Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.
Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets
Kotera, Masaaki; Tabei, Yasuo; Yamanishi, Yoshihiro; Tokimatsu, Toshiaki; Goto, Susumu
2013-01-01
Motivation: The metabolic pathway is an important biochemical reaction network involving enzymatic reactions among chemical compounds. However, it is assumed that a large number of metabolic pathways remain unknown, and many reactions are still missing even in known pathways. Therefore, the most important challenge in metabolomics is the automated de novo reconstruction of metabolic pathways, which includes the elucidation of previously unknown reactions to bridge the metabolic gaps. Results: In this article, we develop a novel method to reconstruct metabolic pathways from a large compound set in the reaction-filling framework. We define feature vectors representing the chemical transformation patterns of compound–compound pairs in enzymatic reactions using chemical fingerprints. We apply a sparsity-induced classifier to learn what we refer to as ‘enzymatic-reaction likeness’, i.e. whether compound pairs are possibly converted to each other by enzymatic reactions. The originality of our method lies in the search for potential reactions among many compounds at a time, in the extraction of reaction-related chemical transformation patterns and in the large-scale applicability owing to the computational efficiency. In the results, we demonstrate the usefulness of our proposed method on the de novo reconstruction of 134 metabolic pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our comprehensively predicted reaction networks of 15 698 compounds enable us to suggest many potential pathways and to increase research productivity in metabolomics. Availability: Softwares are available on request. Supplementary material are available at http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2013/. Contact: goto@kuicr.kyoto-u.ac.jp PMID:23812977
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Ren, Yi; Gai, Jing-Gang; Xiong, Yan; Lee, Kuo-Hsing; Chu, San-Yan
2007-07-26
Three archetypal ion pair nucleophilic substitution reactions at the methylsulfenyl sulfur atom LiX+CH3SX-->XSCH3+LiX (X=Cl, Br, and I) are investigated by the modified Gaussian-2 theory. Including lithium cation in the anionic models makes the ion pair reactions proceed along an SN2 mechanism, contrary to the addition-elimination pathway occurring in the corresponding anionic nucleophilic substitution reactions X-+CH3SX-->XSCH3+X-. Two reaction pathways for the ion pair SN2 reactions at sulfur, inversion and retention, are proposed. Results indicate the inversion pathway is favorable for all the halogens. Comparison of the transition structures and energetics for the ion pair SN2 at sulfur with the potential competition ion pair SN2 reactions at carbon LiX+CH3SX-->XCH3+LiXS shows that the SN2 reactions at carbon are not favorable from the viewpoints of kinetics and thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fang; Zhang, Yu; Liu, Shizhong
Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less
Lu, Fang; Zhang, Yu; Liu, Shizhong; ...
2017-05-11
Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less
Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.
A global reaction route mapping-based kinetic Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Mitchell, Izaac; Irle, Stephan; Page, Alister J.
2016-07-01
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
A global reaction route mapping-based kinetic Monte Carlo algorithm.
Mitchell, Izaac; Irle, Stephan; Page, Alister J
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry
Osborn, David L.
2017-03-15
Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less
Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, David L.
Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less
Exploring the reaction channels between arsine and the hydroxyl radical
NASA Astrophysics Data System (ADS)
Viana, Rommel B.
2017-10-01
The aim of this study was to present the reaction mechanism channels between arsine (AsH3) and hydroxyl (OH) which was evaluated at CCSD(T)/CBS//CCSD/cc-pVTZ level. One potential channel is the hydrogen abstraction pathway (R1), leading to AsH2 and H2O products, which occurs due to the formation of an entrance complex (AsH3OH) followed by a 1,2-hydrogen shift pathway (involving the proton transfer from the arsine group to hydroxyls, with one leading to the products). Additional channels are accessed via H-elimination pathways of the entrance complexes, forming arsinous acid (AsH2OH; R2) and arsine oxide (AsH3O; R3). In this respect, R2 is the only exoergic route of the three exit channels, representing the major branching ratio at 200-1000 K and, after 2000 K, R1 increases gradually becoming the major route of this reaction. In contrast, even at 4000 K, R3 is a highly unfeasible pathway. Therefore, the information predicted here provides new insights into the neutral-neutral chemical reaction dynamics regarding the Group V hydrides. On the other side, the R2 pathway may have some potential to solve the arsine oxidation puzzle as a possible primary pathway to the arsenic-oxygen species formation.
Kivelä, Sami M; Svensson, Beatrice; Tiwe, Alma; Gotthard, Karl
2015-09-01
Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch-induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway-specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Dietzek, Benjamin; Brüggemann, Ben; Pascher, Torbjörn; Yartsev, Arkady
2007-10-31
Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.
A global reaction route mapping-based kinetic Monte Carlo algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Izaac; Page, Alister J., E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au; Irle, Stephan, E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculatedmore » on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.« less
Minimum Energy Pathways for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, S. P.; Langhoff, S. R. (Technical Monitor)
1995-01-01
Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.
Yang, Xinzheng
2013-09-07
Density functional theory calculations reveal a complete reaction mechanism with detailed energy profiles and transition state structures for the dehydrogenation of formic acid catalyzed by an iron complex, [P(CH2CH2PPh2)3FeH](+). In the cationic reaction pathway, a β-hydride elimination process is confirmed to be the rate-determining step in this catalytic reaction. A potential reaction pathway starting with a direct hydride transfer from HCOO(-) to Fe is found to be possible, but slightly less favorable than the catalytic cycle with a β-hydride elimination step.
Peters, John W; Beratan, David N; Schut, Gerrit J; Adams, Michael W W
2018-04-19
Bifurcating electrons to couple endergonic and exergonic electron-transfer reactions has been shown to have a key role in energy conserving redox enzymes. Bifurcating enzymes require a redox center that is capable of directing electron transport along two spatially separate pathways. Research into the nature of electron bifurcating sites indicates that one of the keys is the formation of a low potential oxidation state to satisfy the energetics required of the endergonic half reaction, indicating that any redox center (organic or inorganic) that can exist in multiple oxidation states with sufficiently separated redox potentials should be capable of electron bifurcation. In this Feature Article, we explore a paradigm for bifurcating electrons down independent high and low potential pathways, and describe redox cofactors that have been demonstrated or implicated in driving this unique biochemistry.
Network design and analysis for multi-enzyme biocatalysis.
Blaß, Lisa Katharina; Weyler, Christian; Heinzle, Elmar
2017-08-10
As more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells. We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative. We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.
Bifurcations on Potential Energy Surfaces of Organic Reactions
Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.
2009-01-01
A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086
Degradation of Nicotine in Chlorinated Water: Pathways and ...
Report The objective of the study is to illustrate how drinking water would affect alkaloid pesticides, and to address the issue by (a) investigating the fate of nicotine in chlorinated drinking water and deionized water, (b) determining the reaction rate and pathway of the reaction between nicotine and aqueous chlorine, (c) identifying nicotine’s degradation products, and (d) providing data that can be used to assess the potential threat from nicotine in drinking water.
NASA Astrophysics Data System (ADS)
Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert
2014-12-01
Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.
Hypothesis: Hemolytic Transfusion Reactions Represent an Alternative Type of Anaphylaxis
Hod, Eldad A.; Sokol, Set A.; Zimring, James C.; Spitalnik, Steven L.
2009-01-01
Classical anaphylaxis is the most severe, and potentially fatal, type of allergic reaction, manifested by hypotension, bronchoconstriction, and vascular permeability. Similarly, a hemolytic transfusion reaction (HTR) is the most feared consequence of blood transfusion. Evidence for the existence of an alternative, IgG-mediated pathway of anaphylaxis may be relevant for explaining the pathophysiology of IgG-mediated-HTRs. The purpose of this review is to summarize the evidence for this alternative pathway of anaphylaxis and to present the hypothesis that an IgG-mediated HTR is one example of this type of anaphylaxis. PMID:18830382
Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism
Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron
2014-01-01
In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating the thermodynamic and kinetic quality of different pathway chemistries that produce the same molecules. PMID:24586134
2016-01-01
Redox neutral photocatalytic transformations often require careful pairing of the substrates and photoredox catalysts in order to achieve a catalytic cycle. This can limit the range of viable transformations, as we recently observed in attempting to extend the scope of the photocatalytic synthesis of N-heterocycles using silicon amine protocol (SLAP) reagents to include starting materials that require higher oxidation potentials. We now report that the inclusion of Lewis acids in photocatalytic reactions of organosilanes allows access to a distinct reaction pathway featuring an Ir(III)*/Ir(IV) couple instead of the previously employed Ir(III)*/Ir(II) pathway, enabling the transformation of aromatic and aliphatic aldehydes to thiomorpholines and thiazepanes. The role of the Lewis acid in accepting an electron—either directly or via coordination to an imine—can be extended to other classes of photocatalysts and transformations, including oxidative cyclizations. The combination of light induced reactions and Lewis acids therefore promises access to new pathways and transformations that are not viable using the photocatalysts alone. PMID:28149955
Westman, Gunnar; Eriksson, Leif A.; Mapelli, Valeria
2018-01-01
The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them. PMID:29474495
A barrier-free atomic radical-molecule reaction: N (2D) NO2 (2A1) mechanistic study
NASA Astrophysics Data System (ADS)
Zuo, Ming-Hui; Liu, Hui-Ling; Huang, Xu-Ri; Zhan, Jin-Hui; Sun, Chia-Chung
The reaction of N (2D) radical with NO2 molecule has been studied theoretically using density functional theory and ab initio quantum chemistry method. Singlet electronic state [N2O2] potential energy surfaces (PES) are calculated at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311+G(d) + ZPE and G3B3 levels of theory. All the involved transition states for generation of (2NO) and (O2 + N2) lie much lower than the reactants. Thus, the novel reaction N + NO2 can proceed effectively even at low temperatures and it is expected to play a role in both combustion and interstellar processes. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the title reaction.
NASA Astrophysics Data System (ADS)
Harabuchi, Yu; Ono, Yuriko; Maeda, Satoshi; Taketsugu, Tetsuya
2015-07-01
A global reaction route map is generated for Au5 by the anharmonic downward distortion following method in which 5 minima and 14 transition states (TSs) are located. Through vibrational analyses in the 3N - 7 (N = 5) dimensional space orthogonal to the intrinsic reaction coordinate (IRC), along all the IRCs, four IRCs are found to have valley-ridge transition (VRT) points on the way where a potential curvature changes its sign from positive to negative in a direction orthogonal to the IRC. The detailed mechanisms of bifurcations related to the VRTs are discussed by surveying a landscape of the global reaction route map, and the connectivity of VRT points and minima is clarified. Branching of the products through bifurcations is confirmed by ab initio molecular dynamics simulations starting from the TSs. A new feature of the reaction pathways, unification, is found and discussed.
Theoretical investigation of the gas-phase reactions of CrO(+) with ethylene.
Scupp, Thomas M; Dudley, Timothy J
2010-01-21
The potential energy surfaces associated with the reactions of chromium oxide cation (CrO(+)) with ethylene have been characterized using density functional, coupled-cluster, and multireference methods. Our calculations show that the most probable reaction involves the formation of acetaldehyde and Cr(+) via a hydride transfer involving the metal center. Our calculations support previous experimental hypotheses that a four-membered ring intermediate plays an important role in the reactivity of the system. We have also characterized a number of viable reaction pathways that lead to other products, including ethylene oxide. Due to the experimental observation that CrO(+) can activate carbon-carbon bonds, a reaction pathway involving C-C bond cleavage has also been characterized. Since many of the reactions involve a change in the spin state in going from reactants to products, locations of these spin surface crossings are presented and discussed. The applicability of methods based on Hartree-Fock orbitals is also discussed.
Solvent friction changes the folding pathway of the tryptophan zipper TZ2.
Narayanan, Ranjani; Pelakh, Leslie; Hagen, Stephen J
2009-07-17
Because the rate of a diffusional process such as protein folding is controlled by friction encountered along the reaction pathway, the speed of folding is readily tunable through adjustment of solvent viscosity. The precise relationship between solvent viscosity and the rate of diffusion is complex and even conformation-dependent, however, because both solvent friction and protein internal friction contribute to the total reaction friction. The heterogeneity of the reaction friction along the folding pathway may have subtle consequences. For proteins that fold on a multidimensional free-energy surface, an increase in solvent friction may drive a qualitative change in folding trajectory. Our time-resolved experiments on the rapidly and heterogeneously folding beta-hairpin TZ2 show a shift in the folding pathway as viscosity increases, even though the energetics of folding is unaltered. We also observe a nonlinear or saturating behavior of the folding relaxation time with rising solvent viscosity, potentially an experimental signature of the shifting pathway for unfolding. Our results show that manipulations of solvent viscosity in folding experiments and simulations may have subtle and unexpected consequences on the folding dynamics being studied.
Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H
2016-12-29
Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.
He, Yunqing; Xue, Ying
2010-09-02
The reaction mechanism of the cyanide-catalyzed benzoin condensation without protonic solvent assistance has been studied computationally for the first time employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d,p) basis set. Four possible pathways have been investigated. A new proposed pathway on the basis of the Lapworth mechanism is determined to be the dominant pathway in aprotic solvent, in which the formation of the Lapworth's cyanohydrin intermediate is a sequence including three steps assisted by benzaldehyde, clearly manifesting that the reaction can take place in aprotic solvents such as DMSO. In this favorable pathway with six possible transition states located along the potential energy surface, the reaction of the cyanide/benzaldehyde complex with another benzaldehyde to afford an alpha-hydroxy ether is the rate-determining dynamically with the activation free energy barrier of 26.9 kcal/mol, and the step to form cyanohydrin intermediate from alpha-hydroxy ether is partially rate-determining for its relatively significant barrier 20.0 kcal/mol.
Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects.
Schöneich, Christian
2017-03-10
The sulfur-containing amino acids cysteine (Cys) and methionine (Met) are prominent protein targets of redox modification during conditions of oxidative stress. Here, two-electron pathways have received widespread attention, in part due to their role in signaling processes. However, Cys and Met are equally prone to one-electron pathways, generating intermediary radicals and/or radial ions. These radicals/radical ions can generate various reaction products that are not commonly monitored in redox proteomic studies, but they may be relevant for the fate of proteins during oxidative stress. Recent Advances: Time-resolved kinetic studies and product analysis have expanded our mechanistic understanding of radical reaction pathways of sulfur-containing amino acids. These reactions are now studied in some detail for Met and Cys in proteins, and homocysteine (Hcy) chemically linked to proteins, and the role of protein radical reactions in physiological processes is evolving. Radical-derived products from Cys, Hcy, and Met can react with additional amino acids in proteins, leading to secondary protein modifications, which are potentially remote from initial points of radical attack. These products may contain intra- and intermolecular cross-links, which may lead to protein aggregation. Protein sequence and conformation will have a significant impact on the formation of such products, and a thorough understanding of reaction mechanisms and specifically how protein structure influences reaction pathways will be critical for identification and characterization of novel reaction products. Future studies must evaluate the biological significance of novel reaction products that are derived from radical reactions of sulfur-containing amino acids. Antioxid. Redox Signal. 26, 388-405.
DEOP: a database on osmoprotectants and associated pathways
Bougouffa, Salim; Radovanovic, Aleksandar; Essack, Magbubah; Bajic, Vladimir B.
2014-01-01
Microorganisms are known to counteract salt stress through salt influx or by the accumulation of osmoprotectants (also called compatible solutes). Understanding the pathways that synthesize and/or breakdown these osmoprotectants is of interest to studies of crops halotolerance and to biotechnology applications that use microbes as cell factories for production of biomass or commercial chemicals. To facilitate the exploration of osmoprotectants, we have developed the first online resource, ‘Dragon Explorer of Osmoprotection associated Pathways’ (DEOP) that gathers and presents curated information about osmoprotectants, complemented by information about reactions and pathways that use or affect them. A combined total of 141 compounds were confirmed osmoprotectants, which were matched to 1883 reactions and 834 pathways. DEOP can also be used to map genes or microbial genomes to potential osmoprotection-associated pathways, and thus link genes and genomes to other associated osmoprotection information. Moreover, DEOP provides a text-mining utility to search deeper into the scientific literature for supporting evidence or for new associations of osmoprotectants to pathways, reactions, enzymes, genes or organisms. Two case studies are provided to demonstrate the usefulness of DEOP. The system can be accessed at. Database URL: http://www.cbrc.kaust.edu.sa/deop/ PMID:25326239
Process for chemical reaction of amino acids and amides yielding selective conversion products
Holladay, Jonathan E [Kennewick, WA
2006-05-23
The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp; Ho, Tak-San, E-mail: tsho@Princeton.EDU; Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU
We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O{sub 2} + O asymptote on the ground-state {sup 1}A{sup ′} potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excitedmore » electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization.« less
Dynamics Sampling in Transition Pathway Space.
Zhou, Hongyu; Tao, Peng
2018-01-09
The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.
Theoretical study on the reaction mechanism of CH 4 with CaO
NASA Astrophysics Data System (ADS)
Yang, Hua-Qing; Hu, Chang-Wei; Qin, Song
2006-11-01
The reaction pathways and energetics for the reaction of methane with CaO are discussed on the singlet spin state potential energy surface at the B3LYP/6-311+G(2df,2p) and QCISD/6-311++G(3df,3pd)//B3LYP/6-311+G(2df,2p) levels of theory. The reaction of methane with CaO is proposed to proceed in the following reaction pathways: CaO + CH 4 → CaOCH 4 → [TS] → CaOH + CH 3, CaO + CH 4 → OCaCH 4 → [TS] → HOCaCH 3 → CaOH + CH 3 or [TS] → CaCH 3OH → Ca + CH 3OH, and OCaCH 4 → [TS] → HCaOCH 3 → CaOCH 3 + H or [TS] → CaCH 3OH → Ca + CH 3OH. The gas-phase methane-methanol conversion by CaO is suggested to proceed via two kinds of important reaction intermediates, HOCaCH 3 and HCaOCH 3, and the reaction pathway via the hydroxy intermediate (HOCaCH 3) is energetically more favorable than the other one via the methoxy intermediate (HCaOCH 3). The hydroxy intermediate HOCaCH 3 is predicted to be the energetically most preferred configuration in the reaction of CaO + CH 4. Meanwhile, these three product channels (CaOH + CH 3, CaOCH 3 + H and Ca + CH 3OH) are expected to compete with each other, and the formation of methyl radical is the most preferable pathway energetically. On the other hand, the intermediates HCaOCH 3 and HOCaCH 3 are predicted to be the energetically preferred configuration in the reaction of Ca + CH 3OH, which is precisely the reverse reaction of methane hydroxylation.
NASA Astrophysics Data System (ADS)
Asgharzadeh, Somaie; Vahedpour, Morteza
2018-06-01
Methanimine reaction with O2 on singlet and triplet potential energy surfaces are investigated using B3PW91, M06-2X, MP2 and CCSD(T) methods. Thermodynamic and kinetic parameters are calculated at M06-2X method. The most favorable channel involves H-abstraction of CH2NH+O2 to the formation of HCN + H2O2 products via low level energy barrier. The catalytic effect of water molecule on HCN + H2O2 products pathway are investigated. Result shows that contribution of water molecule using complex formation with methanimine can decreases barrier energy of transition state and the reaction rate increases. Also, substituent effect of fluorine atom as deactivating group are investigated on the main reaction pathway.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Herskind, Carsten; Talbot, Christopher J.; Kerns, Sarah L.; Veldwijk, Marlon R.; Rosenstein, Barry S.; West, Catharine M. L.
2016-01-01
Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review ‘omics’ approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different ‘omics’ approaches may be more efficient in identifying critical pathways than pathway analysis based on single ‘omics’ data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterized by different mechanisms. Thus ‘omics’ and functional approaches may synergize if they are integrated into radiogenomics ‘systems biology’ to facilitate the goal of individualised radiotherapy. PMID:26944314
Revealing a double-inversion mechanism for the F⁻+CH₃Cl SN2 reaction.
Szabó, István; Czakó, Gábor
2015-01-19
Stereo-specific reaction mechanisms play a fundamental role in chemistry. The back-side attack inversion and front-side attack retention pathways of the bimolecular nucleophilic substitution (SN2) reactions are the textbook examples for stereo-specific chemical processes. Here, we report an accurate global analytic potential energy surface (PES) for the F(-)+CH₃Cl SN2 reaction, which describes both the back-side and front-side attack substitution pathways as well as the proton-abstraction channel. Moreover, reaction dynamics simulations on this surface reveal a novel double-inversion mechanism, in which an abstraction-induced inversion via a FH···CH₂Cl(-) transition state is followed by a second inversion via the usual [F···CH₃···Cl](-) saddle point, thereby opening a lower energy reaction path for retention than the front-side attack. Quasi-classical trajectory computations for the F(-)+CH₃Cl(ν1=0, 1) reactions show that the front-side attack is a fast direct, whereas the double inversion is a slow indirect process.
Mapping the Complete Reaction Path of a Complex Photochemical Reaction.
Smith, Adam D; Warne, Emily M; Bellshaw, Darren; Horke, Daniel A; Tudorovskya, Maria; Springate, Emma; Jones, Alfred J H; Cacho, Cephise; Chapman, Richard T; Kirrander, Adam; Minns, Russell S
2018-05-04
We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.
Mapping the Complete Reaction Path of a Complex Photochemical Reaction
NASA Astrophysics Data System (ADS)
Smith, Adam D.; Warne, Emily M.; Bellshaw, Darren; Horke, Daniel A.; Tudorovskya, Maria; Springate, Emma; Jones, Alfred J. H.; Cacho, Cephise; Chapman, Richard T.; Kirrander, Adam; Minns, Russell S.
2018-05-01
We probe the dynamics of dissociating CS2 molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.
In search of a viable reaction pathway in the chelation of a metallo-protein
NASA Astrophysics Data System (ADS)
Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry
2010-03-01
Misfolded metallo-proteins are potential causal agents in the onset of neuro-degenerative diseases, such as Alzheimer's and Parkinson's Diseases (PD). Experimental results involving metal chelation have shown significant promise in symptom reduction and misfolding reversal. We explore, through atomistic simulations, potential reaction pathways for the chelation of Cu^2+ from the metal binding site in our representation of a partially misfolded α-synuclein, the protein implicated in PD. Our ab initio simulations use Density Functional Theory (DFT) and nudged elastic band to obtain the minimized energy coordinates of this reaction. Our simulations include ab initio water at the interaction site and in its first solvation shells, while the remainder is fully solvated with orbital-free DFT water representation [1]. Our ongoing studies of viable chelation agents include nicotine, caffeine and other potential reagents, we will review the best case agents in this presentation. [4pt] [1] Hodak M, Lu W, Bernholc J. Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems. J. Chem. Phys. 2008 Jan;128(1):014101-9.
2010-05-30
supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...With regard to physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass...effects in supercritical fluids , often affecting chemical reaction pathways by facilitating the formation of certain transition states [6]. Because
Theory of vibrationally assisted tunneling for hydroxyl monomer flipping on Cu(110)
NASA Astrophysics Data System (ADS)
Gustafsson, Alexander; Ueba, Hiromu; Paulsson, Magnus
2014-10-01
To describe vibrationally mediated configuration changes of adsorbates on surfaces we have developed a theory to calculate both reaction rates and pathways. The method uses the T-matrix to describe excitations of vibrational states by the electrons of the substrate, adsorbate, and tunneling electrons from a scanning tunneling probe. In addition to reaction rates, the theory also provides the reaction pathways by going beyond the harmonic approximation and using the full potential energy surface of the adsorbate which contains local minima corresponding to the adsorbates different configurations. To describe the theory, we reproduce the experimental results in [T. Kumagai et al., Phys. Rev. B 79, 035423 (2009), 10.1103/PhysRevB.79.035423], where the hydrogen/deuterium atom of an adsorbed hydroxyl (OH/OD) exhibits back and forth flipping between two equivalent configurations on a Cu(110) surface at T =6 K. We estimate the potential energy surface and the reaction barrier, ˜160 meV, from DFT calculations. The calculated flipping processes arise from (i) at low bias, tunneling of the hydrogen through the barrier, (ii) intermediate bias, tunneling electrons excite the vibrations increasing the reaction rate although over the barrier processes are rare, and (iii) higher bias, overtone excitations increase the reaction rate further.
RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions.
Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua
2018-01-01
Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro , human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the SHLI-induced hypersensitivity reactions in both endothelial cells and mice indicating its protective effect. SHLI-induced pseudo-allergic reactions were mediated by the activation of the RhoA/ROCK signaling pathway. Conclusion : This study presents a novel mechanism of SHLI-induced immediate hypersensitivity reactions and suggests a potential therapeutic strategy to prevent the associated adverse reactions.
Choi, Junghoon; Valentine, Richard L
2002-02-01
Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch
2016-07-21
An analysis of the network defined by the potential energy minima of multi-atomic systems and their connectivity via reaction pathways that go through transition states allows us to understand important characteristics like thermodynamic, dynamic, and structural properties. Unfortunately computing the transition states and reaction pathways in addition to the significant energetically low-lying local minima is a computationally demanding task. We here introduce a computationally efficient method that is based on a combination of the minima hopping global optimization method and the insight that uphill barriers tend to increase with increasing structural distances of the educt and product states. This methodmore » allows us to replace the exact connectivity information and transition state energies with alternative and approximate concepts. Without adding any significant additional cost to the minima hopping global optimization approach, this method allows us to generate an approximate network of the minima, their connectivity, and a rough measure for the energy needed for their interconversion. This can be used to obtain a first qualitative idea on important physical and chemical properties by means of a disconnectivity graph analysis. Besides the physical insight obtained by such an analysis, the gained knowledge can be used to make a decision if it is worthwhile or not to invest computational resources for an exact computation of the transition states and the reaction pathways. Furthermore it is demonstrated that the here presented method can be used for finding physically reasonable interconversion pathways that are promising input pathways for methods like transition path sampling or discrete path sampling.« less
NASA Astrophysics Data System (ADS)
Harabuchi, Yu; Ono, Yuriko; Maeda, Satoshi; Taketsugu, Tetsuya
2015-11-01
The existence of a valley-ridge transition (VRT) point along the intrinsic reaction coordinate does not always indicate the existence of two minima in the product side, but VRT is a sign of bifurcating nature of dynamical trajectories running on the potential energy surface. It is demonstrated by molecular dynamics simulations.
Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N
2017-09-19
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO 2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc 1 . While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.
Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuwei; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Li, Xi
Due to the high global warming potential (GWP) and increasing environmental concerns, efforts on searching the alternative gases to SF{sub 6}, which is predominantly used as insulating and interrupting medium in high-voltage equipment, have become a hot topic in recent decades. Overcoming the drawbacks of the existing candidate gases, C5- perfluorinated ketone (C5 PFK) was reported as a promising gas with remarkable insulation capacity and the low GWP of approximately 1. Experimental measurements of the dielectric strength of this novel gas and its mixtures have been carried out, but the chemical decomposition pathways and products of C5 PFK during breakdownmore » are still unknown, which are the essential factors in evaluating the electric strength of this gas in high-voltage equipment. Therefore, this paper is devoted to exploring all the possible decomposition pathways and species of C5 PFK by density functional theory (DFT). The structural optimizations, vibrational frequency calculations and energy calculations of the species involved in a considered pathway were carried out with DFT-(U)B3LYP/6-311G(d,p) method. Detailed potential energy surface was then investigated thoroughly by the same method. Lastly, six decomposition pathways of C5 PFK decomposition involving fission reactions and the reactions with a transition states were obtained. Important intermediate products were also determined. Among all the pathways studied, the favorable decomposition reactions of C5 PFK were found, involving C-C bond ruptures producing Ia and Ib in pathway I, followed by subsequent C-C bond ruptures and internal F atom transfers in the decomposition of Ia and Ib presented in pathways II + III and IV + V, respectively. Possible routes were pointed out in pathway III and lead to the decomposition of IIa, which is the main intermediate product found in pathway II of Ia decomposition. We also investigated the decomposition of Ib, which can undergo unimolecular reactions to give the formation of IV a, IV b and products of CF{sub 3} + CF-CF{sub 3} in pathway IV. Although IV a is dominant to a lesser extent due to its relative high energy barrier, its complicated decomposition pathway V was also studied and CF{sub 3}, C = CF{sub 2} as well as C-CF{sub 3} species were found as the ultimate products. To complete the decomposition of C5 PFK, pathway V I of Ic decomposition was fully explored and the final products were obtained. Therefore, the integrate decomposition scheme of C5 PFK was proposed, which contains six pathways and forty-eight species (including all the reactants, products and transition states). This work is hopeful to lay a theoretical basis for the insulating properties of C5 PFK.« less
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-06-01
Photodissociation pathways of nitromethane following π → π* electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 (2B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O (1D), CH3O(X2E) + NO (X2Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO.
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-06-28
Photodissociation pathways of nitromethane following π → π(*) electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 ((2)B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O ((1)D), CH3O(X(2)E) + NO (X(2)Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO.
NASA Astrophysics Data System (ADS)
Cody, G. D.; Boctor, N. Z.; Hazen, R. M.; Brandes, J. A.; Morowitz, Harold J.; Yoder, H. S.
2001-10-01
Recent theories have proposed that life arose from primitive hydrothermal environments employing chemical reactions analogous to the reductive citrate cycle (RCC) as the primary pathway for carbon fixation. This chemistry is presumed to have developed as a natural consequence of the intrinsic geochemistry of the young, prebiotic, Earth. There has been no experimental evidence, however, demonstrating that there exists a natural pathway into such a cycle. Toward this end, the results of hydrothermal experiments involving citric acid are used as a method of deducing such a pathway. Homocatalytic reactions observed in the citric acid-H2O experiments encompass many of the reactions found in modern metabolic systems, i.e., hydration-dehydration, retro-Aldol, decarboxylation, hydrogenation, and isomerization reactions. Three principal decomposition pathways operate to degrade citric acid under thermal and aquathermal conditions. It is concluded that the acid catalyzed βγ decarboxylation pathway, leading ultimately to propene and CO2, may provide the most promise for reaction network reversal under natural hydrothermal conditions. Increased pressure is shown to accelerate the principal decarboxylation reactions under strictly hydrothermal conditions. The effect of forcing the pH via the addition of NaOH reveals that the βγ decarboxylation pathway operates even up to intermediate pH levels. The potential for network reversal (the conversion of propene and CO2 up to a tricarboxylic acid) is demonstrated via the Koch (hydrocarboxylation) reaction promoted heterocatalytically with NiS in the presence of a source of CO. Specifically, an olefin (1-nonene) is converted to a monocarboxylic acid; methacrylic acid is converted to the dicarboxylic acid, methylsuccinic acid; and the dicarboxylic acid, itaconic acid, is converted into the tricarboxylic acid, hydroaconitic acid. A number of interesting sulfur-containing products are also formed that may provide for additional reaction. The intrinsic catalytic qualities of FeS and NiS are also explored in the absence of CO. It was shown that the addition of NiS has a minimal effect in the product distribution, whereas the addition of FeS leads to the formation of hydrogenated and sulfur-containing products (thioethers). These results point to a simple hydrothermal redox pathway for citric acid synthesis that may have provided a geochemical ignition point for the reductive citrate cycle.
Ab initio and density functional study on the mechanism of the C2H2++methanol reaction
NASA Astrophysics Data System (ADS)
Irle, Stephan; Morokuma, Keiji
1999-09-01
High level ab initio (G2MS and CASSCF) and density functional (B3LYP) calculations were carried out to study the mechanism of the ion-molecule reaction C2H2++CH3OH for four reaction channels: hydride abstraction from methanol (HA), proton transfer from acetylene cation (PT), charge transfer (CT), and covalent complex formation (CC) channel. For the CT channel, two pathways have been found: a usual nonadiabatic pathway via A'/A″ seam of crossing, and a low-energy adiabatic pathway through an initial intermediate; the latter may be the dominant process with favorable energies and a large impact parameter. The HA process involves a low-energy direct intermediate and a very low barrier to form C2H3+CH2OH+ and is also energetically favorable. The PT processes require passage over a high-energy transition state (TS) and are not important. One of the experimentally unobserved CC channels, formation of the COCC skeleton, is energetically favorable and there is no energetic reason for it not to take place; a "dynamic bottleneck" argument may have to be invoked to explain the experiment. The increase in reaction efficiency with the C-C stretch excitation may be justified by considering the TSs for two CT pathways, where the C-C distance changed substantially from that in the reactant C2H2+. Very qualitatively, the C2H2++CH3OH potential energy surface looks more like that of the C2H2++NH3 system than the C2H2++CH4 system, because of the differences in the ionization potentials: NH3˜CH3OH
Interaction of tetraethoxysilane with OH-terminated SiO2 (0 0 1) surface: A first principles study
NASA Astrophysics Data System (ADS)
Deng, Xiaodi; Song, Yixu; Li, Jinchun; Pu, Yikang
2014-06-01
First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO2(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO2 film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO2 films while the other will lead to formation of disordered SiO2 films.
Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J
2006-12-05
We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.
NASA Astrophysics Data System (ADS)
Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R. J.
The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 °C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO 2 formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO 2. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials (∼90% current efficiency for CO 2 formation at 100 °C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO 2 formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO 2 (68 ± 2 kJ mol -1 at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 ± 2 kJ mol -1 at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Weichao; Zhang, Dongju
2012-08-01
The potential energy surfaces for the OH + divinyl sulfoxide reaction in the presence of O2/NO are theoretically characterized at the CCSD(T)/6-311+G(d,p)//BH&HLYP/6-311++G(d,p)+ZPE level of theory. Various possible pathways including the direct hydrogen abstraction channels and the addition-elimination channels are considered. The calculations show that the exclusive feasible entrance channel is the formation of adduct CH2(OH)CHS(O)CHdbnd CH2 (IM1) in the initial reaction pathways. In the atmosphere, the newly formed adduct IM1 can further react with O2/NO to form the dominant products HCHO + C(O)HS(O)CHdbnd CH2 (P9). The calculated results confirm the experimental studies.
NASA Astrophysics Data System (ADS)
Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo
2016-02-01
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D
2016-07-01
In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.
Mechanistic Analysis of the C-H Amination Reaction of Menthol by CuBr2 and Selectfluor.
Sathyamoorthi, Shyam; Lai, Yin-Hung; Bain, Ryan M; Zare, Richard N
2018-05-18
The mechanism of the Ritter-type C-H amination reaction of menthol with acetonitrile using CuBr 2 , Selectfluor, and Zn(OTf) 2 , first disclosed by Baran and coworkers in 2012, was studied using a combination of online electrospray ionization mass spectrometry, continuous UV/vis spectrometric monitoring, and density functional theory calculations. In addition to corroborating Baran's original mechanistic proposal, these studies uncovered a second pathway to product formation, which likely only occurs in microdroplets. DFT calculations show that neither pathway has a barrier that is greater than 6.8 kcal/mol, suggesting that both mechanisms are potentially operative under ambient conditions.
Interface Reactions and Synthetic Reaction of Composite Systems
Park, Joon Sik; Kim, Jeong Min
2010-01-01
Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.
NASA Astrophysics Data System (ADS)
Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten
2018-01-01
In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.
Escobedo-González, René; Méndez-Albores, Abraham; Villarreal-Barajas, Tania; Aceves-Hernández, Juan Manuel; Miranda-Ruvalcaba, René; Nicolás-Vázquez, Inés
2016-07-21
Theoretical studies of 8-chloro-9-hydroxy-aflatoxin B₁ (2) were carried out by Density Functional Theory (DFT). This molecule is the reaction product of the treatment of aflatoxin B₁ (1) with hypochlorous acid, from neutral electrolyzed water. Determination of the structural, electronic and spectroscopic properties of the reaction product allowed its theoretical characterization. In order to elucidate the formation process of 2, two reaction pathways were evaluated-the first one considering only ionic species (Cl⁺ and OH(-)) and the second one taking into account the entire hypochlorous acid molecule (HOCl). Both pathways were studied theoretically in gas and solution phases. In the first suggested pathway, the reaction involves the addition of chlorenium ion to 1 forming a non-classic carbocation assisted by anchimeric effect of the nearest aromatic system, and then a nucleophilic attack to the intermediate by the hydroxide ion. In the second studied pathway, as a first step, the attack of the double bond from the furanic moiety of 1 to the hypochlorous acid is considered, accomplishing the same non-classical carbocation, and again in the second step, a nucleophilic attack by the hydroxide ion. In order to validate both reaction pathways, the atomic charges, the highest occupied molecular orbital and the lowest unoccupied molecular orbital were obtained for both substrate and product. The corresponding data imply that the C₉ atom is the more suitable site of the substrate to interact with the hydroxide ion. It was demonstrated by theoretical calculations that a vicinal and anti chlorohydrin is produced in the terminal furan ring. Data of the studied compound indicate an important reduction in the cytotoxic and genotoxic potential of the target molecule, as demonstrated previously by our research group using different in vitro assays.
RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions
Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua
2018-01-01
Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro, human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the SHLI-induced hypersensitivity reactions in both endothelial cells and mice indicating its protective effect. SHLI-induced pseudo-allergic reactions were mediated by the activation of the RhoA/ROCK signaling pathway. Conclusion: This study presents a novel mechanism of SHLI-induced immediate hypersensitivity reactions and suggests a potential therapeutic strategy to prevent the associated adverse reactions. PMID:29487527
Modeling the Reaction of Fe Atoms with CCl4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel
2009-01-05
The reaction of zero-valent iron with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. Temperature programmed desorption experiments over a range of Fe and CCl4 coverages on a FeO(111) surface, demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, FeCl3) observed. The reactivity of Fe and CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules and two Fe with one CCl4, modeling the environment of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed productsmore » and suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity with the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nano-particles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing
2016-01-01
Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.
Calculation of biochemical net reactions and pathways by using matrix operations.
Alberty, R A
1996-01-01
Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isegawa, Miho; Liu, Fengyi; Morokuma, Keiji
2014-06-28
Photodissociation pathways of nitromethane following π → π{sup *} electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH{sub 3} and NO{sub 2} ({sup 2}B{sub 2}) is formed by direct dissociation from the S{sub 1} state. Importantmore » pathways involving S{sub 1} and S{sub 0} states for production of various dissociation products CH{sub 3}NO + O ({sup 1}D), CH{sub 3}O(X{sup 2}E) + NO (X{sup 2}Π), CH{sub 2}NO + OH, and CH{sub 2}O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH{sub 3}NO{sub 2}, the OH radical roaming in OH dissociation from CH{sub 2}N(O)(OH), and the NO roaming in NO dissociation from CH{sub 3}ONO.« less
Casavecchia, P; Balucani, N; Cartechini, L; Capozza, G; Bergeat, A; Volpi, G G
2001-01-01
The dynamics of some elementary reactions of N(2D), C(3P,1D) and CN(X2 sigma +) of importance in combustion have been investigated by using the crossed molecular beam scattering method with mass spectrometric detection. The novel capability of producing intense, continuous beams of the radical reagents by a radio-frequency discharge beam source was exploited. From angular and velocity distribution measurements obtained in the laboratory frame, primary reaction products have been identified and their angular and translational energy distributions in the center-of-mass system, as well as branching ratios, have been derived. The dominant N/H exchange channel has been examined in the reaction N(2D) + CH4, which is found to lead to H + CH2NH (methylenimine) and H + CH3N (methylnitrene); no H2 elimination is observed. In the reaction N(2D) + H2O the N/H exchange channel has been found to occur via two competing pathways leading to HNO + H and HON + H, while formation of NO + H2 is negligible. Formation of H + H2CCCH (propargyl) is the dominant pathway, at low collision energy (Ec), of the C(3P) + C2H4 reaction, while at high Ec formation of the less stable C3H3 isomers (cyclopropenyl and/or propyn-1-yl) also occurs; the H2 elimination channel is negligible. The H elimination channel has also been found to be the dominant pathway in the C(3P,1D) + CH3CCH reaction leading to C4H3 isomers and, again, no H2 elimination has been observed to occur. In contrast, both H and H2 elimination, leading in comparable ratio to C3H + H and C3(X1 sigma g+) + H2(X1 sigma g+), respectively, have been observed in the reaction C(3P) + C2H2(X1 sigma g+). The occurrence of the spin-forbidden molecular pathway in this reaction, never detected before, has been rationalized by invoking the occurrence of intersystem crossing between triplet and singlet manifolds of the C3H2 potential energy surfaces. The reaction CN(X2 sigma +) + C2H2 has been found to lead to internally excited HCCCN (cyanoacetylene) + H. For all the reactions the dynamics have been discussed in the light of recent theoretical calculations on the relevant potential energy surfaces. Previous, lower resolution studies on C and CN reactions carried out using pulsed beams are noted. Finally, throughout the paper the relevance of these results to combustion chemistry is considered.
Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C
2018-05-29
We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.
Vranish, James N.; Russell, William K.; Yu, Lusa E.; ...
2014-12-05
Iron–sulfur (Fe–S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe–S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe–S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe–2S] and [4Fe–4S] clusters), ligand environments ([2Fe–2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe–S clustermore » transfer reactions are monitored between two Fdx molecules that have identical Fe–S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe–2S]–DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe–S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe–S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. Lastly, we anticipate that this cluster detection methodology will transform the study of Fe–S cluster pathways and potentially other metal cofactor biosynthetic pathways.« less
Juneja, Ankita; Chaplen, Frank W R; Murthy, Ganti S
2016-08-01
A compartmentalized genome scale metabolic network was reconstructed for Chlorella variabilis to offer insight into various metabolic potentials from this alga. The model, iAJ526, was reconstructed with 1455 reactions, 1236 metabolites and 526 genes. 21% of the reactions were transport reactions and about 81% of the total reactions were associated with enzymes. Along with gap filling reactions, 2 major sub-pathways were added to the model, chitosan synthesis and rhamnose metabolism. The reconstructed model had reaction participation of 4.3 metabolites per reaction and average lethality fraction of 0.21. The model was effective in capturing the growth of C. variabilis under three light conditions (white, red and red+blue light) with fair agreement. This reconstructed metabolic network will serve an important role in systems biology for further exploration of metabolism for specific target metabolites and enable improved characteristics in the strain through metabolic engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
2015-01-01
Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056
Mahata, Arup; Rai, Rohit K; Choudhuri, Indrani; Singh, Sanjay K; Pathak, Biswarup
2014-12-21
Density functional theory (DFT) calculations are performed to understand and address the previous experimental results that showed the reduction of nitrobenzene to aniline prefers direct over indirect reaction pathways irrespective of the catalyst surface. Nitrobenzene to aniline conversion occurs via the hydroxyl amine intermediate (direct pathway) or via the azoxybenzene intermediate (indirect pathway). Through our computational study we calculated the spin polarized and dispersion corrected reaction energies and activation barriers corresponding to various reaction pathways for the reduction of nitrobenzene to aniline over a Ni catalyst surface. The adsorption behaviour of the substrate, nitrobenzene, on the catalyst surface was also considered and the energetically most preferable structural orientation was elucidated. Our study indicates that the parallel adsorption behaviour of the molecules over a catalyst surface is preferable over vertical adsorption behaviour. Based on the reaction energies and activation barrier of the various elementary steps involved in direct or indirect reaction pathways, we find that the direct reduction pathway of nitrobenzene over the Ni(111) catalyst surface is more favourable than the indirect reaction pathway.
Massoth, F E; Politzer, P; Concha, M C; Murray, J S; Jakowski, J; Simons, Jack
2006-07-27
The hydrodeoxygenation of methyl-substituted phenols was carried out in a flow microreactor at 300 degrees C and 2.85 MPa hydrogen pressure over a sulfided CoMo/Al(2)O(3) catalyst. The primary reaction products were methyl-substituted benzene, cyclohexene, cyclohexane, and H(2)O. Analysis of the results suggests that two independent reaction paths are operative, one leading to aromatics and the other to partially or completely hydrogenated cyclohexanes. The reaction data were analyzed using Langmuir-Hinshelwood kinetics to extract the values of the reactant-to-catalyst adsorption constant and of the rate constants characterizing the two reaction paths. The adsorption constant was found to be the same for both reactions, suggesting that a single catalytic site center is operative in both reactions. Ab initio electronic structure calculations were used to evaluate the electrostatic potentials and valence orbital ionization potentials for all of the substituted phenol reactants. Correlations were observed between (a) the adsorption constant and the two reaction rate constants measured for various methyl-substitutions and (b) certain moments of the electrostatic potentials and certain orbitals' ionization potentials of the isolated phenol molecules. On the basis of these correlations to intrinsic reactant-molecule properties, a reaction mechanism is proposed for each pathway, and it is suggested that the dependencies of adsorption and reaction rates upon methyl-group substitution are a result of the substituents' effects on the electrostatic potential and orbitals rather than geometric (steric) effects.
Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; ...
2016-07-21
Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O 2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO 2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely ofmore » central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O 2 and QOOH + O 2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less
Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L; Lata, James P; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M; Bergkvist, Magnus; Sherwood, Robert W; Zhang, Sheng; Travis, Alexander J
2017-01-02
For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L.; Lata, James P.; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M.; Bergkvist, Magnus; Sherwood, Robert W.; Zhang, Sheng; Travis, Alexander J.
2016-01-01
For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. PMID:27901298
Potential Chemical Systems for Intramolecular Cycloaddition Cures
1979-05-01
allowed electrocyclic photochemical ring closure of stilbene to dihydrophenanthrene is well known (Reference 12). The presence of an oxidant , e.g...CH (c) R 3 0 00 > 0 I I (42) The keto-diynes 36 follow a uniform reaction pathway with chlorotris- ( triphenylphosphine )rhodium[I] to yield the...Irradiation of 36b similarly gives 49. The mechanism proposed for the photochemical reaction involves an initial formation of the reactive cyclobutadiene by
Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.
Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J
2013-03-06
We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.
Investigating uncultured microbes and their role in a deep subseafloor ammonium sink
NASA Astrophysics Data System (ADS)
Kirkpatrick, J. B.; Spivack, A. J.; Smith, D. C.; D'Hondt, S. L.
2013-12-01
The marine deep biosphere is thought to hold a large reservoir of both microbial cells and untapped genetic diversity. One potential driving force behind the vast amount of uncultured organisms are unconventional redox pairs which may not be favorable at benchtop conditions, but can support life in other circumstances. One instance of this is the previously documented thermodynamic favorability of ammonium oxidation with sulfate in sediments such as those investigated here from the Indian Ocean. Using 454 tag sequencing of 16S DNA, we identified uncultured archaea and bacteria potentially playing key roles at the sulfate and ammonium interface. First, the phylogenetic identity of organisms potentially involved in this reaction is inferred, as well as thermodynamic considerations of potential pathways. Several novel phyla, as well as Clostridiales, appear over-represented at the reaction zone. Secondly, to understand the metabolic capability of these target organisms, these sequences have been cross-referenced with assemblies from metagenomic data sets, and connections to functional genes are being elucidated. Finally, we discuss parallels with near-shore coastal sediment from Narragansett Bay, Rhode Island, where geochemical similarities have been found. While the thermodynamic regime is similar to the Indian Ocean, suggesting the potential for a broad geographic distribution, accessibility provides the opportunity to construct bioreactors to test rates and pathways of ammonium and sulfate fluxes. Iron content may be a key factor in determining reaction favorability. We present ongoing work in this area and the pros and cons of different bioreactor designs.
Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice
2012-03-09
The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.
Corti, Daniele; Galbiati, Valentina; Gatti, Nicolò; Marinovich, Marina; Galli, Corrado L; Corsini, Emanuela
2015-10-01
Despite important impacts of systemic hypersensitivity induced by pharmaceuticals, for such endpoint no reliable preclinical approaches are available. We previously established an in vitro test to identify contact and respiratory allergens based on interleukin-8 (IL-8) production in THP-1 cells. Here, we challenged it for identification of pharmaceuticals associated with systemic hypersensitivity reactions, with the idea that drug sensitizers share common mechanisms of cell activation. Cells were exposed to drugs associated with systemic hypersensitivity reactions (streptozotocin, sulfamethoxazole, neomycin, probenecid, clonidine, procainamide, ofloxacin, methyl salicylate), while metformin was used as negative drug. Differently to chemicals, drugs tested were well tolerated, except clonidine and probenecid, with no signs of cytotoxicity up to 1-2mg/ml. THP-1 activation assay was adjusted, and conditions, that allow identification of all sensitizing drugs tested, were established. Next, using streptozotocin and selective inhibitors of PKC-β and p38 MAPK, two pathways involved in chemical allergen-induced cell activation, we tested the hypothesis that similar pathways were also involved in drug-induced IL-8 production and CD86 upregulation. Results indicated that drugs and chemical allergens share similar activation pathways. Finally, we made a structure-activity hypothesis related to hypersensitivity reactions, trying to individuate structural requisite that can be involved in immune mediated adverse reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metabolic assessment of E. coli as a Biofactory for commercial products.
Zhang, Xiaolin; Tervo, Christopher J; Reed, Jennifer L
2016-05-01
Metabolic engineering uses microorganisms to synthesize chemicals from renewable resources. Given the thousands of known metabolites, it is unclear what valuable chemicals could be produced by a microorganism and what native and heterologous reactions are needed for their synthesis. To answer these questions, a systematic computational assessment of Escherichia coli's potential ability to produce different chemicals was performed using an integrated metabolic model that included native E.coli reactions and known heterologous reactions. By adding heterologous reactions, a total of 1777 non-native products could theoretically be produced in E. coli under glucose minimal medium conditions, of which 279 non-native products have commercial applications. Synthesis pathways involving native and heterologous reactions were identified from eight central metabolic precursors to the 279 non-native commercial products. These pathways were used to evaluate the dependence on, and diversity of, native and heterologous reactions to produce each non-native commercial product, as well as to identify each product׳s closest central metabolic precursor. Analysis of the synthesis pathways (with 5 or fewer reaction steps) to non-native commercial products revealed that isopentenyl diphosphate, pyruvate, and oxaloacetate are the closest central metabolic precursors to the most non-native commercial products. Additionally, 4-hydroxybenzoate, tyrosine, and phenylalanine were found to be common precursors to a large number of non-native commercial products. Strains capable of producing high levels of these precursors could be further engineered to create strains capable of producing a variety of commercial non-native chemicals. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Negative collision energy dependence of Br formation in the OH + HBr reaction.
Che, Dock-Chil; Matsuo, Takashi; Yano, Yuya; Bonnet, Laurent; Kasai, Toshio
2008-03-14
The reaction between HBr and OH leading to H(2)O and Br in its ground state is studied by means of a crossed molecular beam experiment for a collision energy varying from 0.05 to 0.26 eV, the initial OH being selected in the state |JOmega> = |3/2 3/2> by an electrostatic hexapole field. The reaction cross-section is found to decrease with increasing collision energy. This negative dependence suggests that there is no barrier on the potential energy surface for the formation pathway considered. The experimental results are compared with the previously reported quantum scattering calculations of Clary et al. (D. C. Clary, G. Nyman and R. Hernandez, J. Phys. Chem., 1994, 101, 3704), and briefly discussed in the light of skewed potential energy surfaces associated with heavy-light-heavy type reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Marcio V.B.; Snee, William C.; Bromfield, Karen M.
The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analoguemore » of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form {pi}-stacking interactions with the catalytic Tyr{sup 24} have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.« less
A density functional theory study of the decomposition mechanism of nitroglycerin.
Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo
2017-08-21
The detailed decomposition mechanism of nitroglycerin (NG) in the gas phase was studied by examining reaction pathways using density functional theory (DFT) and canonical variational transition state theory combined with a small-curvature tunneling correction (CVT/SCT). The mechanism of NG autocatalytic decomposition was investigated at the B3LYP/6-31G(d,p) level of theory. Five possible decomposition pathways involving NG were identified and the rate constants for the pathways at temperatures ranging from 200 to 1000 K were calculated using CVT/SCT. There was found to be a lower energy barrier to the β-H abstraction reaction than to the α-H abstraction reaction during the initial step in the autocatalytic decomposition of NG. The decomposition pathways for CHOCOCHONO 2 (a product obtained following the abstraction of three H atoms from NG by NO 2 ) include O-NO 2 cleavage or isomer production, meaning that the autocatalytic decomposition of NG has two reaction pathways, both of which are exothermic. The rate constants for these two reaction pathways are greater than the rate constants for the three pathways corresponding to unimolecular NG decomposition. The overall process of NG decomposition can be divided into two stages based on the NO 2 concentration, which affects the decomposition products and reactions. In the first stage, the reaction pathway corresponding to O-NO 2 cleavage is the main pathway, but the rates of the two autocatalytic decomposition pathways increase with increasing NO 2 concentration. However, when a threshold NO 2 concentration is reached, the NG decomposition process enters its second stage, with the two pathways for NG autocatalytic decomposition becoming the main and secondary reaction pathways.
Springsteen, Greg; Yerabolu, Jayasudhan Reddy; Nelson, Julia; Rhea, Chandler Joel; Krishnamurthy, Ramanarayanan
2018-01-08
The development of metabolic approaches towards understanding the origins of life, which have focused mainly on the citric acid (TCA) cycle, have languished-primarily due to a lack of experimentally demonstrable and sustainable cycle(s) of reactions. We show here the existence of a protometabolic analog of the TCA involving two linked cycles, which convert glyoxylate into CO 2 and produce aspartic acid in the presence of ammonia. The reactions proceed from either pyruvate, oxaloacetate or malonate in the presence of glyoxylate as the carbon source and hydrogen peroxide as the oxidant under neutral aqueous conditions and at mild temperatures. The reaction pathway demonstrates turnover under controlled conditions. These results indicate that simpler versions of metabolic cycles could have emerged under potential prebiotic conditions, laying the foundation for the appearance of more sophisticated metabolic pathways once control by (polymeric) catalysts became available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less
Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
2016-12-09
How to efficiently oxidize H 2O to O 2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO 2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OERmore » at the IrO 2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. Furthermore, this allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.« less
Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium
Zou, Bin; Ren, Shoujie
2016-01-01
Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088
Lee, Chang-Wook; Pang, Quan; Ha, Seungbum; Cheng, Lei; Han, Sang-Don; Zavadil, Kevin R; Gallagher, Kevin G; Nazar, Linda F; Balasubramanian, Mahalingam
2017-06-28
The lithium-sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium-sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium-sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium-sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation-dissolution chemistries, lithium-sulfur and beyond.
Tacey, Sean A.; Xu, Lang; Mavrikakis, Manos; ...
2016-03-25
Here, the atmospheric lifetime of mercury is greatly impacted by redox chemistry resulting from the high deposition rate of reactive mercury (Hg(II)) compared to elemental mercury (Hg 0). Recent laboratory and field studies have observed the reduction of Hg(II) but the chemical mechanism for this reaction has not been identified. Recent laboratory studies have shown that the reduction reaction is heterogeneous and can occur on iron and sodium chloride aerosol surfaces. This study explores the use of density functional theory calculations to discern the reduction pathways of HgCl 2, HgBr 2, Hg(NO 3) 2, and HgSO 4 on clean Fe(110),more » NaCl(100), and NaCl(111) Na surfaces. In doing so, potential energy surfaces have been prepared for the various reduction pathways, indicating that the reduction pathway leading to the production of gas-phase elemental mercury is highly favorable on Fe(110) and NaCl(111) Na. Moreover, the Fe(110) surface requires an external energy source of approximately 0.5 eV to desorb the reduced mercury, whereas the NaCl(111) Na surface requires no energy input. The results indicate that a number of mercury species can be reduced on metallic iron and sodium chloride surfaces, which are known aerosol components, and that a photochemical reaction involving the aerosol surface is likely needed for the reaction to be catalytic.« less
NASA Astrophysics Data System (ADS)
Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.
2016-12-01
Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.
Musmarra, Dino; Prisciandaro, Marina; Capocelli, Mauro; Karatza, Despina; Iovino, Pasquale; Canzano, Silvana; Lancia, Amedeo
2016-03-01
Ibuprofen (IBP) is an anti-inflammatory drug whose residues can be found worldwide in natural water bodies resulting in harmful effects to aquatic species even at low concentrations. This paper deals with the degradation of IBP in water by hydrodynamic cavitation in a convergent-divergent nozzle. Over 60% of ibuprofen was degraded in 60 min with an electrical energy per order (EEO) of 10.77 kWh m(-3) at an initial concentration of 200 μg L(-1) and a relative inlet pressure pin=0.35 MPa. Five intermediates generated from different hydroxylation reactions were identified; the potential mechanisms of degradation were sketched and discussed. The reaction pathways recognized are in line with the relevant literature, both experimental and theoretical. By varying the pressure upstream the constriction, different degradation rates were observed. This effect was discussed according to a numerical simulation of the hydroxyl radical production identifying a clear correspondence between the maximum kinetic constant kOH and the maximum calculated OH production. Furthermore, in the investigated experimental conditions, the pH parameter was found not to affect the extent of degradation; this peculiar feature agrees with a recently published kinetic insight and has been explained in the light of the intermediates of the different reaction pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.
Yang, Liqiu; Carreon, Moises A
2017-09-20
The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.
Xin, Mei-Ling; Yang, Jia-Wen; Li, Yu
2017-07-11
The reaction pathways of PCB-77 in the atmosphere with ·OH, O 2 , NO x , and 1 O 2 were inferred based on density functional theory calculations with the 6-31G* basis set. The structures the reactants, transition states, intermediates, and products were optimized. The energy barriers and reaction heats were obtained to determine the energetically favorable reaction pathways. To study the solvation effect, the energy barriers and reaction rates for PCB-77 with different polar and nonpolar solvents (cyclohexane, benzene, carbon tetrachloride, chloroform, acetone, dichloromethane, ethanol, methanol, acetonitrile, dimethylsulfoxide, and water) were calculated. The results showed that ·OH preferentially added to the C5 atom of PCB-77, which has no Cl atom substituent, to generate the intermediate IM5. This intermediate subsequently reacted with O 2 via pathway A to generate IM5a, with an energy barrier of 7.27 kcal/mol and total reaction rate of 8.45 × 10 -8 cm 3 /molecule s. Pathway B involved direct dehydrogenation of IM5 to produce the OH-PCBs intermediate IM5b, with an energy barrier of 28.49 kcal/mol and total reaction rate of 1.15 × 10 -5 cm 3 /molecule s. The most likely degradation pathway of PCB-77 in the atmosphere is pathway A to produce IM5a. The solvation effect results showed that cyclohexane, carbon tetrachloride, and benzene could reduce the reaction energy barrier of pathway A. Among these solvents, the solvation effect of benzene was the largest, and could reduce the total reaction energy barrier by 25%. Cyclohexane, carbon tetrachloride, benzene, dichloromethane, acetone, and ethanol could increase the total reaction rate of pathway A. The increase in the reaction rate of pathway A with benzene was 8%. The effect of solvents on oxidative degradation of PCB-77 in the atmosphere is important. Graphical abstract The reaction pathways of PCB-77 in the atmosphere with •OH, O2, NOx, and 1O2 were inferred based on density functional theory calculations with the 6-31G* basis set. Different polar and nonpolar solvents: cyclohexane, benzene, carbon tetrachloride, chloroform, acetone, dichloromethane, ethanol, methanol, acetonitrile, dimethylsulfoxide, and water were selected to study the solvation effect on the favorable reaction pathways. The investigated results showed what kind of pathway was most likely to occur and the solvent effect on the reaction pathway.
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-28
The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.
NASA Astrophysics Data System (ADS)
Xu, Yulong; Zhang, Jingxue; Wang, Dunyou
2015-06-01
The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.
Multiscale Simulations of Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, D. M.; Bakarji, J.
2014-12-01
Discrete, particle-based simulations offer distinct advantages when modeling solute transport and chemical reactions. For example, Brownian motion is often used to model diffusion in complex pore networks, and Gillespie-type algorithms allow one to handle multicomponent chemical reactions with uncertain reaction pathways. Yet such models can be computationally more intensive than their continuum-scale counterparts, e.g., advection-dispersion-reaction equations. Combining the discrete and continuum models has a potential to resolve the quantity of interest with a required degree of physicochemical granularity at acceptable computational cost. We present computational examples of such "hybrid models" and discuss the challenges associated with coupling these two levels of description.
Sen, Fatih; Boghossian, Ardemis A; Sen, Selda; Ulissi, Zachary W; Zhang, Jingqing; Strano, Michael S
2012-12-21
Single-molecule fluorescent microscopy allows semiconducting single-walled carbon nanotubes (SWCNTs) to detect the adsorption and desorption of single adsorbate molecules as a stochastic modulation of emission intensity. In this study, we identify and assign the signature of the complex decomposition and reaction pathways of riboflavin in the presence of the free radical scavenger Trolox using DNA-wrapped SWCNT sensors dispersed onto an aminopropyltriethoxysilane (APTES) coated surface. SWCNT emission is quenched by riboflavin-induced reactive oxygen species (ROS), but increases upon the adsorption of Trolox, which functions as a reductive brightening agent. Riboflavin has two parallel reaction pathways, a Trolox oxidizer and a photosensitizer for singlet oxygen and superoxide generation. The resulting reaction network can be detected in real time in the vicinity of a single SWCNT and can be completely described using elementary reactions and kinetic rate constants measured independently. The reaction mechanism results in an oscillatory fluorescence response from each SWCNT, allowing for the simultaneous detection of multiple reactants. A series-parallel kinetic model is shown to describe the critical points of these oscillations, with partition coefficients on the order of 10(-6)-10(-4) for the reactive oxygen and excited state species. These results highlight the potential for SWCNTs to characterize complex reaction networks at the nanometer scale.
Techniques used to study the DNA polymerase reaction pathway
Joyce, Catherine M.
2009-01-01
Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596
Wang, Xiaohong; Bowman, Joel M
2013-02-12
We calculate the probabilities for the association reactions H+HCN→H2CN* and cis/trans-HCNH*, using quasiclassical trajectory (QCT) and classical trajectory (CT) calculations, on a new global ab initio potential energy surface (PES) for H2CN including the reaction channels. The surface is a linear least-squares fit of roughly 60 000 CCSD(T)-F12b/aug-cc-pVDZ electronic energies, using a permutationally invariant basis with Morse-type variables. The reaction probabilities are obtained at a variety of collision energies and impact parameters. Large differences in the threshold energies in the two types of dynamics calculations are traced to the absence of zero-point energy in the CT calculations. We argue that the QCT threshold energy is the realistic one. In addition, trajectories find a direct pathway to trans-HCNH, even though there is no obvious transition state (TS) for this pathway. Instead the saddle point (SP) for the addition to cis-HCNH is evidently also the TS for direct formation of trans-HCNH.
Escobedo-González, René; Méndez-Albores, Abraham; Villarreal-Barajas, Tania; Aceves-Hernández, Juan Manuel; Miranda-Ruvalcaba, René; Nicolás-Vázquez, Inés
2016-01-01
Theoretical studies of 8-chloro-9-hydroxy-aflatoxin B1 (2) were carried out by Density Functional Theory (DFT). This molecule is the reaction product of the treatment of aflatoxin B1 (1) with hypochlorous acid, from neutral electrolyzed water. Determination of the structural, electronic and spectroscopic properties of the reaction product allowed its theoretical characterization. In order to elucidate the formation process of 2, two reaction pathways were evaluated—the first one considering only ionic species (Cl+ and OH−) and the second one taking into account the entire hypochlorous acid molecule (HOCl). Both pathways were studied theoretically in gas and solution phases. In the first suggested pathway, the reaction involves the addition of chlorenium ion to 1 forming a non-classic carbocation assisted by anchimeric effect of the nearest aromatic system, and then a nucleophilic attack to the intermediate by the hydroxide ion. In the second studied pathway, as a first step, the attack of the double bond from the furanic moiety of 1 to the hypochlorous acid is considered, accomplishing the same non-classical carbocation, and again in the second step, a nucleophilic attack by the hydroxide ion. In order to validate both reaction pathways, the atomic charges, the highest occupied molecular orbital and the lowest unoccupied molecular orbital were obtained for both substrate and product. The corresponding data imply that the C9 atom is the more suitable site of the substrate to interact with the hydroxide ion. It was demonstrated by theoretical calculations that a vicinal and anti chlorohydrin is produced in the terminal furan ring. Data of the studied compound indicate an important reduction in the cytotoxic and genotoxic potential of the target molecule, as demonstrated previously by our research group using different in vitro assays. PMID:27455324
NASA Astrophysics Data System (ADS)
Liu, Zhi-Pan; Hu, P.; Lee, Ming-Hsien
2003-09-01
Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N2+3H2→2NH3). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H→NH, NH+H→NH2 and NH2+H→NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H→CH and O+H→OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors.
Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M
2018-02-07
The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.
Ab initio and RRKM study of the reaction of ClO with HOCO radicals.
Yu, Hua-Gen; Francisco, Joseph S
2009-11-19
The reaction pathways for the ClO + HOCO reaction have been explored using the coupled-cluster method to locate and optimize the critical points on the ground-state potential-energy surface. Results show that the ClO + HOCO reaction can produce Cl + HOC(O)O, HOCl + CO(2), HCl + CO(3), and HClO + CO(2) via an addition or a direct hydrogen abstraction reaction mechanism. The reaction kinetics has been studied using the variational RRKM theory. It is found that the ClO + HOCO reaction is fast and has a negative temperature dependence at low temperatures. At room temperature, the thermal rate coefficient is obtained as 4.26 x 10(-12) cm(3) molecules(-1) s(-1) with product branching fractions of Cl (0.518), HOCl (0.469), HCl (0.01), and HClO (0.003) at zero pressure. The Cl + HOC(O)O products are major, compared to the HOCl + CO(2) products, because of the loose transition state along the dissociation pathway to eliminate Cl. In addition, the RRKM/master equation simulations indicate that the stabilization of the HOC(O)OCl intermediates is noticeable at moderate pressures as its thermal rate constants reach about 6.0 x 10(-13) cm(3) molecules(-1) s(-1). In contrast, the other product branching ratios for the ClO + HOCO reaction are weakly dependent on pressure.
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia
2013-02-01
The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Du, Lin; Tsona, Narcisse T.; Zhao, Hailiang; Wang, Wenxing
2017-08-01
Biofuels are considered to be an environmental friendly alternative to fossil fuels. Furanic compounds have been considered as second generation biofuels as they can be produced from non-food biomass. However, the atmospheric behavior of such compounds is required to evaluate their potential to be used as biofuels. The matrix isolation technique combined with infrared spectroscopy has been used to study the ozonolysis mechanism of 2,5-dihydrofuran. A new reaction pathway that is different from the widely accepted Criegee mechanism has been found. Experimental and theoretical results show the evidence of the formation of a furan-H2O3 complex through a dehydrogenation process. The complex is trapped in the argon matrix and stabilized through hydrogen bonding interaction. Meanwhile, the conventional ozonolysis intermediates were also observed, including the primary ozonide, the Criegee intermediate and the secondary ozonide. The present study highlights the cases in which the Criegee mechanism is not the dominant pathway for the reactions of cyclic alkenes with ozone. The cyclic alkenes that can form an aromatic conjugated system by the dehydrogenation process may follow the new mechanism when react with ozone in the atmosphere.
Chen, Wenbin; Hendrix, William; Samatova, Nagiza F
2017-12-01
The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.
Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.
Zou, Bin; Ren, Shoujie; Ye, X Philip
2016-12-08
Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2017-01-01
The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond. PMID:28691072
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chang -Wook; Pang, Quan; Ha, Seungbum
The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparinglymore » solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. Finally, this discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond.« less
Lee, Chang -Wook; Pang, Quan; Ha, Seungbum; ...
2017-05-25
The lithium–sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium–sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium–sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparinglymore » solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium–sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. Finally, this discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation–dissolution chemistries, lithium–sulfur and beyond.« less
Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.
Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R
2014-10-14
The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a small subset of atoms within the system.
Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics
2015-01-01
The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a small subset of atoms within the system. PMID:25328492
Concepts, challenges, and successes in modeling thermodynamics of metabolism.
Cannon, William R
2014-01-01
The modeling of the chemical reactions involved in metabolism is a daunting task. Ideally, the modeling of metabolism would use kinetic simulations, but these simulations require knowledge of the thousands of rate constants involved in the reactions. The measurement of rate constants is very labor intensive, and hence rate constants for most enzymatic reactions are not available. Consequently, constraint-based flux modeling has been the method of choice because it does not require the use of the rate constants of the law of mass action. However, this convenience also limits the predictive power of constraint-based approaches in that the law of mass action is used only as a constraint, making it difficult to predict metabolite levels or energy requirements of pathways. An alternative to both of these approaches is to model metabolism using simulations of states rather than simulations of reactions, in which the state is defined as the set of all metabolite counts or concentrations. While kinetic simulations model reactions based on the likelihood of the reaction derived from the law of mass action, states are modeled based on likelihood ratios of mass action. Both approaches provide information on the energy requirements of metabolic reactions and pathways. However, modeling states rather than reactions has the advantage that the parameters needed to model states (chemical potentials) are much easier to determine than the parameters needed to model reactions (rate constants). Herein, we discuss recent results, assumptions, and issues in using simulations of state to model metabolism.
van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A
2016-07-01
Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts
Li, Sha; Scaranto, Jessica; Mavrikakis, Manos
2016-08-03
Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. Finally, as a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.« less
Liu, Shizhong; White, Michael G.; Liu, Ping
2018-01-25
We reported a detailed mechanistic study of the oxygen reduction reaction (ORR) on the model Ag(111) surface in alkaline solution by using density functional theory (DFT) and Kinetic Monte Carlo (KMC) simulations, in which multiple pathways involving either 2 e - or 4 e - mechanisms were included. The theoretical modelling presented here is able to reproduce the experimentally measured polarization curves in both low and high potential regions. An electrochemical 4 e - network including both a chemisorbed water (*H 2O)-mediated 4 e - associative pathway and the conventional associative pathway was identified to dominate the ORR mechanism. Onmore » the basis of the mechanistic understanding derived from these calculations, the ways to promote the ORR on Ag(111) were provided, including facilitating *OH removal, **O 2 reduction by *H 2O, and suppressing **O 2 desorption. Finally, the origin of the different ORR behaviors of Ag(111) and Pt(111) was also discussed in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shizhong; White, Michael G.; Liu, Ping
We reported a detailed mechanistic study of the oxygen reduction reaction (ORR) on the model Ag(111) surface in alkaline solution by using density functional theory (DFT) and Kinetic Monte Carlo (KMC) simulations, in which multiple pathways involving either 2 e - or 4 e - mechanisms were included. The theoretical modelling presented here is able to reproduce the experimentally measured polarization curves in both low and high potential regions. An electrochemical 4 e - network including both a chemisorbed water (*H 2O)-mediated 4 e - associative pathway and the conventional associative pathway was identified to dominate the ORR mechanism. Onmore » the basis of the mechanistic understanding derived from these calculations, the ways to promote the ORR on Ag(111) were provided, including facilitating *OH removal, **O 2 reduction by *H 2O, and suppressing **O 2 desorption. Finally, the origin of the different ORR behaviors of Ag(111) and Pt(111) was also discussed in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yulong; College of Physics and Electronics, Shandong Normal University, Jinan 250014; Zhang, Jingxue
2015-06-28
The CH{sub 3}Cl + CN{sup −} reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack S{sub N}2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show thatmore » the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.« less
1983-11-01
essential to the content of the re- port and in all cases NMR data subjected to interpretation in this report have been entered in typography to...compared. In the Second Quarter reactions in the synthetic pathway to 3-F-2-PAM were scaled-up. Low yields were encountered for the specific nitration...oxime was synthetically achieved by way of the Markovac-Stevens-Ash-Hackley reaction , and the compound was characterized by its mass spectrum, NMR
Formation of nucleoside 5'-polyphosphates under potentially prebiological conditions
NASA Technical Reports Server (NTRS)
Lohrmann, R.
1976-01-01
The characteristics and efficiencies of biochemical reactions involving nucleoside 5'-diphosphates and -triphosphates (important substrates of RNA and DNA synthesis) under conditions corresponding to the primitive prebiotic earth are investigated. Urea catalysis of the formation of linear inorganic polyphosphates and metal ions promoting the reactions are discussed. Linear polyphosphate was incubated with Mg(++) in the presence of a nucleoside 5'-phosphate, to yield nucleoside 5'-polyphosphates when products are dried, while Mg(++) prompts depolymerization to trimetaphosphate in aqueous solutions. Plausible biogenetic pathways are examined.
Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily
2016-10-21
Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.
How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases.
Wulff, Philip; Day, Christopher C; Sargent, Frank; Armstrong, Fraser A
2014-05-06
An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway, whereas up to 14% arises from slower side reactions proceeding via superoxide and hydrogen peroxide. The direct pathway is assigned to O2 reduction at the [NiFe] active site, whereas the side reactions are an unavoidable consequence of the presence of low-potential relay centers that release electrons derived from H2 oxidation. The oxidase activity is too slow to be useful in removing O2 from the bacterial periplasm; instead, the four-electron reduction of molecular oxygen to harmless water ensures that the active site survives to catalyze sustained hydrogen oxidation.
How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases
Wulff, Philip; Day, Christopher C.; Sargent, Frank; Armstrong, Fraser A.
2014-01-01
An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway, whereas up to 14% arises from slower side reactions proceeding via superoxide and hydrogen peroxide. The direct pathway is assigned to O2 reduction at the [NiFe] active site, whereas the side reactions are an unavoidable consequence of the presence of low-potential relay centers that release electrons derived from H2 oxidation. The oxidase activity is too slow to be useful in removing O2 from the bacterial periplasm; instead, the four-electron reduction of molecular oxygen to harmless water ensures that the active site survives to catalyze sustained hydrogen oxidation. PMID:24715724
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-30
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + Omore » 2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less
Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries
Wang, Qiang; Zheng, Jianming; Walter, Eric; ...
2015-01-09
Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore » cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less
Redox imbalance stress in diabetes mellitus: Role of the polyol pathway.
Yan, Liang-Jun
2018-03-01
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD + , leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD + redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
ERIC Educational Resources Information Center
Virshup, Aaron Michael
2009-01-01
Photoisomerization of conjugated systems is a common pathway for photomechanical energy conversion in biological chromophores. Such reactions are mediated by conical intersections (CIs)--points of degeneracy between different potential energy surfaces, which efficiently funnel population between electronic states. There are many examples of a…
VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera)
Naithani, Sushma; Raja, Rajani; Waddell, Elijah N.; Elser, Justin; Gouthu, Satyanarayana; Deluc, Laurent G.; Jaiswal, Pankaj
2014-01-01
We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly available plant metabolic networks, and (iii) upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera “Pinot Noir” cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related pathways and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant's immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu. PMID:25538713
Kinetic Evidence of Two Pathways for Charge Recombination in NiO-Based Dye-Sensitized Solar Cells.
D'Amario, Luca; Antila, Liisa J; Pettersson Rimgard, Belinda; Boschloo, Gerrit; Hammarström, Leif
2015-03-05
Mesoporous nickel oxide has been used as electrode material for p-type dye-sensitized solar cells (DSCs) for many years but no high efficiency cells have yet been obtained. One of the main issues that lowers the efficiency is the poor fill factor, for which a clear reason is still missing. In this paper we present the first evidence for a relation between applied potential and the charge recombination rate of the NiO electrode. In particular, we find biphasic recombination kinetics: a fast (15 ns) pathway attributed to the reaction with the holes in the valence band and a slow (1 ms) pathway assigned to the holes in the trap states. The fast component is the most relevant at positive potentials, while the slow component becomes more important at negative potentials. This means that at the working condition of the cell, the fast recombination is the most important. This could explain the low fill factor of NiO-based DSCs.
NASA Astrophysics Data System (ADS)
Gupta, V. P.; Tandon, Poonam; Mishra, Priti
2013-03-01
The detection of nucleic acid bases in carbonaceous meteorites suggests that their formation and survival is possible outside of the Earth. Small N-heterocycles, including pyrimidine, purines and nucleobases, have been extensively sought in the interstellar medium. It has been suggested theoretically that reactions between some interstellar molecules may lead to the formation of cytosine, uracil and thymine though these processes involve significantly high potential barriers. We attempted therefore to use quantum chemical techniques to explore if cytosine can possibly form in the interstellar space by radical-radical and radical-molecule interaction schemes, both in the gas phase and in the grains, through barrier-less or low barrier pathways. Results of DFT calculations for the formation of cytosine starting from some of the simple molecules and radicals detected in the interstellar space are being reported. Global and local descriptors such as molecular hardness, softness and electrophilicity, and condensed Fukui functions and local philicity indices were used to understand the mechanistic aspects of chemical reaction. The presence and nature of weak bonds in the molecules and transition states formed during the reaction process have been ascertained using Bader's quantum theory of atoms in molecules (QTAIMs). Two exothermic reaction pathways starting from propynylidyne (CCCH) and cyanoacetylene (HCCCN), respectively, have been identified. While the first reaction path is found to be totally exothermic, it involves a barrier of 12.5 kcal/mol in the gas phase against the lowest value of about 32 kcal/mol reported in the literature. The second path is both exothermic and barrier-less. The later has, therefore, a greater probability of occurrence in the cold interstellar clouds (10-50 K).
Haeri, Mohammad; Knox, Barry E
2012-01-01
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) and their aggregation impair normal cellular function and can be toxic, leading to cell death. Prolonged expression of misfolded proteins triggers ER stress, which initiates a cascade of reactions called the unfolded protein response (UPR). Protein misfolding is the basis for a variety of disorders known as ER storage or conformational diseases. There are an increasing number of eye disorders associated with misfolded proteins and pathologic ER responses, including retinitis pigmentosa (RP). Herein we review the basic cellular and molecular biology of UPR with focus on pathways that could be potential targets for treating retinal degenerative diseases. PMID:22737387
Kim, Jae Young; Ahn, Hyun S; Bard, Allen J
2018-03-06
To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.
Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...
2015-02-02
Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less
Studying Reaction Intermediates Formed at Graphenic Surfaces
NASA Astrophysics Data System (ADS)
Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil
2014-03-01
We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.
Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran
2014-01-01
Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691
Perez-Benito, Joaquin F
2011-09-08
The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.
Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia
2013-01-01
Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
Alvarado, Omar; Jaña, Gonzalo; Delgado, Eduardo J
2012-08-01
In this study the formation of the lactyl-thiamin diphosphate intermediate (L-ThDP) is addressed using density functional theory calculations at X3LYP/6-31++G(d,p) level of theory. The study includes potential energy surface scans, transition state search, and intrinsic reaction coordinate calculations. Reactivity is analyzed in terms of Fukui functions. The results allow to conclude that the reaction leading to the formation of L-ThDP occurs via a concerted mechanism, and during the nucleophilic attack on the pyruvate molecule, the ylide is in its AP form. The calculated activation barrier for the reaction is 19.2 kcal/mol, in agreement with the experimental reported value.
Li, Jian-Yuan; Kim, Hun Young; Oh, Kyungsoo
2015-03-06
Enantio- and diastereodivergent approaches to pyrrolidines are described by using catalyst- and substrate-controlled reaction pathways. A concerted endo-selective [3 + 2]-cycloaddition pathway is developed for the reaction of methyl imino ester, whereas endo-pyrrolidines with an opposite absolute stereochemical outcome are prepared by using the stepwise reaction pathway of tert-butyl imino ester. The development of catalyst- and substrate-controlled stereodivergent approaches highlights the inherent substrate-catalyst interactions in the [3 + 2]-cycloaddition reactions of metalated azomethine ylides.
NASA Astrophysics Data System (ADS)
Zhao, R.; Soong, R.; Simpson, A. J.; Abbatt, J.
2012-12-01
Organic peroxides are major components of secondary organic aerosol (SOA), affecting the toxicity of SOA and its oxidative capacity. Hydroxyhydroperoxide (HHP) is a class of organic peroxide observed in ambient air, rain water, and cloud water. However, the formation pathway of HHPs remains under debate, with one potential path via reaction of water with Criegee Intermediates. The current study focuses on a formation mechanism involving reversible nucleophilic addition of H2O2 to aldehydes. This formation pathway of HHPs has been known for decades, but has long been considered as a minor reaction. This is because HHPs were observed to decompose rapidly into H2O2 and the corresponding aldehydes in dilute aqueous solutions. In the current study, proton transfer reaction mass spectrometry (PTR-MS) and proton nuclear magnetic resonance (1H NMR) spectrometry were employed to determine the equilibrium constants (Keq) of H2O2 addition to a variety of atmospherically relevant carbonyls in the aqueous phase. HHP formation was insignificant from ketones and methacrolein, but was significant from formaldehyde, acetaldehyde and propionaldehyde. The Keq values ranged from 80 to 150 M-1 at 25 °C. Based on these values, the environmental implications of HHP formation via this pathway suggest that HHP formation is unlikely to be significant in cloud water. However, in aerosol liquid water, where the concentrations of aldehydes and H2O2 can be at the mM level, this pathway may be significant.
Mackie, John C; Bacskay, George B
2005-12-29
Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].
Divergent pathways in the reaction of Fischer carbenes and palladium.
López-Alberca, María P; Mancheño, María J; Fernandez, Israel; Gómez-Gallego, Mar; Sierra, Miguel A; Torres, Rosario
2007-04-26
[reaction: see text] The Pd-catalyzed reaction of beta-arylaminochromium(0) carbene complexes produces by transmetalation the first isolated and X-ray structurally characterized bis-Pd(II) carbene complex, as well as other alternative reaction pathways, such as the oxidative addition-transmetalation sequence, not seen before in this chemistry.
USDA-ARS?s Scientific Manuscript database
Glutathione, a thiol tripeptide of '-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. In this study, we found that the abundance of total glutathion...
Production of bulk chemicals via novel metabolic pathways in microorganisms.
Shin, Jae Ho; Kim, Hyun Uk; Kim, Dong In; Lee, Sang Yup
2013-11-01
Metabolic engineering has been playing important roles in developing high performance microorganisms capable of producing various chemicals and materials from renewable biomass in a sustainable manner. Synthetic and systems biology are also contributing significantly to the creation of novel pathways and the whole cell-wide optimization of metabolic performance, respectively. In order to expand the spectrum of chemicals that can be produced biotechnologically, it is necessary to broaden the metabolic capacities of microorganisms. Expanding the metabolic pathways for biosynthesizing the target chemicals requires not only the enumeration of a series of known enzymes, but also the identification of biochemical gaps whose corresponding enzymes might not actually exist in nature; this issue is the focus of this paper. First, pathway prediction tools, effectively combining reactions that lead to the production of a target chemical, are analyzed in terms of logics representing chemical information, and designing and ranking the proposed metabolic pathways. Then, several approaches for potentially filling in the gaps of the novel metabolic pathway are suggested along with relevant examples, including the use of promiscuous enzymes that flexibly utilize different substrates, design of novel enzymes for non-natural reactions, and exploration of hypothetical proteins. Finally, strain optimization by systems metabolic engineering in the context of novel metabolic pathways constructed is briefly described. It is hoped that this review paper will provide logical ways of efficiently utilizing 'big' biological data to design and develop novel metabolic pathways for the production of various bulk chemicals that are currently produced from fossil resources. Copyright © 2012 Elsevier Inc. All rights reserved.
Geometric phase effects in ultracold chemistry
NASA Astrophysics Data System (ADS)
Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.
2016-05-01
In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
Gawthrop, Peter J
2017-04-01
Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.
Milhøj, Birgitte O; Sauer, Stephan P A
2015-12-01
Earlier theoretical investigations of the mechanism of radiation damage to DNA/RNA nucleobases have claimed OH radical addition as the dominating pathway based solely on energetics. In this study we supplement calculations of energies with the kinetics of all possible reactions with the OH radical through hydrogen abstraction and OH radical addition onto carbon sites, using DFT at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The overall rate constants for the reaction with adenine, guanine, thymine, and uracil are found to be 2.17×10(-12) , 5.64×10(-11) , 2.01×10(-11) , and 5.03×10(-12) cm(3) molecules(-1) s(-1) , respectively, which agree exceptionally well with experimental values. We conclude that abstraction of the amine group hydrogen atoms competes with addition onto C8 as the most important reaction pathway for the purine nucleobases, while for the pyrimidine nucleobases addition onto C5 and C6 competes with the abstraction of H1 . Thymine shows favourability against abstraction of methyl hydrogens as the dominating pathway based on rate constants. These mechanistic conclusions are partly explained by an analysis of the electrostatic potential together with HOMO and LUMO orbitals of the nucleobases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854
2013-09-15
Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogeneticmore » relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.« less
Shi, Qicun; Meroueh, Samy O; Fisher, Jed F; Mobashery, Shahriar
2008-07-23
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.
A chain reaction approach to modelling gene pathways.
Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen
2012-08-01
BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By applying it to microarray data, the chain reaction model computed a set of reaction rates to examine the effects of three polyphenols (EGCG, genistein, and resveratrol) on gene expression in this pathway during puberty. We first performed statistical analysis to test the time factor on the estrogen synthesis pathway. Global tests were used to evaluate an overall gene expression change during puberty for each experimental group. Then, a chain reaction model was employed to simulate the estrogen synthesis pathway. Specifically, the model computed the reaction rates in a set of ordinary differential equations to describe interactions between genes in the pathway (A reaction rate K of A to B represents gene A will induce gene B per unit at a rate of K; we give details in the "method" section). Since disparate changes of gene expression may cause numerical error problems in solving these differential equations, we used an implicit scheme to address this issue. We first applied the chain reaction model to obtain the reaction rates for the control group. A sensitivity study was conducted to evaluate how well the model fits to the control group data at Day 50. Results showed a small bias and mean square error. These observations indicated the model is robust to low random noises and has a good fit for the control group. Then the chain reaction model derived from the control group data was used to predict gene expression at Day 50 for the three polyphenol groups. If these nutrients affect the estrogen synthesis pathways during puberty, we expect discrepancy between observed and expected expressions. Results indicated some genes had large differences in the EGCG (e.g., Hsd3b and Sts) and the resveratrol (e.g., Hsd3b and Hrmt12) groups. CONCLUSIONS: In the present study, we have presented (I) experimental studies of the effect of nutrient diets on the gene expression changes in a selected estrogen synthesis pathway. This experiment is valuable because it allows us to examine how the nutrient-containing diets regulate gene expression in the estrogen synthesis pathway during puberty; (II) global tests to assess an overall association of this particular pathway with time factor by utilizing generalized linear models to analyze microarray data; and (III) a chain reaction model to simulate the pathway. This is a novel application because we are able to translate the gene pathway into the chemical reactions in which each reaction channel describes gene-gene relationship in the pathway. In the chain reaction model, the implicit scheme is employed to efficiently solve the differential equations. Data analysis results show the proposed model is capable of predicting gene expression changes and demonstrating the effect of nutrient-containing diets on gene expression changes in the pathway. One of the objectives of this study is to explore and develop a numerical approach for simulating the gene expression change so that it can be applied and calibrated when the data of more time slices are available, and thus can be used to interpolate the expression change at a desired time point without conducting expensive experiments for a large amount of time points. Hence, we are not claiming this is either essential or the most efficient way for simulating this problem, rather a mathematical/numerical approach that can model the expression change of a large set of genes of a complex pathway. In addition, we understand the limitation of this experiment and realize that it is still far from being a complete model of predicting nutrient-gene interactions. The reason is that in the present model, the reaction rates were estimated based on available data at two time points; hence, the gene expression change is dependent upon the reaction rates and a linear function of the gene expressions. More data sets containing gene expression at various time slices are needed in order to improve the present model so that a non-linear variation of gene expression changes at different time can be predicted.
Jang, Hyesu; Qiu, Yudong; Hutchings, Marshall E.; Nguyen, Minh; Berben, Louise A.
2018-01-01
The CO2 reduction electrocatalyst [Fe4N(CO)12]– (abbrev. 1–) reduces CO2 to HCO2– in a two-electron, one-proton catalytic cycle. Here, we employ ab initio calculations to estimate the first two redox potentials of 1– and explore the pathway of a side reaction involving CO dissociation from 13–. Using the BP86 density functional approximation, the redox potentials were computed with a root mean squared error of 0.15 V with respect to experimental data. High temperature Born–Oppenheimer molecular dynamics was employed to discover a reaction pathway of CO dissociation from 13– with a reaction energy of +10.6 kcal mol–1 and an activation energy of 18.8 kcal mol–1; including harmonic free energy terms, this yields ΔGsep = 1.4 kcal mol–1 for fully separated species and ΔG‡ = +17.4 kcal mol–1, indicating CO dissociation is energetically accessible at ambient conditions. The analogous dissociation pathway from 12– has a reaction energy of 22.1 kcal mol–1 and an activation energy of 22.4 kcal mol–1 (ΔGsep = 12.8 kcal mol–1, ΔG‡ = +18.1 kcal mol–1). Our computed harmonic vibrational analysis of [Fe4N(CO)11]3– or 23– reveals a distinct CO-stretching peak red-shifted from the main CO-stretching band, pointing to a possible vibrational signature of dissociation. Multi-reference CASSCF calculations are used to check the assumptions of the density functional approximations that were used to obtain the majority of the results. PMID:29732050
Competing retention pathways of uranium upon reaction with Fe(II)
NASA Astrophysics Data System (ADS)
Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Ilton, Eugene S.; Cerrato, José M.; Bargar, John R.; Fendorf, Scott
2014-10-01
Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3·nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ∼7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ⩽50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.
Elucidation of metabolic pathways from enzyme classification data.
McDonald, Andrew G; Tipton, Keith F
2014-01-01
The IUBMB Enzyme List is widely used by other databases as a source for avoiding ambiguity in the recognition of enzymes as catalytic entities. However, it was not designed for metabolic pathway tracing, which has become increasingly important in systems biology. A Reactions Database has been created from the material in the Enzyme List to allow reactions to be searched by substrate/product, and pathways to be traced from any selected starting/seed substrate. An extensive synonym glossary allows searches by many of the alternative names, including accepted abbreviations, by which a chemical compound may be known. This database was necessary for the development of the application Reaction Explorer ( http://www.reaction-explorer.org ), which was written in Real Studio ( http://www.realsoftware.com/realstudio/ ) to search the Reactions Database and draw metabolic pathways from reactions selected by the user. Having input the name of the starting compound (the "seed"), the user is presented with a list of all reactions containing that compound and then selects the product of interest as the next point on the ensuing graph. The pathway diagram is then generated as the process iterates. A contextual menu is provided, which allows the user: (1) to remove a compound from the graph, along with all associated links; (2) to search the reactions database again for additional reactions involving the compound; (3) to search for the compound within the Enzyme List.
Chromophore absorbance change quantification in tissue during low-level light therapy
NASA Astrophysics Data System (ADS)
Huynh, Daniel; Chung, Christine; Qian, Li; Lilge, Lothar
2012-03-01
Low Level Light Therapy (LLLT) has been implicated to stimulate tissue, promoting healing and reducing pain. One of the potential pathways stimulated by LLLT relates to the electron transport chain, where photon quantum energy can induce a change in the biochemical reactions within the cell. The aim of this study is to assess the feasibility to exploit light additionally as a diagnostic tool to determine tissue physiological states, particularly in quantifying the changes in redox states of Cytochrome C as a result of induced LLLT biochemical reactions.
Masunov, Artem E.; Wait, Elizabeth; Vasu, Subith S.
2016-06-28
The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO 2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO 2 to OH radical and CO molecule, hydrogen transfer frommore » oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO 2 medium. Furthermore, tt may open a new venue for controlling reaction rates for chemical manufacturing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Ming-Hsun; Rousseau, Roger; Roberts, John A. S.
2015-09-04
Design of fast, efficient electrocatalysts for energy production and energy utilization requires a systematic approach to predict and tune the energetics of reaction intermediates and the kinetic barriers between them as well as to tune reaction conditions (e.g., concentration of reactants, acidity of the reaction medium, and applied electric potential). Thermodynamics schemes based on the knowledge of pKa values, hydride donor ability, redox potentials, and other relevant thermodynamic properties have been demonstrated to be very effective for exploring possible reaction pathways. We seek to identify high-energy intermediates, which may represent a catalytic bottleneck, and low-energy intermediates, which may represent amore » thermodynamic sink. In this study, working on a well-established Ni-based bioinspired electrocatalyst for H2 production, we performed a detailed kinetic analysis of the catalytic pathways to assess the limitations of our current (standard state) thermodynamic analysis with respect to prediction of optimal catalyst performance. To this end, we developed a microkinetic model based on extensive ab initio simulations. The model was validated against available experimental data, and it reproduces remarkably well the observed turnover rate as a function of the acid concentration and catalytic conditions, providing valuable information on the main factors limiting catalysis. Using this kinetic analysis as a reference, we show that indeed a purely thermodynamic analysis of the possible reaction pathways provides us with valuable information, such as a qualitative picture of the species involved during catalysis, identification of the possible branching points, and the origin of the observed overpotential, which are critical insights for electrocatalyst design. However, a significant limitation of this approach is understanding how these insights relate to rate, which is an equally critical piece of information. Taking our analysis a step further, we show that the kinetic model can easily be extended to different catalytic conditions by using linear free energy relationships for activation barriers based on simple thermodynamics quantities, such as pKa values. We also outline a possible procedure to extend it to other catalytic platforms, making it a general and effective way to design catalysts with improved performance.« less
NASA Astrophysics Data System (ADS)
Kim, Dong Young; Park, Hosang; Choi, Woon Ih; Roy, Basab; Seo, Jinah; Park, Insun; Kim, Jin Hae; Park, Jong Hwan; Kang, Yoon-Sok; Koh, Meiten
2017-07-01
Tris(trimethylsilyl) phosphite (P(OSi(CH3)3)3) is a multifunctional electrolyte additive for scavenging HF and forming a cathode electrolyte interphase (CEI). Systematic analysis of the HF reaction pathways and redox potentials of P(OSi(CH3)3)3, OP(OSi(CH3)3)3, P(OSiF3)3, and OP(OSiF3)3, and their reaction products, using ab initio calculations allowed us to elucidate the operating mechanism of P(OSi(CH3)3)3 and verify the rules that determine its HF reaction pathways and electrochemical stability. While Osbnd Si cleavage is the predominant HF scavenging pathway for P(OSi(CH3)3)3, Osbnd P cleavage is stabilized by replacing CH3 with an electron-withdrawing group. Thus, P(OSiF3)3 scavenges HF mainly through Osbnd P cleavage to produce PF3, which has high oxidation stability. However, the Osbnd Si cleavage pathway produces P(OSi(CH3)3)2OH, P(OSi(CH3)3) (OH)2, and P(OH)3 sequentially, along with Si(CH3)3F. These PO3 systems, which are oxidized earlier than carbonate solutions and form tightly bonded units following oxidation, act as seed units for compact CEI growth. Moreover, the HF scavenging ability of PO3 systems is maintained during oxidation until all Osbnd Si bonds are broken. As a strategy for developing additives with enhanced functionality, modifying P(OSi(CH3)3)3 by replacing CH3 with an electron-donating group to exclusively utilize the Osbnd Si cleavage pathway for HF scavenging is recommended.
On the deduction of chemical reaction pathways from measurements of time series of concentrations.
Samoilov, Michael; Arkin, Adam; Ross, John
2001-03-01
We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system. (c) 2001 American Institute of Physics.
Network-level architecture and the evolutionary potential of underground metabolism.
Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs
2014-08-12
A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.
Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki
2016-01-01
Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465
Zeng, Guixiang; Sakaki, Shigeyoshi
2011-06-06
Through detailed calculations by density functional theory and second-order Møller-Plesset perturbation theory (MP2) to fourth-order Møller-Plesset perturbation theory including single, double, and quadruple excitations [MP4(SDQ)] methods, we investigated the oxidative addition of the B-Br bond of dibromo(trimethylsiloxy)borane [Br(2)B(OSiMe(3))] to Pt(0) and Pd(0) complexes [M(PMe(3))(2)] (M = Pt or Pd) directly yielding a trans bromoboryl complex trans-[MBr{BBr(OSiMe(3))}(PMe(3))(2)]. Two reaction pathways are found for this reaction: One is a nucleophilic attack pathway which directly leads to the trans product, and the other is a stepwise reaction pathway which occurs through successive cis oxidative addition of the B-Br bond to [M(PMe(3))(2)] and thermal cis-trans isomerization. In the Pt system, the former course occurs with a much smaller energy barrier (E(a) = 5.8 kcal/mol) than the latter one (E(a) = 20.7 kcal/mol), where the DFT-calculated E(a) value is presented hereafter. In the Pd system, only the latter course is found in which the rate-determining steps is the cis-trans isomerization with the E(a) of 15.1 kcal/mol. Interestingly, the thermal cis-trans isomerization occurs on the singlet potential energy surface against our expectation. This unexpected result is understood in terms of the strong donation ability of the boryl group. Detailed analyses of electronic processes in all these reaction steps as well as remarkable characteristic features of [Br(2)B(OSiMe(3))] are also provided. © 2011 American Chemical Society
Structure-Function of the Cytochrome b 6f Complex of Oxygenic Photosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, W. A.; Yamashita, E.; Baniulis, D.
2014-03-20
Structure–function of the major integral membrane cytochrome b 6f complex that functions in cyanobacteria, algae, and green plants to transfer electrons between the two reaction center complexes in the electron transport chain of oxygenic photosynthesis is discussed in the context of recently obtained crystal structures of the complex and soluble domains of cytochrome f and the Rieske iron–sulfur protein. The energy-transducing function of the complex, generation of the proton trans-membrane electrochemical potential gradient, centers on the oxidation/reduction pathways of the plastoquinol/plastoquinone (QH 2/Q), the proton donor/acceptor within the complex. These redox reactions are carried out by five redox prosthetic groupsmore » embedded in each monomer, the high potential two iron–two sulfur cluster and the heme of cytochrome f on the electropositive side (p) of the complex, two noncovalently bound b-type hemes that cross the complex and the membrane, and a covalently bound c-type heme (c n) on the electronegative side (n). These five redox-active groups are organized in high- (cyt f/[2Fe–2S] and low-potential (hemes b p, b n, c n) electron transport pathways that oxidize and reduce the quinol and quinone on the p- and n-sides in a Q-cycle-type mechanism, while translocating as many as 2 H + to the p-side aqueous side for every electron transferred through the high potential chain to the photosystem I reaction center. The presence of heme c n and the connection of the n-side of the membrane and b 6f complex to the cyclic electron transport chain indicate that the Q cycle in the oxygenic photosynthetic electron transport chain differs from those connected to the bc 1 complex in the mitochondrial respiratory chain and the chain in photosynthetic bacteria. Inferences from the structure and C2 symmetry of the complex for the pathway of QH 2/Q transfer within the complex, problems posed by the presence of lipid in the inter-monomer cavity, and the narrow portal for QH2 passage through the p-side oxidation site proximal to the [2Fe–2S] cluster are discussed.« less
Bakker, Jaap A; Drent, Marjolein; Bierau, Jörgen
2007-09-01
Mercaptopurine therapy is increasingly important as immunosuppressive therapy in interstitial lung disease. We focus on human mercaptopurine metabolism and the defects in this metabolism causing adverse drug reactions. Defects in mercaptopurine metabolizing enzymes like thiopurine methyltransferase and inosine triphosphate pyrophosphohydrolase lead to severe adverse drug reactions, sometimes with fatal outcome. Other enzymes, still not thoroughly investigated, can give rise to toxic effects or decreased efficacy in mercaptopurine therapy when the activity of these enzymes is altered. Pharmacogenetic screening of potential patients for mercaptopurine therapy is important to avoid adverse drug reactions caused by inherited enzyme deficiencies in these metabolic pathways. Pretreatment screening for deficiencies of mercaptopurine metabolizing enzymes will significantly reduce the number of patients with an adverse drug reaction and concomitantly associated healthcare costs.
NASA Astrophysics Data System (ADS)
Doppler, M. C.; Fleig, J.; Bram, M.; Opitz, A. K.
2018-03-01
Nickel/yttria stabilized zirconia (YSZ) electrodes are affecting the overall performance of solid oxide fuel cells (SOFCs) in general and strongly contribute to the cell resistance in case of novel metal supported SOFCs in particular. The electrochemical fuel conversion mechanisms in these electrodes are, however, still only partly understood. In this study, micro-structured Ni thin film electrodes on YSZ with 15 different geometries are utilized to investigate reaction pathways for the hydrogen electro-oxidation at Ni/YSZ anodes. From electrodes with constant area but varying triple phase boundary (TPB) length a contribution to the electro-catalytic activity is found that does not depend on the TPB length. This additional activity could clearly be attributed to a yet unknown reaction pathway scaling with the electrode area. It is shown that this area related pathway has significantly different electrochemical behavior compared to the TPB pathway regarding its thermal activation, sulfur poisoning behavior, and H2/H2O partial pressure dependence. Moreover, possible reaction mechanisms of this reaction pathway are discussed, identifying either a pathway based on hydrogen diffusion through Ni with water release at the TPB or a path with oxygen diffusion through Ni to be a very likely explanation for the experimental results.
Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J
2008-02-01
The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.
Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries
Helen, M.; Reddy, M. Anji; Diemant, Thomas; Golla-Schindler, Ute; Behm, R. Jürgen; Kaiser, Ute; Fichtner, Maximilian
2015-01-01
Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4–8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell. PMID:26173723
NASA Astrophysics Data System (ADS)
Begum, Saheen Shehnaz; Deka, Ramesh Chandra; Gour, Nand Kishor
2018-06-01
In this manuscript, we have systematically depicted the theoretical prediction of H-absorption from methylcyclohexane initiated by OH radical. For this we have performed dual-level of quantum chemical calculations on the gas-phase reactions between methylcyclohexane (MCH) and OH radical. Geometry optimisation and vibrational frequency calculations have been performed at BHandHLYP/6-311G(d,p) level of theory along with energetic calculations at coupled cluster CCSD(T) method using the same basis set. All the stationary points of titled reaction have been located on the potential energy surface. It has also been found that the H-abstraction takes place from -CH site of MCH, which is the minimum energy pathway than others. The rate constant was calculated using canonical transition state theory for MCH with OH radical and is found to be 3.27 × 10-12 cm3 molecule-1 s-1, which is in sound agreement with reported experimental data. The atmospheric lifetime of MCH and branching ratios of the reaction channels are also reported in the manuscript.
ReactPRED: a tool to predict and analyze biochemical reactions.
Sivakumar, Tadi Venkata; Giri, Varun; Park, Jin Hwan; Kim, Tae Yong; Bhaduri, Anirban
2016-11-15
Biochemical pathways engineering is often used to synthesize or degrade target chemicals. In silico screening of the biochemical transformation space allows predicting feasible reactions, constituting these pathways. Current enabling tools are customized to predict reactions based on pre-defined biochemical transformations or reaction rule sets. Reaction rule sets are usually curated manually and tailored to specific applications. They are not exhaustive. In addition, current systems are incapable of regulating and refining data with an aim to tune specificity and sensitivity. A robust and flexible tool that allows automated reaction rule set creation along with regulated pathway prediction and analyses is a need. ReactPRED aims to address the same. ReactPRED is an open source flexible and customizable tool enabling users to predict biochemical reactions and pathways. The tool allows automated reaction rule creation from a user defined reaction set. Additionally, reaction rule degree and rule tolerance features allow refinement of predicted data. It is available as a flexible graphical user interface and a console application. ReactPRED is available at: https://sourceforge.net/projects/reactpred/ CONTACT: anirban.b@samsung.com or ty76.kim@samsung.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rethinking early Earth phosphorus geochemistry
Pasek, Matthew A.
2008-01-01
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373
Rethinking early Earth phosphorus geochemistry.
Pasek, Matthew A
2008-01-22
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.
Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1991-01-01
The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.
Li, Hui; Wallace, Adam F; Sun, Mingjing; Reardon, Patrick; Jaisi, Deb P
2018-02-06
Glyphosate is the active ingredient of the common herbicide Roundup. The increasing presence of glyphosate and its byproducts has raised concerns about its potential impact on the environment and human health. In this research, we investigated abiotic pathways of glyphosate degradation as catalyzed by birnessite under aerobic and neutral pH conditions to determine whether certain pathways have the potential to generate less harmful intermediate products. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) were utilized to identify and quantify reaction products, and density functional theory (DFT) calculations were used to investigate the bond critical point (BCP) properties of the C-N bond in glyphosate and Mn(IV)-complexed glyphosate. We found that sarcosine, the commonly recognized precursor to glycine, was not present at detectable levels in any of our experiments despite the fact that its half-life (∼13.6 h) was greater than our sampling intervals. Abiotic degradation of glyphosate largely followed the glycine pathway rather than the AMPA (aminomethylphosphonic acid) pathway. Preferential cleavage of the phosphonate adjacent C-N bond to form glycine directly was also supported by our BCP analysis, which revealed that this C-N bond was disproportionately affected by the interaction of glyphosate with Mn(IV). Overall, these results provide useful insights into the potential pathways through which glyphosate may degrade via relatively benign intermediates.
NASA Astrophysics Data System (ADS)
Ji, Yuemeng; Gao, Yanpeng; Li, Guiying; An, Taicheng
2012-07-01
Accurate description of atmospheric reactions of a series of low-molecular-weight (LMW) aldehydes (C1-C4) with NO2 has been modeled using a direct dynamic approach. The profiles of the potential energy surface were constructed at the BMC-CCSD//MPWB1K/6-311G(d,p) level of theory, and two different pathways have been found: H-abstraction and NO2-addition. The modeling results found that the contribution of NO2-addition reaction pathway to the total rate constant is very small and thus this kind of pathway is insignificant in atmospheric conditions. The predicted H-abstraction products are mainly reactive acyl radical and nitrous acid (HONO) which is very mutagenic and carcinogenic pollutant as well as the precursor of acid deposition. The rate constants of both pathways were also deduced by using canonical variational transition state theory incorporating with the small curvature tunneling correction within 200-360 and 360-2000 K. Theoretical overall rate constants are in good agreement with the available experimental values, whose increase in the order of kformaldehyde < kacetaldehyde < kpropanal < kbutanal, implying that relative long-chain LMW aldehydes are more reactive toward NO2 than those short-chain LMW aldehydes in the atmospheric condition. At 298 K, the total rate constants of LMW aldehydes (C1-C4) with NO2 are obtained as 1.65 × 10-25, 1.43 × 10-24, 3.39 × 10-24 and 1.83 × 10-23 cm3 molecule-1 s-1, respectively.
2012-12-14
lactams that are readily reduced to β-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so...hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for...step pathway has not been demonstrated experimentally.3c In a recent paper, we found that substituting a hydrogen for a fluorine on the π-bond of an
Long-latency reflexes account for limb biomechanics through several supraspinal pathways
Kurtzer, Isaac L.
2015-01-01
Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex (SLR) which occurs between 20–45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms). Between these two epochs is the long-latency reflex (LLR) (around 50–100 ms) which acts more rapidly than voluntary reactions but shares some supraspinal pathways and functional capabilities. In particular, the LLR accounts for the arm’s biomechanical properties rather than only responding to local muscle stretch like the SLR. This paper will review how the LLR accounts for the arm’s biomechanical properties and the supraspinal pathways supporting this ability. Relevant experimental paradigms include clinical studies, non-invasive brain stimulation, neural recordings in monkeys, and human behavioral studies. The sum of this effort indicates that primary motor cortex and reticular formation (RF) contribute to the LLR either by generating or scaling its structured response appropriate for the arm’s biomechanics whereas the cerebellum scales the magnitude of the feedback response. Additional putative pathways are discussed as well as potential research lines. PMID:25688187
NASA Astrophysics Data System (ADS)
Sato, Akimasa; Kitazawa, Yuya; Ochi, Toshiro; Shoji, Mitsuo; Komatsu, Yu; Kayanuma, Megumi; Aikawa, Yuri; Umemura, Masayuki; Shigeta, Yasuteru
2018-03-01
Glycine, the simplest amino acid, has been intensively searched for in molecular clouds, and the comprehensive clarification of the formation path of interstellar glycine is now imperative. Among all the possible glycine formation pathways, we focused on the radical pathways revealed by Garrod (2013). In the present study, we have precisely investigated all the chemical reaction steps related to the glycine formation processes based on state-of-the-art density functional theory (DFT) calculations. We found that two reaction pathways require small activation barriers (ΔE‡ ≤ 7.75 kJ mol-1), which demonstrates the possibility of glycine formation even at low temperatures in interstellar space if the radical species are generated. The origin of carbon and nitrogen in the glycine backbone and their combination patterns are further discussed in relation to the formation mechanisms. According to the clarification of the atomic correspondence between glycine and its potential parental molecules, it is shown that the nitrogen and two carbons in the glycine can originate in three common interstellar molecules, methanol, hydrogen cyanide, and ammonia, and that the source molecules of glycine can be described by any of their combinations. The glycine formation processes can be categorized into six patterns. Finally, we discussed two other glycine formation pathways expected from the present DFT calculation results.
NASA Astrophysics Data System (ADS)
Rontani, Jean-François; Aubert, Claude; Belt, Simon T.
2015-09-01
EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH4-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.
Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications
NASA Astrophysics Data System (ADS)
Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.
2017-06-01
Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. [Figure not available: see fulltext.
Semisupervised Gaussian Process for Automated Enzyme Search.
Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup
2016-06-17
Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM. Therefore, we also demonstrate using Gaussian process regression to predict KM given a substrate-enzyme pair.
NASA Astrophysics Data System (ADS)
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
Cheng, Dan; Xu, Wang; Yuan, Lin; Zhang, Xiaobing
2017-07-18
Drug-induced liver injury (DILI) is considered a serious problem related to public health, due to its unpredictability and acute response. The level of peroxynitrite (ONOO - ) generated in liver has long been regarded as a biomarker for the prediction and measurement of DILI. Herein we present two reaction-based fluorescent probes (Naph-ONOO - and Rhod-ONOO - ) for ONOO - through a novel and universally applicable mechanism: ONOO - -mediated deprotection of α-keto caged fluorophores. Among them, Rhod-ONOO - can selectively accumulate and react in mitochondria, one of the main sources of ONOO - , with a substantial lower nanomolar sensitivity of 43 nM. The superior selectivity and sensitivity of two probes enable real-time imaging of peroxynitrite generation in lipopolysaccharide-stimulated live cells, with a remarkable difference from cells doped with other interfering reactive oxygen species, in either one- or two-photon imaging modes. More importantly, we elucidated the drug-induced hepatotoxicity pathway with Rhod-ONOO - and revealed that CYP450/CYP2E1-mediated enzymatic metabolism of acetaminophen leads to ONOO - generation in liver cells. This is the first time to showcase the drug-induced hepatotoxicity pathways by use of a small-molecule fluorescent probe. We hence conclude that fluorescent probes can engender a deeper understanding of reactive species and their pathological revelations. The reaction-based fluorescent probes will be a potentially useful chemical tool to assay drug-induced hepatotoxicity.
Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang
2015-03-21
In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?
Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.
2006-01-01
Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear ADP-ribosylation processes and other NAD+-dependent pathways is discussed. PMID:16959969
NASA Technical Reports Server (NTRS)
Slanger, T. G.; Black, G.
1978-01-01
The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.
The underlying pathway structure of biochemical reaction networks
Schilling, Christophe H.; Palsson, Bernhard O.
1998-01-01
Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taborga Claure, Micaela; Morrill, Michael R.; Goh, Jin Wai
2016-01-01
Reaction pathways for higher alcohol synthesis from syngas are studied over K/MoS 2domains supported on mesoporous carbon (C) and mixed MgAl oxide (MMO)viaaddition of methanol, ethanol, and ethylene co-feeds.
Artificial concurrent catalytic processes involving enzymes.
Köhler, Valentin; Turner, Nicholas J
2015-01-11
The concurrent operation of multiple catalysts can lead to enhanced reaction features including (i) simultaneous linear multi-step transformations in a single reaction flask (ii) the control of intermediate equilibria (iii) stereoconvergent transformations (iv) rapid processing of labile reaction products. Enzymes occupy a prominent position for the development of such processes, due to their high potential compatibility with other biocatalysts. Genes for different enzymes can be co-expressed to reconstruct natural or construct artificial pathways and applied in the form of engineered whole cell biocatalysts to carry out complex transformations or, alternatively, the enzymes can be combined in vitro after isolation. Moreover, enzyme variants provide a wider substrate scope for a given reaction and often display altered selectivities and specificities. Man-made transition metal catalysts and engineered or artificial metalloenzymes also widen the range of reactivities and catalysed reactions that are potentially employable. Cascades for simultaneous cofactor or co-substrate regeneration or co-product removal are now firmly established. Many applications of more ambitious concurrent cascade catalysis are only just beginning to appear in the literature. The current review presents some of the most recent examples, with an emphasis on the combination of transition metal with enzymatic catalysis and aims to encourage researchers to contribute to this emerging field.
De, Rajat K; Tomar, Namrata
2012-12-01
Metabolism is a complex process for energy production for cellular activity. It consists of a cascade of reactions that form a highly branched network in which the product of one reaction is the reactant of the next reaction. Metabolic pathways efficiently produce maximal amount of biomass while maintaining a steady-state behavior. The steady-state activity of such biochemical pathways necessarily incorporates feedback inhibition of the enzymes. This observation motivates us to incorporate feedback inhibition for modeling the optimal activity of metabolic pathways using flux balance analysis (FBA). We demonstrate the effectiveness of the methodology on a synthetic pathway with and without feedback inhibition. Similarly, for the first time, the Central Carbon Metabolic (CCM) pathways of Saccharomyces cerevisiae and Homo sapiens have been modeled and compared based on the above understanding. The optimal pathway, which maximizes the amount of the target product(s), is selected from all those obtained by the proposed method. For this, we have observed the concentration of the product inhibited enzymes of CCM pathway and its influence on its corresponding metabolite/substrate. We have also studied the concentration of the enzymes which are responsible for the synthesis of target products. We further hypothesize that an optimal pathway would opt for higher flux rate reactions. In light of these observations, we can say that an optimal pathway should have lower enzyme concentration and higher flux rates. Finally, we demonstrate the superiority of the proposed method by comparing it with the extreme pathway analysis.
Liu, Chang; Ma, Qingxin; Liu, Yongchun; Ma, Jinzhu; He, Hong
2012-02-07
Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.
Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.
Szabó, István; Czakó, Gábor
2017-11-30
We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.
NASA Astrophysics Data System (ADS)
Zhao, Yuefeng; Wang, Chao; Li, Li; Wang, Lijuan; Pan, Jie
2018-03-01
In this work, a two-dimensional fluid model is built up to numerically investigate the reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma. The calculation results indicate that the electron collisions with CH4 are the key pathways to produce the neutral particles CH2 and CH as well as the charged particles e and CH3+. CH3, H2, H, C2H2, and C2H4 primarily result from the reactions between the neutral particles and CH4. The charge transfer reactions are the significant pathways to produce CH4+, C2H2+, and C2H4+. As to the neutral species CH and H and the charged species CH3+, the reactions between themselves and CH4 contribute to substantial losses of these particles. The ways responsible for losing CH3, H2, C2H2, and C2H4 are CH3 + H → CH4, H2 + CH → CH2 + H, CH4+ + C2H2 → C2H2+ + CH4, and CH4+ + C2H4 → C2H4+ + CH4, respectively. Both electrons and C2H4+ are consumed by the dissociative electron-ion recombination reactions. The essential reaction pathways of losing CH4+ and C2H2+ are the charge transfer reactions.
Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.
Belyaeva, O B; Litvin, F F
2015-12-01
This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.
Wiemann, Jana; Heller, Lucie; Csuk, René
2018-04-25
The promising combination of natural product leads and their derivatization by isocyanide-based multicomponent reactions (IMCRs) has gained interest in accessing diversity-oriented libraries with auspicious pharmacological potential. Therefore, a set of 34 Ugi and 3 Passerini products was successfully synthesized starting from naturally occurring triterpenoids, i.e. oleanolic acid (OA) and maslinic acid (MA), followed by a biological evaluation of the novel α-acylamino carboxamides and the α-acyloxy carboxamides in colorimetric SRB assays to determine their cytotoxic potential. Especially, the MA-Ugi products 6a, 6b and 7b showed a remarkable cytotoxicity for A2780 ovarian carcinoma cells in a low μM range. Compounds 6a and 7b induced programmed cell death in part through the apoptosis pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
A new network representation of the metabolism to detect chemical transformation modules.
Sorokina, Maria; Medigue, Claudine; Vallenet, David
2015-11-14
Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.
Exploring the combinatorial space of complete pathways to chemicals.
Wang, Lin; Ng, Chiam Yu; Dash, Satyakam; Maranas, Costas D
2018-04-06
Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage.
Schaer, C A; Deuel, J W; Bittermann, A G; Rubio, I G; Schoedon, G; Spahn, D R; Wepf, R A; Vallelian, F; Schaer, D J
2013-11-01
Extracellular hemoglobin (Hb) has been recognized as a disease trigger in hemolytic conditions such as sickle cell disease, malaria, and blood transfusion. In vivo, many of the adverse effects of free Hb can be attenuated by the Hb scavenger acute-phase protein haptoglobin (Hp). The primary physiologic disturbances that can be caused by free Hb are found within the cardiovascular system and Hb-triggered oxidative toxicity toward the endothelium has been promoted as a potential mechanism. The molecular mechanisms of this toxicity as well as of the protective activities of Hp are not yet clear. Within this study, we systematically investigated the structural, biochemical, and cell biologic nature of Hb toxicity in an endothelial cell system under peroxidative stress. We identified two principal mechanisms of oxidative Hb toxicity that are mediated by globin degradation products and by modified lipoprotein species, respectively. The two damage pathways trigger diverse and discriminative inflammatory and cytotoxic responses. Hp provides structural stabilization of Hb and shields Hb's oxidative reactions with lipoproteins, providing dramatic protection against both pathways of toxicity. By these mechanisms, Hp shifts Hb's destructive pseudo-peroxidative reaction to a potential anti-oxidative function during peroxidative stress.
Roze, Ludmila V; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C; Linz, John E
2015-04-28
Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as "secondary" ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development.
Roze, Ludmila V.; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C.; Linz, John E.
2015-01-01
Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as “secondary” ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development. PMID:25928133
Criegee intermediate-hydrogen sulfide chemistry at the air/water interface.
Kumar, Manoj; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao C
2017-08-01
We carry out Born-Oppenheimer molecular dynamic simulations to show that the reaction between the smallest Criegee intermediate, CH 2 OO, and hydrogen sulfide (H 2 S) at the air/water interface can be observed within few picoseconds. The reaction follows both concerted and stepwise mechanisms with former being the dominant reaction pathway. The concerted reaction proceeds with or without the involvement of one or two nearby water molecules. An important implication of the simulation results is that the Criegee-H 2 S reaction can provide a novel non-photochemical pathway for the formation of a C-S linkage in clouds and could be a new oxidation pathway for H 2 S in terrestrial, geothermal and volcanic regions.
Immune responses in dogs with cutaneous adverse food reactions.
Veenhof, E Z; Knol, E F; Willemse, T; Rutten, V P M G
2012-06-01
Adverse food reactions (AFR) in dogs are reactions due to apparently harmless food antigens, with an unknown aetiology, i.e. immunopathogenesis. Despite the entry of food allergens via the intestinal tract, in the majority of dogs with AFR, clinical symptoms are only associated with the skin (CAFR). In the present review, factors are presented of relevance in triggering the differentiation of naive T cells into effector T cell types and the role of these T cell types in allergy. More specifically, the allergic immune responses in intestine and skin are discussed in this article as well as the potential pathways, e.g. homing of antigen presenting cells or allergen-induced T cells to the skin, of induction of cutaneous symptoms.
Silicene catalyzed reduction of nitrobenzene to aniline: A mechanistic study
NASA Astrophysics Data System (ADS)
Morrissey, Christopher; He, Haiying
2018-03-01
The reduction of nitrobenzene to aniline has broad applications in chemical and pharmaceutical industries. The high reaction temperatures and pressures and unavoidable hazardous chemicals of current metal catalysts call for more environmentally friendly non-metal catalysts. In this study, the plausibility of silicene as a potential catalyst for nitrobenzene reduction is investigated with a focus on the distinct reaction mechanism based on the density functional theory. The direct reaction pathway was shown to be distinctly different from the Haber mechanism following PhNO2∗ → PhNO∗ → PhNHO∗ → PhNH2O∗ → PhNH2∗. The hydroxyl groups remain bound to silicene after aniline is formed and acquire a high activation barrier to remove.
Competing retention pathways of uranium upon reaction with Fe(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris
Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation statemore » of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ≤ 50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.« less
Ivry, Richard B.
2017-01-01
Individuals differ in the intrinsic excitability of their corticospinal pathways and, perhaps more generally, their entire nervous system. At present, we have little understanding of the mechanisms underlying these differences and how variation in intrinsic excitability relates to behavior. Here, we examined the relationship between individual differences in intrinsic corticospinal excitability, local cortical GABA levels, and reaction time (RT) in a group of 20 healthy human adults. We measured corticospinal excitability at rest with transcranial magnetic stimulation, local concentrations of basal GABA with magnetic resonance spectroscopy, and RT with a behavioral task. All measurements were repeated in two separate sessions, and tests of reliability confirmed the presence of stable individual differences. There was a negative correlation between corticospinal excitability and RT, such that larger motor-evoked potentials (MEPs) measured at rest were associated with faster RTs. Interestingly, larger MEPs were associated with higher levels of GABA in M1, but not in three other cortical regions. Together, these results suggest that individuals with more excitable corticospinal pathways are faster to initiate planned responses and have higher levels of GABA within M1, possibly to compensate for a more excitable motor system. SIGNIFICANCE STATEMENT This study brings together physiological, behavioral, and neurochemical evidence to examine variability in the excitability of the human motor system. Previous work has focused on state-based factors (e.g., preparedness, uncertainty), with little attention given to the influence of inherent stable characteristics. Here, we examined how the excitability of the motor system relates to reaction time and the regional content of the inhibitory neurotransmitter GABA. Importantly, motor pathway excitability and GABA concentrations were measured at rest, outside a task context, providing assays of intrinsic properties of the individuals. Individuals with more excitable motor pathways had faster reaction times and, paradoxically, higher concentrations of GABA. We propose that greater GABA capacity in the motor cortex counteracts an intrinsically more excitable motor system. PMID:28179557
Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.
Orozco, Lina M; Renz, Michael; Corma, Avelino
2016-09-08
Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clustering and optimal arrangement of enzymes in reaction-diffusion systems.
Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich
2013-05-17
Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.
Bauler, Patricia; Huber, Gary; Leyh, Thomas; McCammon, J Andrew
2010-05-06
Nature often colocalizes successive steps in a metabolic pathway. Such organization is predicted to increase the effective concentration of pathway intermediates near their recipient active sites and to enhance catalytic efficiency. Here, the pathway of a two-step reaction is modeled using a simple spherical approximation for the enzymes and substrate particles. Brownian dynamics are used to simulate the trajectory of a substrate particle as it diffuses between the active site zones of two different enzyme spheres. The results approximate distances for the most effective reaction pathways, indicating that the most effective reaction pathway is one in which the active sites are closely aligned. However, when the active sites are too close, the ability of the substrate to react with the first enzyme was hindered, suggesting that even the most efficient orientations can be improved for a system that is allowed to rotate or change orientation to optimize the likelihood of reaction at both sites.
Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data
Vital, Marius; Howe, Adina Chuang
2014-01-01
ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with several Lachnospiraceae and Ruminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. PMID:24757212
Influences of growth parameters on the reaction pathway during GaN synthesis
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Liu, Zhongyi; Fang, Haisheng
2018-01-01
Gallium nitride (GaN) film growth is a complicated physical and chemical process including fluid flow, heat transfer, species transport and chemical reaction. Study of the reaction mechanism, i.e., the reaction pathway, is important for optimizing the growth process in the actual manufacture. In the paper, the growth pathway of GaN in a closed-coupled showerhead metal-organic chemical vapor deposition (CCS-MOCVD) reactor is investigated in detail using computational fluid dynamics (CFD). Influences of the process parameters, such as the chamber pressure, the inlet temperature, the susceptor temperature and the pre-exponential factor, on the reaction pathway are examined. The results show that increases of the chamber pressure or the inlet temperature, as well as reductions of the susceptor temperature or the pre-exponential factor lead to the adduct route dominating the growth. The deposition rate contributed by the decomposition route, however, can be enhanced dramatically by increasing the inlet temperature, the susceptor temperature and the pre-exponential factor.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.
Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng Jun; Shin, Jung-Min; Choi, Dae-Kyoung
Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin Bmore » resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis. - Highlights: • Cucurbitacin B has a potential for inhibiting the growth of keratinocytes. • Cucurbitacin B inhibits imiquimod-induced inflammatory reaction in keratinocytes. • Cucurbitacin B inhibits imiquimod-induced psoriasiform dermatitis in experimental animal.« less
Competing charge transfer pathways at the photosystem II-electrode interface
Zhang, Jenny Z.; Sokol, Katarzyna P.; Paul, Nicholas; Romero, Elisabet; van Grondelle, Rienk; Reisner, Erwin
2016-01-01
The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general. PMID:27723748
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Zachary A.; Drager, Andreas; Ebrahim, Ali
Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics).more » Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.« less
King, Zachary A.; Dräger, Andreas; Ebrahim, Ali; Sonnenschein, Nikolaus; Lewis, Nathan E.; Palsson, Bernhard O.
2015-01-01
Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools. PMID:26313928
King, Zachary A.; Drager, Andreas; Ebrahim, Ali; ...
2015-08-27
Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics).more » Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools.« less
Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide
2016-05-01
A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Lei; Wang, Yi; Yao, Zhu-Jun; Wang, Shaozhong; Yu, Zhi-Xiang
2015-10-21
In classical transition state theory, a transition state is connected to its reactant(s) and product(s). Recently, chemists found that reaction pathways may bifurcate after a transition state, leading to two or more sets of products. The product distribution for such a reaction containing a bifurcating potential energy surface (bPES) is usually determined by the shape of the bPES and dynamic factors. However, if the bPES leads to two intermediates (other than two products), which then undergo further transformations to give different final products, what factors control the selectivity is still not fully examined. This missing link in transition state theory is founded in the present study. Aiming to develop new methods for the synthesis of azocinoindole derivatives, we found that 2-propargyl-β-tetrahydrocarbolines can undergo ring expansion and spirocyclization under gold catalysis. DFT study revealed that the reaction starts with the intramolecular cyclization of the gold-activated 2-propargyl-β-tetrahydrocarboline with a bPES. The cyclization intermediates can not only interconvert into each other via a [1,5]-alkenyl shift, but also undergo ring expansion (through fragmentation/protodeauration mechanism) or spirocyclization (through deprotonation/protodeauration mechanism). Detailed analysis of the complex PESs for substrates with different substituents indicated that the reaction selectivity is under dynamic control if the interconversion of the intermediates is slower than the ring expansion and spirocyclization processes. Otherwise, the chemical outcome is under typical kinetic control and determined by the relative preference of ring expansion versus spirocyclization pathways. The present study may enrich chemist's understanding of the determinants for selectivities on bPESs.
Elucidation of the Pathway to Astaxanthin in the Flowers of Adonis aestivalis[C][W
Cunningham, Francis X.; Gantt, Elisabeth
2011-01-01
A few species in the genus Adonis are the only land plants known to produce the valuable red ketocarotenoid astaxanthin in abundance. Here, we ascertain the pathway that leads from the β-rings of β-carotene, a carotenoid ubiquitous in plants, to the 3-hydroxy-4-keto-β-rings of astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4’-dione) in the blood-red flowers of Adonis aestivalis, an ornamental and medicinal plant commonly known as summer pheasant’s eye. Two gene products were found to catalyze three distinct reactions, with the first and third reactions of the pathway catalyzed by the same enzyme. The pathway commences with the activation of the number 4 carbon of a β-ring in a reaction catalyzed by a carotenoid β-ring 4-dehydrogenase (CBFD), continues with the further dehydrogenation of this carbon to yield a carbonyl in a reaction catalyzed by a carotenoid 4-hydroxy-β-ring 4-dehydrogenase, and concludes with the addition of an hydroxyl group at the number 3 carbon in a reaction catalyzed by the erstwhile CBFD enzyme. The A. aestivalis pathway is both portable and robust, functioning efficiently in a simple bacterial host. Our elucidation of the pathway to astaxanthin in A. aestivalis provides enabling technology for development of a biological production process and reveals the evolutionary origin of this unusual plant pathway, one unrelated to and distinctly different from those used by bacteria, green algae, and fungi to synthesize astaxanthin. PMID:21862704
Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics.
Cheng, Jun; Sulpizi, Marialore; Sprik, Michiel
2009-10-21
The density functional theory based molecular dynamics (DFTMD) method for the computation of redox free energies presented in previous publications and the more recent modification for computation of acidity constants are reviewed. The method uses a half reaction scheme based on reversible insertion/removal of electrons and protons. The proton insertion is assisted by restraining potentials acting as chaperones. The procedure for relating the calculated deprotonation free energies to Brønsted acidities (pK(a)) and the oxidation free energies to electrode potentials with respect to the normal hydrogen electrode is discussed in some detail. The method is validated in an application to the reduction of aqueous 1,4-benzoquinone. The conversion of hydroquinone to quinone can take place via a number of alternative pathways consisting of combinations of acid dissociations, oxidations, or dehydrogenations. The free energy changes of all elementary steps (ten in total) are computed. The accuracy of the calculations is assessed by comparing the energies of different pathways for the same reaction (Hess's law) and by comparison to experiment. This two-sided test enables us to separate the errors related with the restrictions on length and time scales accessible to DFTMD from the errors introduced by the DFT approximation. It is found that the DFT approximation is the main source of error for oxidation free energies.
A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)
Mourão, Márcio A.; Srividhya, Jeyaraman; McSharry, Patrick E.; Crampin, Edmund J.; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1). PMID:22096591
A graphical user interface for a method to infer kinetics and network architecture (MIKANA).
Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).
Involvement of Histamine and RhoA/ROCK in Penicillin Immediate Hypersensitivity Reactions.
Han, Jiayin; Yi, Yan; Li, Chunying; Zhang, Yushi; Wang, Lianmei; Zhao, Yong; Pan, Chen; Liang, Aihua
2016-09-13
The mechanism of penicillin immediate hypersensitivity reactions has not been completely elucidated. These reactions are generally considered to be mediated by IgE, but penicillin-specific IgE could not be detected in most cases. This study demonstrated that penicillin was able to cause vascular hyperpermeability in a mouse model mimicking clinical symptoms of penicillin immediate hypersensitivity reactions. The first exposure to penicillin also induced immediate edema and exudative reactions in ears and lungs of mice in a dose-dependent manner. Vasodilation was noted in microvessels in ears. These reactions were unlikely to be immune-mediated reactions, because no penicillin-specific IgE was produced. Furthermore, penicillin treatment directly elicited rapid histamine release. Penicillin also led to F-actin reorganization in human umbilical vein endothelial cells and increased the permeability of the endothelial monolayer. Activation of the RhoA/ROCK signaling pathway was observed in ears and lungs of mice and in endothelial cells after treatment with penicillin. Both an anti-histamine agent and a ROCK inhibitor attenuated penicillin immediate hypersensitivity reactions in mice. This study presents a novel mechanism of penicillin immediate hypersensitivity reactions and suggests a potential preventive approach against these reactions.
Involvement of Histamine and RhoA/ROCK in Penicillin Immediate Hypersensitivity Reactions
Han, Jiayin; Yi, Yan; Li, Chunying; Zhang, Yushi; Wang, Lianmei; Zhao, Yong; Pan, Chen; Liang, Aihua
2016-01-01
The mechanism of penicillin immediate hypersensitivity reactions has not been completely elucidated. These reactions are generally considered to be mediated by IgE, but penicillin-specific IgE could not be detected in most cases. This study demonstrated that penicillin was able to cause vascular hyperpermeability in a mouse model mimicking clinical symptoms of penicillin immediate hypersensitivity reactions. The first exposure to penicillin also induced immediate edema and exudative reactions in ears and lungs of mice in a dose-dependent manner. Vasodilation was noted in microvessels in ears. These reactions were unlikely to be immune-mediated reactions, because no penicillin-specific IgE was produced. Furthermore, penicillin treatment directly elicited rapid histamine release. Penicillin also led to F-actin reorganization in human umbilical vein endothelial cells and increased the permeability of the endothelial monolayer. Activation of the RhoA/ROCK signaling pathway was observed in ears and lungs of mice and in endothelial cells after treatment with penicillin. Both an anti-histamine agent and a ROCK inhibitor attenuated penicillin immediate hypersensitivity reactions in mice. This study presents a novel mechanism of penicillin immediate hypersensitivity reactions and suggests a potential preventive approach against these reactions. PMID:27619816
Representing metabolic pathway information: an object-oriented approach.
Ellis, L B; Speedie, S M; McLeish, R
1998-01-01
The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) is a website providing information and dynamic links for microbial metabolic pathways, enzyme reactions, and their substrates and products. The Compound, Organism, Reaction and Enzyme (CORE) object-oriented database management system was developed to contain and serve this information. CORE was developed using Java, an object-oriented programming language, and PSE persistent object classes from Object Design, Inc. CORE dynamically generates descriptive web pages for reactions, compounds and enzymes, and reconstructs ad hoc pathway maps starting from any UM-BBD reaction. CORE code is available from the authors upon request. CORE is accessible through the UM-BBD at: http://www. labmed.umn.edu/umbbd/index.html.
Hormonal Regulation of Response to Oxidative Stress in Insects—An Update
Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj
2015-01-01
Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed. PMID:26516847
Kynurenine pathway metabolites and enzymes involved in redox reactions.
González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V
2017-01-01
Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.
He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie
2018-04-01
The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the top three terms. Angiogenesis, the endothelial growth factor receptor signaling pathway and the fibroblast growth factor signaling pathway were identified as the most significant terms in the PANTHER pathway analysis. The present study confirmed that miR-124-3p acts as a tumor suppressor in HCC. miR-124-3p may target multiple genes, exerting its effect spatiotemporally, or in combination with a diverse range of processes in HCC. Functional characterization of miR-124-3p targets will offer novel insight into the molecular changes that occur in HCC progression.
The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon
2002-03-01
The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer tomore » TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon
Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O 2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO 2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely ofmore » central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O 2 and QOOH + O 2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less
Jo, Myung Hyun; Song, Ji-Joon; Hohng, Sungchul
2015-12-01
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.
Holby, Edward F.; Taylor, Christopher D.
2015-03-19
We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less
Colosi, Lisa M; Burlingame, Daniel J; Huang, Qingguo; Weber, Walter J
2007-02-01
Natural organic matter (NOM) of hydroxylated aromatic character can undergo catalyst-mediated self-coupling reactions to form larger molecular aggregates. Indeed, such reactions are central to natural humification processes. Nonhydroxylated persistent aromatic contaminants such as polychlorinated biphenyls (PCBs) are, conversely, inert with respect to such reactions. It is here demonstrated however that significant coincidental coupling and removal of a representative aqueous-phase PCB occurs during horseradish peroxidase (HRP)-catalyzed oxidative coupling reactions of a representative aquatic NOM. Experiments with Suwannee River fulvic acid as a reactive cosubstrate indicate that 2,2'-dichlorobiphenyl (PCB-4) is covalently incorporated into aggregating NOM, likely through fortuitous cross-coupling reactions. To develop a better understanding of potential mechanisms by which the observed phenomenon occurs, two hydroxylated monomeric cosubstrates of known molecular structure, phenol and 4-methoxyphenol, were investigated as alternative cosubstrates. PCB-4 removal appears from these experiments to relate to certain molecular characteristics of the native cosubstrate molecule (reactivity with HRP, favorability for radical attack, and hydrophobicity) and its associated phenoxy radical (stability). The findings reveal potential pathways by which PCBs, and perhaps other polyaromatic contaminants, may be naturally transformed and detoxified in nature. The results further provide a foundation for development of enhanced-humification strategies for remediation of PCB-contaminated environmental systems.
Cheng, Tao; Goddard, William A; An, Qi; Xiao, Hai; Merinov, Boris; Morozov, Sergey
2017-01-25
The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e - water formation is: first, *OOH formation; second, *OOH reduction to H 2 O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.
Hajdu, Bálint; Czakó, Gábor
2018-02-22
We report a comprehensive high-level explicitly correlated ab initio study on the X - + NH 2 Y [X,Y = F, Cl, Br, I] reactions characterizing the stationary points of the S N 2 (Y - + NH 2 X) and proton-transfer (HX + NHY - ) pathways as well as the reaction enthalpies of various endothermic additional product channels such as H - + NHXY, XY - + NH 2 , XY + NH 2 - , and XHY - + NH. Benchmark structures and harmonic vibrational frequencies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory, followed by CCSD(T)-F12b/aug-cc-pVnZ(-PP) [n = Q and 5] and core correlation energy computations. In the entrance and exit channels we find two equivalent hydrogen-bonded C 1 minima, X - ···HH'NY and X - ···H'HNY connected by a C s first-order saddle point, X - ···H 2 NY, as well as a halogen-bonded front-side complex, X - ···YNH 2 . S N 2 reactions can proceed via back-side attack Walden inversion and front-side attack retention pathways characterized by first-order saddle points, submerged [X-NH 2 -Y] - and high-energy [H 2 NXY] - , respectively. Product-like stationary points below the HX + NHY - asymptotes are involved in the proton-transfer processes.
Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors.
Gruber, Pia; Marques, Marco P C; O'Sullivan, Brian; Baganz, Frank; Wohlgemuth, Roland; Szita, Nicolas
2017-07-01
The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway. Based on the success for chemical synthesis, the question arises how cascading systems could be beneficial to chemo-enzymatic or biocatalytic synthesis. Microreactors, with their rapid mass and heat transfer, small reaction volumes and short diffusion pathways, are promising tools for the development of such processes. In this mini-review, the authors provide an overview of recent examples of cascaded microreactors. Special attention will be paid to how microreactors are combined and the challenges as well as opportunities that arise from such combinations. Selected chemical reaction cascades will be used to illustrate this concept, before the discussion is widened to include chemo-enzymatic and multi-enzyme cascades. The authors also present the state of the art of online and at-line monitoring for enzymatic microreactor cascades. Finally, the authors review work-up and purification steps and their integration with microreactor cascades, highlighting the potential and the challenges of integrated cascades. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Huajun; Gao, Tao; Li, Xiaogang
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
Takayanagi, Toshiyuki; Nakatomi, Taiki; Yonetani, Yoshiteru
2018-04-20
We performed reaction path search calculations for the NaCl·(H 2 O) 6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na + + Cl - ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
High power rechargeable magnesium/iodine battery chemistry
Tian, Huajun; Gao, Tao; Li, Xiaogang; ...
2017-01-10
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
Liu, Peng; Li, Chen; Wang, Dunyou
2017-10-19
The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.
Plasmon-Enhanced Multi-Carrier Photocatalysis.
Shaik, Firdoz; Peer, Imanuel; Jain, Prashant K; Amirav, Lilac
2018-06-22
Conversion of solar energy into liquid fuel often relies on multi-electron redox processes that include highly reactive intermediates, with back reaction routes that hinder the overall efficiency of the process. Here we reveal that these undesirable reaction pathways can be minimized, rendering the photocatalytic reactions more efficient, when charge carriers are harvested from a multi-excitonic state of a semiconductor photocatalyst. A plasmonic antenna, comprised of Au nanoprisms, was employed to accomplish feasible levels of multiple carrier excitations in semiconductor nanocrystal-based photocatalytic systems (CdSe@CdS core-shell quantum dots and CdSe@CdS seeded nanorods). The antenna's near-field amplifies the otherwise inherently weak two-photon absorption in the semiconductor. The two-electron photoreduction of Pt and Pd metal precursors served as model reactions. In the presence of the plasmonic antenna, these photocatalyzed two-electron reactions exhibited enhanced yields and kinetics. This work uniquely relies on a non-linear enhancement that has potential for large amplification of photocatalytic activity in the presence of a plasmonic near-field.
A Method for Finding Metabolic Pathways Using Atomic Group Tracking.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi
2017-01-01
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.
A Method for Finding Metabolic Pathways Using Atomic Group Tracking
Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi
2017-01-01
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354
Jitonnom, Jitrayut; Limb, Michael A L; Mulholland, Adrian J
2014-05-08
Serratia marcescens Chitinase B (ChiB), belonging to the glycosidase family 18 (GH18), catalyzes the hydrolysis of β-1,4-glycosidic bond, with retention of configuration, via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile. Here, both elementary steps (glycosylation and deglycosylation) of the ChiB-catalyzed reaction are investigated by means of combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations at the SCC-DFTB/CHARMM22 level of theory. We examine the influence of the Asp142 protonation state on the reaction and the role that this residue performs in the reaction. Our simulations show that reaction with a neutral Asp142 is preferred and demonstrate that this residue provides electrostatic stabilization of the oxazolinium ion intermediate formed in the reaction. Insight into the conformational itinerary ((1,4)B↔(4)H5↔(4)C1) adopted by the substrate (bound in subsite -1) along the preferred reaction pathway is also provided by the simulations. The relative energies of the stationary points found along the reaction pathway calculated with SCC-DFTB and B3LYP were compared. The results suggest that SCC-DFTB is an accurate method for estimating the relative barriers for both steps of the reaction; however, it was found to overestimate the relative energy of an intermediate formed in the reaction when compared with the higher level of theory. Glycosylation is suggested to be a rate-determining step in the reaction with calculated overall reaction free-energy barrier of 20.5 kcal/mol, in a reasonable agreement with the 16.1 kcal/mol barrier derived from the experiment. The role of Tyr214 in catalysis was also investigated with the results, indicating that the residue plays a critical role in the deglycosylation step of the reaction. Simulations of the enzyme-product complex were also performed with an unbinding event suggested to have been observed, affording potential new mechanistic insight into the release of the product of ChiB.
Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.
Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank
2017-01-01
Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .
Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R
2016-05-13
Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.
2016-01-01
Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158
Interfacing Biocompatible Reactions with Engineered Escherichia coli.
Wallace, Stephen; Balskus, Emily P
2017-01-01
Biocompatible chemistry represents a new way of merging chemical and biological synthesis by interfacing nonenzymatic reactions with metabolic pathways. This approach can enable the production of nonnatural molecules directly from renewable starting materials via microbial fermentation. When developing a new biocompatible reaction certain criteria must be satisfied, i.e., the reaction must be (1) functional in aqueous growth media at ambient temperature and pH, (2) nontoxic to the producing microorganism, and (3) have negligible effects on the targeted metabolic pathway. This chapter provides a detailed outline of two biocompatible reaction procedures (hydrogenation and cyclopropanation), and describes some of the chemical and microbiological experiments and considerations required during biocompatible reaction development.
Xu, Zixiang; Sun, Jibin; Wu, Qiaqing; Zhu, Dunming
2017-12-11
Biologically meaningful metabolic pathways are important references in the design of industrial bacterium. At present, constraint-based method is the only way to model and simulate a genome-scale metabolic network under steady-state criteria. Due to the inadequate assumption of the relationship in gene-enzyme-reaction as one-to-one unique association, computational difficulty or ignoring the yield from substrate to product, previous pathway finding approaches can't be effectively applied to find out the high yield pathways that are mass balanced in stoichiometry. In addition, the shortest pathways may not be the pathways with high yield. At the same time, a pathway, which exists in stoichiometry, may not be feasible in thermodynamics. By using mixed integer programming strategy, we put forward an algorithm to identify all the smallest balanced pathways which convert the source compound to the target compound in large-scale metabolic networks. The resulting pathways by our method can finely satisfy the stoichiometric constraints and non-decomposability condition. Especially, the functions of high yield and thermodynamics feasibility have been considered in our approach. This tool is tailored to direct the metabolic engineering practice to enlarge the metabolic potentials of industrial strains by integrating the extensive metabolic network information built from systems biology dataset.
Aktar, Evin; Nikolić, Milica; Bögels, Susan M.
2017-01-01
Generalized anxiety disorder (GAD) runs in families. Building on recent theoretical approaches, this review focuses on potential environmental pathways for parent-to-child transmission of GAD. First, we address child acquisition of a generalized pattern of fearful/anxious and avoidant responding to potential threat from parents via verbal information and via modeling. Next, we address how parenting behaviors may contribute to maintenance of fearful/anxious and avoidant reactions in children. Finally, we consider intergenerational transmission of worries as a way of coping with experiential avoidance of strong negative emotions and with intolerance of uncertainty. We conclude that parents with GAD may bias their children's processing of potential threats in the environment by conveying the message that the world is not safe, that uncertainty is intolerable, that strong emotions should be avoided, and that worry helps to cope with uncertainty, thereby transmitting cognitive styles that characterize GAD. Our review highlights the need for research on specific pathways for parent-to-child transmission of GAD. PMID:28867938
Aktar, Evin; Nikolić, Milica; Bögels, Susan M
2017-06-01
Generalized anxiety disorder (GAD) runs in families. Building on recent theoretical approaches, this review focuses on potential environmental pathways for parent-to-child transmission of GAD. First, we address child acquisition of a generalized pattern of fearful/anxious and avoidant responding to potential threat from parents via verbal information and via modeling. Next, we address how parenting behaviors may contribute to maintenance of fearful/anxious and avoidant reactions in children. Finally, we consider intergenerational transmission of worries as a way of coping with experiential avoidance of strong negative emotions and with intolerance of uncertainty. We conclude that parents with GAD may bias their children's processing of potential threats in the environment by conveying the message that the world is not safe, that uncertainty is intolerable, that strong emotions should be avoided, and that worry helps to cope with uncertainty, thereby transmitting cognitive styles that characterize GAD. Our review highlights the need for research on specific pathways for parent-to-child transmission of GAD.
Stochastic Kinetics on Networks: When Slow Is Fast
2015-01-01
Most chemical and biological processes can be viewed as reaction networks in which different pathways often compete kinetically for transformation of substrates into products. An enzymatic process is an example of such phenomena when biological catalysts create new routes for chemical reactions to proceed. It is typically assumed that the general process of product formation is governed by the pathway with the fastest kinetics at all time scales. In contrast to the expectation, here we show theoretically that at time scales sufficiently short, reactions are predominantly determined by the shortest pathway (in the number of intermediate states), regardless of the average turnover time associated with each pathway. This universal phenomenon is demonstrated by an explicit calculation for a system with two competing reversible (or irreversible) pathways. The time scales that characterize this regime and its relevance for single-molecule experimental studies are also discussed. PMID:25140607
Zacharopoulou, Vasiliki; Vasiliadou, Efterpi S; Lemonidou, Angeliki A
2018-01-10
The one-step reaction of glycerol with hydrogen to form propene selectively is a particularly challenging catalytic pathway that has not yet been explored thoroughly. Molybdena-based catalysts are active and selective to C-O bond scission; propene is the only product in the gas phase under the standard reaction conditions, and further hydrogenation to propane is impeded. Within this context, this work focuses on the exploration of the reaction pathways and the investigation of various parameters that affect the catalytic performance, such as the role of hydrogen on the product distribution and the effect of the catalyst pretreatment step. Under a hydrogen atmosphere, propene is produced primarily via 2-propenol, whereas under an inert atmosphere propanal and glycerol dissociation products are formed mainly. The reaction most likely proceeds through a reverse Mars-van Krevelen mechanism as partially reduced Mo species drive the reaction to the formation of the desired product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transcriptional Changes That Characterize the Immune Reactions of Leprosy
Dupnik, Kathryn M.; Bair, Thomas B.; Maia, Andressa O.; Amorim, Francianne M.; Costa, Marcos R.; Keesen, Tatjana S. L.; Valverde, Joanna G.; Queiroz, Maria do Carmo A. P.; Medeiros, Lúcio L.; de Lucena, Nelly L.; Wilson, Mary E.; Nobre, Mauricio L.; Johnson, Warren D.; Jeronimo, Selma M. B.
2015-01-01
Background. Leprosy morbidity is increased by 2 pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL). Methods. To discover host factors related to immune reactions, global transcriptional profiles of peripheral blood mononuclear cells were compared between 11 RR, 11 ENL, and 19 matched control patients, with confirmation by quantitative polymerase chain reaction. Encoded proteins were investigated in skin biopsy specimens by means of immunohistochemistry. Results. There were 275 genes differentially expressed in RR and 517 differentially expressed in ENL on the microarray. Pathway analysis showed immunity-related pathways represented in RR and ENL transcriptional profiles, with the “complement and coagulation” pathway common to both. Interferon γ was identified as a significant upstream regulator of the expression changes for RR and ENL. Immunohistochemical staining of skin lesions showed increased C1q in both RR and ENL. Conclusions. These data suggest a previously underrecognized role for complement in the pathogenesis of both RR and ENL, and we propose new hypotheses for reaction pathogenesis. PMID:25398459
Reaction pathways for the deoxygenation of vegetable oils and related model compounds.
Gosselink, Robert W; Hollak, Stefan A W; Chang, Shu-Wei; van Haveren, Jacco; de Jong, Krijn P; Bitter, Johannes H; van Es, Daan S
2013-09-01
Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo
2013-01-01
Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-Oγ. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-Oγ, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-Oγ. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489
Screening key candidate genes and pathways involved in insulinoma by microarray analysis.
Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin
2018-06-01
Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.
Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan.
Lu, Ding; Sullivan, Mathilde M; Phillips, Martin B; Peterson, Lisa A
2009-06-01
Furan is a liver toxicant and carcinogen in rodents. On the basis of these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450-catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids, and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a monoglutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized as follows: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine, and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from the reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the epsilon-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the alpha- and the epsilon-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the epsilon-amino group of lysine. A GSH-BDA-lysine cross-link was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the epsilon-amino group of lysine; however, small amounts of the alpha-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates, which then react with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo.
Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan
Lu, Ding; Sullivan, Mathilde M.; Phillips, Martin B.; Peterson, Lisa A.
2009-01-01
Furan is a liver toxicant and carcinogen in rodents. Based on these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450 catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a mono-glutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-L-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the ε-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the α- and ε-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the ε-amino group of lysine. A GSH-BDA-lysine crosslink was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the ε-amino group of lysine, however, small amounts of the α-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates which then reacts with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo. PMID:19441776
Reconstructing biochemical pathways from time course data.
Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago
2007-03-01
Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.
Liu, Peng; Zhang, Jingxue; Wang, Dunyou
2017-06-07
A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.
PumpKin: A tool to find principal pathways in plasma chemical models
NASA Astrophysics Data System (ADS)
Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.
2014-10-01
PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.
Stirling, András; Iannuzzi, Marcella; Laio, Alessandro; Parrinello, Michele
2004-10-18
We studied the thermal intramolecular and radical rearrangement of azulene to naphthalene by employing a novel metadynamics method based on Car-Parrinello molecular dynamics. We demonstrate that relatively short simulations can provide us with several possible reaction mechanisms for the rearrangement. We show that different choices of the collective coordinates can steer the reaction along different pathways, thus offering the possibility of choosing the most probable mechanism. We consider herein three intramolecular mechanisms and two radical pathways. We found the norcaradiene pathway to be the preferable intramolecular mechanism, whereas the spiran mechanism is the favored radical route. We obtained high activation energies for all the intramolecular pathways (81.5-98.6 kcal mol(-1)), whereas the radical routes have activation energies of 24-39 kcal mol(-1). The calculations have also resulted in elementary steps and intermediates not yet considered. A few attractive features of the metadynamics method in studying chemical reactions are pointed out.
Xie, Hongbin; Wang, Pan; He, Ning; Yang, Xianhai; Chen, Jingwen
2015-11-01
Amines have been considered as promising candidates for post-combustion CO2 capture. A mechanistic understanding for the chemical processes involved in the capture and release of CO2 is important for the rational design of amines. In this study, the structural effects of amines on the kinetic competition among three typical products (carbamates, carbamic acids and bicarbonate) from amines+CO2 were investigated, in contrast to previous thermodynamic studies to tune the reaction of amines with CO2 based on desirable reaction enthalpy and reaction stoichiometry. We used a quantum chemical method to calculate the activation energies (Ea) for the reactions of a range of substituted monoethanolamines with CO2 covering three pathways to the three products. The results indicate that the formation of carbamates is the most favorable, among the three considered products. In addition, we found that the Ea values for all pathways linearly correlate with pKa of amines, and more importantly, the kinetic competition between carbamate and bicarbonate absorption pathways varies with pKa of the amines, i.e. stronger basicity results in less difference in Ea. These results highlight the importance of the consideration of kinetic competition among different reaction pathways in amine design. Copyright © 2015. Published by Elsevier B.V.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Augustyn, Kristie D Cox; Jackson, Michael R; Jorns, Marilyn Schuman
2017-02-21
Hydrogen sulfide (H 2 S) is an endogenously synthesized signaling molecule that is enzymatically metabolized in mitochondria. The metabolism of H 2 S maintains optimal concentrations of the gasotransmitter and produces sulfane sulfur (S 0 )-containing metabolites that may be functionally important in signaling. Sulfide:quinone oxidoreductase (SQOR) catalyzes the initial two-electron oxidation of H 2 S to S 0 using coenzyme Q as the electron acceptor in a reaction that requires a third substrate to act as the acceptor of S 0 . We discovered that sulfite is a highly efficient acceptor and proposed that sulfite is the physiological acceptor in a reaction that produces thiosulfate, a known metabolic intermediate. This model has been challenged by others who assume that the intracellular concentration of sulfite is very low, a scenario postulated to favor reaction of SQOR with a considerably poorer acceptor, glutathione. In this study, we measured the intracellular concentration of sulfite and other metabolites in mammalian tissues. The values observed for sulfite in rat liver (9.2 μM) and heart (38 μM) are orders of magnitude higher than previously assumed. We discovered that the apparent kinetics of oxidation of H 2 S by SQOR with glutathione as the S 0 acceptor reflect contributions from other SQOR-catalyzed reactions, including a novel glutathione:CoQ reductase reaction. We used observed metabolite levels and steady-state kinetic parameters to simulate rates of oxidation of H 2 S by SQOR at physiological concentrations of different S 0 acceptors. The results show that the reaction with sulfite as the S 0 acceptor is a major pathway in liver and heart and provide insight into the potential dynamics of H 2 S metabolism.
Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)).
Nozière, Barbara; Dziedzic, Pawel; Córdova, Armando
2009-01-08
Glyoxal, a common atmospheric gas, has been reported to be depleted in some regions of the atmosphere. The corresponding sink could be accounted for by reactions in or at the surface of atmospheric particles, but these reactions were not identified. Recently, we showed that inorganic ammonium ions, NH(4)(+), are efficient catalysts for reactions of carbonyl compounds, including glyoxal, in the liquid phase. To determine whether ammonium-catalyzed reactions can contribute to depletion of glyoxal in the atmosphere, the reactivity of this compound in aqueous solutions containing ammonium salts (ammonium sulfate, chloride, fluoride, and phosphate) at 298 K has been studied. The products identified by LC-HRMS and UV absorption revealed a mechanism involving two distinct pathways: a Bronsted acid pathway and an iminium pathway. The kinetics of the iminium pathway was studied by monitoring formation of a specific product. This pathway was second order in glyoxal in most of the solutions studied and should therefore be second order in most ammonium-containing aerosols in the atmosphere. The corresponding rate constant, k(II) (M(-1) s(-1)), increased strongly with ammonium ion activity, a(NH(4)(+)), and pH: k(II) (M(-1) s(-1)) = (2 +/- 1) x 10(-10) exp((1.5 +/- 0.8)aNH(4)(+)) exp((2.5 +/- 0.2)pH). This iminium pathway is a lower limit for the ammonium-catalyzed consumption of glyoxal, but the contribution of the acid pathway is expected to be small in tropospheric aerosols. With these results the reactive uptake of glyoxal on ammonium-containing aerosols was estimated and shown to be a possible explanation for depletion of this compound in Mexico City.
Absence of diamine oxidase activity from rabbit and rat lungs.
Rao, S B; Rao, K S; Mehendale, H M
1986-01-01
To study the presence of diamine oxidase (DAO) activity in any tissue with putrescine as the substrate, it is necessary to use inhibitors to block all pathways that could further metabolize gamma-aminobutyraldehyde, which is the product of enzyme reaction. It is also necessary to inhibit any enzyme that may convert putrescine into higher polyamines. By this approach it was observed that lung tissue of both rat and rabbit exhibited no DAO activity. DAO activity was observed in the rat and rabbit intestine, the former showing 3 times as much activity as the latter. The other potential pathways of putrescine metabolism are of no consequence in the rat and rabbit intestine and lungs. PMID:3087348
BiKEGG: a COBRA toolbox extension for bridging the BiGG and KEGG databases.
Jamialahmadi, Oveis; Motamedian, Ehsan; Hashemi-Najafabadi, Sameereh
2016-10-18
Development of an interface tool between the Biochemical, Genetic and Genomic (BiGG) and KEGG databases is necessary for simultaneous access to the features of both databases. For this purpose, we present the BiKEGG toolbox, an open source COBRA toolbox extension providing a set of functions to infer the reaction correspondences between the KEGG reaction identifiers and those in the BiGG knowledgebase using a combination of manual verification and computational methods. Inferred reaction correspondences using this approach are supported by evidence from the literature, which provides a higher number of reconciled reactions between these two databases compared to the MetaNetX and MetRxn databases. This set of equivalent reactions is then used to automatically superimpose the predicted fluxes using COBRA methods on classical KEGG pathway maps or to create a customized metabolic map based on the KEGG global metabolic pathway, and to find the corresponding reactions in BiGG based on the genome annotation of an organism in the KEGG database. Customized metabolic maps can be created for a set of pathways of interest, for the whole KEGG global map or exclusively for all pathways for which there exists at least one flux carrying reaction. This flexibility in visualization enables BiKEGG to indicate reaction directionality as well as to visualize the reaction fluxes for different static or dynamic conditions in an animated manner. BiKEGG allows the user to export (1) the output visualized metabolic maps to various standard image formats or save them as a video or animated GIF file, and (2) the equivalent reactions for an organism as an Excel spreadsheet.
Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations
NASA Astrophysics Data System (ADS)
Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.
2017-12-01
Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on fine particles enhances sulfate only over parts of China, and SO2 oxidation by NO2 in aerosol water enhances sulfate only over parts of China by >5%. We will present a detailed analysis of the results and a comparison of model predictions with available observed data.
Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri
2016-07-01
This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.
How Changes in White Matter Might Underlie Improved Reaction Time Due to Practice1
Voelker, Pascale; Piscopo, Denise; Weible, Aldis; Lynch, Gary; Rothbart, Mary K.; Posner, Michael I.; Niell, Cristopher M.
2017-01-01
Why does training on a task reduce the reaction time for performing it? New research points to changes in white matter pathways as one likely mechanism. These pathways connect remote brain areas involved in performing the task. Genetic variations may be involved in individual differences in the extent of this improvement. If white matter change is involved in improved reaction time with training, it may point the way toward understanding where and how generalization occurs. We examine the hypothesis that brain pathways shared by different tasks may result in improved performance of cognitive tasks remote from the training. PMID:27064751
Pathway collages: personalized multi-pathway diagrams.
Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D
2016-12-13
Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.
Kitamura, Takuya; Seki, Naoya; Kihara, Akio
2017-03-28
Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2 -deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.
Su, Shih-Hao; Su, Ming-Der
2016-06-28
The mechanisms for the photochemical Si-H bond activation reaction are studied theoretically using a model system of the group 5 organometallic compounds, η(5)-CpM(CO)4 (M = V, Nb, and Ta), with the M06-2X method and the Def2-SVPD basis set. Three types of reaction pathways that lead to final insertion products are identified. The structures of the intersystem crossings, which play a central role in these photo-activation reactions, are determined. The intermediates and transitional structures in either the singlet or triplet states are also calculated to provide a mechanistic explanation of the reaction pathways. All of the potential energy surfaces for the group 5 η(5)-CpM(CO)4 complexes are quite similar. In particular, the theoretical evidence suggests that after irradiation using light, η(5)-CpM(CO)4 quickly loses one CO ligand to yield two tricarbonyls, in either the singlet or the triplet states. The triplet tricarbonyl 16-electron intermediates, ([η(5)-CpM(CO)3](3)), play a key role in the formation of the final oxidative addition product, η(5)-CpM(CO)3(H)(SiMe3). However, the singlet counterparts, ([η(5)-CpM(CO)3](1)), play no role in the formation of the final product molecule, but their singlet metal centers interact weakly with solvent molecules ((Me3)SiH) to produce alkyl-solvated organometallic complexes, which are observable experimentally. This theoretical evidence is in accordance with the available experimental observations.
Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom
2009-02-15
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.
Goodpaster, Jason D.; Weber, Adam Z.
2017-01-01
Electrochemical reduction of CO2 using renewable sources of electrical energy holds promise for converting CO2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction. Moreover, cathode polarization can influence the kinetics of CO2 reduction. Here, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO2 that is consistent with experiments. Simulations based on this mechanism also describe the dependence of the H2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation. PMID:28973926
Potential energy surfaces related to the ion-molecule reaction C/sup +/ + H/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liskow, D.H.; Bender, C.F.; Schaefer, H.F. III
1974-10-01
The C/sup +/ + H/sub 2/ ion-molecule reaction has been studied by several experimental groups and appears likely to become the focal point of much experimental and theoretical activity. Ab initio self-consistent-field and configuration interaction calculations have accordingly been carried out for this system. A double zeta basis set of contracted Gaussian functions was employed and as many as 648 configurations included. For isosceles triangle configurations (C/sub 2V/ point group) the /sup 2/A/sub 1/, /sup 2/B/sub 1/, and /sup 2/B/sub 2/ potential surfaces were considered, while for linear geometries (C/sub infinity V) the /sup 2/..sigma../sup +/ and /sup 2/PI surfacesmore » were studied. For general (C/sub S/) geometry, the lowest /sup 2/A' potential surface was considered. Properties reported include minimum energy paths and energy profiles for the various processes considered. The intuitive correlation diagram of Mahan and Sloane is given qualitative reliability. Pathways to CH/sub 2//sup +/ complex formation are shown to depend crucially on the C/sub S/ potential surface.« less
Explorations into Chemical Reactions and Biochemical Pathways.
Gasteiger, Johann
2016-12-01
A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Vincent C-C; Islam, Shams T A; Can, Mehmet; Ragsdale, Stephen W; Armstrong, Fraser A
2015-10-29
Protein film electrochemistry has been used to investigate reactions of highly active nickel-containing carbon monoxide dehydrogenases (CODHs). When attached to a pyrolytic graphite electrode, these enzymes behave as reversible electrocatalysts, displaying CO2 reduction or CO oxidation at minimal overpotential. The O2 sensitivity of CODH is suppressed by adding cyanide, a reversible inhibitor of CO oxidation, or by raising the electrode potential. Reduction of N2O, isoelectronic with CO2, is catalyzed by CODH, but the reaction is sluggish, despite a large overpotential, and results in inactivation. Production of H2 and formate under highly reducing conditions is consistent with calculations predicting that a nickel-hydrido species might be formed, but the very low rates suggest that such a species is not on the main catalytic pathway.
Temporal mapping of photochemical reactions and molecular excited states with carbon specificity
NASA Astrophysics Data System (ADS)
Wang, K.; Murahari, P.; Yokoyama, K.; Lord, J. S.; Pratt, F. L.; He, J.; Schulz, L.; Willis, M.; Anthony, J. E.; Morley, N. A.; Nuccio, L.; Misquitta, A.; Dunstan, D. J.; Shimomura, K.; Watanabe, I.; Zhang, S.; Heathcote, P.; Drew, A. J.
2017-04-01
Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.
Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.
Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J
2018-01-07
A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .
Quinone-Catalyzed Selective Oxidation of Organic Molecules
Wendlandt, Alison E.
2016-01-01
Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485
Theoretical investigation on the dimerization of the deprotonated aquo ion of Al(III) in water.
Qian, Zhaosheng; Feng, Hui; Zhang, Zhenjiang; Yang, Wenjing; Jin, Jing; Miao, Qiang; He, Lina; Bi, Shuping
2009-01-21
Reaction pathways, solvent effects and energy barriers have been investigated for the dimerization of the deprotonated aquo ion of Al(III) in aqueous solution by performing supramolecule density functional theory calculations. Two competing reaction pathways were investigated, sharing a common first step and third step, i.e. the formation of the aggregate II of two aluminium monomers and the doubly bridged dimer. One pathway involves a nucleophilic attack to undercoordinated metal center in the first step and then the loss of a coordinated water molecule. Another pathway involves a water exchange reaction in the first step and then the formation of the hydroxo bridge. The calculated results indicate that both pathways I and II are possible in aqueous solution. The direct participation of the solvent water molecule facilitates the dimerization, but the extremely large solvent shifts of the energy barriers for each reaction are attributed mainly to the bulk effect. The computed activation energies for the water exchange reactions are in good agreement with the available experimental values, namely, the calculated value 37.5 kJ mol(-1) compared to the experimental value 36.4 (+/-5) kJ mol(-1). In agreement with experimental observations in aqueous solution, the calculated results favor the transformation of singly-bridged to doubly-bridged aluminium ion, which is helpful to understand the complicated hydrolytic polymerizaiton of Al(III).
Controlling the Maillard reaction by reactant encapsulation: sodium chloride in cookies.
Fiore, Alberto; Troise, Antonio Dario; Ataç Mogol, Burçe; Roullier, Victor; Gourdon, Anthony; El Mafadi Jian, Samira; Hamzalioğlu, Berat Aytül; Gökmen, Vural; Fogliano, Vincenzo
2012-10-31
Formation of Maillard reaction products (MRPs) including 5-hydroxymethylfurfural (HMF) and acrylamide has been an intensive area of research in recent decades. The presence of reactants such as sodium chloride may influence the Maillard reaction (MR) pathways through the dehydration of various key intermediates. The aim of this work was to test the potential of ingredient encapsulation to mitigate the MR by investigating the case of sodium chloride encapsulation on the HMF formation in cookies. Thirteen cookies were prepared with recipes containing free or encapsulated NaCl. Increasing NaCl concentration from 0 to 0.65% increases HMF concentration up to 75%, whereas in the presence of encapsulated NaCl the reduction of HMF varied from 18 to 61% due to the inhibition of sucrose pyrolytic decomposition and the fructofuranosyl cation formation. Data demonstrated that the more heat-resistant the lipid-based coating was, the more pronounced the reduction of HMF formation. The results showed that encapsulation represents a useful approach to prevent the formation of potentially harmful compounds in thermally processed foods.
Downstream reactions and engineering in the microbially reconstituted pathway for Taxol.
Jiang, Ming; Stephanopoulos, Gregory; Pfeifer, Blaine A
2012-05-01
Taxol (a trademarked product of Bristol-Myers Squibb) is a complex isoprenoid natural product which has displayed potent anticancer activity. Originally isolated from the Pacific yew tree (Taxus brevifolia), Taxol has been mass-produced through processes reliant on plant-derived biosynthesis. Recently, there have been alternative efforts to reconstitute the biosynthetic process through technically convenient microbial hosts, which offer unmatched growth kinetics and engineering potential. Such an approach is made challenging by the need to successfully introduce the significantly foreign enzymatic steps responsible for eventual biosynthesis. Doing so, however, offers the potential to engineer more efficient and economical production processes and the opportunity to design and produce tailored analog compounds with enhanced properties. This mini review will specifically focus on heterologous biosynthesis as it applies to Taxol with an emphasis on the challenges associated with introducing and reconstituting the downstream reaction steps needed for final bioactivity.
Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode
NASA Astrophysics Data System (ADS)
Casalongue, Hernan Sanchez; Kaya, Sarp; Viswanathan, Venkatasubramanian; Miller, Daniel J.; Friebel, Daniel; Hansen, Heine A.; Nørskov, Jens K.; Nilsson, Anders; Ogasawara, Hirohito
2013-12-01
The performance of polymer electrolyte membrane fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. Here we use ambient pressure X-ray photoelectron spectroscopy, and directly probe the correlation between the adsorbed species on the surface and the electrochemical potential. We demonstrate that, during the oxygen reduction reaction, hydroxyl intermediates on the cathode surface occur in several configurations with significantly different structures and reactivities. In particular, we find that near the open-circuit potential, non-hydrated hydroxyl is the dominant surface species. On the basis of density functional theory calculations, we show that the removal of hydration enhances the reactivity of oxygen species. Tuning the hydration of hydroxyl near the triple phase boundary will be crucial for designing more active fuel cell cathodes.
Klumpers, Floris; Heitland, Ivo; Oosting, Ronald S; Kenemans, J Leon; Baas, Johanna M P
2012-02-01
The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability in the basic reflex physiology of defense. Healthy subjects (N=82) were presented with clearly instructed cues of shock threat and safety to induce robust anxiety reactions. Subjects carrying at least one short allele for the 5-HTTLPR polymorphism showed stronger fear-potentiated startle compared to long allele homozygotes. However, short allele carriers showed no deficit in the downregulation of fear after the offset of threat. These results suggest that natural variation in SERT function affects the magnitude of defensive reactions while not affecting the capacity for fear regulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Arndt, Lilli; Castonguay, Jan; Arlt, Elisabeth; Meyer, Dorke; Hassan, Sami; Borth, Heike; Zierler, Susanna; Wennemuth, Gunther; Breit, Andreas; Biel, Martin; Wahl-Schott, Christian; Gudermann, Thomas; Klugbauer, Norbert; Boekhoff, Ingrid
2014-01-01
The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle. PMID:24451262
Analysis of glyphosate degradation in a soil microcosm.
la Cecilia, Daniele; Maggi, Federico
2018-02-01
Glyphosate (GLP) herbicide leaching into soil can undergo abiotic degradation and two enzymatic oxidative or hydrolytic reactions in both aerobic and anaerobic conditions; biotic oxidation produces aminomethylphosphonic acid (AMPA). Both GLP and AMPA are phytotoxic. A comprehensive GLP degradation reaction network was developed from the literature to account for the above pathways, and fifteen experimental data sets were used to determine the corresponding Michaelis-Menten-Monod (MMM) kinetic parameters. Various sensitivity analyses were designed to assess GLP and AMPA degradation potential against O 2 (aq) and carbon (C) availability, pH, and birnessite mineral content, and showed that bacteria oxidized or hydrolyzed up to 98% of GLP and only 9% of AMPA. Lack of a C source limited the GLP cometabolic hydrolytic pathways, which produces non-toxic byproducts and promotes AMPA biodegradation. Low bacterial activity in O 2 (aq)-limited conditions or non-neutral pH resulted in GLP accumulation. Birnessite mineral catalyzed fast GLP and AMPA chemodegradation reaching alone efficiencies of 79% and 88%, respectively, regardless of the other variables and produced non-toxic byproducts. Overall, O 2 (aq) and birnessite availability played the major roles in determining the partitioning of GLP and its byproducts mass fluxes across the reaction network, while birnessite, C availability, and pH affected GLP and AMPA biodegradation effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
This study demonstrates the potential of whole-mount in situ hybridization (WISH), in conjunction with quantitative real-time polymerase chain reaction (QPCR) assays, to examine the mechanistic basis of the effects of toxicants on early-lifestage fathead minnows. Specifically, fathead minnow embryos were exposed to the environmentally-relevant estrogen receptor agonist, estrone, and the data show that: (1) the estrogen-responsive gene transcripts esr1, vtg, and cyp19b can be up-regulated in very early-lifestages of the fathead minnow, (2) WISH methods developed for zebrafish can also be applied successfully to fathead minnows, and (3) WISH has potential to be a useful tool for toxicological studies pertaining to early-lifestage development in the fathead minnow. This type of mechanistic information relative to spatial distribution of gene expression is important in determining potential biological pathways that may be impacted by targeted chemicals and the development of associated adverse outcome pathways.This dataset is associated with the following publication:Cavallin, J., A. Schroeder, K. Jensen , D. Villeneuve , B. Blackwell, K. Carlson, M. Kahl , C. LaLone , E. Randolph , and G. Ankley. Evaluation of whole-mount in situ hybridization as a tool for pathway-based toxicological research with early-life stage fathead minnows. AQUATIC TOXICOLOGY. Elsevier Science Ltd, New York, NY, USA, 169: 19-26, (2015).
Probabilistic pathway construction.
Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha
2011-07-01
Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.
A multi-pathway model for photosynthetic reaction center
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Yi, X. X.
2016-03-01
Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.
The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...
Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin
2015-11-12
High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics.
The degradation mechanism of phenol induced by ozone in wastes system.
Youmin, Sun; Xiaohua, Ren; Zhaojie, Cui; Guiqin, Zhang
2012-08-01
A distinct understanding for the degradation mechanism of phenol induced by ozone is very essential because the ozonation process, one of the advanced oxidation processes (AOPs), is attractive and popular in wastewater treatment. In the present work, the detailed reactions of ozone and phenol are investigated employing the density functional theory B3LYP method with the 6-311++G (d, p) basis set. The profiles of the potential energy surface are constructed and the possible reaction pathways are indicated. These detailed calculation results suggest two degradation reaction mechanisms. One is phenolic H atom abstraction mechanism, and the other is cyclo-addition and ring-opening mechanism. Considering the effect of solvent water, the calculated energy barriers and reaction enthalpies for the reaction of O3 and phenol in water phase are both lower than those in gas phase, though the degradation mechanisms are not changed. This reveals that these degradation reactions are more favorable in the water solvent. The main reaction products are C(6)H(5)OO· radical, a crucial precursor for forming PCDD/Fs and one ring-opening product, which are in good agreement with the experimental observations.
NASA Astrophysics Data System (ADS)
Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team
2011-12-01
A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein citrate synthase that generates citrate from acetyl-CoA and oxaloacetate). Model discrepancies with the proteomic data, such as the prediction of shifts associated with nitrogen limitation, revealed pathways in the in silico code that could be modified to more accurately predict metabolic processes that occur in the subsurface. The potential outcome of this approach is the engineering of electron donor (e.g., acetate), terminal electron acceptor [e.g., U(VI)], and biogeochemical conditions that enhance the desired metabolic pathways of the target microorganism(s) to effect cost-effective uranium bioreduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Shirong; Davis, Michael J.; Skodje, Rex T.
2015-11-12
The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of howmore » that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H-2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux« less
Electron-beam generated porous dextran gels: experimental and quantum chemical studies.
Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta
2014-06-01
The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.
Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng
2017-10-01
To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Junming; Karim, Ayman M.; Mei, Donghai
2015-01-01
The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallicmore » cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.« less
Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide.
Škalamera, Đani; Antol, Ivana; Mlinarić-Majerski, Kata; Vančik, Hrvoj; Phillips, David Lee; Ma, Jiani; Basarić, Nikola
2018-04-20
The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H 2 O gives QM 2 in its S 1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S 0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S 1 ) probably deactivates to S 0 through a conical intersection to give QM 2 (S 0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lei; Ren, Ling; Tang, Tingting; Dai, Kerong; Yang, Ke; Hao, Yongqiang
2015-01-01
Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu(2+) releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application.
Le, Xuan T; Mai, Tam V T; Ratkiewicz, Artur; Huynh, Lam K
2015-04-23
This paper presents a computational study on the low-temperature mechanism and kinetics of the reaction between molecular oxygen and alkyl radicals of methyl propanoate (MP), which plays an important role in low-temperature oxidation and/or autoignition processes of the title fuel. Their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The potential energy surfaces of the reactions between three primary MP radicals and molecular oxygen, namely, C(•)H2CH2COOCH3 + O2, CH3C(•)HCOOCH3 + O2, and CH3CH2COOC(•)H2 + O2, were constructed using the accurate composite CBS-QB3 method. Thermodynamic properties of all species as well as high-pressure rate constants of all reaction channels were derived with explicit corrections for tunneling and hindered internal rotations. Our calculation results are in good agreement with a limited number of scattered data in the literature. Furthermore, pressure- and temperature-dependent rate constants for all reaction channels on the multiwell-multichannel potential energy surfaces were computed with the quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent detailed kinetic submechanism for low-temperature oxidation governed by the title process. A simplified mechanism, which consists of important reactions, is also suggested for low-temperature combustion at engine-like conditions.
Sato, Michio; Yagishita, Fumitoshi; Mino, Takashi; Uchiyama, Nahoko; Patel, Ashay; Chooi, Yit-Heng; Goda, Yukihiro; Xu, Wei; Noguchi, Hiroshi; Yamamoto, Tsuyoshi; Hotta, Kinya; Houk, Kendall N.; Tang, Yi
2016-01-01
Understanding enzymatic Diels—Alder (DA) reactions that can form complex natural product scaffold is of considerable interest. Sch 210972 1, a potential anti-HIV fungal natural product, contains a decalin core that is proposed to form via a DA reaction. We identified the gene cluster responsible for the biosynthesis of 1 and heterologously reconstituted the biosynthetic pathway in Aspergillus nidulans to characterize the enzymes involved. Most notably, deletion of cghA resulted in a loss of stereoselective decalin core formation, yielding both an endo 1 and a diastereomeric exo adducts of the proposed DA reaction. Complementation with cghA restored the sole formation of 1. Density functional theory computation of the proposed DA reaction provided a plausible explanation of the observed pattern of product formation. Based on our study, we propose that lipocalin-like CghA is responsible for the stereoselective intramolecular [4+2] cycloaddition that forms the decalin core of 1. PMID:26360642
Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination.
Mitch, William A; Sedlak, David L
2002-02-15
Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-nitrosodimethylamine (NDMA) at concentrations of approximately 100 and 10 parts per trillion (ng/L), respectively. Laboratory experiments with potential NDMA precursors indicate that NDMA formation can form during the chlorination of dimethylamine and other secondary amines. The formation of NDMA during chlorination may involve the slow formation of 1,1-dimethylhydrazine by the reaction of monochloramine and dimethylamine followed by its rapid oxidation to NDMA and other products including dimethylcyanamide and dimethylformamide. Other pathways also lead to NDMA formation during chlorination such as the reaction of sodium hypochlorite with dimethylamine. However, the rate of NDMA formation is approximately an order of magnitude slower than that observed when monochloramine reacts with dimethylamine. The reaction exhibits a strong pH dependence due to competing reactions. It may be possible to reduce NDMA formation during chlorination by removing ammonia prior to chlorination, by breakpoint chlorination, or by avoidance of the use of monochloramine for drinking water disinfection.
Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian
2018-02-14
Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.
Hedgehog pathway as a potential treatment target in human cholangiocarcinoma.
Riedlinger, Dorothee; Bahra, Marcus; Boas-Knoop, Sabine; Lippert, Steffen; Bradtmöller, Maren; Guse, Katrin; Seehofer, Daniel; Bova, Roberta; Sauer, Igor M; Neuhaus, Peter; Koch, Arend; Kamphues, Carsten
2014-08-01
Innovative treatment concepts targeting essential signaling pathways may offer new chances for patients suffering from cholangiocarcinoma (CCC). For that, we performed a systematic molecular genetic analysis concerning the Hedgehog activity in human CCC samples and analyzed the effect of Hh inhibition on CCC cells in vitro and in vivo. Activation of the Hh pathway was analyzed in 50 human CCC samples using quantitative polymerase chain reaction (qPCR). The efficacy of Hh inhibition using cyclopamine and BMS-833923 was evaluated in vitro. In addition, the effect of BMS-833923, alone or in combination with gemcitabine, was analyzed in vivo in a murine subcutaneous xenograft model. Expression analysis revealed a significant activation of the Hh-signaling pathway in nearly 50% of CCCs. Hh inhibition resulted in a significant decrease in cell proliferation of CCC cells. Moreover, a distinct inhibition of tumor growth could be seen as a result of a combined therapy with BMS-833923 and gemcitabine in CCC xenografts. The results of our study suggest that the Hh pathway plays a relevant role at least in a subset of human CCC. Inhibition of this pathway may represent a possible treatment option for CCC patients in which the Hh pathway is activated. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu; Lu, Fang; Liu, Shizhong
Four-electron oxygen reduction reaction (4e-ORR) pathway, as a key high-performance reaction pathway in energy conversion, has been sought after in numerous investigations on metal surfaces over the last decades. Although the surfaces of the most noble metals, including platinum and palladium, demonstrate the fullpotential- range 4e-ORR, this is not the case, for gold (Au) surfaces. The 4e-ORR is only operative on Au surfaces with {100} subfacets, e.g. Au(100), in alkaline solution, however restricted to a certain potential region at low overpotentials, while reverting to a 2e-ORR at high overpotentials. This ORR on Au(100) has been a long-standing puzzle of electrocatalysis.more » Hereby we review the ORR studies on Au, along with the studies of water effects on Au catalysts, and present our electrochemical results with monofacet Au nanocrystals. Finally, combining with theoretical calculations we demonstrate that surface proton transfer from co-adsorbed water plays the key role in determining the ORR mechanism on Au surfaces in base.« less
Zhang, Yu; Lu, Fang; Liu, Shizhong; ...
2018-04-01
Four-electron oxygen reduction reaction (4e-ORR) pathway, as a key high-performance reaction pathway in energy conversion, has been sought after in numerous investigations on metal surfaces over the last decades. Although the surfaces of the most noble metals, including platinum and palladium, demonstrate the fullpotential- range 4e-ORR, this is not the case, for gold (Au) surfaces. The 4e-ORR is only operative on Au surfaces with {100} subfacets, e.g. Au(100), in alkaline solution, however restricted to a certain potential region at low overpotentials, while reverting to a 2e-ORR at high overpotentials. This ORR on Au(100) has been a long-standing puzzle of electrocatalysis.more » Hereby we review the ORR studies on Au, along with the studies of water effects on Au catalysts, and present our electrochemical results with monofacet Au nanocrystals. Finally, combining with theoretical calculations we demonstrate that surface proton transfer from co-adsorbed water plays the key role in determining the ORR mechanism on Au surfaces in base.« less
Carrasco, Erica; Smith, Kenneth J; Meloni, Giovanni
2018-01-11
The reactions of furan and 2-methylfuran with methylidyne CH (X 2 Π) radical were investigated at 298 K using synchrotron radiation produced at the Advanced Light Source of the Lawrence Berkeley National Laboratory. Reaction products were observed by multiplexed photoionization mass spectrometry and characterized based on their photoionization spectra and kinetic time traces. Primary products observed in furan + CH are 2,4-cyclopentadien-1-one (m/z = 80), 2-penten-4-ynal (m/z = 80), and vinylacetylene (m/z = 52). From 2-methylfuran + CH, 2-4-cyclopentadien-1-carbaldehyde (m/z = 94), 2,3,4-hexatrienal (m/z = 94), 1,3 cyclopentadiene (m/z = 66), 3-penten-1-yne (Z) (m/z = 66), and vinylacetylene (m/z = 52) are the primary products observed. Using potential energy surface scans, thermodynamically favorable reaction pathways are proposed. CH addition to the π-bonds in furan and 2-methylfuran rings was found to be the entrance channel that led to formation of all identified primary products. Both reactions follow patterns of H loss and CHO loss, as well as formation of cyclic and acyclic isomers.
How reliable are thermodynamic feasibility statements of biochemical pathways?
Maskow, Thomas; von Stockar, Urs
2005-10-20
The driving force for organo- or lithotrophic growth as well as for each step in the metabolic network is the Gibbs reaction energy. For each enzymatic step it must be negative. Thermodynamics contributes therefore to the in-silico description of living systems. It may be used for assessing the feasibility of a given pathway because it provides a further constraint for those pathways which are feasible from the point of view of mass balance calculations (metabolic flux analysis) and the genetic potential of an organism. However, when this constraint was applied to lactic acid fermentation according to a method proposed by Mavrovouniotis (1993a, ISMB 93:273-283) it turned out that an unrealistically wide metabolite concentration range had to be assumed to make this well-known glycolytic pathway thermodynamically feasible. During a search for the reasons of this surprising result the insufficient consideration of the activity coefficients was identified as main cause. However, it is shown in the present contribution that the influence of the activity coefficients on Gibbs reaction energy can be easily taken into account based on the intracellular ionic strength. The uncertainty of the tabulated equilibrium constants and of the apparent standard Gibbs energies derived from them was found to be the second most important reason for the erroneous result of the feasibility analysis. Deviations of intracellular pH from the standard value and bad estimations of currency metabolites, e.g., NAD(+) and NADH, were found to be of lesser importance but not negligible. The pH dependency of Gibbs reaction enthalpy was proved to be easily taken into account. Therefore, the application of thermodynamics for a better in-silico prediction of the behavior of living cell factories calls predominantly for better equilibrium data determined under well defined conditions and also for a more detailed knowledge about the intracellular ionic strength and pH value. Copyright 2005 Wiley Periodicals, Inc.
Spirli, Carlo; Villani, Ambra; Mariotti, Valeria; Fabris, Luca; Fiorotto, Romina; Strazzabosco, Mario
2015-01-01
Polycystin-2 (PC2 /TRPP2), a member of the transient receptor potential channels (TRP) family, is a non-selective calcium channel. Mutations in PC2/TRPP2 are associated with Polycystic Liver Diseases. PC2-defective cholangiocytes shows increased production of cAMP, PKA-dependent activation of the ERK1/2 pathway, HIF1α-mediated VEGF production, and stimulation of cyst growth and progression. Activation of the ERK/HIF1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF1α/VEGF pathway. Results PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2−/−-KO, bile duct ligation, DDC-treatment). Treatment of colangiocytes with pro-inflammatory cytokines, nitric oxide (NO) donors and ER stressors), increased ERK1/2 phosphorylation, HIF1α transcriptional activity, secretion of VEGF, VEGFR2 phosphorylation and downregulated PC2 protein expression without affecting PC2 gene expression. Expression of Herp and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation was increased. Pre-treatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with NO donors or with ER stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of DDC-mice and of Mdr2−/−-mice with the proteasome inhibitor bortezomib, restored PC2 expression and significantly reduced the ductular reaction, fibrosis and p-ERK1/2. In conclusion, in response to biliary damage, PC2 expression is modulated post-translationally by the proteasome or the autophagy pathways. PC2-dowregulation is associated with activation of ERK1/2 and increase of HIF1α-mediated VEGF secretion. Treatments able to restore PC2 expression and to reduce ductular reaction and fibrosis may represent a new therapeutic approach in biliary diseases. PMID:26313562
Çakιr, Tunahan; Alsan, Selma; Saybaşιlι, Hale; Akιn, Ata; Ülgen, Kutlu Ö
2007-01-01
Background It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. Model The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. Results The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. Conclusion The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism. PMID:18070347
Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.
Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam
2010-09-02
Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.
Ledbetter, Rhesa N; Garcia Costas, Amaya M; Lubner, Carolyn E; Mulder, David W; Tokmina-Lukaszewska, Monika; Artz, Jacob H; Patterson, Angela; Magnuson, Timothy S; Jay, Zackary J; Duan, H Diessel; Miller, Jacquelyn; Plunkett, Mary H; Hoben, John P; Barney, Brett M; Carlson, Ross P; Miller, Anne-Frances; Bothner, Brian; King, Paul W; Peters, John W; Seefeldt, Lance C
2017-08-15
The biological reduction of dinitrogen (N 2 ) to ammonia (NH 3 ) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled to reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.
Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.; ...
2017-07-13
The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less
Kayala, Matthew A; Baldi, Pierre
2012-10-22
Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of ReactionPredictor are available via the chemoinformatics portal http://cdb.ics.uci.edu/.
Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J
2016-01-01
Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.
Fusion yield: Guderley model and Tsallis statistics
NASA Astrophysics Data System (ADS)
Haubold, H. J.; Kumar, D.
2011-02-01
The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl. 396, 317-328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399-411). An interpretation for the pathway parameter is also given.
Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Steven Overbury
2015-01-08
We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less
Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya
2013-12-01
In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
Metabolite damage and repair in metabolic engineering design.
Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D
2017-11-01
The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.
Metabolite damage and repair in metabolic engineering design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.
The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less
Enhancing the potential of enantioselective organocatalysis with light
NASA Astrophysics Data System (ADS)
Silvi, Mattia; Melchiorre, Paolo
2018-02-01
Organocatalysis—catalysis mediated by small chiral organic molecules—is a powerful technology for enantioselective synthesis, and has extensive applications in traditional ionic, two-electron-pair reactivity domains. Recently, organocatalysis has been successfully combined with photochemical reactivity to unlock previously inaccessible reaction pathways, thereby creating new synthetic opportunities. Here we describe the historical context, scientific reasoning and landmark discoveries that were essential in expanding the functions of organocatalysis to include one-electron-mediated chemistry and excited-state reactivity.
Zeller, Fabian; Zacharias, Martin
2014-02-11
The accurate calculation of potentials of mean force for ligand-receptor binding is one of the most important applications of molecular simulation techniques. Typically, the separation distance between ligand and receptor is chosen as a reaction coordinate along which a PMF can be calculated with the aid of umbrella sampling (US) techniques. In addition, restraints can be applied on the relative position and orientation of the partner molecules to reduce accessible phase space. An approach combining such phase space reduction with flattening of the free energy landscape and configurational exchanges has been developed, which significantly improves the convergence of PMF calculations in comparison with standard umbrella sampling. The free energy surface along the reaction coordinate is smoothened by iteratively adapting biasing potentials corresponding to previously calculated PMFs. Configurations are allowed to exchange between the umbrella simulation windows via the Hamiltonian replica exchange method. The application to a DNA molecule in complex with a minor groove binding ligand indicates significantly improved convergence and complete reversibility of the sampling along the pathway. The calculated binding free energy is in excellent agreement with experimental results. In contrast, the application of standard US resulted in large differences between PMFs calculated for association and dissociation pathways. The approach could be a useful alternative to standard US for computational studies on biomolecular recognition processes.
Practical approaches to the ESI-MS analysis of catalytic reactions.
Yunker, Lars P E; Stoddard, Rhonda L; McIndoe, J Scott
2014-01-01
Electrospray ionization mass spectrometry (ESI-MS) is a soft ionization technique commonly coupled with liquid or gas chromatography for the identification of compounds in a one-time view of a mixture (for example, the resulting mixture generated by a synthesis). Over the past decade, Scott McIndoe and his research group at the University of Victoria have developed various methodologies to enhance the ability of ESI-MS to continuously monitor catalytic reactions as they proceed. The power, sensitivity and large dynamic range of ESI-MS have allowed for the refinement of several homogenous catalytic mechanisms and could potentially be applied to a wide range of reactions (catalytic or otherwise) for the determination of their mechanistic pathways. In this special feature article, some of the key challenges encountered and the adaptations employed to counter them are briefly reviewed. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin
2017-03-01
Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.
Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.
Glasgow, Jeff E; Asensio, Michael A; Jakobson, Christopher M; Francis, Matthew B; Tullman-Ercek, Danielle
2015-09-18
Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1995-01-01
We report calculations of the minimum energy pathways connecting CH2 + N2 to diazomethane and diazirine, for the rearrangement of diazirine to diazomethane, for the dissociation of diazirine to HCN2+H, and of diazomethane to CH2N+N. The calculations use Complete Active Space Self-Consistent Field (CASSCF) derivative methods to characterize the stationary points and Internally Contracted Configuration Interaction (ICCI) to determine the energetics. The calculations suggest a potential new source of prompt NO from the reaction CH2 with N2 to give diazirine, and subsequent reaction of diazirine with hydrogen abstracters to form doublet HCN2, which leads to HCN+N(S-4) on the previously studied CH+N2 surface. The calculations also predict accurate 0 K heats of formation of 77.7 kcal/mol and 68.0 kcal/mol for diazirine and diazomethane, respectively.
Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang
2016-01-01
To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Parsa, Mehran; Jalilzadeh, Hamoon; Pazoki, Maryam; Ghasemzadeh, Reza; Abduli, MohammadAli
2018-02-01
The potential of Gracilaria gracilis (G. gracilis) and Cladophora glomerata (C. glomerata) macro-algae species harvested from Caspian Sea for biocrude oil production under Hydrothermal Liquefaction (HTL) reaction at 350 °C and 15 min has been investigated. Furthermore, the effect of using recycled aqueous phase as the HTL reaction solvent was studied. The biocrude yield for G. gracilis and C. glomerata was 15.7 and 16.9 wt%, respectively with higher heating value (HHV) of 36.01 and 33.06 MJ/kg. The sources of each existing component in bio-oil were identified by GC-MS based on their suggested reaction pathways. Moreover, after two series of aqueous solution recycling, experiments showed that the bio-oil yield significantly increased compared with the initial condition. This increasing directly relates with recovery of carbon content from the aqueous solution residue. Copyright © 2017. Published by Elsevier Ltd.
Electrically driven cation exchange for in situ fabrication of individual nanostructures
Zhang, Qiubo; Yin, Kuibo; Dong, Hui; ...
2017-04-12
Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. Presently, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu + migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and finalmore » phases, and the standard electrode potentials of the active electrodes. These experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.« less
Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W
2016-01-01
Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses. © 2015 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiev, Marat; Yang, Jie; Adams, Joseph
2007-11-29
Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfermore » of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.« less
Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry
NASA Technical Reports Server (NTRS)
Stiegman, Albert E.; Tyler, David R.
1986-01-01
A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.
Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria
NASA Technical Reports Server (NTRS)
Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.
1993-01-01
The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.
Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less
Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.; ...
2017-10-02
Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less
Kaminskaya, Olga; Shuvalov, Vladimir A; Renger, Gernot
2007-06-01
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized ("O-type" effects) or when it is reduced ("R-type" effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the "O-type" mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an "R-type" mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as Q(C) which interacts with Cyt b559 and is clearly not the Q(B) site. Binding of compounds L to the Q(C) site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the E(m) of HP Cyt b559 with increasing concentration of L (up to 10 K(ox)(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to Q(C) site when HP Cyt b559 is reduced (described by K(red)(L)) induce a conversion of HP Cyt b559 to lower potential redox forms ("R-type" transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the Q(C) site are discussed.
Dissecting Germ Cell Metabolism through Network Modeling.
Whitmore, Leanne S; Ye, Ping
2015-01-01
Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.
Kato, Michiko; Lin, Su-Ju
2014-11-01
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. Copyright © 2014 Elsevier B.V. All rights reserved.
Kato, Michiko; Lin, Su-Ju
2014-01-01
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD+ homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. PMID:25096760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.
The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less
Gianni, Stefano; Dogan, Jakob; Jemth, Per
2014-01-01
The Φ value analysis is a method to analyze the structure of metastable states in reaction pathways. Such a methodology is based on the quantitative analysis of the effect of point mutations on the kinetics and thermodynamics of the probed reaction. The Φ value analysis is routinely used in protein folding studies and is potentially an extremely powerful tool to analyze the mechanism of binding induced folding of intrinsically disordered proteins. In this review we recapitulate the key equations and experimental advices to perform the Φ value analysis in the perspective of the possible caveats arising in intrinsically disordered systems. Finally, we briefly discuss some few examples already available in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Elaine; Kattel, Shyam; Yan, Binhang
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
Assessing the utility of the willingness/prototype model in predicting help-seeking decisions.
Hammer, Joseph H; Vogel, David L
2013-01-01
Prior research on professional psychological help-seeking behavior has operated on the assumption that the decision to seek help is based on intentional and reasoned processes. However, research on the dual-process prototype/willingness model (PWM; Gerrard, Gibbons, Houlihan, Stock, & Pomery, 2008) suggests health-related decisions may also involve social reaction processes that influence one's spontaneous willingness (rather than planned intention) to seek help, given conducive circumstances. The present study used structural equation modeling to evaluate the ability of these 2 information-processing pathways (i.e., the reasoned pathway and the social reaction pathway) to predict help-seeking decisions among 182 college students currently experiencing clinical levels of psychological distress. Results indicated that when both pathways were modeled simultaneously, only the social reaction pathway independently accounted for significant variance in help-seeking decisions. These findings argue for the utility of the PWM framework in the context of professional psychological help seeking and hold implications for future counseling psychology research, prevention, and practice. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Dynamics of NAD-metabolism: everything but constant.
Opitz, Christiane A; Heiland, Ines
2015-12-01
NAD, as well as its phosphorylated form, NADP, are best known as electron carriers and co-substrates of various redox reactions. As such they participate in approximately one quarter of all reactions listed in the reaction database KEGG. In metabolic pathway analysis, the total amount of NAD is usually assumed to be constant. That means that changes in the redox state might be considered, but concentration changes of the NAD moiety are usually neglected. However, a growing number of NAD-consuming reactions have been identified, showing that this assumption does not hold true in general. NAD-consuming reactions are common characteristics of NAD(+)-dependent signalling pathways and include mono- and poly-ADP-ribosylation of proteins, NAD(+)-dependent deacetylation by sirtuins and the formation of messenger molecules such as cyclic ADP-ribose (cADPR) and nicotinic acid (NA)-ADP (NAADP). NAD-consuming reactions are thus involved in major signalling and gene regulation pathways such as DNA-repair or regulation of enzymes central in metabolism. All known NAD(+)-dependent signalling processes include the release of nicotinamide (Nam). Thus cellular NAD pools need to be constantly replenished, mostly by recycling Nam to NAD(+). This process is, among others, regulated by the circadian clock, causing complex dynamic changes in NAD concentration. As disturbances in NAD homoeostasis are associated with a large number of diseases ranging from cancer to diabetes, it is important to better understand the dynamics of NAD metabolism to develop efficient pharmacological invention strategies to target this pathway. © 2015 Authors; published by Portland Press Limited.
Ozyurt, A Sinem; Selby, Thomas L
2008-07-01
This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis. 2008 Wiley-Liss, Inc.
Kim, Hong-Bum; Evans, Iona; Smallwood, Rod; Holcombe, Mike; Qwarnstrom, Eva E
2010-02-01
Activation of the transcription factor NF-kappaB is central to control of immune and inflammatory responses. Cytokine induced activation through the classical or canonical pathway relies on degradation of the inhibitor, IkappaBalpha and regulation by the IKKbeta kinase. In addition, the NF-kappaB is activated through the NF-kappaB-inducing kinase, NIK. Analysis of the IKK/NIK inter-relationship and its impact on NF-kappaB control, were analysed by mathematical modelling, using matrix formalism and stoichiometrically balanced reactions. The analysis considered a range of bio-reactions and core metabolites and their role in relation to kinase activation and in control of specific steps of the NF-kappaB pathway. The model predicts a growth-rate and time-dependent transfer of the primary kinase activity from IKKbeta to NIK. In addition, it suggests that NIK/IKKbeta interdependence is controlled by intermediates of phosphoribosylpyrophosphate (PRPP) within the glycolysis pathway, and thus, identifies a link between specific metabolic events and kinase activation in inflammatory signal transduction. Subsequent in vitro experiments, carried out to validate the impact of IKK/NIK interdependence, confirmed signal amplification at the level of the NF-kappaB/IkappaBalpha complex control in the presence of both kinases. Further, they demonstrate that the induced potentiation is due to synergistic enhancement of relA-dependent activation. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Mao, Longfei; Verwoerd, Wynand S
2013-10-01
Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW⁻¹, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.
Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases
NASA Technical Reports Server (NTRS)
Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.
2001-01-01
Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Walch, Stephen P.
2002-01-01
As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.
Lin, Yu-Tsai; Wang, Hung-Chen; Hsu, Yi-Chiang; Cho, Chung-Lung; Yang, Ming-Yu; Chien, Chih-Yen
2017-06-23
Capsaicin is a potential chemotherapeutic agent for different human cancers. In Southeast China, nasopharyngeal carcinoma (NPC) has the highest incidence of all cancers, but final treatment outcomes are unsatisfactory. However, there is a lack of information regarding the anticancer activity of capsaicin in NPC cells, and its effects on the signaling transduction pathways related to apoptosis and autophagy remain unclear. In the present study, the precise mechanisms by which capsaicin exerts anti-proliferative effects, cell cycle arrest, autophagy and apoptosis were investigated in NPC-TW01 cells. Exposure to capsaicin inhibited cancer cell growth and increased G1 phase cell cycle arrest. Western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to measure capsaicin-induced autophagy via involvement of the class III PI3K/Beclin-1/Bcl-2 signaling pathway. Capsaicin induced autophagy by increasing levels of the autophagy markers LC3-II and Atg5, enhancing p62 and Fap-1 degradation and increasing caspase-3 activity to induce apoptosis, suggesting a correlation of blocking the PI3K/Akt/mTOR pathway with the above-mentioned anticancer activities. Taken together, these data confirm that capsaicin inhibited the growth of human NPC cells and induced autophagy, supporting its potential as a therapeutic agent for cancer.
Al-Bogami, Abdullah S; Saleh, Tamer S; Zayed, Ehab M
2013-09-01
The present paper deal with the multi-component condensation of 8-hydroxy quinoline, aromatic aldehydes, and sulfone derivatives catalyzed by p-toluenesulfonic acid for the synthesis of a series of 4H-pyrano[3,2-h]quinoline derivatives in ethanol under ultrasonic irradiations. We provide a series of quinoline derivatives containing sulfone moiety interesting for biological screening tests. The reactions were carried out under both conventional and ultrasonic irradiation conditions. In general, improvement in rates and yields were observed when reactions were carried out under sonication compared with classical silent conditions. Also, also, sonochemical reaction give different reaction pathway other than silent reaction. These remarkable effects appeared in sonicated reactions can be reasonably interpreted in terms of acoustic cavitation phenomenon. Structures of the products were established on analytical and spectral data. Copyright © 2013 Elsevier B.V. All rights reserved.
Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang
2013-01-01
The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.
Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea
McGlynn, Shawn E.
2017-01-01
Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009
NASA Astrophysics Data System (ADS)
Trinidad Pérez-Rivera, Danilo; Romani, Paul N.; Lopez-Encarnacion, Juan Manuel
2016-10-01
Titan's atmosphere is arguably the atmosphere of greatest interest that we have an abundance of data for from both ground based and spacecraft observations. As we have learned more about Titan's atmospheric composition, the presence of pre-biotic molecules in its atmosphere has generated more and more fascination about the photochemical process and pathways it its atmosphere. Our computational laboratory has been extensively working throughout the past year characterizing nitrile synthesis reactions, making significant progress on the energetics and dynamics of the reactions of .CN with the hydrocarbons acetylene (C2H2), propylene (CH3CCH), and benzene (C6H6), developing a clear picture of the mechanistic aspects through which these three reactions proceed. Specifically, first principles calculations of the reaction profiles and molecular dynamics studies for gas-phase reactions of .CN and C2H2, .CN and CH3CCH, and .CN and C6H6 have been carried out. A very accurate determination of potential energy surfaces of these reactions will allow us to compute the reaction rates which are indispensable for photochemical modeling of Titan's atmosphere.The work at University of Puerto Rico at Cayey was supported by Puerto Rico NASA EPSCoR IDEAS-ER program (2015-2016) and DTPR was sponsored by the Puerto Rico NASA Space Grant Consortium Fellowship. *E-mail: juan.lopez15@upr.edu
Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.
Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing
2018-01-01
The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mapping the patent landscape of synthetic biology for fine chemical production pathways.
Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup
2016-09-01
A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing
2016-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033
Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing
2016-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects.
Yun, J S; Kim, S Y
2015-08-01
The identification of biomarkers for toxicity prediction is crucial for drug development and safety evaluation. The selective and specific biomarkers for antihistamines-induced cardiotoxicity is not well identified yet. In order to evaluate the mechanism of the life-threatening effects caused by antihistamines, we used DNA microarrays to analyze genomic profiles in H9C2 rat cardiomyocytes that were treated with antihistamines. The gene expression profiles from drug-treated cells revealed changes in the integrin signaling pathway, suggesting that cardiac arrhythmias induced by antihistamine treatment may be mediated by changes in integrin-mediated signaling. It has been reported that integrin plays a role in QT prolongation that may induce cardiac arrhythmia. These results indicate that the integrin-mediated signaling pathway induced by antihistamines is involved in various biological mechanisms that lead to cardiac QT prolongation. Therefore, we suggest that genomic profiling of antihistamine-treated cardiomyocytes has the potential to reveal the mechanism of adverse drug reactions, and this signal pathway is applicable to prediction of in vitro cardiotoxicity induced by antihistamines as a biomarker candidate. © The Author(s) 2014.
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon; ...
2017-08-11
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.
Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D
2017-09-19
Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.
Kao, Chi H.J.; Bishop, Karen S.; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M.; Marlow, Gareth J.; Ferguson, Lynnette R.
2016-01-01
Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis. PMID:27006591
Liu, Lin; Shen, Fangzhou; Xin, Changpeng; Wang, Zhuo
2016-01-01
Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions. © 2015 Institute of Botany, Chinese Academy of Sciences.
Li, Chao; Chen, Jingwen; Xie, Hong-Bin; Zhao, Yuanhui; Xia, Deming; Xu, Tong; Li, Xuehua; Qiao, Xianliang
2017-05-02
Tris(2-chloroisopropyl) phosphate (TCPP), a widely used organophosphate flame retardant, has been recognized as an important atmospheric pollutant. It is notable that TCPP has potential for long-range atmospheric transport. However, its atmospheric fate is unknown, restricting its environmental risk assessment. Herein we performed quantum chemical calculations to investigate the atmospheric transformation mechanisms and kinetics of TCPP initiated by ·OH in the presence of O 2 /NO/NO 2 , and the effects of ubiquitous water on these reactions. Results show the H-abstraction pathways are the most favorable for the titled reaction. The calculated gaseous rate constant and lifetime at 298 K are 1.7 × 10 -10 cm 3 molecule -1 s -1 and 1.7 h, respectively. However, when considering atmospheric water, the corresponding lifetime is about 0.5-20.2 days. This study reveals for the first time that water has a negative role in the ·OH-initiated degradation of TCPP by modifying the stabilities of prereactive complexes and transition states via forming hydrogen bonds, which unveils one underlying mechanism for the observed persistence of TCPP in the atmosphere. Water also influences secondary reaction pathways of selected TCPP radicals formed from the primary H-abstraction. These results demonstrate the importance of water in the evaluation of the atmospheric fate of newly synthesized chemicals and emerging pollutants.
Weber, Christian; Brückner, Christine; Weinreb, Sheila; Lehr, Claudia; Essl, Christine; Boles, Eckhard
2012-12-01
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.
Evolution of amino acid metabolism inferred through cladistic analysis.
Cunchillos, Chomin; Lecointre, Guillaume
2003-11-28
Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.
Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur
Ueki, Iori
2010-01-01
Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H2S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions. PMID:20162368
Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor
2015-03-07
A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.
Martinelli, Anna
2014-01-01
The reaction pathway during the formation of silica via a two-component “non-aqueou” sol-gel synthesis is studied by in situ time-resolved Raman spectroscopy. This synthetic route is followed with and without the addition of the protic ionic liquid 1-ethylimidazolium bis(trifluoromethanesulfonyl)imide (C2HImTFSI) in order to investigate its effect on the reaction pathway. We demonstrate that Raman spectroscopy is suitable to discriminate between different silica intermediates, which are produced and consumed at different rates with respect to the point of gelation. We find that half-way to gelation monomers and shorter chains are the most abundant silica species, while the formation of silica rings strongly correlates to the sol-to-gel transition. Thus, curling up of linear chains is here proposed as a plausible mechanism for the formation of small rings. These in turn act as nucleation sites for the condensation of larger rings and thus the formation of the open and polymeric silica network. We find that the protic ionic liquid does not change the reaction pathway per se, but accelerates the cyclization process, intermediated by the faster inclusion of monomeric species. PMID:24743891
Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis.
Knox, John E; Halls, Mathew D; Hratchian, Hrant P; Schlegel, H Bernhard
2006-03-28
Tris(8-hydroxyquinoline)aluminum(III), AlQ3, is used in organic light-emitting diodes (OLEDs) as an electron-transport material and emitting layer. The reaction of AlQ3 with trace H2O has been implicated as a major failure pathway for AlQ3-based OLEDs. Hybrid density functional calculations have been carried out to characterize the hydrolysis of AlQ3. The thermochemical and atomistic details for this important reaction are reported for both the neutral and oxidized AlQ3/AlQ3+ systems. In support of experimental conclusions, the neutral hydrolysis reaction pathway is found to be a thermally activated process, having a classical barrier height of 24.2 kcal mol(-1). First-principles infrared and electronic absorption spectra are compared to further characterize AlQ3 and the hydrolysis pathway product, AlQ2OH. The activation energy for the cationic AlQ3 hydrolysis pathway is found to be 8.5 kcal mol(-1) lower than for the neutral reaction, which is significant since it suggests a role for charge imbalance in promoting chemical failure modes in OLED devices.
Experimental study of decomposition of aqueous nitrosyl thiocyanate.
Rayson, Mark S; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z
2011-08-15
This study has examined the kinetics of the decomposition of nitrosyl thiocyanate (ONSCN) by stopped flow UV-vis spectrophotometry, with the reaction products identified and quantified by infrared spectroscopy, membrane inlet mass spectrometry, ion chromatography, and CN(-) ion selective electrode. The reaction results in the formation of nitric oxide and thiocyanogen, the latter decomposing to sulfate and hydrogen cyanide in aqueous solution. The rate of consumption of ONSCN depends strongly on the concentration of SCN(-) ions and is inhibited by nitric oxide. We have developed a reaction mechanism that comprises three parallel pathways for the decomposition of ONSCN. At high thiocyanate concentrations, two reaction pathways operate including a second order reaction to generate NO and (SCN)(2) and a reversible reaction between ONSCN and SCN(-) producing NO and (SCN)(2)(-), with the rate limiting step corresponding to the consumption of (SCN)(2)(-) by reaction with ONSCN. The third reaction pathway, which becomes significant at low thiocyanate concentrations, involves formation of a previously unreported species, ONOSCN, via a reaction between ONSCN and HOSCN, the latter constituting an intermediate in the hydrolysis of (SCN)(2). ONOSCN contributes to the formation of NO via homolysis of the O-NO bond and subsequent dimerization and hydrolysis of OSCN. Fitting the chemical reactions of the model to the experimental measurements, which covered a wide range of reactant concentrations, afforded estimation of all relevant kinetic parameters and provided an excellent match. The reaction mechanism developed in this contribution may be applied to predict the rates of NO formation from ONSCN during the synthesis of azo dyes, the gassing of explosive emulsions, or nitrosation reactions occurring in the human body. © 2011 American Chemical Society
Wang, Lei; Ren, Ling; Tang, Tingting; Dai, Kerong; Yang, Ke; Hao, Yongqiang
2015-01-01
Foreign body reaction induced by biomaterials is a serious problem in clinical applications. Although 317L-Cu stainless steel (317L-Cu SS) is a new type of implant material with antibacterial ability and osteogenic property, the foreign body reaction level still needs to be assessed due to its Cu2+ releasing property. For this purpose, two macrophage cell lines were selected to detect cellular proliferation, apoptosis, mobility, and the secretions of inflammatory cytokines with the influence of 317L-Cu SS. Our results indicated that 317L-Cu SS had no obvious effect on the proliferation and apoptosis of macrophages; however, it significantly increased cellular migration and TNF-α secretion. Then, C57 mice were used to assess foreign body reaction induced by 317L-Cu SS. We observed significantly enhanced recruitment of inflammatory cells (primarily macrophages) with increased TNF-α secretion and apoptosis level in tissues around the materials in the early stage of implantation. With tissue healing, both inflammation and apoptosis significantly decreased. Further, we discovered that NF-κB pathway and Caspase 3 played important roles in 317L-Cu SS induced inflammation and apoptosis. We concluded that 317L-Cu SS could briefly promote the inflammation and apoptosis of surrounding tissues by regulating the activity of NF-κB pathway and Caspase 3. All these discoveries demonstrated that 317L-Cu SS has a great potential for clinical application. PMID:26604748
The role of amorphous precursors in the crystallization of La and Nd carbonates
NASA Astrophysics Data System (ADS)
Vallina, Beatriz; Rodriguez-Blanco, Juan Diego; Brown, Andrew P.; Blanco, Jesus A.; Benning, Liane G.
2015-07-01
Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion.Crystalline La and Nd carbonates can be formed from poorly-ordered nanoparticulate precursors, termed amorphous lanthanum carbonate (ALC) and amorphous neodymium carbonate (ANC). When reacted in air or in aqueous solutions these precursors show highly variable lifetimes and crystallization pathways. We have characterized these precursors and the crystallization pathways and products with solid-state, spectroscopic and microscopic techniques to explain the differences in crystallization mechanisms between the La and Nd systems. ALC and ANC consist of highly hydrated, 10-20 nm spherical nanoparticles with a general formula of REE2(CO3)3.5H2O (REE = La, Nd). The stabilities differ by ~2 orders of magnitude, with ANC being far more stable than ALC. This difference is due to the Nd3+ ion having a far higher hydration energy compared to the La3+ ion. This, together with temperature and reaction times, leads to clear differences not only in the kinetics and mechanisms of crystallization of the amorphous precursor La- and Nd-carbonate phases but also in the resulting crystallite sizes and morphologies of the end products. All crystalline La and Nd carbonates developed spherulitic morphologies when crystallization occurred from hydrous phases in solution at temperatures above 60 °C (La system) and 95 °C (Nd system). We suggest that spherulitic growth occurs due to a rapid breakdown of the amorphous precursors and a concurrent rapid increase in supersaturation levels in the aqueous solution. The kinetic data show that the crystallization pathway for both La and Nd carbonate systems is dependent on the reaction temperature and the ionic potential of the REE3+ ion. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01497b
Cho, Kangwoo; Hoffmann, Michael R
2014-10-07
This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions.
New challenges for text mining: mapping between text and manually curated pathways
Oda, Kanae; Kim, Jin-Dong; Ohta, Tomoko; Okanohara, Daisuke; Matsuzaki, Takuya; Tateisi, Yuka; Tsujii, Jun'ichi
2008-01-01
Background Associating literature with pathways poses new challenges to the Text Mining (TM) community. There are three main challenges to this task: (1) the identification of the mapping position of a specific entity or reaction in a given pathway, (2) the recognition of the causal relationships among multiple reactions, and (3) the formulation and implementation of required inferences based on biological domain knowledge. Results To address these challenges, we constructed new resources to link the text with a model pathway; they are: the GENIA pathway corpus with event annotation and NF-kB pathway. Through their detailed analysis, we address the untapped resource, ‘bio-inference,’ as well as the differences between text and pathway representation. Here, we show the precise comparisons of their representations and the nine classes of ‘bio-inference’ schemes observed in the pathway corpus. Conclusions We believe that the creation of such rich resources and their detailed analysis is the significant first step for accelerating the research of the automatic construction of pathway from text. PMID:18426550
Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site
Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen
2012-01-01
In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015
How Living Things Obtain Energy: A Simpler Explanation.
ERIC Educational Resources Information Center
Igelsrud, Donald E.
1989-01-01
Examines five basic reactions which describe the biochemical pathways for living things obtaining energy. Shows the reactions that occur in respiration after glycolysis, the dehydrogenation reaction, decarboxylation, and two kinds of make-ready reactions which prepare molecules for further dehydrogenation and decarboxylation. Diagrams are…
Sustainable chemical synthetic activity involving alternate energy input, and greener reaction medium in aqueous or solvent-free conditions will be summarized for heterocyclic compounds, coupling reactions, and a variety of name reactions; these reactions are catalyzed by basic w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mebel, Alexander M.; Georgievskii, Yuri; Jasper, Ahren W.
2016-01-01
Unraveling the mechanisms for growth of polycyclic aromatic hydrocarbons (PAHs) requires accurate temperature- and pressure-dependent rate coefficients for a great variety of feasible pathways. Even the pathways for the formation of the simplest PAHs, indene and naphthalene, are fairly complex. These pathways provide important prototypes for modeling larger PAH growth. In this work we employ the ab initio RRKM theory-based master equation approach to predict the rate constants involved in the formation of indene and its conversion to naphthalene. The reactions eventually leading to indene involve C9Hx (x = 8–11) potential energy surfaces (PESs) and include C6H5 + C3H4 (allenemore » and propyne), C6H6 + C3H3, benzyl + C2H2, C6H5 + C3H6, C6H6 + C3H5 and C6H5 + C3H5. These predictions allow us to make a number of valuable observations on the role of various mechanisms. For instance, we demonstrate that reactions which can significantly contribute to the formation of indene include phenyl + allene and H-assisted isomerization to indene of its major product, 3-phenylpropyne, benzyl + acetylene, and the reactions of the phenyl radical with propene and the allyl radical, both proceeding via the 3-phenylpropene intermediate. 3-Phenylpropene can be activated to a 1-phenylallyl radical, which in turn rapidly decomposes to indene. Next, indene can be converted to benzofulvene or naphthalene under typical combustion conditions, via its activation by H atom abstraction and methyl substitution on the five-membered ring followed by isomerization and decomposition of the resulting 1-methylindenyl radical, C10H9 → C10H8 + H. Alternatively, the same region of the C10H9 PES can be accessed through the reaction of benzyl with propargyl, C7H7 + C3H3 → C10H10 → C10H9 + H, which therefore can also contribute to the formation of benzofulvene or naphthalene. Benzofulvene easily transforms to naphthalene by H-assisted isomerization. An analysis of the effect of pressure on the reaction outcome and relative product yields is given, and modified Arrhenius fits of the rate constants are reported for the majority of the considered reactions. Ultimately, the implementation of such expressions in detailed kinetic models will help quantify the role of these reactions for PAH growth in various environments.« less
Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis.
Wei, Xi; Gilevska, Tetyana; Wetzig, Felix; Dorer, Conrad; Richnow, Hans-Hermann; Vogt, Carsten
2016-03-01
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masunov, Artëm E.; Wait, Elizabeth E.; Atlanov, Arseniy A.
In oxy-fuel combustion, the pure oxygen (O 2), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2O) are free from pollution by nitrogen oxides. Moreover, high pressures results in the near-liquid density of CO 2 at supercritical state (sCO 2). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. In order to assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of carbon dioxide melocule. All transitionmore » states, reactant and product complexes are reported for three reactions: H 2CO+HO 2→HCO+H 2O 2 (R1), 2HO 2→H 2O 2+O 2 (R2), and CO+OH→CO 2+H (R3). In the reaction R3, covalent binding of CO 2 to OH radical and then CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to bimolecular OH+CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol, and is expected to accelerate the reaction. This is the first report of autocatalytic effect in combustion. In case of hydroperoxyl self-reaction 2HO 2→H 2O 2+O 2 the intermediates, containing covalent bonds to CO 2 were found not to be competitive. However, the spectator CO 2 molecule is able to stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates was also discovered in H 2CO+HO 2→HCO+H 2O 2 reaction, but these specie lead to substantially higher activation barriers which makes them unlikely to play role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilized transition state and reduces reaction barrier. Lastly, these results indicate that CO 2 environment is likely to have catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2.« less
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
Masunov, Artëm E.; Wait, Elizabeth E.; Atlanov, Arseniy A.; ...
2017-05-03
In oxy-fuel combustion, the pure oxygen (O 2), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2O) are free from pollution by nitrogen oxides. Moreover, high pressures results in the near-liquid density of CO 2 at supercritical state (sCO 2). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. In order to assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of carbon dioxide melocule. All transitionmore » states, reactant and product complexes are reported for three reactions: H 2CO+HO 2→HCO+H 2O 2 (R1), 2HO 2→H 2O 2+O 2 (R2), and CO+OH→CO 2+H (R3). In the reaction R3, covalent binding of CO 2 to OH radical and then CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to bimolecular OH+CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol, and is expected to accelerate the reaction. This is the first report of autocatalytic effect in combustion. In case of hydroperoxyl self-reaction 2HO 2→H 2O 2+O 2 the intermediates, containing covalent bonds to CO 2 were found not to be competitive. However, the spectator CO 2 molecule is able to stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates was also discovered in H 2CO+HO 2→HCO+H 2O 2 reaction, but these specie lead to substantially higher activation barriers which makes them unlikely to play role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilized transition state and reduces reaction barrier. Lastly, these results indicate that CO 2 environment is likely to have catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2.« less
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics.
Masunov, Artëm E; Wait, Elizabeth E; Atlanov, Arseniy A; Vasu, Subith S
2017-05-18
In oxy-fuel combustion, the pure oxygen (O 2 ), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2 O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO 2 at supercritical state (sCO 2 ). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H 2 CO + HO 2 → HCO + H 2 O 2 (R1), 2HO 2 → H 2 O 2 + O 2 (R2), and CO + OH → CO 2 + H (R3). In reaction R3, covalent binding of CO 2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO 2 → H 2 O 2 + O 2 the intermediates, containing covalent bonds to CO 2 are found not to be competitive. However, the spectator CO 2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H 2 CO + HO 2 → HCO + H 2 O 2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO 2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2 .
Hemoglobin as a nitrite anhydrase: modeling methemoglobin-mediated N2O3 formation.
Hopmann, Kathrin H; Cardey, Bruno; Gladwin, Mark T; Kim-Shapiro, Daniel B; Ghosh, Abhik
2011-05-27
Nitrite has recently been recognized as a storage form of NO in blood and as playing a key role in hypoxic vasodilation. The nitrite ion is readily reduced to NO by hemoglobin in red blood cells, which, as it happens, also presents a conundrum. Given NO's enormous affinity for ferrous heme, a key question concerns how it escapes capture by hemoglobin as it diffuses out of the red cells and to the endothelium, where vasodilation takes place. Dinitrogen trioxide (N(2)O(3)) has been proposed as a vehicle that transports NO to the endothelium, where it dissociates to NO and NO(2). Although N(2)O(3) formation might be readily explained by the reaction Hb-Fe(3+)+NO(2)(-)+NO⇌Hb-Fe(2+)+N(2)O(3), the exact manner in which methemoglobin (Hb-Fe(3+)), nitrite and NO interact with one another is unclear. Both an "Hb-Fe(3+)-NO(2)(-)+NO" pathway and an "Hb-Fe(3+)-NO+NO(2)(-) " pathway have been proposed. Neither pathway has been established experimentally. Nor has there been any attempt until now to theoretically model N(2)O(3) formation, the so-called nitrite anhydrase reaction. Both pathways have been examined here in a detailed density functional theory (DFT, B3LYP/TZP) study and both have been found to be feasible based on energetics criteria. Modeling the "Hb-Fe(3+)-NO(2)(-)+NO" pathway proved complex. Not only are multiple linkage-isomeric (N- and O-coordinated) structures conceivable for methemoglobin-nitrite, multiple isomeric forms are also possible for N(2)O(3) (the lowest-energy state has an N-N-bonded nitronitrosyl structure, O(2)N-NO). We considered multiple spin states of methemoglobin-nitrite as well as ferromagnetic and antiferromagnetic coupling of the Fe(3+) and NO spins. Together, the isomerism and spin variables result in a diabolically complex combinatorial space of reaction pathways. Fortunately, transition states could be successfully calculated for the vast majority of these reaction channels, both M(S)=0 and M(S)=1. For a six-coordinate Fe(3+)-O-nitrito starting geometry, which is plausible for methemoglobin-nitrite, we found that N(2)O(3) formation entails barriers of about 17-20 kcal mol(-1) , which is reasonable for a physiologically relevant reaction. For the "Hb-Fe(3+) -NO+NO(2) (-) " pathway, which was also found to be energetically reasonable, our calculations indicate a two-step mechanism. The first step involves transfer of an electron from NO(2)(-) to the Fe(3+)-heme-NO center ({FeNO}(6)) , resulting in formation of nitrogen dioxide and an Fe(2+)-heme-NO center ({FeNO}(7)). Subsequent formation of N(2)O(3) entails a barrier of only 8.1 kcal mol(-1) . From an energetics point of view, the nitrite anhydrase reaction thus is a reasonable proposition. Although it is tempting to interpret our results as favoring the "{FeNO}(6)+NO(2)(-) " pathway over the "Fe(3+)-nitrite+NO" pathway, both pathways should be considered energetically reasonable for a biological reaction and it seems inadvisable to favor a unique reaction channel based solely on quantum chemical modeling. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai; Qiao, Ruimin; Wang, Guofeng; Yang, Wanli; Feygenson, Mikhail; Su, Dong; Teng, Xiaowei
2016-01-01
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn5O8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge–discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn5O8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn2+/Mn4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn5O8. PMID:27845345
The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.
Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J
2014-04-01
This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost, and environmental friendliness. However, their applications have been limited by a narrow potential window (~1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here, we report the formation of layered Mn 5O 8 pseudocapacitor electrode material with a well ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. Furthermore,more » the interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+/Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5O 8.« less
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai; ...
2016-11-15
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost, and environmental friendliness. However, their applications have been limited by a narrow potential window (~1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here, we report the formation of layered Mn 5O 8 pseudocapacitor electrode material with a well ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. Furthermore,more » the interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+/Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5O 8.« less
FragariaCyc: A Metabolic Pathway Database for Woodland Strawberry Fragaria vesca
Naithani, Sushma; Partipilo, Christina M.; Raja, Rajani; Elser, Justin L.; Jaiswal, Pankaj
2016-01-01
FragariaCyc is a strawberry-specific cellular metabolic network based on the annotated genome sequence of Fragaria vesca L. ssp. vesca, accession Hawaii 4. It was built on the Pathway-Tools platform using MetaCyc as the reference. The experimental evidences from published literature were used for supporting/editing existing entities and for the addition of new pathways, enzymes, reactions, compounds, and small molecules in the database. To date, FragariaCyc comprises 66 super-pathways, 488 unique pathways, 2348 metabolic reactions, 3507 enzymes, and 2134 compounds. In addition to searching and browsing FragariaCyc, researchers can compare pathways across various plant metabolic networks and analyze their data using Omics Viewer tool. We view FragariaCyc as a resource for the community of researchers working with strawberry and related fruit crops. It can help understanding the regulation of overall metabolism of strawberry plant during development and in response to diseases and abiotic stresses. FragariaCyc is available online at http://pathways.cgrb.oregonstate.edu. PMID:26973684
KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats.
Wrzodek, Clemens; Dräger, Andreas; Zell, Andreas
2011-08-15
The KEGG PATHWAY database provides a widely used service for metabolic and nonmetabolic pathways. It contains manually drawn pathway maps with information about the genes, reactions and relations contained therein. To store these pathways, KEGG uses KGML, a proprietary XML-format. Parsers and translators are needed to process the pathway maps for usage in other applications and algorithms. We have developed KEGGtranslator, an easy-to-use stand-alone application that can visualize and convert KGML formatted XML-files into multiple output formats. Unlike other translators, KEGGtranslator supports a plethora of output formats, is able to augment the information in translated documents (e.g. MIRIAM annotations) beyond the scope of the KGML document, and amends missing components to fragmentary reactions within the pathway to allow simulations on those. KEGGtranslator is freely available as a Java(™) Web Start application and for download at http://www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/. KGML files can be downloaded from within the application. clemens.wrzodek@uni-tuebingen.de Supplementary data are available at Bioinformatics online.
Tsukatani, Yusuke; Yamamoto, Haruki; Mizoguchi, Tadashi; Fujita, Yuichi; Tamiaki, Hitoshi
2013-10-01
Heliobacteria have the simplest photosynthetic apparatus, i.e., a type-I reaction center lacking a peripheral light-harvesting complex. Bacteriochlorophyll (BChl) g molecules are bound to the reaction center complex and work both as special-pair and antenna pigments. The C8-ethylidene group formation for BChl g is the last missing link in biosynthetic pathways for bacterial special-pair pigments, which include BChls a and b as well. Here, we report that chlorophyllide a oxidoreductase (COR) of Heliobacterium modesticaldum catalyzes the C8-ethylidene formation from 8-vinyl-chlorophyllide a, producing bacteriochlorophyllide g, the direct precursor for BChl g without the farnesyl tail. The finding led to plausible biosynthetic pathways for 8(1)-hydroxy-chlorophyll a, a primary electron acceptor from the special pair in heliobacterial reaction centers. Proposed catalytic mechanisms on hydrogenation reaction of the ethylidene synthase-type CORs are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Suleimanov, Yury V; Green, William H
2015-09-08
We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.
Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals
NASA Astrophysics Data System (ADS)
Tysoe, Wilfred T.
The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.
Ab initio study on the 1:2 reaction of CO 2 with dimethylamine
NASA Astrophysics Data System (ADS)
Jamróz, MichałH.; Dobrowolski, Jan Cz.; Borowiak, Marek A.
1997-02-01
The reaction between CO 2 and the dimethylamine molecule in the presence of a second dimethylamine molecule is modeled by the ab initio RHF/3-21G method. Starting from the most stable 1:2 complex, the most effective reaction pathway turned out to be proton transfer between amine molecules followed by immediate proton transfer from one of the amine molecules to the CO 2 moiety. The activation barrier for this pathway (9.54 kcal mol -1 with respect to the 1:2 complex) is within the range of activation energy values found in kinetic studies for similar reactions with different hydroxylamines (from 9.2 to 13.0 kcal mol -1). The reaction product is the cyclic hydrogen bonded complex of dimethylcarbamic acid with dimethylamine.
[Mechanisms of signaling associated with reactive nitrogen and oxygen in apoptosis].
Piłat, Justyna; Ługowski, Mateusz; Saczko, Jolanta; Choromańska, Anna; Chwiłkowska, Agnieszka; Banaś, Teresa; Kulbacka, Julita
2016-05-01
The knowledge of apoptotic mechanisms is essential in many biologic aspects related to both normal and neoplastic cells. Cell death by apoptosis is a very desirable way to eliminate unwanted cells: prevents release of the cellular content, which, in contrast to necrosis, provides no activation of inflammatory reactions. Apoptosis is a multistep process in where an extremely important role is played by caspases. Functions of caspases and their modifications are fundamental to understanding the signaling pathways responsible for regulation of apoptosis. These enzymes belong to a family of cysteine proteases that have the potential to destroy the enzymatic and structural proteins, and in the final stages of apoptosis, to lead to the disintegration of the cell. Apoptosis can be modulated by certain signaling pathway. © 2016 MEDPRESS.
Investigations into Chemical Hydrogen Storage and the anti-Markovnikov Hydroamination of Alkenes
NASA Astrophysics Data System (ADS)
St. John, Anthony J.
The known carbon-boron-nitrogen (CBN) material ethylenediamine bisborane (EDBB) has been prepared and tested as a potential hydrogen storage material. Dehydrogenation of EDBB was achieved using the (t BuPOCOP)Ir(H)2 (t BuPOCOP = 2,6-bis(OPtBu2)C 6H3) catalyst. This reaction results in the release of two equivalents of hydrogen per molecule of EDBB. The product of this reaction is an insoluble, likely oligomeric, species. Heating the reaction mixture does not result in the release of additional equivalents of hydrogen. A new CBN material, 1,2-B,N-cyclohexane, was targeted as a potential hydrogen storage material. The enthalpy of dehydrogenation of 1,2-B,N-cyclohexane to 1,2-dihydro-1,2-azaborine was calculated to be 23.5 kcal/mol at 298 K using the B3LYP basis set. Ultimately, our collaborators at the University of Oregon prepared 1,2-B,N-cyclohexane. This molecule is a stable solid and undergoes thermal dehydrogenation of the B-N bond at 150 °C. The dehydrogenation of a variety of cyclic CBN materials was studied with the ( tBuPOCOP)Ir(H)2 catalyst. A number of cobalt-pincer complexes were tested as ammonia borane (AB) dehydrogenation catalysts. (PhPSiNSiP)CoCl (PhPSiNSiP = (N(SiMe2CH2PPh 2)2) was found to be a very active precatalyst for AB dehydrogenation, releasing 1 equivalent of hydrogen at 2.0 mol % catalyst loading within 5 minutes. The product of this reaction was characterized as cyclopentaborazane. The catalyst lifetime is limited and the identity of the active species remains unknown. A novel [(tBuPOCOP)Co] 2Hg complex was synthesized by reaction of (t BuPOCOP)CoI with Na/Hg. This complex was fully characterized by 1H NMR spectroscopy, elemental analysis, and X-ray crystallography. A new catalytic pathway for the anti-Markovnikov hydroamination of alkenes is proposed. The individual steps of this pathway were studied with the [(MTPA)Rh(propene)][BPh 4] (MTPA = tris((6-methyl-2-pyridyl)methyl)amine) complex. Protonation of this complex with anilinium triflate results in the formation of the [(MTPA)Rh( n-propyl)(OTf)][BPh4] complex. This was confirmed by 1H NMR spectroscopy and X-ray crystallography. The [(MTPA)Rh( n-propyl)(OTf)][BPh4] complex undergoes decomposition likely via a beta-hydride elimination pathway to give free propene and a [(MTPA)Rh(H)] complex. [(MTPA)Rh(Me)(I)][BPh4] was prepared and reacted with a variety of nucleophiles such as diethylamine and sodium anilide. When [(MTPA)Rh(Me)(I)][BPh4] was heated at 100 °C in the presence of I2, free MeI was observed.
A toolbox model of evolution of metabolic pathways on networks of arbitrary topology.
Pang, Tin Yau; Maslov, Sergei
2011-05-01
In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal" network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of "small-world" topology, real-life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in regulatory networks.
Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K.; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya
2015-01-01
Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells. PMID:26056725
Electrochemical models for the radical annihilation reactions in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Armstrong, Neal R.; Anderson, Jeffrey D.; Lee, Paul A.; McDonald, Erin; Wightman, R. M.; Hall, Hank K.; Hopkins, Tracy; Padias, Anne; Thayumanavan, Sankaran; Barlow, Stephen; Marder, Seth R.
1998-12-01
Bilayer organic light emitting diodes (OLEDs), based upon vacuum deposited molecules, or single layer OLEDs, based upon spin-cast polymeric materials, doped with these same molecules, produce light from emissive states of the lumophores which are created through annihilation reactions of radical species, which can be modeled through solution electrochemistry. Difference seen in solution reduction and oxidation potentials of molecular components of OLEDs are a lower limit estimate to the differences in energy of these same radical species in the condensed phase environmental. The light emitted from an aluminum quinolate (Alq3)/triarylamine (TPD)-based OLED, or an Alq3/PVK single layers OLED, can be reproduce from solution cross reactions of Alq3/TPD+. The efficiency of this process increases as the oxidation potential of the TPD increases, due to added substituents. Radical cations and anions of solubilized version of quinacridone dopants (DIQA) which have been used to enhance efficiencies in these OLEDs, are shown to be electrochemically more stable than Alq3 and Alq3, and DIQA radical annihilation reactions produce the same emissive state as in the quinacridone-doped OLEDs. Electrochemical studies demonstrate the ways in which other dopants might enhance the efficiency and shift the color output of OLEDs, across the entire visible and near-IR spectrum. Chemical degradation pathways of these same molecular components, which they may undergo during OLED operation, are also revealed by these electrochemical studies.
Ahmad, Gulraiz; Rasool, Nasir; Ikram, Hafiz Mansoor; Gul Khan, Samreen; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Al-Zahrani, Eman; Ali Rana, Usman; Akhtar, Muhammad Nadeem; Alitheen, Noorjahan Banu
2017-01-27
The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a - 2i , 4a - 4i . In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine ( 1 ) directly or via N -[5-bromo-2-methylpyridine-3-yl]acetamide ( 3 ) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a - 2i and 4a - 4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome
Milacic, Marija; Haw, Robin; Rothfels, Karen; Wu, Guanming; Croft, David; Hermjakob, Henning; D’Eustachio, Peter; Stein, Lincoln
2012-01-01
Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics. PMID:24213504
Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction
2015-01-01
A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation. PMID:25853669
De La Vega-Beltran, Jose Luis; Sánchez-Cárdenas, Claudia; Krapf, Darío; Hernandez-González, Enrique O.; Wertheimer, Eva; Treviño, Claudia L.; Visconti, Pablo E.; Darszon, Alberto
2012-01-01
Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pHi) and Ca2+ ([Ca2+]i), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K+ ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K+ or by addition of solubilized zona pellucida (sZP). Moreover, K+ and sZP were also able to increase [Ca2+]i in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K+ concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca2+]i. Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction. PMID:23095755
Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.
Bolleddula, Jayaprakasam; DeMent, Kevin; Driscoll, James P; Worboys, Philip; Brassil, Patrick J; Bourdet, David L
2014-08-01
Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.
Alternative Pathway of Metronidazole Activation in Trichomonas vaginalis Hydrogenosomes
Hrdý, Ivan; Cammack, Richard; Stopka, Pavel; Kulda, Jaroslav; Tachezy, Jan
2005-01-01
Metronidazole and related 5-nitroimidazoles are the only available drugs in the treatment of human urogenital trichomoniasis caused by the protozoan parasite Trichomonas vaginalis. The drugs are activated to cytotoxic anion radicals by their reduction within the hydrogenosomes. It has been established that electrons required for metronidazole activation are released from pyruvate by the activity of pyruvate:ferredoxin oxidoreductase and transferred to the drug by a low-redox-potential carrier, ferredoxin. Here we describe a novel pathway involved in the drug activation within the hydrogenosome. The source of electrons is malate, another major hydrogenosomal substrate, which is oxidatively decarboxylated to pyruvate and CO2 by NAD-dependent malic enzyme. The electrons released during this reaction are transferred from NADH to ferredoxin by NADH dehydrogenase homologous to the catalytic module of mitochondrial complex I, which uses ferredoxin as electron acceptor. Trichomonads acquire high-level metronidazole resistance only after both pyruvate- and malate-dependent pathways of metronidazole activation are eliminated from the hydrogenosomes. PMID:16304169
Toward understanding the roaming mechanism in H + MgH → Mg + HH reaction
Mauguiere, Frederic A. L.; Collins, Peter; Stamatiadis, Stamatis; ...
2016-02-26
The roaming mechanism in the reaction H + MgH →Mg + HH is investigated by classical and quantum dynamics employing an accurate ab initio threedimensional ground electronic state potential energy surface. The reaction dynamics are explored by running trajectories initialized on a four-dimensional dividing surface anchored on three-dimensional normally hyperbolic invariant manifold associated with a family of unstable orbiting periodic orbits in the entrance channel of the reaction (H + MgH). By locating periodic orbits localized in the HMgH well or involving H orbiting around the MgH diatom, and following their continuation with the total energy, regions in phase spacemore » where reactive or nonreactive trajectories may be trapped are found. In this way roaming reaction pathways are deduced in phase space. Patterns similar to periodic orbits projected into configuration space are found for the quantum bound and resonance eigenstates. Roaming is attributed to the capture of the trajectories in the neighborhood of certain periodic orbits. As a result, the complex forming trajectories in the HMgH well can either return to the radical channel or “roam” to the MgHH minimum from where the molecule may react.« less
The HNC/HCN ratio in star-forming regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graninger, Dawn M.; Öberg, Karin I.; Herbst, Eric
2014-05-20
HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in staticmore » models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitatively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.« less
Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A
2013-02-21
A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.
Trans-methylation reactions in plants: focus on the activated methyl cycle.
Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa
2018-02-01
Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.
Inactivation of Laccase by the Attack of As (III) Reaction in Water.
Hu, Jinyuan; Lu, Kun; Dong, Shipeng; Huang, Qingguo; Mao, Liang
2018-03-06
Laccase is a multicopper oxidase containing four coppers as reaction sites, including one type 1, one type 2, and two type 3. We here provide the first experimental data showing that As (III) can be effectively removed from water and transformed to As (V) through reactions mediated by laccase with the presence of oxygen. To this end, the As (III) removal, As (V) yields, total protein, active laccase, and copper concentrations in the aqueous phase were determined, respectively. Additionally, electron paramagnetic resonance spectra and UV-vis spectra were applied to probe possible structural changes of the laccase during the reaction. The data offer the first evidence that laccase can be inactivated by As (III) attack thus leading to the release of type 2 copper. The released copper has no reactivity with the As (III). These findings provide new ideas into a significant pathway likely to master the environmental transformation of arsenite, and advance the understanding of laccase inactivation mechanisms, thus providing a foundation for optimization of enzyme-based processes and potential development for removal and remediation of arsenite contamination in the environment.
Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus
2016-01-01
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus
2016-01-01
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074
Faries, Kaitlyn M.; Kressel, Lucas L.; Wander, Marc J.; Holten, Dewey; Laible, Philip D.; Kirmaier, Christine; Hanson, Deborah K.
2012-01-01
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization. PMID:22247556
Exploring reaction pathways in the hydrothermal growth of phase-pure bismuth ferrites
NASA Astrophysics Data System (ADS)
Goldman, Abby R.; Fredricks, Jeremy L.; Estroff, Lara A.
2017-06-01
Phase-pure bismuth ferrites (BiFeO3 and Bi2Fe4O9) are grown using hydrothermal synthesis. In addition to varying the KOH, bismuth, and iron salt concentrations to tune which crystalline phases are formed, we identified that a 48 h, pre-furnace, room temperature reaction is critical for the formation of phase-pure BiFeO3. To understand the reaction pathways leading to the different bismuth ferrite phases, we investigate the changes in composition of the intermediate products as a function of reagent concentrations and room temperature reaction times. During the syntheses that included a room temperature reaction, Bi25FeO40 is formed in the intermediate products, and BiFeO3 is the majority phase of the final products. The BiFeO3 crystals grown using this method are clusters of faceted subunits. These results indicate that forming Bi25FeO40 is a productive route to the formation of BiFeO3. Bi2Fe4O9 is formed via an alternate reaction pathway that proceeded via an amorphous precursor. This improved understanding of how hydrothermal synthesis can be used to control the phase-purity and morphology of bismuth ferrites opens doors to explore the multiferroic properties of BiFeO3 with complex morphologies.
Perez-Benito, Joaquin F; Ferrando, Jordi
2014-12-26
The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.
Olivella, Santiago; Solé, Albert; Lledó, Agustí; Ji, Yining; Verdaguer, Xavier; Suau, Rafael; Riera, Antoni
2008-12-17
The intermolecular Pauson-Khand reaction (PKR), a carbonylative cycloaddition between an alkyne and an alkene, is a convenient method to prepare cyclopentenones. Using norbornadiene as alkene, a myriad of tricyclo[5.2.1.0(2,6)]deca-4,8-dien-3-ones 1 can be easily prepared. The mechanism of the photochemical rearrangement of these adducts 1 into tricyclo[5.2.1.0(2,6)]deca-3,8-dien-10-ones 2 has been studied. The ground state (S(0)) and the three lowest excited states ((3)(pi pi*), (1)(n pi*), and (3)(n pi*)) potential energy surfaces (PESs) concerning the prototypical rearrangement of 1a (the cycloadduct of the PK carbonylative cycloaddition of norbornadiene and ethyne) to 2a have been thoroughly explored by means of CASSCF and CASPT2 calculations. From this study, two possible nonadiabatic pathways for the photochemical rearrangement arise: one starting on the (3)(pi pi*) PES and the other on the (1)(n pi*) PES. Both involve initial C-C gamma-bond cleavage of the enone, which leads to the formation of a bis-allyl or an allyl-butadienyloxyl diradical, respectively, that then decays to the S(0) PES through a (3)(pi pi*)/S(0) surface crossing or a (1)(n pi*)/S(0) conical intersection, each one lying in the vicinity of the corresponding diradical minimum. Once on the S(0) PES, the ring-closure to 2a occurs with virtually no energy barrier. The viability of both pathways was experimentally studied by means of triplet sensitization and quenching studies on the photorearrangement of the substituted Pauson-Khand cycloadduct 1b (R = TMS, R' = H) to 2b. Using high concentrations of either piperylene as a triplet quencher, or benzophenone as a triplet sensitizer, the reaction rate significantly slowed down. A Stern-Volmer type plot of product 2b concentration vs triplet quencher concentration showed an excellent linear correlation, thus indicating that only one excited state is involved in the photorearrangement. We conclude that, though there is a nonadiabatic pathway starting on the (1)(n pi*) PES, the reaction product is formed through the (3)(pi pi*) state because the energy barrier involved in the initial C-C gamma-bond cleavage of the enone is much lower in the (3)(pi pi*) PES than in the (1)(n pi*) PES.
Fragmentation Pathways of Lithiated Hexose Monosaccharides
NASA Astrophysics Data System (ADS)
Abutokaikah, Maha T.; Frye, Joseph W.; Tschampel, John; Rabus, Jordan M.; Bythell, Benjamin J.
2018-05-01
We characterize the primary fragmentation reactions of three isomeric lithiated D-hexose sugars (glucose, galactose, and mannose) utilizing tandem mass spectrometry, regiospecific labeling, and theory. We provide evidence that these three isomers populate similar fragmentation pathways to produce the abundant cross-ring cleavage peaks (0,2A1 and 0,3A1). These pathways are highly consistent with the prior literature (Hofmeister et al. J. Am. Chem. Soc. 113, 5964-5970, 1991, Bythell et al. J. Am. Soc. Mass Spectrom. 28, 688-703, 2017, Rabus et al. Phys. Chem. Chem. Phys. 19, 25643-25652, 2017) and the present labeling data. However, the structure-specific energetics and rate-determining steps of these reactions differ as a function of precursor sugar and anomeric configuration. The lowest energy water loss pathways involve loss of the anomeric oxygen to furnish B1 ions. For glucose and galactose, the lithiated α-anomers generate ketone structures at C2 in a concerted reaction involving a 1,2-migration of the C2-H to the anomeric carbon (C1). In contrast, the β-anomers are predicted to form 1,3-anhydroglucose/galactose B1 ion structures. Initiation of the water loss reactions from each anomeric configuration requires distinct reactive conformers, resulting in different product ion structures. Inversion of the stereochemistry at C2 has marked consequences. Both lithiated mannose forms expel water to form 1,2-anhydromannose B1 ions with the newly formed epoxide group above the ring. Additionally, provided water loss is not instantaneous, the α-anomer can also isomerize to generate a ketone structure at C2 in a concerted reaction involving a 1,2-migration of the C2-H to C1. This product is indistinguishable to that from α-glucose. The energetics and interplay of these pathways are discussed. [Figure not available: see fulltext.
Igamberdiev, Abir U; Kleczkowski, Leszek A
2018-01-01
Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.
Balaji, Sayee Prasaad; Gangarapu, Satesh; Ramdin, Mahinder; Torres-Knoop, Ariana; Zuilhof, Han; Goetheer, Earl L V; Dubbeldam, David; Vlugt, Thijs J H
2015-06-09
Molecular simulations were used to compute the equilibrium concentrations of the different species in CO2/monoethanolamine solutions for different CO2 loadings. Simulations were performed in the Reaction Ensemble using the continuous fractional component Monte Carlo method at temperatures of 293, 333, and 353 K. The resulting computed equilibrium concentrations are in excellent agreement with experimental data. The effect of different reaction pathways was investigated. For a complete understanding of the equilibrium speciation, it is essential to take all elementary reactions into account because considering only the overall reaction of CO2 with MEA is insufficient. The effects of electrostatics and intermolecular van der Waals interactions were also studied, clearly showing that solvation of reactants and products is essential for the reaction. The Reaction Ensemble Monte Carlo using the continuous fractional component method opens the possibility of investigating the effects of the solvent on CO2 chemisorption by eliminating the need to study different reaction pathways and concentrate only on the thermodynamics of the system.
Modeling chemical reactions for drug design.
Gasteiger, Johann
2007-01-01
Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.
Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1
NASA Astrophysics Data System (ADS)
Zimnicka, Magdalena; Danikiewicz, Witold
2015-07-01
Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.
Wang, Da-Wei; Li, Feng; Yin, Li-Chang; Lu, Xu; Chen, Zhi-Gang; Gentle, Ian R; Lu, Gao Qing; Cheng, Hui-Ming
2012-04-23
A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria
NASA Technical Reports Server (NTRS)
Fischer, U.
1985-01-01
Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.
Pan, Xiao-Liang; Cui, Feng-Chao; Liu, Jing-Yao
2011-06-23
Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the methylation of 6-mercaptopurine catalyzed by thiopurine S-methyltransferase. Several setups with different tautomeric forms and orientations of the substrate were considered. It is found that, with the orientation in chain A of the X-ray structure, the substrate can form an ideal near-attack configuration for the methylation reaction, which may take place after the deprotonation of the substrate by the conserved residue Asp23 through a water chain. The potential of mean force (PMF) of the methyl-transfer step for the most favorable pathway is 19.6 kcal/mol, which is in good agreement with the available experimental rate constant data.
Exploring reaction pathways for O-GlcNAc transferase catalysis. A string method study.
Kumari, Manju; Kozmon, Stanislav; Kulhánek, Petr; Štepán, Jakub; Tvaroška, Igor; Koča, Jaroslav
2015-03-26
The inverting O-GlcNAc glycosyltransferase (OGT) is an important post-translation enzyme, which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to the hydroxyl group of the Ser/Thr of cytoplasmic, nuclear, and mitochondrial proteins. In the past, three different catalytic bases were proposed for the reaction: His498, α-phosphate, and Asp554. In this study, we used hybrid quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello molecular dynamics to investigate reaction paths using α-phosphate and Asp554 as the catalytic bases. The string method was used to calculate the free-energy reaction profiles of the tested mechanisms. During the investigations, an additional mechanism was observed. In this mechanism, a proton is transferred to α-phosphate via a water molecule. Our calculations show that the mechanism with α-phosphate acting as the base is favorable. This reaction has a rate-limiting free-energy barrier of 23.5 kcal/mol, whereas reactions utilizing Asp554 and water-assisted α-phosphate have barriers of 41.7 and 40.9 kcal/mol, respectively. Our simulations provide a new insight into the catalysis of OGT and may thus guide rational drug design of transition-state analogue inhibitors with potential therapeutic use.
Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study
NASA Astrophysics Data System (ADS)
Pelevkin, Alexey V.; Sharipov, Alexander S.
2018-05-01
Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the + H2 and + H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions + H2 and + H2O occur with small activation barriers and, primarily, lead to the formation of N2H + H and N2H + OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the + H2 and + H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T = 300 ‑ 3000 K were reported.
Real-time elucidation of catalytic pathways in CO hydrogenation on Ru
LaRue, Jerry; Krejci, Ondrej; Yu, Liang; ...
2017-07-31
Here, the direct elucidation of the reaction pathways in heterogeneous catalysis has been challenging due the short-lived nature of reaction intermediates. Here, we directly measured on ultrafast timescales the initial hydrogenation steps of adsorbed CO on a Ru catalyst surface, which is known as the bottleneck reaction in syngas and CO 2 reforming processes. We initiated the hydrogenation of CO with an ultrafast laser temperature jump and probed transient changes in the electronic structure using real-time x-ray spectroscopy. In combination with theoretical simulations, we verified the formation of CHO during CO hydrogenation.
Yago, Tomoaki; Gohdo, Masao; Wakasa, Masanobu
2010-02-25
Alcohol concentration dependences of photoinduced charge separation (CS) reaction of zinc tetraphenyl-porphyrin (ZnTPP) and duroquinone (DQ) were investigated in benzonitrile by a nanosecond laser flash photolysis technique. The photoinduced CS reaction was accelerated by the addition of alcohols, whereas the addition of acetonitrile caused little effect on the CS reactions. The simple theory was developed to calculate an increase in reorganization energies induced by the hydrogen bonding interactions between DQ and alcohols using the chemical equilibrium constants for the hydrogen bonding complexes through the concerted pathway and the stepwise one. The experimental results were analyzed by using the Marcus equation where we took into account the hydrogen bonding effects on the reorganization energy and the reaction free energy for the CS reaction. The observed alcohol concentration dependence of the CS reaction rates was well explained by the formation of the hydrogen bonding complexes through the concerted pathway, demonstrating the increase in the reorganization energy by the hydrogen bonding interactions.
Hausdorf, Steffen; Baitalow, Felix; Seidel, Jürgen; Mertens, Florian O R L
2007-05-24
Gaseous species emitted during the zinc oxide/zinc hydroxide 1,4-benzenedicarboxylate metal organic framework synthesis (MOF-5, MOF-69c) have been used to investigate the reaction scheme that leads to the framework creation. Changes of the gas-phase composition over time indicate that the decomposition of the solvent diethylformamide occurs at least via two competing reaction pathways that can be linked to the reaction's overall water and pH management. From isotope exchange experiments, we deduce that one of the decomposition pathways leads to the removal of water from the reaction mixture, which sets the conditions when the synthesis of an oxide-based (MOF-5) instead of an hydroxide-based MOF (MOF-69c) occurs. A quantitative account of most reactants and byproducts before and after the MOF-5/MOF-69c synthesis is presented. From the investigation of the reaction intermediates and byproducts, we derive a proposal of a basic reaction scheme for the standard synthesis zinc oxide carboxylate MOFs.
2015-01-01
Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492
Simulation studies in biochemical signaling and enzyme reactions
NASA Astrophysics Data System (ADS)
Nelatury, Sudarshan R.; Vagula, Mary C.
2014-06-01
Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.
Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato
2016-09-01
Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ.
Transformation of tetracycline during chloramination: kinetics, products and pathways.
Wan, Yi; Jia, Ai; Zhu, Zhou; Hu, Jianying
2013-01-01
To assess the potential adverse effects stemming from tetracycline (TC) in drinking water or disinfected wastewater, the kinetics of the chloramination of TC was investigated at room temperature, the transformation products and pathways of their generation were elucidated, and their growth inhibiting properties towards sludge bacteria were assessed. The chloramination of TC exhibited pseudo-first-order kinetics with the rate constants (k(obs)) ranging from 0.0082 to 0.041 min(-1) at pH of 6-8. Chloramination of TC generated at least 13 discernible products, and the structures of 12 products, including five chlorinated compounds, were identified using LC-ESI-MS. Two main pathways for the generation of these products were proposed: (1) chlorine substitution reactions followed by dehydration; and (2) oxidization by chloramine. The chlorinated products were proposed to be further degraded to small molecules via the scission of benzene rings of TC, and two oxidization products (2,11a-dihydroxy-keto-TC and 6,11-epoxy-2,11a-dihydroxy-TC) were the final products obtained under the experimental conditions. The chlorinated solution, even without detection of TC, exhibited greater than 80% of TC inhibitory effects towards sludge bacteria, suggesting potential effects on microorganisms in aquatic environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Xuming; Zhang, Shize; Whitworth, R. Jeff; Stuart, Jeffrey J.; Chen, Ming-Shun
2015-01-01
Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly. The increase in total glutathione abundance, however, is coupled with an unbalanced activation of glutathione metabolic pathways. The activity and transcript abundance of glutathione peroxidases, which convert reduced glutathione (GSH) to oxidized glutathione (GSSG), increased in infested resistant plants. However, the enzymatic activity and transcript abundance of glutathione reductases, which convert GSSG back to GSH, did not change. This unbalanced regulation of the glutathione oxidation/reduction cycle indicates the existence of an alternative pathway to regenerate GSH from GSSG to maintain a stable GSSG/GSH ratio. Our data suggest the possibility that GSSG is transported from cytosol to apoplast to serve as an oxidant for class III peroxidases to generate reactive oxygen species for plant defense against Hessian fly larvae. Our results provide a foundation for elucidating the molecular processes involved in glutathione-mediated plant resistance to Hessian fly and potentially other pests as well. PMID:25627558
A Synthetic Alternative to Canonical One-Carbon Metabolism.
Bouzon, Madeleine; Perret, Alain; Loreau, Olivier; Delmas, Valérie; Perchat, Nadia; Weissenbach, Jean; Taran, Frédéric; Marlière, Philippe
2017-08-18
One-carbon metabolism is an ubiquitous metabolic pathway that encompasses the reactions transferring formyl-, hydroxymethyl- and methyl-groups bound to tetrahydrofolate for the synthesis of purine nucleotides, thymidylate, methionine and dehydropantoate, the precursor of coenzyme A. An alternative cyclic pathway was designed that substitutes 4-hydroxy-2-oxobutanoic acid (HOB), a compound absent from known metabolism, for the amino acids serine and glycine as one-carbon donors. It involves two novel reactions, the transamination of l-homoserine and the transfer of a one-carbon unit from HOB to tetrahydrofolate releasing pyruvate as coproduct. Since canonical reactions regenerate l-homoserine from pyruvate by carboxylation and subsequent reduction, every one-carbon moiety made available for anabolic reactions originates from CO 2 . The HOB-dependent pathway was established in an Escherichia coli auxotroph selected for prototrophy using long-term cultivation protocols. Genetic, metabolic and biochemical evidence support the emergence of a functional HOB-dependent one-carbon pathway achieved with the recruitment of the two enzymes l-homoserine transaminase and HOB-hydroxymethyltransferase and of HOB as an essential metabolic intermediate. Escherichia coli biochemical reprogramming was achieved by minimally altering canonical metabolism and leveraging on natural selection mechanisms, thereby launching the resulting strain on an evolutionary trajectory diverging from all known extant species.
Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk
2017-10-01
The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] + = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] + = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] + = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Zhilin; Chen, Junxian; Zhou, Yang; Huang, Hui; Xu, Dingguo; Zhang, Chaoyang
2018-05-03
The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic pollutant. Biodegradation is inevitably one of the most cost-effective and enviromentally friendly means of removing TNT pollution. However, the aromatic derivatives from the reduction of nitro groups by several classic enzymes are still toxic. Besides the reduction of nitro groups, pentaerythritol tetranitrate reductase (PETNR) offers a potential route to ring fission and complete degradation of TNT through the pathway of the Meisenheimer complex. This work is devoted to deeply understand the essence of the Meisenheimer pathway and mainly focus on the crucial hydrogen-transfer reaction by means of molecular dynamics (MD) simulations. We obtain three valuable findings. Firstly, the parallel π-π stacking between TNT and the flavin mononucleotide (FMN) cofactor is a precondition. The key residue controlling this conformation is His181. Although His184 does not interact with TNT, the mutation from His184 to Asn184 would abolish the π-π structure. Secondly, the data of the empirical valence bond (EVB) show that the Meisenheimer pathway is predominant because its activation barrier is 6.7 kcal mol-1 far less than that of nitro reduction (26.6 kcal mol-1). Finally, based on the results of thermodynamic integration (TI), the type of transferred hydrogen is also ensured, that is, the H anion (H-) for the Meisenheimer complex and the H radical (H˙) for nitro reduction. Our findings provide an exhaustive understanding for the first hydrogen transfer reaction that has a decisive effect on two competing pathways, and help in searching for and designing new enzymes that can effectively degrade TNT.
Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang
2016-07-01
The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutyser, Wouter; Van den Bossche, Gil; Raaffels, Anton
2016-10-03
Recent lignin-first catalytic lignocellulosic biorefineries produce large quantities of two potential platform chemicals, 4-n-propylguaiacol (PG) and 4-n-propylsyringol. Because conversion into 4-n-propylcyclohexanol (PCol), a precursor for novel polymer building blocks, presents a promising valorization route, reductive demethoxylation of PG was examined here in the liquid-phase over three commercial hydrogenation catalysts, viz. 5 wt % Ru/C, 5 wt % Pd/C and 65 wt % Ni/SiO2-Al2O3, at elevated temperatures ranging from 200 to 300 degrees C under hydrogen atmosphere. Kinetic profiles suggest two parallel conversion pathways: Pathway I involves PG hydrogenation to 4-n-propyl-2-methoxycyclohexanol (PMCol), followed by its demethoxylation to PCol, whereas Pathway IImore » constitutes PG hydrodemethoxylation to 4-n-propylphenol (PPh), followed by its hydrogenation into PCol. The slowest step in the catalytic formation of PCol is the reductive methoxy removal from PMCol. Moreover, under the applied reaction conditions, PCol may react further into hydrocarbons. The following criteria are therefore essential to reach a high PCol yield: (i) catalytic pathway II is preferred as this route does not involve stable intermediates; (ii) reactivity of PMCol should be higher than that of PCol, and (iii) the overall carbon balance should be high. Both the catalyst type and the reaction conditions have a substantial impact on the PCol yield. Only the commercial Ni catalyst meets the three criteria, provided the reaction is performed at 250 degrees C in hexadecane. Additional advantages of this solvent choice are a high boiling point (low operational pressure in closed reactor systems), high solubility of PG and derived products, high thermal, reductive stability, and easy derivability from fatty biomass feedstock. This Ni catalyst also showed an excellent stability in recycling runs and is capable of converting highly concentrated (up to 20 wt %) PG in hexadecane. Ru and Pd on carbon showed a low PCol yield, as they are not conform the three criteria. Low hydrogen pressure favors Pathway II, resulting in a very high PCol yield of 85% at 10 bar. Catalytic conversion of guaiacol, 4-methyl- and 4-ethylguaiacol in comparable circumstances showed similarly high yields of the corresponding cyclohexanols.« less
Mai, Binh Khanh; Kim, Yongho
2016-10-03
Protonolysis by platinum or palladium complexes has been extensively studied because it is the microscopic reverse of the C-H bond activation reaction. The protonolysis of (COD)Pt II Me 2 , which exhibits abnormally large kinetic isotope effects (KIEs), is proposed to occur via a concerted pathway (S E 2 mechanism) with large tunneling. However, further investigation of KIEs for the protonolysis of ZnMe 2 and others led to a conclusion that there is no noticeable correlation between the mechanism and magnitude of KIE. In this study, we demonstrated that variational transition state theory including multidimensional tunneling (VTST/MT) could accurately predict KIEs and Arrhenius parameters of the protonolysis of alkylmetal complexes based on the potential energy surfaces generated by density functional theory. The predicted KIEs, E a D - E a H values, and A H /A D ratios for the protonolysis of (COD)Pt II Me 2 and Zn II Me 2 by TFA agreed very well with experimental values. The protonolysis of ZnMe 2 with the concerted pathway has a very flat potential energy surface, which produces a very small tunneling effect and therefore a small KIE. The predicted KIE for the stepwise protonolysis (S E (ox) mechanism) of (COD)Pt II Me 2 was much smaller than that of the concerted pathway, but greater than the KIE of the concerted protonolysis of ZnMe 2 . A large KIE, which entails a significant tunneling effect, could be used as an experimental probe of the concerted pathway. However, a normal or small KIE should not be used as an indicator of the stepwise mechanism, and the interplay between experiments and reliable theory including tunneling would be essential to uncover the mechanism correctly.
CMPF: class-switching minimized pathfinding in metabolic networks.
Lim, Kevin; Wong, Limsoon
2012-01-01
The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Taylor, Peter R.
1995-01-01
The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinyl-acetylene and for a number of isomers of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinyl-acetylene.
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Taylor, Peter R.
1995-01-01
The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinylacetylene and for a number of isomers Of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinylacetylene.
Caspi, Ron; Altman, Tomer; Dale, Joseph M.; Dreher, Kate; Fulcher, Carol A.; Gilham, Fred; Kaipa, Pallavi; Karthikeyan, Athikkattuvalasu S.; Kothari, Anamika; Krummenacker, Markus; Latendresse, Mario; Mueller, Lukas A.; Paley, Suzanne; Popescu, Liviu; Pujar, Anuradha; Shearer, Alexander G.; Zhang, Peifen; Karp, Peter D.
2010-01-01
The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. With more than 1400 pathways, MetaCyc is the largest collection of metabolic pathways currently available. Pathways reactions are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes, and literature citations. BioCyc (BioCyc.org) is a collection of more than 500 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs also contain additional features, such as predicted operons, transport systems, and pathway hole-fillers. The BioCyc Web site offers several tools for the analysis of the PGDBs, including Omics Viewers that enable visualization of omics datasets on two different genome-scale diagrams and tools for comparative analysis. The BioCyc PGDBs generated by SRI are offered for adoption by any party interested in curation of metabolic, regulatory, and genome-related information about an organism. PMID:19850718
Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou
2016-01-01
Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434
Wahlen, Bradley D.; Oswald, Whitney S.; Seefeldt, Lance C.; Barney, Brett M.
2009-01-01
Wax esters, ester-linked fatty acids and long-chain alcohols, are important energy storage compounds in select bacteria. The synthesis of wax esters from fatty acids is proposed to require the action of a four-enzyme pathway. An essential step in the pathway is the reduction of a fatty aldehyde to the corresponding fatty alcohol, although the enzyme responsible for catalyzing this reaction has yet to be identified in bacteria. We report here the purification and characterization of an enzyme from the wax ester-accumulating bacterium Marinobacter aquaeolei VT8, which is a proposed fatty aldehyde reductase in this pathway. The enzyme, a 57-kDa monomer, was expressed in Escherichia coli as a fusion protein with the maltose binding protein on the N terminus and was purified to near homogeneity by using amylose affinity chromatography. The purified enzyme was found to reduce a number of long-chain aldehydes to the corresponding alcohols coupled to the oxidation of NADPH. The highest specific activity was observed for the reduction of decanal (85 nmol decanal reduced/min/mg). Short-chain and aromatic aldehydes were not substrates. The enzyme showed no detectable catalysis of the reverse reaction, the oxidation of decanol by NADP+. The mechanism of the enzyme was probed with several site-specific chemical probes. The possible uses of this enzyme in the production of wax esters are discussed. PMID:19270127
NASA Astrophysics Data System (ADS)
Zhang, Guojie; Müller, Marcus
2017-08-01
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.
Zhang, Guojie; Müller, Marcus
2017-08-14
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.
Recovering metabolic pathways via optimization.
Beasley, John E; Planes, Francisco J
2007-01-01
A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1995-01-01
We report calculations of the minimum energy pathways connecting (1)CH2+N2 to diazomethane and diazirine, for the rearrangement of diazirine to diazomethane, for the dissociation of diazirine to HCN2+H, and of diazomethane to CH2N+N. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contracted configuration interaction (ICCI) to determine the energetics. The calculations suggest a potential new source of prompt NO from the reaction of (1)CH2 with N2 to give diazirine, and subsequent reaction of diazirine with hydrogen abstracters to form doublet HCN2, which leads to HCN+N(S-4) on the previously studied CH+N2 Surface. The calculations also predict accurate 0 K heats of formation of 77.7 kcal/mol and 68.0 kcal/mol for diazirine and diazomethane, respectively.
Pei, Ying; Chu, Shan; Chen, Yue; Li, Zhidong; Zhao, Jin; Liu, Shuqi; Wu, Xingjun; Liu, Jie; Zheng, Xuejing; Tang, Keyong
2017-10-01
Tannin-immobilized cellulose (CT) hydrogels were successfully fabricated by homogeneous immobilization and crosslinking reaction via a simple method. The structures and properties of hydrogels were characterized by SEM and mechanical test. Methlyene Blue (MB) was selected as a cationic dye model, and the adsorption ability of CT hydrogel was evaluated. Tannins immobilized acted as adsorbent sites which combined MB by electrostatic attraction, resulting in the attractive adsorption ability of CT hydrogel. Adsorption kinetics could be better described by the pseudo-second-order model, and the absorption behaviors were in agreement with a Langmuir isotherm. The adsorption-desorption cycle of CT hydrogel was repeated six times without significant loss of adsorption capacity. In this work, both tannin immobilization and hydrogel formation were achieved simultaneously by a facile homogeneous reaction, providing a new pathway to fabricate tannin-immobilized materials for water treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Fu, Rongbing; Xu, Zhen; Peng, Lin; Bi, Dongsu
2016-12-01
In this study, nanoscale zerovalent iron (NZVI) immobilized on biomass carbon was used for the high efficient removal of BDE 209. NZVI supported on biomass carbon minimized the aggregation of NZVI particles resulting in the increased reaction performance. The proposed removal mechanism included the adsorption of BDE 209 on the surface or interior of the biomass carbon NZVI (BC-NZVI) particles and the subsequent debromination of BDE 209 by NZVI while biomass carbon served as an electron shuttle. BC-NZVI particles and the interaction between BC-NZVI particles and BDE 209 were characterized by TEM, XRD, and XPS. The removal reaction followed a pseudo-first-order rate expression under different reaction conditions, and the k obs was higher than that of other NZVI-supported materials. The debromination of BDE 209 by BC-NZVI was a stepwise process from nona-BDE to DE. A proposed pathway suggested that supporting NZVI on biomass carbon has potential as a promising technique for in situ organic-contaminated groundwater remediation.
Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex
2017-01-01
A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093
NASA Astrophysics Data System (ADS)
Wong, Kin-Yiu
We have simulated two enzymatic reactions with molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) techniques. One reaction is the hydrolysis of the insecticide paraoxon catalyzed by phosphotriesterase (PTE). PTE is a bioremediation candidate for environments contaminated by toxic nerve gases (e.g., sarin) or pesticides. Based on the potential of mean force (PMF) and the structural changes of the active site during the catalysis, we propose a revised reaction mechanism for PTE. Another reaction is the hydrolysis of the second-messenger cyclic adenosine 3'-5'-monophosphate (cAMP) catalyzed by phosphodiesterase (PDE). Cyclicnucleotide PDE is a vital protein in signal-transduction pathways and thus a popular target for inhibition by drugs (e.g., ViagraRTM). A two-dimensional (2-D) free-energy profile has been generated showing that the catalysis by PDE proceeds in a two-step SN2-type mechanism. Furthermore, to characterize a chemical reaction mechanism in experiment, a direct probe is measuring kinetic isotope effects (KIEs). KIEs primarily arise from internuclear quantum-statistical effects, e.g., quantum tunneling and quantization of vibration. To systematically incorporate the quantum-statistical effects during MD simulations, we have developed an automated integration-free path-integral (AIF-PI) method based on Kleinert's variational perturbation theory for the centroid density of Feynman's path integral. Using this analytic method, we have performed ab initio pathintegral calculations to study the origin of KIEs on several series of proton-transfer reactions from carboxylic acids to aryl substituted alpha-methoxystyrenes in water. In addition, we also demonstrate that the AIF-PI method can be used to systematically compute the exact value of zero-point energy (beyond the harmonic approximation) by simply minimizing the centroid effective potential.
Zhang, Lidong; Meng, Qinghui; Chi, Yicheng; Zhang, Peng
2018-05-31
A two-layer ONIOM[QCISD(T)/CBS:DFT] method was proposed for the high-level single-point energy calculations of large biodiesel molecules and was validated for the hydrogen abstraction reactions of unsaturated methyl esters that are important components of real biodiesel. The reactions under investigation include all the reactions on the potential energy surface of C n H 2 n-1 COOCH 3 ( n = 2-5, 17) + H, including the hydrogen abstraction, the hydrogen addition, the isomerization (intramolecular hydrogen shift), and the β-scission reactions. By virtue of the introduced concept of chemically active center, a unified specification of chemically active portion for the ONIOM (ONIOM = our own n-layered integrated molecular orbital and molecular mechanics) method was proposed to account for the additional influence of C═C double bond. The predicted energy barriers and heats of reaction by using the ONIOM method are in very good agreement with those obtained by using the widely accepted high-level QCISD(T)/CBS theory, as verified by the computational deviations being less than 0.15 kcal/mol, for almost all the reaction pathways under investigation. The method provides a computationally accurate and affordable approach to combustion chemists for high-level theoretical chemical kinetics of large biodiesel molecules.
Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.
Falter, Christoph; Pitz-Paal, Robert
2017-11-07
The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.
Bai, Chao; Berman, Judit; Farre, Gemma; Capell, Teresa; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu
2017-02-01
Astaxanthin is a high-value ketocarotenoid rarely found in plants. It is derived from β-carotene by the 3-hydroxylation and 4-ketolation of both ionone end groups, in reactions catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. We investigated the feasibility of introducing an extended carotenoid biosynthesis pathway into rice endosperm to achieve the production of astaxanthin. This allowed us to identify potential metabolic bottlenecks that have thus far prevented the accumulation of this valuable compound in storage tissues such as cereal grains. Rice endosperm does not usually accumulate carotenoids because phytoene synthase, the enzyme responsible for the first committed step in the pathway, is not present in this tissue. We therefore expressed maize phytoene synthase 1 (ZmPSY1), Pantoea ananatis phytoene desaturase (PaCRTI) and a synthetic Chlamydomonas reinhardtii β-carotene ketolase (sCrBKT) in transgenic rice plants under the control of endosperm-specific promoters. The resulting grains predominantly accumulated the diketocarotenoids canthaxanthin, adonirubin and astaxanthin as well as low levels of monoketocarotenoids. The predominance of canthaxanthin and adonirubin indicated the presence of a hydroxylation bottleneck in the ketocarotenoid pathway. This final rate-limiting step must therefore be overcome to maximize the accumulation of astaxanthin, the end product of the pathway.
Kaur, Ramanpreet; Vikas
2015-02-21
2-Aminopropionitrile (APN), a probable candidate as a chiral astrophysical molecule, is a precursor to amino-acid alanine. Stereochemical pathways in 2-APN are explored using Global Reaction Route Mapping (GRRM) method employing high-level quantum-mechanical computations. Besides predicting the conventional mechanism for chiral inversion that proceeds through an achiral intermediate, a counterintuitive flipping mechanism is revealed for 2-APN through chiral intermediates explored using the GRRM. The feasibility of the proposed stereochemical pathways, in terms of the Gibbs free-energy change, is analyzed at the temperature conditions akin to the interstellar medium. Notably, the stereoinversion in 2-APN is observed to be more feasible than the dissociation of 2-APN and intermediates involved along the stereochemical pathways, and the flipping barrier is observed to be as low as 3.68 kJ/mol along one of the pathways. The pathways proposed for the inversion of chirality in 2-APN may provide significant insight into the extraterrestrial origin of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignat`ev, I.S.; Kochina, T.A.; Nefedov, V.D.
1995-08-10
Ion-molecular gas-phase reactions of free methyl and sec-butyl cations with diethylamine were studied. These reactions proceed via two competing pathways involving formation of a condensation complex or a proton-transfer complex, the latter process predominating. 32 refs., 1 tab.
TEMPO-promoted Pauson-Khand reaction. Single-electron activation of cobalt-carbonyl bonds?
Lagunas, Anna; Mairata I Payeras, Antoni; Jimeno, Ciril; Pericàs, Miquel A
2005-07-07
[reaction: see text] The Pauson-Khand reaction is notably accelerated by TEMPO. According to DFT calculations, TEMPO could trigger a radical, low-energy pathway for the reaction by facilitating the decarbonylation of doublet complexes arising either from a CO/nitroxide exchange or from nitroxide addition to a CO ligand.
NASA Astrophysics Data System (ADS)
Mohtat, Bita; Siadati, Seyyed Amir; Khalilzadeh, Mohammad Ali; Zareyee, Daryoush
2018-03-01
After hot debates on the concerted or stepwise nature of the mechanism of the catalyst-free 1,3-dipolar cycloadditions (DC)s, nowadays, it is being believed that for the reaction of each dipole and dipolarophile, there is a possibility that the reaction mechanism becomes stepwise, intermediates emerge, and the reaction becomes non-stereospecific. Yield of even minimal amounts of unwanted side products or stereoisomers as impurities could bring many troubles like difficult purification steps. In this project, we have made attempts to study all probable reaction channels of the azide cycloadditions with two functionalized alkynes, in order to answer this question: "is there any possibility that intermediates evolve in the catalyst-free click 1,3-DC reaction of azide-alkynes?". During the calculations, several multi-station reaction pathways supporting the stepwise and concerted mechanisms were detected. Also, the born-oppenheimer molecular dynamic (BOMD) simulation was used to find trustable geometries which could be emerged during the reaction coordinate.
NASA Astrophysics Data System (ADS)
Yu, Feng
2018-01-01
Microsolvated bimolecular nucleophilic substitution (SN2) reaction of monohydrated hydrogen peroxide anion [HOO-(H2O)] with methyl chloride (CH3Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl-:Cl-(H2O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO- + CH3Cl SN2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO-(H2O) + CH3Cl SN2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the SN2 reactions of HOO- + CH3Cl and HOO-(H2O) + CH3Cl.
Yu, Feng
2018-01-07
Microsolvated bimolecular nucleophilic substitution (S N 2) reaction of monohydrated hydrogen peroxide anion [HOO - (H 2 O)] with methyl chloride (CH 3 Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl - :Cl - (H 2 O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO - + CH 3 Cl S N 2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO - (H 2 O) + CH 3 Cl S N 2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the S N 2 reactions of HOO - + CH 3 Cl and HOO - (H 2 O) + CH 3 Cl.
Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.
Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily
2017-01-01
Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pathway and Molecular Mechanisms for Malachite Green Biodegradation in Exiguobacterium sp. MG2
Wang, Ji’ai; Gao, Feng; Liu, Zhongzhong; Qiao, Min; Niu, Xuemei; Zhang, Ke-Qin; Huang, Xiaowei
2012-01-01
Malachite green (MG), N-methylated diaminotriphenylmethane, is one of the most common dyes in textile industry and has also been used as an effective antifungal agent. However, due to its negative impact on the environment and carcinogenic effects to mammalian cells, there is a significant interest in developing microbial agents to degrade this type of recalcitrant molecules. Here, an Exiguobacterium sp. MG2 was isolated from a river in Yunnan Province of China as one of the best malachite green degraders. This strain had a high decolorization capability even at the concentration of 2500 mg/l and maintained its stable activity within the pH range from 5.0 to 9.0. High-pressure liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography–mass spectrometry were employed to detect the catabolic pathway of MG. Six intermediate products were identified and a potential biodegradation pathway was proposed. This pathway involves a series of reactions of N-demethylation, reduction, benzene ring-removal, and oxidation, which eventually converted N-methylated diaminotriphenylmethane into N, N-dimethylaniline that is the key precursor to MG. Furthermore, our molecular biology experiments suggested that both triphenylmethane reductase gene tmr and cytochrome P450 participated in MG degradation, consistent with their roles in the proposed pathway. Collectively, our investigation is the first report on a biodegradation pathway of triphenylmethane dye MG in bacteria. PMID:23251629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wubben, Thomas J.; Mesecar, Andrew D.; UIC)
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine (PhP) to form dephosphocoenzyme A. This reaction sits at the branch point between the de novo pathway and the salvage pathway, and has been shown to be a rate-limiting step in the biosynthesis of CoA. Importantly, bacterial and mammalian PPATs share little sequence homology, making the enzyme a potential target for antibiotic development. A series of steady-state kinetic, product inhibition, and direct binding studies with Mycobacterium tuberculosis PPAT (MtPPAT) was conducted and suggests that the enzyme utilizesmore » a nonrapid-equilibrium random bi-bi mechanism. The kinetic response of MtPPAT to the binding of ATP was observed to be sigmoidal under fixed PhP concentrations, but substrate inhibition was observed at high PhP concentrations under subsaturating ATP concentrations, suggesting a preferred pathway to ternary complex formation. Negative cooperativity in the kinetic response of MtPPAT to PhP binding was observed under certain conditions and confirmed thermodynamically by isothermal titration calorimetry, suggesting the formation of an asymmetric quaternary structure during sequential ligation of substrates. Asymmetry in binding was also observed in isothermal titration calorimetry experiments with dephosphocoenzyme A and CoA. X-ray structures of MtPPAT in complex with PhP and the nonhydrolyzable ATP analogue adenosine-5'-[({alpha},{beta})-methyleno]triphosphate were solved to 1.57 {angstrom} and 2.68 {angstrom}, respectively. These crystal structures reveal small conformational changes in enzyme structure upon ligand binding, which may play a role in the nonrapid-equilibrium mechanism. We suggest that the proposed kinetic mechanism and asymmetric character in MtPPAT ligand binding may provide a means of reaction and pathway regulation in addition to that of the previously determined CoA feedback.« less
Tang, Xiang-Jun; Huang, Kuan-Ming; Gui, Hui; Wang, Jun-Jie; Lu, Jun-Ti; Dai, Long-Jun; Zhang, Li; Wang, Gang
2016-01-01
As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR)/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs) and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence supportive of further development of MYR-MC formulation for preferentially targeting mitochondria of glioblastoma cells. PMID:27757032
NASA Astrophysics Data System (ADS)
Buch, Arnaud; Belmahdi, Imene; Szopa, Cyril; Freissinet, Caroline; Glavin, Daniel P.; Eigenbrode, Jennifer; Summons, Roger; Miller, Kristen; Coll, Patrice; cabane, Michel; Navarro-Gonzalez, Rafael; Stern, Jennifer; Coscia, David; Teinturier, Samuel; Bonnet, Jean-Yves; Dequaire, Tristan; Mahaffy, Paul; MSL Science Team
2016-10-01
Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. Three analytical devices are onboard SAM: the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS). To adapt the nature of a sample to the analytical devices used on SAM, a sample preparation and gas processing system is implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G) which is employed to concentrate volatiles released from the sample prior to GC-MS analysis [1].Volatile compounds and abundant chlorinated hydrocarbons have been detected with SAM when analyzing samples collected in several sites explored by Curiosity rover. Some volatile compounds (chlorinated and non-chlorinated) come from the degradation of the MTBSTFA under high temperature or by the reaction of Martian oxychlorine compounds (present in the samples) with terrestrial carbon coming from the derivatization agent (MTBSTFA) used in SAM [2,3]. But other chlorinated compounds do not follow this pathway. For example, Chlorobenzene has been detected by SAM but it cannot be formed by the reaction of MTBSTFA and perchlorates. Then, two other reaction pathways for chlorobenzene were therefore proposed: (1) reactions between the volatile thermal degradation products of perchlorates (e.g. O2, Cl2 and HCl) and Tenax® and (2) the interaction of perchlorates (T>200°C) with organic material from Mars's soil such as benzenecarboxylates. However, even if major part of the chlorobenzene detected has been identified as Martian origin [4] it is important to list all the potential byproducts able to be released from the Tenax®.Thus, this study inventory all the possible compounds which are originated from Tenax®, MTBSTFA and their interaction with perchlorate.References: [1] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [2] Glavin, D., A. et al. (2013), LPSC. [3] Eigenbrode, J. et al. (2013), LPSC. [4] Freissinet, C. et al., JGR (2015)
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions
Ahmed, F. Hafna; Mohamed, A. Elaaf; Lee, Brendon M.; Pandey, Gunjan; Warden, Andrew C.; Scott, Colin; Oakeshott, John G.; Taylor, Matthew C.
2016-01-01
SUMMARY 5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis. PMID:27122598
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.
Greening, Chris; Ahmed, F Hafna; Mohamed, A Elaaf; Lee, Brendon M; Pandey, Gunjan; Warden, Andrew C; Scott, Colin; Oakeshott, John G; Taylor, Matthew C; Jackson, Colin J
2016-06-01
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Reactivity index based on orbital energies.
Tsuneda, Takao; Singh, Raman K
2014-05-30
This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. Copyright © 2014 Wiley Periodicals, Inc.
Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc
2017-12-05
Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.
Sriyudthsak, Kansuporn; Iwata, Michio; Hirai, Masami Yokota; Shiraishi, Fumihide
2014-06-01
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-02-08
The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.
High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway
Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.
2007-01-01
Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015
Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO 2 Reduction Catalysts
Manbeck, Gerald F.; Muckerman, James T.; Szalda, David J.; ...
2015-02-19
Proton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multi-proton, multi-electron reactions. Two fac-[ReI(α-diimine)(CO)₃Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation. An energetically feasible mechanism for reductive deprotonation is proposed in which the bpy anion is protonated followed by loss of H₂ and 2H⁺. Cyclic voltammetry reveals a two-electron, three-wavemore » system owing to competing EEC and ECE pathways. The chemical step of the ECE pathway might be attributed to the reductive deprotonation. but cannot be distinguished from chloride dissociation. The rate obtained by digital simulation is approximately 8 s⁻¹. Under CO₂, these competing reactions generate a two-slope catalytic waveform with onset potential of –1.65 V vs Ag/AgCl. Reduction of CO₂ to CO by the [ReI (4DHBP–2H⁺)(CO)₃]⁻ suggests the interaction of CO₂ with the deprotonated species or a third reduction followed by catalysis. Conversely, the reduced form of [Re(6DHBP)(CO)₃Cl] converts CO₂ to CO with a single turnover.« less
He, Zhongqi; Spain, Jim C.
2000-01-01
In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds. PMID:10877799
On-surface synthesis on a bulk insulator surface
NASA Astrophysics Data System (ADS)
Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika
2018-04-01
On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2 + 2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic-scale insights that have greatly contributed to unravelling the details of on-surface synthesis on a bulk insulator surface.
2000-03-01
groundwater, Environmental Science and Technology, 30 (12): 536A-539A, 1996. Arnold, W. A. and A. L. Roberts, Pathways of chlorinated ethylene and...chlorinated acetylene reaction with Zn(0), Environmental Science and Technology, 32 (19): 3017-3025, 1998. Arnold, W. A. and A. L. Roberts, Pathways and...kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environmental Science and Technology, in press, 2000
Preface: Special Topic on Reaction Pathways
NASA Astrophysics Data System (ADS)
Clementi, Cecilia; Henkelman, Graeme
2017-10-01
This Special Topic Issue on Reaction Pathways collects original research articles illustrating the state of the art in the development and application of methods to describe complex chemical systems in terms of relatively simple mechanisms and collective coordinates. A broad range of applications is presented, spanning the sub-fields of biophysics and material science, in an attempt to showcase the similarities in the formulation of the approaches and highlight the different needs of the different application domains.
HCN and chromophore formation on Jupiter
NASA Technical Reports Server (NTRS)
Ferris, James P.; Ishikawa, Yoji
1987-01-01
Reaction paths for the formation of HCN and chromophores on Jupiter are suggested. The reactions involve photolysis of ammonia/acetylene mixtures. Experimental data supporting these pathways are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, J.; Schwender, J.
Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganicmore » nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.« less
Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces
NASA Astrophysics Data System (ADS)
Yu, Weiting; Chen, Jingguang G.
2015-10-01
Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.
Chiou, Mong-Feng; Jayakumar, Jayachandran; Cheng, Chien-Hong; Chuang, Shih-Ching
2018-06-13
Reaction mechanisms for the synthesis of indenamines, indenols, and isoquinolinium salts through cobalt- and rhodium-catalysis were investigated using density functional theory calculations. We found that the valence charge of transition metals dramatically influences the reaction pathways. Catalytic reactions involving lower-oxidation-state transition metals (M I /M III , M = Co and Rh) generally favor a [3+2] cyclization pathway, whereas those involving higher oxidation states (M III /M V ) proceed through a [4+2] cyclization pathway. A catalytic cycle with novel M III /M V as a crucial species was successfully revealed for isoquinolinium salts synthesis, which highly valent M V was not only encountered in the [RhCp*]-catalysis but also in the [CoCp*]-catalysis.