domain mesophase pitch earlier. The shortened heat treat time favored the retaining of alkyl group in mesophase pitch and reduced the softening point of masophase pitch.
Zhang, Yu-Tian; Xiao, Mei-Feng; Deng, Kai-Wen; Yang, Yan-Tao; Zhou, Yi-Qun; Zhou, Jin; He, Fu-Yuan; Liu, Wen-Long
2018-06-01
Nowadays, to research and formulate an efficiency extraction system for Chinese herbal medicine, scientists have always been facing a great challenge for quality management, so that the transitivity of Q-markers in quantitative analysis of TCM was proposed by Prof. Liu recently. In order to improve the quality of extraction from raw medicinal materials for clinical preparations, a series of integrated mathematic models for transitivity of Q-markers in quantitative analysis of TCM were established. Buyanghuanwu decoction (BYHWD) was a commonly TCMs prescription, which was used to prevent and treat the ischemic heart and brain diseases. In this paper, we selected BYHWD as an extraction experimental subject to study the quantitative transitivity of TCM. Based on theory of Fick's Rule and Noyes-Whitney equation, novel kinetic models were established for extraction of active components. Meanwhile, fitting out kinetic equations of extracted models and then calculating the inherent parameters in material piece and Q-marker quantitative transfer coefficients, which were considered as indexes to evaluate transitivity of Q-markers in quantitative analysis of the extraction process of BYHWD. HPLC was applied to screen and analyze the potential Q-markers in the extraction process. Fick's Rule and Noyes-Whitney equation were adopted for mathematically modeling extraction process. Kinetic parameters were fitted and calculated by the Statistical Program for Social Sciences 20.0 software. The transferable efficiency was described and evaluated by potential Q-markers transfer trajectory via transitivity availability AUC, extraction ratio P, and decomposition ratio D respectively. The Q-marker was identified with AUC, P, D. Astragaloside IV, laetrile, paeoniflorin, and ferulic acid were studied as potential Q-markers from BYHWD. The relative technologic parameters were presented by mathematic models, which could adequately illustrate the inherent properties of raw materials preparation and affection of Q-markers transitivity in equilibrium processing. AUC, P, D for potential Q-markers of AST-IV, laetrile, paeoniflorin, and FA were obtained, with the results of 289.9 mAu s, 46.24%, 22.35%; 1730 mAu s, 84.48%, 1.963%; 5600 mAu s, 70.22%, 0.4752%; 7810 mAu s, 24.29%, 4.235%, respectively. The results showed that the suitable Q-markers were laetrile and paeoniflorin in our study, which exhibited acceptable traceability and transitivity in the extraction process of TCMs. Therefore, these novel mathematic models might be developed as a new standard to control TCMs quality process from raw medicinal materials to product manufacturing. Copyright © 2018 Elsevier GmbH. All rights reserved.
Sensitization to fragrance materials in Indonesian cosmetics.
Roesyanto-Mahadi, I D; Geursen-Reitsma, A M; van Joost, T; van den Akker, T W
1990-04-01
2 different groups of patients were patch tested with 2 test series (A and B) containing extracts of fragrance raw materials, traditionally used in Indonesian cosmetics. Series A consisted of diluted extracts of commercially available Indonesian fragrances. Series B consisted of extracts prepared in our department from corresponding indigenous flowers and fruits. Group 1 consisted of 32 patients positive to fragrance-mix, of whom 8 (25%) had positive tests to 1 or more of the different extracts of fragrance raw materials. Reactions were observed to extracts of: Rosa hybrida Hort (7); Canangium odoratum Baill (5); Citrus aurantifolia Swingle (4); Jasminum sambac Ait (2). 6 of the 8 patients had reactions to 1 or more of the components of fragrance-mix: oakmoss (3); cinnamic alcohol (2), isoeugenol (1); cinnamic aldehyde (1) and geraniol (1). Group 2 consisted of 159 patients patch tested on suspicion of contact dermatitis, who were fragrance-mix negative. Only 2 (1.2%) had a positive patch test to the extracts of fragrance raw materials. Specimens taken (as is) from the flowers and citrus fruits (being the basis sources of the fragrance raw materials) were less antigenic. The use of additional test series in Indonesia to detect allergy to traditional cosmetics and perfumes merits further investigation.
Natural stone muds as secondary raw materials: towards a new sustainable recovery process
NASA Astrophysics Data System (ADS)
Zichella, Lorena; Tori, Alice; Bellopede, Rossana; Marini, Paola
2016-04-01
The production of residual sludge is a topical issue, and has become essential to recover and reuse the materials, both for the economics and the environmental aspect. According to environmental EU Directives, in fact ,the stone cutting and processing should characterized by following objectives, targets and actions: the reduction of waste generated, the decreasing of use of critical raw material, the zero landfilling of sludge and decreasing in potential soil contamination, the prevention of transport of dangerous waste, the reduction of energy consumption, the zero impact on air pollution and the cost reduction . There are many industrial sector in which residual sludge have high concentrations of metals and/or elements deemed harmful and therefore hazardous waste. An important goal, for all industrial sectors, is an increase in productivity and a parallel reduction in costs. The research leads to the development of solutions with an always reduced environmental impact. The possibility to decrease the amount of required raw materials and at the same time the reduction in the amount of waste has become the aim for any industrial reality. From literature there are different approaches for the recovery of raw and secondary materials, and are often used for the purpose chemical products that separate the elements constituting the mud but at the same time make additional pollutants. The aim of the study is to find solutions that are environmentally sustainable for both industries and citizens. The present study is focused on three different Piedmont rocks: Luserna, Diorite from Traversella and Diorite from Vico, processed with three different stone machining technologies: cutting with diamond wire in quarry (blocks), in sawmill (slabs) and surface polishing. The steps are: chemical analysis, particle size analysis and mineralogical composition and characterization of the sludge obtained from the various machining operations for the recovery of the metal material by cutting and waste rock through an economical and simple method, without the use of chemical products. The technical feasibility of the use of stone mud for construction materials, and industrial mud for alloy reuse, is well known on a scientific and lab scale, but it is not industrially developed because of the wide variety of waste generated and logistic or organization difficulties of interaction among companies of different sectors. This can be realized implementing an existing plant with industrial technologies in order to valorize the product "mud", to reuse the heavy metals in the process and therefore to minimize the volume of sludge produced. A further progress to the previous researches, that is beyond the results obtained in this field, will be the identification of the best technique to eliminate the small amount of heavy metals in the mud fines. This is important because , removing all the toxic substances, the mud properties can be improved in order to be reuse in the other process as secondary raw material.
77 FR 5846 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import narcotic raw materials for manufacturing and further distribution... substances that are manufactured from opium, raw, and poppy straw concentrate. Comments and requests for...
González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E
2016-09-15
The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quality assurance of herbal raw materials in supply chain: challenges and opportunities.
Govindaraghavan, Suresh
2008-01-01
The herbal medicine industry is presently adopting modern scientific tools to substantiate the guarantee of efficacy that, in the past, rested only on anecdotal evidence derived from traditional knowledge systems. This is particularly true for the processes of identification of herbal raw materials adopting modern tools for phytochemical fingerprinting. The successful adaptation of available technologies and practices depends on an understanding of the phytochemical complexity and variability innate in biological material. It challenges the "mainstream medicinal mindset" that "tend(s) to reject …. therapies for which mechanisms of action do not fit within Newtonian, biochemical orientation" (Dumoff, 2003). The herbal medicinal industry is independently evolving its own rigid quality assurance and control systems using Good Manufacturing Practice (GMP) and Good Laboratory Practice (GLP) guidelines, but it faces unique difficulties. These include lack of Good Agricultural and Collection Practice (GACP), lack of transparency in the raw material supply chain so as to preclude the use of unsafe practices, problems in the authentication of herbal raw materials, and a general lack of understanding of the need to reduce phytochemical variability in these materials. This paper explores these difficulties and outlines strategies to overcome them, but these strategies will require coordinated international government regulations to be fully effective.
Research and development in pilot plant production of granular NPK fertilizer
NASA Astrophysics Data System (ADS)
Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali
2017-05-01
PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.
James T. Bones; David R. Dickson
1977-01-01
This annual report is based on a canvass of all pulpmills in the Northeast that use wood-either roundwood or plant residues-as a basic raw material. Cross-boundary shipments are traced by exchanging information with neighboring experiment stations that conduct similar canvasses. Mills that use pulpwood as a raw material in producing insulation board and hardboard were...
9 CFR 351.14 - Processes to be supervised; extent of examinations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... examinations. 351.14 Section 351.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... be at least once a month if the plant consistently handles only raw materials acceptable under § 351... consistently handles some raw materials that are acceptable, and some that are unacceptable, under § 351.3, for...
40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials
Code of Federal Regulations, 2014 CFR
2014-07-01
... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite—CaMg(CO3)2 0.477 Sodium carbonate/soda ash—Na2CO3 0.415 Barium carbonate—BaCO3 0.223 Potassium...
40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials
Code of Federal Regulations, 2012 CFR
2012-07-01
... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite—CaMg(CO3)2 0.477 Sodium carbonate/soda ash—Na2CO3 0.415 Barium carbonate—BaCO3 0.223 Potassium...
40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials
Code of Federal Regulations, 2013 CFR
2013-07-01
... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite—CaMg(CO3)2 0.477 Sodium carbonate/soda ash—Na2CO3 0.415 Barium carbonate—BaCO3 0.223 Potassium...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... correct grade of petroleum coke mix, and have been baked, formed, carbonized, impregnated, and graphitized... required for the production of SDGE (e.g., raw material handling, mixing, forming, baking, impregnating... production process, demonstrating how raw materials are formed, baked, impregnated (if needed), re-baked...
Characteristics and production of tantalum powders for solid-electrolyte capacitors
NASA Astrophysics Data System (ADS)
Yoon, Jae Sik; Kim, Byung Il
The effects of using K 2TaF 7 as the raw material and sodium as the reducing agent on the characteristics of tantalum powder are investigated. Batch-type metallothermic reduction (BTMR) is used to charge the reactor with the raw material and the reducing agent, and external continuous supply metallothermic reduction (ESMR) is used to supply the raw material and the reducing agent at a constant rate at the temperature of the reduction reaction. In the case of ESMR, the yield increases by several tens of percent because of the uniform reaction between the raw material and the reducing agent. It is possible to obtain a powder of over 99.5% purity. The powder particles obtained with BTMR are relatively large (4-6 μm) and have a coarse lamellar shape, while those prepared via ESMR are of uniform 1-2 μm size with a coral-like shape. Measurements of the electric properties show that the leakage current and the dielectric dissipation are low with higher reliability in ESMR than in BTMR, and the capacitance is 26,000 and 8400 CV for ESMR and in BTMR, respectively.
Viani, Alberto; Gualtieri, Alessandro F
2013-09-15
According to recent resolutions of the European Parliament (2012/2065(INI)), the need for environmentally friendly alternative solutions to landfill disposal of hazardous wastes, such as asbestos-containing materials, prompts their recycling as secondary raw materials (end of waste concept). In this respect, for the first time, we report the recycling of the high temperature product of cement-asbestos, in the formulation of calcium sulfoaluminate cement clinkers (novel cementitious binders designed to reduce CO₂ emissions), as a continuation of a previous work on their systematic characterization. Up to 29 wt% of the secondary raw material was successfully introduced into the raw mix. Different clinker samples were obtained at 1250 °C and 1300 °C, reproducing the phase composition of industrial analogues. As an alternative source of Ca and Si, this secondary raw material allows for a reduction of the CO₂ emissions in cement production, mitigating the ecological impact of cement manufacturing, and reducing the need for natural resources. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of the environmental impact of portion bag for food packaging: a case study of Thailand
NASA Astrophysics Data System (ADS)
Ruangrit, Chaniporn; Usapein, Parnuwat; Limphitakphong, Nantamol; Chavalparit, Orathai
2017-05-01
This study applied life cycle assessment methodology in evaluating environmental impact of portion bag. The objective of this study was to identify the hotspot of environmental impact through life cycle of portion bag. The options were proposed for improving environmental performance of the product. The system boundary was defined as cradle-to-grave which included the ethylene production, LDPE and LLDPE resins production, portion bag production, disposal, and transportation. All materials and emissions were calculated based on 1 piece of portion bag which weighed 2.49 g. IMPACT 2002+ was used for assessing environmental impact on SimaPro V8.2 software. The result found that the most of environmental impact was generated from LDPE and LLDPE resins which was used as raw material for producing portion bag. After normalization, non-renewable energy showed the highest potential to concern. This impact related directly to the natural gas drilling, ethane production, ethylene production, resin productions, and energy in all process. In conclusion, it should be suggested that the selection of bio-material for producing portion bag can play an important role to reduce the environmental impact. The research demonstrates the possible way and benefits in improving cleaner raw material and suitable way of product's end-of-life for producing green portion bag in the future.
Potential contribution of low cost materials in clean technology
NASA Astrophysics Data System (ADS)
Smail, Heman A.; Shareef, Kafia M.; Ramli, Zainab
2016-03-01
As the world's population approaches more than 9 billion, the strain on the planet's resources is steadily increasing. This demand can only be met by improving production methods to reduce the use of chemicals and the amount of chemical waste. Zeolites are among the least-known products for environmental pollution control, separation science and technology. This study investigates whether the use of geological sources as low-cost materials are suitable for zeolite synthesis and future applications. In this investigation natural montmorillonite clay, locally available in Erbil-Kurdistan, was used as raw material. The experiments were carried out in the presence of ultrasound 30KHz at 60°C and for different crystallization times (5, 10 &15 hours) and the results were compared with those obtained by performing conventional alkaline hydrothermal static syntheses under similar conditions and crystallization time of (90 hours). The raw material as well as the products was analyzed using; Fourier Transform Infra-Red (FT-IR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) spectroscopy and scanning electron microscope (SEM). The experimental data were ascertained the formation of Zeolite successfully. Crystallization by ultrasound has been demonstrated to offer the possibilities of increasing the nucleation and crystallization rates of zeolites, improving the yield and directing the synthesis towards different crystal phases.
77 FR 64142 - Importer of Controlled Substances, Notice of Application, Noramco, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import raw Opium (9600) and... substance. Comments and requests for hearings on applications to import narcotic raw material are not...
76 FR 62447 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... registration as an importer of the following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import narcotic raw materials for... several controlled substances that are manufactured from raw opium, poppy straw, and concentrate of poppy...
77 FR 60143 - Importer of Controlled Substances; Notice of Registration; Cody Laboratories, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... importer of the following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Concentrate Poppy Straw (9670) II Tapentadol (9780) II The company plans to import narcotic raw materials for... several controlled substances that are manufactured from opium raw, and poppy straw concentrate. The...
76 FR 17967 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
... basic classes of controlled substances: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw materials for manufacturing and further distribution... substances that are manufactured from raw opium, poppy straw, and concentrate of poppy straw. No comments or...
75 FR 32506 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... of controlled substances listed in schedule II: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw materials for manufacturing and further... substances that are manufactured from raw opium, poppy straw, and concentrate of poppy straw. No comments or...
Effects of mixing and covering with mature compost on gaseous emissions during composting.
Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E
2014-12-01
This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.
Lunetta, Steven; Roman, Mark
2008-01-01
An international collaborative study was conducted of a high-performance liquid chromatographic (HPLC)-UV method for the determination of coenzyme Q10 (CoQ10, ubidecarenone) in raw materials and dietary supplements. Ten collaborating laboratories determined the total CoQ10 content in 8 blind duplicate samples. Sample materials included CoQ10 raw material and 4 finished product dietary supplements representing softgels, hardshell gelatin capsules, and chewable wafers. In addition, collaborating laboratories received a negative control and negative control spiked with CoQ10 at low and high levels to determine recovery. Materials were extracted with an acetonitrile–tetrahydrofuran–water mixture. Ferric chloride was added to the test solutions to ensure all CoQ10 was in the oxidized form. The HPLC analyses were performed on a C18 column using UV detection at 275 nm. Repeatability relative standard deviations (RSDr) ranged from 0.94 to 5.05%. Reproducibility relative standard deviations (RSDR) ranged from 3.08 to 17.1%, with HorRat values ranging from 1.26 to 5.17. Recoveries ranged from 74.0 to 115%. Based on these results, the method is recommended for Official First Action for determination of CoQ10 in raw materials and dietary supplement finished products containing CoQ10 at a concentration of >100 mg CoQ10/g test material. PMID:18727527
Lunetta, Steven; Roman, Mark
2008-01-01
An international collaborative study was conducted of a high-performance liquid chromatographic (HPLC)-UV method for the determination of coenzyme Q10 (CoQ10, ubidecarenone) in raw materials and dietary supplements. Ten collaborating laboratories determined the total CoQ10 content in 8 blind duplicate samples. Sample materials included CoQ10 raw material and 4 finished product dietary supplements representing softgels, hardshell gelatin capsules, and chewable wafers. In addition, collaborating laboratories received a negative control and negative control spiked with CoQ10 at low and high levels to determine recovery. Materials were extracted with an acetonitrile-tetrahydrofuran-water mixture. Ferric chloride was added to the test solutions to ensure all CoQ10 was in the oxidized form. The HPLC analyses were performed on a C18 column using UV detection at 275 nm. Repeatability relative standard deviations (RSDr) ranged from 0.94 to 5.05%. Reproducibility relative standard deviations (RSDR) ranged from 3.08 to 17.1%, with HorRat values ranging from 1.26 to 5.17. Recoveries ranged from 74.0 to 115%. Based on these results, the method is recommended for Official First Action for determination of CoQ10 in raw materials and dietary supplement finished products containing CoQ10 at a concentration of >100 mg CoQ10/g test material.
NASA Astrophysics Data System (ADS)
Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac
2016-08-01
Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.
NASA Astrophysics Data System (ADS)
Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard
2015-12-01
Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.
López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio
2009-06-15
A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.
The use of foresight methods in strategic raw materials intelligence - an international review
NASA Astrophysics Data System (ADS)
Konrat Martins, Marco Antonio; Bodo, Balazs; Falck, Eberhard
2017-04-01
Foresight methods are systematic attempts to look into the longer term future of science, society, economy and technology. There is a range of tools and techniques that can be used individually or combined, most commonly classified into qualitative, quantitative or semi-quantitative methods, that follow an exploratory or normative approach. These tools can help to identify the longer term visions, orienting policy formulation and decisions, triggering actions, among other objectives. There is an identified lack of European strategic foresight knowledge in the raw materials domain. Since the European Raw Materials Initiative was launched in 2008, the EU has been attempting to overcome challenges related to the future access of non-energy and non-agricultural raw materials. In this context, the ongoing H2020 project, MICA (Mineral Intelligence Capacity Analysis, Grant Agreement No. 689648), has been launched to answer to stakeholders needs by consolidating relevant data, determining relevant methods and tools, and investigating Raw Materials Intelligence options for European mineral policy development, all tailored to fit under the umbrella of a European Raw Materials Intelligence Capacity Platform (EU-RMICP). As part of the MICA activities, an assessment of best practices and benchmarks of international raw materials foresight case studies has been carried out in order to review how EU and non-EU countries have employed foresight. A pool of 30 case studies has been collected and reviewed internationally, one third of which were selected for detailed assessment. These were classified according to their background and goals, in function of methods employed, and to the purpose of each method in the study: a total of 12 different methods were identified in these studies. For longer time frames, qualitative predictive methods such as Scenario Development have been repeatedly observed for mineral raw materials foresight studies. Substantial variations were observed in terms of use and deployment of the scenarios. Pre-defined global scenarios can be used to explore futures thinking over a given theme - a step in the process - whereas the development of specific scenarios can be the main element of the study. The former was used to consider future strategies at different levels and how different futures influence the sector, whilst the latter was preferably used as means of assessment of sector capabilities and the current readiness for future challenges. Other methods such as SWOT, STEEP (Social, Technological, Economical, Environmental and Political scanning) and Brainstorming can be observed supporting the Scenarios, helping to provide either input for its development or post-processing its outcomes towards overall objectives. The volatility of the mineral raw materials sector presents a natural inclination towards more explorative and creativity-based methods. Such methods can address the necessity of understanding how different factors may play out in the future, where critical uncertainties can dictate a range of possible futures. Therefore, having a solid backdrop for alternative paths is extremely useful for policy and decision-makers to propose actions and respond in a timely manner to the future challenges of the sector.
Green biorefinery - Industrial implementation.
Kamm, B; Schönicke, P; Hille, Ch
2016-04-15
Oil refineries currently generate a multitude of products for almost every sphere of life at very high efficiency. However, fossil raw materials are just available in limited quantities. The development of comparable BIOREFINERIES is necessary to make a variety of competitive biological products regarding their equivalent products based on fossil raw materials. The product range of a biorefinery comprises products that can be manufactured on the basis of crude oil, as well as such products that cannot be produced on the basis of crude oil (Kamm, Gruber, & Kamm, 2011). GREEN BIOREFINERIES [GBR's] are complex systems of sustainable, environment- and resource-friendly technologies for a comprehensive material and energy use or recovery of renewable raw materials in form of green and waste biomasses from a sustainable land use as target (Kamm et al., 2009; Digman, Runge, Shinners, & Hatfield, 2013). Copyright © 2015. Published by Elsevier Ltd.
MASSAHAKE whole tree harvesting method for pulp raw-material and fuel -- R&D in 1993--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asplund, D.A.; Ahonen, M.A.
1993-12-31
In Finland biofuels and hydropower are the only indigenous fuels available. Peat, wood and wood derived fuels form about 18% of total primary energy requirement. The largest wood and wood fuel user in Finland is wood processing industry, paper, pulp, sawmills. Due to silvicultural activities the growth of forests has developed an instant need for first thinnings. This need is about 12% of total stem wood growth. With conventional harvesting methods this would produce about 8 mill. m{sup 3} pulp raw material and 2 mill. m{sup 3} wood fuel. By using integrated harvesting methods about 12 mill. m{sup 3} pulpmore » raw material and 8 mill. m{sup 3} (about 1, 3 mill. toe) fuel could be produced. At the moment, there is no economically profitable method for harvesting first thinning trees for industrial use or energy production. Hence, there are a few ongoing research projects aiming at solving the question of integrated harvesting. MASSAHAKE chip purification method has been under R&D since 1987. Research with continuous experimental line (capacity 5--10 loose-m{sup 3}) has been done in 1991 and 1992. The research has concentrated on pine whole tree chip treatment, but preliminary tests with birch whole tree chips has been done. The experiment line will be modified for birth whole tree chips during 1993. Based on the research results more than 60% of the whole tree chips can be separated to pulp raw material with < 1% bark content. This amount is 1.5--2 times more than with present technology. The yield of fuel fraction is 2--4 times higher compared to present methods. Fuel fraction is homogeneous and could be used in most furnaces for energy production. By replacing fossil fuels with wood fuel in energy production it is possible to reduce CO{sub 2}-emissions significantly. This paper presents the wood fuel research areas in Finland and technical potential of MASSAHAKE-method including the plant for building a demonstration plant based on this technology.« less
Raghuvanshi, Smita; Pathak, Kamla
2016-01-01
Introduction: The study was aimed at the development of low-density gastroretentive bioadhesive microsponges of cinnarizine by two-pronged approach (i) coating with bioadhesive material and (ii) exploration of acconon MC 8-2 EP/NF as bioadhesive raw material for fabrication. Materials and Methods: Microsponges were prepared by quasi-emulsion solvent diffusion method using 32 factorial design. Capmul GMO was employed for bioadhesive coating. In parallel, potential of acconon for the fabrication of bioadhesive floating microsponges (A8) was assessed. Results: Formulation with entrapment efficiency = 82.4 ± 3.4%, buoyancy = 82.3 ± 2.5%, and correlation of drug release (CDR8h) = 88.7% ± 2.9% was selected as optimized formulation (F8) and subjected to bioadhesive coating (BF8). The %CDR8h for A8 was similar to BF8 (87.2% ± 3.5%). Dynamic in vitro bioadhesion test revealed comparable bioadhesivity with BF8. The ex vivo permeation across gastric mucin displayed 63.16% for BF8 against 56.74% from A8; affirmed the bioadhesivity of both approaches. Conclusion: The study concluded with the development of novel bioadhesive floating microsponges of cinnarizine employing capmul GMO as bioadhesive coating material and confirmed the viability of acconon MC 8-2EP/NF as bioadhesive raw material for sustained targeted delivery of drug. PMID:28123987
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.
1993-01-01
The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.
The utilization of nonterrestrial materials. [resources for solar power satellite construction
NASA Technical Reports Server (NTRS)
1981-01-01
The development of research and technology programs on the user of nonterrestrial materials for space applications was considered with emphasis on the space power satellite system as a model of large space systems for which the use of nonterrestrial materials may be economically viable. Sample topics discussed include the mining of raw materials and the conversion of raw materials into useful products. These topics were considered against a background of the comparative costs of using terrestrial materials. Exploratory activities involved in the preparation of a nonterrestrial materials utilization program, and the human factors involved were also addressed. Several recommendations from the workshop are now incorporated in NASA activities.
Processing waste fats into a fuel oil substitute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudel, F.; Lengenfeld, P.
1993-12-31
Waste fats have a high energy potential. They also contain impurities. For example, fats used for deep-frying contain high contents of solids, water, and chlorides. The process described in this paper removes the impurities by simple processing such as screening, washing, separating, drying, and filtering. The final quality of processed fat allows its use as a fuel oil substitute, and also as a raw material for chemical production.
Yoon, Weon-Jong; Ham, Young Min; Yoo, Byoung-Sam; Moon, Ji-Young; Koh, Jaesook; Hyun, Chang-Gu
2009-04-01
We elucidated the pharmacological and biological effects of Oenothera laciniata extracts on the production of inflammatory mediators in macrophages. The CH(2)Cl(2) fraction of O. laciniata extract effectively inhibited LPS-induced NO, PGE(2), and proinflammatory cytokine production in RAW264.7 cells. These inhibitory effects of the CH(2)Cl(2) fraction of O. laciniata were accompanied by decreases in the expression of iNOS and COX-2 proteins and iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 mRNA. Asiatic acid and quercetin were present in the HPLC fingerprint of the O. laciniata extract. We tested the potential application of O. laciniata extract as a cosmetic material by performing primary skin irritation tests. In New Zealand white rabbits, primary irritation tests revealed that application of O. laciniata extracts (1%) did not induce erythema or edema formation. Human skin primary irritation tests were performed on the normal skin (upper back) of 30 volunteers to determine if any material in O. laciniata extracts had irritation or sensitization potential. In these assays, O. laciniata extracts did not induce any adverse reactions. Based on these results, we suggest that O. laciniata extracts be considered possible anti-inflammatory candidates for topical application.
How important is drinking water exposure for the risks of engineered nanoparticles to consumers?
Tiede, Karen; Hanssen, Steffen Foss; Westerhoff, Paul; Fern, Gordon J; Hankin, Steven M; Aitken, Robert J; Chaudhry, Qasim; Boxall, Alistair B A
2016-01-01
This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations of ENPs in raw water and treated drinking water, using a simple exposure model, were estimated and then qualitatively compared to available estimates for human exposure through other routes. A range of metal, metal oxide and organic-based ENPs were identified that have the potential to contaminate drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes. The exceptions were some clothing materials, paints and coatings and cleaning products containing Ag, Al, TiO2, Fe2O3 ENPs and carbon-based materials.
[Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].
González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo
2015-01-01
The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Kim, Sun Ae; Choi, Eun Sook; Kim, Nam Hee; Kim, Hye Won; Lee, Na Young; Cho, Tae Jin; Jo, Jun Il; Kim, Soon Han; Lee, Soon Ho; Ha, Sang Do; Rhee, Min Suk
2017-04-01
The present study examined the changes in microbiological composition during the production process of crab marinated in soy sauce, potential microbial hazards, potential contamination routes and effective critical control points. Crab and soy sauce samples were obtained from six different manufacturing plants at different stages, and their microbiological content was comprehensively assessed by quantitative and qualitative analyses. The results revealed the following: (1) the final products contained 4.0 log colony-forming units (CFU) g -1 aerobic plate counts (APCs) and 1.1 log CFU g -1 coliforms, which may have been introduced from the raw materials (the level of APCs in raw crab and soy sauce mixed with other ingredients was 3.8 log CFU g -1 and 4.0 log CFU mL -1 respectively); (2) marination of crab in soy sauce may allow cross-contamination by coliforms; (3) only Bacillus cereus and Staphylococcus aureus were qualitatively detected in samples at different stages of manufacture (detection rate of 28 and 5.6% respectively), and these bacteria may impact the microbiological quality and safety of crab marinated in soy sauce; and (4) bacterial counts were either maintained or increased during the manufacturing process (suggesting that no particular step can be targeted to reduce bacterial counts). Proper management of raw materials and the marination process are effective critical control points, and alternative interventions may be needed to control bacterial quantity. The results provide important basic information about the production of crab marinated in soy sauce and may facilitate effective implementation of sanitary management practices in related industries and research fields. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Manufacture of mold of polymeric composite water pipe reinforced charcoal
NASA Astrophysics Data System (ADS)
Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.
2018-03-01
In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.
Preparation of wood for energy use
Donald L. Sirois; Bryce J. Stokes
1985-01-01
This paper presents an overview & current sources and forms of raw materials for wood energy use and the types of machines available to convert them to the desired form for boiler fuel. Both the fuel source or raw material, and the combustion furnace will dictate the requirements for the processing system. Because of the wide range of processing equipment...
The pallet industry: a changing hardwood market
G.P. Dempsey; D.G. Martens
1991-01-01
From its inception during World War II, the wooden pallet industry has grown to become the Nation's largest industrial consumer of hardwood lumber products. Since most of the raw material in wooden pallets is lower grade lumber, the pallet industry's growth, efficiency, and changing raw material inputs must be of concern to the grade hardwood lumber industry...
Acoustic assessment of wood quality of raw forest materials : a path to increased profitability
Xiping Wang; Peter Carter; Robert J. Ross; Brian K. Brashaw
2007-01-01
Assessment of the quality of raw wood materials has become a crucial issue in the operational value chain as forestry and the wood processing industry are increasingly under economic pressure to maximize extracted value. A significant effort has been devoted toward developing robust nondestructive evaluation (NDE) technologies capable of predicting the intrinsic wood...
Pulpwood production in the Northeast - 1974
James T. Bones; David R. Dickson
1976-01-01
This annual report is based on a canvass of all pulpmills in the Northeast that use wood-either roundwood or plant residues-as a basic raw material for a variety of products. Cross-boundary shipments were traced by exchanging information with neighboring experiment stations that conduct similar canvasses. Mills that use pulpwood as a raw material in producing...
Pulpwood production in the Northeast - 1975
James T. Bones; David R. Dickson
1976-01-01
This annual report is based on a canvass of all pulpmills in the Northeast that use wood-either roundwood or plant residues-as a basic raw material for a variety of products. Cross-boundary shipments are traced by exchanging information with neighboring experiment stations that conduct similar canvasses. Mills that use pulpwood as a raw material in producing insulation...
Noel, Joseph
2018-04-26
Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting.
1984-10-01
Textile Fibers/Products Foods , Feeds, Beverages Industrial Supplies Value of Goods Exported ($ billions) 1958 1968 1978 $18.1 billion...character of its government, the soundness of its economy, its industrial efficiency, the development of its internal communications, the quality...decades the United States produced more raw materials than its growing industrial complex could consume. From a raw-materials-surplus-nation we
Characterization of ZrO2-Y2O3 thermal spray powder systems
NASA Technical Reports Server (NTRS)
Mantkowski, Thomas E.; Rigney, David V.; Froning, Marc J.; Jayaraman, N.
1985-01-01
The overall objective is to establish the interrelation between the raw material in the coating process and the performance of the coating deposit. It is anticipated that these interrelations will help establish more precise specifications for the procurement of the raw materials. Some of the preliminary results of the program are presented.
Lagrange multiplier for perishable inventory model considering warehouse capacity planning
NASA Astrophysics Data System (ADS)
Amran, Tiena Gustina; Fatima, Zenny
2017-06-01
This paper presented Lagrange Muktiplier approach for solving perishable raw material inventory planning considering warehouse capacity. A food company faced an issue of managing perishable raw materials and marinades which have limited shelf life. Another constraint to be considered was the capacity of the warehouse. Therefore, an inventory model considering shelf life and raw material warehouse capacity are needed in order to minimize the company's inventory cost. The inventory model implemented in this study was the adapted economic order quantity (EOQ) model which is optimized using Lagrange multiplier. The model and solution approach were applied to solve a case industry in a food manufacturer. The result showed that the total inventory cost decreased 2.42% after applying the proposed approach.
Carbon source in the future chemical industries
NASA Astrophysics Data System (ADS)
Hofmann, Peter; Heinrich Krauch, Carl
1982-11-01
Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.
Lederer, Jakob; Trinkel, Verena; Fellner, Johann
2017-02-01
A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22%, which is suggested by some studies, the limit values for cements as defined by the BMLFUW (2016) will be exceeded. Furthermore, the concrete produced from this cement will not be recyclable anymore due to its high total heavy metal contents. This and the comparatively high contribution of MSWI fly ashes to total heavy metal contents in cements indicate their relatively low resource potential if compared to other secondary raw materials in the cement industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
The cellulose resource matrix.
Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G
2013-03-01
The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the feedstock and the performance in the end-application. The cellulose resource matrix should become a practical tool for stakeholders to make choices regarding raw materials, process or market. Although there is a vast amount of scientific and economic information available on cellulose and lignocellulosic resources, the accessibility for the interested layman or entrepreneur is very difficult and the relevance of the numerous details in the larger context is limited. Translation of science to practical accessible information with modern data management and data integration tools is a challenge. Therefore, a detailed matrix structure was composed in which the different elements or entries of the matrix were identified and a tentative rough set up was made. The inventory includes current commodities and new cellulose containing and raw materials as well as exotic sources and specialties. Important chemical and physical properties of the different raw materials were identified for the use in processes and products. When available, the market data such as price and availability were recorded. Established and innovative cellulose extraction and refining processes were reviewed. The demands on the raw material for suitable processing were collected. Processing parameters known to affect the cellulose properties were listed. Current and expected emerging markets were surveyed as well as their different demands on cellulose raw materials and processes. The setting up of the cellulose matrix as a practical tool requires two steps. Firstly, the reduction of the needed data by clustering of the characteristics of raw materials, processes and markets and secondly, the building of a database that can provide the answers to the questions from stakeholders with an indicative character. This paper describes the steps taken to achieve the defined clusters of most relevant and characteristic properties. These data can be expanded where required. More detailed specification can be obtained from the background literature and handbooks. Where gaps of information are identified, the research questions can be defined that will require further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viani, Alberto, E-mail: viani@itam.cas.cz; Sotiriadis, Konstantinos; Len, Adél
Full characterization of fired-clay bricks is crucial for the improvement of process variables in manufacturing and, in case of old bricks, for restoration/replacement purposes. To this aim, five bricks produced in a plant in Czech Republic in the past have been investigated with a combination of analytical techniques in order to derive information on the firing process. An additional old brick from another brickyard was also used to study the influence of different raw materials on sample microstructure. The potential of X-ray diffraction with the Rietveld method and small angle neutron scattering technique has been exploited to describe the phasemore » transformations taking place during firing and characterize the brick microstructure. Unit-cell parameter of spinel and amount of hematite are proposed as indicators of the maximum firing temperature, although for the latter, limited to bricks produced from the same raw material. The fractal quality of the surface area of pores obtained from small angle neutron scattering is also suggested as a method to distinguish between bricks produced from different raw clays. - Highlights: • Rietveld method helps in describing microstructure and physical properties of bricks. • XRPD derived cell parameter of spinel is proposed as an indicator of firing temperature. • SANS effectively describes brick micro and nanostructure, including closed porosity. • Fractal quality of pore surface is proposed as ‘fingerprint’ of brick manufacturing.« less
NASA Astrophysics Data System (ADS)
Yamashita, Aichi; Ogiso, Osamu; Matsumoto, Ryo; Tanaka, Masashi; Hara, Hiroshi; Tanaka, Hiromi; Takeya, Hiroyuki; Lee, Chul-Ho; Takano, Yoshihiko
2018-06-01
We found that the electronic transport property of SnSe single crystals was sensitively affected by oxidation in raw Sn. Semiconducting SnSe single crystals were obtained by using Sn of grain form as a starting material while powder Sn resulted in metallic SnSe. X-ray photoelectron spectroscopy analysis revealed that the surfaces of raw Sn were oxidized, which volume fraction is lower in grain Sn. This indicates that the amount of oxygen in raw Sn is the key factor for the electronic transport property of SnSe.
Cost Models for MMC Manufacturing Processes
NASA Technical Reports Server (NTRS)
Elzey, Dana M.; Wadley, Haydn N. G.
1996-01-01
The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.
Chiba, Y; Bryce, J H; Goodfellow, V; MacKinlay, J; Agu, R C; Brosnan, J M; Bringhurst, T A; Harrison, B
2012-04-11
Our study showed that sorghum and millet followed a similar pattern of changes when they were malted under similar conditions. When the malt from these cereals was mashed, both cereal types produced wide spectra of substrates (sugars and amino acids) that are required for yeast fermentation when malted at either lower or higher temperatures. At the germination temperatures of 20, 25, and 30 °C used in malting both cereal types, production of reducing sugars and that of free amino nitrogen (FAN) were similar. This is an important quality attribute for both cereals because it implies that variation in temperature during the malting of sorghum and millet, especially when malting temperature is difficult to control, and also reflecting temperature variations, experienced in different countries, will not have an adverse effect on the production and release of amino acids and sugars required by yeast during fermentation. Such consistency in the availability of yeast food (substrates) for metabolism during fermentation when sorghum and millet are malted at various temperatures is likely to reduce processing issues when their malts are used for brewing. Although sorghum has gained wide application in the brewing industry, and has been used extensively in brewing gluten-free beer on industrial scale, this is not the case with millet. The work described here provides novel information regarding the potential of millet for brewing. When both cereals were malted, the results obtained for millet in this study followed patterns similar to those of sorghum. This suggests that millet, in terms of sugars and amino acids, can play a role similar to that of sorghum in the brewing industry. This further suggests that millet, like sorghum, would be a good raw material for brewing gluten-free beer. Inclusion of millet as a brewing raw material will increase the availability of suitable materials (raw material sustainability) for use in the production of gluten-free beer, beverages, and other products. The availability of wider range of raw materials will not only help to reduce costs of beer production, but by extension, the benefit of reduced cost of production can be gained by consumers of gluten-free beer as the product would be cheaper and more widely available.
Thermal Curing Process Monitoring of the Composite Material Using the FBG sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
The raw composite material will suffer complex chemical and morphological changes during the thermal curing process, and it is difficult to monitor the curing process and curing effect. In this paper, the FBG sensor was embedded in the raw composite material to monitor the whole curing process. The experiment results showed that the FBG sensor can monitor the resin transformation and residual deformation of the composite material, and the FBG sensor can be applied to monitor the thermal curing process of the composite structure.
Smol, Marzena; Kulczycka, Joanna; Kowalski, Zygmunt
2016-12-15
The aim of this research is to present the possibility of using the sewage sludge ash (SSA) generated in incineration plants as a secondary source of phosphorus (P). The importance of issues related to P recovery from waste materials results from European Union (UE) legislation, which indicated phosphorus as a critical raw material (CRM). Due to the risks of a shortage of supply and its impact on the economy, which is greater than other raw materials, the proper management of phosphorus resources is required in order to achieve global P security. Based on available databases and literature, an analysis of the potential use of SSA for P-recovery in Poland was conducted. Currently, approx. 43,000 Mg/year of SSA is produced in large and small incineration plants and according to in the Polish National Waste Management Plan 2014 (NWMP) further steady growth is predicted. This indicates a great potential to recycle phosphorus from SSA and to reintroduce it again into the value chain as a component of fertilisers which can be applied directly on fields. The amount of SSA generated in installations, both large and small, varies and this contributes to the fact that new and different P recovery technology solutions must be developed and put into use in the years to come (e.g. mobile/stationary P recovery installations). The creation of a database focused on the collection and sharing of data about the amount of P recovered in EU and Polish installations is identified as a helpful tool in the development of an efficient P management model for Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.
2017-09-01
The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.
Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation
NASA Technical Reports Server (NTRS)
Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.
1994-01-01
The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58... milk used. Such dairy products shall have originated from raw milk meeting the same requirements as...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58... milk used. Such dairy products shall have originated from raw milk meeting the same requirements as...
Qureshi, Muhammad I.; Al-Baghli, Nadhir
2017-01-01
The present study reports the use of raw, iron oxide, and aluminum oxide impregnated carbon nanotubes (CNTs) for the adsorption of hexavalent chromium (Cr(VI)) ions from aqueous solution. The raw CNTs were impregnated with 1% and 10% loadings (weight %) of iron oxide and aluminum oxide nanoparticles using wet impregnation technique. The synthesized materials were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Batch adsorption experiments were performed to assess the removal efficiency of Cr(VI) ions from water and the effects of pH, contact time, adsorbent dosage, and initial concentration of the Cr(VI) ions were investigated. Results of the study revealed that impregnated CNTs achieved significant increase in the removal efficiency of Cr(VI) ions compared to raw CNTs. In fact, both CNTs impregnated with 10% loading of iron and aluminum oxides were able to remove up to 100% of Cr(VI) ions from aqueous solution. Isotherm studies were carried out using Langmuir and Freundlich isotherm models. Adsorption kinetics of Cr(VI) ions from water was found to be well described by the pseudo-second-order model. The results suggest that metallic oxide impregnated CNTs have very good potential application in the removal of Cr(VI) ions from water resulting in better environmental protection. PMID:28487625
ERIC Educational Resources Information Center
Niehoff, Richard O.; Wilder, Bernard
Nonformal education programs operating in the modern sector in Ethiopia are described in a perspective relevant to the Ethiopian context. The modern sector is defined as those activities concerned with the manufacture of goods, extraction of raw materials, the processing of raw materials, the provision of services, and the creation and maintenance…
Code of Federal Regulations, 2012 CFR
2012-07-01
... from nitric acid production in which all the raw material ammonia is in the gaseous form: [Metric units... limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia... all the raw material ammonia is in the shipped liquid form: [Metric units, kg/kkg of product; English...
Code of Federal Regulations, 2011 CFR
2011-07-01
... from nitric acid production in which all the raw material ammonia is in the gaseous form: [Metric units... limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia... all the raw material ammonia is in the shipped liquid form: [Metric units, kg/kkg of product; English...
Code of Federal Regulations, 2014 CFR
2014-07-01
... from nitric acid production in which all the raw material ammonia is in the gaseous form: [Metric units... limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia... all the raw material ammonia is in the shipped liquid form: [Metric units, kg/kkg of product; English...
Code of Federal Regulations, 2013 CFR
2013-07-01
... from nitric acid production in which all the raw material ammonia is in the gaseous form: [Metric units... limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia... all the raw material ammonia is in the shipped liquid form: [Metric units, kg/kkg of product; English...
Code of Federal Regulations, 2010 CFR
2010-07-01
... from nitric acid production in which all the raw material ammonia is in the gaseous form: [Metric units... limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Ammonia... all the raw material ammonia is in the shipped liquid form: [Metric units, kg/kkg of product; English...
Pulpwood production in the Northeast 1969
James T. Bones; David R. Dickson
1970-01-01
This annual report is based on a canvass of all pulpmills in the Northeast that use wood-either from roundwood or plant residues-as a basic raw material for a variety of products. Mills that use pulpwood as a raw material in producing insulation board and hardboard were also included in the canvass. The production-from-roundwood statistics reported in this bulletin are...
Pulpwood production in the Northeast 1970
James T. Bones; David R. Dickson
1971-01-01
This annual report is based on a canvass of all pulpmills in the Northeast that use wood-either roundwood or plant residues-as a basic raw material for a variety of products. Mills that use pulpwood as a raw material in producing insulation board and hardboard were also included in the canvass. The statistics for production from roundwood reported in this bulletin are...
2. EXTERIOR VIEW, LOOKING NORTHEAST FROM THE CUPOLA (RIGHT) TO ...
2. EXTERIOR VIEW, LOOKING NORTHEAST FROM THE CUPOLA (RIGHT) TO COKE BIN (LEFT), OF RAW MATERIALS YARD. FOUNDRY IRON IS FROM SCRAP, NOT BASIC ORE. RAW MATERIALS ASSEMBLED, IN PILES, FOR SMELTING ARE AUTOMOTIVE SCRAP (CENTER), STRUCTURAL STEEL AND RAILROAD RAIL (RIGHT) AND LIMESTONE (LEFT). - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Successes, shortcomings in using production wastes as raw material
NASA Astrophysics Data System (ADS)
Glushenkova, L.
1983-10-01
The economical and rational use of all forms of resources under modern conditions is a task of nationwide significance. Its urgency is caused by factors such as the progressively growing need for raw material, fuel, energy, and supplies, the limited and non-renewable nature of many minerals, and the difficult conditions of mining them and transporting them to where they are needed.
Nie, Kaili; Wang, Fang; Tan, Tianwei; Liu, Luo
2015-11-01
Non-edible oils are preferred raw materials for biodiesel production. However, the properties of raw materials significantly affect the synthesis process, leading to difficulties to design one process suitable for any kind of raw material. In this study, the composition of five typical non-edible oils was analyzed. The major difference was the content of free fatty acids, reflected from their acid values. The influence of different oils was investigated by using lipase from Candida sp. 99-125. At low lipase dosage and low water content, the conversion was found proportional to the acid value. However, by increasing the water content or lipase dosage, we observed that the conversions for all kinds of oils used in this study could exceed 80%. Time course analysis indicates that the lipase used in this study catalyzed hydrolysis followed by esterification, rather than direct transesterification. Accumulation of free fatty acids at the very beginning was necessary. A high water content facilitated the hydrolysis of oils with low acid value. This lipase showed capability to transform all the oils by controlling the water content.
Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets.
Zheng, Yi; Zhu, Fan; Lin, Dan; Wu, Jun; Zhou, Yichao; Mark, Bohn
2017-01-01
Objective: To prepare a more comprehensive nutrition, more balanced proportion of natural nutritional supplement tablets with Moringa oleifera leaves and spirulina the two nutrients which have complementary natural food ingredients. Method: On the basis of research M. oleifera leaves with spirulina nutrient composition was determined on M. oleifera leaves and spirulina ratio of raw materials, and the choice of microcrystalline cellulose, sodium salt of caboxy methyl cellulose(CMC),magnesium stearate excipient, through single factor and orthogonal experiment, selecting the best formula tablets prepared by powder direct compression technology, for preparation of M. oleifera and spirulina complex tablets. Results: The best ratio of raw material for the M. oleifera leaves powder: spirulina powder was 7:3, the best raw materials for the tablet formulation was 88.5%, 8.0% microcrystalline cellulose, CMC 2.0%, stearin magnesium 1.5%, the optimum parameters for the raw material crushing 200-300 mesh particle size, moisture content of 7%, tableting pressure 40 kN. Conclusion: Through formulation and process optimization, we can prepare more comprehensive and balanced nutrition M. oleifera and spirulina complex tablets, its sheet-shaped appearance, piece weight variation, hardness, friability, disintegration and other indicators have reached the appropriate quality requirements.
NASA Astrophysics Data System (ADS)
Cao, Ensi; Yang, Yuqing; Cui, Tingting; Zhang, Yongjia; Hao, Wentao; Sun, Li; Peng, Hua; Deng, Xiao
2017-01-01
LaFeO3-δ nanoparticles were prepared by citric sol-gel method with different raw material choosing and calcination process. The choosing of polyethylene glycol instead of ethylene glycol as raw material and additional pre-calcination at 400 °C rather than direct calcination at 600 °C could result in the decrease of resistance due to the reduction of activation energy Ea. Meanwhile, the choosing of ethylene glycol as raw material and additional pre-calcination leads to the enhancement of sensitivity to ethanol. Comprehensive analysis on the sensitivity and XRD, SEM, TEM, XPS results indicates that the sensing performance of LaFeO3-δ should be mainly determined by the adsorbed oxygen species on Fe ions, with certain contribution from native active oxygen. The best sensitivity of 46.1-200 ppm ethanol at prime working temperature of 112 °C is obtained by the sample using ethylene glycol as raw material with additional pre-calcination, which originates from its uniformly-sized and well-dispersed particles as well as high atomic ratio of Fe/La at surface region.
Zhang, Hongdan; Wu, Shubin
2014-12-03
Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.
Rives, Jesús; Fernandez-Rodriguez, Ivan; Rieradevall, Joan; Gabarrell, Xavier
2012-11-15
Cork oak grows endemically in a narrow region bordering the western Mediterranean, and especially in the Iberian Peninsula. The importance of cork agro-forestry systems lies in the fact that a natural and renewable raw material - cork - can be extracted sustainably without endangering the tree or affecting biodiversity. This paper describes an environmental analysis of the extraction of raw cork in cork oak forests in Catalonia, using data from five representative local forest exploitations. The evaluation was carried out using life cycle assessment (LCA) methodology, and all the forestry management required to obtain a tonne of raw cork was included. The aim of the study was to evaluate the environmental impacts - in terms of global warming, acidification, eutrophication, human toxicity, and so on - caused by cork extraction and determine the carbon dioxide balance of these forestry systems, with a tree lifespan of about 200 years. During the life cycle extraction of cork in Catalonia, 0.2 kg of CO(2) eq. was emitted per kg of raw cork extracted. Moreover, cork cannot be extracted without the tree, which will be fixing carbon dioxide throughout its technological useful life (200 years), despite the fact that the bark is removed periodically: every 13-14 years. If the emission from extraction and the carbon contained in the material is discounted, the carbon dioxide balance indicates that 18 kg of CO(2) are fixed per kg of raw cork extracted. Therefore, cork is a natural, renewable and local material that can replace other non-renewable materials, at local level, to reduce the environmental impacts of products, and particularly to reduce their carbon footprint. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cooper, Bonnie L.; Mckay, David S.; Allen, Carlton C.; Hoffman, John H.; Gittleman, Mark E.
1997-01-01
The Integrated Dust/Soil Experiment Package (IDEP) is a suite of instruments that can detect and quantify the abundances of useful raw materials on Mars. We focus here on its capability for resource characterization in the martian soil; however, it is also capable of detecting and quantifying gases in the atmosphere. This paper describes the scientific rationale and the engineering design behind the IDEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyangKyu
The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.
Energy 101: Clean Energy Manufacturing
None
2018-01-16
Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.
Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.
Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim
2012-12-01
Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
A metallurgical route to solar-grade silicon
NASA Technical Reports Server (NTRS)
Schei, A.
1986-01-01
The aim of the process is to produce silicon for crystallization into ingots that can be sliced to wafers for processing into photovoltaic cells. If the potential purity can be realized, the silicon will also be applicable for ribbon pulling techniques where the purification during crystallization is negligible. The process consists of several steps: selection and purification of raw materials, carbothermic reduction of silica, ladle treatment, casting, crushing, leaching, and melting. The leaching step is crucial for high purity, and the obtainable purity is determined by the solidification before leaching. The most difficult specifications to fulfill are the low contents of boron, phosphorus, and carbon. Boron and phosphorus can be excluded from the raw materials, but the carbothermic reduction will unavoidably saturate the silicon with carbon at high temperature. During cooling carbon will precipitate as silicon carbide crystals, which will be harmful in solar cells. The cost of this solar silicon will depend strongly on the scale of production. It is as yet premature to give exact figures, but with a scale of some thousand tons per year, the cost will only be a few times the cost of ordinary metallurgical silicon.
Li, Fengwei; Gao, Jian; Xue, Feng; Yu, Xiaohong; Shao, Tao
2016-03-23
Extraction of polysaccharides from Gynura medica (GMPs) was optimized by response surface methodology (RSM). A central composition design including three parameters, namely extraction temperature (X₁), ratio of water to raw material (X₂) and extraction time (X₃), was used. The best conditions were extraction temperature of 91.7 °C, extraction time of 4.06 h and ratio of water to raw material of 29.1 mL/g. Under the optimized conditions, the yield of GMPs was 5.56%, which was similar to the predicted polysaccharides yield of 5.66%. A fraction named GMP-1 was obtained after isolation and purification by DEAE-52 and Sephadex G-100 gel chromatography, respectively. GMP-1, with a molecular weight of 401 kDa, mainly consisted of galacturonic acid (GalA), xylose (Xyl), glucose (Glu). Infrared spectroscopy was used to characterize the major functional groups of GMP-1 and the results indicated that it was an acidic polysaccharide. The antioxidant and α-glucosidase inhibitory activities of GMPs and GMP-1 were determined in vitro. The results indicated that GMPs and GMP-1 show potential for use in functional foods or medicines.
Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo
2017-12-01
Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.
Neo-Industrial and Sustainable Development of Russia as Mineral Resources Exploiting Country
NASA Astrophysics Data System (ADS)
Prokudina, Marina; Zhironkina, Olga; Kalinina, Oksana; Gasanov, Magerram; Agafonov, Felix
2017-11-01
In the Russian economy, the world leadership in the extraction of different mineral resources is combined with the potential for their processing and a significant scientific sector. Innovative development of raw materials extraction is impossible without the parallel technological modernization of the high-tech sector. In general, the complex of these processes is a neo-industrialization of the economy. Neo-industrially oriented transformation of the economy reflects complex changes in its structure, the transformation of established stable relationships between various elements of the system of social production that determine macroeconomic proportions. Neo-industrial transformations come along with the modification of economic relations associated with investments, innovations, labor and income distribution, with the process of locating productive forces and regulating the economy by the government. Neo-industrialization of economy is not only significant changes in its technological and reproductive structure (the development of high-tech industries, the integration of science and industry), but, above all, the implementation of a system structural policy of innovative development of raw material industry and the recovery of manufacturing industries on a new technological basis.
The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.
Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen
2016-01-01
The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Materials § 58.232 Milk. Raw milk shall meet the requirements as outlined in §§ 58.132 through 58.138 and, unless...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Materials § 58.232 Milk. Raw milk shall meet the requirements as outlined in §§ 58.132 through 58.138 and, unless...
40 CFR 409.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409... raw material (raw sugar) contained within aqueous solution at the beginning of the process for production of refined cane sugar. ...
Extraterrestrial materials processing and construction
NASA Technical Reports Server (NTRS)
Criswell, D. R.
1978-01-01
Applications of available terrestrial skills to the gathering of lunar materials and the processing of raw lunar materials into industrial feed stock were investigated. The literature on lunar soils and rocks was reviewed and the chemical processes by which major oxides and chemical elements can be extracted were identified. The gathering of lunar soil by means of excavation equipment was studied in terms of terrestrial experience with strip mining operations on earth. The application of electrostatic benefication techniques was examined for use on the moon to minimize the quantity of materials requiring surface transport and to optimize the stream of raw materials to be transported off the moon for subsequent industrial use.
Lovgalev, A S
1998-01-01
The paper analyzes the standard legal and methodological assurance of the quality and safety of animal food raw materials and foodstuffs (meat, meat products, fish, shellfish, crayfish and their processing products) by the parasitic purity rates according the requirements under the Russian Federation's laws "On Sanitary and Epidemiological Well-Being of the Population", "On Protection of Consumer's Rights", "On Certification of Products and Services", those of SanPiN, such as 2.3.2.560-96 "Sanitary Requirements for the Quality and Safety of Food Raw Materials and Foodstuffs" and 3.2.569-96 "Prevention of Parasitic Diseases in the Russian Federation".
NASA Astrophysics Data System (ADS)
Batyaev, V. F.; Sklyarov, S. V.
2017-09-01
The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.
JPRS Report East Asia Southeast Asia
1987-06-03
the Philippines and Japan experienced production problems. The Philippines lacked supplies of raw materials while Japan’s currency rose so high as...Malaysia, Saudi Arabia, Singapore Squid: Greece, Spain, the Philippines , Saudi Arabia, U.S. Clams: U.S., Canada, Malaysia, Japan, Italy, West Germany...raw material caught under joint venture fisheries enter- prises, while Thailand’s competitors like the Philippines and Taiwan remain unable to
Effect of the raw material composition of fabrics on the Limiting Oxygen Index (LOI)
NASA Technical Reports Server (NTRS)
Jeler, S.; Ceric, B.
1986-01-01
The raw material composition of fabrics is one of the most important factors for LOI value. LOI value was determined in samples of varying composition composed of cellulose, protein, and synthetic fibers and their mixtures, based on ASTM D 2863-76. Cellulose fibers and their mixtures exhibited the lowest value, while synthetic fibers had the highest LOI value.
JPRS Report, Near East and South Asia, India
1992-05-13
withdrawal of the RBI import policy for capital goods, raw materials, compo- nents and industrial consumables . Also, the licensing of host of industrial ...fully capable of establishing consumer production industries and providing raw materials for it. This would also benefit India, because a huge market...which two- thirds of population depends for their livelihood, demand base for the industrial sector, especially essen- tial consumer goods is likely
Klump, Barbara C; Sugasawa, Shoko; St Clair, James J H; Rutz, Christian
2015-11-18
New Caledonian crows use a range of foraging tools, and are the only non-human species known to craft hooks. Based on a small number of observations, their manufacture of hooked stick tools has previously been described as a complex, multi-stage process. Tool behaviour is shaped by genetic predispositions, individual and social learning, and/or ecological influences, but disentangling the relative contributions of these factors remains a major research challenge. The properties of raw materials are an obvious, but largely overlooked, source of variation in tool-manufacture behaviour. We conducted experiments with wild-caught New Caledonian crows, to assess variation in their hooked stick tool making, and to investigate how raw-material properties affect the manufacture process. In Experiment 1, we showed that New Caledonian crows' manufacture of hooked stick tools can be much more variable than previously thought (85 tools by 18 subjects), and can involve two newly-discovered behaviours: 'pulling' for detaching stems and bending of the tool shaft. Crows' tool manufactures varied significantly: in the number of different action types employed; in the time spent processing the hook and bending the tool shaft; and in the structure of processing sequences. In Experiment 2, we examined the interaction of crows with raw materials of different properties, using a novel paradigm that enabled us to determine subjects' rank-ordered preferences (42 tools by 7 subjects). Plant properties influenced: the order in which crows selected stems; whether a hooked tool was manufactured; the time required to release a basic tool; and, possibly, the release technique, the number of behavioural actions, and aspects of processing behaviour. Results from Experiment 2 suggested that at least part of the natural behavioural variation observed in Experiment 1 is due to the effect of raw-material properties. Our discovery of novel manufacture behaviours indicates a plausible scenario for the evolutionary origins, and gradual refinement, of New Caledonian crows' hooked stick tool making. Furthermore, our experimental demonstration of a link between raw-material properties and aspects of tool manufacture provides an alternative hypothesis for explaining regional differences in tool behaviours observed in New Caledonian crows, and some primate species.
Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics
Trunfio, Nicholas; Lee, Haewoo; Starkey, Jason; Agarabi, Cyrus; Liu, Jay
2017-01-01
Two of the primary issues with characterizing the variability of raw materials used in mammalian cell culture, such as wheat hydrolysate, is that the analyses of these materials can be time consuming, and the results of the analyses are not straightforward to interpret. To solve these issues, spectroscopy can be combined with chemometrics to provide a quick, robust and easy to understand methodology for the characterization of raw materials; which will improve cell culture performance by providing an assessment of the impact that a given raw material will have on final product quality. In this study, four spectroscopic technologies: near infrared spectroscopy, middle infrared spectroscopy, Raman spectroscopy, and fluorescence spectroscopy were used in conjunction with principal component analysis to characterize the variability of wheat hydrolysates, and to provide evidence that the classification of good and bad lots of raw material is possible. Then, the same spectroscopic platforms are combined with partial least squares regressions to quantitatively predict two cell culture critical quality attributes (CQA): integrated viable cell density and IgG titer. The results showed that near infrared (NIR) spectroscopy and fluorescence spectroscopy are capable of characterizing the wheat hydrolysate's chemical structure, with NIR performing slightly better; and that they can be used to estimate the raw materials’ impact on the CQAs. These results were justified by demonstrating that of all the components present in the wheat hydrolysates, six amino acids: arginine, glycine, phenylalanine, tyrosine, isoleucine and threonine; and five trace elements: copper, phosphorus, molybdenum, arsenic and aluminum, had a large, statistically significant effect on the CQAs, and that NIR and fluorescence spectroscopy performed the best for characterizing the important amino acids. It was also found that the trace elements of interest were not characterized well by any of the spectral technologies used; however, the trace elements were also shown to have a less significant effect on the CQAs than the amino acids. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 33:1127–1138, 2017 PMID:28393480
Diederichs, Sylvia; Korona, Anna; Staaden, Antje; Kroutil, Wolfgang; Honda, Kohsuke; Ohtake, Hisao; Büchs, Jochen
2014-11-07
Media containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDA's Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes. Under non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product. This work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly checked. In this study, the RAMOS technique enabled a reliable and reproducible screening and phenotyping of complex raw material lots by online measurement of the respiration activity. Consequently, complex raw material lots can efficiently be assessed if the distinct effects on culture behavior and final product quality and quantity are visualized.
Eucommia ulmoides Oliver: A Potential Feedstock for Bioactive Products.
Zhu, Ming-Qiang; Sun, Run-Cang
2018-06-06
Eucommia ulmoides Oliver (EUO), a traditional Chinese herb, contains a variety of bioactive chemicals, including lignans, iridoids, phenolics, steroids, terpenoids, flavonoids, etc. These bioactive chemicals possess the effective function in nourishing the liver and kidneys and regulating blood pressure. The composition of bioactive chemicals extracted from EUO vary in the different functional parts (leaves, seeds, bark, and staminate flower) and planting models. The bioactive parts of EUO are widely used as raw materials for medicine and food, powdery extracts, herbal formulations, and tinctures. These capabilities hold potential for future development and commercial exploitation of the bioactive products from EUO.
Raghuvanshi, Smita; Pathak, Kamla
2016-01-01
The study was aimed at the development of low-density gastroretentive bioadhesive microsponges of cinnarizine by two-pronged approach (i) coating with bioadhesive material and (ii) exploration of acconon MC 8-2 EP/NF as bioadhesive raw material for fabrication. Microsponges were prepared by quasi-emulsion solvent diffusion method using 3 2 factorial design. Capmul GMO was employed for bioadhesive coating. In parallel, potential of acconon for the fabrication of bioadhesive floating microsponges (A8) was assessed. Formulation with entrapment efficiency = 82.4 ± 3.4%, buoyancy = 82.3 ± 2.5%, and correlation of drug release (CDR 8h ) = 88.7% ± 2.9% was selected as optimized formulation (F8) and subjected to bioadhesive coating (BF8). The %CDR 8h for A8 was similar to BF8 (87.2% ± 3.5%). Dynamic in vitro bioadhesion test revealed comparable bioadhesivity with BF8. The ex vivo permeation across gastric mucin displayed 63.16% for BF8 against 56.74% from A8; affirmed the bioadhesivity of both approaches. The study concluded with the development of novel bioadhesive floating microsponges of cinnarizine employing capmul GMO as bioadhesive coating material and confirmed the viability of acconon MC 8-2EP/NF as bioadhesive raw material for sustained targeted delivery of drug.
Cottica, Danilo; Grignani, Elena
2013-01-01
The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions.
Boran, Gokhan; Regenstein, Joe M
2010-01-01
Gelatin is a multifunctional ingredient used in foods, pharmaceuticals, cosmetics, and photographic films as a gelling agent, stabilizer, thickener, emulsifier, and film former. As a thermoreversible hydrocolloid with a narrower gap between its melting and gelling temperatures, both of which are below human body temperature, gelatin provides unique advantages over carbohydrate-based gelling agents. Gelatin is mostly produced from pig skin, and cattle hides and bones. Some alternative raw materials have recently gained attention from both researchers and the industry not just because they overcome religious concerns shared by Jews and Muslims but also because they provide, in some cases, technological advantages over mammalian gelatins. Fish skins from a number of fish species are among the other sources that have been comprehensively studied as sources for gelatin production. Fish skins have a significant potential for the production of high-quality gelatin with different melting and gelling temperatures over a much wider range than mammalian gelatins, yet still have a sufficiently high gel strength and viscosity. Gelatin quality is industrially determined by gel strength, viscosity, melting or gelling temperatures, the water content, and microbiological safety. For gelatin manufacturers, yield from a particular raw material is also important. Recent experimental studies have shown that these quality parameters vary greatly depending on the biochemical characteristics of the raw materials, the manufacturing processes applied, and the experimental settings used for quality control tests. In this review, the gelatin quality achieved from different fish species is reviewed along with the experimental procedures used to determine gelatin quality. In addition, the chemical structure of collagen and gelatin, the collagen-gelatin conversion, the gelation process, and the gelatin market are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates
Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135
Santos, Juliana Lane Paixão Dos; Bernardi, Angélica Olivier; Pozza Morassi, Letícia L; Silva, Beatriz S; Copetti, Marina Venturini; S Sant'Ana, Anderson
2016-09-01
This study aimed to assess the incidence, to quantify and to assess the diversity of fungi in a multigrain whole meal bread processing plant. Two hundred and eight one (n=281) samples were analyzed, including raw materials (n=120), air samples (n=136) and multigrain breads (n=25). Among the raw materials, the whole corn flour showed the highest counts of fungi (4.8logCFU/g), followed by whole-wheat flour (3.1logCFU/g). The counts of fungi in the air of processing environment were higher in post-baking steps (oven output, cooling, slicing, packaging) than in pre-baking steps (weighing and mixer) (p<0.05). Species of fungi isolated from spoiled bread samples stored at 5, 20, 25 and 30, and 40°C corresponded mostly to Penicillium paneum and Penicillium polonicum isolated from 20 and 24% of samples, respectively. These species were also isolated from raw materials (P. paneum and P. polonicum) and air collected at different processing sampling points (P. polonicum). The high counts of filamentous fungi in raw materials and air samples in processing steps such as cooling, slicing, and packaging, suggest that contamination that may occur in these steps can be critical for the shelf life of breads. The results of this study highlight that the prevention of contamination of breads by fungal spores is still a challenge for bakery industries and that other strategies such as control of germination and growth of spoilage fungi through the development of more stable formulations have to be developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.
Muller, Antoine; Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.
Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya
2014-02-01
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boussaa, S. Anas, E-mail: sabiha.anas@gmail.com; Kheloufi, A.; Kefaifi, A.
Raw materials are essential for the functioning of modern societies, and access to these raw materials is vital to the world economy. Sustainable development, both globally level, raises important new challenges associated with access and efficient use of raw materials. High purity quartz, is consider as a critical raw material and it is a rare commodity that only forms under geological conditions where a narrow set of chemical and physical parameters is fulfilled. When identified and following special beneficiation techniques, high purity quartz obtains very attractive prices and is applied in high technology sectors that currently are under rapid expansionmore » such as photovoltaic solar cells, silicon metal - oxide wafers in the semiconductor industry and long distance optical fibers that are used in communication networks. Crystalline silicon remains the principal material for photovoltaic technology. Metallurgical silicon is produced industrially by the reduction of silica with carbon in an electric arc furnace at temperatures higher than 2000 °C in the hottest parts, by a reaction that can be written ideally as: SiO{sub 2} + 2C = Si + 2CO. The aim of this study has been to test experimental methods for investigating the various physical and chemical proprieties of Hoggar quartz with different techniques: X Ray Fluorescence, infra-red spectroscopy, Scanning Electron Microscopy, Optic Microscopy, Carbon Analyzer and Vickers Hardness. The results show finally that the quartz has got good result in purity but need enrichment for the photovoltaic application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.
The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less
Extraterrestrial materials processing
NASA Technical Reports Server (NTRS)
Steurer, W. H.
1982-01-01
The first year results of a multi-year study of processing extraterrestrial materials for use in space are summarized. Theoretically, there are potential major advantages to be derived from the use of such materials for future space endeavors. The types of known or postulated starting raw materials are described including silicate-rich mixed oxides on the Moon, some asteroids and Mars; free metals in some asteroids and in small quantities in the lunar soil; and probably volatiles like water and CO2 on Mars and some asteroids. Candidate processes for space materials are likely to be significantly different from their terrestrial counterparts largely because of: absence of atmosphere; lack of of readily available working fluids; low- or micro-gravity; no carbon-based fuels; readily available solar energy; and severe constraints on manned intervention. The extraction of metals and oxygen from lunar material by magma electrolysis or by vapor/ion phase separation appears practical.
NASA Astrophysics Data System (ADS)
Bilgiç, H.; Duru Baykal, P.
2017-10-01
The cost of the fabric which is the raw material of apparel constitutes approximately the half of the total product cost. So, it is highly important that the fabric should be used with the greatest productivity. Cost analysis are of great importance in terms of competitiveness of readymade clothing and apparel sector both in national and international markets. The proximity of costs to international average and the average cost of the countries that are competitors of Turkey in clothing market is essential for Turkey to sustain its effect in textile sector. In the contrary case, the sector won’t be able to maintain its competitive capacity sustainably [1].The main cost elements of textile and apparel sector consist of raw material, labor, energy and financing [2].
Brunelle, Sharon L
2016-01-01
A previously validated method for determination of chondroitin sulfate in raw materials and dietary supplements was submitted to the AOAC Expert Review Panel (ERP) for Stakeholder Panel on Dietary Supplements Set 1 Ingredients (Anthocyanins, Chondroitin, and PDE5 Inhibitors) for consideration of First Action Official Methods(SM) status. The ERP evaluated the single-laboratory validation results against AOAC Standard Method Performance Requirements 2014.009. With recoveries of 100.8-101.6% in raw materials and 105.4-105.8% in finished products and precision of 0.25-1.8% RSDr within-day and 1.6-4.72% RSDr overall, the ERP adopted the method for First Action Official Methods status and provided recommendations for achieving Final Action status.
Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.
Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro
2010-06-23
Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.
NASA Astrophysics Data System (ADS)
Arroyo, Ana; Mendibil Eguiluz, Javier; Sánchez Cupido, Laura
2018-03-01
One strategy to overcome the challenges related to critical raw materials (CRMs) is their substitution and recycling. However, the bright scientific idea, proof of concept or laboratory demonstration need to cross the valley of death in order to become stated as ‘a substitute’ instead of ‘a potential substitute’. Most PhD students and Post Docs specialize within a given thematic area; for example on specific materials or on substitution in a certain application. This specialization could limit the ability to generate innovations and profitable business models if there are not enough tools and skills to transform new knowledge and research results into an appealing value proposition towards customers and to a business opportunity for the current markets. The project proposes a framework for developing substitution and recycling related cross-sectorial skills and tools. These are applied for training business-related competences e.g. teamwork, management, communication, value proposition and business models design, especially within RTOs and industries. The proposed learning itinerary can radically improve the path from scientific proof of concept into innovation and lean start up or industrial market launch. The developed framework is tested by a pilot group having several topics within the areas of substitution and recycling of critical raw materials.
Applications of additive manufacturing in dentistry: A review.
Bhargav, Aishwarya; Sanjairaj, Vijayavenkatraman; Rosa, Vinicius; Feng, Lu Wen; Fuh Yh, Jerry
2017-07-24
Additive manufacturing (AM) or 3D printing has been hailed as the third industrial revolution as it has caused a paradigm shift in the way objects have been manufactured. Conventionally, converting a raw material to a fully finished and assembled, usable product comprises several steps which can be eliminated by using this process as functional products can be created directly from the raw material at a fraction of the time originally consumed. Thus, AM has found applications in several sectors including automotive, aerospace, printed electronics, and healthcare. AM is increasingly being used in the healthcare sector, given its potential to fabricate patient-specific customized implants with required accuracy and precision. Implantable heart valves, rib cages, and bones are some of the examples where AM technologies are used. A vast variety of materials including ceramics, metals, polymers, and composites have been processed to fabricate intricate implants using 3D printing. The applications of AM in dentistry include maxillofacial implants, dentures, and other prosthetic aids. It may also be used in surgical training and planning, as anatomical models can be created at ease using AM. This article gives an overview of the AM process and reviews in detail the applications of 3D printing in dentistry. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
Effects of ionizing radiation in ginkgo and guarana [rapid communication
NASA Astrophysics Data System (ADS)
Rabelo Soriani, Renata; Cristina Satomi, Lucilia; Pinto, Terezinha de Jesus A.
2005-07-01
Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo ( Ginkgo biloba L.) and guaraná ( Paullinia cupana H.B.K.).
Hemp as an Agricultural Commodity
2014-02-14
yarns and raw or processed spun fibers, paper, carpeting, home furnishings, construction and insulation materials, auto parts, and composites. The...interior stalk (hurd) is used in various applications such as animal bedding, raw material inputs, low-quality papers, and composites. Hemp seed and...oilcake are used in a range of foods and beverages, and can be an alternative food protein source. Oil from the crushed hemp seed is an ingredient in a
VIEW IN OPPOSITE DIRECTION AS MD1351 AND MD1352. RAW MATERIAL ...
VIEW IN OPPOSITE DIRECTION AS MD-135-1 AND MD-135-2. RAW MATERIAL CONVEYOR AT LEFT DEPOSITS SHELL INTO MILLING MACHINE AT LOWER LEFT. ENGINE IS AT LOWER RIGHT AND RADIATOR AT LOWER CENTER. ROLLER SORTER IS AT TOP OF CONVEYOR. - F. & H. Benning Company Oyster Mill, 14430 Solomons Island Road (moved from 1014 Benning Road, Galesville, Anne Arundel County, Maryland), Solomons, Calvert County, MD
1978-07-01
degrades thermal stability and forms undesirable sulfur dioxide emissions . Although the original premises for controlling total sulfur may not still...eliminate corrosive trace contamination, presence of surfactants which deactivate filter/ separators, carry-over of refinery processing materials, and...increase raw vapor emissions from ground fuel handling facilities and during refueling operations. Controlling raw vapor emissions is difficult at 3
Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog
NASA Technical Reports Server (NTRS)
1980-01-01
The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.
Determination of platinum in mineral raw materials by switching chronoamperometry
NASA Astrophysics Data System (ADS)
Pakrieva, E.; Oskina, Y.; Ustinova, E.
2014-08-01
The technique of platinum (IV) determination in mineral raw materials with the application of switching chronoamperometry has been offered. The graphite electrode impregnated with polyethylene was used as the working electrode. The hydrolytic precipitation method with 3% NaOH solution has been developed to separate platinum from the sample matrix. The use of switching chronoamperometry applied to the assessment of the platinum content in geological objects has been demonstrated.
Liu, Wen-Quan; Wu, Dan; Chang, Hugejile; Duan, Ru-Xia; Wu, Wen-Jie; Amu, Guleng; Bao, Fu-Quan; Tegus, Ojiyed
2018-01-01
Synthesizing phosphors with high performance is still a necessary work for phosphor-converted white light-emitting diodes (W-LEDs). In this paper, three series of CaAlSiN3:Eu2+ (denoted as CASN:Eu2+) phosphors using Eu2O3, EuN and EuB6 as raw materials respectively are fabricated by under the alloy precursor normal pressure nitridation synthesis condition. We demonstrate that CASN:Eu2+ using nano-EuB6 as raw material shows higher emission intensity than others, which is ascribed to the increment of Eu2+ ionic content entering into the crystal lattice. An improved thermal stability can also be obtained by using nano-EuB6 due to the structurally stable status, which is assigned to the partial substitution of Eu–O (Eu–N) bonds by more covalent Eu–B ones that leads to a higher structural rigidity. In addition, the W-LEDs lamp was fabricated to explore its possible application in W-LEDs based on blue LEDs. Our results indicate that using EuB6 as raw materials can provide an effective way of enhancing the red emission and improving the thermal stability of the CASN:Eu2+ red phosphor. PMID:29370148
Provenance study of ancient Chinese Yaozhou porcelain by neutron activation analysis
NASA Astrophysics Data System (ADS)
Li, G. X.; Y Gao, Z.; Li, R. W.; Zhao, W. J.; Xie, J. Z.; Feng, S. L.; Zhuo, Z. X.; Y Fan, D.; Zhang, Y.; Cai, Z. F.; Liu, H.
2003-09-01
This paper reports our study of the provenance of ancient Chinese Yaozhou porcelain. The content of 29 elements in the Yaozhou porcelain samples was measured by neutron activation analysis (NAA). The NAA data were further analysed using fuzzy cluster analysis to obtain the trend fuzzy cluster diagrams. These samples with different glaze colour, ranging over more than 700 years, were fired in different kilns. Our analysis indicates the relatively concentrated distribution of the sources of the raw material for the Yaozhou porcelain body samples. They can be classified into two independent periods, i.e. the Tang (AD 618-907) and the Five Dynasties (AD 907-960) period, and the Song (AD 960-1279) and Jin (AD 1115-1234) period. Our analysis also indicates that the sources of the raw material for the ancient Yaozhou porcelain glaze samples are quite scattered and those for the black glaze in the Tang Dynasty are very concentrated. The sources of the raw material for the celadon glaze and the white glaze in the Tang Dynasty are widely distributed and those for the celadon glaze in the Song Dynasty are close to those of the bluish white glaze in the Jin Dynasty, and they are very concentrated. The sources of the raw material for the porcelain glazes cover those of the porcelain bodies.
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-01-01
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-03-22
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.
76 FR 35239 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... (9040) II Raw Opium (9600) II Poppy Straw (9650) II Concentrate of Poppy Straw (9670) II The company... narcotic raw material are not appropriate. As noted in a previous notice published in the Federal Register...
76 FR 25374 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
...), comments and requests for hearings on applications to import narcotic raw material are not appropriate. As... Schedule Raw Opium (9600) I Concentrate of Poppy Straw (9670) II The company plans to import the listed...
77 FR 19717 - Importer of Controlled Substances; Notice of Registration Mallinckrodt LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... raw material are not appropriate, 72 FR 3417 (2007). Regarding all other basic classes of controlled...) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import the listed...
75 FR 36680 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... requests for hearings on applications to import narcotic raw material are not appropriate. As noted in a... as an importer of the basic classes of controlled substances listed in schedule II: Drug Schedule Raw...
75 FR 22844 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... narcotic raw material are not appropriate. As noted in a previous notice published in the Federal Register... Coca Leaves (9040) II Raw Opium (9600) II Poppy Straw (9650) II Concentrate of Poppy Straw (9670) II...
77 FR 24984 - Importer of Controlled Substances; Notice of Application; Rhodes Technologies
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
.... Comments and requests for hearings on applications to import narcotic raw material are not appropriate. 72... schedule II: Drug Schedule Opium, Raw (9600) II Poppy Straw Concentrate (9670) II The company plans to...
75 FR 53718 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... 3417 (2007), comments and requests for hearings on applications to import narcotic raw material are not... Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import the basic classes of...
78 FR 12101 - Importer of Controlled Substances; Notice of Application; Mallinckrodt, LLC.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... Coca Leaves (9040) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to... or coca leaves. Comments and requests for hearings on applications to import narcotic raw material...
Materials and manufacturing processes for increased life/reliability. [of turbine wheels
NASA Technical Reports Server (NTRS)
Duttweiler, R. E.
1977-01-01
Improvements in both quality and durability of disk raw material for both military and commercial engines necessitated an entirely new concept in raw material process control which imposes careful selection, screening and sampling of the basic alloy ingredients, followed by careful monitoring of the melting parameters in all phases of the vacuum melting sequence. Special care is taken to preclude solidification conditions that produce adverse levels of segregation. Melt furnaces are routinely cleaned and inspected for contamination. Ingots are also cleaned and inspected before entering the final melt step.
Selbmann, L; Crognale, S; Petruccioli, M
2002-01-01
Evaluation of fermentative usage of raw starchy materials for exopolysaccharide (EPS) production by Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82. Non-hydrolysed corn starch, soft wheat flour, potato flour, cassava flour, sweet and industrial potato flours, and corn starch hydrolysed to different dextrose equivalent (DE) were tested in shaken culture for EPS production. Both fungal strains produced EPS on all tested materials but the production was maximum on hydrolysed corn starch (30.5 and 19.8 g l(-1) by B. rhodina and S. glucanicum on corn starch at 100 and 62 DE, respectively). Raw starchy materials as such and, in particular, partially or totally hydrolysed corn starch could be used profitably for EPS production by S. glucanicum and B. rhodina. The excellent EPS production, productivity and yield of B. rhodina DABAC-P82 when grown on 60 g l(-1) of totally hydrolysed corn starch.
A small scale lunar launcher for early lunar material utilization
NASA Technical Reports Server (NTRS)
Snow, W. R.; Kubby, J. A.; Dunbar, R. S.
1981-01-01
A system for the launching of lunar derived oxygen or raw materials into low lunar orbit or to L2 for transfer to low earth orbit is presented. The system described is a greatly simplified version of the conventional and sophisticated approach suggested by O'Neill using mass drivers with recirculating buckets. An electromagnetic accelerator is located on the lunar surface which launches 125 kg 'smart' containers of liquid oxygen or raw materials into a transfer orbit. Upon reaching apolune a kick motor is fired to circularize the orbit at 100 km altitude or L2. These containers are collected and their payloads transferred to a tanker OTV. The empty containers then have their kick motors refurbished and then are returned to the launcher site on the lunar surface for reuse. Initial launch capability is designed for about 500T of liquid oxygen delivered to low earth orbit per year with upgrading to higher levels, delivery of lunar soil for shielding, or raw materials for processing given the demand.
Deformation of metal brackets: a comparative study.
Flores, D A; Choi, L K; Caruso, J M; Tomlinson, J L; Scott, G E; Jeiroudi, M T
1994-01-01
The purpose of this study was to determine the effect of material and design on the force and stress required to permanently deform metal brackets. Fourteen types of metal brackets were categorized according to raw material composition, slot torque degree, and wing type. Five types of raw materials, three types of slot torque degree, and four types of wing design were tested using an archwire torque test developed by Flores. An analysis of variance (ANOVA) and t-test showed that all three categories had a significant effect on the force and stress needed to permanently deform metal brackets. Of the three, raw material had the greatest effect on the amount of force. Results showed that 17-4PH and 303S had higher yield strengths and regular twin brackets had higher resistance to deformation. Also, as slot torque degree increased, brackets deformed with less force. Result confirmed that brackets requiring the greatest stress to permanently deform were made of steel with the greatest hardness.
NASA Astrophysics Data System (ADS)
Priyono, S.; Primasari, R. D.; Saptari, S. A.; Prihandoko, B.
2017-07-01
Li4Ti5O12 powder as anode lithium ion battery was synthesized via solid state reaction with excess LiOH.H2O. Technical grades raw materials like LiOH.H2O and TiO2 were used as starting materials. LiOH.H2O excess was varied from 0; 2.5; 5 and 7.5% to get higher optimum phases and capacity of Li4Ti5O12. All raw materials were mixed stoichiometry then followed by calcination and sintering process to get final products. The obtained products were characterized by XRD, SEM, and PSA to get properties of active materials and the electrochemical properties were done by cyclic voltametry and charge-discharge test. The XRD test showed that 5% excess have highest Li4Ti5O12 phases. All samples have same in morphology, agglomerate and same in particle size distribution. Sample with 5% excess showed good reversible process and chargedischarge test showed that increasing Li4Ti5O12 phase can improve specific capacity.
Xi, Zemin; Chen, Baoliang
2014-04-01
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Prospects of rice straw as a raw material for paper making.
Kaur, Daljeet; Bhardwaj, Nishi Kant; Lohchab, Rajesh Kumar
2017-02-01
Pulp and paper mills are indispensable for any nation as far as the growth of the nation is concerned. Due to fast growth in population, urbanization and industrialization, the demand and consumption of paper has increased tremendously. These put high load on our natural resources and force the industry to look for alternative raw material. Rice straw is a lignocellulosic material abundantly available in wood short countries like China, India, Bangladesh, etc. and can be used as raw material for this industry. Open burning of rice straw releases noxious green house gases to the air and poses serious threats to global air chemistry and human health. So, it is a dual benefit option (for farmers and industries) to use rice straw as a raw material in pulp and paper industry. Organosolv pulping using acids are the prominent choices of researchers to convert this residue into valuable pulp but in developed countries only. Developing world favours the soda and soda-AQ processes as these are economical. As a virtue of less lignin content in comparison to wood, rice straw requires less harsh conditions for cooking and can be easily pulped. Bleaching is a crucial step of paper making but also responsible for causing water pollution. Many studies revealed that during the process more than 500 chlorinated compounds are released that are highly toxic, bioaccumulative and carcinogenic in nature. Most of the industries over the globe switch on to the elemental chlorine free short sequence bleaching methods using chlorine dioxide, hypochlorite and hydrogen peroxide. This paper presented the effective need of ecofriendly, economically reliable pulping and bleaching sequences in case of rice straw to eliminate the problems of chlorinated compounds in wastewater of paper mills. Such approach of using waste as a raw material with its environmentally safe processing for making paper can prove to be valuable towards sustainable growth. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERA-MIN: The European network (ERA-NET) on non-energy raw materials
NASA Astrophysics Data System (ADS)
vidal, o.; christmann, p.; Bol, d.; Goffé, b.; Groth, m.; Kohler, e.; Persson Nelson, k.; Schumacher, k.
2012-04-01
Non-energy raw materials are vital for the EU's economy, and for the development of environmentally friendly technologies. The EU is the world's largest consumers of non-energy minerals, but it remains dependent on the importation of many metals, as its domestic production is limited to about 3% of world production. We will present the project ERA-MIN, which is an ERA-NET on the Industrial Handling of Raw Materials for European industries, financially supported by the European Commission. The main objectives of ERA-MIN are: 1) Mapping and Networking: interconnecting the members of the currently fragmented European mineral resources research area, to the aim of fostering convergence of public research programs, industry, research institutes, academia and the European Commission, 2) Coordinating: establishing a permanent mechanism for planning and coordination of the European non-energy mineral raw materials research community (ENERC). 3) Roadmapping: defining the most important scientific and technological challenges that should be supported by the EU and its state members, 4) Programming: designing a Joint European Research Programme model and implementating it into a call for proposals open to academic and industrial research. The topics of interest in ERA-MIN are the primary continental and marine resources, the secondary resources and their related technologies, substitution and material efficiency, along with transversal topics such as environmental impact, public policy support, mineral intelligence, and public education and teaching. Public scientific research is very central in the scope of the ERA-MIN activity, whose consortium is indeed lead by a public organisation of fundamental research. Thus, universities and public research organisations are warmly invited to play an active role in defining the scientific questions and challenges that shall determine the European Raw Materials Roadmap and should be addressed by joint programming at the European scale. The various levels of possible involvement in ERA-MIN for the interested stakeholders will be presented.
Textile-reinforced concrete using composite binder based on new types of mineral raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Glagolev, E. S.; Popov, D. Y.; Lesovik, G. A.; Ageeva, M. S.
2018-03-01
To determine the level of development of science, it is necessary to start with a particular stage in the development of society. At present, the purpose of building materials science is to create composites, which ensure safety of buildings and structures, including their protection against certain natural and man-made impacts. A new stage in construction materials science envisages the development of a technology for creating composites comfortable for a particular person. To implement this, a new paradigm for designing and synthesizing building materials with a new raw material base is needed. The optimization of the “human-material-habitat” system is a complex task, for the solution of which transdisciplinary approaches are required.
VERAM, for a sustainable and competitive future for EU Raw Materials
NASA Astrophysics Data System (ADS)
Mobili, A.; Tittarelli, F.; Revel, G. M.; Wall, P.
2018-03-01
The project, VERAM “Vision and Roadmap for European Raw Materials”, aims to deliver a mapping of on-going initiatives on non-food, non-energy raw materials (including metals, industrial minerals, aggregates and wood) at European, Member State, and regional levels both from the Research and Innovation (R&I), industry, and policy perspectives. Moreover, based on a comprehensive gap analysis, VERAM will propose a common long term 2050 Vision and Roadmap in coordination and cooperation with all stakeholders across the value chain. For the first time, two European Technology Platforms (ETPs) together with their corresponding European Research Area Networks (ERA-NETs) are joining forces to develop a common roadmap.
FROZEN RAW FOODS AS SKIN-TESTING MATERIALS—Further Studies of Use in Cases of Allergic Disorders
Ancona, Giacomo R.; Schumacher, Irwin C.
1954-01-01
In further studies on the use of frozen raw food as skin-testing material in patients with allergic disorders, the results of previous work were confirmed in a greater number of subjects using a larger number of foods: Tests with frozen raw foods by the scratch method induce true positive reactions of a larger size and in greater frequency than the corresponding commercial extracts by either the scratch or the intracutaneous method. Storage in the frozen state for several years does not affect the antigenic potency of the materials. The frozen preparations have caused no harmful effects in the subjects, are free from irritant properties, and are not urticariogenic. PMID:13126823
78 FR 19016 - Importer of Controlled Substances; Notice of Registration; Johnson Matthey, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... Schedule Coca Leaves (9040) II Thebaine (9333) II Opium, raw (9600) II Noroxymorphone (9668) II Poppy Straw Concentrate (9670) II The company plans to import the listed controlled substances as raw materials, to be...
76 FR 51400 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
... narcotic raw material are not appropriate. DEA has considered the factors in 21 U.S.C. 823(a) and 952(a... classes of controlled substances: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw II (9670...
77 FR 55503 - Importer of Controlled Substances; Notice of Registration; Cambrex Charles City, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
... hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). DEA has...-piperidine (8333).. II Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The...
78 FR 39337 - Importer of Controlled Substances; Notice Of Registration; Mallinckrodt, LLC.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... narcotic raw material are not appropriate, 72 FR 3417 (2007). Regarding Phenylacetone (8501), a basic class... Phenylacetone (8501) II Coca Leaves (9040) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company...
78 FR 23594 - Importer of Controlled Substances; Notice of Application; Rhodes Technologies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007... Schedule Opium, Raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import the listed...
77 FR 24983 - Importer of Controlled Substances; Notice of Application Penick Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... import narcotic raw material are not appropriate. 72 FR 3417(2007). As noted in a previous notice... Schedule Coca Leaves (9040) II Raw Opium (9600) II Poppy Straw (9650) II Concentrate of Poppy Straw (9670...
High Power Particle Beams and Pulsed Power for Industrial Applications
NASA Astrophysics Data System (ADS)
Bluhm, Hansjoachim; An, Wladimir; Engelko, Wladimir; Giese, Harald; Frey, Wolfgang; Heinzel, Annette; Hoppé, Peter; Mueller, Georg; Schultheiss, Christoph; Singer, Josef; Strässner, Ralf; Strauß, Dirk; Weisenburger, Alfons; Zimmermann, Fritz
2002-12-01
Several industrial scale projects with economic and ecologic potential are presently emanating from research and development in the fields of high power particle beams and pulsed power in Europe. Material surface modifications with large area pulsed electron beams are used to protect high temperature gas turbine blades and steel structures in Pb/Bi cooled accelerator driven nuclear reactor systems against oxidation and corrosion respectively. Channel spark electron beams are applied to deposit bio-compatible or bio-active layers on medical implants. Cell membranes are perforated with strong pulsed electric fields to extract nutritive substances or raw materials from the cells and to kill bacteria for sterilization of liquids. Eletrodynamic fragmentation devices are developed to reutilize concrete aggregates for the production of high quality secondary concrete. All activities have a large potential to contribute to a more sustainable economy.
Bigga, Gerlinde; Schoch, Werner H; Urban, Brigitte
2015-12-01
Plant use is an elusive issue in Paleolithic archaeology. Due to poor organic preservation in many sites, botanical material is not always present. The sediments in Schöningen, however, contain abundant botanical macro-remains like wood, fruits, seeds, and other parts of plants which offer the opportunity to reconstruct the local vegetation. Combined with palynological results, it is possible to reveal the full potential of this environment to hominins. Ethnobotanical studies of hunter-gatherer societies living in similar environments illustrate the importance of plants for subsistence purposes. The identified taxa from the archaeological horizons at Schöningen include a broad spectrum of potentially exploitable species that could be sources of food, raw material, and firewood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Artificial lightweight aggregates as utilization for future ashes - A case study.
Sarabèr, Angelo; Overhof, Robert; Green, Terry; Pels, Jan
2012-01-01
In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Temlyantsev, M. V.; Fomina, O. A.
2016-10-01
Rational preparation of the mixture containing technogenic raw material - waste coal for the production of wall ceramics is developed. It was established that the technology of high-quality ceramic bricks requires: grinding of raw materials to class 0.3 + 0 mm, its aggregation in the intensive mixers into granules 1-3 mm, compression molding of adobe to plastic deformation of granules, drying and firing.
Computer Vision Hardware System for Automating Rough Mills of Furniture Plants
Richard W. Conners; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; D. Earl Kline; C.J. Gatchell
1990-01-01
The rough mill of a hardwood furniture or fixture plant is the place where dried lumber is cut into the rough parts that will be used in the rest of the manufacturing process. Approximately a third of the cost of operating the rough mill is the cost of the raw material. Hence any increase in the number of rough parts produced from a given volume of raw material can...
Increasing the Efficiency of the Recycling of Propylene—Polyethylene Raw Materials
NASA Astrophysics Data System (ADS)
Belokon', T. D.; Kurganova, Yu. A.; Bragin, D. A.; Kovalev, M. N.
2017-12-01
The problem of the recycling of plastic wastes is discussed. The polypropylene needs of the modern Russian market are analyzed. The necessity of recycling of plastic wastes is revealed, and its advantages over reclamation are substantiated. The problems of a real enterprise regarding the recycling of polypropylene—polyethylene raw materials for increasing the properties of the end product and optimizing its production are considered, and methods for their solution are proposed.
40 CFR 406.105 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Wheat Starch and Gluten Subcategory... units (kg/kkg of raw material (wheat flour)) BOD5 3.0 1.0 TSS 3.0 1.0 pH (1) (1) English units (lb/1,000 lb of raw material (wheat flour)) BOD5 3.0 1.0 TSS 3.0 1.0 pH (1) (1) 1 Within the range 6.0 to 9.0. ...
Zmurko, Joanna; Vasey, Douglas B; Donald, Claire L; Armstrong, Alison A; McKee, Marian L; Kohl, Alain; Clayton, Reginald F
2018-02-01
Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.
NASA Astrophysics Data System (ADS)
Bengtson, K. B.
The U. S. Bureau of Mines, by means of a contract with Kaiser Engineers and with Kaiser Aluminum & Chemical Corporation as a subcontractor, has sponsored a technological and an economic evaluation of six candidate processes for the manufacture of alumina from certain U. S. raw materials other than bauxite. This paper describes each process. Flow diagrams and the total energy requirement for each process are included. Important characteristics affecting the economics of producing alumina by each process are discussed, and some presently unsolved technical problems are identified. The extraction of alumina from clay via hydrochloric acid with iron separation by solvent extraction, and the crystallization of intermediate AlCl3·6H2O through the introduction of HCl gas into the pregnant mother liquor, appears to be technically feasible and the most attractive of the six raw material/process combinations.
Berenguer, J A; Gonzalez, L; Jimenez, I; Legarda, T M; Olmedo, J B; Burdaspal, P A
1993-01-01
A study was undertaken to determine if any reduction in contamination of Acanthocardia tuberculatum L. (Mediterranean cockle) by paralytic shellfish poisons (PSP) could be enhanced by operations carried out during the industrial canning process, allowing contaminated raw material to be commercially marketed in safe conditions for edible purposes. A general decrease in PSP levels was consistently observed when comparing raw materials and their corresponding final products, these dropping to acceptable levels. PSP levels were determined by mouse bioassay and a fluorometric method, and saxitoxin was determined by HPLC. The detoxifying effects averaged over 71.7% and 81.8% (mouse bioassay), 70.6% and 90.9% (fluorometric method), 77.9% and 83.5% (HPLC), for boiling and sterilizing operations respectively. The highest level detected in raw material was 800 micrograms/100 g by mouse bioassay.
NASA Astrophysics Data System (ADS)
Baburina, M. I.; Ivankin, A. N.; Stanovova, I. A.
2017-09-01
The process of chemical biotechnological processing of collagen-containing raw materials into functional components of feeds for effective pig rearing was studied. Protein components of feeds were obtained as a result of hydrolysis in the presence of lactic acid of the animal collagen from secondary raw materials, which comprised subcutaneous collagen (cuticle), skin and veined mass with tendons from cattle. For comparison, a method is described for preparing protein components of feeds by cultivating Lactobacillus plantarum. Analysis of the kinetic data of the conversion of a high-molecular collagen protein to an aminolyte polypeptide mixture showed the advantage of microbiological synthesis in obtaining a protein for feeds. Feed formulations have been developed to include the components obtained, and which result in high quality pork suitable for the production of quality meat products.
Tufvesson, Pär; Ekman, Anna; Sardari, Roya R R; Engdahl, Kristina; Tufvesson, Linda
2013-12-01
Production of propionic acid by fermentation of glycerol as a renewable resource has been suggested as a means for developing an environmentally-friendly route for this commodity chemical. However, in order to quantify the environmental benefits, life cycle assessment of the production, including raw materials, fermentation, upstream and downstream processing is required. The economic viability of the process also needs to be analysed to make sure that any environmental savings can be realised. In this study an environmental and economic assessment from cradle-to-gate has been conducted. The study highlights the need for a highly efficient bioprocess in terms of product titre (more than 100g/L and productivity more than 2g/(L · h)) in order to be sustainable. The importance of the raw materials and energy production for operating the process to minimize emissions of greenhouse gases is also shown. Copyright © 2013 Elsevier Ltd. All rights reserved.
Typification of cider brandy on the basis of cider used in its manufacture.
Rodríguez Madrera, Roberto; Mangas Alonso, Juan J
2005-04-20
A study of typification of cider brandies on the basis of the origin of the raw material used in their manufacture was conducted using chemometric techniques (principal component analysis, linear discriminant analysis, and Bayesian analysis) together with their composition in volatile compounds, as analyzed by gas chromatography with flame ionization to detect the major volatiles and by mass spectrometric to detect the minor ones. Significant principal components computed by a double cross-validation procedure allowed the structure of the database to be visualized as a function of the raw material, that is, cider made from fresh apple juice versus cider made from apple juice concentrate. Feasible and robust discriminant rules were computed and validated by a cross-validation procedure that allowed the authors to classify fresh and concentrate cider brandies, obtaining classification hits of >92%. The most discriminating variables for typifying cider brandies according to their raw material were 1-butanol and ethyl hexanoate.
NASA Astrophysics Data System (ADS)
Siti Nor Qamarina, M.; Fatimah Rubaizah, M. R.; Nurul Suhaira, A.; Norhanifah, M. Y.
2017-12-01
Epoxidized natural rubber latex (ENRL) is a chemically modified natural rubber latex produced from epoxidation process that involves usage of organic peracids. Conversion of the ENRL into dry rubber products has been known to exhibit many beneficial properties, however limited published works were found on diversifiying the ENRL latex-based products applications. In this preliminary work, different source of raw materials and neutralization systems were investigated. The objective was to explore possibilities in producing distinctive ENRL. Findings have demonstrated that different source of raw materials and neutralization systems influenced the typical ENRL specifications, stability behavior and particle size distribution. Morphological observations performed on these ENRL systems appeared to agree with the ENRL characteristics achieved. Since experimenting these two main factors resulted in encouraging ENRL findings, detailed work shall be further scrutinized to search for an optimum condition in producing marketable ENRL specifically for latex-based products applications.
Lenk, Fabian; Bröring, Stefanie; Herzog, Philipp; Leker, Jens
2007-12-01
Bioenergies are promoted across the globe as the answer for global warming and the chance to reduce dependency from fossil energy sources. Despite the fact that renewable energy sources offer the opportunity to reduce CO2 emission and present a chance to increase agricultural incomes, they also come along with some drawbacks that have been mostly neglected in the current discussion. This paper seeks to build a basis for discussing the impacts of the growing subsidization of bioenergy and the resulting usage competition of agricultural raw materials between foods and energy. To assess the usage competition and the subsidization of bioenergy, this article employs a welfare economics perspective associated with an emphasize on the construct of externalities. This will help to foster the discussion on the further subsidization of bioenergy, where funding for R&D on new ways of using non-food raw materials ought to play a significant role.
Stacking transgenes in forest trees.
Halpin, Claire; Boerjan, Wout
2003-08-01
Huge potential exists for improving plant raw materials and foodstuffs via metabolic engineering. To date, progress has mostly been limited to modulating the expression of single genes of well-studied pathways, such as the lignin biosynthetic pathway, in model species. However, a recent report illustrates a new level of sophistication in metabolic engineering by overexpressing one lignin enzyme while simultaneously suppressing the expression of another lignin gene in a tree, aspen. This novel approach to multi-gene manipulation has succeeded in concurrently improving several wood-quality traits.
More and more power plant flyash is being recycled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golden, D.; Sauber, R.
A number of viable options have been demonstrated for recycling flyash, one of America's fastest-growing waste products. Application opportunities range from structural fills to pavement bases, concrete, stabilizing backfills, and a metal-castings alloy. But two stumbling blocks still face utilities and marketers of flyash. They are: (1) Convincing potential end users that flyash is a beneficial raw material and not an inferior waste product. (2) Persuading regulatory agencies to draft legislation, that promote, if not mandate, its use.
NASA Astrophysics Data System (ADS)
Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha
2017-09-01
Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.
Kurda, Rawaz; Silvestre, José D; de Brito, Jorge
2018-04-01
This paper presents an overview of previous studies on the environmental impact (EI) and toxicity of producing recycled concrete aggregates (RCA), fly ash (FA), cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA) with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation (POCP), acidification potential (AP), eutrophication potential (EP), non-renewable energy (PE-NRe) and renewable energy (PE-Re). In terms of toxicity, leachability (chemical and ecotoxicological characterization) was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials.
NASA Astrophysics Data System (ADS)
Dwi Yanti, Evi; Pratiwi, I.
2018-02-01
Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.
Colour and spreadability of Neem (Azadirachta Indica A. juss) ointment and cream formulations
NASA Astrophysics Data System (ADS)
Zawiyyah, Azierah; Shamsul Anuar, Mohd
2018-04-01
Herbal plants are a major source of raw material for traditional medicines. Recently there has been an increase of interest to study the therapeutic potential of herbal plants as herbal care products. In this study, a preliminary study on the formulation of neem (Azadirachta Indica) ointment and cream have been conducted. The neem leaves were extracted and formulated into ointment and cream. The raw neem extract is added into the ointment and cream bases at four different concentrations (0% w/w, 0.5% w/w, 1% w/w and 2% w/w) and stored at three different storage temperatures (4°C, 25°C and 45°C). The semambu ointment and cream formulated were evaluated in terms of their colour and spreadability. It has been found that the extract content and storage temperature influence the colour and spreadability of the formulated neem ointment and cream.
Bioconversion of lignocellulosic biomass to xylitol: An overview.
Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi
2016-08-01
Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiao, Bo; Shi, Aimin; Qiang, Wang; Binks, Bernard
2018-05-30
High internal phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe the high internal phase Pickering emulsions with 87% edible oil or 88% n-hexane in water stabilized by peanut protein isolate microgel particles. These dispersed phase volume fractions reach the highest in all known food-grade Pickering emulsions. The protein based microgel particles are in different aggregate states depends on pH. The emulsions can be utilized for multiple potential applications simply by changing the internal phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n-hexane, the emulsion can be used as a template to produce porous materials, which can be used in tissue engineering advantageously since the raw materials are natural and non-toxic. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, R.L.; Gurwell, W.E.; Nelson, T.A.
1979-06-01
Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billionmore » m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.« less
Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław
2010-01-01
Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Material Requirements. 52....211-5 Material Requirements. As prescribed in 11.304, insert the following clause: Material... components, whether manufactured from virgin material, recovered material in the form of raw material, or...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Material Requirements. 52....211-5 Material Requirements. As prescribed in 11.304, insert the following clause: Material... components, whether manufactured from virgin material, recovered material in the form of raw material, or...
NASA Astrophysics Data System (ADS)
Urakaev, Farit Kh.; Akmalaev, Kenzhebek A.; Orynbekov, Eljan S.; Balgysheva, Beykut D.; Zharlykasimova, Dinar N.
2016-02-01
The use of metallothermy (MT) and self-propagating high-temperature synthesis (SHS) is considered for processing different geological and technogenic materials. Traditional MT and SHS processes for production of various metals and nonmetal materials are widely known. Another rapidly developing direction is that connected with the use of ores, concentrates, minerals, and technogenic waste products as one of the components of a thermite mixture, both for the treatment of mineral raw by means of MT or SHS resulting in semi-products and for technological, analytical, and ecological purposes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... substances: Drug Schedule Coca Leaves (9040) II Thebaine (9333) II Opium, raw (9600) II Noroxymorphone (9668... raw materials, to be used in the manufacture of bulk controlled substances, for distribution to its customers. In regard [[Page 16263
The Pattern of Soviet Conduct in the Third World, Review and Preview. Part I
1983-03-07
vital raw materials is concerned. This interest relates however above all to the rich, oil -producing countries, whereas the East German and Cuban...was economic - the extraction of cheap raw materials and the wish to find markets. Nor is it true, as he predicted, that the. imperialist powers...disappointment in the non- oil producing Third World countries than should have been expected because the Soviet leaders never made excessive. promises. They
20th century U.S. mineral prices decline in constant dollars
Sullivan, Daniel E.; Sznopek, John L.; Wagner, Lorie A.
2000-01-01
Price indexes developed by the U.S. Geological Survey (USGS) indicate that the long-term constant dollar price of key U.S. mineral raw materials declined over the last century, even though the need for mineral raw materials increased during the same period. Technologies and reduced production costs have allowed mineral production to remain profitable, while lower priced mineral products from domestic and foreign sources helped fuel growth in other sectors of the economy.
Selected Translations on East European Foreign Trade, Number 5.
1961-08-31
Bulgaria, openly prefer these raw materials, mainly grain, livestock for meat, and scarce oil - seeds , but show very little interest in, for instance...over I960 — for imports from the USSR of fuel raw mineral materials, and metals. This is because the quantities of oil derivatives and cast iron are...metals will increase by 28 percent because of the enlarged contingents of oil and manganese ore Consumer goods show a more significant growth, as
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Wheat Starch and...— Metric units (kg/kkg of raw material (wheat flour)) BOD5 6.0 2.0 TSS 6.0 2.0 pH (1) (1) English units (lb/1,000 lb of raw material (wheat flour)) BOD5 6.0 2.0 TSS 6.0 2.0 pH (1) (1) 1 Within the range 6.0...
Utilization of household food waste for the production of ethanol at high dry material content.
Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul
2014-01-08
Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.
Utilization of household food waste for the production of ethanol at high dry material content
2014-01-01
Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142
Preparation of sintered foam materials by alkali-activated coal fly ash.
Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling
2010-02-15
Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.
Coronado, M; Segadães, A M; Andrés, A
2015-12-15
This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. Copyright © 2015 Elsevier B.V. All rights reserved.
[Quality of pastas supplemented with rice bran].
Sangronis, E; Rebolledo, M A
1997-06-01
The objective of this research was to investigate the potential of using rice bran as an ingredient in pastas spaghetti type. Two of the pastas were made with semolina from durum as raw material, supplemented with 10 and 20% rice bran. The other two were made with granular flour and the same percentage of rice bran. Proximate composition of raw material was analyzed. Pastas were elaborated in a local industry. Composition, proximal, color, texture, and sensorial quality of pastas were determined. Protein content (13.9-15.0%), ash (1.47-3.09%) and dietary fiber (6.71-8.45%) of pastas increased according to the percentage of rice bran added. The hardest pastas were those elaborated with semolina from durum wheat and with a 10% of substitution. Also, they were the most yellow. The sensory panel found differences in quality among the pastas evaluated. Pastas with 10% rice bran had the best quality. The results demonstrated that is possible to elaborate pastas with 20% as maximum of rice bran resulting products with high protein, ash and dietetic fiber content, but some undesirable characteristics were given by the rice bran as white spots, wrinkles and color changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddy, J.L.
1981-08-01
A system has been designed and built to test the technical and economic feasibility of producing farm energy from cellulosic residues. The system has the capacity to produPropinibactriume 1300 CF of biogas and 180 kwh per day, using four parallel batch anaerobic digesters which are agitated mechanically and heated with waste heat from the engine-generator. This system has been satisfactorily operated for a one year period utilizing native grasses as the raw material. Laboratory reactors have been operated to determine the proper inoculation ratio for starting batch cultures with cellulosic raw materials. Procedures for startup and operation of batch digestionmore » systems have been developed and are presented. Energy and economic analyses of the operation of the test unit have been performed. Studies to determine the fertilizer potential of anaerobic digestor sludge (from agricultural residues) have been conducted. Additional studies reported include determinations of the feasibility of separating the stages of anaerobic digestion, the production of acetic and propionic acids by the micro-organism Propionibacterium acidi-propionici, the production of methane from acid hydrolyzates, and the kinetics of the continuos digestion of corn stover.« less
Feng, Yi; Hong, Yan-Long; Xian, Jie-Chen; Du, Ruo-Fei; Zhao, Li-Jie; Shen, Lan
2014-09-01
Traditional processes are mostly adopted in traditional Chinese medicine (TCM) preparation production and the quality of products is mostly controlled by terminal. Potential problems of the production in the process are unpredictable and is relied on experience in most cases. Therefore, it is hard to find the key points affecting the preparation process and quality control. A pattern of research and development of traditional Chinese medicine preparation process based on the idea of Quality by Design (QbD) was proposed after introducing the latest research achievement. Basic theories of micromeritics and rheology were used to characterize the physical property of TCM raw material. TCM preparation process was designed in a more scientific and rational way by studying the correlation among enhancing physical property of raw material, preparation process and product quality of preparation. So factors affecting the quality of TCM production would be found out and problems that might occur in the pilot process could be predicted. It would be a foundation for the R&D and production of TCM preparation as well as support for the "process control" of TCMIs gradually realized in the future.
Radiological protection in North American naturally occurring radioactive material industries.
Chambers, D B
2015-06-01
All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Technology-Critical Elements: Economic and Policy Perspectives
NASA Astrophysics Data System (ADS)
Eggert, R. G.
2017-12-01
Critical elements are those that provide essential functionality to modern engineered materials, have few ready substitutes and are subject to supply-chain risks or concerns about long-run availability. This paper provides economic and public-policy perspectives on critical elements. It suggests: that which elements are critical is situational and changes over time; that we are not running out of mineral-derived raw materials in a geologic sense but rather, for some elements, face scarcities that are technological, environmental, political or economic in nature; and that public policy's most important role over the longer term is fostering scientific and technological innovation, especially early stage research, that has the potential to overcome these scarcities.
NASA Technical Reports Server (NTRS)
Probst, H. B.
1978-01-01
The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.
NASA Astrophysics Data System (ADS)
Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.
2016-03-01
In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
NASA Astrophysics Data System (ADS)
Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.
2010-12-01
Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.
2014-01-01
Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Kulis, M. J.; Psarras, P. C.; Ball, D. W.; Timko, M. T.; Wong, H.-W.; Peck, J.; Chianelli, R. R.
2014-01-01
Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these non-traditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and hydrogen) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tropsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activity are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
... the raw material used in manufacturing certain crosstubes. The actions specified in this AD are... these model helicopters. This amendment is prompted by AAI's discovery of a defect in a batch of raw...
40 CFR 63.1352 - Additional test methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing... specific organic HAP from raw material dryers, kilns and in-line kiln/raw mills at Portland cement...
40 CFR 63.1352 - Additional test methods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing... specific organic HAP from raw material dryers, kilns and in-line kiln/raw mills at Portland cement...
Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming
NASA Astrophysics Data System (ADS)
Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.
2018-04-01
Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.
Lahou, Evy; Jacxsens, Liesbeth; Van Landeghem, Filip; Uyttendaele, Mieke
2014-08-01
Food service operations are confronted with a diverse range of raw materials and served meals. The implementation of a microbial sampling plan in the framework of verification of suppliers and their own production process (functionality of their prerequisite and HACCP program), demands selection of food products and sampling frequencies. However, these are often selected without a well described scientifically underpinned sampling plan. Therefore, an approach on how to set-up a focused sampling plan, enabled by a microbial risk categorization of food products, for both incoming raw materials and meals served to the consumers is presented. The sampling plan was implemented as a case study during a one-year period in an institutional food service operation to test the feasibility of the chosen approach. This resulted in 123 samples of raw materials and 87 samples of meal servings (focused on high risk categorized food products) which were analyzed for spoilage bacteria, hygiene indicators and food borne pathogens. Although sampling plans are intrinsically limited in assessing the quality and safety of sampled foods, it was shown to be useful to reveal major non-compliances and opportunities to improve the food safety management system in place. Points of attention deduced in the case study were control of Listeria monocytogenes in raw meat spread and raw fish as well as overall microbial quality of served sandwiches and salads. Copyright © 2014 Elsevier Ltd. All rights reserved.
El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T
2015-09-01
Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.
Ziegler, Daniele; Formia, Alessandra; Tulliani, Jean-Marc; Palmero, Paola
2016-01-01
This paper assesses the feasibility of two industrial wastes, fly ash (FA) and rice husk ash (RHA), as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i) halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S); (ii) halloysite activated with rice husk ash dissolved into KOH solution (HL-R); (iii) FA activated with the alkaline solution realized with the rice husk ash (FA-R). Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP) was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation. PMID:28773587
Sludge quantification at water treatment plant and its management scenario.
Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab
2017-08-15
Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.
Essential Oils in Ginger, Hops, Cloves, and Pepper Flavored Beverages-A Review.
Ameh, Sunday J; Ibekwe, Nneka N; Ebeshi, Benjamin U
2014-08-28
ABSTRACT In the West, sugar-based, ginger flavored beverages may contain hops, other flavorings, fruit juices, and varying levels of ethanol. Ginger ales contain 0.5%v/v; ginger beers >0.5%; and alcoholic ginger beers 0.5 ≤ 11%. Ales are carbonated by pressurized CO 2 , while beers and alcoholic beers are carbonated by yeast or ginger beer plant (GBP). In Africa, grain-based beverages include "fura da nono," "kunu," and "akamu," which are spiced with one or more flavorings including ginger, black pepper, clove, chili pepper, or Aframomum alligator peppers. Spices have flavor because they contain essential oils (EOs), which are composed of aroma-active compounds (AACs). The benefits and toxicities of spices are ascribed to their EOs/AACs contents. Aim: Given the toxic potentials of EOs/AACs vis-à-vis their benefits, this review aimed to investigate the means by which the levels of EOs/AACs in spiced beverages are regulated. Methodology: The benefits and liabilities of key EOs/AACs of spices were identified and described. The methods for assaying them in raw materials and beverages were also identified. Results: There was a dearth of data on the levels of EOs/AACs in both raw and finished goods. Moreover, their assay methods were found to be tedious and costly. The implications of these findings on regulation are discussed. Conclusions: Owing to the practical difficulties in assaying flavors in beverages, both manufacturers and regulators should focus on: (i) the wholesomeness of raw materials; and (ii) good manufacturing practice (GMP). However, studies aimed at developing more robust methods for flavor should continue.
Assessment of Damage Tolerance Requirements and Analysis. Volume 4. Raw Test Data
1986-03-31
T3XX aluminum alloy . Four (4) product forms were selected: MATERIAL PRODUCT FORM THICKNESS (IN) 2024-T3 Sheet 0.090, 0.190 2024-T351 Plate 0.250 2024...T3511 Extruded Tee 0.190 2024-T3511 Extruded Angle 0.250 The material selected to represent bomber/transport/cargo aircraft is 7075- T6XX aluminum alloy ...aluminum alloys , respectively. The raw test data were processed in accordance with ASTM Standard E-8. All the tensile properties, except those marked
Dataset shows the calculation of reported decontamination efficacies from the raw data (i.e., measured amount of chemical recovered from test coupons and positive controls) to actual decontamination efficacy for all chemicals and decontaminantsThis dataset is associated with the following publication:Oudejans , L., J. O'Kelly, A. Evans, B. Barbara Wyrzykowska-Ceradini, A. Toauati, D. Tabor , and E. Snyder. Efficacy of decontaminant solutions for remediation on TICs on PPE materials. JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 1-5, (2016).
Verification of vermural stabilization of ash from biomass and sewage sludge
NASA Astrophysics Data System (ADS)
Adamkova, L.; Kucerova, D.; Lyckova, B.; Kucerova, R.; Takac, D.
2017-10-01
The aim of this study was to find dependence on biofuels and sludge from sewage treatment plants in the vermicomposting process. In the framework of the research carried out at our workplace, a project aimed at finding an appropriate method for the reprocessing of problematic biodegradable waste and asphalt from combustion biomass was used as a raw material for the production of rectification substrate and sludge from sewage treatment plants that could be used as Secondary raw material.
2012-09-01
allowing it to dry or baking it in a kiln . A modern factory would take a block of raw material and then use machinery to pare away un- necessary... conventional “subtractive manu- facturing”—taking a block of raw material and removing excess until the finished product remains—the process as a whole...is more efficient and less wasteful. Another major benefit of AM is the fact that com- plexity is “free.” In conventional manufacturing, increasing
Food allergen extracts to diagnose food-induced allergic diseases: How they are made.
David, Natalie A; Penumarti, Anusha; Burks, A Wesley; Slater, Jay E
2017-08-01
To review the manufacturing procedures of food allergen extracts and applicable regulatory requirements from government agencies, potential approaches to standardization, and clinical application of these products. The effects of thermal processing on allergenicity of common food allergens are also considered. A broad literature review was conducted on the natural history of food allergy, the manufacture of allergen extracts, and the allergenicity of heated food. Regulations, guidance documents, and pharmacopoeias related to food allergen extracts from the United States and Europe were also reviewed. Authoritative and peer-reviewed research articles relevant to the topic were chosen for review. Selected regulations and guidance documents are current and relevant to food allergen extracts. Preparation of a food allergen extract may require careful selection and identification of source materials, grinding, defatting, extraction, clarification, sterilization, and product testing. Although extractions for all products licensed in the United States are performed using raw source materials, many foods are not consumed in their raw form. Heating foods may change their allergenicity, and doing so before extraction may change their allergenicity and the composition of the final product. The manufacture of food allergen extracts requires many considerations to achieve the maximal quality of the final product. Allergen extracts for a select number of foods may be inconsistent between manufacturers or unreliable in a clinical setting, indicating a potential area for future improvement. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Jagannathan, Mukund; Devale, Maksud; Kesari, Prashantha; Karanth, Siddharth
2008-07-01
Surgery for the release of temporomandibular joint (TMJ) ankylosis is a commonly performed procedure. Various interposition materials have been tried with varying success rates. However, none of these procedures attempt to recreate the architecture of the joint as the glenoid surface is usually left raw. We aimed to use a vascularised cartilage flap and to line the raw surface of the bone to recreate the articular surface of the joint. There is a rich blood supply in the region of the helical root, based on branches from the Superficial Temporal Artery (STA), which enables the harvest of vascularised cartilage from the helical root for use in the temporomandibular joint. Two cases, one adult and the other a child, of unilateral ankylosis were operated upon using this additional technique. The adult patient had a bony segment excised along with a vascularised cartilage flap for lining the glenoid. The child was managed with an interposition graft of costochondral cartilage following the release of the ankylosis, in addition to the vascularised cartilage flap for lining the glenoid. The postoperative mouth opening was good in both the cases with significant reduction in pain. However, the long-term results of this procedure are yet to be ascertained. The vascularised cartilage flap as an additional interposition material in temporomandibular joint surgery enables early and painless mouth-opening with good short-term results. The potential applicability of this flap in various pathologies of the temporomandibular joint is enormous.
Potential threats on pottery as local wisdom in Sitiwinangun Cirebon district
NASA Astrophysics Data System (ADS)
Putri, D. P.
2018-05-01
This study is aimed to find out the type of threats of pottery as a local wisdom of Sitiwinangun Village. The study used qualitative approach which included observation, interviews, direct involvement and literature study as technique to collect the data. The data was analyzed by descriptive exploratory analysis. The finding results showed that the production of Sitiwinangun pottery, in the technique and motifs, were still produced according to the ancestors. Pottery has a closed-relationship to agrarian culture of Sitiwinangun's society. In cultivating season, the soil was used not only used to cultivate rice and palawija (crops planted as second crop in dry season) but it was also used to dig a layer of soil as the raw material of pottery. There were some potential threats on Sitiwinangun Pottery such as a reduction in raw material because of the land-settlement, slow regeneration, and consumers' preferred on household appliance made of plastic. Nevertheless, it never decreases the spirit of Sitiwinangun society to maintain the pottery as their local wisdom. They keep on their principle that the nature gives the value on their life and the value is an ancestral heritage that must be maintained in modern era in order to preserve the environment. Furthermore, the most important is that pottery is not only made as the functional object for human activity but it is made as the local knowledge of Sitiwinagun that very allows to be learnt intact and sustainable.
NASA Astrophysics Data System (ADS)
Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.
Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.
Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide
NASA Astrophysics Data System (ADS)
Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.
2011-10-01
The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.
Fueling industrial biotechnology growth with bioethanol.
Otero, José Manuel; Panagiotou, Gianni; Olsson, Lisbeth
2007-01-01
Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol - that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate diverse processes to produce demand-driven product portfolios.
Particle size distribution: A key factor in estimating powder dustiness.
López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo
2017-12-01
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.
Measurement of some potentially hazardous materials in the atmosphere of rubber factories.
Nutt, A
1976-01-01
Two separate topics of work are outlined: methods for the measurement of chlorinated monomers in PVC and polychloroprene, and also methods for the measurement of these materials in factory air. Typical results which have been obtained in supplies of raw materials, in finished products, and in the working atmosphere at manufacturing operations are given. The second topic concerns the measurement of benzo[a]pyrene in the atmosphere of a tire manufacturing plant. This material is present in trace quantities in the mineral oils and carbon blacks used by the industry. The atmospheric concentrations present at various processes in this plant were measured on a daily basis over a period of two years, and the results obtained compared with results taken concurrently from an outside air station. It is shown that no significant quantities of benzo[a]pyrene are produced by tire manufacturing operations. Images FIGURE 1. FIGURE 2. FIGURE 4. FIGURE 5. PMID:1026396
40 CFR 409.31 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.31 Specialized... shall mean the addition of pollutants. (c) Melt shall mean that amount of raw material (raw sugar) contained within aqueous solution at the beginning of the process for production of refined cane sugar. ...
40 CFR 409.31 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.31 Specialized... shall mean the addition of pollutants. (c) Melt shall mean that amount of raw material (raw sugar) contained within aqueous solution at the beginning of the process for production of refined cane sugar. ...
40 CFR 409.31 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.31 Specialized... shall mean the addition of pollutants. (c) Melt shall mean that amount of raw material (raw sugar) contained within aqueous solution at the beginning of the process for production of refined cane sugar. ...
40 CFR 409.31 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.31 Specialized... shall mean the addition of pollutants. (c) Melt shall mean that amount of raw material (raw sugar) contained within aqueous solution at the beginning of the process for production of refined cane sugar. ...
48 CFR 31.205-26 - Material costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Material costs. 31.205-26....205-26 Material costs. (a) Material costs include the costs of such items as raw materials, parts... material costs, the contractor shall consider reasonable overruns, spoilage, or defective work (unless...
48 CFR 31.205-26 - Material costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Material costs. 31.205-26....205-26 Material costs. (a) Material costs include the costs of such items as raw materials, parts... material costs, the contractor shall consider reasonable overruns, spoilage, or defective work (unless...
48 CFR 52.211-5 - Material Requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... readjustments and material replacement. Recovered material means waste materials and by-products recovered or diverted from solid waste, but the term does not include those materials and by-products generated from... is, or with new technology will become, a source of raw materials. (b) Unless this contract otherwise...
Silva, R V; de Brito, J; Lynn, C J; Dhir, R K
2017-10-01
This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
Chinga-Carrasco, Gary; Syverud, Kristin
2014-09-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels
Syverud, Kristin
2014-01-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295