Sample records for potential salmonid spawning

  1. Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments.

    Treesearch

    John M. Buffington; David R. Montgomery; Harvey M. Greenberg

    2004-01-01

    A general framework is presented for examining the effects of channel type and associated hydraulic roughness on salmonid spawning-gravel availability in mountain catchments. Digital elevation models are coupled with grain-size predictions to provide basin-scale assessments of the potential extent and spatial pattern of spawning gravels. To demonstrate both the model...

  2. Climate change impact on salmonid spawning in low-gradient streams in central Idaho, USA

    Treesearch

    Daniele Tonina; James A. McKean

    2010-01-01

    Climate change is often predicted to cause a significant perturbation to watershed hydrology. It has been generally associated with negative impacts on natural systems, especially in conjunction with conservation and protection of sensitive ecosystems. In the U.S., spawning habitats of threatened and endangered salmonid species are important areas that are potentially...

  3. A new method to identify the fluvial regimes used by spawning salmonids

    Treesearch

    Hamish J. Moir; Christopher N. Gibbins; John M. Buffington; John H. Webb; Chris Soulsby; Mark J. Brewer

    2009-01-01

    Basin physiography and fluvial processes structure the availability of salmonid spawning habitat in river networks. However, methods that allow us to explicitly link hydrologic and geomorphic processes to spatial patterns of spawning at scales relevant to management are limited. Here we present a method that can be used to link the abundance of spawning salmonids to...

  4. A mathematical model of salmonid spawning habitat

    Treesearch

    Robert N. Havis; Carlos V. Alonzo; Keith E Woeste; Russell F. Thurow

    1993-01-01

    A simulation model [Salmonid Spawning Analysis Model (SSAM)I was developed as a management tool to evaluate the relative impacts of stream sediment load and water temperature on salmonid egg survival. The model is usefi.il for estimating acceptable sediment loads to spawning habitat that may result from upland development, such as logging and agriculture. Software in...

  5. Is hyporheic flow an indicator for salmonid spawning site selection?

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Tonina, D.; Marzadri, A.; McKean, J. A.; Isaak, D.

    2015-12-01

    Several studies have investigated the role of hydraulic variables in the selection of spawning sites by salmonids. Some recent studies suggest that the intensity of the ambient hyporheic flow, that present without a salmon egg pocket, is a cue for spawning site selection, but others have argued against it. We tested this hypothesis by using a unique dataset of field surveyed spawning site locations and an unprecedented meter-scale resolution bathymetry of a 13.5 km long reach of Bear Valley Creek (Idaho, USA), an important Chinook salmon spawning stream. We used a two-dimensional surface water model to quantify stream hydraulics and a three-dimensional hyporheic model to quantify the hyporheic flows. Our results show that the intensity of ambient hyporheic flows is not a statistically significant variable for spawning site selection. Conversely, the intensity of the water surface curvature and the habitat quality, quantified as a function of stream hydraulics and morphology, are the most important variables for salmonid spawning site selection. KEY WORDS: Salmonid spawning habitat, pool-riffle system, habitat quality, surface water curvature, hyporheic flow

  6. Migratory salmonid redd habitat characteristics in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; McKenna, James E.

    2010-01-01

    Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.

  7. Does small-bodied salmon spawning activity enhance streambed mobility?

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Tonina, Daniele; Buxton, Todd H.

    2015-09-01

    Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit that is dug immediately upstream. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (<10-1 channel width, W), but may reduce the size of macro bedforms by eroding reach-scale topography (100-101W). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning, also prevents streambed armoring by mixing surface and subsurface material, potentially increasing particle mobility. Here we use two-dimensional hydraulic modeling with detailed prespawning and postspawning bathymetries and field observations to test the effect of spawning by small-bodied salmonids on sediment transport. Our results show that topographical roughness from small salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids and are the focus of habitat restoration actions.

  8. A simple method for in situ monitoring of water temperature in substrates used by spawning salmonids

    USGS Publications Warehouse

    Zimmerman, Christian E.; Finn, James E.

    2012-01-01

    Interstitial water temperature within spawning habitats of salmonids may differ from surface-water temperature depending on intragravel flow paths, geomorphic setting, or presence of groundwater. Because survival and developmental timing of salmon are partly controlled by temperature, monitoring temperature within gravels used by spawning salmonids is required to adequately describe the environment experienced by incubating eggs and embryos. Here we describe a simple method of deploying electronic data loggers within gravel substrates with minimal alteration of the natural gravel structure and composition. Using data collected in spawning sites used by summer and fall chum salmon Oncorhynchus keta from two streams within the Yukon River watershed, we compare contrasting thermal regimes to demonstrate the utility of this method.

  9. Islands in the ice stream: were spawning habitats for native salmonids in the Great Lakes created by paleo-ice streams?

    USGS Publications Warehouse

    Riley, Stephen; Binder, Thomas R.; Tucker, Taaja R.; Menzies, John; Eyles, Nick; Janssen, John; Muir, Andrew M.; Esselman, Peter C.; Wattrus, Nigel J.; Krueger, Charles C.

    2016-01-01

    Lake trout Salvelinus namaycush, lake whitefish Coregonus clupeaformis and cisco Coregonus artedi are salmonid fishes native to the Laurentian Great Lakes that spawn on rocky substrates in the fall and early winter. After comparing the locations of spawning habitat for these species in the main basin of Lake Huron with surficial substrates and the hypothesized locations of fast-flowing Late Wisconsinan paleo-ice streams, we hypothesize that much of the spawning habitat for these species in Lake Huron is the result of deposition and erosion by paleo-ice streams. This hypothesis may represent a new framework for the identification and protection of spawning habitat for these native species, some of which are currently rare or extirpated in some of the Great Lakes. We further suggest that paleo-ice streams may have been responsible for the creation of native salmonid spawning habitat elsewhere in the Great Lakes and in other glaciated landscapes.

  10. Predicting recolonization patterns and interactions between potamodromous and anadromous salmonids in response to dam removal in the Elwha River, Washington State, USA

    USGS Publications Warehouse

    Brenkman, S.J.; Pess, G.R.; Torgersen, C.E.; Kloehn, K.K.; Duda, J.J.; Corbett, S.C.

    2008-01-01

    The restoration of salmonids in the Elwha River following dam removal will cause interactions between anadromous and potamodromous forms as recolonization occurs in upstream and downstream directions. Anadromous salmonids are expected to recolonize historic habitats, and rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus) isolated above the dams for 90 years are expected to reestablish anadromy. We summarized the distribution and abundance of potamodromous salmonids, determined locations of spawning areas, and mapped natural barriers to fish migration at the watershed scale based on data collected from 1993 to 2006. Rainbow trout were far more abundant than bull trout throughout the watershed and both species were distributed up to river km 71. Spawning locations for bull trout and rainbow trout occurred in areas where we anticipate returning anadromous fish to spawn. Nonnative brook trout were confined to areas between and below the dams, and seasonal velocity barriers are expected to prevent their upstream movements. We hypothesize that the extent of interaction between potamodromous and anadromous salmonids will vary spatially due to natural barriers that will limit upstream-directed recolonization for some species of salmonids. Consequently, most competitive interactions will occur in the main stem and floodplain downstream of river km 25 and in larger tributaries. Understanding future responses of Pacific salmonids after dam removal in the Elwha River depends upon an understanding of existing conditions of the salmonid community upstream of the dams prior to dam removal.

  11. Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.

    NASA Astrophysics Data System (ADS)

    Gillies, E.; Moir, H. J.

    2015-12-01

    Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of salmonid spawning and the success of river restoration.

  12. Seasonal movements and habitat use of Potamodromous Rainbow Trout across a complex Alaska riverscape

    USGS Publications Warehouse

    Fraley, Kevin M.; Falke, Jeffrey A.; Yanusz, Richard; Ivey, Sam S.

    2016-01-01

    Potamodromous Rainbow Trout Oncorhynchus mykiss are an important ecological and recreational resource in freshwater ecosystems of Alaska, and increased human development, hydroelectric projects, and reduced escapement of Chinook Salmon Oncorhynchus tshawytscha may threaten their populations. We used aerial and on-the-ground telemetry tracking, a digital landscape model, and resource selection functions to characterize seasonal movements and habitat use of 232 adult (>400 mm FL) Rainbow Trout across the complex, large (31,221 km2) Susitna River basin of south-central Alaska during 2003–2004 and 2013–2014. We found that fish overwintered in main-stem habitats near tributary mouths from November to April. After ice-out in May, fish ascended tributaries up to 51 km to spawn and afterward moved downstream to lower tributary reaches, assumedly to intercept egg and flesh subsidies provided by spawning salmonids in July and August. Fish transitioned back to main-stem overwintering habitats at the onset of autumn when salmonid spawning waned. Fidelity to tributaries where fish were initially tagged varied across seasons but was high (>0.75) in three out of four drainages. Model-averaged resource selection functions suggested that Rainbow Trout habitat use varied seasonally; fish selected low-gradient, sinuous, main-stem stream reaches in the winter, reaches with suitably sized substrate during spawning, larger reaches during the feeding season prior to the arrival of spawning salmonids, and reaches with high Chinook Salmon spawning habitat potential following the arrival of adult fish. We found little difference in movement patterns between males and females among a subset of fish for which sex was determined using genetic analysis. As most Rainbow Trout undertake extensive movements within and among tributaries and make use of a variety of seasonal habitats to complete their life histories, it will be critical to take a basinwide approach to their management (i.e., habitat protection and angling bag limits) in light of anticipated land-use changes.

  13. Persistence of Salmonid Redds

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Buxton, T.; Fremier, A. K.; Hassan, M. A.; Yager, E.

    2013-12-01

    The construction of redds by spawning salmonids modifies fluvial processes in ways that are beneficial to egg and embryo survival. Redd topography induces hyporheic flow that oxygenates embryos incubating within the streambed and creates form drag that reduces bed mobility and scour of salmonid eggs. Winnowing of fine material during redd construction also coarsens the streambed, increasing bed porosity and hyporheic flow and reducing bed mobility. In addition to the biological benefits, redds may influence channel morphology by altering channel hydraulics and bed load transport rates depending on the size and extent of redds relative to the size of the channel. A key question is how long do the physical and biological effects of redds last? Field observations indicate that in some basins redds are ephemeral, with redd topography rapidly erased by subsequent floods, while in other basins, redds can persist for years. We hypothesize that redd persistence is a function of basin hydrology, sediment supply, and characteristics of the spawning fish. Hydrology controls the frequency and magnitude of bed mobilizing flows following spawning, while bed load supply (volume and caliber) controls the degree of textural fining and consequent bed mobility after spawning, as well as the potential for burial of redd features. The effectiveness of flows in terms of their magnitude and duration depend on hydroclimate (i.e., snowmelt, rainfall, or transitional hydrographs), while bed load supply depends on basin geology, land use, and natural disturbance regimes (e.g., wildfire). Location within the stream network may also influence redd persistence. In particular, lakes effectively trap sediment and regulate downstream flow, which may promote long-lived redds in stream reaches below lakes. These geomorphic controls are modulated by biological factors: fish species (size of fish controls size of redds and magnitude of streambed coarsening); life history (timing of spawning and incubation relative to high flows); and population size (density of redds and extent of streambed alteration within a given reach). Species and life history also control the location of spawning within the basin, dictating the flow and sediment supply regimes. A theoretical framework is developed for predicting redd persistence as a function of the above physical and biological factors. We expect that long-lived redds will indicate either that the river is not competent to re-work the effects of spawning or that spawning occurs after peak flow events that are capable of modifying redd features. The longevity of redds and their associated effects on fluvial processes also provides a measure of the degree of potential ecological conditioning for future generations of fish. Future work will test the framework in field and laboratory settings.

  14. The footprint of salmonids on river morphology

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Tonina, D.

    2012-12-01

    Female salmonids dig a pit in the streambed where they lay their eggs, which then cover with sediment from a second pit forming an egg nest call redd. This formation results in a shape resembling a dune with an amplitude, which is the vertical difference between bottom of the pit and crest of the hump, varying from few centimetres (for small fish, chum or sockeye salmon) to tenths of a meter (for large fish, Chinook salmon). During redd construction, salmonids alter streambed topography, winnow away fine sediment and mix streambed material within a layer as thick as 50 cm, for the large chinook salmon. The spawning activities may result in additional roughness at the local scale due to redds. However, redd construction may smooth large-scale topography reducing roughness due the macro-bedform. These topographical changes vary streambed roughness, which in turn may affect shear stress distribution. Redds have been suggested to increase the overall flow resistance due to form drag resulting in lower grain shear stress and less particle mobility. However, the mixing of the sediment could prevent armouring of the streambed surface allowing higher than with armouring sediment transport. Here, we use detailed pre- and post-spawning bathymetries coupled with accurate 2-dimensional hydraulic numerical modelling to test which of these two effects has potentially more impact on sediment transport. Our results show that topographical roughness added by sockeye salmons, which build small redds with 15cm amplitude and 1 meter wavelength (longitudinal length of a redd), has negligible effect on shear stress at the reach-scale and limited at the local scale. Conversely, sediment mixing has an important effect on reducing armouring, increasing sediment mobility, which results in potentially more sediment transport in reaches with than without redds. Consequently, salmonid bioturbation due to mass-spawning fish can be a dominant element for sediment transport in mountain drainage basins

  15. Spawning patterns of Pacific Lamprey in tributaries to the Willamette River, Oregon

    USGS Publications Warehouse

    Mayfield, M.P.; Schultz, Luke; Wyss, Lance A.; Clemens, B. J.; Schreck, Carl B.

    2014-01-01

    Addressing the ongoing decline of Pacific Lamprey Entosphenus tridentatus across its range along the west coast of North America requires an understanding of all life history phases. Currently, spawning surveys (redd counts) are a common tool used to monitor returning adult salmonids, but the methods are in their infancy for Pacific Lamprey. To better understand the spawning phase, our objective was to assess temporal spawning trends, redd abundance, habitat use, and spatial patterns of spawning at multiple spatial scales for Pacific Lamprey in the Willamette River basin, Oregon. Although redd density varied considerably across surveyed reaches, the observed temporal patterns of spawning were related to physical habitat and hydrologic conditions. As has been documented in studies in other basins in the Pacific Northwest, we found that redds were often constructed in pool tailouts dominated by gravel, similar to habitat used by spawning salmonids. Across the entire Willamette Basin, Pacific Lampreys appeared to select reaches with alluvial geology, likely because this is where gravel suitable for spawning accumulated. At the tributary scale, spawning patterns were not as strong, and in reaches with nonalluvial geology redds were more spatially clumped than in reaches with alluvial geology. These results can be used to help identify and conserve Pacific Lamprey spawning habitat across the Pacific Northwest.

  16. Sediment transport and resulting deposition in spawning gravels, north coastal California

    Treesearch

    Thomas E. Lisle

    1989-01-01

    Incubating salmonid eggs in streambeds are often threatened by deposition of fine sediment within the gravel. To relate sedimentation of spawning gravel beds to sediment transport, infiltration of fine sediment (

  17. Introduced northern pike predation on salmonids in southcentral Alaska

    USGS Publications Warehouse

    Sepulveda, Adam J.; Rutz, David S.; Ivey, Sam S.; Dunker, Kristine J.; Gross, Jackson A.

    2013-01-01

    Northern pike (Esox lucius) are opportunistic predators that can switch to alternative prey species after preferred prey have declined. This trophic adaptability allows invasive pike to have negative effects on aquatic food webs. In Southcentral Alaska, invasive pike are a substantial concern because they have spread to important spawning and rearing habitat for salmonids and are hypothesised to be responsible for recent salmonid declines. We described the relative importance of salmonids and other prey species to pike diets in the Deshka River and Alexander Creek in Southcentral Alaska. Salmonids were once abundant in both rivers, but they are now rare in Alexander Creek. In the Deshka River, we found that juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) dominated pike diets and that small pike consumed more of these salmonids than large pike. In Alexander Creek, pike diets reflected the distribution of spawning salmonids, which decrease with distance upstream. Although salmonids dominated pike diets in the lowest reach of the stream, Arctic lamprey (Lampetra camtschatica) and slimy sculpin (Cottus cognatus) dominated pike diets in the middle and upper reaches. In both rivers, pike density did not influence diet and pike consumed smaller prey items than predicted by their gape-width. Our data suggest that (1) juvenile salmonids are a dominant prey item for pike, (2) small pike are the primary consumers of juvenile salmonids and (3) pike consume other native fish species when juvenile salmonids are less abundant. Implications of this trophic adaptability are that invasive pike can continue to increase while driving multiple species to low abundance.

  18. How do we know how many salmon returned to spawn? Implementing the California Coastal salmonid monitoring plan in Mendocino County, California

    Treesearch

    Sean P. Gallagher; David W. Wright

    2012-01-01

    California's coastal salmon and steelhead populations are listed under California and Federal Endangered Species Acts; both require monitoring to provide measures of recovery. Since 2004 the California Department of Fish and Game and NOAA Fisheries have been developing a monitoring plan for California¡¯s coastal salmonids (the California Coastal Salmonid...

  19. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    PubMed

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that appear to be locally adapted physiologically to their specific environmental conditions. Populations with more challenging migrations have enhanced cardiorespiratory performance. Pacific salmonids are able to maintain aerobic scope across the broad range of temperatures encountered historically during their migration; however, climate change-induced river warming has created lethal conditions for many populations, raising conservation concerns. Despite considerable research examining cardiorespiratory physiology in Pacific salmonids over the last 70 years, critical knowledge gaps are identified. © 2015 The Fisheries Society of the British Isles.

  20. A simulation model for the infiltration of heterogeneous sediment into a stream bed

    Treesearch

    Tim Lauck; Roland Lamberson; Thomas E. Lisle

    1993-01-01

    Abstract - Salmonid embryos depend on the adequate flow of oxygenated water to survive and interstitial passageways to emerge from the gravel bed. Spawning gravels are initially cleaned by the spawning female, but sediment transported during subsequent high-runoff events can nfiltrate the porous substrate. In many gravel-bed channels used for spawning, most of the...

  1. Effects of habitat quality and ambient hyporheic flows on salmon spawning site selection

    Treesearch

    Rohan Benjankar; Daniele Tonina; Alessandra Marzadri; Jim McKean; Daniel J. Isaak

    2016-01-01

    Understanding the role of stream hydrologic and morphologic variables on the selection of spawning sites by salmonid fishes at high resolution across broad scales is needed for effective habitat restoration and protection. Here we used remotely sensed meter-scale channel bathymetry for a 13.5 km reach of Chinook salmon spawning stream in central Idaho to...

  2. A permeability study on salmonid spawning areas in northern Humboldt County, California

    Treesearch

    Claire Knopf

    2012-01-01

    This research was conducted to determine if local salmonid, specifically coho salmon (Oncorhynchus kisutch), Chinook salmon (O. tshawytscha), and the steelhead trout (O. mykiss), redd location is dependent upon the permeability of the streambed. The study took place at four study sites in two coastal...

  3. Influence of forest and rangeland management on anadromous fish habitat in Western North America: habitat requirements of anadromous salmonids.

    Treesearch

    D.W. Reiser; T.C. Bjornn

    1979-01-01

    Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...

  4. A two-stage information-theoretic approach to modeling landscape-level attributes and maximum recruitment of chinook salmon in the Columbia River basin

    Treesearch

    William L. Thompson; Danny C. Lee

    2002-01-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-...

  5. Effects of stream channel morphology on golden trout spawning habitat and recruitment.

    Treesearch

    R.A. Knapp; V.T. Vredenburg; K.R. Matthews

    1998-01-01

    Abstract. Populations of stream-dwelling salmonids (e.g., salmon and trout) are generally believed to be regulated by strong density-dependent mortality acting on the age-0 life stage, which produces a dome-shaped stock-recruitment curve. Although this paradigm is based largely on data from anadromous species, it has been widely applied to streamresident salmonids...

  6. Evaluation of an ion adsorption method to estimate intragravel flow velocity in salmonid spawning gravels

    Treesearch

    James L. Clayton; John G. King; Russell F. Thurow

    1996-01-01

    Intragravel water exchange provides oxygenated water, removes metabolic waste, and is an essential factor in salmonid embryo survival. Measurements of intragravel flow velocity have been suggested as an index of gravel quality and also as a useful predictor of fry emergence; however, proposed methods for measuring velocity in gravel are problematic. We evaluate an ion...

  7. Cumulative effects of logging road sediment on salmonid populations in the Clearwater River, Jefferson County, Washington

    Treesearch

    C. J. Cederholm; L. M. Reid; E. O. Salo

    1981-01-01

    Abstract - The nature of sediment production from logging roads and the effect of the resulting sediment on salmonid spawning success in the Clearwater River drainage have been studied for eight years. The study includes intensive and extensive analyses of field situations, supplemented by several controlled experiments. It was found that significant amounts (15-25...

  8. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    USDA-ARS?s Scientific Manuscript database

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  9. A two-stage information-theoretic approach to modeling landscape-level attributes and maximum recruitment of chinook salmon in the Columbia River basin [electronic resource

    Treesearch

    William L. Thompson; Danny C. Lee

    2000-01-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-...

  10. Effects of sediment transport on survival of salmonid embryos in a natural stream: A simulation approach

    Treesearch

    Thomas E. Lisle; Jack Lewis

    1992-01-01

    A model is presented that simulates the effects of streamflow and sediment transport on survival of salmonid embryos incubating in spawning gravels in a natural channel. Components of the model include a 6-yr streamflow record, an empirical bed load-transport function, a relation between transport and infiltration of sandy bedload into a gravel bed, effects of fine-...

  11. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  12. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes

    PubMed Central

    Fenkes, Miriam; Shiels, Holly A.; Fitzpatrick, John L.; Nudds, Robert L.

    2016-01-01

    Climate change and urbanisation of watercourses affect water temperatures and current flow velocities in river systems on a global scale. This represents a particularly critical issue for migratory fish species with complex life histories that use rivers to reproduce. Salmonids are migratory keystone species that provide substantial economical value to ecosystems and human societies. Consequently, a comprehensive understanding of the effects of environmental stressors on their reproductive success is critical in order to ensure their continued abundance during future climatic change. Salmonids are capital breeders, relying entirely on endogenous energy stores to fuel return migration to their natal spawning sites and reproduction upon arrival. Metabolic rates and cost of transport en-route increase with temperature and at extreme temperatures, swimming is increasingly fuelled anaerobically, resulting in an oxygen debt and reduced capacity to recover from exhaustive exercise. Thermally challenged salmonids also produce less viable gametes, which themselves are affected by water temperature after release. Passage through hydrological barriers and temperature changes both affect energy expenditure. As a result, important energetic tradeoffs emerge between extra energy used during migration and that available for other facets of the reproductive cycle, such as reproductive competition and gamete production. However, studies identifying these tradeoffs are extremely sparse. This review focuses on the specific locomotor responses of salmonids to thermal and hydrological challenges, identifying gaps in our knowledge and highlighting the potential implications for key aspects of their reproduction. PMID:26603555

  13. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: Insights from spatial autocorrelation analysis of individual genotypes

    Treesearch

    H. M. Neville; D. J. Isaak; J. B. Dunham; R. F. Thurow; B. E. Rieman

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of finescale genetic structuring due to the spatial clustering of related individuals on spawning grounds....

  14. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes.

    PubMed

    Fenkes, Miriam; Shiels, Holly A; Fitzpatrick, John L; Nudds, Robert L

    2016-03-01

    Climate change and urbanisation of watercourses affect water temperatures and current flow velocities in river systems on a global scale. This represents a particularly critical issue for migratory fish species with complex life histories that use rivers to reproduce. Salmonids are migratory keystone species that provide substantial economical value to ecosystems and human societies. Consequently, a comprehensive understanding of the effects of environmental stressors on their reproductive success is critical in order to ensure their continued abundance during future climatic change. Salmonids are capital breeders, relying entirely on endogenous energy stores to fuel return migration to their natal spawning sites and reproduction upon arrival. Metabolic rates and cost of transport en-route increase with temperature and at extreme temperatures, swimming is increasingly fuelled anaerobically, resulting in an oxygen debt and reduced capacity to recover from exhaustive exercise. Thermally challenged salmonids also produce less viable gametes, which themselves are affected by water temperature after release. Passage through hydrological barriers and temperature changes both affect energy expenditure. As a result, important energetic tradeoffs emerge between extra energy used during migration and that available for other facets of the reproductive cycle, such as reproductive competition and gamete production. However, studies identifying these tradeoffs are extremely sparse. This review focuses on the specific locomotor responses of salmonids to thermal and hydrological challenges, identifying gaps in our knowledge and highlighting the potential implications for key aspects of their reproduction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Evidence of sound production by spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain

    USGS Publications Warehouse

    Johnson, Nicholas S.; Higgs, Dennis; Binder, Thomas R.; Marsden, J. Ellen; Buchinger, Tyler John; Brege, Linnea; Bruning, Tyler; Farha, Steve A.; Krueger, Charles C.

    2018-01-01

    Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings to behavioral data collected using acoustic telemetry and video. These sounds were named growls and snaps, and were heard on lake trout spawning reefs, but not on a non-spawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the pre-spawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors; growls when males were quivering and parallel swimming, and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid), provides rare evidence for spawning-related sound production by a salmonid, or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.

  16. Investigating the Geomorphic and Ecologic Functions of Wood in Relationship to Habitat Type and Salmonid Redds on a Regulated California River

    NASA Astrophysics Data System (ADS)

    Senter, A. E.; Pasternack, G. B.

    2006-12-01

    Most river rehabilitation projects incorporate little to no wood in current designs, and those that do have little science to guide them. The overall goal of this research is to investigate the role of wood in a regulated, mid- sized (where river width is greater than most tree heights), Mediterranean-climate (where smaller, softer-wood trees dominate the landscape) river in order to provide a scientific foundation for the potential use of wood in rehabilitation projects within such systems. Wood structures in the active salmonid spawning reach of the Lower Mokelumne River in Central California were measured, mapped, and described during summer and fall 2006. Digital photos and GPS coordinates were used to establish wood location within the stream channel. Structural morphology was determined by measuring physical properties such as individual diameter and length, orientation to stream flow, and jam dimensions. In addition, qualitative attributes were recorded such as decay class and leaf, limb, bark, and root characteristics. A GIS wood layer will be created and added to a database of existing Mokelumne River GIS layers containing salmonid redd (salmon egg nests) densities, hydraulic conditions associated with individual redds, and sub-reach habitat types. An analysis of wood properties, redd locations and conditions, and habitat types will be used to develop a conceptual model of wood dynamics in relation to salmonid habitat on the Lower Mokelumne River. The primary products of this study will be (1) a scientific conceptual model of the role of wood in regulated gravel reaches of mid-size rivers in Mediterranean California and (2) a decision-making framework that will enable river managers to include scientifically based wood structures into rehabilitation designs, thereby enhancing spawning habitat, stream complexity, and biological diversity. These tools will be developed in collaboration with East Bay Municipal Utilities District to aid in the continuing rehabilitation of the Lower Mokelumne River.

  17. Movement and feeding ecology of recently emerged steelhead in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.; Douglass, Kevin A.

    2012-01-01

    Steelhead (Oncorhynchus mykiss) ascend several Lake Ontario tributaries to spawn and juveniles are often the most abundant salmonid where spawning is successful. Movement and diet of recently emerged subyearling steelhead were examined in three New York tributaries of Lake Ontario. Downstream movement occurred mainly at night and consisted of significantly smaller fry that were feeding at lower levels than resident fry. Fry fed at the highest rate during the day and chironomids and baetids were the main components of their diet. The diet composition of steelhead fry was closely associated with the composition of the benthos in Trout Brook but more similar to the composition of the drift in the other streams. Daily ration was similar among streams, ranging from 10.2 to 14.3%. These findings are consistent with previous findings on the ecology of steelhead fry, as well as fry of other salmonid species

  18. How Well Can We Predict Salmonid Spawning Habitat with LiDAR?

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.; Finnegan, N. J.; Hayes, S.

    2013-12-01

    Suitable salmonid spawning habitat is, to a great extent, determined by physical, landscape driven characteristics such as channel morphology and grain size. Identifying reaches with high-quality spawning habitat is essential to restoration efforts in areas where salmonid species are endangered or threatened. While both predictions of suitable habitat and observations of utilized habitat are common in the literature, they are rarely combined. Here we exploit a unique combination of high-resolution LiDAR data and seven years of 387 individually surveyed Coho and Steelhead redds in Scott Creek, a 77 km2 un-glaciated coastal California drainage in the Santa Cruz Mountains, to both make and test predictions of spawning habitat. Using a threshold channel assumption, we predict grain size throughout Scott Creek via a shear stress model that incorporates channel width, instead of height, using Manning's equation (Snyder et al., 2013). Slope and drainage area are computed from a LiDAR-derived DEM, and channel width is calculated via hydraulic modeling. Our results for median grain size predictions closely match median grain sizes (D50) measured in the field, with the majority of sites having predicted D50's within a factor of two of the observed values, especially for reaches with D50 > 0.02m. This success suggests that the threshold model used to predict grain size is appropriate for un-glaciated alluvial channel systems. However, it appears that grain size alone is not a strong predictor of salmon spawning. Reaches with a high (>0.1m) average predicted D50 do have lower redd densities, as expected based on spawning gravel sizes in the literature. However, reaches with lower (<0.1m) predicted D50 have a wide range of redd densities, suggesting that reach-average grain size alone cannot explain spawning site selection in the finer-grained reaches of Scott Creek. We turn to analysis of bedform morphology in order to explain the variation in redd density in the low-slope, finer-grained reaches of Lower Scott Creek. Because spawning is strongly correlated with riffle locations, we use a LiDAR-derived longitudinal profile to predict where riffle habitat is located within the watershed. To accomplish this, we use previous studies that constrain pool-riffle habitat to slopes <1.5%, then use wavelet analysis of the longitudinal profile within these pool-riffle reaches to investigate the spacing of drops in water surface slope, with the goal of identifying reaches with high riffle density. Our slope-based predictions of pool-riffle morphology closely match the extent of pool-riffle reaches observed in the field. Average redd density in pool-riffle reaches is more than double the average redd density in reaches of other channel morphologies. Initial wavelet analysis suggests that riffle spacing may be longer in the lower reaches of Scott Creek and shorter in the high-redd density upper reaches, a finding that agrees with the hypothesis that spawning habitat is limited by riffle density. Our results suggest that high resolution topographic data can be successfully used to identify reaches of utilized spawning habitat based on grain size predictions and wavelet analysis of bedform spacing.

  19. Sex differences in circulatory oxygen transport parameters of sockeye salmon (Oncorhynchus nerka) on the spawning ground.

    PubMed

    Clark, Timothy Darren; Hinch, S G; Taylor, B D; Frappell, P B; Farrell, A P

    2009-07-01

    Upon reaching sexual maturity, several species of male salmonids possess a relative ventricular mass (rM(V)) that may be up to 90% larger than females. This can increase maximum cardiac stroke volume and power output, which may be beneficial to increasing the oxygen transport capacity of male salmonids during the spawning period. It may be further hypothesized, therefore, that other variables within the circulatory oxygen transport cascade, such as blood oxygen-carrying capacity and heart rate, are similarly enhanced in reproductively mature male salmonids. To test this idea, the present study measured a range of circulatory oxygen transport variables in wild male and female sockeye salmon (Oncorhynchus nerka) during their spawning period, following a 150 km migration from the ocean. The rM(V) of male fish was 13% greater than females. Conversely, the haemoglobin concentration ([Hb]) of female fish was 19% higher than males, indicative of a greater blood oxygen-carrying capacity (138 vs. 116 ml O2 l(-1), respectively). Surgically implanted physiological data loggers revealed a similar range in heart rate for both sexes on the spawning ground (20-80 beats min(-1) at 10 degrees C), with a tendency for male fish to spend a greater percentage of time (64%) than females (49%) at heart rates above 50 beats min(-1). Male fish on average consumed significantly more oxygen than females during a 13-h respirometry period. However, routine oxygen consumption rates (.)MO2 ranged between 1.5 and 8.5 mg min(-1) kg(-1) for both sexes, which implies that males did not inherently possess markedly higher routine aerobic energy demands, and suggests that the higher [Hb] of female fish may compensate for the smaller rM(V). These findings reject the hypothesis that all aspects of the circulatory oxygen transport cascade are inherently superior in male sockeye salmon. Instead, it is suggested that any differences in (.)MO2 between sexually mature male and female sockeye salmon can likely be attributed to activity levels.

  20. Food supplies of stream-dwelling salmonids

    USGS Publications Warehouse

    Wipfli, Mark S.

    2009-01-01

    Much is known about the importance of the physical characteristics of salmonid habitat in Alaska and the Pacific Northwest, with far less known about the food sources and trophic processes within these habitats, and the role they play in regulating salmonid productivity. Freshwater food webs supporting salmonids in Alaska rely heavily on nutrient, detritus and prey subsidies from both marine and terrestrial ecosystems. Adult salmon provide a massive input of marine biomass to riverine ecosystems each year when they spawn, die, and decompose, and are a critical food source for young salmon in late summer and fall; riparian forests provide terrestrial invertebrates to streams, which at times comprise over half of the food ingested by stream-resident salmonids; and up-slope, fishless headwater streams are a year-round source of invertebrates and detritus for fish downstream. The quantity of these food resources vary widely depending on source, season, and spatial position within a watershed. Terrestrial invertebrate inputs from riparian habitats are generally the most abundant food source in summer. Juvenile salmonids in streams consume roughly equal amounts of freshwater and terrestrially-derived invertebrates during most of the growing season, but ingest substantial amounts of marine resources (salmon eggs and decomposing salmon tissue) when these food items are present. Quantity, quality, and timing of food resources all appear to be important driving forces in aquatic food web dynamics, community nutrition, and salmonid growth and survival in riverine ecosystems.

  1. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta.

    PubMed

    Palstra, Arjan P; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P; Planas, Josep V; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.

  2. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta

    PubMed Central

    Palstra, Arjan P.; Fukaya, Kosuke; Chiba, Hiroaki; Dirks, Ron P.; Planas, Josep V.; Ueda, Hiroshi

    2015-01-01

    Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation. PMID:26397372

  3. Modeling effects of climate change on Yakima River salmonid habitats

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Connolly, Patrick J.; Maule, Alec G.

    2014-01-01

    We evaluated the potential effects of two climate change scenarios on salmonid habitats in the Yakima River by linking the outputs from a watershed model, a river operations model, a two-dimensional (2D) hydrodynamic model, and a geographic information system (GIS). The watershed model produced a discharge time series (hydrograph) in two study reaches under three climate scenarios: a baseline (1981–2005), a 1-°C increase in mean air temperature (plus one scenario), and a 2-°C increase (plus two scenario). A river operations model modified the discharge time series with Yakima River operational rules, a 2D model provided spatially explicit depth and velocity grids for two floodplain reaches, while an expert panel provided habitat criteria for four life stages of coho and fall Chinook salmon. We generated discharge-habitat functions for each salmonid life stage (e.g., spawning, rearing) in main stem and side channels, and habitat time series for baseline, plus one (P1) and plus two (P2) scenarios. The spatial and temporal patterns in salmonid habitats differed by reach, life stage, and climate scenario. Seventy-five percent of the 28 discharge-habitat responses exhibited a decrease in habitat quantity, with the P2 scenario producing the largest changes, followed by P1. Fry and spring/summer rearing habitats were the most sensitive to warming and flow modification for both species. Side channels generally produced more habitat than main stem and were more responsive to flow changes, demonstrating the importance of lateral connectivity in the floodplain. A discharge-habitat sensitivity analysis revealed that proactive management of regulated surface waters (i.e., increasing or decreasing flows) might lessen the impacts of climate change on salmonid habitats.

  4. Predicting the impacts of existing, pending, and future surface water rights on environmental flows to maintain anadromous salmonids in the northern California wine country

    NASA Astrophysics Data System (ADS)

    Deitch, M.; Kondolf, G. M.; Merenlender, A.; Cover, M. R.

    2006-12-01

    We used digitized aerial photographs on a geographical information system, historical stream flow records, and water rights records to model the effects of existing, pending, and future small reservoirs on stream flow on six tributaries to the Russian River in Sonoma County. Institutions governing whether these reservoirs can operate as constructed, and as proposed, has important implications for efforts to meet human and ecological water needs in the California wine country. Beginning in 1992, state agencies rewrote the policies governing how wine grape growers meet water needs to offer protections to endangered species and public trust values. These changes caused a shift in water management institutions: wine grape growers could no longer rely on surface water appropriations to meet growing water needs for new vineyards, and instead turned to other types of water rights that placed different (and potentially more severe) pressures on aquatic ecosystems. Despite growing controversy over the ecological impacts of existing and pending surface water appropriations (primarily small onstream and offstream reservoirs) on environmental flows necessary to support endangered anadromous salmonids, no analysis has been conducted to evaluate the impacts of existing small reservoirs, pending proposed reservoirs, or future reservoirs on local or catchment-scale stream flow. Our stream flow models indicated that existing and pending small reservoirs can eliminate flow immediately downstream of small reservoirs at the onset of the rainy season (when adult salmonids begin to migrate upstream to spawn); but the cumulative effect of several small reservoirs on stream reaches suitable for spawning is dampened by the spatial distribution of small reservoirs in a drainage network. The temporal extant of local flow effects is variable; most recent and pending onstream reservoirs can impair flows late into the rainy season, but their cumulative effects on downstream flows are less because they are located on ephemeral streams far in river headwaters.

  5. The forest ecosystem of southeast Alaska: 3. Fish habitats.

    Treesearch

    William R. Meehan

    1974-01-01

    The effects of logging and associated activities on fish habitat in southeastern Alaska are discussed, and fish habitat research applicable to southeast Alaska is summarized. Requirements of salmonids for suitable spawning and rearing areas are presented. Factors associated with timber harvest which may influence these habitats are discussed in detail; e.g., sediment,...

  6. Denaturing gradient gel electrophoresis for nonlethal detection of Aeromonas salmonicida in salmonid mucus and its potential for other bacterial fish pathogens.

    PubMed

    Quinn, Robert A; Stevenson, Roselynn M W

    2012-05-01

    Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA was used to nonlethally detect Aeromonas salmonicida and other bacteria in salmonid skin mucus. Mucus samples from wild spawning coho salmon (Oncorhynchus kisutch) with endemic A. salmonicida and from cultured lake trout (Salvelinus namaycush) were tested by PCR-DGGE and were compared with mucus culture on Coomassie brilliant blue agar and internal organ culture. PCR-DGGE gave a highly reproducible 4-band pattern for 9 strains of typical A. salmonicida, which was different from other Aeromonas spp. Aeromonas salmonicida presence in mucus was evident as a band that comigrated with the bottom band of the A. salmonicida 4-band pattern and was verified by sequencing. PCR-DGGE found 36 of 52 coho salmon positive for A. salmonicida, compared with 31 positive by mucus culture and 16 by organ culture. Numerous other bacteria were detected in salmonid mucus, including Pseudomonas spp., Shewanella putrefaciens, Aeromonas hydrophila and other aeromonads. However, Yersinia ruckeri was not detected in mucus from 27 lake trout, but 1 fish had a sorbitol-positive Y. ruckeri isolated from organ culture. Yersinia ruckeri seeded into a mucus sample suggested that PCR-DGGE detection of this bacterium from mucus was possible. PCR-DGGE allows nonlethal detection of A. salmonicida in mucus and differentiation of some Aeromonas spp. and has the potential to allow simultaneous detection of other pathogens present in fish mucus.

  7. Experimental and natural host specificity of Loma salmonae (Microsporidia).

    PubMed

    Shaw, R W; Kent, M L; Brown, A M; Whipps, C M; Adamson, M L

    2000-03-14

    The microsporidian Loma salmonae (Putz, Hoffman & Dunbar, 1965) Morrison & Sprague, 1981 has caused significant gill disease in Pacific salmon Oncorhynchus spp. Host specificity of the parasite was examined experimentally by per os challenge of selected salmonids and non-salmonids with infective chinook salmon O. tshawytscha gill material. Pink Oncorhynchus gorbuscha and chum salmon O. keta, brown Salmo trutta and brook trout Salvelinus fontinalis, and chinook salmon (controls) were positive, whereas Atlantic salmon Salmo salar and Arctic char Salvelinus alpinus were negative. In addition, no non-salmonids were susceptible to experimental exposure. Wild Pacific salmon species in British Columbia, Canada, were examined for L. salmonae during their freshwater life history stages (smolts, prespawning, spawning). All stages were infected, although infections in smolts were only detectable using a L. salmonae-specific PCR test. Many previous Loma spp. described from Oncorhychus spp. are likely L. salmonae based on host, parasite morphology, and site of infection.

  8. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    USGS Publications Warehouse

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or 2010, though age-1 and older O. mykiss abundance was similar. In Rattlesnake Creek, age-0 O. mykiss abundance during 2016 slightly exceeded the mean abundance from 2001 through 2005, although age-1 and older O. mykiss abundance was lower than from 2001 through 2005. These sampling efforts also provided the opportunity to collect genetic samples to investigate parental and stock origin, although funding to analyze the samples was not part of this grant. Juvenile salmonid sampling efforts during 2016 have shown that natural spawning produced steelhead and coho smolts and that coho were colonizing some tributaries. The 2016 efforts also provided the first post-dam juvenile abundance estimates. We hope to continue monitoring to better understand abundance trends, distribution, and life history patterns of recolonizing salmonids in the White Salmon River to assess efficacy of natural recolonization and to inform management decisions.

  9. Grays River Watershed and Biological Assessment Final Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest andmore » agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.« less

  10. Grays River Watershed and Biological Assessment, 2006 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher; Geist, David

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest andmore » agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within riparian buffers around each stream or river channel. Included in the overall watershed assessment are field habitat surveys and analyses of the physical and hydrological characteristics of primary chum and fall Chinook salmon spawning areas and spawning habitat availability and use. This assessment is a significant step in a comprehensive program to ensure the survival and recovery of Columbia River chum salmon in its most productive system and builds on existing recovery planning efforts for these ESA-listed salmonids within the Grays River and the lower Columbia River. This assessment also provides a basis for the recovery of other fish species in the Grays River, including coho salmon, winter steelhead, coastal cutthroat trout, and Pacific lamprey.« less

  11. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surfacemore » was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.« less

  12. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  13. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  14. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  15. Adult Pacific Lamprey Migration Behavior and Escapement in the Bonneville Reservoir and Lower Columbia River Monitored Using the Juvenile Salmonid Acoustic Telemetry System (JSATS), 2011

    DTIC Science & Technology

    2012-01-01

    sea lions (Zalophus californicus, Eumetopias jubatus) or white sturgeon (Acipenser transmontanus) in the tailrace, moved to spawning tributaries...and management of three parasitic lampreys of North America. Fisheries 35:580-594. Close, D. A., M. Fitzpatrick, and H. Li. 2002. The ecological

  16. Weirs: Counting and sampling adult salmonids in streams and rivers

    USGS Publications Warehouse

    Zimmerman, Christian E.; Zabkar, Laura M.; Johnson, David H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Weirs—which function as porous barriers built across stream—have long been used to capture migrating fish in flowing waters. For example, the Netsilik peoples of northern Canada used V-shaped weirs constructed of river rocks gathered onsite to capture migrating Arctic char Salvelinus alpinus (Balikci 1970). Similarly, fences constructed of stakes and a latticework of willow branches or staves were used by Native Americans to capture migrating salmon in streams along the West Coast of North America (Stewart 1994). In modern times, weirs have also been used in terminal fisheries and to capture brood fish for use in fish culture. Weirs have been used to gather data on age structure, condition, sex ratio, spawning escapement, abundance, and migratory patterns of fish in streams. One of the critical elements of fisheries management and stock assessment of salmonids is a count of adult fish returning to spawn. Weirs are frequently used to capture or count fish to determine status and trends of populations or direct inseason management of fisheries; generally, weirs are the standard against which other techniques are measured. To evaluate fishery management actions, the number of fish escaping to spawn is often compared to river-specific target spawning requirements (O’Connell and Dempson 1995). A critical factor in these analyses is the determination of total run size (O’Connell 2003). O’Connell compared methods of run-size estimation against absolute counts from a rigid weir and concluded that, given the uncertainty of estimators, the absolute counts obtained at the weir wer significantly better than modeled estimates, which deviated as much as 50–60% from actual counts. The use of weirs is generally restricted to streams and small rivers because of construction expense, formation of navigation barriers, and the tendency of weirs to clog with debris, which can cause flooding and collapse of the structure (Hubert 1996). When feasible, however, weirs are generally regarded as the most accurate technique available to quantify escapement as the result is supposedly an absolute count (Cousens et al. 1982). Weirs also provide the opportunity to capture fish for observation and sampling of biological characteristics and tissues; they may also serve as recapture sites for basin-wide, mark–recapture population estimates. Temporary weirs are useful in monitoring wild populations of salmonids as well as for capturing broodstock for artificial propagation.

  17. Prevalence of infectious salmon anaemia virus (ISAV) in wild salmonids in western Norway.

    PubMed

    Plarre, H; Devold, M; Snow, M; Nylund, A

    2005-08-09

    Studies of infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Ireland, Canada, the USA and Chile, suggest that natural reservoirs for this virus can be found on both sides of the North Atlantic. Based on existing information about ISAV it is believed to be maintained in wild populations of trout and salmon in Europe. It has further been suggested that ISAV is transmitted between wild hosts, mainly during their freshwater spawning phase in rivers, and that wild salmonids, mainly trout, are possible carriers of benign wild-type variants of ISAV. Change in virulence is probably a result of deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates after transmission to farmed salmon. Hence, it has been suggested that the frequency of new outbreaks of ISA in farmed salmon could partly reflect natural variation in the prevalence of ISAV in wild populations of salmonids. The aims of the present study were to screen for ISAV in wild salmonids during spawning in rivers and to determine the pathogenicity of resultant isolates from wild fish. Tissues from wild salmonids were screened by RT-PCR and real-time PCR. The prevalence of ISAV in wild trout Salmo trutta varied from 62 to 100% between tested rivers in 2001. The prevalence dropped in 2002, ranging from 13 to 36% in the same rivers and to only 6% in 2003. All ISAV were nonpathogenic when injected into disease-free Atlantic salmon, but were capable of propagation, as indicated by subsequent viral recovery. However, non-pathogenic ISAV has also been found in farmed salmon, where a prevalence as high as 60% has been registered, but with no mortalities occurring. Based on the results of the present and other studies, it must be concluded that vital information about the importance of wild and man-made reservoirs for the emergence of ISA in salmon farming is still lacking. This information can only be gained by further screening of possible reservoirs, combined with the development of a molecular tool for typing virulence and the geographical origin of the virus isolates.

  18. Influence of forest and rangeland management on anadromous fish habitat in Western North America: rehabilitating and enhancing stream habitat—1. Review and evaluation.

    Treesearch

    James D. Hall; Calvin O. Baker

    1982-01-01

    The literature and many published documents on rehabilitating and enhancing stream habitat for salmonid fishes are reviewed. The historical development and conceptual basis for habitat management are considered, followed by a review of successful and unsuccessful techniques for manipulation of spawning, rearing, and riparian habitat. Insufficient attention to...

  19. Spawning habitat and behavior of Gila trout, a rare salmonid of the southwestern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinne, J.N.

    1980-01-01

    The spawning season of Gila trout, Salmo gilae Miller, in three streams in the Gila National Forest, New Mexico, began in early April at the lowest elevation and continued through June at the highest elevation. Water temperature and stream flow interacted to induce spawning; however, the former was more important. Spawning commenced at water temperatures near 8 C. Redds were normally in 6 to 15 cm deep water, about a quarter of the stream width from one bank and within 5 m of cover. The substrate was predominantly gravel and small pebble (0.2 to 3.8 cm). Spawning fish selected reddmore » sites based on depth of water and substrate rather than on water velocity. Redds ranged in area from less than 0.1 m/sup 2/ to nearly 2.0 m/sup 2/ and averaged 3 to 4 cm in structural depth. Normally a single fish or a pair of fish occupied a redd, but occupancy by three to four fish was common. Most spawning activity occurred between 1300 and 1600 hours. Fry (15 to 20 mm long) emerged in 8 to 10 weeks and inhibited riffle areas. Absence of fry from pools occupied by adults indicated that cannibalism may occur.« less

  20. Reproductive energy expenditure and changes in body morphology for a population of Chinook salmon Oncorhynchus tshawytscha with a long distance migration.

    PubMed

    Bowerman, T E; Pinson-Dumm, A; Peery, C A; Caudill, C C

    2017-05-01

    Energetic demands of a long freshwater migration, extended holding period, gamete development and spawning were evaluated for a population of stream-type Chinook salmon Oncorhynchus tshawytscha. Female and male somatic mass decreased by 24 and 21%, respectively, during migration and by an additional 18 and 12% during holding. Between freshwater entry and death after spawning, females allocated 14% of initial somatic energy towards gonad development and 78% for metabolism (46, 25 and 7% during migration, holding and spawning, respectively). Males used only 2% of initial somatic energy for gonad development and 80% on metabolic costs, as well as an increase in snout length (41, 28 and 11% during migration, holding and spawning, respectively). Individually marked O. tshawytscha took between 27 and 53 days to migrate 920 km. Those with slower travel times through the dammed section of the migration corridor arrived at spawning grounds with less muscle energy than faster migrants. Although energy depletion did not appear to be the proximate cause of death in most pre-spawn mortalities, average final post-spawning somatic energy densities were low at 3·6 kJ g -1 in females and 4·1 kJ g -1 in males, consistent with the concept of a minimum energy threshold required to sustain life in semelparous salmonids. © 2017 The Fisheries Society of the British Isles.

  1. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    PubMed

    Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius

    2015-01-01

    European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  2. Influence of forest and rangeland management on anadromous fish habitat in Western North America: rehabilitating and enhancing stream habitat—2. Field applications.

    Treesearch

    Gordon H. Reeves; Terry D. Roelofs

    1982-01-01

    Current techniques for rehabilitating and enhancing habitat to increase natural production of anadromous salmonids in the Pacific Northwest and Alaska are described. Methods to enhance spawning, rearing, and riparian habitat, and to improve access are reviewed. The information was compiled from published literature, unpublished reports by State and Federal agencies,...

  3. Effects of spatial extent on modeled relations between habitat and anadromous salmonid spawning success

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Jason L. White

    2015-01-01

    We address the question of spatial extent: how model results depend on the amount and type of space represented. For models of how stream habitat affects fish populations, how do the amount and characteristics of habitat represented in the model affect its results and how well do those results represent the whole stream? Our analysis used inSalmo, an individual-based...

  4. Removal of small dams and its influence on physical habitat for salmonids in a Norwegian river

    NASA Astrophysics Data System (ADS)

    Fjeldstad, Hans-Petter; Barlaup, Bjørn; Stickler, Morten; Alfredsen, Knut; Gabrielsen, Sven-Erik

    2010-05-01

    While research and implementation of upstream migration solutions is extensive, and indeed often successful, full scale restoration projects and investigations of their influence on fish biology are rare in Norway. Acid deposition in Norwegian catchments peaked in the 1980's and resulted in both chronically and episodically acidified rivers and Salmonids in River Nidelva, one of the largest cathments in southern Norway, where extinct for decades. During this period hydropower development in the river paid limited attention to aquatic ecology. Weirs were constructed for esthetic purposes in the late 1970's and turned a 3 km stretch into a lake habitat, well suited for lake dwelling fish species, but unsuited for migration, spawning and juvenile habitat for salmonids. Since 2005, continuous liming to mitigate acidification has improved the water quality and a program for reintroduction of Atlantic salmon has been implemented. We used hydraulic modeling to plan the removal of two weirs on a bypass reach of the river. The 50 meters wide concrete weirs were blasted and removed in 2007, and ecological monitoring has been carried out in the river to assess the effect of weir removal. Topographic mapping, hydraulic measurements and modeling, in combination with biological surveys before and after the removal of the weirs, has proved to represent a powerful method for design of physical habitat adjustments and assessing their influence on fish biology. The model results also supported a rapid progress of planning and executing of the works. While telemetry studies before weir removal suggested that adult migration past the weirs was delayed with several weeks the fish can now pass the reach with minor obstacles. Spawning sites were discovered in the old bed substrate and were occupied already the first season after water velocities increased to suitable levels for spawning. Accordingly, the densities of Atlantic salmon juveniles have shown a marked increased after the conclusion of the project. Catches of pike and cyprinids on the reach is reduced, indicating that their habitat is no longer suitable, while salmon anglers have found new favorite spots in the restored pools and runs.

  5. Hydrological and thermal effects of hydropeaking on early life stages of salmonids: A modelling approach for implementing mitigation strategies.

    PubMed

    Casas-Mulet, Roser; Saltveit, Svein Jakob; Alfredsen, Knut Tore

    2016-12-15

    Alterations in hydrological and thermal regimes can potentially affect salmonid early life stages development and survival. The dewatering of salmon spawning redds due to hydropeaking can lead to mortality in early life stages, with higher impact on the alevins as they have lower tolerance to dewatering than the eggs. Flow-related mitigation measures can reduce early life stage mortality. We present a set of modelling tools to assess impacts and mitigation options to minimise the risk of mortality in early life stages in hydropeaking rivers. We successfully modelled long-term hydrological and thermal alterations and consequences for development rates. We estimated the risk of early life stages mortality and assessed the cost-effectiveness of implementing three release-related mitigation options (A,B,C). The economic cost of mitigation was low and ranged between 0.7% and 2.6% of the annual hydropower production. Options reducing the flow during spawning (B and C) in addition to only release minimum flows during development (A) were considered more effective for egg and alevin survival. Options B and C were however constraint by water availability in the system for certain years, and therefore only option A was always feasible. The set of modelling tools used in this study were satisfactory and their applications can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling tools can be tested on their effectiveness to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of fine sediment, hyporheic flow, and spawning site characteristics on survival and development of bull trout embryos

    USGS Publications Warehouse

    Bowerman, Tracy; Neilson, Bethany; Budy, Phaedra

    2014-01-01

    Successful spawning is imperative for the persistence of salmonid populations, but relatively little research has been conducted to evaluate factors affecting early life-stage survival for bull trout (Salvelinus confluentus), a threatened char. We conducted a field experiment to assess the relationship between site-specific environmental factors and bull trout embryo survival and fry emergence timing. Survival from egg to hatch was negatively related to percent fine sediment (<1 mm) in the redd and positively related to the strength of downwelling at spawning sites. Survival of eggs to fry emergence was also negatively related to fine sediment, and the best statistical models included additional variables that described the rate of downwelling and intragravel flow within the incubation environment. Fry emerged at an earlier stage in development from redds with high percentages of fine sediment. Increased hydraulic conductivity via redd construction and selection of spawning sites with strong downwelling appear to enhance hyporheic flow rates and bull trout egg survival, but early life-stage success may ultimately be limited by intrusion of fine sediment into the incubation environment.

  7. Occurrence and variation of egg cannibalism in brown trout Salmo trutta

    NASA Astrophysics Data System (ADS)

    Aymes, Jean-Christophe; Larrieu, Maider; Tentelier, Cédric; Labonne, Jacques

    2010-04-01

    Egg cannibalism is a common behavior among fish taxa and is largely studied in species with parental care. Heterocannibalism and filial cannibalism have both been reported in salmonids, a group with no extended parental care, but the topic remained somewhat under-documented, especially in brown trout ( Salmo trutta). In the present study, 83 spawning events were recorded finely with high-resolution video in three natural populations. Redd covering dynamics by females and the timing of cannibalism showed that eggs were vulnerable mainly during the first 120 s after spawning. Cannibalism occurred in 25% of spawnings and was principally perpetrated by peripherals but the sires also cannibalized their brood, especially after multiple mating. The probability of cannibalism increased with operational sex ratio but did not correlate with the date in spawning season. Occurrence of cannibalism also differed between populations. Our results suggest that such behavior is frequent and may reduce the fitness of parents. Its evolutionary implications for population ecology should be considered, since it appeared to be controlled by environmental and spatial factors.

  8. Occurrence and variation of egg cannibalism in brown trout Salmo trutta.

    PubMed

    Aymes, Jean-Christophe; Larrieu, Maider; Tentelier, Cédric; Labonne, Jacques

    2010-04-01

    Egg cannibalism is a common behavior among fish taxa and is largely studied in species with parental care. Heterocannibalism and filial cannibalism have both been reported in salmonids, a group with no extended parental care, but the topic remained somewhat under-documented, especially in brown trout (Salmo trutta). In the present study, 83 spawning events were recorded finely with high-resolution video in three natural populations. Redd covering dynamics by females and the timing of cannibalism showed that eggs were vulnerable mainly during the first 120 s after spawning. Cannibalism occurred in 25% of spawnings and was principally perpetrated by peripherals but the sires also cannibalized their brood, especially after multiple mating. The probability of cannibalism increased with operational sex ratio but did not correlate with the date in spawning season. Occurrence of cannibalism also differed between populations. Our results suggest that such behavior is frequent and may reduce the fitness of parents. Its evolutionary implications for population ecology should be considered, since it appeared to be controlled by environmental and spatial factors.

  9. Annual variation of spawning Cutthroat Trout in a small Western USA stream: A case study with implications for the conservation of potamodromous trout life history diversity

    USGS Publications Warehouse

    Bennett, Stephen; Al-Chokhachy, Robert K.; Roper, Brett B.; Budy, Phaedra

    2014-01-01

    Little is known about the variability in the spatial and temporal distribution of spawning potamodromous trout despite decades of research directed at salmonid spawning ecology and the increased awareness that conserving life history diversity should be a focus of management. We monitored a population of fluvial–resident Bonneville Cutthroat Trout Oncorhynchus clarkii utah in a tributary to the Logan River, Utah, from 2006 to 2012 to gain insight into the distribution and timing of spawning and what factors may influence these spawning activities. We monitored Bonneville Cutthroat Trout using redd surveys with multiple observers and georeferenced redd locations. We documented an extended spawning period that lasted from late April to mid-July. The onset, median, and end of spawning was best predicted by the mean maximum water temperature during the first 13 weeks of the year (F = 130. 4, df = 5, R2 = 0.96, P < 0.0001) with spawning beginning and ending earlier in years that had warmer water temperatures prior to spawning. The distribution of redds was clumped each year and the relative density of redds was greater in a reach dominated by dams constructed by beavers Castor canadensis. Both dam failure and construction appeared to be responsible for creating new spawning habitat that was quickly occupied, demonstrating rapid temporal response to local habitat changes. Bonneville Cutthroat Trout appeared to establish and defend a redd for up to 2 d, and spawning most often occurred between similar-sized individuals. Spawning surveys for potamodromous trout are an underutilized tool that could be used to better understand the distribution and timing of spawning as well as determine the size and trends of the reproducing portion of populations of management concern. Without efforts to document the diversity of this important aspect of potamodromous trout life history, prioritization of conservation will be problematic.

  10. Annual variation of spawning cutthroat trout in a small western USA stream: a case study with implications for the conservation of potamodromous trout life history diversity

    USGS Publications Warehouse

    Bennett, Stephen; Al-Chokhachy, Robert; Roper, Brett B.; Budy, Phaedra

    2014-01-01

    Little is known about the variability in the spatial and temporal distribution of spawning potamodromous trout despite decades of research directed at salmonid spawning ecology and the increased awareness that conserving life history diversity should be a focus of management. We monitored a population of fluvial–resident Bonneville Cutthroat Trout Oncorhynchus clarkii utah in a tributary to the Logan River, Utah, from 2006 to 2012 to gain insight into the distribution and timing of spawning and what factors may influence these spawning activities. We monitored Bonneville Cutthroat Trout using redd surveys with multiple observers and georeferenced redd locations. We documented an extended spawning period that lasted from late April to mid-July. The onset, median, and end of spawning was best predicted by the mean maximum water temperature during the first 13 weeks of the year (F = 130. 4, df = 5, R2 = 0.96, P < 0.0001) with spawning beginning and ending earlier in years that had warmer water temperatures prior to spawning. The distribution of redds was clumped each year and the relative density of redds was greater in a reach dominated by dams constructed by beavers Castor canadensis. Both dam failure and construction appeared to be responsible for creating new spawning habitat that was quickly occupied, demonstrating rapid temporal response to local habitat changes. Bonneville Cutthroat Trout appeared to establish and defend a redd for up to 2 d, and spawning most often occurred between similar-sized individuals. Spawning surveys for potamodromous trout are an underutilized tool that could be used to better understand the distribution and timing of spawning as well as determine the size and trends of the reproducing portion of populations of management concern. Without efforts to document the diversity of this important aspect of potamodromous trout life history, prioritization of conservation will be problematic.

  11. Hydrologic change in a coast redwood forest, Caspar Creek Experimental Watersheds: implications for salmonid survival

    Treesearch

    Elizabeth Keppeler

    2016-01-01

    The 52-year record of streamflow from the Caspar Creek Experimental Watersheds shows a trend toward decreasing rainfall and streamflow during the fall season when coho salmon (Oncorhynchus kisutch) migrate upstream to spawn. Rainfall records show a slight declining trend in fall totals and a slight increasing trend in spring totals since 1962, but only November shows a...

  12. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids.

    PubMed

    Kocan, R; Lapatra, S; Gregg, J; Winton, J; Hershberger, P

    2006-09-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration.

  13. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids

    USGS Publications Warehouse

    Kocan, R.; LaPatra, S.; Gregg, J.; Winton, J.; Hershberger, P.

    2006-01-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration. ?? 2006 Blackwell Publishing Ltd.

  14. Trends in spawning populations of Pacific anadromous salmonids

    USGS Publications Warehouse

    Konkel, G.W.; McIntyre, J.D.

    1987-01-01

    Annual escapement records for 1968-1984 for five species of Pacific salmon-chinook (Oncorhynchus tshawytscha), coho (O. kisutch), sockeye (O. nerka), pink (O. gorbuscha), and chum (O. keta)—and steelhead (Salmo gairdneri) were obtained from published and unpublished sources and organized in a computer database. More than 25,500 escapement records were obtained for more than 1,100 locations throughout Alaska, Washington, Idaho, Oregon, and California. Escapement trends for naturally reproducing populations for which data were available for at least 7 years from 1968 to 1984 and at least 4 years from 1975 to 1984 were analyzed by linear regression. Significant trends were observed in about 30% of the 886 populations examined. Trends were summarized by species for three geographic regions in Alaska and four in the Pacific Northwest (including California). For chinook, sockeye, and pink salmon, trends were predominantly increasing in the Alaska regions and either lacking or predominantly decreasing in most of the Pacific Northwest regions; for coho and chum salmon, trends were predominantly decreasing in one or more Alaska regions as well as in most of the Pacific Northwest regions. For steelhead, too few populations were examined to enable us to characterize trends throughout their range. Among the 657 salmonid populations excluded from the trend analysis because the data sets were incomplete, 13 (of which 2 were in Alaska) declined to zero during the period of analysis. For coho, sockeye, pink, and chum salmon and steelhead, major data gaps were revealed by a comparison of the geographic distribution of escapement records with the spawning distribution of the species. For chinook salmon, escapement records were more geographically representative of the spawning distribution.

  15. Isolation of infectious hematopoietic necrosis virus from a leech (Piscicola salmositica) and a copepod (Salmincola sp.), ectoparasites of sockeye salmon Oncorhynchus nerka

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Klaybor, D.; Batts, W.N.

    1990-01-01

    Infectious haematopoietic necrosis (IHN) virus was isolated from freshwater leeches Piscicola salmositica and copepods Salmincola sp. removed from the gills of spawning sockeye salmon, Oncorhynchus nerka. This is the first report of the isolation of IHN virus from an animal other than salmonid fishes. High levels of IHN virus were also found in leeches taken from the bottom gravel of the spawning area. The prevalence of IHN virus in samples of individual leeches was as high as 100% and the virus was isolated from 95% of pooled samples of copepod and 1.5 × 108 pfu/g in the leech. The level of virus in leeches removed from fish gills was sometimes higher than the level of virus in the gill tissue itself. Virus persisted for at least 16 d in leeches held in the laboratory without feeding. Transmission of IHN virus by leeches probably increases the infection rate of spawning sockeye salmon.

  16. Modeling the effects of pulsed versus chronic sand inputs on salmonid spawning habitat in a low-gradient gravel-bed river

    Treesearch

    Oscar Maturana; Daniele Tonina; James A. McKean; John M. Buffington; Charles H. Luce; Diego Caamano

    2013-01-01

    It is widely recognized that high supplies of fine sediment, largely sand, can negatively impact the aquatic habitat quality of gravel-bed rivers, but effects of the style of input (chronic vs. pulsed) have not been examined quantitatively. We hypothesize that a continuous (i.e. chronic) supply of sand will be more detrimental to the quality of aquatic habitat than an...

  17. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  18. 9000 years of salmon fishing on the Columbia River, North America

    USGS Publications Warehouse

    Butler, V.L.; O'Connor, J. E.

    2004-01-01

    A large assemblage of salmon bones excavated 50 yr ago from an ???10,000-yr-old archaeological site near The Dalles, Oregon, USA, has been the primary evidence that early native people along the Columbia River subsisted on salmon. Recent debate about the human role in creating the deposit prompted excavation of additional deposits and analysis of archaeologic, geologic, and hydrologic conditions at the site. Results indicate an anthropogenic source for most of the salmonid remains, which have associated radiocarbon dates indicating that the site was occupied as long ago as 9300 cal yr B.P. The abundance of salmon bone indicates that salmon was a major food item and suggests that migratory salmonids had well-established spawning populations in some parts of the Columbia Basin by 9300-8200 yr ago. ?? 2004 University of Washington. All rights reserved.

  19. Fall and winter survival of brook trout and brown trout in a north-central Pennsylvania watershed

    USGS Publications Warehouse

    Sweka, John A.; Davis, Lori A.; Wagner, Tyler

    2017-01-01

    Stream-dwelling salmonids that spawn in the fall generally experience their lowest survival during the fall and winter due to behavioral changes associated with spawning and energetic deficiencies during this time of year. We used data from Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta implanted with radio transmitters in tributaries of the Hunts Run watershed of north-central Pennsylvania to estimate survival from the fall into the winter seasons (September 2012–February 2013). We examined the effects that individual-level covariates (trout species, size, and movement rates) and stream-level covariates (individual stream and cumulative drainage area of a stream) have on survival. Brook Trout experienced significantly lower survival than Brown Trout, especially in the early fall during their peak spawning period. Besides a significant species effect, none of the other covariates examined influenced survival for either species. A difference in life history between these species, with Brook Trout having a shorter life expectancy than Brown Trout, is likely the primary reason for the lower survival of Brook Trout. However, Brook Trout also spawn earlier in the fall than Brown Trout and low flows during Brook Trout spawning may have resulted in a greater risk of predation for Brook Trout compared with Brown Trout, thereby also contributing to the observed differences in survival between these species. Our estimates of survival can aid parameterization of future population models for Brook Trout and Brown Trout through the spawning season and into winter.

  20. Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning.

    PubMed

    Lohse, Kathleen A; Newburn, David A; Opperman, Jeff J; Merenlender, Adina M

    2008-03-01

    Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.

  1. Sediment mobility in fish bearing streams: the influence of floods and spawning salmon

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Gottesfeld, A. S.; Tunnicliffe, J. F.

    2002-12-01

    Magnetically tagged particles were used to investigate the effects of sockeye salmon (Oncorhynchus nerka) on the mobility of substrate in gravel bed streams in the Stuart-Takla region of north-central British Columbia. The study reaches in Forfar and O'Ne-ell Creeks have gradients of from 0.005 to 0.019 and have a forced pool-riffle morphology. The dominant annual sediment-transporting event in the channels is the snow-melt flood events in late May or June, with lesser work usually accomplished during summer and fall storm floods. In August every year, the channel beds material is reworked by the Early Stuart salmon spawning event, as the fish excavated the streambed to deposit and bury their eggs. At each of the 5 reaches within the 2 study creeks, 250 tracers (8.5mm - 180mm) were placed in a line on the bed before and after transport events. Results were highly variable, subject to the magnitude of floods, and the returning population of salmon. Overall, the depositional pattern from nival flood events usually demonstrated a high degree of clast mobilization, long travel distances (up to 150m) and mean depths of burial up to 18cm. Storm flood events showed somewhat lower rates of mobilization, distances of travel and depths of burial. Although the fish did not move the tracers very far, their effect on the bed was generally quite pervasive: up to 100% of the clasts were mobilized, and the depth of burial was considerable (mean burial depths up to 14cm). Repeat topographic surveys of the streambed before and after transport events revealed considerable disruption of the bed surface. The geomorphic effect of fish was enhanced in the lower reaches where the hydraulic transporting capacity is somewhat less (lower stream power), the sediment calibre is finer, and fish spawning density is higher. The amount of sediment mobilized by salmonids is often on the same order of magnitude as flood events. The significant vertical mixing of sediments by the fish has important implications for the mobility of sediment in the stream. Since any armouring layer formed during high flows throughout the year are subject to the bioturbation of salmonids, the transport threshold in the creeks remains relatively low. Salmonids thus play an integral role in the annual sediment budget of the lower reaches of these creeks.

  2. Distribution and Food Habits of Juvenile Salmonids in the Duwamish Estuary, Washington, 1980

    DTIC Science & Technology

    1981-03-01

    E.O. Salo, K. Garrison, and L. Matheson. 1979. Fish ecology studies in the Nisqually Reach area of southern Puget Sound , Washington. Univ. of Wash...Washington Department of Fisheries (WDF) indicate that Gteen River fall chinook are one of the largest naturally spawning stocks of this species in Puget Sound ...1977 Puget Sound summer-fall chinook methodology: Escapement estimates and goals, run size forecasts, and in-season run size updates. State of Wash

  3. Developments in the control of bacterial kidney disease of salmonid fishes

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Bullock, G.L.

    1989-01-01

    Bacterial kidney disease of salmonid fishes, caused by Renibactenum salrnoninarum, was first reported more than 50 yr ago; nevertheless, large gaps persist in our knowledge of the infection - particularly in methods for its control. In the 1950's, principal control measures consisted of prophylactic or therapeutic feeding of sulfonamides, which were later supplanted by the antibiotic erythromycin. Chemotherapy has effected some reduction of mortality, but benefits are typically transient and mortality usually resumes after the drug is withdrawn. Some studies have indicated that diet composition affects the prevalence and severity of the disease. Although tests of chemotherapeutants and diet modification have continued, research emphasis has shifted partly toward prevention of the disease by breaking the infection cycle. It is now generally accepted that R. salrnoninarum can be transmitted both vertically and horizontally. Experimental evidence indicates that immersion of newly fertilized eggs in iodophor or erythromycin does not prevent vertical transmission. However, the injection of female salmon with erythromycin before they spawn shows promise as a practical means of interrupting vertical transmission. The results of attempts to prevent infection of juvenile salmonids by vaccination against bacterial kidney disease have been disappointing, thus underscoring a basic need for a better understanding of protective mechanisms in salmonids. The recent development of more sensitive and quantitative detection methods should aid in evaluating the efficacy of current and future control strategies.

  4. Sex-specific differences in cardiac control and hematology of sockeye salmon (Oncorhynchus nerka) approaching their spawning grounds.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2009-10-01

    Some male salmonids (e.g., rainbow trout) display profound cardiovascular adjustments during sexual maturation, including cardiac growth and hypertension, and tachycardia has been observed in free-ranging male salmonids near their spawning grounds. In the present study, we investigated cardiac control, dorsal aortic blood pressure, cardiac morphometrics, and hematological variables in wild, sexually maturing sockeye salmon (Oncorhynchus nerka) with a particular aim to decipher any sex-specific differences. Routine heart rate (f(H)) was significantly higher in females (52 vs. 43 beats/min), which was due to significantly lower cholinergic tone (28 vs. 46%), because there were no differences in adrenergic tone or intrinsic heart rate between sexes. No differences in blood pressure were observed despite males possessing an 11% greater relative ventricular mass. Concomitant with higher routine heart rates, female sockeye had significantly higher levels of cortisol, testosterone, and 17beta-estradiol, whereas the level of 11-ketotestosterone was higher in males. There were no differences in hematocrit or hemoglobin concentration between the sexes. The findings of this study highlight the importance of considering sex as a variable in research fields such as conservation biology and when modeling the consequences of local and global climate change. Indeed, this study helps to provide a mechanistic basis for the significantly higher rates of female mortality observed in previous studies of wild-caught sockeye salmon.

  5. River Temperature Dynamics and Habitat Characteristics as Predictors of Salmonid Abundance using Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Gryczkowski, L.; Gallion, D.; Haeseker, S.; Bower, R.; Collier, M.; Selker, J. S.; Scherberg, J.; Henry, R.

    2011-12-01

    Salmonids require cool water for all life stages, including spawning and growth. Excessive water temperature causes reduced growth and increased disease and mortality. During the summer, salmonids seek local zones of cooler water as a refuge from elevated temperatures. They also prefer specific habitat features such as boulders and overhanging vegetation. The purpose of this study is to determine whether temperature dynamics or commonly measured fish habitat metrics best explain salmonid abundance. The study site was a 2-kilometer reach of the Walla Walla River near Milton-Freewater, OR, USA, which provides habitat for the salmonids chinook salmon (Oncorhynchus tshawytscha), steelhead/rainbow trout (Oncorhynchus mykiss), mountain whitefish (Prosopium williamsoni), and the endangered bull trout (Salvelinus confluentus). The Walla Walla River is listed as an impaired water body under section 303(d) of the Clean Water Act due to temperature. The associated total maximum daily load (TMDL) calls for temperatures to be below 18 °C at all times for salmonid rearing and migration; however, river temperatures surpassed 24 °C in parts of the study reach in 2009. The two largest factors contributing to the warmer water are reduced riparian vegetation, which decreases shading and increases direct solar radiation, and decreased summer flows caused by diversions and irrigation for agriculture. Fiber-optic distributed temperature sensing has emerged as a unique and powerful tool for ecological applications because of its high spatial and temporal resolution. In this study, meter-scale temperature measurements were obtained at 15-minute intervals along the length of the study reach, allowing for the detection and quantification of cold water inflows during the summer of 2009. The cold water inflows were classified as groundwater or hyporheic sources based on the diurnal temperature patterns. Snorkel surveys were conducted in mid-July and mid-August, 2009 to enumerate salmonid abundance in 23 pools. Fish habitat metrics were quantified for each pool by visual estimation. Regression analysis suggests that temperature-related variables explain fish abundance better than habitat variables, and that salmonids' affinity for cold water refuge may be enhanced following periods of high temperature approaching the lethal threshold.

  6. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    USGS Publications Warehouse

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  7. Habitat associations of age-0 cutthroat trout in a spring stream improved for adult salmonids

    USGS Publications Warehouse

    Hubert, W.A.; Joyce, M.P.

    2005-01-01

    Native cutthroat trout (Oncorhynchus clarki) in the Snake River watershed use streams formed by large springs for spawning and nursery habitat. Several spring streams have been modified to enhance abundance of adult salmonids, but the habitat associations of age-0 cutthroat trout in these systems are undescribed. We assessed the frequency of collection of age-0 cutthroat trout in riffles, riffle margins, pool margins, and backwaters from late June to the middle of August 2000 in a spring stream with such modifications. The proportion of sites in which age-0 cutthroat trout were collected increased up to the middle of July and then decreased. We found substantially lower frequencies of collection of age-0 cutthroat trout in riffles compared to the three stream-margin habitat types. Age-0 cutthroat trout appeared to select shallow, low-velocity, stream-margin habitat with cover that provided protection from piscivorous adult salmonids and avian predators. Our observations suggest that modification of spring streams for production of cutthroat trout should include efforts to manage stream margins so they provide cover in the form of aquatic macrophytes or overhanging vegetation for age-0 fish.

  8. Prevention of Prespawning Mortality: Cause of Salmon Headburns and Cranial Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Elston, R A.; Abernethy, Cary S.

    2004-06-01

    This project was to undertaken to provide information about a condition known as ''headburn''. Information from the project will enable U.S. Corps of Engineers managers to make adjustments in operational procedures or facilities on the Columbia and Snake rivers to prevent loss of pre-spawning adult salmonids that migrate through the facilities. Headburn is a descriptive clinical term used by fishery biologists to describe scalping or exfoliation of skin and ulceration of underlying connective tissue and muscle, primarily of the jaw and cranial region of salmonids observed at fish passage facilities. Headburn lesions are primarily caused when fish collide with concretemore » or other structures at dams and fish passage facilities, and may be exacerbated in some fish that ''fallback'' or pass over spillways or through turbine assemblies after having passed the dam through a fish ladder. Prespawning mortality of headburned salmonids can be prevented or greatly reduced by therapeutic treatment of both hatchery and wild fish. Treatments would consist of topical application of an anti-fungal agent, injection of replacement plasma electrolytes into the peritoneal cavity, and injection of a broad-spectrum antibacterial agent at fish passage and trapping facilities or hatcheries.« less

  9. Parvicapsula minibicornis in anadromous sockeye (Oncorhynchus nerka) and coho (Oncorhynchus kisutch) salmon from tributaries of the Columbia River.

    PubMed

    Jones, Simon; Prosperi-Porta, Gina; Dawe, Sheila; Taylor, Kimberley; Goh, Benjamin

    2004-08-01

    The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.

  10. Evaluation of the Efficacy of Iodophor Disinfection of Walleye and Northern Pike Eggs to Eliminate Viral Hemorrhagic Septicemia Virus

    USGS Publications Warehouse

    Tuttle-Lau, M.T.; Phillips, K.A.; Gaikowski, M.P.

    2009-01-01

    Viral hemorrhagic septicemia virus (VHSv) is a serious fish pathogen that has been responsible for large-scale fish kills in the Great Lakes since 2005. It causes high mortality and resulting outbreaks have severe economic consequences for aquaculture. Iodophor disinfection of salmonid eggs is a standard hatchery practice to reduce the risk of pathogen transfer during gamete collection ('spawning') operations and is thus a leading candidate for reducing VHSv transmission during and after spawning of nonsalmonid fishes. However, before it is incorporated by hatcheries during nonsalmonid fish spawning efforts, its safety and effectiveness needs to be evaluated. The USGS Fact Sheet 2009-3107, 'Evaluation of the Efficacy of Iodophor Disinfection of Walleye and Northern Pike Eggs to Eliminate Viral Hemorrhagic Septicemia Virus' presents the results of a study to assess the effectiveness of iodophor disinfection for eliminating VHSv (strain IVb) from fertilized eggs of walleye and northern pike intentionally challenged with VHSv following egg fertilization. Walleye and northern pike egg survival (hatch) following iodophor egg disinfection also was assessed.

  11. Lipid reserve dynamics and magnification of persistent organic pollutants in spawning sockeye salmon (Oncorhynchus nerka) from the Fraser River, British Columbia.

    PubMed

    Kelly, Barry C; Gray, Samantha L; Ikonomou, Michael G; Macdonald, J Steve; Bandiera, Stelvio M; Hrycay, Eugene G

    2007-05-01

    Pacific sockeye salmon (Oncorhynchus nerka) can travel several hundred kilometers to reach native spawning grounds and fulfill semelparous reproduction. The dramatic changes in lipid reserves during upstream migration can greatly affect internal toxicokinetics of persistent organic pollutants (POPs) such as PCBs, PCDDs, and PCDFs. We measured lipid content changes and contaminant concentrations in tissues (liver, muscle, roe/gonads) and biomarker responses (ethoxyresorufin O-deethylase or EROD activity and CYP1A levels) in two Pacific sockeye salmon stocks sampled at several locations along their spawning migration in the Fraser River, British Columbia. Muscle lipid contents declined significantly with increasing upstream migration distance and corresponded to elevated lipid normalized concentrations of PCBs and PCDD/Fs in spawning sockeye. Post-migration magnification factors (MFs) in spawning sockeye ranged between 3 and 12 and were comparable to model-predicted MFs. sigmaPCBs(150-500 ng x g(-1) lipid), sigmaPCDD/Fs (1-1000 pg x g(-1) lipid) and 2,3,7,8-TCDD toxic equivalent or TEQ levels (0.1-15 pg x g(-1) lipid) in spawning sockeye were relatively low and did not affect hepatic EROD activity/CYP1A induction. Despite a 3-fold magnification, TEQ levels in eggs of spawning Fraser River sockeye did not exceed 0.3 pg x g(-1) wet wt, a threshold level associated with 30% egg mortality in salmonids. PCBs in Fraser River sockeye are comparable to previous levels in Pacific sockeye. In contrast to Pacific sockeye from more remote coastal locations, PCDDs and PCDFs in Fraser River sockeye were generally minor components (<25%) of TEQ levels, compared to dioxin like PCB contributions (>75%). The data suggest that (i) the Fraser River is not a major contamination source of PCBs or PCDD/Fs and (ii) marine contaminant distribution, food-chain dynamics, and ocean-migration pathway are likely important factors controlling levels and patterns of POPs in returning Pacific sockeye. We estimate an annual chemical flux entering the Fraser River of up to 150 g for sigmaPCBs and 40 mg for sigmaPCDD/ Fs via returning sockeye. The results indicate that historical concentrations of PCBs and PCDD/Fs remain a potential threat to organism and ecosystem health on the west coast of Canada.

  12. Histological assessment of organs in sexually mature and post-spawning steelhead trout and insights into iteroparity

    USGS Publications Warehouse

    Penney, Zachary L.; Moffitt, Christine M.

    2014-01-01

    Steelhead trout (Oncorhynchus mykiss) are anadromous and iteroparous, but repeat-spawning rates are generally low. Like other anadromous salmonids, steelhead trout fast during freshwater spawning migrations, but little is known about the changes that occur in vital organs and tissues. We hypothesized that fish capable of repeat-spawning would not undergo the same irreversible degeneration and cellular necrosis documented in semelparous salmon. Using Snake River steelhead trout as a model we used histological analysis to assess the cellular architecture in the pyloric stomach, ovary, liver, and spleen in sexually mature and kelt steelhead trout. We observed 38 % of emigrating kelts with food or fecal material in the gastrointestinal tract. Evidence of feeding was more likely in good condition kelts, and feeding was associated with a significant renewal of villi in the pyloric stomach. No vitellogenic oocytes were observed in sections of kelt ovaries, but perinucleolar and early/late stage cortical alveolus oocytes were present suggesting iteroparity was possible. We documented a negative correlation between the quantity of perinucleolar oocytes in ovarian tissues and fork length of kelts suggesting that larger steelhead trout may invest more into a single spawning event. Liver and spleen tissues of both mature and kelt steelhead trout had minimal cellular necroses. Our findings indicate that the physiological processes causing rapid senescence and death in semelparous salmon are not evident in steelhead trout, and recovery begins in fresh water. Future management efforts to increase iteroparity in steelhead trout and Atlantic salmon must consider the physiological processes that influence post-spawning recovery.

  13. Viral hemorrhagic septicemia virus in North America

    USGS Publications Warehouse

    Meyers, Theodore R.; Winton, James R.

    1995-01-01

    The first detections of viral hemorrhagic septicemia virus (VHSV) in North America were in Washington State from adult coho (Oncorhynchus kisutch) and chinook (O. tshawytscha) salmon in 1988. Subsequently, VHSV was isolated from adult coho salmon returning to hatcheries in the Pacific Northwest in 1989, 1991 and 1994. These isolates represented a strain of VHSV that was genetically different from European VHSV as determined by DNA sequence analysis and T1 ribonuclease fingerprinting. The North American strain of VHSV was also isolated from skin lesions of Pacific cod (Gadus macrocephalus) taken from Prince William Sound (PWS), Alaska in 1990, 1991 and 1993. In 1993 and 1994, the virus was isolated from Pacific herring (Clupea harengus pallasi) in Alaskan waters of PWS, Kodiak Island, Auke Bay and Port Frederick. During 1993 and 1994 the herring fishery in PWS failed from a probable complex of environmental stressors but VHSV isolates were associated with hemorrhages of the skin and fins in fish that returned to spawn. Also in 1993 and 1994, VHSV was isolated from apparently healthy stocks of herring in British Columbia, Canada and Puget Sound, Washington. Thus, the North American strain of VHSV is enzootic in the Northeastern Pacific Ocean among Pacific herring stocks with Pacific cod serving as a secondary reservoir. Although the North American strain of the virus appears to be moderately pathogenic for herring, causing occasional self-limiting epizootics, it was shown to be relatively avirulent for several species of salmonids. Pacific herring are common prey for cod and salmon and were most probably the source of the VHSV isolates from the adult salmon returning to spawn in rivers or at hatcheries in Washington State. Compelling circumstances involving the European isolates of VHSV suggest that this strain of the virus also is enzootic among marine fish in the Atlantic Oean. The highly pathogenic nature of the European strain of VHSV for salmonid fish may be the result of the exposure of rainbow trout (O. mykiss), an introduced species, in a stressful environment of intensive culture and the high rate of mutation inherent in all rhabdoviruses. Consequently, we recommend that efforts be made to eradicate the North American strain of VHSV when detected in live salmonids to reduce the possibility of its evolution into a more virulent salmonid virus.

  14. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    NASA Astrophysics Data System (ADS)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  15. Emergence and maintenance of infectious salmon anaemia virus (ISAV) in Europe: a new hypothesis.

    PubMed

    Nylund, A; Devold, M; Plarre, H; Isdal, E; Aarseth, M

    2003-08-15

    The present study describes the use of molecular methods in studying infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Canada, USA and Chile. The nucleotide sequences of the haemagglutinin gene (HA) from 70 ISAV isolates have been analysed for phylogenetic relationship and the average mutation rate of nucleotide substitutions calculated. The isolates constitute 2 major groups, 1 European and 1 North American group. The isolate from Chile is closely related to the North American isolates. The European isolates can be further divided into 3 separate groups reflecting geographical distribution, time of collection, and transmission connected with farming activity. Based on existing information about infectious salmon anaemia (ISA) and new information emerging from the present study, it is hypothesised that: (1) ISAV is maintained in wild populations of trout and salmon in Europe; (2) it is transmitted between wild hosts mainly during their freshwater spawning phase in rivers; (3) wild salmonids, mainly trout, possibly carry benign wild-type ISAV isolates; (4) a change (mutation) in virulence probably results from deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates; (5) ISA emerges in farmed Atlantic salmon when mutated isolates are transmitted from wild salmonids or, following mutation of benign isolates, in farmed salmon after transmission from wild salmonids; (6) farming activity is an important factor in transmission of ISAV between farming sites in addition to transmission of ISAV from wild salmonids to farmed salmon; (7) transmission of ISAV from farmed to wild salmonids probably occurs less frequently than transmission from wild to farmed fish due to lower frequency of susceptible wild individuals; (8) the frequency of new outbreaks of ISA in farmed salmon probably reflects natural variation in the prevalence of ISAV in wild populations of salmonids.

  16. Differential invasion success of salmonids in southern Chile: patterns and hypotheses

    USGS Publications Warehouse

    Arismendi, Ivan; Penaluna, Brooke E.; Dunham, Jason B.; García de Leaniz, Carlos; Soto, Doris; Fleming, Ian A.; Gomez-Uchidam, Daniel; Gajardo, Gonzalo; Vargas, Pamela V.; León-Muñoz, Jorge

    2014-01-01

    Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including human influences, characteristics of the invader, and biotic interactions. We apply this framework by contrasting hypotheses and available evidence to explain variability in invasion success for 12 salmonids introduced to Chile. The success of Oncorhynchus mykiss and Salmo trutta seems to be influenced by a context-specific combination of their phenotypic plasticity, low ecosystem resistance, and propagule pressure. These well-established invaders may limit the success of subsequently introduced salmonids, with the possible exception of O. tshawytscha, which has a short freshwater residency and limited spatial overlap with trout. Although propagule pressure is high for O. kisutch and S. salar due to their intensive use in aquaculture, their lack of success in Chile may be explained by environmental resistance, including earlier spawning times than in their native ranges, and interactions with previously established and resident Rainbow Trout. Other salmonids have also failed to establish, and they exhibit a suite of ecological traits, environmental resistance, and limited propagule pressure that are variably associated with their lack of success. Collectively, understanding how the various drivers of invasion success interact may explain the differential success of invaders and provide key guidance for managing both positive and negative outcomes associated with their presence.

  17. Sea lamprey mark type, wounding rate, and parasite-host preference and abundance relationships for lake trout and other species in Lake Ontario

    USGS Publications Warehouse

    Lantry, Brian F.; Adams, Jean; Christie, Gavin; Schaner, Teodore; Bowlby, James; Keir, Michael; Lantry, Jana; Sullivan, Paul; Bishop, Daniel; Treska, Ted; Morrison, Bruce

    2015-01-01

    We examined how attack frequency by sea lampreys on fishes in Lake Ontario varied in response to sea lamprey abundance and preferred host abundance (lake trout > 433 mm). For this analysis we used two gill net assessment surveys, one angler creel survey, three salmonid spawning run datasets, one adult sea lamprey assessment, and a bottom trawl assessment of dead lake trout. The frequency of fresh sea lamprey marks observed on lake trout from assessment surveys was strongly related to the frequency of sea lamprey attacks observed on salmon and trout from the creel survey and spawning migrations. Attack frequencies on all salmonids examined were related to the ratio between the abundances of adult sea lampreys and lake trout. Reanalysis of the susceptibility to sea lamprey attack for lake trout strains stocked into Lake Ontario reaffirmed that Lake Superior strain lake trout were among the most and Seneca Lake strain among the least susceptible and that Lewis Lake strain lake trout were even more susceptible than the Superior strain. Seasonal attack frequencies indicated that as the number of observed sea lamprey attacks decreased during June–September, the ratio of healing to fresh marks also decreased. Simulation of the ratios of healing to fresh marks indicated that increased lethality of attacks by growing sea lampreys contributed to the decline in the ratios and supported laboratory studies about wound healing duration.

  18. Sea lamprey mark type, marking rate, and parasite-host relationships for lake trout and other species in Lake Ontario

    USGS Publications Warehouse

    Lantry, Brian F.; Adams, Jean V.; Christie, Gavin; Schaner, Teodore; Bowlby, James; Keir, Michael; Lantry, Jana; Sullivan, Paul; Bishop, Daniel; Treska, Ted; Morrison, Bruce

    2015-01-01

    We examined how attack frequency by sea lampreys on fishes in Lake Ontario varied in response to sea lamprey abundance and preferred host abundance (lake trout > 433 mm). For this analysis we used two gill net assessment surveys, one angler creel survey, three salmonid spawning run datasets, one adult sea lamprey assessment, and a bottom trawl assessment of dead lake trout. The frequency of fresh sea lamprey marks observed on lake trout from assessment surveys was strongly related to the frequency of sea lamprey attacks observed on salmon and trout from the creel survey and spawning migrations. Attack frequencies on all salmonids examined were related to the ratio between the abundances of adult sea lampreys and lake trout. Reanalysis of the susceptibility to sea lamprey attack for lake trout strains stocked into Lake Ontario reaffirmed that Lake Superior strain lake trout were among the most and Seneca Lake strain among the least susceptible and that Lewis Lake strain lake trout were even more susceptible than the Superior strain. Seasonal attack frequencies indicated that as the number of observed sea lamprey attacks decreased during June–September, the ratio of healing to fresh marks also decreased. Simulation of the ratios of healing to fresh marks indicated that increased lethality of attacks by growing sea lampreys contributed to the decline in the ratios and supported laboratory studies about wound healing duration.

  19. Predicting the thermal effects of dam removal on the Klamath River

    USGS Publications Warehouse

    Bartholow, J.M.; Campbell, S.G.; Flug, M.

    2004-01-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river’s water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river’s seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river’s thermal regime during certain conditions for over 200 km of the mainstem.

  20. Introduced northern pike consumption of salmonids in Southcentral Alaska

    USGS Publications Warehouse

    Sepulveda, Adam J.; Rutz, David S.; Dupuis, Aaron W; Shields, Patrick A; Dunker, Kristine J.

    2015-01-01

    The impacts of introduced northern pike (Esox lucius) on salmonid populations have attracted much attention because salmonids are popular subsistence, sport and commercial fish. Concern over the predatory effects of introduced pike on salmonids is especially high in Southcentral Alaska, where pike were illegally introduced to the Susitna River basin in the 1950s. We used pike abundance, growth, and diet estimates and bioenergetics models to characterise the realised and potential consumptive impacts that introduced pike (age 2 and older) have on salmonids in Alexander Creek, a tributary to the Susitna River. We found that juvenile salmonids were the dominant prey item in pike diets and that pike could consume up to 1.10 metric tons (realised consumption) and 1.66 metric tons (potential consumption) of juvenile salmonids in a summer. Age 3–4 pike had the highest per capita consumption of juvenile salmonids, and age 2 and age 3–4 pike had the highest overall consumption of juvenile salmonid biomass. Using historical data on Chinook salmon and pike potential consumption of juvenile salmonids, we found that pike consumption of juvenile salmonids may lead to collapsed salmon stocks in Alexander Creek. Taken together, our results indicate that pike consume a substantial biomass of juvenile salmonids in Alexander Creek and that coexistence of pike and salmon is unlikely without management actions to reduce or eliminate introduced pike.

  1. The nutrition of salmonid fishes. I. Chemical and histological studies of wild and domestic fish.

    USGS Publications Warehouse

    Wood, E.M.; Yasutake, W.T.; Woodall, A.N.; Halver, J.E.

    1957-01-01

    The salmon fishing industry of the Pacific Coast is dependent on the survival and propagation of 5 species of salmon which spawn in rivers of that portion of the North American continent extending from California to Alaska. The development of these rivers for power, irrigation, flood control and other projects has drastically reduced the natural spawning areas available to salmon. To prevent the extinction of these fish and the concurrent losses to the fishing industry, various State and Federal agencies have initiated a major program of artificial propagation. This area of animal husbandry has received little attention from nutritional workers and there is a paucity of information on the nutritional requirements of salmon. To supply this essential information the U. S. Fish and Wildlife Service established the Salmon Nutrition Laboratory at Cook, Washington in 1952. This report represents the first of a series which will be presented from the laboratory.

  2. Infectious hematopoietic necrosis virus detected by separation and incubation of cells from salmonid cavity fluid.

    USGS Publications Warehouse

    Mulcahy, D.; Batts, W.N.

    1987-01-01

    Infectious hematopoietic necrosis (IHN) virus is usually detected by inoculating susceptible cell cultures with cavity ("ovarian") fluid (CF) from spawning females. We identified additional adult carriers of virus in spawning populations of steelhead trout (Salmo gairdneri) and sockeye salmon (Oncorhynchus nerka) by collecting nonerythrocytic cells from CF samples by low-speed centrifugation, culturing the cells for at least 7 d at 15 °C, and then testing the culture medium for virus. Virus appeared in the cultured cells from some samples of CF that remained negative during incubation. In additional samples of CF from these species, the virus titer increased in cultured cells compared with the titer in the original CF sample. With chinook salmon (O.tshawytscha), no negative samples converted to positive during incubation, but the virus titer was retained in incubated CF cells, but not in cell-free CF.

  3. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    NASA Astrophysics Data System (ADS)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small-scale differences in physical habitat features. For example, juvenile coho salmon used interstitial spaces between unembedded cobbles and boulders but were absent from adjacent habitat with high embeddedness. Thus high delivery rates of coarse sediment sustain critical rearing habitat that would otherwise be relatively inhospitable to fish. Using Chinook salmon as a focal species, we have integrated field- and map-based analyses to predict basin- scale geomorphic and biological constraints on the distribution of suitable spawning and rearing habitat. These analyses provide rapid guidance for where focused investigations or monitoring of key habitats should occur, a particularly important outcome where watersheds are large and field logistics are challenging. The predicted extent of suitable stream habitat within the study area represents a relatively minor fraction (ca. 10 percent) of the total stream channel network, suggesting that production of salmon from the study area depends on the maintenance of quality habitat in discrete, and relatively rare, reaches.

  4. Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation; Coeur d'Alene Tribe Fish, Water, and Wildlife Program, Progress Report 1996-1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Angelo; Bailey, Dee; Peters, Ron

    2003-06-01

    As part of an ongoing project to restore fisheries resources in tributaries located on the Coeur d'Alene Indian Reservation, this report details the activities of the Coeur d'Alene Tribe's Fisheries Program for FY 1997 and 1998. This report (1) analyses the effect introduced species and water quality have on the abundance of native trout in Coeur d'Alene Lake and selected target tributaries; (2) details results from an ongoing mark-recapture study on predatory game fish; (3) characterizes spawning habitats in target tributaries and evaluates the effects of fine sediment on substrate composition and estimated emergence success; and (4) provides population estimatesmore » for westslope cutthroat trout in target tributaries. Low dissolved oxygen values in the hypolimnion of Coeur d'Alene Lake continue to be a cause for concern with regard to available fisheries habitat. Four sample sites in 1997 and eight sample sites in 1998 had measured levels of dissolved oxygen below what is considered optimum (6.0 mg/L) for cutthroat trout. As well, two sample points located north of the Coeur d'Alene River showed hypolimnetic dissolved oxygen deficits. This could lead to a more serious problem associated with the high concentration of heavy metals bound up in the sediment north of the Coeur d'Alene River. Most likely these oxygen deficits are a result of allochthonous input of organic matter and subsequent decomposition. Sediment loading from tributaries continues to be a problem in the lake. The build up of sediments at the mouths of all incoming tributaries results in the modification of existing wetlands and provides ideal habitat for predators of cutthroat trout, such as northern pike and largemouth bass. Furthermore, increased sediment deposition provides additional substrate for colonization by aquatic macrophytes, which serve as forage and habitat for other non-native species. There was no significant difference in the relative abundance of fishes in Coeur d'Alene Lake from 1997 to 1998. Four out of the six most commonly sampled species are non-native. Northern pikeminnow and largescale suckers are the only native species among the six most commonly sampled. Northern pikeminnow comprise 8-9% of the electroshocking catch and 18-20% of the gillnet catch. Largescale suckers comprise 24-28% of the electroshocking catch and 9-21% of the gillnet catch. Cutthroat trout and mountain whitefish, on the other hand, comprise less than 1% of the catch when using electroshocking methods and about 1.4% of the gillnet catch. Since 1994, the Coeur d'Alene Tribe Fish, Water and Wildlife Program has conducted an extensive mark-recapture study (Peters et al. 1999). To date, 636 fish have been tagged and 23 fish have been recaptured. We are finding that northern pike have a tendency to migrate from the original sampling site, while largemouth bass appear very territorial, rarely moving from the site where they were tagged. Both species are most commonly associated with shallow, near-shore habitats, where the potential for encountering seasonal migrations of cutthroat trout is maximized. Low-order tributaries provide the most important spawning habitat for cutthroat trout on the Reservation. The mapped distribution of potentially suitable spawning gravel was patchy and did not vary considerably within reaches or between watersheds. Furthermore, the quantity of spawning gravel was low, averaging just 4.1% of measured stream area. The lack of a strong association between spawning gravel abundance and several reach characteristics (gradient, proportion of gravel and pea gravel) corroborates the findings of other authors who suggest that local hydrologic features influence spawning gravel availability. Although the distribution of spawning substrate was patchy within the target watersheds, there is probably adequate habitat to support resident and adfluvial spawners because of currently depressed numbers. Spawning gravels in target tributaries of the Reservation contained proportions of fine sediments comparable to those in egg pockets of salmonid redds in the Rocky Mountain region. At 23 of 29 sample sites, low levels of fine sediment led to high predictions of overall embryo survival (mean = 28.4%). The estimates of fry production potential at sample sites ranged widely (0.0 to 31.2 fry/100 square meters) due, primarily, to the quantity of suitable gravels present. Only in the mainstem of Lake Creek were the proportions of both small and coarse fines considered above the levels for these particle sizes (10% and 30%, respectively) shown to adversely affect salmonid emergence success. Of the 6 sites where high levels of small or coarse fines were recorded, only the sites located in the mainstem of Lake Creek showed supporting evidence for low recruitment.« less

  5. Epizootiology of the ectoparasitic protozoans Ichthyobodo salmonis and Trichodina truttae on wild chum salmon Oncorhynchus keta.

    PubMed

    Mizuno, Shinya; Urawa, Shigehiko; Miyamoto, Mahito; Saneyoshi, Hayato; Hatakeyama, Makoto; Koide, Nobuhisa; Ueda, Hiroshi

    2017-10-18

    Infestations of the ectoparasitic flagellate Ichthyobodo salmonis and the ciliate Trichodina truttae have caused acute mortalities of hatchery-reared juvenile chum salmon Oncorhynchus keta in Hokkaido, northern Japan. This study examined the epizootiology of I. salmonis and T. truttae on wild chum salmon as a possible infection source of the 2 parasitic protozoans in hatcheries. Infestations by both ectoparasites were detected on freshwater-adapted adult and juvenile chum salmon in all 4 rivers examined. This is the first study of an anadromous Pacific salmonid to report infestation of I. salmonis and T. truttae in adults returning for spawning. Among the marine-inhabiting phase of chum salmon, infestation with I. salmonis, but not T. truttae, was observed on adults and juveniles. The 2 protozoans were experimentally transmitted at the same time from wild to hatchery-reared chum salmon juveniles, and caused a high rate of mortality in the hatchery fish. In freshwater, the proliferation rate of T. truttae was greater than that of I. salmonis. These observations show that the euryhaline ectoparasite I. salmonis can infest chum salmon throughout their life cycle, in both river and ocean habitats, whereas T. truttae is able to infest these salmonids only in freshwater. Furthermore, wild chum salmon were shown to be a potential infestation source for both T. truttae and I. salmonis in hatchery fish.

  6. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  7. Work package 4 report: Broodfish testing for bacterial infections

    USGS Publications Warehouse

    Michel, Christian; Elliott, Diane G.; Jansson, Eva; Urdaci, Maria; Midtlyng, Paul J.

    2005-01-01

    This report summarises current scientific information and experience obtained with various methods for testing of salmonid broodfish or spawn for bacterial kidney disease (BKD - Renibacterium salmoninarum infection) in order to prevent vertical transmission of the organism to the offspring. Assessment is also being performed for Flavobacterium psychrophilum infections causing rainbow trout fry syndrome (RTFS) or bacterial coldwater disease (CWD), and for Piscirickettsia salmonis infection causing salmon rickettsial syndrome (SRS) in salmonid fish species. Methods for screening to document the absence of BKD in fish populations are well established. Some of them have also proven successful for testing individual fish from infected populations in order to avoid vertical transmission of the infectious agent. Several diagnostic methods for flavobacteriosis and piscirickettsiosis have also been established but none of them, as yet, has been validated for use in programmes to prevent vertical transmission of disease. Priority subjects for further research in order to improve the management and control of these vertically transmissible fish diseases are suggested.

  8. A legacy of divergent fishery management regimes and the resilience of rainbow and cutthroat trout populations in Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Brenkman, Samuel J.; Duda, Jeffrey J.; Kennedy, Philip R.; Baker, Bruce M.

    2014-01-01

    As a means to increase visitation, early fisheries management in the National Park Service (NPS) promoted sport harvest and hatchery supplementation. Today, NPS management objectives focus on the preservation of native fish. We summarized management regimes of Olympic National Park's Lake Crescent, which included decades of liberal sport harvest and hatchery releases of 14.3 million salmonids. Notably, nonnative species failed to persist in the lake. Complementary analyses of annual redd counts (1989–2012) and genetics data delineated three sympatric trout (one rainbow; two cutthroat) populations that exhibited distinct spatial and temporal spawning patterns, variable emergence timings, and genetic distinctiveness. Allacustrine rainbow trout spawned in the lake outlet from January to May. Cutthroat trout spawned in the major inlet tributary (Barnes Creek) from February to June and in the outlet river (Lyre) from September to March, an unusual timing for coastal cutthroat trout. Redd counts for each species were initially low (rainbow = mean 89; range 37–159; cutthroat = mean 93; range 18–180), and significantly increased for rainbow trout (mean 306; range 254–352) after implementation of catch-and-release regulations. Rainbow and cutthroat trout reached maximum sizes of 10.4 kg and 5.4 kg, respectively, and are among the largest throughout their native ranges. Morphometric analyses revealed interspecific differences but no intraspecific differences between the two cutthroat populations. Genetic analyses identified three distinct populations and low levels (9–17%) of interspecific hybridization. Lake Crescent rainbow trout were genetically divergent from 24 nearby Oncorhynchus mykiss populations, and represented a unique evolutionary legacy worthy of protection. The indigenous and geographically isolated Lake Crescent trout populations were resilient to overharvest and potential interactions with introduced fish species.

  9. Risk assessment for the reintroduction of anadromous salmonids upstream of Chief Joseph and Grand Coulee Dams, Northeastern Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Breyta, Rachel B.; Haskell, Craig A.; Ostberg, Carl O.; Hatten, James R.; Connolly, Patrick J.

    2017-09-12

    The Upper Columbia United Tribes (UCUT; Spokane, Colville, Kootenai, Coeur d’Alene, and Kalispel Tribes) and Washington Department of Fish and Wildlife want to reintroduce anadromous salmonids to their historical range to restore ecosystem function and lost cultural and spiritual relationships in the upper Columbia River, northeastern Washington. The UCUT contracted with the U.S. Geological Survey to assess risks to resident taxa (existing fish populations in the reintroduction area upstream of Chief Joseph and Grand Coulee Dams) and reintroduced salmon associated with reintroduction. We developed a risk assessment framework for reintroduction of anadromous salmonids upstream of Chief Joseph and Grand Coulee Dams. To accomplish this goal, we applied strategies identified in previous risk assessment frameworks for reintroduction. The risk assessment is an initial step towards an anadromous reintroduction strategy. An initial list of potential donor sources for reintroduction species was developed from previous published sources for Chinook Salmon (Oncorhynchus tshawytscha) donors in the Transboundary Reach of the Columbia River, British Columbia; an ecological risk assessment of upper Columbia River hatchery programs on non-target taxa of concern; and a review of existing hatchery programsDuring two workshops, we further identified and ranked potential donor sources of anadromous Redband Trout (steelhead; O. mykiss), Chinook Salmon, Sockeye Salmon (O. nerka), and Coho Salmon (O. kisutch). We also identified resident fish populations of interest and their primary habitat, location, status, and pathogen concerns to determine the potential risks of reintroduction. Species were deemed of interest based on resource management and potential interactions (that is, genetics, competition, and predation) with introduced species. We developed tables of potential donors by species and characterized potential sources (hatchery and natural origins), populations (individual runs), broodstock management and history, and potential constraints (that is, Endangered Species Act [ESA] listing, Evolutionarily Significant Unit concerns, pathogens, and availability). During the workshops, a group of regional fisheries and topic experts subjectively ranked the relative risks of pathogens, genetic effects, predation, and competition to resident fish and reintroduced salmonids. We assessed the pathogen risk of each potential donor for introducing new pathogens and the increased burden to existing pathogens for resident species upstream of the dams. We considered genetic risks to resident and downstream conspecifics and ecological impacts, including competition for food and space, predator-prey interactions, and ecosystem benefits/impacts. Each reintroduced species donor source was ranked based on abundance/viability (demographic risk to source and feasibility of collection), ancestral/genetic similarity (evolutionary similarity to historical populations), local adaptation (geographic proximity/similarity of source conditions to reintroduction conditions), and life history compatibility (including migration; spawn timing; and relative usage of reservoir, main-stem, or tributary habitats) with environmental conditions in the reintroduction area. We synthesized this information by species for all potential donors, in which an overall score and ranking system was established for decision support in donor selection for reintroduction into the upper Columbia River. We also provided information outside the ranking process by:Identifying predator-prey interactions and competition for food and space among species,Developing a decision support framework for donor selection, andProviding decision support for reintroduction strategies.

  10. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp.

    PubMed

    Ueda, H

    2012-07-01

    After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Lynn

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soilmore » and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.« less

  12. Spatial ecological processes and local factors predict the distribution and abundance of spawning by steelhead (Oncorhynchus mykiss) across a complex riverscape

    USGS Publications Warehouse

    Falke, Jeffrey A.; Dunham, Jason B.; Jordan, Christopher E.; McNyset, Kris M.; Reeves, Gordon H.

    2013-01-01

    Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead (Oncorhynchus mykiss), a threatened salmonid fish, across ~15,000 stream km in the John Day River basin, Oregon, USA. We used hurdle regression and a multi-model information theoretic approach to identify the relative importance of covariates representing key aspects of the steelhead life cycle (e.g., site access, spawning habitat quality, juvenile survival) at two spatial scales: within 2-km long survey reaches (local sites) and ecological neighborhoods (5 km) surrounding the local sites. Based on Akaike’s Information Criterion, models that included covariates describing ecological neighborhoods provided the best description of the distribution and abundance of steelhead spawning given the data. Among these covariates, our representation of offspring survival (growing-season-degree-days, °C) had the strongest effect size (7x) relative to other predictors. Predictive performances of model-averaged composite and neighborhood-only models were better than a site-only model based on both occurrence (percentage of sites correctly classified = 0.80±0.03 SD, 0.78±0.02 vs. 0.62±0.05, respectively) and counts (root mean square error = 3.37, 3.93 vs. 5.57, respectively). The importance of both temperature and stream flow for steelhead spawning suggest this species may be highly sensitive to impacts of land and water uses, and to projected climate impacts in the region and that landscape context, complementation, and connectivity will drive how this species responds to future environments.

  13. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate.

    PubMed

    Clark, Timothy D; Jeffries, Kenneth M; Hinch, Scott G; Farrell, Anthony P

    2011-09-15

    Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates (M(O2,min) and M(O2,max), respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope (M(O2,max)-M(O2,min)) for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (T(opt)) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As T(opt) for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding T(opt), these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.

  14. Adaptive capacity at the northern front: sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures

    PubMed Central

    Armstrong, Jonathan B.; Ward, Eric J.; Schindler, Daniel E.; Lisi, Peter J.

    2016-01-01

    As climate change increases maximal water temperatures, behavioural thermoregulation may be crucial for the persistence of coldwater fishes, such as salmonids. Although myriad studies have documented behavioural thermoregulation in southern populations of salmonids, few if any have explored this phenomenon in northern populations, which are less likely to have an evolutionary history of heat stress, yet are predicted to experience substantial warming. Here, we treated a rare heat wave as a natural experiment to test whether wild sockeye salmon (Oncorhynchus nerka) at the northern extent of their primary range (60° latitude) can thermoregulate in response to abnormally high thermal conditions. We tagged adult sockeye salmon with temperature loggers as they staged in a lake epilimnion prior to spawning in small cold streams (n = 40 recovered loggers). As lake surface temperatures warmed to physiologically suboptimal levels (15–20°C), sockeye salmon thermoregulated by moving to tributary plumes or the lake metalimnion. A regression of fish body temperature against lake surface temperature indicated that fish moved to cooler waters when the epilimnion temperature exceeded ~12°C. A bioenergetics model suggested that the observed behaviour reduced daily metabolic costs by as much as ~50% during the warmest conditions (18–20°C). These results provide rare evidence of cool-seeking thermoregulation at the poleward extent of a species range, emphasizing the potential ubiquity of maximal temperature constraints and the functional significance of thermal heterogeneity for buffering poikilotherms from climate change. PMID:27729980

  15. Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, William P.

    1989-01-01

    Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum watermore » temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.« less

  16. Small larvae in large rivers: observations on downstream movement of European grayling Thymallus thymallus during early life stages.

    PubMed

    Van Leeuwen, C H A; Dokk, T; Haugen, T O; Kiffney, P M; Museth, J

    2017-06-01

    Behaviour of early life stages of the salmonid European grayling Thymallus thymallus was investigated by assessing the timing of larval downstream movement from spawning areas, the depth at which larvae moved and the distribution of juvenile fish during summer in two large connected river systems in Norway. Trapping of larvae moving downstream and electrofishing surveys revealed that T. thymallus larvae emerging from the spawning gravel moved downstream predominantly during the night, despite light levels sufficient for orientation in the high-latitude study area. Larvae moved in the water mostly at the bottom layer close to the substratum, while drifting debris was caught in all layers of the water column. Few young-of-the-year still resided close to the spawning areas in autumn, suggesting large-scale movement (several km). Together, these observations show that there may be a deliberate, active component to downstream movement of T. thymallus during early life stages. This research signifies the importance of longitudinal connectivity for T. thymallus in Nordic large river systems. Human alterations of flow regimes and the construction of reservoirs for hydropower may not only affect the movement of adult fish, but may already interfere with active movement behaviour of fish during early life stages. © 2017 The Fisheries Society of the British Isles.

  17. Numerical Model of Channel and Aquatic Habitat Response to Sediment Pulses in Mountain Rivers of Central Idaho

    NASA Astrophysics Data System (ADS)

    Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.

    2006-12-01

    Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural fining on spawning habitat depend on the size of sediment in the wave relative to that of the downstream channel; fining can improve spawning habitat availability in channels that are otherwise too coarse, or degrade habitat availability in finer-grained channels. Despite the perceived negative effects of sediment pulses, they can be important sources of gravel and wood debris, creating downstream spawning sites and productive wood-forced habitats. Field observations illustrate that opportunistic salmonids will spawn along the margins of recently deposited debris fans, emphasizing the biological value of such disturbances and the plasticity of salmonids to natural disturbances.

  18. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration.

    PubMed

    Evans, Tyler G; Hammill, Edd; Kaukinen, Karia; Schulze, Angela D; Patterson, David A; English, Karl K; Curtis, Janelle M R; Miller, Kristina M

    2011-11-01

    Environmental shifts accompanying salmon spawning migrations from ocean feeding grounds to natal freshwater streams can be severe, with the underlying stress often cited as a cause of increased mortality. Here, a salmonid microarray was used to characterize changes in gene expression occurring between ocean and river habitats in gill and liver tissues of wild migrating sockeye salmon (Oncorhynchus nerka Walbaum) returning to spawn in the Fraser River, British Columbia, Canada. Expression profiles indicate that the transcriptome of migrating salmon is strongly affected by shifting abiotic and biotic conditions encountered along migration routes. Conspicuous shifts in gene expression associated with changing salinity, temperature, pathogen exposure and dissolved oxygen indicate that these environmental variables most strongly impact physiology during spawning migrations. Notably, transcriptional changes related to osmoregulation were largely preparatory and occurred well before salmon encountered freshwater. In the river environment, differential expression of genes linked with elevated temperatures indicated that thermal regimes within the Fraser River are approaching tolerance limits for adult salmon. To empirically correlate gene expression with survival, biopsy sampling of gill tissue and transcriptomic profiling were combined with telemetry. Many genes correlated with environmental variables were differentially expressed between premature mortalities and successful migrants. Parametric survival analyses demonstrated a broad-scale transcriptional regulator, cofactor required for Sp1 transcriptional activation (CRSP), to be significantly predictive of survival. As the environmental characteristics of salmon habitats continue to change, establishing how current environmental conditions influence salmon physiology under natural conditions is critical to conserving this ecologically and economically important fish species. © 2011 Blackwell Publishing Ltd.

  19. Genotypes and phylogeographical relationships of infectious hematopoietic necrosis virus in California, USA

    USGS Publications Warehouse

    Kelley, G.O.; Bendorf, C.M.; Yun, S.C.; Kurath, G.; Hedrick, R.P.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 ?? ICT5 mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 ?? 10 3 mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup. ?? Inter-Research 2007.

  20. Natural Reproductive Success and Demographic Effects of Hatchery-Origin Steelhead in Abernathy Creek, Washington : Annual Report 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Fish & Wildlife Service, Abernathy Fish Technology Center

    2008-12-01

    Many hatchery programs for steelhead pose genetic or ecological risks to natural populations because those programs release or outplant fish from non-native stocks. The goal of many steelhead programs has been to simply provide 'fishing opportunities' with little consideration given to conservation concerns. For example, the Washington Department of Fish and Wildlife (WDFW) has widely propagated and outplanted one stock of winter-run steelhead (Chambers Creek stock) and one stock of summer-run steelhead (Skamania stock) throughout western Washington. Biologists and managers now recognize potential negative effects can occur when non-native hatchery fish interact biologically with native populations. Not only do non-nativemore » stocks pose genetic and ecological risks to naturally spawning populations, but non-native fish stray as returning adults at a much higher rate than do native fish (Quinn 1993). Biologists and managers also recognize the need to (a) maintain the genetic resources associated with naturally spawning populations and (b) restore or recover natural populations wherever possible. As a consequence, the U.S. Fish & Wildlife Service (USFWS) and the NOAA Fisheries have been recommending a general policy that discourages the use of non-native hatchery stocks and encourages development of native broodstocks. There are two primary motivations for these recommendations: (1) reduce or minimize potential negative biological effects resulting from genetic or ecological interactions between hatchery-origin and native-origin fish and (2) use native broodstocks as genetic repositories to potentially assist with recovery of naturally spawning populations. A major motivation for the captive-rearing work described in this report resulted from NOAA's 1998 Biological Opinion on Artificial Propagation in the Columbia River Basin. In that biological opinion (BO), NOAA concluded that non-native hatchery stocks of steelhead jeopardize the continued existence of U.S. Endangered Species Act (ESA)-listed, naturally spawning populations in the Columbia River Basin. As a consequence of that BO, NOAA recommended - as a reasonable and prudent alternative (RPA) - that federal and state agencies phase out non-native broodstocks of steelhead and replace them with native broodstocks. However, NOAA provided no guidance on how to achieve that RPA. The development of native broodstocks of hatchery steelhead can potentially pose unacceptable biological risks to naturally spawning populations, particularly those that are already listed as threatened or endangered under the ESA. The traditional method of initiating new hatchery broodstocks of anadromous salmonid fishes is by trapping adults during their upstream, spawning migration. However, removing natural-origin adults from ESA listed populations may not be biologically acceptable because such activities may further depress those populations via 'broodstock mining'. In addition, trapping adult steelhead may be logistically unfeasible in many subbasins due to high water flows in the spring, when steelhead are moving upstream to spawn, that will often 'blow out' temporary weirs. Additional risks associated with trapping adults include genetic founder effects and difficulties meeting minimum, genetic effective number of breeders without 'mining' the wild population to potential extinction. As a result, alternative methods for developing native broodstocks are highly desired. One alternative for developing native broodstocks, particularly when the collection of adults is logistically unfeasible or biologically unacceptable, is captive rearing of natural-origin juveniles to sexual maturity. In this approach, pre-smolt juveniles are collected from the stream or watershed for which a native broodstock is desired, and those juveniles are raised to sexual maturity in a hatchery. Those hatchery-reared adults then become the broodstock source for gametes and initial progeny releases. Such a captive rearing program offers many genetic advantages over traditional adult-trapping programs for developing native broodstocks: (1) Large numbers of juveniles can be collected from the wild with only minimal impacts to naturally spawning populations because juvenile (age 0+parr)-to-adult survivals are typically very small (<1%) under natural conditions. (2) The genetic base of the broodstock (i.e. genetic effective population size) can be substantially larger for juveniles than adults because juveniles can theoretically represent the offspring of all adults that spawned successfully within a stream or watershed, as opposed to trapping only a small portion of returning adults for broodstock. (3) Collecting juveniles for broodstock can substantially reduce the risk of genetically 'swamping' naturally spawning populations with hatchery-origin fish (i.e. via a 'Ryman-Laikre effect') as occurs when hatchery-released fish represent the progeny of a relatively small number of trapped adults.« less

  1. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic habitat at the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  2. Climate-induced trends in predator–prey synchrony differ across life-history stages of an anadromous salmonid

    USGS Publications Warehouse

    Bell, Donovan A.; Kovach, Ryan; Vulstek, Scott C.; Joyce, John E.; Tallmon, David A.

    2017-01-01

    Differential climate-induced shifts in phenology can create mismatches between predators and prey, but few studies have examined predator–prey mismatch across multiple life-history stages. We used long-term data from a warming stream with shifting salmonid migration timings to quantify intra-annual migration synchrony between predatory Dolly Varden (Salvelinus malma) and Pacific salmon prey and examined how predator–prey synchrony has been influenced by climate change. We demonstrate that Dolly Varden have become increasingly mismatched with spring downstream migrations of abundant pink salmon (Oncorhynchus gorbuscha) juveniles. However, Dolly Varden have remained matched with fall upstream migrations of spawning Pacific salmon, including coho (Oncorhynchus kisutch), sockeye (Oncorhynchus nerka), and pink salmon. Downstream predator–prey migration synchrony decreased over time and with higher temperatures, particularly with pink salmon. In contrast, upstream migration synchrony was temporally stable and increased with rising temperatures. Differing trends in Dolly Varden predator–prey synchrony may be explained by the direct use of salmon to cue upstream migration, but not downstream migration. Overall, we show that climate change can have differing impacts on predator–prey synchrony across life-history stages.

  3. Occurrence and genetic typing of infectious hematopoietic necrosis virus in Kamchatka, Russia

    USGS Publications Warehouse

    Rudakova, S.L.; Kurath, G.; Bochkova, E.V.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a well known rhabdoviral pathogen of salmonid fish in North America that has become established in Asia and Europe. On the Pacific coast of Russia, IHNV was first detected in hatchery sockeye from the Kamchatka Peninsula in 2001. Results of virological examinations of over 10 000 wild and cultured salmonid fish from Kamchatka during 1996 to 2005 revealed IHNV in several sockeye salmon Oncorhynchus nerka populations. The virus was isolated from spawning adults and from juveniles undergoing epidemics in both hatchery and wild sockeye populations from the Bolshaya watershed. No virus was detected in 2 other water-sheds, or in species other than sockeye salmon. Genetic typing of 8 virus isolates by seguence analysis of partial glycoprotein and nucleocapsid genes revealed that they were genetically homogeneous and fell within the U genogroup of IHNV. In phylogenetic analyses, the Russian IHNV sequences were indistinguishable from the sequences of North American U genogroup isolates that occur throughout Alaska, British Columbia, Washington, and Oregon. The high similarity, and in some cases identity, between Russian and North American IHNV isolates suggests virus transmission or exposure to a common viral reservoir in the North Pacific Ocean. ?? Inter-Research 2007.

  4. Inter-annual variability of North Sea plaice spawning habitat

    NASA Astrophysics Data System (ADS)

    Loots, C.; Vaz, S.; Koubbi, P.; Planque, B.; Coppin, F.; Verin, Y.

    2010-11-01

    Potential spawning habitat is defined as the area where environmental conditions are suitable for spawning to occur. Spawning adult data from the first quarter (January-March) of the International Bottom Trawl Survey have been used to study the inter-annual variability of the potential spawning habitat of North Sea plaice from 1980 to 2007. Generalised additive models (GAM) were used to create a model that related five environmental variables (depth, bottom temperature and salinity, seabed stress and sediment type) to presence-absence and abundance of spawning adults. Then, the habitat model was applied each year from 1970 to 2007 to predict inter-annual variability of the potential spawning habitat. Predicted responses obtained by GAM for each year were mapped using kriging. A hierarchical classification associated with a correspondence analysis was performed to cluster spawning suitable areas and to determine how they evolved across years. The potential spawning habitat was consistent with historical spawning ground locations described in the literature from eggs surveys. It was also found that the potential spawning habitat varied across years. Suitable areas were located in the southern part of the North Sea and along the eastern coast of England and Scotland in the eighties; they expanded further north from the nineties. Annual survey distributions did not show such northward expansion and remained located in the southern North Sea. This suggests that this species' actual spatial distribution remains stable against changing environmental conditions, and that the potential spawning habitat is not fully occupied. Changes in environmental conditions appear to remain within plaice environmental ranges, meaning that other factors may control the spatial distribution of plaice spawning habitat.

  5. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    USGS Publications Warehouse

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean < 1%; SE < 1%) and snorkeling (mean = 1%; SE = 1%) surveys; Arctic grayling constituted 0–14% of the salmonid catch obtained by targeted angling (3 of 22 fish; mean = 4%; SE = 5%). Low values of the genetic differentiation index (F ST = 0.0021 ± 0.002 [mean ± 95% confidence interval]) between headwater lake and river Arctic grayling indicated that fish from throughout the Gibbon River system probably belonged to the same population. Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  6. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  7. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan, Gerald D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinookmore » and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996.« less

  8. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, S.L.; Knudsen, C.M.; Rau, J.A.

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environmentsmore » during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.« less

  9. Olfactory-mediated stream-finding behavior of migratory adult sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Vrieze, L.A.; Bergstedt, R.A.; Sorensen, P.W.

    2011-01-01

    Stream-finding behavior of adult sea lamprey (Petromyzon marinus), an anadromous fish that relies on pheromones to locate spawning streams, was documented in the vicinity of an important spawning river in the Great Lakes. Untreated and anosmic migrating sea lampreys were implanted with acoustic transmitters and then released outside the Ocqueoc River. Lampreys swam only at night and then actively. When outside of the river plume, lampreys pursued relatively straight bearings parallel to the shoreline while making frequent vertical excursions. In contrast, when within the plume, lampreys made large turns and exhibited a weak bias towards the river mouth, which one-third of them entered. The behavior of anosmic lampreys resembled that of untreated lampreys outside of the plume, except they pursued a more northerly compass bearing. To locate streams, sea lampreys appear to employ a three-phase odor-mediated strategy that involves an initial search along shorelines while casting vertically, followed by river-water-induced turning that brings them close to the river's mouth, which they then enter using rheotaxis. This novel strategy differs from that of salmonids and appears to offer this poor swimmer adaptive flexibility and suggests ways that pheromonal odors might be used to manage this invasive species.

  10. Consistent boldness behaviour in early emerging fry of domesticated Atlantic salmon (Salmo salar): Decoupling of behavioural and physiological traits of the proactive stress coping style.

    PubMed

    Vaz-Serrano, J; Ruiz-Gomez, M L; Gjøen, H M; Skov, P V; Huntingford, F A; Overli, O; Höglund, E

    2011-06-01

    Individual variation in the way animals cope with stressors has been documented in a number of animal groups. In general, two distinct sets of behavioural and physiological responses to stress have been described: the proactive and the reactive coping styles. Some characteristics of stress coping style seem to be coupled to the time to emerge of fry from spawning redds in natural populations of salmonid fishes. In the present study, behavioural and physiological traits of stress coping styles were compared two and five months after emergence in farmed Atlantic salmon (Salmo salar), using individuals with an early or late time to emerge. Initially, compared to late emerging individuals, early emerging individuals showed a shorter time to resume feeding after transfer to rearing in isolation. Resumption of feeding after isolation was suggested to be related to boldness behaviour, rather than hunger, in the present study. This observation was repeated five months after emergence, demonstrating behavioural consistency over time in this trait. However, in other traits of proactive and reactive stress coping styles, such as social status, resting metabolism or post stress cortisol concentrations, early and late emerging individuals did not differ. Therefore, this study demonstrates that boldness in a novel environment is uncoupled from other traits of the proactive and reactive stress coping styles in farmed salmonids. It is possible that this decoupling is caused by the low competitive environment in which fish were reared. In natural populations of salmonids, however, the higher selection pressure at emergence could select for early emerging individuals with a proactive coping style. Copyright © 2011. Published by Elsevier Inc.

  11. Modeling potential river management conflicts between frogs and salmonids

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Sarah J. Kupferberg; Margaret M. Lang; Scott McBain; Hart H. Welsh

    2016-01-01

    Management of regulated rivers for yellow-legged frogs (Rana boylii) and salmonids exemplifies potential conflicts among species adapted to different parts of the natural flow and temperature regimes. Yellow-legged frogs oviposit in rivers in spring and depend on declining flows and warming temperatures for egg and tadpole survival and growth,...

  12. Life history migrations of adult Yellowstone Cutthroat Trout in the upper Yellowstone River

    USGS Publications Warehouse

    Ertel, Brian D.; McMahon, Thomas E.; Koel, Todd M.; Gresswell, Robert E.; Burckhardt, Jason

    2017-01-01

    Knowledge of salmonid life history types at the watershed scale is increasingly recognized as a cornerstone for effective management. In this study, we used radiotelemetry to characterize the life history movements of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri in the upper Yellowstone River, an extensive tributary that composes nearly half of the drainage area of Yellowstone Lake. In Yellowstone Lake, Yellowstone Cutthroat Trout have precipitously declined over the past 2 decades primarily due to predation from introduced Lake Trout Salvelinus namaycush. Radio tags were implanted in 152 Yellowstone Cutthroat Trout, and their movements monitored over 3 years. Ninety-six percent of tagged trout exhibited a lacustrine–adfluvial life history, migrating upstream a mean distance of 42.6 km to spawn, spending an average of 24 d in the Yellowstone River before returning to Yellowstone Lake. Once in the lake, complex postspawning movements were observed. Only 4% of radio-tagged trout exhibited a fluvial or fluvial–adfluvial life history. Low prevalence of fluvial and fluvial–adfluvial life histories was unexpected given the large size of the upper river drainage. Study results improve understanding of life history diversity in potamodromous salmonids inhabiting relatively undisturbed watersheds and provide a baseline for monitoring Yellowstone Cutthroat Trout response to management actions in Yellowstone Lake.

  13. Influence of heavy metals and 4-nonylphenol on reproductive function in fish.

    PubMed

    Popek, Włodzimierz; Dietrich, Grzegorz; Glogowski, Jan; Demska-Zakeś, Krystyna; Drag-Kozak, Ewa; Sionkowski, Jan; Łuszczek-Trojan, Ewa; Epler, Piotr; Demianowicz, Wiesław; Sarosiek, Beata; Kowalski, Radosław; Jankun, Małgorzata; Zakeś, Zdzisław; Król, Jarosław; Czerniak, Stanisław; Szczepkowski, Mirosław

    2006-01-01

    Many industrial and agricultural chemicals (including heavy metals and alkylphenols) present in the environment have adverse effects on the reproductive function in fish. Three studies were conducted to assess toxicity of these chemicals towards reproduction of freshwater fish. It was shown that heavy metals added to the diets accumulate in brain tissue of carp, and this accumulation results in inhibition of the secretion of noradrenaline and stimulation of the secretion of dopamine in the hypothalamus. These processes results in a disturbance of hormonal equilibrium of the hypothalamo-pituitary system, which can unfavorably influence the efficiency of artificial spawning in fish. Quality of salmonid and sturgeon sperm was impaired after in vitro exposure to heavy metals. The degree of this toxic effect was species-specific. It was demonstrated that sperm motility parameters appeared to be good indicators of adverse effects of heavy metals fish sperm. The protection role of seminal plasma against toxic effects of heavy metals was suggested for salmonid fish. Oral application of 4-nonylphenol (NP) disrupted reproduction in pikeperch. In juvenile fish a decrease in the percentage of males and an increase of intersex fish was observed in relation to dose of NP and time of exposure to this alkylphenol. Exposure of adult males to the NP led to the reduction in fecundity, milt quality and fertility.

  14. Introduction [to Issue 3

    USGS Publications Warehouse

    Zimmerman, Christian E.; Nielsen, Jennifer L.

    2004-01-01

    Artificial propagation of aquatic organisms is increasing globally and currently accounts for approximately 32% of total world fishery production (Vannuccini, 2004). Between 1970 and 2000, aquaculture production of salmonids has grown from less than 200,000 metric tons per year to over 1.5 million metric tons (Tacon, 2003). In 1995, the number of Atlantic salmon (Salmo salar) far exceeded the carrying capacity of salmon in the wild but over 94% of all adult Atlantic salmon were in aquaculture environments (Gross, 1998).Since the 1970’s, concerns have arisen about interactions of hatchery and wild produced salmonids in native habitats. In response, research has addressed concerns about domestication and genetic impacts (Reisenbichler and McIntyre, 1977; Hindar et al., 1991; Waples, 1991; Clifford et al., 1998a; Fleming et al., 2000, 2002; Hard et al., 2000), transfer of disease and parasites (Johnsen and Jensen, 1994; Bakke and Harris, 1998), behavior of spawning adults (Fleming and Gross, 1992; Fleming et al., 1994; Økland et al., 1995; Youngston et al., 1998), differences in fitness traits and life history (Jonsson et al., 1991; Thodesen et al., 1999; McGinnity et al., 2003), and behavioral interactions between hatchery and wild juvenile salmon (Swain and Riddell, 1990; Johnsson et al., 1996; Clifford et al., 1998b). Much of this research has been driven by concerns about the impacts of escaped farmed Atlantic salmon in the North Atlantic Ocean (Hansen et al., 1991). Studies of the interactions between hatchery and wild salmonids, with few exceptions (see Myers et al., 2000), have primarily focused on interactions in freshwater environments.Interactions between hatchery and wild fishes in estuarine and marine environments have not received the same attention, but may have signifi- cant impacts on wild populations. To address this issue, we organized a symposium held at the 2003 annual meeting of the Western Division of the American Fisheries Society in San Diego, California. The session was titled Interactions of Hatchery and Wild Fishes in Marine and Estuarine Environments and included nine presentations. All but one presentation focused on salmonids. This Special Issue of Reviews in Fish Biology and Fisheries includes five papers that were submitted to the symposium.

  15. Flume Experiments on the Influence of Salmon Spawning Density on Grain Stability and Bedload Transport in Gravel-bed Streams

    NASA Astrophysics Data System (ADS)

    Buxton, T. H.

    2015-12-01

    Salmon spawning in streams involves the female salmon digging a pit in the bed where she deposits eggs for fertilization before covering them with gravel excavated from the next pit upstream. Sequences of pit excavation and filling winnow fines, loosen sediment, and move bed material into a tailspill mound resembling the shape of a dune. Research suggests salmonid nests (redds) destabilize streambeds by reducing friction between loosened grains and converging flow that elevates shear stress on redd topography. However, bed stability may be enhanced by form drag from redds in clusters that lower shear stress on the granular bed, but this effect will vary with the proportion of the bed surface that is occupied by redds (P). I used simulated redds and water-worked ("unspawned") beds in a laboratory flume to evaluate these competing influences on grain stability and bedload transport rates with P=0.12, 0.34, and 0.41. Results indicate that competence (largest-grain) and reference transport rate estimates of critical conditions for particle entrainment inversely relate to P. Bedload transport increased as exponential functions of P and excess boundary shear stress. Therefore, redd form drag did not overcome the destabilizing effects of spawning. Instead, grain mobility and bedload transport increased with P because larger areas of the bed were composed of relatively loose, unstable grains and redd topography that experienced elevated shear stress. Consequently, the presence of redds in fish-bearing streams likely reduces the effects of sedimentation from landscape disturbance on stream habitats that salmon use for reproduction.

  16. Identification of lake trout Salvelinus namaycush spawning habitat in northern Lake Huron using high-resolution satellite imagery

    USGS Publications Warehouse

    Grimm, Amanda G.; Brooks, Colin N.; Binder, Thomas R.; Riley, Stephen C.; Farha, Steve A.; Shuchman, Robert A.; Krueger, Charles C.

    2016-01-01

    The availability and quality of spawning habitat may limit lake trout recovery in the Great Lakes, but little is known about the location and characteristics of current spawning habitats. Current methods used to identify lake trout spawning locations are time- and labor-intensive and spatially limited. Due to the observation that some lake trout spawning sites are relatively clean of overlaying algae compared to areas not used for spawning, we suspected that spawning sites could be identified using satellite imagery. Satellite imagery collected just before and after the spawning season in 2013 was used to assess whether lake trout spawning habitat could be identified based on its spectral characteristics. Results indicated that Pléiades high-resolution multispectral satellite imagery can be successfully used to estimate algal coverage of substrates and temporal changes in algal coverage, and that models developed from processed imagery can be used to identify potential lake trout spawning sites based on comparison of sites where lake trout eggs were and were not observed after spawning. Satellite imagery is a potential new tool for identifying lake trout spawning habitat at large scales in shallow nearshore areas of the Great Lakes.

  17. Potential effects of climate change on streambed scour and risks to salmonid survival in snow-dominated mountain basins

    Treesearch

    Jaime R. Goode; John M. Buffington; Daniele Tonina; Daniel J. Isaak; Russell F. Thurow; Seth Wenger; David Nagel; Charlie Luce; Doerthe Tetzlaff; Chris Soulsby

    2013-01-01

    Snowmelt-dominated basins in northern latitudes provide critical habitat for salmonids. As such, these systems may be especially vulnerable to climate change because of potential shifts in the frequency, magnitude, and timing of flows that can scour incubating embryos. A general framework is presented to examine this issue, using a series of physical models that link...

  18. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA

    Treesearch

    Rebecca Flitcroft; Kelly Burnett; Kelly Christiansen

    2013-01-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and...

  19. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    PubMed

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-07

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  20. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    PubMed Central

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P. J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears. PMID:23677350

  1. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  2. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    USGS Publications Warehouse

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  3. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  4. Documentation of a Gulf sturgeon spawning site on the Yellow River, Alabama, USA

    USGS Publications Warehouse

    Kreiser, Brian R.; Berg, J.; Randall, M.; Parauka, F.; Floyd, S.; Young, B.; Sulak, Kenneth J.

    2008-01-01

    Parauka and Giorgianni (2002) reported that potential Gulf sturgeon spawning habitat is present in the Yellow River; however, efforts to document spawning by the collection of eggs or larvae have been unsuccessful in the past. Herein, we report on the first successful collection of eggs from a potential spawning site on the Yellow River and the verification of their identity as Gulf sturgeon by using molecular methods.

  5. A case of isolation by distance and short-term temporal stability of population structure in brown trout (Salmo trutta) within the River Dart, southwest England

    PubMed Central

    Griffiths, Andrew M; Koizumi, Itsuro; Bright, Dylan; Stevens, Jamie R

    2009-01-01

    Salmonid fishes exhibit high levels of population differentiation. In particular, the brown trout (Salmo trutta L.) demonstrates complex within river drainage genetic structure. Increasingly, these patterns can be related to the underlying evolutionary models, of which three scenarios (member-vagrant hypothesis, metapopulation model and panmixia) facilitate testable predictions for investigations into population structure. We analysed 1225 trout collected from the River Dart, a 75 km long river located in southwest England. Specimens were collected from 22 sample sites across three consecutive summers (2001–2003) and genetic variation was examined at nine microsatellite loci. A hierarchical analysis of molecular variance revealed that negligible genetic variation was attributed among temporal samples. The highest levels of differentiation occurred among samples isolated above barriers to fish movement, and once these samples were removed, a significant effect of isolation-by-distance was observed. These results suggest that, at least in the short-term, ecological events are more important in shaping the population structure of Dart trout than stochastic extinction events, and certainly do not contradict the expectations of a member-vagrant hypothesis. Furthermore, individual-level spatial autocorrelation analyses support previous recommendations for the preservation of a number of spawning sites spaced throughout the tributary system to conserve the high levels of genetic variation identified in salmonid species. PMID:25567897

  6. Landscape and Climate Adaptation Planning for the Mashel ...

    EPA Pesticide Factsheets

    Salmon are important to the economic, social, cultural, and aesthetic values of the people in the Nisqually River. The Mashel watershed is important to recovery of Chinook salmon (Oncorhynchus tshawytscha) and winter steelhead (O. mykiss), and long-term sustainability of coho salmon (O. kisutch) in the Nisqually basin. The Mashel is the second largest Nisqually subwatershed by area (84 square miles) and is the largest tributary by flow accessible to salmonids. It is mostly forested, a combination of regularly harvested state and private timberlands. The watershed and salmonids utilizing the Mashel are particularly vulnerable to changes in seasonal precipitation and temperature because of its hydrologic flashiness, low summer flows and potential for sediment transport.We analyzed fish habitat potential under alternative forest management and climate scenarios using a linked modeling framework. The modeling framework includes a spatially-distributed watershed simulator (VELMA - Visualizing Ecosystem Land Management Assessments). VELMA quantifies effects of forest management and climate scenarios on key flow variables affecting salmon habitat. Spatially distributed output from VELMA was input to the Ecosystem Diagnosis and Treatment (EDT) fish habitat model to evaluate salmonid habitat potential and population responses.We show how historic timber harvest is still affecting salmonid habitat potential and how a community forest based management plan could be more pr

  7. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar).

    PubMed

    Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante

    2015-04-01

    In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus-pituitary-interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles. © 2015. Published by The Company of Biologists Ltd.

  8. Identifying sturgeon spawning locations through back-calculations of drift

    USGS Publications Warehouse

    Bulliner, Edward A.; Erwin, Susannah O.; Jacobson, Robert B.; Chojnacki, Kimberly A.; George, Amy E.; Delonay, Aaron J.

    2016-01-01

    Unfavorable spawning habitat conditions have been identified as a potential limiting factor for recovery of the endangered pallid sturgeon on the Missouri River and its tributaries. After successful spawning, incubation, and hatching, sturgeon free embryos passively drift downstream and are sometimes captured by sampling crews. While spawning habitat has been identified at time of spawning through field investigations, captured pallid and shovelnose (used as a surrogate species) sturgeon free embryos in the Missouri River often do not come from genetically-known telemetered fish and may be useful to identify additional areas of spawning habitat. We developed a routing model to identify potential spawning locations for captured free embryos of known age based on channel velocity estimates. To estimate velocity we compared use of at-a-station hydraulic geometry relations to empirical estimates of velocity form a 15-year archive of hydroacoustic measurements on the Missouri River.

  9. Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus.

    PubMed

    Reuter, Kim E; Levitan, Don R

    2010-12-01

    The cues triggering large-scale broadcast-spawning events in marine invertebrates are not fully understood. Using the sea urchin Lytechinus variegatus, we tested the effectiveness of a variety of potential spawning cues in eliciting a spawning response. In the laboratory, during two consecutive spawning seasons, about 400 isolated sea urchins were exposed to phytoplankton, sperm, or eggs, singly or in combination. The likelihood of spawning, time to spawning, and spawning behavior were recorded for both sexes. Sperm was most successful at inducing spawning. No response to eggs was noted. Phytoplankton alone did not trigger spawning, but when a phytoplankton cue was followed by the addition of sperm, spawning behavior was induced, the time between addition of sperm and spawning was reduced, and the variance among individuals in the time of spawning initiation was reduced. Males spawned sooner in response to cues than females and rarely spawned spontaneously in phytoplankton or control treatments. A semilunar pattern in the sensitivity to spawning cues was noted. During time periods when sea urchins were less ripe, the ratio of spawning males to spawning females increased. Our results indicate that seasonal and lunar cycles, together with the presence of phytoplankton, increase the sensitivity of these sea urchins to spawning cues and the precision of their responses to conspecific sperm.

  10. Effects of temperature on disease progression and swimming stamina in Ichthyophonus-infected rainbow trout, Oncorhynchus mykiss (Walbaum).

    PubMed

    Kocan, R; Hershberger, P; Sanders, G; Winton, J

    2009-10-01

    Rainbow trout, Oncorhynchus mykiss, were infected with Ichthyophonus sp. and held at 10 degrees C, 15 degrees C and 20 degrees C for 28 days to monitor mortality and disease progression. Infected fish demonstrated more rapid onset of disease, higher parasite load, more severe host tissue reaction and reduced mean-day-to-death at higher temperature. In a second experiment, Ichthyophonus-infected fish were reared at 15 degrees C for 16 weeks then subjected to forced swimming at 10 degrees C, 15 degrees C and 20 degrees C. Stamina improved significantly with increased temperature in uninfected fish; however, this was not observed for infected fish. The difference in performance between infected and uninfected fish became significant at 15 degrees C (P = 0.02) and highly significant at 20 degrees C (P = 0.005). These results have implications for changes in the ecology of fish diseases in the face of global warming and demonstrate the effects of higher temperature on the progression and severity of ichthyophoniasis as well as on swimming stamina, a critical fitness trait of salmonids. This study helps explain field observations showing the recent emergence of clinical ichthyophoniasis in Yukon River Chinook salmon later in their spawning migration when water temperatures were high, as well as the apparent failure of a substantial percentage of infected fish to successfully reach their natal spawning areas.

  11. Effects of temperature on disease progression and swimming stamina in Ichthyophonus-infected rainbow trout, Oncorhynchus mykiss (Walbaum)

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.; Sanders, G.; Winton, J.

    2009-01-01

    Rainbow trout, Oncorhynchus mykiss, were infected with Ichthyophonus sp. and held at 10 ??C, 15 ??C and 20 ??C for 28 days to monitor mortality and disease progression. Infected fish demonstrated more rapid onset of disease, higher parasite load, more severe host tissue reaction and reduced mean-day-to-death at higher temperature. In a second experiment, Ichthyophonus-infected fish were reared at 15 ??C for 16 weeks then subjected to forced swimming at 10 ??C, 15 ??C and 20 ??C. Stamina improved significantly with increased temperature in uninfected fish; however, this was not observed for infected fish. The difference in performance between infected and uninfected fish became significant at 15 ??C (P = 0.02) and highly significant at 20 ??C (P = 0.005). These results have implications for changes in the ecology of fish diseases in the face of global warming and demonstrate the effects of higher temperature on the progression and severity of ichthyophoniasis as well as on swimming stamina, a critical fitness trait of salmonids. This study helps explain field observations showing the recent emergence of clinical ichthyophoniasis in Yukon River Chinook salmon later in their spawning migration when water temperatures were high, as well as the apparent failure of a substantial percentage of infected fish to successfully reach their natal spawning areas. ?? 2009 Blackwell Publishing Ltd.

  12. Geomorphic Effects of Boulder Placement on Gravel Capture and Retention in a Regulated Reach of the North Umpqua River, OR.

    NASA Astrophysics Data System (ADS)

    Stallman, J.; Braudrick, C.; Pedersen, D.; Cui, Y.; Sklar, L.; Dietrich, B.; Real de Asua, R.

    2004-12-01

    Hydroelectric projects in the mountainous western Cascades often occur in steep, confined channels where salmonid spawning habitat is limited to gravel deposits forced by planform curvature, channel width changes, and flow separation associated with large bedrock and boulder obstructions. The paucity of gravel deposition in steepland channels may be exacerbated in regulated rivers where sediment trapping by impoundments reduces coarse sediment supply to downstream reaches. Placing boulders to capture and retain gravel may be an effective approach to enhancing spawning habitat in these settings. To better understand the potential use of boulders as a tool for enhancing spawning habitat, three experimental designs were tested in a 0.6-mile bypass reach of the North Umpqua River, OR. The bedrock-confined study reach has an average slope of 0.013 and plane-bed morphology with coarse cobble substrate, abundant marginal boulders, and small associated patches of sand and gravel. Experiments involved (1) placement of boulder clusters, (2) gravel augmentation and placement of boulder clusters, and (3) gravel augmentation alone. Boulder clusters were designed to promote scour and deposition during floods with a 5-10 year recurrence interval. Boulders were typically placed obliquely upstream at locations where existing hydraulics favored gravel deposition. Monitoring from 2002 to 2004 occurred prior to implementation, immediately following implementation, and following winter high flows. Sites were monitored using high-density topographic surveys, low-altitude aerial photography, facies mapping, pebble counts, scour cores and chains, and marked rocks. Stage heights were monitored using pressure transducers at the upstream and downstream ends of the study reach, and flood recurrence interval was assessed using a nearby USGS gauge. The arrangement of boulder clusters was modified after the first year of monitoring to improve gravel capture and retention. Peak flow during the two-year monitoring period had a recurrence interval of less than 1.5 years. Flows were insufficient to mobilize the bed as a whole, but did adjust bed surface texture and topography adjacent to boulder accumulations. Select sites captured and retained modest amounts of gravel even at the relatively low peaks experienced during 2003 and 2004. The effects of increasing coarse sediment supply will be tested in 2005 through the introduction of a large gravel pulse at the upstream end of the study reach.

  13. Potential Factors Affecting Survival Differ by Run-Timing and Location: Linear Mixed-Effects Models of Pacific Salmonids (Oncorhynchus spp.) in the Klamath River, California

    PubMed Central

    Quiñones, Rebecca M.; Holyoak, Marcel; Johnson, Michael L.; Moyle, Peter B.

    2014-01-01

    Understanding factors influencing survival of Pacific salmonids (Oncorhynchus spp.) is essential to species conservation, because drivers of mortality can vary over multiple spatial and temporal scales. Although recent studies have evaluated the effects of climate, habitat quality, or resource management (e.g., hatchery operations) on salmonid recruitment and survival, a failure to look at multiple factors simultaneously leaves open questions about the relative importance of different factors. We analyzed the relationship between ten factors and survival (1980–2007) of four populations of salmonids with distinct life histories from two adjacent watersheds (Salmon and Scott rivers) in the Klamath River basin, California. The factors were ocean abundance, ocean harvest, hatchery releases, hatchery returns, Pacific Decadal Oscillation, North Pacific Gyre Oscillation, El Niño Southern Oscillation, snow depth, flow, and watershed disturbance. Permutation tests and linear mixed-effects models tested effects of factors on survival of each taxon. Potential factors affecting survival differed among taxa and between locations. Fall Chinook salmon O. tshawytscha survival trends appeared to be driven partially or entirely by hatchery practices. Trends in three taxa (Salmon River spring Chinook salmon, Scott River fall Chinook salmon; Salmon River summer steelhead trout O. mykiss) were also likely driven by factors subject to climatic forcing (ocean abundance, summer flow). Our findings underscore the importance of multiple factors in simultaneously driving population trends in widespread species such as anadromous salmonids. They also show that the suite of factors may differ among different taxa in the same location as well as among populations of the same taxa in different watersheds. In the Klamath basin, hatchery practices need to be reevaluated to protect wild salmonids. PMID:24866173

  14. Distribution of spawning activity by anadromous fishes in an atlantic slope drainage after removal of a low-head dam

    USGS Publications Warehouse

    Burdick, S.M.; Hightower, J.E.

    2006-01-01

    In 1998, the Quaker Neck Dam was removed from the Neuse River near Goldsboro, North Carolina, restoring access to more than 120 km of potential main-stem spawning habitat and 1,488 km of potential tributary spawning habitat to anadromous fishes. We used plankton sampling and standardized electrofishing to examine the extent to which anadromous fishes utilized this restored spawning habitat in 2003 and 2004. Evidence of spawning activity was detected upstream of the former dam site for three anadromous species: American shad Alosa sapidissima, hickory shad A. mediocris, and striped bass Morone saxatilis. The percentages of eggs and larvae collected in the restored upstream habitat were greater in 2003, when spring flows were high, than in 2004. River reaches where spawning occurred were estimated from egg stage and water velocity data. Spawning of American shad and striped bass occurred primarily in main-stem river reaches that were further upstream during the year of higher spring flows. Hickory shad generally spawned in downstream reaches and in tributaries above and below the former dam site. These results demonstrate that anadromous fishes will take advantage of upper basin spawning habitat restored through dam removal as long as instream flows are adequate to facilitate upstream migration.

  15. Evolutionary consequences of habitat loss for Pacific anadromous salmonids

    PubMed Central

    McClure, Michelle M; Carlson, Stephanie M; Beechie, Timothy J; Pess, George R; Jorgensen, Jeffrey C; Sogard, Susan M; Sultan, Sonia E; Holzer, Damon M; Travis, Joseph; Sanderson, Beth L; Power, Mary E; Carmichael, Richard W

    2008-01-01

    Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies. PMID:25567633

  16. SALMOD: A population model for salmonids: user's manual. Version W3

    USGS Publications Warehouse

    Bartholow, John; Heasley, John; Laake, Jeff; Sandelin, Jeff; Coughlan, Beth A.K.; Moos, Alan

    2002-01-01

    SALMOD is a computer model that simulates the dynamics of freshwater salmonid populations, both anadromous and resident. The conceptual model was developed in a workshop setting (Williamson et al. 1993) using fish experts concerned with Trinity River chinook restoration. The model builds on the foundation laid by similar models (see Cheslak and Jacobson 1990). The model’s premise that that egg and fish mortality are directly related to spatially and temporally variable micro- and macrohabitat limitations, which themselves are related to the timing and amount of streamflow and other meteorological variables. Habitat quality and capacity are characterized by the hydraulic and thermal properties of individual mesohabitats, which we use as spatial “computation units” in the model. The model tracks a population of spatially distinct cohorts that originate as gees and grow from one life stage to another as a function of local water temperature. Individual cohorts either remain in the computational unit in which they emerged or move, in whole or in part, to nearby units (see McCormick et al. 1998). Model processes include spawning (with red superimposition and incubation losses), growth (including egg maturation), mortality, and movement (freshet-induced, habitat-induced, and seasonal). Model processes are implemented such that the user (modeler) has the ability to more-or-less program the model on the fly to create the dynamics thought to animate the population. SALMOD then tabulates the various causes of mortality and the whereabouts of fish.

  17. Flow management and fish density regulate salmonid recruitment and adult size in tailwaters across western North America

    USGS Publications Warehouse

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.; Budy, Phaedra E.

    2015-01-01

    The mean lengths of adult rainbow and brown trout were influenced by similar flow and catch metrics. Length in both species was positively correlated with high annual flow but declined in tailwaters with high daily fluctuations in flow, high catch rates of conspecifics, and when large cohorts recruited to adult size. Whereas brown trout did not respond to the proportion of water allocated between seasons, rainbow trout length increased in rivers that released more water during winter than in spring. Rainbow trout length was primarily related to high catch rates of conspecifics, whereas brown trout length was mainly related to large cohorts recruiting to the adult size class. Species-specific responses to flow management are likely attributable to differences in seasonal timing of key life history events such as spawning, egg hatching, and fry emergence.

  18. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding

    PubMed Central

    Milot, Emmanuel; Perrier, Charles; Papillon, Lucie; Dodson, Julian J; Bernatchez, Louis

    2013-01-01

    Salmonids rank among the most socioeconomically valuable fishes and the most targeted species by stocking with hatchery-reared individuals. Here, we used molecular parentage analysis to assess the reproductive success of wild- and hatchery-born Atlantic salmon over three consecutive years in a small river in Québec. Yearly restocking in this river follows a single generation of captive breeding. Among the adults returning to the river to spawn, between 11% and 41% each year were born in hatchery. Their relative reproductive success (RRS) was nearly half that of wild-born fish (0.55). RRS varied with life stage, being 0.71 for fish released at the fry stage and 0.42 for fish released as smolt. The lower reproductive success of salmon released as smolt was partly mediated by the modification of the proportion of single-sea-winter/multi-sea-winter fish. Overall, our results suggest that modifications in survival and growth rates alter the life-history strategies of these fish at the cost of their reproductive success. Our results underline the potential fitness decrease, warn on long-term evolutionary consequences for the population of repeated stocking and support the adoption of more natural rearing conditions for captive juveniles and their release at a younger stage, such as unfed fry. PMID:23745139

  19. Distribution and status of seven native salmonids in the interior Columbia River basin and portions of the Klamath River and Great basins

    Treesearch

    Russell F. Thurow; Danny C. Lee; Bruce E. Rieman

    1997-01-01

    We summarized presence, absence, current status, and potential historical distribution of seven native salmonid taxa - bull trout Salvelinus confluentus, Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, westslope cutthroat trout O. c. lewisi, redband trout and steelhead O. mykiss gairdneri, stream type (age-1 migrant) chinook salmon O. tshawytscha. and ocean...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Michael J.; Williamson, Kevin S.

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents thanmore » for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries. To better understand this trend, redd microhabitat data was collected from spring Chinook salmon that spawned in the Chiwawa River and Nason Creek, the primary spawning tributaries in the Wenatchee Basin. The objective of the study was to examine the influence of habitat and spawner density on spawning site and redd structure characteristics. We analyzed 27 variables of redd microhabitat data collected from the upper and lower most reaches of each study stream. In both streams, we found redds in the upper most reaches to be significantly larger (length and width) and deeper (bowl depth). Spawner density was significantly greater in the lower Chiwawa River compared to the upper reach. No difference in spawner density was detected between reaches in Nason Creek (P = 0.54). Data should be considered preliminary until sample size goals are achieved.« less

  1. Fish and chips: Various methodologies demonstrate utility of a 16,006-gene salmonid microarray

    PubMed Central

    von Schalburg, Kristian R; Rise, Matthew L; Cooper, Glenn A; Brown, Gordon D; Gibbs, A Ross; Nelson, Colleen C; Davidson, William S; Koop, Ben F

    2005-01-01

    Background We have developed and fabricated a salmonid microarray containing cDNAs representing 16,006 genes. The genes spotted on the array have been stringently selected from Atlantic salmon and rainbow trout expressed sequence tag (EST) databases. The EST databases presently contain over 300,000 sequences from over 175 salmonid cDNA libraries derived from a wide variety of tissues and different developmental stages. In order to evaluate the utility of the microarray, a number of hybridization techniques and screening methods have been developed and tested. Results We have analyzed and evaluated the utility of a microarray containing 16,006 (16K) salmonid cDNAs in a variety of potential experimental settings. We quantified the amount of transcriptome binding that occurred in cross-species, organ complexity and intraspecific variation hybridization studies. We also developed a methodology to rapidly identify and confirm the contents of a bacterial artificial chromosome (BAC) library containing Atlantic salmon genomic DNA. Conclusion We validate and demonstrate the usefulness of the 16K microarray over a wide range of teleosts, even for transcriptome targets from species distantly related to salmonids. We show the potential of the use of the microarray in a variety of experimental settings through hybridization studies that examine the binding of targets derived from different organs and tissues. Intraspecific variation in transcriptome expression is evaluated and discussed. Finally, BAC hybridizations are demonstrated as a rapid and accurate means to identify gene content. PMID:16164747

  2. Spatial and temporal variability of macroinvertebrates in spawning and non-spawning habitats during a salmon run in Southeast Alaska.

    PubMed

    Campbell, Emily Y; Merritt, Richard W; Cummins, Kenneth W; Benbow, M Eric

    2012-01-01

    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.

  3. Spatial and Temporal Variability of Macroinvertebrates in Spawning and Non-Spawning Habitats during a Salmon Run in Southeast Alaska

    PubMed Central

    Campbell, Emily Y.; Merritt, Richard W.; Cummins, Kenneth W.; Benbow, M. Eric

    2012-01-01

    Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream. PMID:22745724

  4. Sex structure and potential female fecundity in a Epinephelus guttatus spawning aggregation: Applying ultrasonic imaging

    USGS Publications Warehouse

    Whiteman, E.A.; Jennings, C.A.; Nemeth, R.S.

    2005-01-01

    Ultrasonic imaging was used to determine the spawning population structure and develop a fecundity estimation model for a red hind Epinephelus guttatus spawning aggregation within the Red Hind Bank Marine Conservation District, St Thomas, U.S.V.I. The spawning population showed considerable within-month and between-month variation in population size- and sex-structure. In the spawning season studied, males appeared to arrive at the aggregation site first in December although females represented a large proportion of the catch early in the aggregation periods in January and February. Spawning occurred in January and February, and size frequency distributions suggested that an influx of small females occurred during the second spawning month. An overall sex ratio of 2.9:1 (female:male) was recorded for the whole reproductive season. The sex ratio, however, differed between months and days within months. More females per male were recorded in January than in February when the sex ratio was male biased. Fecundity estimates for this species predicted very high potential fecundities (2.4 ?? 105-2.4 ?? 106 oocytes). The ultrasound model also illustrated a rapid increase in potential female fecundity with total length. Ultrasonic imaging may prove a valuable tool in population assessment for many species and locations in which invasive fishing methods are clearly undesirable. ?? 2005 The Fisheries Society of the British Isles.

  5. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups

    PubMed Central

    2014-01-01

    Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout. PMID:24450799

  6. Comparative Analysis of the Shared Sex-Determination Region (SDR) among Salmonid Fishes.

    PubMed

    Faber-Hammond, Joshua J; Phillips, Ruth B; Brown, Kim H

    2015-06-25

    Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Diversity of Flavobacterium psychrophilum and the potential use of its phages for protection against bacterial cold water disease in salmonids.

    PubMed

    Castillo, D; Higuera, G; Villa, M; Middelboe, M; Dalsgaard, I; Madsen, L; Espejo, R T

    2012-03-01

    Flavobacterium psychrophilum causes rainbow trout fry syndrome (RTFS) and cold water disease (CWD) in salmonid aquaculture. We report characterization of F. psychrophilum strains and their bacteriophages isolated in Chilean salmonid aquaculture. Results suggest that under laboratory conditions phages can decrease mortality of salmonids from infection by their F. psychrophilum host strain. Twelve F. psychrophilum isolates were characterized, with DNA restriction patterns showing low diversity between strains despite their being obtained from different salmonid production sites and from different tissues. We isolated 15 bacteriophages able to infect some of the F. psychrophilum isolates and characterized six of them in detail. DNA genome sizes were close to 50 Kbp and corresponded to the Siphoviridae and Podoviridae families. One isolate, 6H, probably contains lipids as an essential virion component, based on its chloroform sensitivity and low buoyant density in CsCl. Each phage isolate rarely infected F. psychrophilum strains other than the strain used for its enrichment and isolation. Some bacteriophages could decrease mortality from intraperitoneal injection of its host strain when added together with the bacteria in a ratio of 10 plaque-forming units per colony-forming unit. While we recognize the artificial laboratory conditions used for these protection assays, this work is the first to demonstrate that phages might be able protect salmonids from RTFS or CWD. © 2012 Blackwell Publishing Ltd.

  8. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Fish attractor, spawning... OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be constructed...

  9. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.

    PubMed

    Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A

    2012-07-01

    Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more thermal units and longer exposures to freshwater diseases and parasites compared to fish that delay freshwater entry by milling in the cool ocean environment. Experiments have confirmed that thermally driven processes are a primary cause of mortality for early-entry migrants. The Fraser River late-run O. nerka early migration phenomenon illustrates the complex links that exist between salmonid physiology, behaviour and environment and the pivotal role that water temperature can have on population-specific migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  10. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon their return to freshwater in the spring or early summer. For several months throughout the summer, only prespore stages are observed in most fish, even at the time of spawning. But once the fish dies, environmental conditions experienced by C. shasta change and viable presporogonic stages are induced to sporulate. As the post-spawned fish occur in the upper reaches of rivers, the myxospores would be released in a freshwater environment that would provide a reasonable opportunity for them to encounter their freshwater polychaete hosts, which reside downstream.

  11. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA.

    PubMed

    Flitcroft, Rebecca; Burnett, Kelly; Christiansen, Kelly

    2013-07-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.

  12. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    PubMed Central

    Wyman, Megan T.; Kavet, Robert

    2017-01-01

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021

  13. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges.

    PubMed

    Klimley, A Peter; Wyman, Megan T; Kavet, Robert

    2017-01-01

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.

  14. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration.

    PubMed

    Larsen, Martin H; Johnsson, Jörgen I; Winberg, Svante; Wilson, Alexander D M; Hammenstig, David; Thörnqvist, Per-Ove; Midwood, Jonathan D; Aarestrup, Kim; Höglund, Erik

    2015-01-01

    Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival) and life-history predictions from laboratory measures of behaviour should be made with caution and ideally tested in nature.

  15. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less

  16. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    DOE PAGES

    Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...

    2017-06-02

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less

  17. Quantity, structure, and habitat selection of natural spawning reefs by walleyes in a north temperate lake: A multiscale analysis

    USGS Publications Warehouse

    Raabe, Joshua K.; Bozek, Michael A.

    2012-01-01

    Spawning habitat, the cornerstone of self-sustaining, naturally reproducing walleyeSander vitreus populations, has received limited quantitative research. Our goal was to quantitatively describe the structure and quantity of natural walleye spawning habitat and evaluate potential selection of habitat in Big Crooked Lake, Wisconsin. In 2004 and 2005, we located and delineated walleye egg deposition polygons through visual snorkel and scuba surveys. We also delineated recently deposited, adhesive egg patches daily along one spawning reef in 2005. To determine habitat selection, we quantified and compared spawning and lakewide available habitat at different scales. In both years, walleyes used similar spawning habitat, including three geomorphic types: linear shorelines, a point bar, and an island. Walleyes used only 14% of the entire lake shoreline and 39% of the shoreline comprised of gravel (6.4–76.0 mm), cobble (76.1–149.9 mm), or coarser substrates for spawning in 2005, indicating selection of specific spawning habitat. Lakewide, walleyes spawned close to shore (outer egg deposition polygon boundary mean distance = 2.7 m), in shallow water (outer egg deposition polygon boundary mean depth = 0.3 m), and over gravel substrate (percent coverage mean = 64.3) having low embeddedness (mean = 1.30). Our best nearshore (0–13-m) resource selection function predicted an increase in the relative probability of egg deposition with the increasing abundance of gravel, cobble, and rubble (150.0–303.9-mm) substrates and a decrease with increasing distance from shore and water depth (89.9% overall correct classification). Adhesive egg patches confirmed that walleyes actively chose nearshore, shallow-water, and coarse-substrate spawning habitat. The quantitative habitat information and predictive models will assist biologists in developing walleye spawning reef protection strategies and potentially aid in designing and evaluating artificial spawning reefs.

  18. An evaluation of the toxicity of potassium chloride, active compound in the molluscicide potash, on salmonid fish and their forage base

    USGS Publications Warehouse

    Densmore, Christine L.; Iwanowicz, Luke R.; Henderson, Anne P.; Blazer, Vicki S.; Reed-Grimmett, Baileigh M.; Sanders, Lakyn R.

    2018-06-29

    Potash, with the active ingredient potassium chloride (KCl) is a chemical that is currently being evaluated for potential use as a molluscicide to combat invasive zebra mussels and quagga mussels in Western United States waters. Although data available for other freshwater fishes indicate that recommended treatment levels of potash as a molluscicide are sublethal, this has not been demonstrated for all salmonid species. The objectives of this study were to perform toxicity testing to determine the lethality of potassium chloride against selected species of salmonid fish (brook trout and Chinook salmon) and selected invertebrate forage, and to identify any potential adverse physiological impacts of KCl to these salmonids in water at treatment levels used for mollusk eradication. Minimal mortality (n=1 fish) was observed during 96-hour toxicity testing at KCl concentrations of 0 to 800 milligrams per liter (mg/L), indicating that the lethal concentration (LC50) values in these salmonid species were considerably higher than realistic molluscicide treatment concentrations. Sublethal effects were examined through evaluation of behavioral and morphological (histological) observation as well as specific blood chemistry parameters (electrolytes, osmolality, glucose, and cortisol). There was no strong evidence of significant physiological impairment among the two salmonid species due to KCl exposure. Whereas statistically significant differences in some parameters were observed in association with KCl treatments, it is unlikely that these differences indicate adverse biological impacts. Acute toxicity tests were conducted with invertebrate species at KCl exposure concentrations of 0–3,200 mg/L. Daphniid exposure trials resulted in differences in mortality among the test groups with higher mortality evident among the higher KCl exposure concentrations with a calculated LC50 value of 196 mg/L KCl for a 48-hour exposure. Crayfish exposed to higher concentrations of KCl at or above 800 mg/L as specimens exhibited death or reversible paralysis. Chironomid larvae exposures were largely inconclusive because of cannibalistic behavior among the various test groups.

  19. Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod

    PubMed Central

    Opdal, Anders Frugård; Jørgensen, Christian

    2015-01-01

    Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under-studied. Here, we analyse potential drivers of long-term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866–1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information. PMID:25336028

  20. Occurrence and distribution of pesticides in surface waters of the Hood River basin, Oregon, 1999-2009

    USGS Publications Warehouse

    Temple, Whitney B.; Johnson, Henry M.

    2011-01-01

    The U.S. Geological Survey analyzed pesticide and trace-element concentration data from the Hood River basin collected by the Oregon Department of Environmental Quality (ODEQ) from 1999 through 2009 to determine the distribution and concentrations of pesticides in the basin's surface waters. Instream concentrations were compared to (1) national and State water-quality standards established to protect aquatic organisms and (2) concentrations that cause sublethal or lethal effects in order to assess their potential to adversely affect the health of salmonids and their prey organisms. Three salmonid species native to the basin are listed as "threatened" under the U.S. Endangered Species Act: bull trout, steelhead, and Chinook salmon. A subset of 16 sites was sampled every year by the ODEQ for pesticides, with sample collection targeted to months of peak pesticide use in orchards (March-June and September). Ten pesticides and four pesticide degradation products were analyzed from 1999 through 2008; 100 were analyzed in 2009. Nineteen pesticides were detected: 11 insecticides, 6 herbicides, and 2 fungicides. Two of four insecticide degradation products were detected. All five detected organophosphate insecticides and the one detected organochlorine insecticide were present at concentrations exceeding water-quality standards, sublethal effects thresholds, or acute toxicity values in one or more samples. The frequency of organophosphate detection in the basin decreased during the period of record; however, changes in sampling schedule and laboratory reporting limits hindered clear analysis of detection frequency trends. Detected herbicide and fungicide concentrations were less than water-quality standards, sublethal effects thresholds, or acute toxicity values. Simazine, the most frequently detected pesticide, was the only herbicide detected at concentrations within an order of magnitude (factor of 10) of concentrations that impact salmonid olfaction. Some detected pesticides are of concern, not for their toxicity alone, but for their ability to potentiate the harmful impacts of other pesticides, particularly organophosphates, on salmonids or their prey. Many samples contained mixtures of pesticides, but the effects to salmonids of relevant mixtures at environmentally realistic concentrations for the basin are unknown. Trace-element concentration data, although limited, indicate that eight trace elements are also of concern for their potential to harm salmonid health. The dataset is limited with regard to the spatial and seasonal distribution of pesticides and trace elements in all salmonid-bearing streams, the presence of particle-bound pesticides, and the presence of several unmonitored pesticides known to be used in the basin.

  1. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. Modifications may include operational and structural changes, such as lowering downstream dam forebay elevations to less than minimum pool. There is a large amount of uncertainty as to whether or not such modifications could increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area. The results from this study provide some certainty that the quantity and quality of fall Chinook salmon spawning habitat within the lower Snake River are not likely to be increased within the existing hydroelectric dam operations.« less

  2. Expression of Fushi tarazu factor 1 homolog and Pit-1 genes in the pituitaries of pre-spawning chum and sockeye salmon.

    PubMed

    Higa, M; Ando, H; Urano, A

    2001-06-01

    Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.

  3. A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River

    NASA Astrophysics Data System (ADS)

    Viparelli, Enrica; Gaeuman, David; Wilcock, Peter; Parker, Gary

    2011-02-01

    Major changes in the morphology of the Trinity River in California, such as narrowing of the cross section and sedimentation of fine sediment in pools, occurred after the closure of a system of dams. These changes caused a dramatic reduction in the salmonid population and a resulting decline of the fishery. Gravel augmentation, regulated flood releases, and mechanical channel rehabilitation are currently being implemented to help restore the aquatic habitat of the river. The present paper describes a tool, named the Spawning Gravel Refresher, for designing and predicting the effects of gravel augmentation in gravel bed rivers. The tool assumes an imposed, cycled hydrograph. The model is calibrated and applied to the regulated reach of the Trinity River in four steps: (1) zeroing runs to reproduce conditions of mobile bed equilibrium as best can be estimated for the predam Trinity River, (2) runs to compare the predictions with the results of previous studies, (3) runs at an engineering time scale to reproduce the effects of the dams, and (4) runs to design gravel augmentation schemes. In the fourth group of runs, the combined effects of engineered flood flow releases and gravel augmentation are predicted. At an engineering time scale, the model indicates that the fraction of fine sediment in the surface layer and in the topmost part of the substrate should decrease when subjected to these two restoration measures, with a consequent improvement of the quality of the spawning gravel.

  4. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nezmore » Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.« less

  5. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon.

    PubMed

    Gillard, Gareth; Harvey, Thomas N; Gjuvsland, Arne; Jin, Yang; Thomassen, Magny; Lien, Sigbjørn; Leaver, Michael; Torgersen, Jacob S; Hvidsten, Torgeir R; Vik, Jon Olav; Sandve, Simen R

    2018-03-01

    Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration. © 2018 John Wiley & Sons Ltd.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, John L.

    The Department of Microbiology at Oregon State University with funding from the Bonneville Power Administration conducted a study relating to the epidemiology and control of three fish diseases of salmonids in the Columbia River Basin. These three diseases were ceratomyxosis which is caused by the myxosporidan parasite Ceratomyxa shasta, bacterial kidney disease, the etiological agent of which is Renibacterium salmoninarum, and infectious hematopoietic necrosis, which is caused by a rhabdovirus. Each of these diseases is highly destructive and difficult or impossible to treat with antimicrobial agents. The presence of ceratomyxosis in rainbow trout exposed at McNary and Little Goose Damsmore » extends the range of this disease about 200 miles further up the Columbia River and into the Snake River drainage. Wallowa steelhead trout were less resistant to this disease than other upriver stocks tested. Juvenile salmonids entering the Columbia River estuary were collected periodically between May to September, 1983. Nine percent of the beach seined chinook salmon and 5, 11 and 12%, respectively, of the purse seined coho and chinook salmon and steelhead trout were infected with Ceratomyxa shasta. Experiments indicated ceratomyxosis progresses in salt water at the same rate as in fresh water once the fish have become infected. These data indicate a longer exposure to infective stages of C. shasta than previously identified and that approximately 10% of the migrating salmonids are infected and will probably die from this organism after entering salt water. Since sampling began in 1981 the bacterial kidney disease organism, Renibacterium salmoninarum, has been detected by the fluorescent antibody test in seven salmonid species caught in the open ocean off the coasts of Washington and Oregon. The bacterium has been found primarily in chinook salmon (11%) with lesions in 2.5% of these fish. This disease was also detected at levels ranging from 17% in coho salmon to 25% in chinook salmon seined from the Columbia River just before entering the estuary. Interpretation of these numbers suggests an even greater economic impact on Columbia River salmonid stocks than that proposed for C. shasta. Fertilized eggs from bacterial kidney disease infected parents examined after one month of incubation revealed the presence of bacteria with identical morphology to R. salmoninarum on or in the egg wall further reinforcing the proposed vertical transmission of this disease organism. Infectious hematopoietic necrosis virus was recovered at the 67% level from seeded water samples supplemented with 1% fetal calf serum. Virus injected into unfertilized eggs survived for over two weeks; in eyed eggs the virus also replicated. Epizootics caused by IHNV occurred in two of the 8 separate groups of steelhead trout fingerlings held in LJV treated water at Round Butte Hatchery. Comparing these results to those in the vertical transmission experiment where none of the groups developed IHNV suggests that vertical transmission of IHNV, if it occurs, is a very infrequent or random event. On three occasions IHNV was detected in ovarian fluid samples after storage for 6--9 days at 4 C. No virus had been detected in these samples at spawning. This suggests the presence of an interfering substance, perhaps anti-IHNV antibody in ovarian fluid. This observation raises the possibility that IHNV is much more widespread throughout Columbia River Basin salmonid stocks than previously believed.« less

  7. Use of behavioral and physiological indicators to evaluate Scaphirhynchus sturgeon spawning success

    USGS Publications Warehouse

    DeLonay, A.J.; Papoulias, D.M.; Wildhaber, M.L.; Annis, M.L.; Bryan, J.L.; Griffith, S.A.; Holan, S.H.; Tillitt, D.E.

    2007-01-01

    Thirty gravid, female shovelnose sturgeon (Scaphirhynchus platorynchus) were captured in the Lower Missouri River in March 2004 to evaluate the effectiveness of physiology, telemetry and remote sensor technology coupled with change point analysis in identifying when and where Scaphirhynchus sturgeon spawn. Captured sturgeons were instrumented with ultrasonic transmitters and with archival data storage tags (DST) that recorded temperature and pressure. Female sturgeon were tracked through the suspected spawning period. Thereafter, attempts were made to recapture fish to evaluate spawning success. At the time of transmitter implantation, blood and an ovarian biopsy were taken. Reproductive hormones and cortisol were measured in blood. Polarization indices and germinal vesicle breakdown were assessed on the biopsied oocytes to determine readiness to spawn. Behavioral data collected using telemetry and DST sensors were used to determine the direction and magnitude of possible spawning-related movements and to identify the timing of potential spawning events. Upon recapture observations of the ovaries and blood chemistry provided measures of spawning success and comparative indicators to explain differences in observed behavior. Behavioral and physiological indicators of spawning interpreted along with environmental measures may assist in the determination of variables that may cue sturgeon reproduction and the conditions under which sturgeon successfully spawn.

  8. River Food Web Response to Large-Scale Riparian Zone Manipulations

    PubMed Central

    Wootton, J. Timothy

    2012-01-01

    Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786

  9. Temporal constraints on the potential role of fry odors as cues of past reproductive success for spawning lake trout

    USGS Publications Warehouse

    Buchinger, Tyler J.; Marsden, J. Ellen; Binder, Thomas R.; Huertas, Mar; Bussy, Ugo; Li, Ke; Hanson, James E.; Krueger, Charles C.; Li, Weiming; Johnson, Nicholas

    2017-01-01

    Deciding where to reproduce is a major challenge for most animals. Many select habitats based upon cues of successful reproduction by conspecifics, such as the presence of offspring from past reproductive events. For example, some fishes select spawning habitat following odors released by juveniles whose rearing habitat overlaps with spawning habitat. However, juveniles may emigrate before adults begin to search for spawning habitat; hence, the efficacy of juvenile cues could be constrained by degradation or dissipation rates. In lake trout (Salvelinus namaycush), odors deposited by the previous year's offspring have been hypothesized to guide adults to spawning reefs. However, in most extant populations, lake trout fry emigrate from spawning reefs during the spring and adults spawn during the fall. Therefore, we postulated that the role of fry odors in guiding habitat selection might be constrained by the time between fry emigration and adult spawning. Time course chemical, physiological, and behavioral assays indicated that the odors deposited by fry likely degrade or dissipate before adults select spawning habitats. Furthermore, fry feces did not attract wild lake trout to constructed spawning reefs in Lake Huron. Taken together, our results indicate fry odors are unlikely to act as cues for lake trout searching for spawning reefs in populations whose juveniles emigrate before the spawning season, and underscore the importance of environmental constraints on social cues.

  10. Environmental Flow Assessments in the McKenzie and Santiam River Basins, Oregon

    NASA Astrophysics Data System (ADS)

    Risley, J. C.; Bach, L.; Budai, C.; Duffy, K.

    2012-12-01

    The McKenzie and Santiam Rivers are tributaries of the Willamette River in northwestern Oregon, draining areas of 3,370 and 4,690 square kilometers, respectively. The river basins are heavily forested and contain streams that historically provided critical habit for salmonid rearing, salmonid spawning, and bull trout. In the 1950s and 1960s, hydropower and flood control dams were constructed in both basins. In 2008, the U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy (TNC) and the U.S. Army Corps of Engineers (Corps), began assessing the impacts of dam regulation in the two basins on streamflow, geomorphic, and ecological processes (Risley et. al., 2010; 2012). The baseline assessments were made under the auspices of the Sustainable Rivers Project (SRP), formed in 2002 by TNC and the Corps. SRP is a nation-wide partnership aimed at developing, implementing, and refining environmental flows downstream of dams. Environmental flows can be defined as the streamflow needed to sustain ecosystems while continuing to meet human needs. Determining environmental flows is an iterative collective process involving stakeholders, workshops, bio-monitoring, and follow-up assessments. The dams on the McKenzie and Santiam Rivers have decreased the frequency and magnitude of floods and increased the magnitude of low flows. In the Santiam River study reaches, for example, annual 1-day maximum streamflows decreased by 46-percent on average because of regulated streamflow conditions. Annual 7-day minimum flows in six of the seven study reaches increased by 146 percent on average. On a seasonal basis, median monthly streamflows in both river basins decreased from February to May and increased from September to January. However, the magnitude of these impacts usually decreased farther downstream from the dams because of the cumulative inflow from unregulated tributaries and groundwater discharge below the dams. In addition to streamflow assessments, the USGS studies included a geomorphic and ecological characterization of both rivers using reach characterization, historical channel mapping, aerial photography, and specific gage analysis methods. Decreased flooding and decreased sediment supply resulting from the dams likely contributed to a decrease in gravel bars, which are critical to salmonid spawning. Secondary channel features and sinuosity also decreased. However, other anthropogenic factors, such as bank stabilization revetments, land filling, and channel dredging, have also impacted channel morphology in both basins. Exemplar native terrestrial and aquatic species of interest and used in developing environmental flows for both river basins include black cottonwood, red alder, bull trout, spring Chinook, Oregon chub, red-legged frogs, and western pond turtles. Suggestions for future bio-monitoring and investigations were also provided in the study reports. References: Risley, John, Wallick, J.R., Waite, Ian, and Stonewall, Adam, 2010, Development of an environmental flow framework for the McKenzie River basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2010-5016, 94 p. Risley, J.C., Wallick, J.R., Mangano, J.F., and Jones, K.F., 2012, An environmental streamflow assessment for the Santiam River basin, Oregon: U.S. Geological Survey Open-File Report 2012-1133, 66 p.

  11. Density, aggregation, and body size of northern pikeminnow preying on juvenile salmonids in a large river

    USGS Publications Warehouse

    Petersen, J.H.

    2001-01-01

    Predation by northern pikeminnow Ptychocheilus oregonensis on juvenile salmonids Oncorhynchus spp. occurred probably during brief feeding bouts since diets were either dominated by salmonids (>80% by weight), or contained other prey types and few salmonids (<5%). In samples where salmonids had been consumed, large rather than small predators were more likely to have captured salmonids. Transects with higher catch-per-unit of effort of predators also had higher incidences of salmonids in predator guts. Predators in two of three reservoir areas were distributed more contagiously if they had preyed recently on salmonids. Spatial and temporal patchiness of salmonid prey may be generating differences in local density, aggregation, and body size of their predators in this large river.

  12. Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod.

    PubMed

    Opdal, Anders Frugård; Jørgensen, Christian

    2015-04-01

    Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under-studied. Here, we analyse potential drivers of long-term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866-1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Assessing climate-change risks to cultural and natural resources in the Yakima River Basin, Washington, USA

    USGS Publications Warehouse

    Hatten, James R.; Waste, Stephen M.; Maule, Alec G.

    2014-01-01

    We provide an overview of an interdisciplinary special issue that examines the influence of climate change on people and fish in the Yakima River Basin, USA. Jenni et al. (2013) addresses stakeholder-relevant climate change issues, such as water availability and uncertainty, with decision analysis tools. Montag et al. (2014) explores Yakama Tribal cultural values and well-being and their incorporation into the decision-making process. Graves and Maule (2012) simulates effects of climate change on stream temperatures under baseline conditions (1981–2005) and two future climate scenarios (increased air temperature of 1 °C and 2 °C). Hardiman and Mesa (2013) looks at the effects of increased stream temperatures on juvenile steelhead growth with a bioenergetics model. Finally, Hatten et al. (2013) examines how changes in stream flow will affect salmonids with a rule-based fish habitat model. Our simulations indicate that future summer will be a very challenging season for salmonids when low flows and high water temperatures can restrict movement, inhibit or alter growth, and decrease habitat. While some of our simulations indicate salmonids may benefit from warmer water temperatures and increased winter flows, the majority of simulations produced less habitat. The floodplain and tributary habitats we sampled are representative of the larger landscape, so it is likely that climate change will reduce salmonid habitat potential throughout particular areas of the basin. Management strategies are needed to minimize potential salmonid habitat bottlenecks that may result from climate change, such as keeping streams cool through riparian protection, stream restoration, and the reduction of water diversions. An investment in decision analysis and support technologies can help managers understand tradeoffs under different climate scenarios and possibly improve water and fish conservation over the next century.

  14. Lake Roosevelt Fisheries Evaluation Program, Part C; Lake Roosevelt Pelagic Fish Study: Washington Department of Fish and Wildlife, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Casey; Polacek, Matt; Bonar, Scott

    2002-11-01

    Pelagic fishes, such as kokanee and rainbow trout, provide an important fishery in Lake Roosevelt; however, spawner returns and creel results have been below management goals in recent years. Our objective was to identify factors that potentially limit pelagic fish production in Lake Roosevelt including entrainment, food limitation, piscivory, and other abiotic factors. We estimated the ratio of total fish entrained through Grand Coulee Dam to the pelagic fish abundance for September and October, 1998. If the majority of these fish were pelagic species, then entrainment averaged 10-13% of pelagic fish abundance each month. This rate of entrainment could imposemore » considerable losses to pelagic fish populations on an annual basis. Therefore, estimates of species composition of entrained fish will be important in upcoming years to estimate the proportion of stocked pelagic fish lost through the dam. Food was not limiting for kokanee or rainbow trout populations since growth rates were high and large zooplankton were present in the reservoir. Estimates of survival for kokanee were low (< 0.01 annual) and unknown for rainbow trout. We estimated that the 1997 standing stock biomass of large (>1.1 mm) Daphnia could have supported 0.08 annual survival by kokanee and rainbow trout before fish consumption would have exceeded available biomass during late winter and early spring. Therefore, if recruitment goals are met in the future there may be a bottleneck in food supply for pelagic planktivores. Walleye and northern pikeminnow were the primary piscivores of salmonids in 1996 and 1997. Predation on salmonid prey was rare for rainbow trout and not detected for burbot or smallmouth bass. Northern pikeminnow had the greatest individual potential as a salmonid predator due to their high consumptive demand; however, their overall impact was limited because of their low relative abundance. We modeled the predation impact of 273,524 walleye in 1996, and 39,075 northern pikeminnow in 1997 because diet data revealed predation on salmonids during these years. We could not determine the absolute impact of piscivores on each salmonid species because identification of fish prey was limited to families. Our estimate of salmonid consumption by walleye in 1996 and northern pikeminnow in 1997 shows that losses of stocked kokanee and rainbow trout could be substantial (up to 73% of kokanee) if piscivores were concentrating on one salmonid species, but were most likely lower, assuming predation was spread among kokanee, rainbow trout, and whitefish. Dissolved oxygen was never limiting for kokanee or rainbow trout, but temperatures were up to 6 EC above the growth optimum for kokanee from July to September in the upper 33 meters of water. Critical data needed for a more complete analysis in the future include species composition of entrainment estimates, entrainment estimates expanded to include unmonitored turbines, seasonal growth of planktivorous salmonids, species composition of salmonid prey, piscivore diet during hatchery releases of salmonids, and collection of temperature and dissolved oxygen data throughout all depths of the reservoir during warm summer months.« less

  15. Thermal modelling approaches to enable mitigation measures implementation for salmonid gravel stages in hydropeaking rivers

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, R.; Alfredsen, K. T.

    2016-12-01

    The dewatering of salmon spawning redds can lead to early life stages mortality due to hydropeaking operations, with higher impact on the alevins stages as they have lower tolerance to dewatering than the eggs. Targeted flow-related mitigations measures can reduce such mortality, but it is essential to understand how hydropeaking change thermal regimes in rivers and may impact embryo development; only then optimal measures can be implemented at the right development stage. We present a set of experimental approaches and modelling tools for the estimation of hatch and swim-up dates based on water temperature data in the river Lundesokna (Norway). We identified critical periods for gravel-stages survival and through comparing hydropeaking vs unregulated thermal and hydrological regimes, we established potential flow-release measures to minimise mortality. Modelling outcomes were then used assess the cost-efficiency of each measure. The combinations of modelling tools used in this study were overall satisfactory and their application can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling approaches can be pre-tested based on their efficiency to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Overall, environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation.

  16. Size of spawning population, residence time, and territory shifts of individuals in the spawning aggregation of a riverine catostomid

    USGS Publications Warehouse

    Grabowski, T.B.; Isely, J.J.

    2008-01-01

    Little is known about the behavior of individual fish in a spawning aggregation, specifically how long an individual remains in an aggregation. We monitored Moxostoma robustum (Cope) (Robust Redhorse) in a Savannah River spawning aggregation during spring 2004 and 2005 to provide an estimate of the total number of adults and the number of males comprising the aggregation and to determine male residence time and movements within a spawning aggregation. Robust Redhorse were captured using prepostioned grid electrofishers, identified to sex, weighed, measured, and implanted with a passive integrated transponder. Spawning aggregation size was estimated using a multiple census mark-and-recapture procedure. The spawning aggregation seemed to consist of approximately the same number of individuals (82-85) and males (50-56) during both years of this study. Individual males were present for a mean of 3.6 ?? 0.24 days (?? SE) during the 12-day spawning period. The mean distance between successive recaptures of individual males was 15.9 ?? 1.29 m (?? SE). We conclude that males establish spawning territories on a daily basis and are present within the spawning aggregation for at least 3-4 days. The relatively short duration of the aggregation may be the result of an extremely small population of adults. However, the behavior of individuals has the potential to influence population estimates made while fish are aggregated for spawning.

  17. Validation of a side-scan sonar method for quantifying walleye spawning habitat availability in the littoral zone of northern Wisconsin Lakes

    USGS Publications Warehouse

    Richter, Jacob T.; Sloss, Brian L.; Isermann, Daniel A.

    2016-01-01

    Previous research has generally ignored the potential effects of spawning habitat availability and quality on recruitment of Walleye Sander vitreus, largely because information on spawning habitat is lacking for many lakes. Furthermore, traditional transect-based methods used to describe habitat are time and labor intensive. Our objectives were to determine if side-scan sonar could be used to accurately classify Walleye spawning habitat in the nearshore littoral zone and provide lakewide estimates of spawning habitat availability similar to estimates obtained from a transect–quadrat-based method. Based on assessments completed on 16 northern Wisconsin lakes, interpretation of side-scan sonar images resulted in correct identification of substrate size-class for 93% (177 of 191) of selected locations and all incorrect classifications were within ± 1 class of the correct substrate size-class. Gravel, cobble, and rubble substrates were incorrectly identified from side-scan images in only two instances (1% misclassification), suggesting that side-scan sonar can be used to accurately identify preferred Walleye spawning substrates. Additionally, we detected no significant differences in estimates of lakewide littoral zone substrate compositions estimated using side-scan sonar and a traditional transect–quadrat-based method. Our results indicate that side-scan sonar offers a practical, accurate, and efficient technique for assessing substrate composition and quantifying potential Walleye spawning habitat in the nearshore littoral zone of north temperate lakes.

  18. Oceanic migration and spawning of anguillid eels.

    PubMed

    Tsukamoto, K

    2009-06-01

    Many aspects of the life histories of anguillid eels have been revealed in recent decades, but the spawning migrations of their silver eels in the open ocean still remains poorly understood. This paper overviews what is known about the migration and spawning of anguillid species in the ocean. The factors that determine exactly when anguillid eels will begin their migrations are not known, although environmental influences such as lunar cycle, rainfall and river discharge seem to affect their patterns of movement as they migrate towards the ocean. Once in the ocean on their way to the spawning area, silver eels probably migrate in the upper few hundred metres, while reproductive maturation continues. Although involvement of a magnetic sense or olfactory cues seems probable, how they navigate or what routes they take are still a matter of speculation. There are few landmarks in the open ocean to define their spawning areas, other than oceanographic or geological features such as oceanic fronts or seamounts in some cases. Spawning of silver eels in the ocean has never been observed, but artificially matured eels of several species have exhibited similar spawning behaviours in the laboratory. Recent collections of mature adults and newly spawned preleptocephali in the spawning area of the Japanese eel Anguilla japonica have shown that spawning occurs during new moon periods in the North Equatorial Current region near the West Mariana Ridge. These data, however, show that the latitude of the spawning events can change among months and years depending on oceanographic conditions. Changes in spawning location of this and other anguillid species may affect their larval transport and survival, and appear to have the potential to influence recruitment success. A greater understanding of the spawning migration and the choice of spawning locations by silver eels is needed to help conserve declining anguillid species.

  19. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    PubMed

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate-induced hydrologic change. © 2016 John Wiley & Sons Ltd.

  20. A model to locate potential areas for lake sturgeon spawning habitat construction in the St. Clair–Detroit River System

    USGS Publications Warehouse

    Bennion, David; Manny, Bruce A.

    2014-01-01

    In response to a need for objective scientific information that could be used to help remediate loss of fish spawning habitat in the St. Clair River and Detroit River International Areas of Concern, this paper summarizes a large-scale geographic mapping investigation. Our study integrates data on two variables that many riverine fishes respond to in selecting where to spawn in these waters (water flow velocity and water depth) with available maps of the St. Clair–Detroit River System (SC–DRS). Our objectives were to locate and map these two physical components of fish habitat in the St. Clair and Detroit rivers and Lake St. Clair using a geographic information system (GIS) and to identify where, theoretically, fish spawning habitat could be remediated in these rivers. The target fish species to which this model applies is lake sturgeon (Acipenser fulvescens), but spawning reefs constructed for lake sturgeon in this system have been used for spawning by 17 species of fish. Our analysis revealed areas in each river that possessed suitable water velocity and depth for fish spawning and therefore could theoretically be remediated by the addition of rock-rubble substrate like that used at two previously remediated sites in the Detroit River at Belle Isle and Fighting Island. Results of our analysis revealed that only 3% of the total area of the SC–DRS possesses the necessary combination of water depth and high flow velocity to be indicated by the model as potential spawning habitat for lake sturgeon.

  1. Characterizing and predicting the distribution of Baltic Sea flounder (Platichthys flesus) during the spawning season

    NASA Astrophysics Data System (ADS)

    Orio, Alessandro; Bergström, Ulf; Casini, Michele; Erlandsson, Mårten; Eschbaum, Redik; Hüssy, Karin; Lehmann, Andreas; Ložys, Linas; Ustups, Didzis; Florin, Ann-Britt

    2017-08-01

    Identification of essential fish habitats (EFH), such as spawning habitats, is important for nature conservation, sustainable fisheries management and marine spatial planning. Two sympatric flounder (Platichthys flesus) ecotypes are present in the Baltic Sea, pelagic and demersal spawning flounder, both displaying ecological and physiological adaptations to the low-salinity environment of this young inland sea. In this study we have addressed three main research questions: 1) What environmental conditions characterize the spatial distribution and abundance of adult flounder during the spawning season? 2) What are the main factors defining the habitats of the two flounder ecotypes during the spawning season? 3) Where are the potential spawning areas of flounder? We modelled catch per unit of effort (CPUE) of flounder from gillnet surveys conducted over the southern and central Baltic Sea in the spring of 2014 and 2015 using generalized additive models. A general model included all the stations fished during the survey while two other models, one for the demersal and one for the pelagic spawning flounder, included only the stations where each flounder ecotype should dominate. The general model captured distinct ecotype-specific signals as it identified dual salinity and water depth responses. The model for the demersal spawning flounder revealed a negative relation with the abundance of round goby (Neogobius melanostomus) and a positive relation with Secchi depth and cod abundance. Vegetation and substrate did not play an important role in the choice of habitat for the demersal ecotype. The model for the pelagic spawning flounder showed a negative relation with temperature and bottom current and a positive relation with salinity. Spatial predictions of potential spawning areas of flounder showed a decrease in habitat availability for the pelagic spawning flounder over the last 20 years in the central part of the Baltic Sea, which may explain part of the observed changes in populations' biomass. We conclude that spatiotemporal modelling of habitat availability can improve our understanding of fish stock dynamics and may provide necessary biological knowledge for the development of marine spatial plans.

  2. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less

  3. Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors

    USGS Publications Warehouse

    Singer, Michael B.; Harrison, Lee R.; Donovan, Patrick M.; Blum, Joel D.; Marvin-DiPasquale, Mark C.

    2016-01-01

    The biogeochemical cycling of metals and other contaminants in river-floodplain corridors is controlled by microbial activity responding to dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, inundation history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this within a Northern California river system with a legacy of landscape-scale 19th century hydraulic gold mining. We combine hydraulic modeling, Hg measurements in sediment and biota, and first-order calculations of mercury transformation to assess the potential role of river floodplains in producing monomethylmercury (MMHg), a neurotoxin which accumulates in local and migratory food webs. We identify frequently inundated floodplain areas, as well as floodplain areas inundated for long periods. We quantify the probability of MMHg production potential (MPP) associated with hydrology in each sector of the river system as a function of the spatial patterns of overbank inundation and drainage, which affect long-term redox history of contaminated sediments. Our findings identify river floodplains as periodic, temporary, yet potentially important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the hydrologic record. We suggest that inundation is an important driver of MPP in river corridors and that the entire flow history must be analyzed retrospectively in terms of inundation magnitude and frequency in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods or low-flow periods. MMHg bioaccumulation within the aquatic food web in this system may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn. There is a long-term pattern of MPP under the current flow regime that is likely to be accentuated by increasingly common large floods with extended duration.

  4. Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors.

    PubMed

    Singer, Michael Bliss; Harrison, Lee R; Donovan, Patrick M; Blum, Joel D; Marvin-DiPasquale, Mark

    2016-10-15

    The biogeochemical cycling of metals and other contaminants in river-floodplain corridors is controlled by microbial activity responding to dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, inundation history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this within a Northern California river system with a legacy of landscape-scale 19th century hydraulic gold mining. We combine hydraulic modeling, Hg measurements in sediment and biota, and first-order calculations of mercury transformation to assess the potential role of river floodplains in producing monomethylmercury (MMHg), a neurotoxin which accumulates in local and migratory food webs. We identify frequently inundated floodplain areas, as well as floodplain areas inundated for long periods. We quantify the probability of MMHg production potential (MPP) associated with hydrology in each sector of the river system as a function of the spatial patterns of overbank inundation and drainage, which affect long-term redox history of contaminated sediments. Our findings identify river floodplains as periodic, temporary, yet potentially important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the hydrologic record. We suggest that inundation is an important driver of MPP in river corridors and that the entire flow history must be analyzed retrospectively in terms of inundation magnitude and frequency in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods or low-flow periods. MMHg bioaccumulation within the aquatic food web in this system may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn. There is a long-term pattern of MPP under the current flow regime that is likely to be accentuated by increasingly common large floods with extended duration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spawning behaviour of Allis shad Alosa alosa: new insights based on imaging sonar data.

    PubMed

    Langkau, M C; Clavé, D; Schmidt, M B; Borcherding, J

    2016-06-01

    Spawning behaviour of Alosa alosa was observed by high resolution imaging sonar. Detected clouds of sexual products and micro bubbles served as a potential indicator of spawning activity. Peak spawning time was between 0130 and 0200 hours at night. Increasing detections over three consecutive nights were consistent with sounds of mating events (bulls) assessed in hearing surveys in parallel to the hydro acoustic detection. In 70% of the analysed mating events there were no additional A. alosa joining the event whilst 70% of the mating events showed one or two A. alosa leaving the cloud. In 31% of the analysed mating events, however, three or more A. alosa were leaving the clouds, indicating that matings are not restricted to a pair. Imaging sonar is suitable for monitoring spawning activity and behaviour of anadromous clupeids in their spawning habitats. © 2016 The Fisheries Society of the British Isles.

  6. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls.

    PubMed

    Farrell, A P

    2007-11-29

    A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.

  7. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation

    PubMed Central

    Christie, M R; Marine, M L; French, R A; Waples, R S; Blouin, M S

    2012-01-01

    Many declining and commercially important populations are supplemented with captive-born individuals that are intentionally released into the wild. These supplementation programs often create large numbers of offspring from relatively few breeding adults, which can have substantial population-level effects. We examined the genetic effects of supplementation on a wild population of steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, by matching 12 run-years of hatchery steelhead back to their broodstock parents. We show that the effective number of breeders producing the hatchery fish (broodstock parents; Nb) was quite small (harmonic mean Nb=25 fish per brood-year vs 373 for wild fish), and was exacerbated by a high variance in broodstock reproductive success among individuals within years. The low Nb caused hatchery fish to have decreased allelic richness, increased average relatedness, more loci in linkage disequilibrium and substantial levels of genetic drift in comparison with their wild-born counterparts. We also documented a substantial Ryman–Laikre effect whereby the additional hatchery fish doubled the total number of adult fish on the spawning grounds each year, but cut the effective population size of the total population (wild and hatchery fish combined) by nearly two-thirds. We further demonstrate that the Ryman–Laikre effect is most severe in this population when (1) >10% of fish allowed onto spawning grounds are from hatcheries and (2) the hatchery fish have high reproductive success in the wild. These results emphasize the trade-offs that arise when supplementation programs attempt to balance disparate goals (increasing production while maintaining genetic diversity and fitness). PMID:22805657

  8. Vaccination against bacterial kidney disease: Chapter 22

    USGS Publications Warehouse

    Elliott, Diane G.; Wiens, Gregory D.; Hammell, K. Larry; Rhodes, Linda D.; Edited by Gudding, Roar; Lillehaug, Atle; Evensen, Øystein

    2014-01-01

    Bacterial kidney disease (BKD) of salmonid fishes, caused by Renibacterium salmoninarum, has been recognized as a serious disease in salmonid fishes since the 1930s. This chapter discusses the occurrence and significance, etiology, and pathogenesis of BKD. It then describes the different vaccination procedures and the effects and side-effects of vaccination. Despite years of research, however, only a single vaccine has been licensed for prevention of BKD, and has demonstrated variable efficacy. Therefore, in addition to a presentation of the current status of BKD vaccination, a discussion of potential future directions for BKD vaccine development is included in the chapter. This discussion is focused on the unique characteristics of R. salmoninarum and its biology, as well as aspects of the salmonid immune system that might be explored specifically to develop more effective vaccines for BKD prevention.

  9. Landscape-level model to predict spawning habitat for Lower Columbia River fall Chinook salmon (Oncorhynchus tshawytscha)

    Treesearch

    D. Shallin Busch; Mindi Sheer; Kelly Burnett; Paul McElhany; Tom Cooney

    2013-01-01

    We developed an intrinsic potential (IP) model to estimate the potential of streams to provide habitat for spawning fall Chinook salmon (Oncorhynchus tshawytscha) in the Lower Columbia River evolutionarily significant unit. This evolutionarily significant unit is a threatened species, and both fish abundance and distribution are reduced from...

  10. Spawning behavior in Atlantic cod: analysis by use of data storage tags

    USGS Publications Warehouse

    Grabowski, Timothy B.; Thorsteinsson, Vilhjalmur; Marteinsdóttir, Gudrún

    2014-01-01

     Electronic data storage tags (DSTs) were implanted into Atlantic cod captured in Icelandic waters from 2002 to 2007 and the depth profiles recovered from these tags (females: n = 31, males: n = 27) were used to identify patterns consistent with published descriptions of cod courtship and spawning behavior. The individual periods of time that males spent exhibiting behavior consistent with being present in a spawning aggregation—i.e. periods consisting of a clear tidal signature in the DST depth profile associated with an individual remaining on or near the substrate—were longer than those of females. Over the course of a spawning season, male cod spent approximately twice the amount of time in spawning aggregations than females, but female cod visited more aggregations per unit time. On average, males participated in approximately 57% more putative spawning events, i.e. vertical ascents potentially corresponding to gamete release, than did females. However, males <85 cm total length participated in the same number of putative spawning events as females of comparable size. In both sexes, larger individuals and/or individuals that spent a longer period of time within an aggregation participated in a larger number of putative spawning events. Although further validation and refinement is necessary, particularly in the identification of spawning events, the ability offered by DSTs to quantify cod spawning behavior may aid in the development of management and conservation plans.

  11. Genetic variation among Flavobacterium psychrophilum isolates from wild and farmed salmonids in Norway and Chile.

    PubMed

    Apablaza, P; Løland, A D; Brevik, Ø J; Ilardi, P; Battaglia, J; Nylund, A

    2013-04-01

    To aim of the study was to describe the genetic relationship between isolates of Flavobacterium psychrophilum with a main emphasis of samples from Chile and Norway. The isolates have been obtained from farmed salmonids in Norway and Chile, and from wild salmonids in Norway, but isolates from North America and European countries are also included in the analysis. The study is based on phylogenetic analysis of 16S rRNA and seven housekeeping genes (HG), gyrB, atpA, dnaK, trpB, fumC, murG and tuf, and the use of a multilocus sequence typing (MLST) system, based on nucleotide polymorphism in the HG, as an alternative to the phylogenies. The variation within the selected genes was limited, and the phylogenetic analysis gave little resolution between the isolates. The MLST gave a much better resolution resulting in 53 sequence types where the same sequences types could be found in Chile, North America and European countries, and in different host species. Multilocus sequence typing give a relatively good separation of different isolates of Fl. psychrophilum and show that there are no distinct geographical or host-specific isolates in the studied material from Chile, North America and Europe. Nor was it possible to separate between isolates from ulcers and systemic infections vs isolates from the surface of healthy salmonids. This study shows a wide geographical distribution of Fl. psychrophilum, indicating that the bacterium has a large potential for transmission over long distances, and between different salmonid hosts species. This knowledge will be important for future management of salmonids diseases connected to Fl. psychrophilum. © 2013 The Society for Applied Microbiology.

  12. Environmental and biological cues for spawning in the crown-of-thorns starfish

    PubMed Central

    Pratchett, Morgan S.

    2017-01-01

    Sporadic outbreaks of the coral-eating crown-of-thorns starfish are likely to be due, at least in part, to spatial and temporal variation in reproductive and settlement success. For gonochoric and broadcast spawning species such as crown-of-thorns starfish, spawning synchrony is fundamental for achieving high rates of fertilization. Highly synchronized gamete release within and among distinct populations is typically the result of the entrainment of neurohormonal endogenous rhythms by cues from the environment. In this study, we conducted multiple spawning assays to test the effects of temperature change, reduced salinity and nutrient enrichment of seawater, phytoplankton, gametes (sperm and eggs), and the combined effect of sperm and phytoplankton on the likelihood of spawning in male and female crown-of-thorns starfish. We also investigated sex-specific responses to each of these potential spawning cues. We found that (1) abrupt temperature change (an increase of 4°C) induced spawning in males, but less so in females; (2) males often spawned in response to the presence of phytoplankton, but none of the females spawned in response to these cues; (3) the presence of sperm in the water column induced males and females to spawn, although additive and synergistic effects of sperm and phytoplankton were not significant; and (4) males are more sensitive to the spawning cues tested and most likely spawn prior to females. We propose that environmental cues act as spawning ‘inducers’ by causing the release of hormones (gonad stimulating substance) in sensitive males, while biological cues (pheromones) from released sperm, in turn, act as spawning ‘synchronizers’ by triggering a hormonal cascade resulting in gamete shedding by conspecifics. Given the immediate temporal linkage between the timing of spawning and fertilization events, variability in the extent and synchronicity of gamete release will significantly influence reproductive success and may account for fluctuations in the abundance of crown-of-thorns starfish. PMID:28355236

  13. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: an assessment based on sequential proximate analysis

    USGS Publications Warehouse

    Mesa, M.G.; Magie, C.D.

    2006-01-01

    The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River-bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18-20%; energy content over 11 kJ g-1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95-99% of their muscle and 73-86% of their viscera lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics.

  14. Quantifying overlap between the Deepwater Horizon oil spill and predicted bluefin tuna spawning habitat in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hazen, Elliott L.; Carlisle, Aaron B.; Wilson, Steven G.; Ganong, James E.; Castleton, Michael R.; Schallert, Robert J.; Stokesbury, Michael J. W.; Bograd, Steven J.; Block, Barbara A.

    2016-09-01

    Atlantic bluefin tuna (Thunnus thynnus) are distributed throughout the North Atlantic and are both economically valuable and heavily exploited. The fishery is currently managed as two spawning populations, with the GOM population being severely depleted for over 20 years. In April-August of 2010, the Deepwater Horizon oil spill released approximately 4 million barrels of oil into the GOM, with severe ecosystem and economic impacts. Acute oil exposure results in mortality of bluefin eggs and larvae, while chronic effects on spawning adults are less well understood. Here we used 16 years of electronic tagging data for 66 bluefin tuna to identify spawning events, to quantify habitat preferences, and to predict habitat use and oil exposure within Gulf of Mexico spawning grounds. More than 54,000 km2 (5%) of predicted spawning habitat within the US EEZ was oiled during the week of peak oil dispersal, with potentially lethal effects on eggs and larvae. Although the oil spill overlapped with a relatively small portion of predicted spawning habitat, the cumulative impact from oil, ocean warming and bycatch mortality on GOM spawning grounds may result in significant effects for a population that shows little evidence of rebuilding.

  15. Linking Forests and Fish: The Relationship Between Productivities of Salmonids and Forest Stands in Northern California

    NASA Astrophysics Data System (ADS)

    Wilzbach, P.; Frazey, S.

    2005-05-01

    Productivities of resident salmonid populations, upland, and riparian areas in 25 small watersheds of coastal northern California were estimated and compared to determine if: 1) upland site productivity predicted riparian site productivity; 2) either upland or riparian site productivity predicted salmonid productivity; and 3) other parameters explained more of the variance in salmonid productivity than upland or riparian site productivity. Salmonid productivity was indexed by total salmonid biomass, length of age 1 fish, and percent habitat saturation. Upland and riparian site productivities were estimated using site indices for redwood (Sequoia sempervirens) and red alder (Alnus rubra), respectively. Upland and riparian site indices were correlated, but neither factor contributed to the best approximating models of salmonid biomass or fish length at age one. Salmonid biomass was best described by a positive relationship with drainage area, and length at age was best described by a positive relationship with percent of riparian hardwoods. Percent habitat saturation was not well described by any of the models constructed. Lack of a relationship between upland conifer and salmonid productivity suggests that management of land for timber productivity and component streams for salmonid production in these sites will require separate, albeit integrated, strategies.

  16. Genet-specific spawning patterns in Acropora palmata

    NASA Astrophysics Data System (ADS)

    Miller, M. W.; Williams, D. E.; Fisch, J.

    2016-12-01

    The broadcast spawning elkhorn coral, Acropora palmata, requires outcrossing among different genets for effective fertilization. Hence, a low density of genets in parts of its range emphasizes the need for precise synchrony among neighboring genets as sperm concentration dilutes rapidly in open-ocean conditions. We documented the genet-specific nightly occurrence of spawning of A. palmata over 8 yr in a depauperate population in the Florida Keys to better understand this potential reproductive hurdle. The observed population failed to spawn within the predicted monthly window (nights 2-6 after the full moon in August) in three of the 8 yr of observation; negligible spawning was observed in a fourth year. Moreover, genet-specific patterns are evident in that (1) certain genets have significantly greater odds of spawning overall and (2) certain genets predictably spawn on the earlier and others on the later lunar nights within the predicted window. Given the already low genet density in this population, this pattern implies a substantial degree of wasted reproductive effort and supports the hypothesis that depensatory factors are impairing recovery in this species.

  17. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to 24 days longer to reach emergence. In contrast, within each dissolved oxygen treatment, it took about 20 days longer to reach hatch at 13 C than at 16.5 C (no data for 17 C) and up to 41 days longer to reach emergence. Overall, this study indicates that exposure to water temperatures up to 16.5 C will not have deleterious impacts on survival or growth from egg to emergence if temperatures decline at a rate of greater than or equal to 0.2 C/day following spawning. Although fall Chinook salmon survived low initial dissolved oxygen levels, the delay in emergence could have significant long-term effects on their survival. Thus, an exemption to the state water quality standards for temperature but not oxygen may be warranted in the Snake River where fall Chinook salmon spawn.« less

  18. Modeling prey consumption by native and non-native piscivorous fishes: implications for competition and impacts on shared prey in an ultraoligotrophic lake in Patagonia

    USGS Publications Warehouse

    Juncos, Romina; Beauchamp, David A.; Viglianoc, Pablo H.

    2013-01-01

    We examined trophic interactions of the nonnative salmonids Rainbow Trout Oncorhynchus mykiss, Brown Trout Salmo trutta, and Brook Trout Salvelinus fontinalisand the main native predator Creole Perch Percichthys trucha in Lake Nahuel Huapi (Patagonia, Argentina) to determine the relative impact of each predator on their forage base and to evaluate the potential vulnerability of each predator to competitive impacts by the others. Using bioenergetics simulations, we demonstrated the overall importance of galaxiids and decapods to the energy budgets of nonnative salmonids and Creole Perch. Introduced salmonids, especially Rainbow Trout, exerted considerably heavier predatory demands on shared resources than did the native Creole Perch on both a per capita basis and in terms of relative population impacts. Rainbow Trout consumed higher quantities and a wider size range of Small Puyen (also known as Inanga) Galaxias maculatus than the other predators, including early pelagic life stages of that prey; as such, this represents an additional source of mortality for the vulnerable early life stages of Small Puyen before and during their transition from pelagic to benthic habitats. All predators were generally feeding at high feeding rates (above 40% of their maximum physiological rates), suggesting that competition for prey does not currently limit either Creole Perch or the salmonids in this lake. This study highlights the importance of keystone prey for the coexistence of native species with nonnative top predators. It provides new quantitative and qualitative evidence of the high predation pressure exerted on Small Puyen, the keystone prey species, during the larval to juvenile transition from pelagic to littoral-benthic habitat in Patagonian lakes. This study also emphasizes the importance of monitoring salmonid and Creole Perch population dynamics in order to detect signs of potential impacts through competition and shows the need to carefully consider the rationale behind any additional trout stocking.

  19. Predictions of realised fecundity and spawning time in Norwegian spring-spawning herring ( Clupea harengus)

    NASA Astrophysics Data System (ADS)

    Óskarsson, G. J.; Kjesbu, O. S.; Slotte, A.

    2002-08-01

    Maturing Norwegian spring-spawning (NSS) herring, Clupea harengus, were collected for reproductive analyses along the Norwegian coast prior to the spawning seasons of 1997-2000. Over this time period there was a marked change in weight (W) at length (TL) with 1998 showing extremely low values and 2000 high values in a historical perspective. Potential fecundity, amounting to about 20 000-100 000 developing (vitellogenic) oocytes per fish and positively related to fish size, increased significantly with fish condition. Relative somatic potential fecundity (RF P, number of oocytes per g ovary-free body weight) in NSS herring was found to vary by 35-55% between years. Unexpectedly, females in 2000 showed low RF P-values, possibly due to negative feedback from previous reproductive investments at low condition. A clear threshold value for Fulton's condition factor, K (K=100×W/TL 3), of 0.65-0.70 existed below which there was considerable atresia (resorption of vitellogenic oocytes). Thus, these components of the spawning stock, amounting to 1-46% in the period 1980-1999, obviously contributed relatively little to the total egg production. This was confirmed by low ovary weights and examples of delayed oocyte development in these individuals. An up-to-date atresia model is presented. The established oocyte growth curve, and to a lesser degree the assumed atretic oocytic turnover rate, was critical for the estimation of realised fecundity (number of eggs spawned). Modelled realised fecundity was significantly below observed potential fecundity. Females that had migrated the shortest distance from the over-wintering area, Vestfjorden, northern Norway, were in the poorest condition, had the least developed oocytes and the lowest potential and realised fecundities. In agreement with previously published studies on temporal and spatial changes in gonad weights, those females reaching the main spawning grounds in the south-western part of the coast (Møre) were the most successful ones in terms of egg production. Likewise, present results on oocyte diameter confirmed that repeat spawners spawn first and recruit spawners second. Our histological analyses on oocyte microstructure provided further evidence that oocyte size is a precise and accurate maturation criterion in herring. The methodological examinations also showed that the level of atresia as well as potential fecundity from oocyte and ovarian size can be estimated by the binocular microscope. This study shows that there is a large range in size- and condition-specific egg production in NSS herring, which should be taken into account in further recruitment studies.

  20. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America

    USGS Publications Warehouse

    Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2018-01-01

    Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised <10% of the reef area and were used consistently over the 5-year study. Evaluation of habitat selection from the perspective of fish behaviour through use of acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.

  1. Measurements of the abilities of cultured fishes to moisturize their digesta

    USGS Publications Warehouse

    Hughes, S.G.; Barrows, R.

    1990-01-01

    1. Four salmonid and four cool-water fish species were tested to determine their ability to moisturize their digesta.2. After the fish were fed, they were sacrificed, the gut contents were removed and water content was determined.3. The digesta of the salmonids contained the least water (63–72%) and those of largemouth bass the most (78%).4. We conclude that there are distinct and significant differences between species and genera in the ability of fish to moisturize their digesta. The potential significance of this finding is discussed.

  2. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ({approx}1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).« less

  3. Optimal reproduction in salmon spawning substrates linked to grain size and fish length

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Sklar, Leonard S.; Overstreet, Brandon T.; Wooster, John K.

    2014-02-01

    Millions of dollars are spent annually on revitalizing salmon spawning in riverbeds where redd building by female salmon is inhibited by sediment that is too big for fish to move. Yet the conditions necessary for productive spawning remain unclear. There is no gauge for quantifying how grain size influences the reproductive potential of coarse-bedded rivers. Hence, managers lack a quantitative basis for optimizing spawning habitat restoration for reproductive value. To overcome this limitation, we studied spawning by Chinook, sockeye, and pink salmon (Oncorhynchus tshawytscha, O. nerka, and O. gorbuscha) in creeks and rivers of California and the Pacific Northwest. Our analysis shows that coarse substrates have been substantially undervalued as spawning habitat in previous work. We present a field-calibrated approach for estimating the number of redds and eggs a substrate can accommodate from measurements of grain size and fish length. Bigger fish can move larger sediment and thus use more riverbed area for spawning. They also tend to have higher fecundity, and so can deposit more eggs per redd. However, because redd area increases with fish length, the number of eggs a substrate can accommodate is maximized for moderate-sized fish. This previously unrecognized tradeoff raises the possibility that differences in grain size help regulate river-to-river differences in salmon size. Thus, population diversity and species resilience may be linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. Our approach provides a tool for managing grain-size distributions in support of optimal reproductive potential and species resilience.

  4. Projecting the Effects of 21st Century Climate Change on the Distribution and Phenology of Reef Fish Spawning Aggregations

    NASA Astrophysics Data System (ADS)

    Asch, R. G.; Erisman, B.

    2016-02-01

    Spawning fishes often have a narrower window of thermal tolerance than other life history stages. As a result, spawning has been hypothesized to constrain how species will respond to climate change. We assess this hypothesis by combining a global database of fish spawning aggregations with earth system and ecological niche models to project shifts in the spawning distribution and phenology of reef fishes under the RCP 8.5 climate change scenario. Nassau grouper (Epinephelus striatus) was selected as the species for a proof-of-concept analysis since it is a top predator on Caribbean coral reefs and is listed by IUCN as endangered due to overfishing at its spawning grounds. The highest probability of encountering E. striatus aggregations occurred at sea surface temperatures (SSTs) of 24.5-26.5° C and seasonal SST gradients of 0 to -1° C. Based on a 1981-2000 climatology, our model projected that the highest probability of spawning would occur around Cuba, the Mesoamerican barrier reef, the Bahamas, and other areas of the Caribbean. This coincides with the observed distribution of E. striatus aggregations. By 2081-2100, a 50% decline is projected in the number of months and locations with adequate conditions for E. striatus spawning. Potential spawning habitat for E. striatus shifts northward and eastward, with slight increases in the probability of spawning around Aruba, Curacao, and Bonaire. At spawning sites, primary production is projected to increase by a mean of 14%. Higher planktonic production could benefit larval fish growth and survival by providing a greater availability of prey. The E. striatus spawning season is projected to contract and occur later in the year. Two-month delays in phenology are projected at 78% of the sites where E. striatus populations are managed through spawning season sales bans and time/area fishing closures. This implies that adaptive management in response to climate change will be needed for these measures to remain effective.

  5. Ecosystem-based management of predator-prey relationships: piscivorous birds and salmonids.

    PubMed

    Wiese, Francis K; Parrish, Julia K; Thompson, Christopher W; Maranto, Christina

    2008-04-01

    Predator-prey relationships are often altered as a result of human activities. Where prey are legally protected, conservation action may include lethal predator control. In the Columbia River basin (Pacific Northwest, USA and Canada), piscivorous predators have been implicated in contributing to a lack of recovery of several endangered anadromous salmonids (Oncorhynchus spp.), and lethal and nonlethal control programs have been instituted against both piscine and avian species. To determine the consequences of avian predation, we used a bioenergetics approach to estimate the consumption of salmonid smolts by waterbirds (Common Merganser, California and Ring-billed Gull, Caspian Tern, Double-crested Cormorant) found in the mid-Columbia River from April through August, 2002-2004. We used our model to explore several predator-prey scenarios, including the impact of historical bird abundance, and the effect of preserving vs. removing birds, on smolt abundance. Each year, <1% of the estimated available salmonid smolts (interannual range: 44,830-109,209; 95% CI = 38,000-137,000) were consumed, 85-98% away from dams. Current diet data combined with historical gull abundance at dams suggests that past smolt consumption may have been 1.5-3 times current numbers, depending on the assumed distribution of gulls along the reaches. After the majority (80%) of salmonid smolts have left the study area, birds switch their diet to predominantly juvenile northern pikeminnow (Ptychocheilus oregonensis), which as adults are significant native salmonid predators in the Columbia River. Our models suggest that one consequence of removing birds from the system may be increased pikeminnow abundance, which--even assuming 80% compensatory mortality in juvenile pikeminnow survival--would theoretically result in an annual average savings of just over 180,000 smolts, calculated over a decade. Practically, this suggests that smolt survival could be maximized by deterring birds from the river when smolts are present, allowing bird presence after the diet switch to act as a tool for salmonid-predator control, and conducting adult-pikeminnow control throughout. Our analysis demonstrates that identifying the strength of ecosystem interactions represents a top priority when attempting to manage the abundance of a particular ecosystem constituent, and that the consequences of a single-species view may be counterintuitive, and potentially counterproductive.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntington, Charles W.

    If implemented, the Orofino Creek Passage Project will provide adult fish passage at barrier waterfalls on Orofino Creek, Idaho, and give anadromous salmonids access to upstream habitat. Anadromous fish are currently blocked at Orofino Falls, 8.3 km above the stream's confluence with the Clearwater River. This report summarizes results of a study to determine the potential for increasing natural production of summer steelhead (Salmo gairdneri) and spring chinook salmon (Oncorhynchus tschawytscha) in the Orofino Creek drainage by enhancing adult fish passage. Data on fish habitat, migration barriers, stream temperatures and fish populations in the drainage were collected during 1987 andmore » provided a basis for estimating the potential for self-sustaining anadromous salmonid production above Orofino Falls. Between 84.7 and 103.6 km of currently inaccessible streams would be available to anadromous fish following project implementation, depending on the level of passage enhancement above Orofino Falls. These streams contain habitat of poor to good quality for anadromous salmonids. Low summer flows and high water temperatures reduce habitat quality in lower mainstem Orofino Creek. Several streams in the upper watershed have habitat that is dominated by brook trout and may be poorly utilized by steelhead or salmon. 32 refs., 20 figs., 22 tabs.« less

  7. The relationship between productivities of salmonids and forest stands in northern California watersheds

    USGS Publications Warehouse

    Frazey, S.L.; Wilzbach, M.A.

    2007-01-01

    Productivities of resident salmonids and upland and riporian forests in 22 small watersheds of coastal northern California were estimated and compared to determine whether: 1) upland site productivity predicted riparian site productivity; 2) either upland or riparian site productivity predicted salmonid productivity; and 3) other parameters explained more of the variance in salmonid productivity. Upland and riparian site productivities were estimated using Site Index values for redwood (Sequoia sempervirens) and red alder (Alnus rubra), respectively. Salmonid productivity was indexed by back-calculated length at age 1 of the largest individuals sampled and by total biomass. Upland and riparian site indices were correlated, but neither factor contributed to the best approximating models of salmonid productivity. Total salmonid biomass was best described by a positive relationship with drainage area. Length of dominant fish was best described by a positive relationship with percentage of hardwoods within riparian areas, which may result from nutrient and/or litter subsidies provided by red older. The inability of forest productivity to predict salmon productivity may reflect insufficient variation in independent variables, limitations of the indices, and the operation of other factors affecting salmonid production. The lack of an apparent relationship between upland conifer and salmonid productivity suggests that management of land for timber productivity and component streams for salmonid production in these sites will require separate, albeit integrated, management strategies.

  8. Potential spawn induction and suppression agents in Caribbean Acropora cervicornis corals of the Florida Keys.

    PubMed

    Flint, Mark; Than, John T

    2016-01-01

    The enhanced ability to direct sexual reproduction may lead to improved restoration outcomes for Acropora cervicornis. Gravid fragments of A. cervicornis were maintained in a laboratory for two sequential trials in the seven days prior to natural spawning in the Florida Keys. Ten replicates of five chemicals known to affect spawning in various invertebrate taxa were tested. Hydrogen peroxide at 2 mM (70%) and L-5-hydroxytryptophan (5-HTP) at 5 (40%) and 20 µM (30%) induced spawning within 15.4 h, 38.8 h and 26.9 h of dosing at or above the rate of release of the control (30%) within 14.6 h. Serotonin acetate monohydrate at 1 µM (20%) and 10 µM (20%), naloxone hydrochloride dihydrate at 0.01 µM (10%) and potassium phosphate monobasic at 0.25 µM (0%) induced spawning at rates less than the control. Although the greatest number of fragments spawned using hydrogen peroxide, it was with 100% mortality. There was a significantly higher induction rate closer to natural spawn (Trial 2) compared with Trial 1 and no genotype effect. Mechanisms of action causing gamete release were not elucidated. In Caribbean staghorn corals, 5-HTP shows promise as a spawning induction agent if administered within 72 h of natural spawn and it will not result in excessive mortality. Phosphate chemicals may inhibit spawning. This is the first study of its kind on Caribbean acroporid corals and may offer an important conservation tool for biologists currently charged with restoring the imperiled Acropora reefs of the Florida Keys.

  9. Timing and locations of reef fish spawning off the southeastern United States

    PubMed Central

    Heyman, William D.; Karnauskas, Mandy; Kobara, Shinichi; Smart, Tracey I.; Ballenger, Joseph C.; Reichert, Marcel J. M.; Wyanski, David M.; Tishler, Michelle S.; Lindeman, Kenyon C.; Lowerre-Barbieri, Susan K.; Switzer, Theodore S.; Solomon, Justin J.; McCain, Kyle; Marhefka, Mark; Sedberry, George R.

    2017-01-01

    Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus), White Grunt (Haemulon plumierii), Red Snapper (Lutjanus campechanus), Vermilion Snapper (Rhomboplites aurorubens), Black Sea Bass (Centropristis striata), and Scamp (Mycteroperca phenax). For example, Red Snapper peak spawning was predicted in 24.7–29.0°C water prior to the new moon at locations with high curvature in the 24–30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N), during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States. PMID:28264006

  10. Potential effects of maternal contribution on egg and larva population dynamics of striped bass: Integrated individual-based model and directed field sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, J.H., Jr.; Rose, K.A.

    1991-01-01

    We have used a bioenergetically-driven, individual-based model (IBM) of striped bass as a framework for synthesizing available information on population biology and quantifying, in a relative sense, factors that potentially affect year class success. The IBM has been configured to simulate environmental conditions experienced by several striped bass populations; i.e., in the Potomac River, MD; in Hudson River, NY; in the Santee-Cooper River System, SC, and; in the San Joaquin-Sacramento River System CA. These sites represent extremes in the geographic distribution and thus, environmental variability of striped bass spawning. At each location, data describing the physio-chemical and biological characteristics ofmore » the spawning population and nursery area are being collected and synthesized by means of a prioritized, directed field sampling program that is organized by the individual-based recruitment model. Here, we employ the striped bass IBM configured for the Potomac River, MD from spawning into the larval period to evaluate the potential for maternal contribution to affect larva survival and growth. Model simulations in which the size distribution and spawning day of females are altered indicate that larva survival is enhanced (3.3-fold increase) when a high fraction of females in the spawning population are large. Larva stage duration also is less ({bar X} = 18.4 d and 22.2 d) when large and small females, respectively, are mothers in simulations. Although inconclusive, these preliminary results for Potomac River striped bass suggest that the effects of female size, timing of spawning nad maternal contribution on recruitment dynamics potentially are important and illustrate our approach to the study of recruitment in striped bass. We hope to use the model, field collections and management alternatives that vary from site to site, in an iterative manner for some time to come. 54 refs., 4 figs., 1 tab.« less

  11. First evidence of egg deposition by walleye (Sander vitreus) in the Detroit River

    USGS Publications Warehouse

    Manny, B.A.; Kennedy, G.W.; Allen, J.D.; French, J. R. P.

    2007-01-01

    The importance of fish spawning habitat in channels connecting the Great Lakes to fishery productivity in those lakes is poorly understood and has not been adequately documented. The Detroit River is a reputed spawning and nursery area for many fish, including walleye (Sander vitreus) that migrate between adjacent Lakes Erie and St. Clair. During April–May 2004, near the head of the Detroit River, we collected 136 fish eggs from the bottom of the river on egg mats. We incubated the eggs at the Great Lakes Science Center until they hatched. All eleven larvae that hatched from the eggs were identified as walleye. These eggs and larvae are the first credible scientific evidence that walleye spawn in the Detroit River. Their origin might be a stock of river-spawning walleye. Such a stock of walleye could potentially add resilience to production by walleye stocks that spawn and are harvested in adjacent waters.

  12. Survival, development, and growth of Snake River fall Chinook salmon Embryos, Alevins, and Fry Exposed to Variable Thermal and Dissolved Oxygen Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Hells Canyon reach of the Snake River, Idaho (rkm 240-397), at water temperatures above 16 C. This temperature exceeds the states of Idaho and Oregon water quality standards for salmonid spawning. These standards are consistent with results from studies of embryos exposed to a constant thermal regime, while salmon eggs in the natural environment are rarely exposed to a constant temperature regime. The objective of this study was to assess whether variable temperatures (i.e., declining after spawning) affected embryo survival, development, and growth of Snake River fall Chinook salmon alevins andmore » fry. In 2003, fall Chinook salmon eggs were exposed to initial incubation temperatures ranging from 11-19 C in 2 C increments, and in 2004 eggs were exposed to initial temperatures of 13 C, 15 C, 16 C, 16.5 C, and 17 C. In both years, temperatures were adjusted downward approximately 0.2 C/day to mimic the thermal regime of the Snake River where these fish spawn. At 37-40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures >17 C in both years. A logistic regression model estimated that a 50% reduction in survival from fertilization to emergence would occur at an initial incubation temperature of {approx}16 C. The laboratory results clearly showed a significant reduction in survival between 15 C and 17 C, which supported the model estimate. Results from 2004 showed a rapid decline in survival occurred between 16.5 C and 17 C, with no significant differences in survival at initial incubation temperatures <16.5 C. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. Differences in egg mass among females (notably 2003) most likely masked any size differences. Egg mass explained 86-98% of the variation of the size of alevins and fry at hatch and emergence. In 2003, maximum alevin wet weight increased as the initial temperatures increased, whereas the number of days it took to reach maximum wet weight decreased with increasing temperature. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature. Eggs exposed to initial temperatures of 13 C took 30-45 days longer to reach emergence than eggs initially exposed to 16.5 C. Overall, this study indicates that exposure to water temperatures up to 16.5 C will not have deleterious impacts on survival or growth from egg to emergence if temperatures decline at a rate of >0.2 C/day following spawning.« less

  13. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification.

    PubMed

    Robertson, Fiona M; Gundappa, Manu Kumar; Grammes, Fabian; Hvidsten, Torgeir R; Redmond, Anthony K; Lien, Sigbjørn; Martin, Samuel A M; Holland, Peter W H; Sandve, Simen R; Macqueen, Daniel J

    2017-06-14

    The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a 'time-lag' model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, 'lineage-specific ohnologue resolution' (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event. Using cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than 'older' ohnologues that began diverging in the salmonid ancestor. LORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear 'explosively', but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.

  14. Functional Analysis of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture

    USDA-ARS?s Scientific Manuscript database

    We describe an emerging initiative - the 'Functional Analysis of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis ...

  15. How Tight is the Linkage Between Trees and Trout?

    Treesearch

    Margaret A. Wilzbach

    1989-01-01

    This paper explores the tightness of the linkage between stream-dwelling salmonids and ripar ian vegetation. Comparison of original distributions of salmonid species with that of vegetation types shows that distribution within a given salmonid species is not limited to a specific vegetation type, and that different salmonid species cooccur within a given vegetation...

  16. Molecular epidemiology reveals emergence of a virulent infectious hematopoietic necrosis (IHN) virus strain in wild salmon and its transmission to hatchery fish

    USGS Publications Warehouse

    Anderson, Eric D.; Engelking, H. Mark; Emmenegger, Eveline J.; Kurath, Gael

    2000-01-01

    Infectious hematopoietic necrosis virus (IHNV) has been known to be a significant salmonid pathogen in the Pacific Northwest of North America for decades. The goal of this study was to characterize the IHNV genetic heterogeneity and viral traffic over time at a study site in the Deschutes River watershed in Oregon, with an emphasis on the epidemiology of IHNV types causing epidemics in wild kokanee Oncorhynchus nerkabetween 1991 and 1995. The study site included kokanee spawning grounds in the Metolius River and Lake Billy Chinook downstream, in which the IHNV epidemics occurred in 2- and 3-year-old kokanee, and the Round Butte Fish Hatchery at the outflow of the lake. Forty-two IHNV isolates collected from this area between 1975 and 1995 were characterized on a genetic basis by ribonuclease (RNase) protection fingerprint analyses of the virus nucleocapsid, glycoprotein, and nonvirion genes. Analysis of the 16 identified composite haplotypes suggested that both virus evolution and introduction of new IHNV strains contributed to the genetic diversity observed. The results indicated that the 1991–1995 epidemics in kokanee from Lake Billy Chinook were due to a newly introduced IHNV type that was first detected in spawning adult kokanee in 1988 and that this virus type was transmitted from the wild kokanee to hatchery fish downstream in 1991. Twelve IHNV haplotypes were found at Round Butte Fish Hatchery, indicating a series of virus displacement events during the 20-year period examined. This work shows that IHNV traffic can be much more complex than was previously recognized, and the results have implications for fisheries management at the hatchery and throughout the watershed.

  17. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  18. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  19. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  20. 18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...

  1. Evidence of sexually dimorphic introgression in Pinaleno Mountain Apache trout

    USGS Publications Warehouse

    Porath, M.T.; Nielsen, J.L.

    2003-01-01

    The high-elevation headwater streams of the Pinaleno Mountains support small populations of threatened Apache trout Oncorhynchus apache that were stocked following the chemical removal of nonnative salmonids in the 1960s. A fisheries survey to assess population composition, growth, and size structure confirmed angler reports of infrequent occurrences of Oncorhynchus spp. exhibiting the external morphological characteristics of both Apache trout and rainbow trout O. mykiss. Nonlethal tissue samples were collected from 50 individuals in the headwaters of each stream. Mitochondrial DNA (mtDNA) sequencing and amplification of nuclear microsatellite loci were used to determine the levels of genetic introgression by rainbow trout in Apache trout populations at these locations. Sexually dimorphic introgression from the spawning of male rainbow trout with female Apache trout was detected using mtDNA and microsatellites. Estimates of the degree of hybridization based on three microsatellite loci were 10-88%. The use of nonlethal DNA genetic analyses can supplement information obtained from standard survey methods and be useful in assessing the relative importance of small and sensitive populations with a history of nonnative introductions.

  2. Distribution and spawning dynamics of capelin (Mallotus villosus) in Glacier Bay, Alaska: A cold water refugium

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Litzow, Michael A.; Abookire, Alisa A.; Romano, Marc D.; Robards, Martin D.

    2008-01-01

    Pacific capelin (Mallotus villosus) populations declined dramatically in the Northeastern Pacific following ocean warming after the regime shift of 1977, but little is known about the cause of the decline or the functional relationships between capelin and their environment. We assessed the distribution and abundance of spawning, non-spawning adult and larval capelin in Glacier Bay, an estuarine fjord system in southeastern Alaska. We used principal components analysis to analyze midwater trawl and beach seine data collected between 1999 and 2004 with respect to oceanographic data and other measures of physical habitat including proximity to tidewater glaciers and potential spawning habitat. Both spawning and non-spawning adult Pacific capelin were more likely to occur in areas closest to tidewater glaciers, and those areas were distinguished by lower temperature, higher turbidity, higher dissolved oxygen and lower chlorophyll a levels when compared with other areas of the bay. The distribution of larval Pacific capelin was not sensitive to glacial influence. Pre-spawning females collected farther from tidewater glaciers were at a lower maturity state than those sampled closer to tidewater glaciers, and the geographic variation in the onset of spawning is likely the result of differences in the marine habitat among sub-areas of Glacier Bay. Proximity to cold water in Glacier Bay may have provided a refuge for capelin during the recent warm years in the Gulf of Alaska.

  3. Incubation success and habitat selection of shore-spawning kokanee Onchorhynchus nerka: effects of water level regulation and habitat characteristics.

    USGS Publications Warehouse

    Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.

    2014-01-01

    Changes to water-level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water-level regimes on shore-spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore-spawning kokanee do not currently receive a substrate-mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore-spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.

  4. Identification of a female spawn-associated Kazal-type inhibitor from the tropical abalone Haliotis asinina.

    PubMed

    Wang, Tianfang; Nuurai, Parinyaporn; McDougall, Carmel; York, Patrick S; Bose, Utpal; Degnan, Bernard M; Cummins, Scott F

    2016-07-01

    Abalone (Haliotis) undergoes a period of reproductive maturation, followed by the synchronous release of gametes, called broadcast spawning. Field and laboratory studies have shown that the tropical species Haliotis asinina undergoes a two-week spawning cycle, thus providing an excellent opportunity to investigate the presence of endogenous spawning-associated peptides. In female H. asinina, we have isolated a peptide (5145 Da) whose relative abundance in hemolymph increases substantially just prior to spawning and is still detected using reverse-phase high-performance liquid chromatography chromatograms up to 1-day post-spawn. We have isolated this peptide from female hemolymph as well as samples prepared from the gravid female gonad, and demonstrated through comparative sequence analysis that it contains features characteristic of Kazal-type proteinase inhibitors (KPIs). Has-KPI is expressed specifically within the gonad of adult females. A recombinant Has-KPI was generated using a yeast expression system. The recombinant Has-KPI does not induce premature spawning of female H. asinina when administered intramuscularly. However it displays homomeric aggregations and interaction with at least one mollusc-type neuropeptide (LRDFVamide), suggesting a role for it in regulating neuropeptide endocrine communication. This research provides new understanding of a peptide that can regulate reproductive processes in female abalone, which has the potential to lead to the development of greater control over abalone spawning. The findings also highlight the need to further explore abalone reproduction to clearly define a role for novel spawning-associated peptide in sexual maturation and spawning. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. First evidence of bighead carp wild recruitment in Western Europe, and its relation to hydrology and temperature.

    PubMed

    Milardi, Marco; Chapman, Duane; Lanzoni, Mattia; Long, James M; Castaldelli, Giuseppe

    2017-01-01

    Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011-2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4-13.1 cm long (TL) and weighed 9.5-12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94-100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.

  6. First evidence of bighead carp wild recruitment in Western Europe, and its relation to hydrology and temperature

    USGS Publications Warehouse

    Milardi, Marco; Chapman, Duane C.; Long, James M.; Castaldelli, Giuseppe

    2017-01-01

    Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011–2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4–13.1 cm long (TL) and weighed 9.5–12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94–100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.

  7. Marine effect of introduced salmonids: Prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf

    USGS Publications Warehouse

    Ciancio, J.; Beauchamp, D.A.; Pascual, M.

    2010-01-01

    On the basis of stable isotope analysis, we estimated the marine diet of the most abundant anadromous salmonid species in Patagonian Atlantic basins. The results were coupled with bioenergetic and population models to estimate the consumption of food by salmonids and was compared with that by seabirds, the most abundant top predators in the area. Amphipods were the main salmonid prey, followed by sprat, silversides, squid, and euphausiids. The total consumption, even assuming large anadromous salmonid populations, represented <5% of the total consumption by seabirds. We also identified the particular seabird colonies and artisanal fisheries with which salmonid trophic interactions at a more local scale could be significant. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  8. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins.

    PubMed

    D'Este, Francesca; Benincasa, Monica; Cannone, Giuseppe; Furlan, Michela; Scarsini, Michele; Volpatti, Donatella; Gennaro, Renato; Tossi, Alessandro; Skerlavaj, Barbara; Scocchi, Marco

    2016-12-01

    Cathelicidins, a major family of vertebrate antimicrobial peptides (AMPs), have a recognized role in the first line of defense against infections. They have been identified in several salmonid species, where the putative mature peptides are unusually long and rich in serine and glycine residues, often arranged in short multiple repeats (RLGGGS/RPGGGS) intercalated by hydrophobic motifs. Fragments of 24-40 residues, spanning specific motifs and conserved sequences in grayling or brown, rainbow and brook trout, were chemically synthesized and examined for antimicrobial activity against relevant Gram-positive and Gram-negative salmonid pathogens, as well as laboratory reference strains. They were not active in complete medium, but showed varying potency and activity spectra in diluted media. Bacterial membrane permeabilization also occurred only under these conditions and was indicated by rapid propidium iodide uptake in peptide-treated bacteria. However, circular dichroism analyses indicated that they did not significantly adopt ordered conformations in membrane-like environments. The peptides were not hemolytic or cytotoxic to trout cells, including freshly purified head kidney leukocytes (HKL) and the fibroblastic RTG-2 cell line. Notably, when exposed to them, HKL showed increased metabolic activity, while a growth-promoting effect was observed on RTG-2 cells, suggesting a functional interaction of salmonid cathelicidins with host cells similar to that shown by mammalian ones. The three most active peptides produced a dose-dependent increase in phagocytic uptake by HKL simultaneously stimulated with bacterial particles. The peptide STF(1-37), selected for further analyses, also enhanced phagocytic uptake in the presence of autologous serum, and increased intracellular killing of live E. coli. Furthermore, when tested on HKL in combination with the immunostimulant β-glucan, it synergistically potentiated both phagocytic uptake and the respiratory burst response, activities that play a key role in fish immunity. Collectively, these data point to a role of salmonid cathelicidins as modulators of fish microbicidal mechanisms beyond a salt-sensitive antimicrobial activity, and encourage further studies also in view of potential applications in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Understanding the influence of predation by introduced fishes on juvenile salmonids in the Columbia River Basin: Closing some knowledge gaps. Interim Report of Research 2010

    USGS Publications Warehouse

    Rose, Brien P.; Hansen, Gabriel S.; Mesa, Matthew G.

    2011-01-01

    In response to these recent concerns about the potential predatory impact of non-native piscivores on salmon survival, the Bonneville Power Administration (BPA) and the Columbia Basin Fish and Wildlife Authority (CBFWA) co-hosted a workshop to address predation on juvenile salmonids in the CRB by non-native fish (Halton 2008). The purpose of the workshop was to review, evaluate, and develop strategies to reduce predation by non-native fishes on juvenile salmonids. In the end, discussion at the workshop and at subsequent meetings considered two potential ideas to reduce predation by non-native fish on juvenile salmonids; (1) understanding the role of juvenile American shad Alosa sapidissima in the diet of non-native predators in the fall; and (2) the effects of localized, intense reductions of smallmouth bass in areas of particularly high salmonid predation. In this report, we describe initial efforts to understand the influence of juvenile American shad as a prey item for introduced predators in the middle Columbia River. Our first objective, addressed in Chapter 1, was to evaluate the efficacy of nonlethal methods to describe the physiological condition of smallmouth bass, walleye, and channel catfish from late summer through late fall. Such information will be used to understand the contribution of juvenile American shad to the energy reserves of predaceous fish prior to winter. In Chapter 2, we describe the results of some limited sampling to document the food habits of smallmouth bass, walleye, and channel catfish in three reservoirs of the middle Columbia River during late fall. Collectively, we hope to increase our understanding of the contribution of juvenile American shad to the diets of introduced predators and the contribution of this diet to their energy reserves, growth, and perhaps over-winter survival. Managers should be able to use this information for deciding whether to control the population of American shad in the CRB or for managing introduced predaceous fish in the CRB. 

  10. Climate influence on Baltic cod, sprat, and herring stock-recruitment relationships

    NASA Astrophysics Data System (ADS)

    Margonski, Piotr; Hansson, Sture; Tomczak, Maciej T.; Grzebielec, Ryszard

    2010-10-01

    A wide range of possible recruitment drivers were tested for key exploited fish species in the Baltic Sea Regional Advisory Council (RAC) area: Eastern Baltic Cod, Central Baltic Herring, Gulf of Riga Herring, and sprat. For each of the stocks, two hypotheses were tested: (i) recruitment is significantly related to spawning stock biomass, climatic forcing, and feeding conditions and (ii) by acknowledging these drivers, management decisions can be improved. Climate impact expressed by climatic indices or changes in water temperature was included in all the final models. Recruitment of the herring stock appeared to be influenced by different factors: the spawning stock biomass, winter Baltic Sea Index prior to spawning, and potentially the November-December sea surface temperature during the winter after spawning were important to Gulf of Riga Herring, while the final models for Central Baltic Herring included spawning stock biomass and August sea surface temperature. Recruitment of sprat appeared to be influenced by July-August temperature, but was independent of the spawning biomass when SSB > 200,000 tons. Recruitment of Eastern Baltic Cod was significantly related to spawning stock biomass, the winter North Atlantic Oscillation index, and the reproductive volume in the Gotland Basin in May. All the models including extrinsic factors significantly improved prediction ability as compared to traditional models, which account for impacts of the spawning stock biomass alone. Based on the final models the minimum spawning stock biomass to derive the associated minimum recruitment under average environmental conditions was calculated for each stock. Using uncertainty analyses, the spawning stock biomass required to produce associated minimum recruitment was presented with different probabilities considering the influence of the extrinsic drivers. This tool allows for recruitment to be predicted with a required probability, that is, higher than the average 50% estimated from the models. Further, this approach considers unfavorable environmental conditions which mean that a higher spawning stock biomass is needed to maintain recruitment at a required level.

  11. Beach characteristics mitigate effects of onshore wind on horseshoe crab spawning: Implications for matching with shorebird migration in Delaware Bay

    USGS Publications Warehouse

    Smith, D.R.; Jackson, N.L.; Nordstrom, K.F.; Weber, R.G.

    2011-01-01

    Disruption of food availability by unfavorable physical processes at energetically demanding times can limit recruitment of migratory species as predicted by the match-mismatch hypothesis. Identification and protection of disruption-resistant habitat could contribute to system resilience. For example, horseshoe crab Limulus polyphemus spawning and shorebird stopover must match temporally in Delaware Bay for eggs to be available to shorebirds. Onshore winds that generate waves can create a mismatch by delaying horseshoe crab spawning. We examined effects of beach characteristics and onshore winds on spawning activity at five beaches when water temperatures were otherwise consistent with early spawning activity. Onshore winds resulted in reduced spawning activity during the shorebird stopover, when spawning typically peaks in late May. During the period with high onshore wind, egg density was highest on the foreshore exposed to the lowest wave heights. Onshore wind was low in early June, and spawning and egg densities were high at all sites, but shorebirds had departed. Beaches that can serve as a refuge from wind and waves can be identified by physical characteristics and orientation to prevailing winds and should receive special conservation status, especially in light of predicted increases in climate change-induced storm frequency. These results point to a potential conservation strategy that includes coastal management for adapting to climate change-induced mismatch of migrations. ?? 2011 The Authors. Animal Conservation ?? 2011 The Zoological Society of London.

  12. Predation on lake whitefish eggs by longnose suckers

    USGS Publications Warehouse

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    In November 1981, we observed intense predation on lake whitefish (Coregonus clupeaformis) eggs by longnose suckers (Catostomus catostomus) on lake whitefish spawning grounds in northwestern Lake Huron. Since longnose suckers commonly frequent the same habitat used by spawning lake whitefish, there exists the potential for high losses of eggs due to sucker predation.

  13. Alternative reproductive tactics and inverse size-assortment in a high-density fish spawning aggregation.

    PubMed

    Karkarey, Rucha; Zambre, Amod; Isvaran, Kavita; Arthur, Rohan

    2017-02-28

    At high densities, terrestrial and marine species often employ alternate reproductive tactics (ARTs) to maximize reproductive benefits. We describe ARTs in a high-density and unfished spawning aggregation of the squaretail grouper (Plectropomus areolatus) in Lakshadweep, India. As previously reported for this species, territorial males engage in pair-courtship, which is associated with a pair-spawning tactic. Here, we document a previously unreported school-courtship tactic; where territorial males court multiple females in mid-water schools, which appears to culminate in a unique 'school-spawning' tactic. Courtship tactics were conditional on body size, local mate density and habitat, likely associated with changing trade-offs between potential mating opportunities and intra-sexual competition. Counter-intuitively, the aggregation showed a habitat-specific inverse size-assortment: large males courted small females on the reef slope while small males courted equal-sized or larger females on the shelf. These patterns remained stable across two years of observation at high, unfished densities. These unique density-dependent behaviours may disappear from this aggregation as overall densities decline due to increasing commercial fishing pressure, with potentially large consequences for demographics and fitness.

  14. Feeding of predaceous fishes on out-migrating juvenile-salmonids in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Poe, Thomas P.; Hansel, Hal C.; Vigg, S.; Palmer, D.E.; Prendergast, L.A.

    1991-01-01

    Diets of northern squawfish Ptychocheilus oregonensis, smallmouth bass Micropterus dolomieu, walleye Stizostedion vitreum, and channel catfish Ictalurus punctatus from John Day Reservoir were examined to determine the extent of predation on juvenile salmonids during seaward migrations of the salmonids during April–August 1983–1986. Juvenile Pacific salmon Oncorhynchus spp. and steelhead O. mykiss were the most important food group (by weight) of northern squawfish – about 67% – but made up smaller proportions of the food of the other predators: channel catfish, 33%; walleyes, 14%; smallmouth bass, 4%. Seasonal changes in diets indicated that northern squawfish preferred juvenile salmonids in May and August (generally the peak period of salmonid out-migration), and switched to prickly sculpin Cottus asper when numbers of juvenile salmonids declined; walleyes and smallmouth bass showed a preference only for prickly sculpin among the prey fishes analyzed. As judged by dietary composition and prey selectivity, the northern squawfish was the major fish predator on juvenile salmonids in the reservoir; channel catfish also were important predators in the upper reservoir in spring. Walleyes and smallmouth bass were much less important predators on salmonids, and appeared to select subyearling chinook salmon only in August when the distribution of this prey overlapped with that of the predators. Size-selective predation by northern squawfish may also play an important role in reducing survival of the smaller individuals within each run of out-migrating juvenile salmonids.

  15. Bioinvasive species and the preservation of cutthroat trout in the western United States: Ecological, social, and economic issues

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.

    2004-01-01

    The cutthroat trout (Oncorhynchus clarki) was the only endemic salmonid species across most of the western United States, and it has severely declined largely due to introduction and bioinvasion by non-native salmonid species. However, the ecological, social, and economic consequences of cutthroat trout declines and replacement by non-native salmonid species are relatively minor, and measurable affects on ecosystem function are rare. Restoration efforts for cutthroat trout involve removal or control of bioinvasive salmonid species, but such efforts are costly, ongoing, and resisted frequently by segments of society. Cutthroat trout declines are of little concern to much of the public because they are valued similarly to non-native salmonids, and non-native salmonid species frequently have higher recreational values. Due to the low values placed on cutthroat trout relative to non-native salmonid species, net economic benefits of preserving cutthroat trout are equal to or less than those for non-native salmonids. Cutthroat trout provide a classic case of the consequences of biological invasion; however, other native species are faced with similar issues. We suggest that management agencies establish realistic goals to preserve native species within the context of ecological, social, and economic issues. ?? 2004 Elsevier Ltd. All rights reserved.

  16. Three-spined stickleback Gasterosteus aculeatus, as a possible paratenic host for salmonid nematodes in a subarctic lake.

    PubMed

    Braicovich, Paola E; Kuhn, Jesper A; Amundsen, Per-Arne; Marcogliese, David J

    2016-03-01

    In Takvatn, a subarctic lake in northern Norway, 35 of 162 three-spined sticklebacks examined were infected with 106 specimens of third-stage larvae of Philonema oncorhynchi. The prevalence and mean intensity of P. oncorhynchi were 10 % and 2.0 in 2013 and 24 % and 3.0 in 2014, respectively. A single specimen of Cystidicola farionis was found in an additional sample. While the latter is considered an accidental infection, three-spined sticklebacks may function as paratenic hosts of P. oncorhynchi, potentially enhancing its transmission to salmonids due to their central role in the lacustrine food web of this subarctic lake.

  17. Review of the negative influences of non-native salmonids on native fish species

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.

    2013-01-01

    Non-native salmonids are often introduced into areas containing species of concern, yet a comprehensive overview of the short- and long-term consequences of these introductions is lacking in the Great Plains. Several authors have suggested that non-native salmonids negatively inflfluence species of concern. The objective of this paper is to review known interactions between non-native salmonids and native fifishes, with a focus on native species of concern. After an extensive search of the literature, it appears that in many cases non-native salmonids do negatively inflfl uence species of concern (e.g., reduce abundance and alter behavior) via different mechanisms (e.g., predation and competition). However, there are some instances in which introduced salmonids have had no perceived negative inflfl uence on native fifi shes. Unfortunately, the majority of the literature is circumstantial, and there is a need to experimentally manipulate these interactions.

  18. 76 FR 16698 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Shrimp Fishery Off the Southern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... severely depleted by unusually cold weather conditions. DATES: The closure is effective March 22, 2011... shrimp spawning stock that has been severely depleted by cold weather. Consistent with those procedures... time and would potentially further harm the spawning stock that has been impacted due to cold weather...

  19. Predation of juvenile salmonids by smallmouth bass and northern squawfish in the Columbia River near Richland, Washington

    USGS Publications Warehouse

    Tabor, Roger A.; Shively, Rip S.; Poe, Thomas P.

    1993-01-01

    The importance of juvenile salmonids in the diet of smallmouth bass Micropterus dolomieu and northern squawfish Ptychocheilus oregonensis was examined at a 6-km stretch of the Columbia River. Piscivorous fish were sampled with electrofishing gear on 4 d (May 2–3 and June 20–21, 1990) during emigration of juvenile anadromous salmonids. Sixty-two smallmouth bass and 69 northern squawfish were collected for diet analysis. Juvenile salmonids made up 59% of smallmouth bass diet by weight and were present in 65% of the stomachs of smallmouth bass. By a meal turnover method, smallmouth bass were estimated to consume from 1.4 (May 2–3) to 1.0 (June 20–21) salmonids per predator daily. Crayfish were the dominant prey item (41.4% by weight) of northern squawfish, but juvenile salmonids (28.8%) were also important. Northern squawfish consumed from 0.55 (May 2–3) to 0.34 (June 20–21) salmonids per predator daily. Smallmouth bass and northern squawfish consumed mostly subyearling Chinook salmon Oncorhynchus tshawytscha, which may have been wild Chinook salmon that emigrated downstream from the Hanford reach. Predation rates on salmonids by smallmouth bass are apparently high during spring and early summer because subyearling Chinook salmon are abundant and of suitable forage size and their habitat overlaps with that of smallmouth bass.

  20. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha

    PubMed Central

    Kemp, Brian M.; Thorgaard, Gary H.

    2018-01-01

    The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have divergent demographic histories. PMID:29320518

  1. Smallmouth bass and largemouth bass predation on juvenile Chinook salmon and other salmonids in the Lake Washington basin

    USGS Publications Warehouse

    Tabor, R.A.; Footen, B.A.; Fresh, K.L.; Celedonia, M.T.; Mejia, F.; Low, D.L.; Park, L.

    2007-01-01

    We assessed the impact of predation by smallmouth bass Micropterus dolomieu and largemouth bass M. salmoides on juveniles of federally listed Chinook salmon Oncorhynchus tshawytscha and other anadromous salmonid populations in the Lake Washington system. Bass were collected with boat electrofishing equipment in the south end of Lake Washington (February-June) and the Lake Washington Ship Canal (LWSC; April-July), a narrow waterway that smolts must migrate through to reach the marine environment. Genetic analysis was used to identify ingested salmonids to obtain a more precise species-specific consumption estimate. Overall, we examined the stomachs of 783 smallmouth bass and 310 largemouth bass greater than 100 mm fork length (FL). Rates of predation on salmonids in the south end of Lake Washington were generally low for both black bass species. In the LWSC, juvenile salmonids made up a substantial part of bass diets; consumption of salmonids was lower for largemouth bass than for smallmouth bass. Smallmouth bass predation on juvenile salmonids was greatest in June, when salmonids made up approximately 50% of their diet. In the LWSC, overall black bass consumption of salmonids was approximately 36,000 (bioenergetics model) to 46,000 (meal turnover consumption model) juveniles, of which about one-third was juvenile Chinook salmon, one-third was coho salmon O. kisutch, and one-third was sockeye salmon O. nerka. We estimated that about 2,460,000 juvenile Chinook salmon (hatchery and wild sources combined) were produced in the Lake Washington basin in 1999; thus, the mortality estimates in the LWSC range from 0.5% (bioenergetics) to 0.6% (meal turnover). Black bass prey mostly on subyearlings of each salmonid species. The vulnerability of subyearlings to predation can be attributed to their relatively small size; their tendency to migrate when water temperatures exceed 15??C, coinciding with greater black bass activity; and their use of nearshore areas, where overlap with black bass is greatest. We conclude that under current conditions, predation by smallmouth bass and largemouth bass has a minor impact on Chinook salmon and other salmonid populations in the Lake Washington system. ?? Copyright by the American Fisheries Society 2007.

  2. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts

    PubMed Central

    Palstra, A. P.

    2017-01-01

    Abstract Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon (Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers. PMID:28480037

  3. Effect of short-term regulated temperature variations on the swimming economy of Atlantic salmon smolts.

    PubMed

    Alexandre, C M; Palstra, A P

    2017-01-01

    Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon ( Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers.

  4. Speciation of mercury and mode of transport from placer gold mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    Historic placer gold mining in the Clear Creek tributary to the Sacramento River (Redding, CA) has highly impacted the hydrology and ecology of an important salmonid spawning stream. Restoration of the watershed utilized dredge tailings contaminated with mercury (Hg) introduced during gold mining, posing the possibility of persistent Hg release to the surrounding environment, including the San Francisco Bay Delta. Column experiments have been performed to evaluate the extent of Hg transport under chemical conditions potentially similar to those in river restoration projects utilizing dredge tailings such as at Clear Creek. Physicochemical perturbations, in the form of shifts in column influent ionic strength and the presence of a low molecular weight organic acid, were applied to coarse and fine sand placer tailings containing 109-194 and 69-90 ng of Hg/g, respectively. Significant concentrations of mercury, up to 16 ??g/L, leach from these sediments in dissolved and particle-associated forms. Sequential chemical extractions (SCE) of these tailings indicate that elemental Hg initially introduced during gold mining has been transformed to readily soluble species, such as mercury oxides and chlorides (3-4%), intermediately extractable phases that likely include (in)organic sorption complexes and amalgams (75-87%), and fractions of highly insoluble forms such as mercury sulfides (6-20%; e.g., cinnabar and metacinnabar). Extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of colloids obtained from column effluent identified cinnabar particles as the dominant mobile mercury-bearing phase. The fraction of intermediately extractable Hg phases also likely includes mobile colloids to which Hg is adsorbed. ?? 2005 American Chemical Society.

  5. Habitat use and population characteristics of potentially spawning shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820), blue sucker ( Cycleptus elongatus (Lesueur, 1817), and associated species in the lower Wisconsin River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, John D.; Walchak, D.; Haglund, J.

    The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon ( Scaphirhynchus platorynchus), blue sucker ( Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid- June, the presumed spawning period. On one date in 2008 and two dates inmore » 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye ( Hiodon tergisus), quillback ( Carpiodes cyprinus), smallmouth buffalo ( Ictiobus bubalus), and shorthead redhorse ( Moxostoma macrolepidotum), usually at depths of 0.8-2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years.« less

  6. Habitat use and population characteristics of potentially spawning shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820), blue sucker ( Cycleptus elongatus (Lesueur, 1817), and associated species in the lower Wisconsin River, USA

    DOE PAGES

    Lyons, John D.; Walchak, D.; Haglund, J.; ...

    2016-11-07

    The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon ( Scaphirhynchus platorynchus), blue sucker ( Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid- June, the presumed spawning period. On one date in 2008 and two dates inmore » 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye ( Hiodon tergisus), quillback ( Carpiodes cyprinus), smallmouth buffalo ( Ictiobus bubalus), and shorthead redhorse ( Moxostoma macrolepidotum), usually at depths of 0.8-2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years.« less

  7. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start ofmore » this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).« less

  8. Conservation genomics: coming to a salmonid near you.

    PubMed

    Piccolo, J J

    2016-12-01

    Using the examples on hereditary and environmental factors affecting salmonid populations, this paper demonstrates that ecologists have long appreciated the importance of local adaptation and intraspecific diversity for salmonid conservation. Conservationists, however, need to embrace the genomics revolution and use new insights to improve salmonid management. At the same time, researchers must be forthcoming with the uses and limitations of genomics, and conservation must move forward in the face of scientific uncertainty. © 2016 The Fisheries Society of the British Isles.

  9. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation.

    Treesearch

    K.M. Burnett; G.H. Reeves; D.J. Miller; S. Clarke; K. Vance-Borland; K. Christiansen

    2007-01-01

    The geographic distribution of stream reaches with potential to support high-quality habitat for salmonids has bearing on the actual status of habitats and populations over broad spatial extents. As part of the Coastal Landscape Analysis and Modeling Study, we examined how salmon-habitat potential was distributed relative to current and future (+100 years) landscape...

  10. Detecting the movement and spawning activity of bigheaded carps with environmental DNA.

    PubMed

    Erickson, Richard A; Rees, Christopher B; Coulter, Alison A; Merkes, Christopher M; McCalla, Sunnie G; Touzinsky, Katherine F; Walleser, Liza; Goforth, Reuben R; Amberg, Jon J

    2016-07-01

    Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement. © 2016 John Wiley & Sons Ltd.

  11. Detecting the movement and spawning activity of bigheaded carps with environmental DNA

    USGS Publications Warehouse

    Erickson, Richard A.; Rees, Christopher B.; Coulter, Alison A.; Merkes, Christopher; McCalla, S. Grace; Touzinsky, Katherine F; Walleser, Liza R.; Goforth, Reuben R.; Amberg, Jon J.

    2016-01-01

    Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.

  12. Bed texture mapping in large rivers using recreational-grade sidescan sonar

    USGS Publications Warehouse

    Hamill, Daniel; Wheaton, Joseph M.; Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.

    2017-01-01

    The size-distribution and spatial organization of bed sediment, or bed ‘texture’, is a fundamental attribute of natural channels and is one important component of the physical habitat of aquatic ecosystems. ‘Recreational-grade’ sidescan sonar systems now offer the possibility of imaging, and subsequently quantifying bed texture at high resolution with minimal cost, or logistical effort. We are investigating the possibility of using sidescan sonar sensors on commercially available ‘fishfinders’ for within-channel bed-sediment characterization of mixed sand-gravel riverbeds in a debris-fan dominated canyon river. We analyzed repeat substrate mapping of data collected before and after the November 2014 High Flow Experiment on the Colorado River in lower Marble Canyon, Arizona. The mapping analysis resulted in sufficient spatial coverage (e.g. reach) and resolutions (e.g. centrimetric) to inform studies of the effects of changing bed substrates on salmonid spawning on large rivers. From this preliminary study, we argue that the approach could become a tractable and cost-effective tool for aquatic scientists to rapidly obtain bed texture maps without specialized knowledge of hydroacoustics. Bed texture maps can be used as a physical input for models relating ecosystem responses to hydrologic management.

  13. Effects of hydraulic roughness on surface textures of gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Field studies of forest gravel‐bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed‐surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach‐average median grain size (D50) to that predicted from the total bank‐full boundary shear stress (т0bf), representing a hypothetical reference condition of low hydraulic roughness. For a given т0bf, channels with progressively greater hydraulic roughness have systematically finer bed surfaces, presumably due to reduced bed shear stress, resulting in lower channel competence and diminished bed load transport capacity, both of which promote textural fining. In channels with significant hydraulic roughness, observed values D50 can be up to 90% smaller than those predicted from т0bf. We find that wood debris plays an important role at our study sites, not only providing hydraulic roughness but also influencing pool spacing, frequency of textural patches, and the amplitude and wavelength of bank and bar topography and their consequent roughness. Our observations also have biological implications. We find that textural fining due to hydraulic roughness can create usable salmonid spawning gravels in channels that otherwise would be too coarse.

  14. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids.

    PubMed

    Hapke, Whitney B; Morace, Jennifer L; Nilsen, Elena B; Alvarez, David A; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.

  15. Year-round monitoring of contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and assessment of risks to salmonids

    USGS Publications Warehouse

    Temple, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.

  16. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids

    PubMed Central

    Hapke, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David A.; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown. PMID:27348521

  17. Understanding mechanisms that control fish spawning and larval recruitment: Parameter optimization of an Eulerian model (SEAPODYM-SP) with Peruvian anchovy and sardine eggs and larvae data

    NASA Astrophysics Data System (ADS)

    Hernandez, Olga; Lehodey, Patrick; Senina, Inna; Echevin, Vincent; Ayón, Patricia; Bertrand, Arnaud; Gaspar, Philippe

    2014-04-01

    The Spatial Ecosystem And Populations Dynamics Model "SEAPODYM", based on a system of Eulerian equations and initially developed for large pelagic fish (e.g., tuna), was modified to describe spawning habitat and eggs and larvae dynamics of small pelagic fish. The spawning habitat is critical since it controls the initial recruitment of larvae and the subsequent spatio-temporal variability of natural mortality during their drift with currents. A robust statistical approach based on Maximum Likelihood Estimation is presented to optimize the model parameters defining the spawning habitat and the eggs and larvae dynamics. To improve parameterization, eggs and larvae density observations are assimilated in the model. The model and its associated optimization approach allow investigating the significance of the mechanisms proposed to control fish spawning habitat and larval recruitment: temperature, prey abundance, trade-off between prey and predators, and retention and dispersion processes. An application to the Peruvian anchovy (Engraulis ringens) and sardine (Sardinops sagax) illustrates the ability of the model to simulate the main features of spatial dynamics of these two species in the Humboldt Current System. For both species, in climatological conditions, the main observed spatial patterns are well reproduced and are explained by the impact of prey and predator abundance and by physical retention with currents, while temperature has a lower impact. In agreement with observations, sardine larvae are mainly predicted in the northern part of the Peruvian shelf (5-10°S), while anchovy larvae extend further south. Deoxygenation, which can potentially limit the accessibility of adult fish to spawning areas, does not appear to have an impact in our model setting. Conversely, the observed seasonality in spawning activity, especially the spawning rest period in austral autumn, is not well simulated. It is proposed that this seasonal cycle is more likely driven by the spatio-temporal dynamics of adult fish constituting the spawning biomass and not yet included in the model.

  18. Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes

    PubMed Central

    Ryynänen, Heikki J; Primmer, Craig R

    2006-01-01

    Background Single nucleotide polymorphisms (SNPs) represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC) method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar) and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp). The SNP frequency and the overall nucleotide diversity (3.99 × 10-4) in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases. PMID:16872523

  19. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  20. Population viability assessment of salmonids by using probabilistic networks

    Treesearch

    Danny C. Lee; Bruce E. Rieman

    1997-01-01

    Public agencies are being asked to quantitatively assess the impact of land management activities on sensitive populations of salmonids. To aid in these assessments, we developed a Bayesian viability assessment procedure (BayVAM) to help characterize land use risks to salmonids in the Pacific Northwest. This procedure incorporates a hybrid approach to viability...

  1. Unravelling the Gordian knot! Key processes impacting overwintering larval survival and growth: A North Sea herring case study

    NASA Astrophysics Data System (ADS)

    Hufnagl, Marc; Peck, Myron A.; Nash, Richard D. M.; Dickey-Collas, Mark

    2015-11-01

    Unraveling the key processes affecting marine fish recruitment will ultimately require a combination of field, laboratory and modelling studies. We combined analyzes of long-term (30-year) field data on larval fish abundance, distribution and length, and biophysical model simulations of different levels of complexity to identify processes impacting the survival and growth of autumn- and winter-spawned Atlantic herring (Clupea harengus) larvae. Field survey data revealed interannual changes in intensity of utilization of the five major spawning grounds (Orkney/Shetland, Buchan, Banks north, Banks south, and Downs) as well as spatio-temporal variability in the length and abundance of overwintered larvae. The mean length of larvae captured in post-winter surveys was negatively correlated to the proportion of larvae from the southern-most (Downs) winter-spawning component. Furthermore, the mean length of larvae originating from all spawning components has decreased since 1990 suggesting ecosystem-wide changes impacting larval growth potential, most likely due to changes in prey fields. A simple biophysical model assuming temperature-dependent growth and constant mortality underestimated larval growth rates suggesting that larval mortality rates steeply declined with increasing size and/or age during winter as no match with field data could be obtained. In contrast better agreement was found between observed and modelled post-winter abundance for larvae originating from four spawning components when a more complex, physiological-based foraging and growth model was employed using a suite of potential prey field and size-based mortality scenarios. Nonetheless, agreement between field and model-derived estimates was poor for larvae originating from the winter-spawned Downs component. In North Sea herring, the dominant processes impacting larval growth and survival appear to have shifted in time and space highlighting how environmental forcing, ecosystem state and other factors can form a Gordian knot of marine fish recruitment processes. We highlight gaps in process knowledge and recommend specific field, laboratory and modelling studies which, in our opinion, are most likely to unravel the dominant processes and advance predictive capacity of the environmental regulation of recruitment in autumn and winter-spawned fishes in temperate areas such as herring in the North Sea.

  2. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.

    PubMed

    Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J

    2016-12-01

    High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Boulder Clusters as Flow Refugia for Juvenile Salmonids and Aquatic Invertebrates in Steep Mountain Streams, Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; May, C. L.; Dietrich, W. E.; Resh, V. H.

    2005-12-01

    The availability of flow refugia and cover is an important factor affecting habitat suitability for fish and invertebrates, especially in steep, turbulent streams. In some channels, crevices beneath and between large rocks may be the only available flow refugia that allow rainbow trout (Oncorhynchus mykiss) to conserve energy and escape from high velocity flow during large storm events. Many aquatic invertebrates, especially large or crawling taxa, require cover that is provided by unembedded crevice space underneath large stones. To investigate the influence of channel type on habitat availability, we performed intensive surveys of crevice habitat for salmonids and benthic invertebrates in 12 reaches in Walker Creek, a 25 square km basin in the Klamath Mountains of Northern California. We identified four reaches in each of three channel types: plane bed (3.1% - 3.7% slope), step-pool (5.4% - 6.5% slope), and cascade (6.3% - 8.5% slope). We used 4 realistic fish models (5, 10, 15, and 20 cm length) to assess the size of crevices and presence of flow refugia associated with all cobble (64 - 256 mm) and boulder (> 256 mm) grains within five 0.5 m-wide diagonal transects. The total abundance of crevices was similar among plane bed (6.3 +/- 1.1 m-2) (Mean +/- SD), step-pool (6.2 +/- 0.25 m-2), and cascade (6.7 +/- 1.2 m-2) reaches. Small (5 cm) crevices made up the majority of crevices in all three reach types. While the presence of 5 cm and 10 cm crevices was not significantly different between the three channel types, there were significantly more large (20 cm) crevices in cascade (0.73 +/- 0.33 m-2) and step-pool (0.68 +/- 0.1 m-2) reaches than in plane bed (0.26 +/- 0.14 m-2) reaches (AVOVA, p < 0.05). Moderately sized (15 cm) crevices were more common in step-pool reaches (0.91 +/- 0.13 m-2) than either cascade (0.54 +/- 0.15 m-2) or plane bed (0.42 +/- 0.13 m-2) reaches. Based on these results we conclude that step-pool reaches provide the most favorable habitat for larger (15 to 20 cm) fish, probably due to the channel-spawning clusters of large cobbles and boulders that define this channel type. Understanding the processes that develop and maintain these open-framework clusters is important for basin-scale assessment of potential aquatic habitat.

  4. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture.

    PubMed

    Macqueen, Daniel J; Primmer, Craig R; Houston, Ross D; Nowak, Barbara F; Bernatchez, Louis; Bergseth, Steinar; Davidson, William S; Gallardo-Escárate, Cristian; Goldammer, Tom; Guiguen, Yann; Iturra, Patricia; Kijas, James W; Koop, Ben F; Lien, Sigbjørn; Maass, Alejandro; Martin, Samuel A M; McGinnity, Philip; Montecino, Martin; Naish, Kerry A; Nichols, Krista M; Ólafsson, Kristinn; Omholt, Stig W; Palti, Yniv; Plastow, Graham S; Rexroad, Caird E; Rise, Matthew L; Ritchie, Rachael J; Sandve, Simen R; Schulte, Patricia M; Tello, Alfredo; Vidal, Rodrigo; Vik, Jon Olav; Wargelius, Anna; Yáñez, José Manuel

    2017-06-27

    We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.

  5. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam with Emphasis on the Prototype Surface Flow Outlet, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The main purpose of the study was to evaluate the performance of Top Spill Weirs installed at two spillbays at John Day Dam and evaluate the effectiveness of these surface flow outlets at attracting juvenile salmon away from the powerhouse and reducing turbine passage. The Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate survival of juvenile salmonids passing the dam and also for calculating performance metrics used to evaluate the efficiency and effectiveness of the dam at passing juvenile salmonids.

  6. Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters

    USGS Publications Warehouse

    Grabowski, Timothy B.; Boswell, Kevin M.; McAdam, Bruce J.; Wells, R. J. David; Marteinsdóttir, Gudrún

    2012-01-01

    The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15–16 April 2009). We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON), as well as a remotely operated underwater vehicle (ROV). A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1–5 m into the water column from the bottom at an average vertical swimming speed of 0.20–0.25 m s−1 and maintained an average spacing of 1.0–1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor.

  7. Characterization of Atlantic Cod Spawning Habitat and Behavior in Icelandic Coastal Waters

    PubMed Central

    Grabowski, Timothy B.; Boswell, Kevin M.; McAdam, Bruce J.; Wells, R. J. David; Marteinsdóttir, Guđrún

    2012-01-01

    The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15–16 April 2009). We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON), as well as a remotely operated underwater vehicle (ROV). A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1–5 m into the water column from the bottom at an average vertical swimming speed of 0.20–0.25 m s−1 and maintained an average spacing of 1.0–1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor. PMID:23236471

  8. Migration and habitats of diadromous Danube River sturgeons in Romania: 1998-2000

    USGS Publications Warehouse

    Kynard, B.; Suciu, R.; Horgan, M.

    2002-01-01

    Upstream migrant adults of stellate sturgeon, Acipenser stellatus (10 in 1998, 43 in 1999) and Russian sturgeon, A. gueldenstaedtii (three in 1999) were captured at river km (rkm) 58-137, mostly in the spring, and tagged with acoustic tags offering a reward for return. The overharvest was revealed by tag returns (38% in 1998, 28% in 1999) and by harvest within 26 days (and before reaching spawning grounds) of the six stellate sturgeon tracked upstream. A drop-back of > 50% of the tagged sturgeon, some to the Black Sea, shows a high sensitivity to interruption of migration and capture/handling/holding. Harvesting and dropback prevented tracking of sturgeon to spawning sites. Gillnetting and tracking of stellate sturgeon showed that the autumn migration ended in early October (river temperature 16??C) and identified a likely wintering area at river km (rkm) 75-76 (St George Branch). Thus, fishery harvesting after early October captures wintering fish, not migrants. Rare shoreline cliffs in the lower river likely create the only rocky habitat for sturgeon spawning. A survey for potential spawning habitats found five sites with rocky substrate and moderate water velocity, all ???rkm 258. Drift netting caught early life-stages of 17 fish species and one sturgeon, a beluga, Huso huso, larva likely spawned at ???rkm 258. All diadromous Danube sturgeons likely spawn at ???rkm 258.

  9. Goosefish Lophius americanus fecundity and spawning frequency, with implications for population reproductive potential.

    PubMed

    McBride, R S; Johnson, A K; Lindsay, E K; Walsh, H J; Richards, R A

    2017-05-01

    To improve knowledge of goosefish Lophius americanus' reproductive biology, females were collected during 2009-2012 from the Mid-Atlantic Bight shelf region of the U.S. east coast. Batch fecundity increased with total length (L T ), from 229 100 to 2 243 300 mature oocytes per female (L T range: 55·5-112 cm; n = 54). This estimate of fecundity at L T is lower than one derived from a sample collected during 1982-1985. Examination of whole oocyte diameters in different months indicated that L. americanus is a serial spawner, releasing more than one egg veil per spawning season, as suspected or observed for other Lophius species. Seasonality of spawning was evident from whole oocytes and gonad histology, and from larval fish surveys spanning the U.S. north-east shelf, and confirmed a protracted (c. 6 months) spawning period. Peak spawning activity progressed northward from spring to autumn. The population-level implications of these results were explored by estimating population reproductive potential (P RP ), which considered the value of both current and future per capita reproduction using decade-specific age structure and fecundity at length. P RP is now more than 50% lower compared with the historical period (1982-1985), a result of the lower proportions of large females and reduced fecundity across all sizes. Mechanisms that could explain this loss of stock productivity are fishing-induced size-age truncation or regime shifts in egg production caused by changes in energy density of common forage species. © 2017 The Fisheries Society of the British Isles.

  10. Reproductive dynamics of Pacific sanddab, Citharichthys sordidus, off the central coast of California

    NASA Astrophysics Data System (ADS)

    Lefebvre, Lyndsey S.; Payne, Amber M.; Field, John C.

    2016-01-01

    Female Pacific sanddab were collected from the Monterey Bay, California to describe their reproductive strategy and annual reproductive cycle, as well as to estimate length at maturity, fecundity, spawning fraction (SF), and spawning interval (SI). Captive females were held to examine degradation of spawning markers and confirmed the biological spawning capabilities of the species. The reproductive season extended from May through January, as determined through macroscopic and histological examination of ovaries. Oocyte development was asynchronous, and an indeterminate fecundity pattern was displayed. Absolute and relative batch fecundity values were variable (means = 6663 eggs and 54 eggs g- 1 somatic weight, respectively) and significantly related to maternal length. During the period of highest reproductive activity, SF ranged from 0.42 to 0.98, suggesting some females were spawning on a daily basis. Monthly SF and SI were related to length, with smaller females having a truncated season and lower SF compared to larger females. Lengths at 50% (119 mm) and 95% (149 mm) maturity showed a downward shift relative to the 1940s, though the magnitude and cause of this shift remain unknown. This study highlights the importance of considering demographic shifts and size-related dynamics when modeling a stock's reproductive potential.

  11. Side-scan sonar mapping of lake trout spawning habitat in northern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Poe, Thomas P.; Nester, Robert T.; Brown, Charles L.

    1989-01-01

    Native stocks of lake trout Salvelinus namaycush were virtually or completely extirpated from the lower four Great Lakes by the early 1960s. The failure of early attempts to reestablish self-sustaining populations of lake trout was attributed partly to the practice of stocking hatcheryreared juveniles at locations and over substrates that had not been used in the past for spawning by native fish. Subsequent attempts to improve the selection of stocking locations were impeded by the lack of reliable information on the distribution of substrates on historical spawning grounds. Here we demonstrate the potential of side-scan sonar to substantially expand the data base needed to pinpoint the location of substrates where lake trout eggs, fry, or juveniles could be stocked to maximize survival and help ensure that survivors returning to spawn would encounter suitable substrates. We also describe the substrates and bathymetry of large areas on historical lake trout spawning grounds in the Fox Island Lake Trout Sanctuary in northern Lake Michigan. These areas could be used to support a contemporary self-sustaining lake trout population in the sanctuary and perhaps also in adjacent waters.

  12. Effects of sea lamprey substrate modification and carcass nutrients on macroinvertebrate assemblages in a small Atlantic coastal stream

    USGS Publications Warehouse

    Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.

    2018-01-01

    Aquatic macroinvertebrates respond to patch dynamics arising from interactions of physical and chemical disturbances across space and time. Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from the ocean and alter physical and chemical properties of recipient spawning streams. Sea lamprey disturb stream benthos physically through nest construction and spawning, and enrich food webs through nutrient deposition from decomposing carcasses. Sea lamprey spawning nests support greater macroinvertebrate abundance than adjacent reference areas, but concurrent effects of stream bed modification and nutrient supplementation have not been examined sequentially. We added carcasses and cleared substrate experimentally to mimic the physical disturbance and nutrient enrichment associated with lamprey spawning, and characterized effects on macroinvertebrate assemblage structure. We found that areas receiving cleared substrate and carcass nutrients were colonized largely by Simuliidae compared to upstream and downstream control areas that were colonized largely by Hydropsychidae, Philopotamidae, and Chironomidae. Environmental factors such as stream flow likely shape assemblages by physically constraining macroinvertebrate establishment and feeding. Our results indicate potential changes in macroinvertebrate assemblages from the physical and chemical changes to streams brought by spawning populations of sea lamprey.

  13. Feeding modes in stream salmonid population models: Is drift feeding the whole story?

    Treesearch

    Bret Harvey; Steve Railsback

    2014-01-01

    Drift-feeding models are essential components of broader models that link stream habitat to salmonid populations and community dynamics. But is an additional feeding mode needed for understanding and predicting salmonid population responses to streamflow and other environmental factors? We addressed this question by applying two versions of the individual-based model...

  14. Use of benthic prey by salmonids under turbid conditions in a laboratory stream

    Treesearch

    Bret C. Harvey; Jason L. White

    2008-01-01

    The negative effect of turbidity on the reactive distance of salmonids has been well established. However, determining the consequences of this relationship for overall feeding success remains problematic, as successful foraging by salmonids across a broad range in turbidity has been observed under a variety of conditions. Previous laboratory and field observations...

  15. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  16. American shad in the Columbia River

    USGS Publications Warehouse

    Petersen, J.H.; Hinrichsen, R.A.; Gadomski, D.M.; Feil, D.H.; Rondorf, D.W.

    2003-01-01

    American shad Alosa sapidissima from the Hudson River, New York, were introduced into the Sacramento River, California, in 1871 and were first observed in the Columbia River in 1876. American shad returns to the Columbia River increased greatly between 1960 and 1990, and recently 2-4 million adults have been counted per year at Bonneville Dam, Oregon and Washington State (river kilometer 235). The total return of American shad is likely much higher than this dam count. Returning adults migrate as far as 600 km up the Columbia and Snake rivers, passing as many as eight large hydroelectric dams. Spawning occurs primarily in the lower river and in several large reservoirs. A small sample found returning adults were 2-6 years old and about one-third of adults were repeat spawners. Larval American shad are abundant in plankton and in the nearshore zone. Juvenile American shad occur throughout the water column during night, but school near the bottom or inshore during day. Juveniles consume a variety of zooplankton, but cyclopoid copepods were 86% of the diet by mass. Juveniles emigrate from the river from August through December. Annual exploitation of American shad by commercial and recreational fisheries combined is near 9% of the total count at Bonneville Dam. The success of American shad in the Columbia River is likely related to successful passage at dams, good spawning and rearing habitats, and low exploitation. The role of American shad within the aquatic community is poorly understood. We speculate that juveniles could alter the zooplankton community and may supplement the diet of resident predators. Data, however, are lacking or sparse in some areas, and more information is needed on the role of larval and juvenile American shad in the food web, factors limiting adult returns, ocean distribution of adults, and interactions between American shad and endangered or threatened salmonids throughout the river. ?? 2003 by the American Fisheries Society.

  17. Demonstration of the salmonid humoral response to Renibacterium salmoninarum using a monoclonal antibody against salmonid immunoglobulin

    USGS Publications Warehouse

    Bartholomew, J.L.; Arkoosh , M.R.; Rohovec, J.S.

    1991-01-01

    The specificity of the antibody response of salmonids to Renibacterium salmoninarum antigens was demonstrated by western blotting techniques that utilized a monoclonal antibody against salmonid immunoglobulin. In this study, the specificity of the response in immunized chinook salmon Oncorhynchus tshawytschawas compared with the response in naturally infected chinook salmon and coho salmon O. kisutch, and immunized rabbits. The antibody response in immunized salmon and rabbits and the naturally infected fish was primarily against the 57–58kilodalton protein complex. In addition to recognizing these proteins in the extracellular fraction and whole-cell preparations, antibody from the immunized salmon and rabbits detected four proteins with lower molecular masses. Western blotting techniques allow identification of the specific antigens recognized and are a useful tool for comparing the immunogenicity of different R. salmoninarumpreparations. Immunofluorescent techniques with whole bacteria were less sensitive than western blotting in detecting salmonid anti-R. salmoninarumantibody.

  18. Efficacy, fate, and potential effects on salmonids of mosquito larvicides in catch basins in Seattle, Washington

    USGS Publications Warehouse

    Sternberg, Morgan; Grue, Christian; Conquest, Loveday; Grassley, James; King, Kerensa

    2012-01-01

    We investigated the efficacy, fate, and potential for direct effects on salmonids of 4 common mosquito larvicides (Mosquito Dunks® and Bits® (AI: Bacillis thuringiensis var. israelensis, [Bti]), VectoLex® WSP (AI: Bacillus sphaericus [Bs], VectoLex CG [AI: Bs], and Altosid® Briquets [AI: s-methoprene]) in Seattle, WA, during 3 summers. During efficacy trials in 2006, all treatments resulted in a rapid reduction in number of mosquito pupae (Mosquito Dunks and Bits and VectoLex WSP) or emergence success (Altosid Briquets). VectoLex CG was chosen for city-wide application in 2007 and 2008. The average counts of pupae within round-top basins remained significantly below the control average for 11 wk in 2007, whereas efficacy in grated-top basins was short-lived. In 2008 the average counts of pupae within grated-top basins remained significantly below the control average for 10 wk. Altosid XR was also effective in reducing adult emergence within grated basins in 2008. In 2007 and 2008, frequent precipitation events made the evaluation of efficacy difficult due to reductions in pupae across control and treated basins. Four separate analyses of VectoLex products revealed that the product was a combination of Bs and Bti. Both Bs and Bti were detected in 3 urban creeks connected to treated basins in 2007 and 2008. Laboratory toxicity test results suggest that concentrations of Bs and Bti detected in each of the watersheds pose little direct hazard to juvenile salmonids.

  19. Assessing Juvenile Salmonid Passage Through Culverts: Field Research in Support of Protocol Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Greg D.; Evans, Nathan R.; Pearson, Walter H.

    2001-10-30

    The primary goal of our research this spring/ summer was to refine techniques and examine scenarios under which a standardized protocol could be applied to assess juvenile coho salmon (O. kisutch) passage through road culverts. Field evaluations focused on capture-mark- recapture methods that allowed analysis of fish movement patterns, estimates of culvert passability, and potential identification of cues inducing these movements. At this stage, 0+ age coho salmon fry 30 mm to 65 mm long (fork length) were the species and age class of interest. Ultimately, the protocol will provide rapid, statistically rigorous methods for trained personnel to perform standardizedmore » biological assessments of culvert passability to a number of juvenile salmon species. Questions to be addressed by the research include the following: ? Do hydraulic structures such as culverts restrict habitat for juvenile salmonids? ? How do existing culverts and retrofits perform relative to juvenile salmonid passage? ? Do some culvert characteristics and hydraulic conditions provide better passage than others? ? Does the culvert represent a barrier to certain size classes of fish? Recommendations addressed issues of study site selection, initial capture, marking, recapture/observations, and estimating movement.« less

  20. Foraging patterns of Caspian terns and double-crested cormorants in the Columbia River estuary

    USGS Publications Warehouse

    Lyons, Donald E.; Roby, D.D.; Collis, K.

    2007-01-01

    We examined spatial and temporal foraging patterns of Caspian terns and double-crested cormorants nesting in the Columbia River estuary, to potentially identify circumstances where juvenile salmonids listed under the U.S. Endangered Species Act might be more vulnerable to predation by these avian piscivores. Data were collected during the 1998 and 1999 breeding seasons, using point count surveys of foraging birds at 40 sites along the river's banks, and using aerial strip transect counts throughout the estuary for terns. In 1998, terns selected tidal flats and sites with roosting beaches nearby for foraging, making greater use of the marine/mixing zone of the estuary later in the season, particularly areas near the ocean jetties. In 1999, cormorants selected foraging sites in freshwater along the main channel with pile dikes present, particularly early in the season. Foraging trends in the other year for each species were generally similar to the above but usually not significant. During aerial surveys we observed 50% of foraging and commuting terns within 8 km of the Rice Island colony, and ??? 5% of activity occurred ??? 27 km from this colony in both years. Disproportionately greater cormorant foraging activity at pile dikes may indicate greater vulnerability of salmonids to predation at those features. Colony relocations to sites at sufficient distance from areas of relatively high salmonid abundance may be a straightforward means of reducing impacts of avian predation on salmonids than habitat alterations within the Columbia River estuary, at least for terns. ?? 2007 by the Northwest Scientific Association. All rights reserved.

  1. An expert panel approach to assessing potential effects of bull trout reintroduction on federally listed salmonids in the Clackamas River, Oregon

    Treesearch

    Bruce G. Marcot; Chris S. Allen; Steve Morey; Dan Shively; Rollie White

    2012-01-01

    The bull trout Salvelinus confluentus is an apex predator in native fish communities in the western USA and is listed as threatened under the U.S. Endangered Species Act (ESA). Restoration of this species has raised concerns over its potential predatory impacts on native fish fauna. We held a five-person expert panel to help determine potential...

  2. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs : Annual Report of Research 1990.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.J.

    1991-03-01

    The consumption rates of northern squawfish (Ptychocheilus oregonensis) preying upon juvenile salmonids were indexed in four reservoirs (Bonneville, The Dalles, John Day and McNary) of the lower Columbia River. During the spring and summer of 1990, over 2000 northern squawfish were collected from dam forebays, dam tailraces and mid-reservoir locations. Gut content data, predator weight and water temperature were used to compute a consumption index (CI) for northern squawfish. Juvenile salmonids were found in 435 of 1598 northern squawfish guts analyzed. Besides salmonids and other preyfish, crustaceans formed a significant portion of the diet. The CI of northern squawfish variedmore » by season and location. At most locations, summer CI's of northern squawfish were higher than in the spring. Efforts to match sample collection with times of highest juvenile salmonid passage were successful except during July at The Dalles and Bonneville Reservoirs. Consumption indices were moderate to high at several locations even when passage was relatively low, suggesting salmonid predation rate by northern squawfish was not always a function of prey density. 19 refs., 5 figs., 12 tabs.« less

  3. Modeled connectivity between northern rock sole (Lepidopsetta polyxystra) spawning and nursery areas in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Cooper, D. W.; Duffy-Anderson, J. T.; Stockhausen, W. T.; Cheng, W.

    2013-11-01

    Connectivity between spawning and potential nursery areas of northern rock sole, Lepidopsetta polyxystra, in the eastern Bering Sea was examined using an individual-based biophysical-coupled model. Presumed spawning areas were identified using historical field-collected ichthyoplankton data, and nursery habitats were characterized based on previously described settlement areas. Simulated larvae were released from spawning areas near the Pribilof Islands, south of the Pribilof Islands along the outer continental shelf, on the north side of the Alaska Peninsula, and in the Gulf of Alaska south of Unimak Island. Simulated larvae were transported along two general pathways: 1) northwards along the outer continental shelf from Unimak Island towards the Pribilof Islands and further north offshore of mainland Alaska, and 2) eastward along the Alaska Peninsula. At the end of the 2-month simulation, drift pathways placed pre-settlement stage larvae offshore of known nursery areas of older juveniles near mainland Alaska, consistent with a hypothesis that initial settlement may be followed by substantial post-settlement redistribution.

  4. Hydrologic indicators of hot spots and hot moments of mercury methylation along river corridors

    NASA Astrophysics Data System (ADS)

    Singer, Michael; Harrison, Lee; Donovan, Patrick; Blum, Joel; Marvin-DiPasquale, Mark

    2016-04-01

    The biogeochemical cycling of metals and other contaminants river-floodplain corridors is controlled by microbial activity is often affected by dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, flow history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this process within a Northern California river system that has a legacy of industrial-scale 19th century hydraulic gold mining. In the first known application of this methodology, we combine hydraulic modeling, measurements of Hg species in sediment and biota, and first-order calculations to assess the role of river floodplains in producing monomethylmercury (MMHg), which accumulates in local and migratory biota. We identify areas that represent 'hot spots' (frequently inundated areas of floodplains) and 'hot moments' (floodplain areas inundated for consecutive long periods). We show that the probability of MMHg production in each sector of the river system is dependent on the spatial patterns of overbank flow and drainage, which affect its long-term redox history. MMHg bioaccumulation within the aquatic food web may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn, and there appears to be no end to MMHg production under a regime of increasingly common large floods with extended duration. These findings identify river floodplains as periodic, temporary, yet important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the historical hydrologic record. We suggest that inundation is the primary driver of MMHg production in river corridors and that the entire flow history must be analyzed in terms of magnitude and frequency of inundation in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods.

  5. Habitat suitability of the Atlantic bluefin tuna by size class: An ecological niche approach

    NASA Astrophysics Data System (ADS)

    Druon, Jean-Noël; Fromentin, Jean-Marc; Hanke, Alex R.; Arrizabalaga, Haritz; Damalas, Dimitrios; Tičina, Vjekoslav; Quílez-Badia, Gemma; Ramirez, Karina; Arregui, Igor; Tserpes, George; Reglero, Patricia; Deflorio, Michele; Oray, Isik; Saadet Karakulak, F.; Megalofonou, Persefoni; Ceyhan, Tevfik; Grubišić, Leon; MacKenzie, Brian R.; Lamkin, John; Afonso, Pedro; Addis, Piero

    2016-03-01

    An ecological niche modelling (ENM) approach was used to predict the potential feeding and spawning habitats of small (5-25 kg, only feeding) and large (>25 kg) Atlantic bluefin tuna (ABFT), Thunnus thynnus, in the Mediterranean Sea, the North Atlantic and the Gulf of Mexico. The ENM was built bridging knowledge on ecological traits of ABFT (e.g. temperature tolerance, mobility, feeding and spawning strategy) with patterns of selected environmental variables (chlorophyll-a fronts and concentration, sea surface current and temperature, sea surface height anomaly) that were identified using an extensive set of precisely geo-located presence data. The results highlight a wider temperature tolerance for larger fish allowing them to feed in the northern - high chlorophyll levels - latitudes up to the Norwegian Sea in the eastern Atlantic and to the Gulf of Saint Lawrence in the western basin. Permanent suitable feeding habitat for small ABFT was predicted to be mostly located in temperate latitudes in the North Atlantic and in the Mediterranean Sea, as well as in subtropical waters off north-west Africa, while summer potential habitat in the Gulf of Mexico was found to be unsuitable for both small and large ABFTs. Potential spawning grounds were found to occur in the Gulf of Mexico from March-April in the south-east to April-May in the north, while favourable conditions evolve in the Mediterranean Sea from mid-May in the eastern to mid-July in the western basin. Other secondary potential spawning grounds not supported by observations were predicted in the Azores area and off Morocco to Senegal during July and August when extrapolating the model settings from the Gulf of Mexico into the North Atlantic. The presence of large ABFT off Florida and the Bahamas in spring was not explained by the model as is, however the environmental variables other than the sea surface height anomaly appeared to be favourable for spawning in part of this area. Defining key spatial and temporal habitats should further help in building spatially-explicit stock assessment models, thus improving the spatial management of bluefin tuna fisheries.

  6. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Rieman, Bruce E.; Beamesderfer, Raymond C.; Vigg, Steven; Poe, Thomas P.

    1991-01-01

    We estimated the loss of juvenile salmonids Oncorhynchus spp. to predation by northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, and smallmouth bass Micropterus dolomieu in John Day Reservoir during 1983–1986. Our estimates were based on measures of daily prey consumption, predator numbers, and numbers of juvenile salmonids entering the reservoir during the April–August period of migration. We estimated the mean annual loss was 2.7 million juvenile salmonids (95% confidence interval, 1.9–3.3 million). Northern squawfish were responsible for 78% of the total loss; walleyes accounted for 13% and smallmouth bass for 9%. Twenty-one percent of the loss occurred in a small area immediately below McNary Dam at the head of John Day Reservoir. We estimated that the three predator species consumed 14% (95% confidence interval, 9–19%) of all juvenile salmonids that entered the reservoir. Mortality changed by month and increased late in the migration season. Monthly mortality estimates ranged from 7% in June to 61% in August. Mortality from predation was highest for chinook salmon O. tshawytscha, which migrated in July and August. Despite uncertainties in the estimates, it is clear that predation by resident fish predators can easily account for previously unexplained mortality of out-migrating juvenile salmonids. Alteration of the Columbia River by dams and a decline in the number of salmonids could have increased the fraction of mortality caused by predation over what it was in the past.

  7. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  8. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  9. Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral Acropora millepora

    NASA Astrophysics Data System (ADS)

    Levy, O.; Appelbaum, L.; Leggat, W.; Gothlif, Y.; Hayward, D. C.; Miller, D. J.; Hoegh-Guldberg, O.

    2007-10-01

    Hundreds of species of reef-building corals spawn synchronously over a few nights each year, and moonlight regulates this spawning event. However, the molecular elements underpinning the detection of moonlight remain unknown. Here we report the presence of an ancient family of blue-light-sensing photoreceptors, cryptochromes, in the reef-building coral Acropora millepora. In addition to being cryptochrome genes from one of the earliest-diverging eumetazoan phyla, cry1 and cry2 were expressed preferentially in light. Consistent with potential roles in the synchronization of fundamentally important behaviors such as mass spawning, cry2 expression increased on full moon nights versus new moon nights. Our results demonstrate phylogenetically broad roles of these ancient circadian clock-related molecules in the animal kingdom.

  10. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    USGS Publications Warehouse

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  11. Strategies for conserving native salmonid populations at risk from nonnative fish invasions: tradeoffs in using barriers to upstream movement

    Treesearch

    Kurt D. Fausch; Bruce E. Rieman; Michael Young; Jason B. Dunham

    2006-01-01

    Native salmonid populations in the inland West are often restricted to small isolated habitats at risk from invasion by nonnative salmonids. However, further isolating these populations using barriers to prevent invasions can increase their extinction risk. This monograph reviews the state of knowledge about this tradeoff between invasion and isolation. We present a...

  12. Fishing-induced changes in adult length are mediated by skipped-spawning.

    PubMed

    Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng

    2017-01-01

    Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.

  13. Conspecific Sperm Precedence Is a Reproductive Barrier between Free-Spawning Marine Mussels in the Northwest Atlantic Mytilus Hybrid Zone

    PubMed Central

    Klibansky, Lara K. J.; McCartney, Michael A.

    2014-01-01

    Reproductive isolation at the gamete stage has become a focus of speciation research because of its potential to evolve rapidly between closely related species. Conspecific sperm precedence (CSP), a type of gametic isolation, has been demonstrated in a number of taxa, both marine and terrestrial, with the potential to play an important role in speciation. Free-spawning marine invertebrates are ideal subjects for the study of CSP because of a likely central role for gametic barriers in reproductive isolation. The western Atlantic Mytilus blue mussel hybrid zone, ranging from the Atlantic Canada to eastern Maine, exhibits characteristics conducive to the study of CSP. Previous studies have shown that gametic incompatibility is incomplete, variable in strength and the genotype distribution is bimodal—dominated by the parental species, with a low frequency of hybrids. We conducted gamete crossing experiments using M. trossulus and M. edulis individuals collected from natural populations during the spring spawning season in order to detect the presence or absence of CSP within this hybrid zone. We detected CSP, defined here as a reduction in heterospecific offspring from competitive fertilizations in vitro compared to that seen in non-competitive fertilizations, in five of the twelve crosses in which conspecific crosses were detectable. This is the first finding of CSP in a naturally hybridizing population of a free-spawning marine invertebrate. Our findings support earlier predictions that CSP can promote assortative fertilization in bimodal hybrid zones, further advancing their hypothesized progression towards full speciation. Despite strong CSP numerous heterospecific fertilizations remain, reinforcing the hypothesis that compatible females are a source of hybrid offspring in mixed natural spawns. PMID:25268856

  14. Life history and initial assessment of fishing impacts on the by-catch species Dules auriga (Teleostei: Serranidae) in southern Brazil.

    PubMed

    Rovani, A T; Cardoso, L G

    2017-09-01

    The life history of Dules auriga, a small hermaphrodite serranid species inhabiting deep waters and a frequent component of the discarded catch of bottom trawling in southern Brazil, was studied to assess the fishery effects on the stock through the estimation of the remaining spawning-potential ratio. Sampling was conducted throughout a year and included specimens to determine sex, maturity and age. Age was validated by the edge type and marginal-increment analysis. The oldest and the largest individuals were 9 years and 195 mm total length. Growth parameters fitted to the von Bertalanffy equation were L ∞ = 178·34 mm, k = 0·641 year -1 and t 0 = -0·341 years. Length and age at first maturity were 140·72 mm and 2 years, respectively. The reproductive season was throughout the austral spring and summer. The assessment of the effects of fishing showed that it may have resulted in a loss of 50% of the spawning potential. This loss may be higher when taking into account the uncertainty in the life-history parameters and could be considered of concern for the population. Fast growth, moderate longevity, long spawning season, small size and age at maturity make D. auriga relatively resilient to the removal of biomass by fishing. When considering the uncertainty, however, the losses of the spawning potential have been severely reducing the population resilience in the face of ecosystem changes. © 2017 The Fisheries Society of the British Isles.

  15. Remote-sensing of Riverine Environments Utilized by Spawning Pallid Sturgeon Using a Suite of Hydroacoustic Tools and High-resolution DEMs

    NASA Astrophysics Data System (ADS)

    Elliott, C. M.; Jacobson, R. B.; DeLonay, A. J.; Braaten, P. J.

    2013-12-01

    The pallid sturgeon (Scaphirynchus albus) inhabits sandy-bedded rivers in the Mississippi River basin including the Missouri and Lower Yellowstone Rivers and has experienced decline generally associated with the fragmentation and alteration of these river systems. Knowledge gaps in the life history of the pallid sturgeon include lack of an understanding of conditions needed for successful reproduction and recruitment. We employed hydroacoustic tools to investigate habitats utilized by spawning pallid sturgeon in the Missouri River in Missouri, Kansas, Iowa, and Nebraska, and the Yellowstone River in Montana and North Dakota USA from 2008-2013. Reproductive pallid sturgeon were tracked to suspected spawning locations by field crews using either acoustic or radio telemetry, a custom mobile mapping application, and differential global positioning systems (DGPS). Female pallid sturgeon were recaptured soon after spawning events to validate that eggs had been released. Habitats were mapped at presumed spawning and embryo incubation sites using a multibeam echosounder system (MBES), sidescan sonar, acoustic Doppler current profiler, an acoustic camera and either a real-time kinematic global positioning system (RTK GPS) or DGPS. High-resolution DEM's and velocimetric maps were gridded from at a variety of scales from 0.10 to 5 meters for characterization and visualization at spawning and presumed embryo incubation sites. Pallid sturgeon spawning sites on the Missouri River are deep (6-8 meters) and have high current velocities (>1.5 meters per second). These sites are also characterized by high turbidity and high rates of bedload sediment transport in the form of migrating sand dunes. Spawning on the channelized Lower Missouri River occurs on or adjacent to coarse angular bank revetment or bedrock. Collecting biophysical information in these environmental conditions is challenging, and there is a need to characterize the substrate and substrate condition at a scale relevant to spawning fish and developing embryos (< 1 meter). The Yellowstone River in Montana and North Dakota provides the closest analog to a reference condition for pallid sturgeon spawning habitat with a natural flow regime and relatively natural channel geomorphology. Recent documented suspected spawning on the Yellowstone River occurs in a a sand-bedded reach with patches of gravel deposits, in zones of higher velocity (1.0-1.5 meters per second) compared to the ranges of velocities available in an adjacent reach and over a range of depths (2-5 meters). Results from substrate assessments at pallid sturgeon spawning sites on the Missouri and Yellowstone Rivers may have implications for sediment and flow management as well as provide guidance for potential habitat manipulation in support of the recovery of the pallid sturgeon.

  16. Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum

    USDA-ARS?s Scientific Manuscript database

    Background: Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B 17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective im...

  17. A spatially and temporally explicit, individual-based, life-history and productivity modeling approach for aquatic species

    EPA Science Inventory

    Realized life history expression and productivity in aquatic species, and salmonid fishes in particular, is the result of multiple interacting factors including genetics, habitat, growth potential and condition, and the thermal regime individuals experience, both at critical stag...

  18. Physiological levels of testosterone kill salmonid leukocytes in vitro

    USGS Publications Warehouse

    Slater, C.H.; Schreck, C.B.

    1997-01-01

    Adult spring chinook salmon (Oncorhynchus tshawytscha) elaborate high plasma concentrations of testosterone during sexual maturation, and these levels of testosterone have been shown to reduce the salmonid immune response in vitro. Our search for the mechanism of testosterone's immunosuppressive action has led to the characterization of an androgen receptor in salmonid leukocytes. In the present study we examined the specific effects that testosterone had on salmonid leukocytes. Direct counts of viable leukocytes after incubation with and without physiological levels of testosterone demonstrate a significant loss of leukocytes in cultures exposed to testosterone. At least 5 days of contact with testosterone was required to produce significant immunosuppression and addition of a 'conditioned media' (supernatant from proliferating lymphocytes not exposed to testosterone) did not reverse the immunosuppressive effects of testosterone. These data lead us to conclude that testosterone may exert its immunosuppressive effects by direct action on salmonid leukocytes, through the androgen receptor described, and that this action leads to the death of a significant number of these leukocytes.

  19. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  20. Surficial substrates and bathymetry of five historical lake trout spawning reefs in near-shore waters of the Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; French, John R. P.

    1992-01-01

    The reestablishment of self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes has been substantially impeded because planted fish do not produce enough progeny that survive and reproduce. The causes for this failure are unknown, but many historical spawning sites of lake trout have been degraded by human activities and can no longer produce viable swim-up fry. In this study, we used side-scan sonar and an underwater video camera to survey, map, and evaluate the sustainability of one reef in each of the five Great Lakes for lake trout spawning and fry production. At four of the reef sites, we found good-to-excellent substrate for spawning and fry production by the shallow-water strains of lake trout that are now being planted. These substrates were in water 6-22 m deep and were composed largely of rounded or angular rubble and cobble. Interstitial spaces in these substrates were 20 cm or deeper and would protect naturally spawned eggs and fry from predators, ice scour, and buffeting by waves and currents. Subsequent studies of egg survival by other researchers confirmed our evaluation that the best substrates at two of these sites still have the potential to produce viable swim-up fry.

  1. Regional Regression Equations to Estimate Flow-Duration Statistics at Ungaged Stream Sites in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2010-01-01

    Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.

  2. Coupling survey data with drift model results suggests that local spawning is important for Calanus finmarchicus production in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kvile, Kristina Øie; Fiksen, Øyvind; Prokopchuk, Irina; Opdal, Anders Frugård

    2017-01-01

    The copepod Calanus finmarchicus is an important part of the diet for several large fish stocks feeding in the Atlantic waters of the Barents Sea. Determining the origin of the new generation copepodites present on the Barents Sea shelf in spring can shed light on the importance of local versus imported production of C. finmarchicus biomass in this region. In this study, we couple large-scale spatiotemporal survey data (> 30 years in both Norwegian Sea and Barents Sea areas) with drift trajectories from a hydrodynamic model to back-calculate and map the spatial distribution of C. finmarchicus from copepod to egg, allowing us to identify potential adult spawning areas. Assuming the adult stage emerges from overwintering in the Norwegian Sea, our results suggest that copepodites sampled at the Barents Sea entrance are a mix of locally spawned individuals and long-distance-travellers advected northwards along the Norwegian shelf edge. However, copepodites sampled farther east in the Barents Sea (33°30‧E) are most likely spawned on the Barents Sea shelf, potentially from females that have overwintered locally. Our results support that C. finmarchicus dynamics in the Barents Sea are not, at least in the short-term, solely driven by advection from the Norwegian Sea, but that local production may be more important than commonly believed.

  3. Evaluation of potential effects of federal land management alternatives on trends of salmonids and their habitats in the interior Columbia River basin.

    Treesearch

    Bruce Rieman; James T. Peterson; James Clayton; Philip Howell; Russell Thurow; William Thompson; Danny Lee

    2001-01-01

    Aquatic species throughout the interior Columbia River basin are at risk. Evaluation of the potential effects of federal land management on aquatic ecosystems across this region is an important but challenging task. Issues include the size and complexity of the systems, uncertainty in important processes and existing states, flexibility and consistency in the...

  4. Modeling Food Delivery Dynamics For Juvenile Salmonids Under Variable Flow Regimes

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Utz, R.; Anderson, K.; Nisbet, R.

    2010-12-01

    Traditional approaches for assessing instream flow needs for salmonids have typically focused on the importance of physical habitat in determining fish habitat selection. This somewhat simplistic approach does not account for differences in food delivery rates to salmonids that arise due to spatial variability in river morphology, hydraulics and temporal variations in the flow regime. Explicitly linking how changes in the flow regime influences food delivery dynamics is an important step in advancing process-based bioenergetic models that seek to predict growth rates of salmonids across various life-stages. Here we investigate how food delivery rates for juvenile salmonids vary both spatially and with flow magnitude in a meandering reach of the Merced River, CA. We utilize a two-dimensional (2D) hydrodynamic model and discrete particle tracking algorithm to simulate invertebrate drift transport rates at baseflow and a near-bankfull discharge. Modeling results indicate that at baseflow, the maximum drift density occurs in the channel thalweg, while drift densities decrease towards the channel margins due to the process of organisms settling out of the drift. During high-flow events, typical of spring dam-releases, the invertebrate drift transport pathway follows a similar trajectory along the high velocity core and the drift concentrations are greatest in the channel centerline, though the zone of invertebrate transport occupies a greater fraction of the channel width. Based on invertebrate supply rates alone, feeding juvenile salmonids would be expected to be distributed down the channel centerline where the maximum predicted food delivery rates are located in this reach. However, flow velocities in these channel sections are beyond maximum sustainable swimming speeds for most juvenile salmonids. Our preliminary findings suggest that a lack of low velocity refuge may prevent juvenile salmonids from deriving energy from the areas with maximum drift density in this reach. Future efforts will focus on integration of food delivery and bioenergetic models to account for conflicting demands of maximizing food intake while minimizing the energetic costs of swimming.

  5. The role of emergent wetlands as potential rearing habitats for juvenile salmonids

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Flemming, Ian A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration.

  6. Spatial and temporal distribution of bull trout (Salvelinus confluentus)-size fish near the floating surface collector in the North Fork Reservoir, Oregon, 2016

    USGS Publications Warehouse

    Adams, Noah S.; Smith, Collin D.

    2017-06-26

    Acoustic cameras were used to assess the behavior and abundance of bull trout (Salvelinus confluentus)-size fish at the entrance to the North Fork Reservoir juvenile fish floating surface collector (FSC). The purpose of the FSC is to collect downriver migrating juvenile salmonids at the North Fork Dam, and safely route them around the hydroelectric projects. The objective of the acoustic camera component of this study was to assess the behaviors of bull trout-size fish observed near the FSC, and to determine if the presence of bull trout-size fish influenced the collection or abundance of juvenile salmonids. Acoustic cameras were deployed near the surface and floor of the entrance to the FSC. The acoustic camera technology was an informative tool for assessing abundance and spatial and temporal behaviors of bull trout-size fish near the entrance of the FSC. Bull trout-size fish were regularly observed near the entrance, with greater abundances on the deep camera than on the shallow camera. Additionally, greater abundances were observed during the hours of sunlight than were observed during the night. Behavioral differences also were observed at the two depths, with surface fish traveling faster and straighter with more directed movement, and fish observed on the deep camera generally showing more milling behavior. Modeling potential predator-prey interactions and influences using collected passive integrated transponder (PIT) -tagged juvenile salmonids proved largely unpredictable, although these fish provided relevant timing and collection information. Overall, the results indicate that bull trout-size fish are present near the entrance of the FSC, concomitant with juvenile salmonids, and their abundances and behaviors indicate that they may be drawn to the entrance of the FSC because of the abundance of prey-sized fish.

  7. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar.

    PubMed

    Jiang, Yousheng; Husain, Mansourah; Qi, Zhitao; Bird, Steve; Wang, Tiehui

    2015-08-01

    Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Groundwater Surface Water Interactions in a Gold-Mined Dredged Floodplain of the Merced River

    NASA Astrophysics Data System (ADS)

    Sullivan, L.; Conklin, M. H.; Ghezzehei, T. A.

    2012-12-01

    The Merced River, originating in the Sierra Nevada, California, drains a watershed with an area of ~3,305 km2. Merced River has been highly altered due to diversions, mechanically dredged mining, and damming. A year of groundwater-surface water interactions were studied to elucidate the hydrological connection between the Main Canal, an unlined canal that contains Merced River water flows parallel to the river with an average elevation of 89m, the highly conductive previously dredged floodplain, and the Merced River with an average elevation of 84m. Upstream of the study reach, located in an undredged portion, of the floodplain are two fish farms that have been operating for approximately 40 years. This study reach has been historically important for salmon spawning and rearing, where more than 50% of the Chinook salmon of the Merced River spawn. Currently salmon restoration is focusing gravel augmentation and adding side channel and ignoring groundwater influences. Exchanges between the hyporheic and surrounding surface, groundwater, riparian, and alluvial floodplain habitats occur over a wide range of spatial and temporal scales. Pressure transducers were installed in seven wells and four ponds located in the dredged floodplain. All wells were drilled to the Mehrten Formation, a confining layer, and screened for last 3m. These groundwater well water levels as well as the surface water elevations of the Main Canal and the Merced River were used to determine the direction of sublateral surface flows using Groundwater Vistas as a user interface for MODFLOW. The well and pond waters and seepage from the river banks were sampled for anion/cation, dissolved organic carbon, total nitrogen, total iron, and total dissolved iron concentrations to determine water sources and the possibility of suboxic water. Field analysis indicated that water in all wells and ponds exhibit low dissolved oxygen, high conductivity rates, and oxidation/reduction potentials that switched from oxidizing to reductive during the course of the monitoring. Chemical analysis indicates that there are three sources of water for this floodplain: the Merced River and Main Canal, (which are chemically very similar), the waters from the fish hatchery, and precipitation. The well closest to the fish hatcheries had C:N ratio of 1:1, highly carbon-limited system. MODFLOW particle tracer experiments were performed, results indicate that that travel time between the Main Canal and Merced River are approximately 10-15 years. The hydraulic gradient set up by the groundwater connection between Main Canal and the Merced River, insures that any effluent released by the fish farms will be transported to the Merced River. Conclusions of the study are that the waters that seep from the Main Canal to the Merced River in this area can be sub-oxic, which is not conducive to salmon spawning and are detrimental to the developing salmonid embryo. Due to the causal connections between the hydrological system of the Merced River floodplain and the riverine system, habitat rehabilitation must target not only the surface water but also important subsurface hydrological components.

  9. Enhanced efficacy of an attenuated Flavobacterium psychrophilum strain cultured under iron-limited conditions

    USDA-ARS?s Scientific Manuscript database

    An attenuated strain of Flavobacterium psychrophilum (CSF259-93B.17) has shown potential as a vaccine for prevention of bacterial coldwater disease (BCWD) in rainbow trout, Oncorhynchus mykiss (Walbaum). Because BCWD outbreaks can result in high mortality in other salmonid species, specifically coho...

  10. 50 CFR 16.3 - General restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... wildlife or eggs thereof, or dead fish or eggs or salmonids of the fish family Salmonidae into the United States or its territories or possessions is deemed to be injurious or potentially injurious to the health... into or the transportation of live wildlife or eggs thereof between the continental United States, the...

  11. SINE sequences detect DNA fingerprints in salmonid fishes.

    PubMed

    Spruell, P; Thorgaard, G H

    1996-04-01

    DNA probes homologous to two previously described salmonid short interspersed nuclear elements (SINEs) detected DNA fingerprint patterns in 14 species of salmonid fishes. The probes showed more homology to some species than to others and little homology to three nonsalmonid fishes. The DNA fingerprint patterns derived from the SINE probes are individual-specific and inherited in a Mendelian manner. Probes derived from different regions of the same SINE detect only partially overlapping banding patterns, reflecting a more complex SINE structure than has been previously reported. Like the human Alu sequence, the SINEs found in salmonids could provide useful genetic markers and primer sites for PCR-based techniques. These elements may be more desirable for some applications than traditional DNA fingerprinting probes that detect tandemly repeated arrays.

  12. Supplement Analysis for Yakima/Klickitat Fisheries Project, (DOE/EIS-0169-SA-05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Patricia R.

    2002-09-20

    Yakima/Klickitat Fisheries Project – Under the Monitoring and Evaluation Program (M&E), the domestication selection research task would be modified to include a hatchery control line, maintained entirely by spawning hatchery-origin fish. The Bonneville Power Administration is funding ongoing studies, research, and artificial production of several salmonid species in the Yakima and Klickitat river basins. BPA analyzed environmental impacts of research and supplementation projects in the Yakima basin in an Environmental Impact Statement (EIS) completed in 1996 (USDOE/BPA 1996), and in the following Supplement Analyses: DOE/EIS-0169-SA-01, completed in May 1999; DOE/EIS-0169-SA-02, completed in August 1999; DOE/EIS-0169-SA-03, completed in 2000; DOE/EIS-0169-SA-04, completedmore » in November 2000. The purpose of this Supplement Analysis is to determine if a Supplemental EIS is needed to analyze the changes proposed in the Monitoring and Evaluation program (#199506325) of the Yakima Klickitat Fisheries Project (YKFP) as reviewed in the FY 2001 Project Proposals for the Columbia River Gorge and Inter-Mountain Provinces, ISRP 2000-9 (December 1, 2000). Modifications to the M&E program are in support of the experimental acclimation, rearing and incubating activities for spring chinook.« less

  13. Alternative reproductive tactics increase effective population size and decrease inbreeding in wild Atlantic salmon

    PubMed Central

    Perrier, Charles; Normandeau, Éric; Dionne, Mélanie; Richard, Antoine; Bernatchez, Louis

    2014-01-01

    While nonanadromous males (stream-resident and/or mature male parr) contribute to reproduction in anadromous salmonids, little is known about their impacts on key population genetic parameters. Here, we evaluated the contribution of Atlantic salmon mature male parr to the effective number of breeders (Nb) using both demographic (variance in reproductive success) and genetic (linkage disequilibrium) methods, the number of alleles, and the relatedness among breeders. We used a recently published pedigree reconstruction of a wild anadromous Atlantic salmon population in which 2548 fry born in 2010 were assigned parentage to 144 anadromous female and 101 anadromous females that returned to the river to spawn in 2009 and to 462 mature male parr. Demographic and genetic methods revealed that mature male parr increased population Nb by 1.79 and 1.85 times, respectively. Moreover, mature male parr boosted the number of alleles found among progenies. Finally, mature male parr were in average less related to anadromous females than were anadromous males, likely because of asynchronous sexual maturation between mature male parr and anadromous fish of a given cohort. By increasing Nb and allelic richness, and by decreasing inbreeding, the reproductive contribution of mature male parr has important evolutionary and conservation implications for declining Atlantic salmon populations. PMID:25553070

  14. The Long-Term Effects of Large Wood Placement on Salmonid Habitat in East Fork Mill Creek, Redwood National and State Park, California

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. L.; Stubblefield, A. P.

    2017-12-01

    The conservation and recovery of anadromous salmonids (Oncorhynchus sp.) depend on stream restoration and protection of freshwater habitats. Instream large wood dictates channel morphology, increase retention of terrestrial inputs such as organic matter, nutrients and sediment, and enhances the quality of fish habitat. Historic land use/land cover changes have resulted in aquatic systems devoid of this component. Restoration by placement of large wood jams is intended to restore physical and biological processes. An important question for scientists and managers, in addition to the initial effectiveness of restoration, is the persistence and fate of this type of project. In this study we compare channel change and large wood attributes on the East Fork of Mill Creek, a tributary of the Smith River in northern California, eight years after a major instream wood placement effort took place. Our results are compared with previously published data from before and one year after the restoration. Preliminary results suggest the dramatic increase in spawning gravel abundance and large wood accumulation observed in the earlier study have persisted. From 2008 to 2016 a reduction in median sediment size, ranging from 103-136 percent, has been observed in a majority of the sites. The sites have continued to grow in size and influence by racking floating wood from upstream and destabilizing proximate banks of riparian alder, increasing both instream large wood volume (5-196 %) and floodplain connectivity. Preliminary results also show a decrease in residual pool depth and an increase in pool length which may be attributed to floodplain connectivity. Changes to the following attributes are evaluated: 1) wood loading (total site wood volume, total wood volume in active channel, and wood piece count); 2) percent pool cover by large wood; 3) residual pool depth; 4) upstream sediment aggradation; 5) floodplain connectivity; and 6) mean sediment size directly above and below large wood. We present on these results and statistical comparisons of total site wood volume with response factors.

  15. Tolerance of developing salmonid eggs and fry to nitrate exposure

    USGS Publications Warehouse

    Kincheloe, John W.; Wedemeyer, Gary A.; Koch, David L.

    1979-01-01

    This paper reports on tests which show significant effects on early salmonid life stages of nitrates at levels commonly found in groundwaters in geographical areas that are influenced by fertilizer application. It has long been known, from fish cultural experience, that in certain site specific locations, chronic problems can be expected with salmonid egg development and early fry mortality. However, fingerlings which survive usually grow normally. A complete explanation is lacking although several environmental factors have been proposed to account for this phenomenon. One, which has so far received little attention, is that nitrate levels in the ground and surface waters of many areas have been increasing significantly over historical background levels. Ammonia, urea, and other potential sources of nitrate can enter natural waters from a variety of sources, such as domestic or industrial sewage, animal feedlots, or seepage and return flows from agricultural lands. The latter may be the largest contributor, since billions of tons of nitrate fertilizers are applied to agricultural crops on a worldwide basis each year. In addition, intensive forest management techniques include the aerial application of nitrate fertilizer to increase the yield of wood products, while range management practices call for use of nitrates to increase forage production. The nitrate that is not taken up by plants ultimately appears in ground or surface waters.

  16. Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models

    USGS Publications Warehouse

    Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle

    2016-04-05

    Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.

  17. Long-term retrospective analysis of mackerel spawning in the North Sea: a new time series and modeling approach to CPR data.

    PubMed

    Jansen, Teunis; Kristensen, Kasper; Payne, Mark; Edwards, Martin; Schrum, Corinna; Pitois, Sophie

    2012-01-01

    We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock.

  18. Long-Term Retrospective Analysis of Mackerel Spawning in the North Sea: A New Time Series and Modeling Approach to CPR Data

    PubMed Central

    Jansen, Teunis; Kristensen, Kasper; Payne, Mark; Edwards, Martin; Schrum, Corinna; Pitois, Sophie

    2012-01-01

    We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock. PMID:22737221

  19. Comparing histology and gonadosomatic index for determining spawning condition of small-bodied riverine fishes

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.; Papoulias, D.M.

    2008-01-01

    We compared gonadosomatic index (GSI) and histological analysis of ovaries for identifying reproductive periods of fishes to determine the validity of using GSI in future studies. Four small-bodied riverine species were examined in our comparison of the two methods. Mean GSI was significantly different between all histological stages for suckermouth minnow and red shiner. Mean GSI was significantly different between most stages for slenderhead darter; whereas stages 3 and 6 were not significantly different, the time period when these stages are present would allow fisheries biologists to distinguish between the two stages. Mean GSI was not significantly different for many histological stages in stonecat. Difficulties in distinguishing between histological stages and GSI associated with stonecat illustrate potential problems obtaining appropriate sample sizes from species that move to alternative habitats to spawn. We suggest that GSI would be a useful tool in identifying mature ovaries in many small-bodied, multiple-spawning fishes. This information could be combined with data from histology during mature periods to pinpoint specific spawning events. ?? 2007 Blackwell Munksgaard.

  20. Reproductive performance of alternative male phenotypes of growth hormone transgenic Atlantic salmon (Salmo salar)

    PubMed Central

    Moreau, Darek T R; Conway, Corinne; Fleming, Ian A

    2011-01-01

    Growth hormone (GH) transgenic Atlantic salmon (Salmo salar) is one of the first transgenic animals being considered for commercial farming, yet ecological and genetic concerns remain should they enter the wild and interact reproductively with wild fish. Here, we provide the first empirical data reporting on the breeding performance of GH transgenic Atlantic salmon males, including that of an alternative male reproductive phenotype (i.e. small, precocially mature parr), in pair-wise competitive trials within a naturalised stream mesocosm. Wild anadromous (i.e. large, migratory) males outperformed captively reared transgenic counterparts in terms of nest fidelity, quivering frequency and spawn participation. Similarly, despite displaying less aggression, captively reared nontransgenic mature parr were superior competitors to their transgenic counterparts in terms of nest fidelity and spawn participation. Moreover, nontransgenic parr had higher overall fertilisation success than transgenic parr, and their offspring were represented in more spawning trials. Although transgenic males displayed reduced breeding performance relative to nontransgenics, both male reproductive phenotypes demonstrated the ability to participate in natural spawning events and thus have the potential to contribute genes to subsequent generations. PMID:25568019

  1. Migration and spawning of female surubim (Pseudoplatystoma corruscans, Pimelodidae) in the São Francisco river, Brazil

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, Boyd; Godinho, Hugo P.

    2007-01-01

    Surubim, Pseudoplatystoma corruscans, is the most valuable commercial and recreational fish in the São Francisco River, but little is known about adult migration and spawning. Movements of 24 females (9.5–29.0 kg), which were radio-tagged just downstream of Três Marias Dam (TMD) at river kilometer 2,109 and at Pirapora Rapids (PR) 129 km downstream of TMD, suggest the following conceptual model of adult female migration and spawning. The tagged surubims used only 274 km of the main stem downstream of TMD and two tributaries, the Velhas and Abaeté rivers. Migration style was dualistic with non-migratory (resident) and migratory fish. Pre-spawning females swam at ground speeds of up to 31 km day-1 in late September–December to pre-spawning staging sites located 0–11 km from the spawning ground. In the spawning season (November–March), pre-spawning females migrated back and forth from nearby pre-spawning staging sites to PR for short visits to spawn, mostly during floods. Multiple visits to the spawning site suggest surubim is a multiple spawner. Most post-spawning surubims left the spawning ground to forage elsewhere, but some stayed at the spawning site until the next spawning season. Post-spawning migrants swam up or downstream at ground speeds up to 29 km day-1 during January–March. Construction of proposed dams in the main stem and tributaries downstream of TMD will greatly reduce surubim abundance by blocking migrations and changing the river into reservoirs that eliminate riverine spawning and non-spawning habitats, and possibly, cause extirpation of populations.

  2. Evaluation of methods for identifying spawning sites and habitat selection for alosines

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2010-01-01

    Characterization of riverine spawning habitat is important for the management and restoration of anadromous alosines. We examined the relative effectiveness of oblique plankton tows and spawning pads for collecting the eggs of American shad Alosa sapidissima, hickory shad A. mediocris, and “river herring” (a collective term for alewife A. pseudoharengus and blueback herring A. aestivalis) in the Roanoke River, North Carolina. Relatively nonadhesive American shad eggs were only collected by plankton tows, whereas semiadhesive hickory shad and river herring eggs were collected by both methods. Compared with spawning pads, oblique plankton tows had higher probabilities of collecting eggs and led to the identification of longer spawning periods. In assumed spawning areas, twice-weekly plankton sampling for 15 min throughout the spawning season had a 95% or greater probability of collecting at least one egg for all alosines; however, the probabilities were lower in areas with more limited spawning. Comparisons of plankton tows, spawning pads, and two other methods of identifying spawning habitat (direct observation of spawning and examination of female histology) suggested differences in effectiveness and efficiency. Riverwide information on spawning sites and timing for all alosines is most efficiently obtained by plankton sampling. Spawning pads and direct observations of spawning are the best ways to determine microhabitat selectivity for appropriate species, especially when spawning sites have previously been identified. Histological examination can help determine primary spawning sites but is most useful when information on reproductive biology and spawning periodicity is also desired. The target species, riverine habitat conditions, and research goals should be considered when selecting methods with which to evaluate alosine spawning habitat.

  3. Artificial reproduction of two different spawn-forms of the chub.

    PubMed

    Krejszeff, Sławomir; Targońska, Katarzyna; Zarski, Daniel; Kucharczyk, Dariusz

    2010-03-01

    The aim of this study was to compare, under controlled conditions, reproduction results of cultured and wild stock of the chub. Wild fish spawned only once a season whereas the cultured stock spawned at least two times. In the multiple-spawn stock, fewer fish spawned and the weight of produced oocytes was reduced compared to the single-spawn stock. Larvae obtained from the multi-spawn forms were smaller than those of the single-spawn stock. The occurrence of one species with two forms of spawning performance in the same area makes it difficult to develop an efficient method for controlling the reproduction.

  4. Effects of Chiloquin Dam on spawning distribution and larval emigration of Lost River, shortnose, and Klamath largescale suckers in the Williamson and Sprague Rivers, Oregon

    USGS Publications Warehouse

    Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.

    2013-01-01

    Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring only included 2 years with below average river discharge during the spawning season; data from years with higher flows may provide a different perspective on the effects of dam removal on the spawning migrations of the two endangered sucker species.

  5. Summer spawning of Porites lutea from north-western Australia

    NASA Astrophysics Data System (ADS)

    Stoddart, C. W.; Stoddart, J. A.; Blakeway, D. R.

    2012-09-01

    Most coral species off Australia's west coast spawn in the austral autumn (March-April), with a few species also spawning in the southern spring or early summer (November-December). This is the reverse timing to spawning recorded off Australia's east coast. Porites lutea, a gonochoric broadcast spawner that is common on Australia's west coast, is shown here to spawn in the months of November or December, as it does on Australia's east coast. Spawning occurred between 2 and 5 nights after full moon, with the majority of spawning activity on night 3. Gametes developed over three to four months with rapid development in the last two weeks before spawning. Zooxanthellae were typically observed in mature oocytes, only a week before spawning so their presence may provide a useful indicator of imminent spawning.

  6. Reproductive Potential of Salmon Spawning Substrates Inferred from Grain Size and Fish Length

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Sklar, L. S.; Overstreet, B. T.; Wooster, J. K.; Bellugi, D. G.

    2014-12-01

    The river restoration industry spends millions of dollars every year on improving salmon spawning in riverbeds where sediment is too big for fish to move and thus use during redd building. However, few studies have addressed the question of how big is too big in salmon spawning substrates. Hence managers have had little quantitative basis for gauging the amount of spawning habitat in coarse-bedded rivers. Moreover, the scientific framework has remained weak for restoration projects that seek to improve spawning conditions. To overcome these limitations, we developed a physically based, field-calibrated model for the fraction of the bed that is fine-grained enough to support spawning by fish of a given size. Model inputs are fish length and easy-to-measure indices of bed-surface grain size. Model outputs include the number of redds and eggs the substrate can accommodate when flow depth, temperature, and other environmental factors are not limiting. The mechanistic framework of the model captures the biophysical limits on sediment movement and the space limitations on redd building and egg deposition in riverbeds. We explored the parameter space of the model and found a previously unrecognized tradeoff in salmon size: bigger fish can move larger sediment and thus use more riverbed area for spawning; they also tend to have higher fecundity, and so can deposit more eggs per redd; however, because redd area increases with fish length, the number of eggs a substrate can accommodate is highest for moderate-sized fish. One implication of this tradeoff is that differences in grain size may help regulate river-to-river differences in salmon size. Thus, our model suggests that population diversity and, by extension, species resilience are linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. We cast the model into easy-to-use look-up tables, charts, and computer applications, including a JavaScript app that works on tablets and mobile phones. We explain how these tools can be used in a new, mechanistic approach to assessing spawning substrates and optimizing gravel augmentation projects in coarse-bedded rivers.

  7. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations

    USGS Publications Warehouse

    DuFour, Mark R.; May, Cassandra J.; Roseman, Edward F.; Ludsin, Stuart A.; Vandergoot, Christopher S.; Pritt, Jeremy J.; Fraker, Michael E.; Davis, Jeremiah J.; Tyson, Jeffery T.; Miner, Jeffery G.; Marschall, Elizabeth A.; Mayer, Christine M.

    2015-01-01

    Habitat degradation and harvest have upset the natural buffering mechanism (i.e., portfolio effects) of many large-scale multi-stock fisheries by reducing spawning stock diversity that is vital for generating population stability and resilience. The application of portfolio theory offers a means to guide management activities by quantifying the importance of multi-stock dynamics and suggesting conservation and restoration strategies to improve naturally occurring portfolio effects. Our application of portfolio theory to Lake Erie Sander vitreus (walleye), a large population that is supported by riverine and open-lake reef spawning stocks, has shown that portfolio effects generated by annual inter-stock larval fish production are currently suboptimal when compared to potential buffering capacity. Reduced production from riverine stocks has resulted in a single open-lake reef stock dominating larval production, and in turn, high inter-annual recruitment variability during recent years. Our analyses have shown (1) a weak average correlation between annual river and reef larval production (ρ̄ = 0.24), suggesting that a natural buffering capacity exists in the population, and (2) expanded annual production of larvae (potential recruits) from riverine stocks could stabilize the fishery by dampening inter-annual recruitment variation. Ultimately, our results demonstrate how portfolio theory can be used to quantify the importance of spawning stock diversity and guide management on ecologically relevant scales (i.e., spawning stocks) leading to greater stability and resilience of multi-stock populations and fisheries.

  8. Spawning migration movements of Lost River and shortnose suckers in the Williamson and Sprague Rivers, Oregon, following the removal of Chiloquin Dam-2009 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; VanderKooi, Scott P.

    2011-01-01

    The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.

  9. Influence of intermittent stream connectivity on water quality and salmonid survivorship.

    NASA Astrophysics Data System (ADS)

    Hildebrand, J.; Woelfle-Erskine, C. A.; Larsen, L.

    2014-12-01

    Anthropogenic stress and climate change are causing an increasing number of California streams to become intermittent and are driving earlier and more severe summertime drying. The extent to which emerging water conservation alternatives impact flows or habitat quality (e.g. temperature, DO) for salmonids remains poorly understood. Here, we investigate the proximal drivers of salmonid mortality over a range of connectivity conditions during summertime intermittency in Salmon Creek watershed, Sonoma County, CA. Through extensive sampling in paired subwatersheds over a period of two years, we tested the hypothesis that accumulation of readily bioavailable DOC in poorly flushed pools drives DO decline associated with loss of salmonids. We then traced the origin and flow pathways of DOC throughout the watershed using Parallel Factor Analysis (PARAFAC). We obtained samples for DOC and stable isotope analyses at monthly intervals from 20 piezometers and surface water in the study reaches and from private wells and springs distributed throughout the watersheds. We also obtained in situ DO, conductivity and pH readings within stream study reaches. We determined DOC quality by SUVA (specific UV absorbance) and fluorescence index. We calculated stream metabolism rates using the single station method. In pools instrumented with DO sensors, we compared changing DOC quality during the summer months to changes in DO concentrations and stream metabolism. Our results show that the duration of complete disconnection of pools during the summer months and stream metabolic rates are positively correlated with salmonid mortality. Furthermore, our results indicate that salmonid mortality is greatest in disconnected pools with low DOC fluorescence indices and high SUVA values, indicative of terrestrially derived DOC and little or no groundwater inflow. Conversely low salmonid mortality was found in disconnected pools with high fluorescence index and low SUVA, indicative of microbially derived DOC. These pools showed clear signs of hyporheic inflow during summertime drying despite complete surficial disconnection. PARAFAC analysis pinpointed groundwater sources of hyporheic flow in the watershed, suggesting that targeted aquifer recharge may contribute to salmonid recovery by augmenting flow in summer refugia.

  10. Predation by Northern Pikeminnow and tiger muskellunge on juvenile salmonids in a high–head reservoir: Implications for anadromous fish reintroductions

    USGS Publications Warehouse

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.

    2016-01-01

    The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to salmonids. This study highlights the importance of evaluating trophic interactions within reservoirs slated for reintroduction with anadromous salmonids, as they can be functional migration corridors and may offer profitable juvenile-rearing habitats despite hosting abundant predator populations.

  11. 78 FR 14117 - Draft Environmental Impact Statement/Environmental Impact Report for Yolo Bypass Salmonid Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Reclamation and California Department of Water Resources intend to prepare an environmental impact statement... (Reclamation) is the lead Federal agency, and the California Department of Water Resources (DWR) is the lead... areas of potential impact: a. Water resources, including groundwater; b. Flood control; c. Land use...

  12. Variability of spawning time (lunar day) in Acropora versus merulinid corals: a 7-yr record of in situ coral spawning in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Che-Hung; Nozawa, Yoko

    2017-12-01

    Despite the global accumulation of coral spawning records over the past three decades, information on inter-annual variation in spawning time is still insufficient, resulting in difficulty in predicting coral spawning time. Here, we present new information on in situ spawning times of scleractinian corals at Lyudao, Taiwan, covering their inter-annual variations over a 7-yr period (2010-2016). Spawning of 42 species from 16 genera in eight families was recorded. The majority were hermaphroditic spawners (38 of 42 species), and their spawning occurred 2-4 h after sunset on 1-11 d after the full moon (AFM), mostly in April and May. There were two distinct patterns in the two dominant taxa, the genus Acropora (14 species) and the family Merulinidae (18 species in eight genera). The annual spawning of Acropora corals mostly occurred on a single night in May with high inter-annual variation of spawning (lunar) days between 1 and 11 d AFM. In contrast, the annual spawning of merulinid corals commonly occurred over 2-3 consecutive nights in two consecutive months, April and May, with the specific range of spawning days around the last quarter moon (between 5 and 8 d AFM). The distinct spawning patterns of these taxa were also documented at Okinawa and Kochi, Japan, where similar long-term monitoring of in situ coral spawning has been conducted. This variability in spawning days implies different regulatory mechanisms of synchronous spawning where Acropora corals might be more sensitive to exogenous environmental factors (hourglass mechanism), compared to merulinid corals, which may rely more on endogenous biological rhythms (oscillator mechanism).

  13. Effects of lake surface elevation on shoreline-spawning Lost River Suckers

    USGS Publications Warehouse

    Burdick, Summer M.; Hewitt, David A.; Rasmussen, J.E.; Hayes, Brian; Janney, Eric; Harris, Alta C.

    2015-01-01

    We analyzed remote detection data from PIT-tagged Lost River Suckers Deltistes luxatus at four shoreline spawning areas in Upper Klamath Lake, Oregon, to determine whether spawning of this endangered species was affected by low water levels. Our investigation was motivated by the observation that the surface elevation of the lake during the 2010 spawning season was the lowest in 38 years. Irrigation withdrawals in 2009 that were not replenished by subsequent winter-spring inflows caused a reduction in available shoreline spawning habitat in 2010. We compared metrics of skipped spawning, movement among spawning areas, and spawning duration across 8 years (2006-2013) that had contrasting spring water levels. Some aspects of sucker spawning were similar in all years, including few individuals straying from the shoreline areas to spawning locations in lake tributaries and consistent effects of increasing water temperatures on the accumulation of fish at the spawning areas. During the extreme low water year of 2010, 14% fewer female and 8% fewer male suckers joined the shoreline spawning aggregation than in the other years. Both males and females visited fewer spawning areas within Upper Klamath Lake in 2010 than in other years, and the median duration at spawning areas in 2010 was at least 36% shorter for females and 20% shorter for males relative to other years. Given the imperiled status of the species and the declining abundance of the population in Upper Klamath Lake, any reduction in spawning success and egg production could negatively impact recovery efforts. Our results indicate that lake surface elevations above 1,262.3-1,262.5 m would be unlikely to limit the number of spawning fish and overall egg production.

  14. Noise can affect acoustic communication and subsequent spawning success in fish.

    PubMed

    de Jong, Karen; Amorim, M Clara P; Fonseca, Paulo J; Fox, Clive J; Heubel, Katja U

    2018-06-01

    There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically. There is very little data on whether noise affects reproduction in aquatic animals, and none in relation to acoustic communication. In this study we tested the effect of continuous noise on courtship behaviour in two closely-related marine fishes: the two-spotted goby (Gobiusculus flavescens) and the painted goby (Pomatoschistus pictus) in aquarium experiments. Both species use visual and acoustic signals during courtship. In the two-spotted goby we used a repeated-measures design testing the same individuals in the noise and the control treatment, in alternating order. For the painted goby we allowed females to spawn, precluding a repeated-measures design, but permitting a test of the effect of noise on female spawning decisions. Males of both species reduced acoustic courtship, but only painted gobies also showed less visual courtship in the noise treatment compared to the control. Female painted gobies were less likely to spawn in the noise treatment. Thus, our results provide experimental evidence for negative effects of noise on acoustic communication and spawning success. Spawning is a crucial component of reproduction. Therefore, even though laboratory results should not be extrapolated directly to field populations, our results suggest that reproductive success may be sensitive to noise pollution, potentially reducing fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats.

    PubMed

    Eggers, Florian; Slotte, Aril; Libungan, Lísa Anne; Johannessen, Arne; Kvamme, Cecilie; Moland, Even; Olsen, Esben M; Nash, Richard D M

    2014-01-01

    Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February-June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March-April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May-June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km(2) lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1-7‰ in the 0-1 m surface layer to levels of 20-25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0-5 m depth increased significantly over the season in both habitats, from 7 to 14 °C outside and 5 to 17 °C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.

  16. A habitat suitability model for Chinese sturgeon determined using the generalized additive method

    NASA Astrophysics Data System (ADS)

    Yi, Yujun; Sun, Jie; Zhang, Shanghong

    2016-03-01

    The Chinese sturgeon is a type of large anadromous fish that migrates between the ocean and rivers. Because of the construction of dams, this sturgeon's migration path has been cut off, and this species currently is on the verge of extinction. Simulating suitable environmental conditions for spawning followed by repairing or rebuilding its spawning grounds are effective ways to protect this species. Various habitat suitability models based on expert knowledge have been used to evaluate the suitability of spawning habitat. In this study, a two-dimensional hydraulic simulation is used to inform a habitat suitability model based on the generalized additive method (GAM). The GAM is based on real data. The values of water depth and velocity are calculated first via the hydrodynamic model and later applied in the GAM. The final habitat suitability model is validated using the catch per unit effort (CPUEd) data of 1999 and 2003. The model results show that a velocity of 1.06-1.56 m/s and a depth of 13.33-20.33 m are highly suitable ranges for the Chinese sturgeon to spawn. The hydraulic habitat suitability indexes (HHSI) for seven discharges (4000; 9000; 12,000; 16,000; 20,000; 30,000; and 40,000 m3/s) are calculated to evaluate integrated habitat suitability. The results show that the integrated habitat suitability reaches its highest value at a discharge of 16,000 m3/s. This study is the first to apply a GAM to evaluate the suitability of spawning grounds for the Chinese sturgeon. The study provides a reference for the identification of potential spawning grounds in the entire basin.

  17. Seasonal variations in seminal plasma and sperm characteristics of wild-caught and cultivated Atlantic cod, Gadus morhua.

    PubMed

    Butts, I A E; Litvak, M K; Trippel, E A

    2010-04-15

    The objective was to investigate changes, throughout the spawning season, in body size attributes and quantitative semen characteristics of wild-caught and cultivated Atlantic cod, Gadus morhua L. Sperm velocity increased significantly throughout the spawning season of cod from both origins. Curvilinear velocity (VCL; 30 sec post-activation) increased from 78.9+/-6.5 to 128.2+/-6.5 microm/sec (mean+/-SEM) between the beginning and end of the spawning season, respectively, for wild-caught cod, whereas for cultivated fish, it increased from 26.6+/-2.4 to 48.9+/-3.1 microm/sec between January and March. Spermatocrit did not undergo a significant seasonal change in wild-caught cod but did thicken for cultivated cod (24.6+/-4.2% in January to 40.5+/-4.4% in April; P<0.01). Sperm head area, perimeter, length, and width declined significantly at the end of the spawning season of cod from both origins (all P values<0.01). Seminal plasma osmolality and Na(+) ion concentration followed a dome-shaped function through the spawning season for both wild-caught and cultivated cod (P<0.05). For cultivated cod, seminal plasma pH was significantly lower at the start of the spawning season (P<0.001), whereas Ca(2+) increased then decreased (P<0.05). Body size attributes, spermatocrit, and seminal plasma constituents had significant relationships with sperm activity variables. These relationships varied as a function of time post-activation, month, and fish origin. Our findings may be used to (i) assess spermiation stage without killing males; (ii) optimize semen collection for hatchery production; (iii) characterize the potential impact of farming on sperm quality; and (iv) improve success of sperm cryopreservation and short-term storage. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A

    2016-03-22

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.

  19. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus)

    PubMed Central

    Richardson, David E.; Marancik, Katrin E.; Guyon, Jeffrey R.; Lutcavage, Molly E.; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J.; Wildes, Sharon; Yates, Douglas A.; Hare, Jonathan A.

    2016-01-01

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668

  20. Feeding response by northern squawfish to a hatchery release of juvenile salmonids in the Clearwater River, Idaho

    USGS Publications Warehouse

    Shively, R.S.; Poe, T.P.; Sauter, S.T.

    1996-01-01

    We collected gut contents from northern squawfish Ptychocheilus oregonensis captured in the Clearwater River, Idaho, 0–6 km from its confluence with the Snake River, following the release of 1.1 million yearling chinook salmon Oncorhynchus tshawytscha from the Dworshak National Fish Hatchery. Before the hatchery release, northern squawfish gut contents (by weight) in the study area were 38% crayfish Pacifastacus spp., 26% insects, 19% nonsalmonid fish, and 16% wheat kernels Triticum spp. Juvenile salmonids constituted 54% of gut contents about 24 h after the hatchery release, 78% after 5 d, and 86% after 7 d. The mean number of salmonids per gut (1.2) after release was higher than typically seen in guts from northern squawfish collected in mid-reservoir areas away from hydroelectric dams on the Snake and Columbia rivers. Length-frequency distributions of juvenile salmonids eaten and those captured in a scoop trap 4 km upstream of the study area indicated that northern squawfish were selectively feeding on the smaller individuals. We attribute the high rates of predation in the study area to the artificially high density of juvenile salmonids resulting from the hatchery release and to the physical characteristics of the study area in which the river changed from free flowing to impounded. Our results suggest that northern squawfish can quickly exploit hatchery releases of juvenile salmonids away from release sites in the Columbia River basin.

  1. To stock or not to stock? Assessing restoration potential of a remnant American shad spawning run with hatchery supplementation

    USGS Publications Warehouse

    Bailey, Michael M.; Zydlewski, Joseph D.

    2013-01-01

    Hatchery supplementation has been widely used as a restoration technique for American Shad Alosa sapidissima on the East Coast of the USA, but results have been equivocal. In the Penobscot River, Maine, dam removals and other improvements to fish passage will likely reestablish access to the majority of this species’ historic spawning habitat. Additional efforts being considered include the stocking of larval American Shad. The decision about whether to stock a river system undergoing restoration should be made after evaluating the probability of natural recolonization and examining the costs and benefits of potentially accelerating recovery using a stocking program. However, appropriate evaluation can be confounded by a dearth of information about the starting population size and age structure of the remnant American Shad spawning run in the river. We used the Penobscot River as a case study to assess the theoretical sensitivity of recovery time to either scenario (stocking or not) by building a deterministic model of an American Shad population. This model is based on the best available estimates of size at age, fecundity, rate of iteroparity, and recruitment. Density dependence was imposed, such that the population reached a plateau at an arbitrary recovery goal of 633,000 spawning adults. Stocking had a strong accelerating effect on the time to modeled recovery (as measured by the time to reach 50% of the recovery goal) in the base model, but stocking had diminishing effects with larger population sizes. There is a diminishing return to stocking when the starting population is modestly increased. With a low starting population (a spawning run of 1,000), supplementation with 12 million larvae annually accelerated modeled recovery by 12 years. Only a 2-year acceleration was observed if the starting population was 15,000. Such a heuristic model may aid managers in assessing the costs and benefits of stocking by incorporating a structured decision framework.

  2. Seasonal habitat use of brook trout and juvenile steelhead in a Lake Ontario tributary

    USGS Publications Warehouse

    Johnson, James H.; Abbett, Ross; Chalupnicki, Marc A.; Verdoliva, Francis

    2016-01-01

    Brook trout (Salvelinus fontinalis) are generally restricted to headwaters in New York tributaries of Lake Ontario. In only a few streams are brook trout abundant in lower stream reaches that are accessible to adult Pacific salmonids migrating from the lake. Consequently, because of the rarity of native brook trout populations in these lower stream reaches it is important to understand how they use stream habitat in sympatry with juvenile Pacific salmonids which are now naturalized in several Lake Ontario tributaries. In this study, we examined the seasonal (spring, summer, and fall) habitat use of brook trout and juvenile steelhead (Oncorhynchus mykiss) in Hart Brook, a tributary of eastern Lake Ontario. We found interspecific, intraspecific, and seasonal variation in habitat use. Subyearling steelhead were associated with faster water velocities than subyearling brook trout and, overall, had the least habitat similarity to the other salmonid groups examined. Overyearling brook trout and yearling steelhead exhibited the greatest degree of habitat selection and habitat selection by all four salmonid groups was greatest in summer. The availability of pool habitat for overyearling salmonids may pose the largest impediment to these species in Hart Brook.

  3. Spawning Sites of the Japanese Eel in Relation to Oceanographic Structure and the West Mariana Ridge

    PubMed Central

    Aoyama, Jun; Watanabe, Shun; Miller, Michael J.; Mochioka, Noritaka; Otake, Tsuguo; Yoshinaga, Tatsuki; Tsukamoto, Katsumi

    2014-01-01

    The Japanese eel, Anguilla japonica, spawns within the North Equatorial Current that bifurcates into both northward and southward flows in its westward region, so its spawning location and larval transport dynamics seem important for understanding fluctuations in its recruitment to East Asia. Intensive research efforts determined that Japanese eels spawn along the western side of the West Mariana Ridge during new moon periods, where all oceanic life history stages have been collected, including eggs and spawning adults. However, how the eels decide where to form spawning aggregations is unknown because spawning appears to have occurred at various latitudes. A salinity front formed from tropical rainfall was hypothesized to determine the latitude of its spawning locations, but an exact spawning site was only found once by collecting eggs in May 2009. This study reports on the collections of Japanese eel eggs and preleptocephali during three new moon periods in June 2011 and May and June 2012 at locations indicating that the distribution of lower salinity surface water or salinity fronts influence the latitude of spawning sites along the ridge. A distinct salinity front may concentrate spawning south of the front on the western side of the seamount ridge. It was also suggested that eels may spawn at various latitudes within low-salinity water when the salinity fronts appeared unclear. Eel eggs were distributed within the 150–180 m layer near the top of the thermocline, indicating shallow spawning depths. Using these landmarks for latitude (salinity front), longitude (seamount ridge), and depth (top of the thermocline) to guide the formation of spawning aggregations could facilitate finding mates and help synchronize their spawning. PMID:24551155

  4. Multispecies spawning sites for fishes on a low-latitude coral reef: spatial and temporal patterns.

    PubMed

    Claydon, J A B; McCormick, M I; Jones, G P

    2014-04-01

    Spawning sites used by one or more species were located by intensively searching nearshore coral reefs of Kimbe Bay (New Britain, Papua New Guinea). Once identified, the spawning sites were surveyed repeatedly within fixed 5 m radius circular areas, for  > 2000 h of observations ranging from before dawn to after dusk spanning 190 days between July 2001 and May 2004. A total of 38 spawning sites were identified on the seven study reefs distributed at an average of one site every 60 m of reef edge. Pelagic spawning was observed in 41 fish species from six families. On three intensively studied reefs, all 17 spawning sites identified were used by at least three species, with a maximum of 30 different species observed spawning at a single site. Spawning was observed during every month of the study, on all days of the lunar month, at all states of the tide and at most hours of the day studied. Nevertheless, the majority of species were observed spawning on proportionately more days from December to April, on more days around the new moon and in association with higher tides. The strongest temporal association, however, was with species-specific diel spawning times spanning < 3 h for most species. While dawn spawning, afternoon spawning and dusk spawning species were differentiated, the time of spawning for the striated surgeonfish Ctenochaetus striatus also differed significantly among sites. The large number of species spawning at the same restricted locations during predictable times suggests that these sites are extremely important on this low-latitude coral reef. © 2014 The Fisheries Society of the British Isles.

  5. Spawning sites of the Japanese eel in relation to oceanographic structure and the West Mariana Ridge.

    PubMed

    Aoyama, Jun; Watanabe, Shun; Miller, Michael J; Mochioka, Noritaka; Otake, Tsuguo; Yoshinaga, Tatsuki; Tsukamoto, Katsumi

    2014-01-01

    The Japanese eel, Anguilla japonica, spawns within the North Equatorial Current that bifurcates into both northward and southward flows in its westward region, so its spawning location and larval transport dynamics seem important for understanding fluctuations in its recruitment to East Asia. Intensive research efforts determined that Japanese eels spawn along the western side of the West Mariana Ridge during new moon periods, where all oceanic life history stages have been collected, including eggs and spawning adults. However, how the eels decide where to form spawning aggregations is unknown because spawning appears to have occurred at various latitudes. A salinity front formed from tropical rainfall was hypothesized to determine the latitude of its spawning locations, but an exact spawning site was only found once by collecting eggs in May 2009. This study reports on the collections of Japanese eel eggs and preleptocephali during three new moon periods in June 2011 and May and June 2012 at locations indicating that the distribution of lower salinity surface water or salinity fronts influence the latitude of spawning sites along the ridge. A distinct salinity front may concentrate spawning south of the front on the western side of the seamount ridge. It was also suggested that eels may spawn at various latitudes within low-salinity water when the salinity fronts appeared unclear. Eel eggs were distributed within the 150-180 m layer near the top of the thermocline, indicating shallow spawning depths. Using these landmarks for latitude (salinity front), longitude (seamount ridge), and depth (top of the thermocline) to guide the formation of spawning aggregations could facilitate finding mates and help synchronize their spawning.

  6. Effects of Hatchery Rearing on the Structure and Function of Salmonid Mechanosensory Systems.

    PubMed

    Brown, Andrew D; Sisneros, Joseph A; Jurasin, Tyler; Coffin, Allison B

    2016-01-01

    This paper reviews recent studies on the effects of hatchery rearing on the auditory and lateral line systems of salmonid fishes. Major conclusions are that (1) hatchery-reared juveniles exhibit abnormal lateral line morphology (relative to wild-origin conspecifics), suggesting that the hatchery environment affects lateral line structure, perhaps due to differences in the hydrodynamic conditions of hatcheries versus natural rearing environments, and (2) hatchery-reared salmonids have a high proportion of abnormal otoliths, a condition associated with reduced auditory sensitivity and suggestive of inner ear dysfunction.

  7. Evidence from data storage tags for the presence of lunar and semilunar behavioral cycles in spawning Atlantic cod

    USGS Publications Warehouse

    Grabowski, Timothy B.; McAdam, Bruce J.; Thorsteinsson, Vilhjalmur; Marteinsdóttir, Gudrún

    2015-01-01

    Understanding the environmental processes determining the timing and success of reproduction is of critical importance to developing effective management strategies of marine fishes. Unfortunately it has proven difficult to comprehensively study the reproductive behavior of broadcast-spawning fishes. The use of electronic data storage tags (DSTs) has the potential to provide insights into the behavior of fishes. These tags allow for data collection over relatively large spatial and temporal scales that can be correlated to predicted environmental conditions and ultimately be used to refine predictions of year class strength. In this paper we present data retrieved from DSTs demonstrating that events putatively identified as Atlantic cod spawning behavior is tied to a lunar cycle with a pronounced semi-lunar cycle within it. Peak activity occurs around the full and new moon with no evidence of relationship with day/night cycles.

  8. Potential impacts of the Deepwater Horizon oil spill on large pelagic fishes

    NASA Astrophysics Data System (ADS)

    Frias-Torres, Sarrah; Bostater, Charles R., Jr.

    2011-11-01

    Biogeographical analyses provide insights on how the Deepwater Horizon oil spill impacted large pelagic fishes. We georeferenced historical ichthyoplankton surveys and published literature to map the spawning and larval areas of bluefin tuna, swordfish, blue marlin and whale shark sightings in the Gulf of Mexico with daily satellite-derived images detecting surface oil. The oil spill covered critical areas used by large pelagic fishes. Surface oil was detected in 100% of the northernmost whale shark sightings, in 32.8 % of the bluefin tuna spawning area and 38 % of the blue marlin larval area. No surface oil was detected in the swordfish spawning and larval area. Our study likely underestimates the extend of the oil spill due to satellite sensors detecting only the upper euphotic zone and the use of dispersants altering crude oil density, but provides a previously unknown spatio-temporal analysis.

  9. Functional morphology and biomechanics of the tongue-bite apparatus in salmonid and osteoglossomorph fishes

    PubMed Central

    Camp, Ariel L; Konow, Nicolai; Sanford, Christopher P J

    2009-01-01

    The tongue-bite apparatus and its associated musculoskeletal elements of the pectoral girdle and neurocranium form the structural basis of raking, a unique prey-processing behaviour in salmonid and osteoglossomorph fishes. Using a quantitative approach, the functional osteology and myology of this system were compared between representatives of each lineage, i.e. the salmonid Salvelinus fontinalis (N =10) and the osteoglossomorph Chitala ornata(N = 8). Divergence was found in the morphology of the novel cleithrobranchial ligament, which potentially relates to kinematic differences between the raking lineage representatives. Salvelinus had greater anatomical cross-sectional areas of the epaxial, hypaxial and protractor hyoideus muscles, whereas Chitala had greater sternohyoideus and adductor mandibulae mass. Two osteology-based biomechanical models (a third-order lever for neurocranial elevation and a modified four-bar linkage for hyoid retraction) showed divergent force/velocity priorities in the study taxa. Salvelinus maximizes both force (via powerful cranial muscles) and velocity (through mechanical amplification) during raking. In contrast, Chitala has relatively low muscle force but more efficient force transmission through both mechanisms compared with Salvelinus. It remains unclear if and how behavioural modulation and specializations in the post-cranial anatomy may affect the force/velocity trade-offs in Chitala. Further studies of tongue-bite apparatus morphology and biomechanics in a broader species range may help to clarify the role that osteology and myology play in the evolution of behavioural diversity. PMID:19438765

  10. Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature.

    PubMed

    Nozawa, Yoko

    2012-06-01

    This study was conducted at a high-latitude location (32°N; Kochi, Japan), where annual seawater temperatures show large fluctuations due to the meandering of the Kuroshio Current, providing a unique opportunity to examine the influence of temperature on coral reproduction. Annual spawning of individual colonies of four reef coral species-two Acropora species (Acropora hyacinthus and A. japonica) and two faviid species (Favites pentagona and Platygyra contorta)-was monitored in situ for 4 years in 2006-2009. The spawning of the four species always occurred around the last quarter moon in the local summer, July or August, irrespective of high annual variations in seawater temperatures (from 23.7 to 29.5 °C) and weather during the spawning period. However, the exact timing of spawning during the spawning period varied among the years and was correlated with the cumulative seawater temperature during the late period of gametogenesis (0-3 months before spawning). When seawater temperatures were higher, spawning occurred in the earlier spawning month (July) and vice versa, except in A. hyacinthus, which always spawned in July. In the case of the two Acropora species, higher (lower) temperatures led to spawning earlier (later) in the lunar cycle. Seawater temperature may have an influence on gametogenesis, causing the shift in spawning timing.

  11. Sustaining salmonid populations: A caring understanding of naturalness of taxa

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Regier, Henry A.; Knudsen, E. Eric

    2004-01-01

    Species of the family of Salmonidae occur naturally in Northern Hemisphere waters that remain clear and cool to cold in summer. For purposes of reproduction, salmonids generally behaviorally respond to the currents of streams and lakes in recently glaciated areas. For feeding and maturation, many larger species migrate into existing systems of large lakes, seas, and oceans. The subfamilies include Salmoninae, Coregoninae, and Thymallinae. In many locales and regions of the hemisphere, numerous species of these subfamilies evolved and self-organized into species flocks or taxocenes of bewildering complexity. For example, any individual species may play different or unique ecological roles in different taxocenes. The northern Pacific and Atlantic Ocean ecosystems, with their seas and tributaries, each contained a metacomplex of such taxocenes that, in their natural state some centuries ago, resembled each other but differed in many ways. Humans have valued all species of this family for subsistence, ceremonial, naturalist, gustatory, angling, and commercial reasons for centuries. Modern progressive humans (MPHs), whose industrial and commercial enterprises have gradually spread over this hemisphere in recent time, now affect aquatic ecosystems at all scales from local to global. These human effects mingle in complex ways that together induce uniquely natural salmonid taxocenes to disintegrate with the loss of species, including those groups least tolerant to human manipulations, but extending more recently to those taxa more adapted to anthropogenic change. As we leave the modern era, dominated by MPHs, will we find ways to live sustainably with salmonid taxocenes that still exhibit self-organizational integrity, or will only individual, isolated populations of salmonid species, derived from those most tolerant of MPHs, survive? To achieve future sustainability of salmonids, we suggest implementation of a search for intuitive knowledge based on faith in the wisdom of nature and a caring-sharing, behavioral structure based on "survival of the wisest" for both humans and salmonids.

  12. An efficient and reliable DNA-based sex identification method for archaeological Pacific salmonid (Oncorhynchus spp.) remains.

    PubMed

    Royle, Thomas C A; Sakhrani, Dionne; Speller, Camilla F; Butler, Virginia L; Devlin, Robert H; Cannon, Aubrey; Yang, Dongya Y

    2018-01-01

    Pacific salmonid (Oncorhynchus spp.) remains are routinely recovered from archaeological sites in northwestern North America but typically lack sexually dimorphic features, precluding the sex identification of these remains through morphological approaches. Consequently, little is known about the deep history of the sex-selective salmonid fishing strategies practiced by some of the region's Indigenous peoples. Here, we present a DNA-based method for the sex identification of archaeological Pacific salmonid remains that integrates two PCR assays that each co-amplify fragments of the sexually dimorphic on the Y chromosome (sdY) gene and an internal positive control (Clock1a or D-loop). The first assay co-amplifies a 95 bp fragment of sdY and a 108 bp fragment of the autosomal Clock1a gene, whereas the second assay co-amplifies the same sdY fragment and a 249 bp fragment of the mitochondrial D-loop region. This method's reliability, sensitivity, and efficiency, were evaluated by applying it to 72 modern Pacific salmonids from five species and 75 archaeological remains from six Pacific salmonids. The sex identities assigned to each of the modern samples were concordant with their known phenotypic sex, highlighting the method's reliability. Applications of the method to dilutions of modern DNA samples indicate it can correctly identify the sex of samples with as little as ~39 pg of total genomic DNA. The successful sex identification of 70 of the 75 (93%) archaeological samples further demonstrates the method's sensitivity. The method's reliance on two co-amplifications that preferentially amplify sdY helps validate the sex identities assigned to samples and reduce erroneous identifications caused by allelic dropout and contamination. Furthermore, by sequencing the D-loop fragment used as a positive control, species-level and sex identifications can be simultaneously assigned to samples. Overall, our results indicate the DNA-based method reported in this study is a sensitive and reliable sex identification method for ancient salmonid remains.

  13. Spawning site selection and contingent behavior in Common Snook, Centropomus undecimalis.

    PubMed

    Lowerre-Barbieri, Susan; Villegas-Ríos, David; Walters, Sarah; Bickford, Joel; Cooper, Wade; Muller, Robert; Trotter, Alexis

    2014-01-01

    Reproductive behavior affects spatial population structure and our ability to manage for sustainability in marine and diadromous fishes. In this study, we used fishery independent capture-based sampling to evaluate where Common Snook occurred in Tampa Bay and if it changed with spawning season, and passive acoustic telemetry to assess fine scale behavior at an inlet spawning site (2007-2009). Snook concentrated in three areas during the spawning season only one of which fell within the expected spawning habitat. Although in lower numbers, they remained in these areas throughout the winter months. Acoustically-tagged snook (n = 31) showed two seasonal patterns at the spawning site: Most fish occurred during the spawning season but several fish displayed more extended residency, supporting the capture-based findings that Common Snook exhibit facultative catadromy. Spawning site selection for iteroparous, multiple-batch spawning fishes occurs at the lifetime, annual, or intra-annual temporal scales. In this study we show colonization of a new spawning site, indicating that lifetime spawning site fidelity of Common Snook is not fixed at this fine spatial scale. However, individuals did exhibit annual and intra-seasonal spawning site fidelity to this new site over the three years studied. The number of fish at the spawning site increased in June and July (peak spawning months) and on new and full lunar phases indicating within population variability in spawning and movement patterns. Intra-seasonal patterns of detection also differed significantly with sex. Common Snook exhibited divergent migration tactics and habitat use at the annual and estuarine scales, with contingents using different overwintering habitat. Migration tactics also varied at the spawning site at the intra-seasonal scale and with sex. These results have important implications for understanding how reproductive behavior affects spatio-temporal patterns of fish abundance and their resilience to disturbance events and fishing pressure.

  14. Novel RAD sequence data reveal a lack of genomic divergence between dietary ecotypes in a landlocked salmonid population

    USGS Publications Warehouse

    Limborg, Morten T.; Larson, Wesley; Shedd, Kyle; Seeb, Lisa W.; Seeb, James E.

    2017-01-01

    Preservation of heritable ecological diversity within species and populations is a key challenge for managing natural resources and wild populations. Salmonid fish are iconic and socio-economically important species for commercial, aquaculture, and recreational fisheries across the globe. Many salmonids are known to exhibit ecological divergence within species, including distinct feeding ecotypes within the same lakes. Here we used 5559 SNPs, derived from RAD sequencing, to perform population genetic comparisons between two dietary ecotypes of sockeye salmon (Oncorhynchus nerka) in Jo-Jo Lake, Alaska (USA). We tested the standing hypothesis that these two ecotypes are currently diverging as a result of adaptation to distinct dietary niches; results support earlier conclusions of a single panmictic population. The RAD sequence data revealed 40 new SNPs not previously detected in the species, and our sequence data can be used in future studies of ecotypic diversity in salmonid species.

  15. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamness, Mickie A.

    2008-08-29

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridgemore » fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.« less

  16. Genetic structure of lake whitefish (Coregonus clupeaformis) in Lake Michigan

    USGS Publications Warehouse

    VanDeHey, J.A.; Sloss, Brian L.; Peeters, Paul J.; Sutton, T.M.

    2009-01-01

    Genetic relationships among lake whitefish (Coregonus clupeaformis) spawning aggregates in Lake Michigan were assessed and used to predict a stock or management unit (MU) model for the resource. We hypothesized that distinct spawning aggregates represented potential MUs and that differences at molecular markers underlie population differentiation. Genetic stock identification using 11 microsatellite loci indicated the presence of six genetic MUs. Resolved MUs corresponded to geographically proximate spawning aggregates clustering into genetic groups. Within MUs, analyses suggested that all but one delineated MU was a stable grouping (i.e., no between-population differences), with the exception being the Hog Island - Traverse Bay grouping. Elk Rapids was the most genetically divergent population within Lake Michigan. However, low F st values suggested that moderate to high levels of gene flow occur or have occurred in the past between MUs. Significant tests of isolation by distance and low pairwise Fst values potentially led to conflicting results between traditional analyses and a Bayesian approach. This data set could provide baseline data from which a comprehensive mixed-stock analysis could be performed, allowing for more efficient and effective management of this economically and socially important resource.

  17. Global climate change and potential effects on Pacific salmonids in freshwater ecosystems of southeast Alaska

    Treesearch

    M. D. Bryant

    2009-01-01

    General circulation models predict increases in air temperatures from 1ºC to 5ºC as atmospheric CO2 continues to rise during the next 100 years. Thermal regimes in freshwater ecosystems will change as air temperatures increase regionally. As air temperatures increase, the distribution and intensity of precipitation will change...

  18. Coral mass spawning predicted by rapid seasonal rise in ocean temperature

    PubMed Central

    Maynard, Jeffrey A.; Edwards, Alasdair J.; Guest, James R.; Rahbek, Carsten

    2016-01-01

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R2 = 0.73, peak: R2 = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success. PMID:27170709

  19. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.

    PubMed

    Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark

    2014-09-01

    Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  20. NEW TOOLS FOR STREAM MORPHO-DYNAMIC MODELING (Invited)

    NASA Astrophysics Data System (ADS)

    Tonina, D.; McKean, J. A.; Maturana, O. R.; Luce, C.; Buffington, J. M.

    2009-12-01

    Morphological evolution of streambeds and sediment transport in streams has been typically studied in long reaches using one-dimensional models, due partly to the lack of accurate and easy-to-acquire river bathymetry. The Experimental Advanced Airborne Research Lidar (EAARL) allows simultaneous surveying in both aquatic and terrestrial domains quickly and remotely. However, its usefulness to define boundary conditions for morpho-dynamic models has not yet been tested. We first evaluated EAARL accuracy and then used the data to model fine sediment transport in gravel bed rivers. A random vertical error, modeled as a Normal distribution with zero mean and 10 cm standard deviation, was introduced to bathymetric point cloud data in an EAARL survey. Comparison of water elevations and velocity and shear stress distributions among simulations with and without these random bathymetric errors showed little effect on model predictions. This result allowed us to use EAARL data to model the effects of chronic and acute loads of fine-grained sediment on riverine ecosystems, river morphology, and bed evolution. The simulations were done with the Multidimensional Surface Water Model System (MD-SWMS, USGS). We added a new sand conservation model and the two-class sediment transport equation of Wilcock and Kenworthy [2002, WRR] to MD-SWMS. Simulations show patterns of fine sediment transport and deposition along meandering and straight stream reaches, and the impact of sudden inputs of fine sediment on salmonid spawning sites. Initial results illustrate the sensitivity of sand transport to flow characteristics. At a base flow of 1 m3/sec, sand moves only a few tens-of-meters from the point source during a 4-month model period. Over the same time interval a constant bankfull flow of 6 m3/sec removes all of the sand from the source area; the sand migrates in distinct waves through the 0.5 km-long model reach and we predict all salmon spawning sites in the reach would be contaminated with sand. Chronic inputs, which may come from human activities, seem to have a more persistent impact on streambed habitat quality than pulsed inputs, which may stem from wild fires and other natural disturbances.

  1. Potential disease interaction reinforced: double-virus-infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river.

    PubMed

    Madhun, A S; Karlsbakk, E; Isachsen, C H; Omdal, L M; Eide Sørvik, A G; Skaala, Ø; Barlaup, B T; Glover, K A

    2015-02-01

    The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  2. Climate refugia for salmon in a changing world

    EPA Science Inventory

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in salmonid distributions under future climates range from modest t...

  3. Juvenile and resident salmonid movement and passage through culverts

    DOT National Transportation Integrated Search

    1998-07-01

    An outcome of the Washington State Department of Transportation's Juvenile Fish Passage Workshop on September 24, 1997, was agreement that a literature review was necessary to determine the state of knowledge about juvenile salmonid movement and pass...

  4. Spatiotemporal associations between Pacific herring spawn and surf scoter spring migration: evaluating a "silver wave" hypothesis

    USGS Publications Warehouse

    Lok, E.K.; Esler, Daniel N.; Takekawa, John Y.; De La Cruz, S.W.; Boyd, W.S.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.

    2012-01-01

    Surf scoters Melanitta perspicillata are sea ducks that aggregate at spawning events of Pacific herring Clupea pallasi and forage on the eggs, which are deposited in abundance during spring at discrete sites. We evaluated whether migrating scoters followed a ‘silver wave’ of resource availability, analogous to the ‘green wave’ of high-quality foraging conditions that herbivorous waterfowl follow during spring migration. We confirmed that herring spawning activity began later in the year at higher latitudes, creating a northward-progressing wave of short-term localized food availability. Using satellite telemetry and aerial surveys, we documented the chronology of scoter spring migration and the use of stopover locations in relation to herring spawn timing and locations. We found that the migration chronology paralleled the northward progression of herring spawning events. Although there was considerable variability in the timing of both scoter migration and the initiation of herring spawning, the processes were related beyond a coincidental northward progression. During migration, 60% of the tracked scoters visited at least 1 spawn site, and those that used spawn sites were located on spawn sites for approximately one-third of their migration locations. Surf scoters showed close spatiotemporal associations with herring spawning events, confirming that the presence of herring spawn was a factor determining habitat use for many individuals. Surf scoters showed close spatiotemporal associations with herring spawning events, confirming that the presence of herring spawn was a factor determining habitat use for many individuals, a conclusion that is consistent with previous studies which used physiologically based metrics to evaluate the importance of herring spawn.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Dan

    The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations.more » With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit (ESU), Distinct Population Segment (MPG) or Major Population Group (MPG) reviewed, the HSRG presents its findings and recommendations in the form of an HSRG solution. This package of recommended changes to current hatchery and harvest program design and operation is intended to demonstrate how the programs could be managed to significantly increase the likelihood of meeting the managers goals for both harvest and conservation of the ESU/DPS/MPG. The 'HSRG solution' also highlights the biological principles that the HSRG believes must form the foundation for successful use of hatcheries and fisheries as management tools.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jessica A.; McMichael, Geoffrey A.; Welch, Ian D.

    To facilitate preparing Biological Assessments of proposed channel maintenance projects, the Portland District of the U.S. Army Corps of Engineers contracted the Pacific Northwest National Laboratory to consolidate and synthesize available information about the use of the lower Columbia River and estuary by juvenile anadromous salmonids. The information to be synthesized included existing published documents as well as data from five years (2004-2008) of acoustic telemetry studies conducted in the Columbia River estuary using the Juvenile Salmon Acoustic Telemetry System. For this synthesis, the Columbia River estuary includes the section of the Columbia River from Bonneville Dam at river kilometermore » (Rkm) 235 downstream to the mouth where it enters the Pacific Ocean. In this report, we summarize the seasonal salmonid presence and migration patterns in the Columbia River estuary based on information from published studies as well as relevant data from acoustic telemetry studies conducted by NOAA Fisheries and the Pacific Northwest National Laboratory (PNNL) between 2004 and 2008. Recent acoustic telemetry studies, conducted using the Juvenile Salmon Acoustic Telemetry System (JSATS; developed by the Portland District of the U.S. Army Corps of Engineers), provided information on the migratory behavior of juvenile steelhead (O. mykiss) and Chinook salmon in the Columbia River from Bonneville Dam to the Pacific Ocean. In this report, Section 2 provides a summary of information from published literature on the seasonal presence and migratory behavior of juvenile salmonids in the Columbia River estuary and plume. Section 3 presents a detailed synthesis of juvenile Chinook salmon and steelhead migratory behavior based on use of the JSATS between 2004 and 2008. Section 4 provides a discussion of the information summarized in the report as well as information drawn from literature reviews on potential effects of channel maintenance activities to juvenile salmonids rearing in or migrating through the Columbia River estuary and plume.« less

  7. Genetic signatures of historical dispersal of fish threatened by biological invasions: the case of galaxiids in South America

    USGS Publications Warehouse

    Vanhaecke, Delphine; Garcia de Leaniz, Carlos; Gajardo, Gonzalo; Dunham, Jason; Giannico, Guillermo; Consegura, Sofia

    2015-01-01

    Aim The ecological effects of biological invasions are well documented, but little is known about the effects of invaders on the genetic structure of native species. We examined the phylogeography, genetic variation and population structuring of two galaxiid fishes, Aplochiton zebraand A. taeniatus, threatened by non-native salmonids, and whose conservation is complicated by misidentification and limited knowledge of their genetic diversity. Location Chile and the Falkland Islands. Methods We combined microsatellite and mitochondrial DNA (16S rDNA and COI) markers to compare genetic diversity, effective population size and gene flow of Aplochiton spp. populations differentially affected by salmonid presence. Results We identified two 16S rDNA haplotypes among A. zebra – one dominant in coastal populations and another dominant in inland populations. Populations living on the island of Chiloé displayed a mixture of coastal and inland haplotypes, as well as high microsatellite diversity, as one would expect if the island had been a refugium during the Last Glacial Maximum, or a contact zone among populations. Microsatellite data revealed strong population structuring, indicative of current isolation patterns, and a negative correlation between the genetic diversity of A. zebra and the relative abundance of invasive salmonids. Main conclusions Our study indicates that population structuring of A. zebra reflects the influence of historical patterns of migration, but also the current levels of reduced gene flow among watersheds. Invasive salmonids, known to compete with and prey on native galaxiids, may have had negative impacts on the genetic diversity of Aplochiton spp. The low genetic variation found in some populations, coupled with potential biases in abundance estimates due to species misidentification, highlight the urgent need for more research into the conservation status of the two species of Aplochiton.

  8. The role of density-dependent individual growth in the persistence of freshwater salmonid populations.

    PubMed

    Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A

    2008-06-01

    Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roby, Daniel D.; Collis, Ken; Lyons, Donald E.

    This study investigates predation by piscivorous waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River Basin. During 2006, study objectives in the Columbia River estuary, work funded by the Bonneville Power Administration, were to (1) monitor and evaluate previous management initiatives to reduce Caspian tern (Hydroprogne caspia) predation on juvenile salmonids (smolts); (2) measure the impact of double-crested cormorant (Phalacrocorax auritus) predation on smolt survival, and assess potential management options to reduce cormorant predation; and (3) monitor large colonies of other piscivorous waterbirds in the estuary (i.e., glaucous-winged/western gulls [Larus glaucescens/occidentalis]) to determine the potential impacts on smoltmore » survival. Study objectives on the mid-Columbia River, work funded by the Walla Walla District of the U.S. Army Corps of Engineers, were to (1) measure the impact of predation by Caspian terns and double-crested cormorants on smolt survival; and (2) monitor large nesting colonies of other piscivorous waterbirds (i.e., California gulls [L. californicus], ring-billed gulls [L. delawarensis], American white pelicans [Pelecanus erythrorhynchos]) on the mid-Columbia River to determine the potential for significant impacts on smolt survival. Our efforts to evaluate system-wide losses of juvenile salmonids to avian predation indicated that Caspian terns and double-crested cormorants were responsible for the vast majority of smolt losses to avian predators in the Columbia Basin, with most losses occurring in the Columbia River estuary. In 2006, East Sand Island in the Columbia River estuary supported the largest known breeding colonies of Caspian terns and double-crested cormorants in the world. The Caspian tern colony on East Sand Island consisted of about 9,200 breeding pairs in 2006, up slightly (but not significantly so) from the estimate of colony size in 2005 (8,820 pairs). There has not been a statistically significant change in the size of the Caspian tern colony on East Sand Island since 2000. Tern nesting success averaged 0.72 fledglings per breeding pair in 2006, significantly higher than in 2005 (0.37 fledglings per breeding pair), a year of poor ocean conditions. Despite the presumably higher availability of marine forage fishes in 2006, the proportion of juvenile salmonids in diets of Caspian terns (32% of prey items) averaged higher than in 2005 (23% of prey items) and 2004 (18% of prey items). Steelhead smolts were particular vulnerable to predation by East Sand Island terns in 2006, with predation rates as high as 20% on particular groups of PIT-tagged fish reaching the estuary. Consumption of juvenile salmonids by terns nesting at the East Sand Island colony in 2006 was approximately 5.3 million smolts (95% c.i. = 4.4-6.2 million), significantly higher than the estimated 3.6 million smolts consumed in 2005, but still roughly 7 million fewer smolts consumed compared to 1998 (when all terns nested on Rice Island in the upper estuary). Caspian terns nesting on East Sand Island continue to rely primarily on marine forage fishes as a food supply, even in 2005 when availability of marine forage fishes declined due to poor ocean conditions. Further management of Caspian terns to reduce losses of juvenile salmonids would be implemented under the Caspian Tern Management Plan for the Columbia River Estuary; the Records of Decision (RODs) authorizing implementation of the plan were signed in November 2006. The ROD lists as the management goal the redistribution of approximately half of the East Sand Island Caspian tern colony to alternative colony sites in interior Oregon and San Francisco Bay, California (USFWS 2006). Implementation of the management plan is stalled, however, because of the lack of appropriated funds.« less

  10. Effective climate refugia for salmon in a changing world

    EPA Science Inventory

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in salmonid distributions under future climates range from modest t...

  11. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromisniloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts.

  12. Low summer water temperatures influence occurrence of naturalized salmonids across a mountain watershed

    USGS Publications Warehouse

    Mullner, S.A.; Hubert, W.A.

    2005-01-01

    We investigated relationships between the absence of salmonids and low summer water temperatures across a 150-km2 Rocky Mountain watershed. A model predicting maximum July water temperature (MJT) from measurements of perennial stream length, wetted width, and midrange basin elevation was developed from temperature data obtained at 20 sites across the watershed. The model was used to predict MJT in 75 reaches across the watershed where salmonids were sampled. The lowest predicted MJT in reaches where age-0 and juvenile-adult brook trout Salvelinus fontinalis were observed was 9??C. The lowest predicted MJT in reaches where age-0 progeny of the genus Oncorhynchus spp. (i.e., rainbow trout O. mykiss or cutthroat trout O. clarkii) were observed was 13??C and where Oncorhynchus spp. adults where observed was 12??C. The probability of occurrence of both age-0 and adult brook trout and Oncorhynchus spp. increased as MJT increased above these thresholds. Our results indicate that low MJT in some portions of a mountain watershed can be related to the absence of salmonids. Consequently, data on MJT may provide managers with a means of assessing where summer water temperatures are not suitable for establishment of naturalized salmonid populations. ?? Copyright by the American Fisheries Society 2005.

  13. Fisheries and aquatic resources of Prairie Creek, Redwood National Park

    USGS Publications Warehouse

    Wilzbach, Peggy; Ozaki, Vicki

    2017-01-01

    This report synthesizes information on the status of fisheries and aquatic resources in the Prairie Creek sub-basin of Redwood Creek in Humboldt County in northern California, founded on a bibliographic search we conducted of historic and current datasets, unpublished reports, theses, and publications. The compiled Prairie Creek Fisheries Bibliography is available at https://irma.nps.gov/DataStore/. This report describes life histories and population status of the salmonid fishes, and species occurrence of non-salmonid fishes, amphibians, macroinvertebrates, and common benthic algae in Prairie Creek. We assessed habitat conditions that may limit salmonid production in relation to recovery targets established by the National Marine Fisheries Service and the State of California. Although salmon abundance has decreased from historic levels, production of juvenile salmonids in Prairie Creek is relatively stable and robust in comparison with the rest of the Redwood Creek Basin. Carrying capacity likely differs between the undisturbed upper reaches of Prairie Creek and reaches in the lower creek, the latter of which are affected by legacy impacts from timber and agricultural activities. Increased sediment supply and lack of channel structure and floodplain connection in lower Prairie Creek appear to be the greatest stressors to salmonid production. Existing datasets on aquatic resources and environmental variables are listed, and subject areas where few data are available are identified.

  14. Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin

    USGS Publications Warehouse

    McKenna, James E.

    2005-01-01

    Diversity and fish productivity are important measures of the health and status of aquatic systems. Being able to predict the values of these indices as a function of environmental variables would be valuable to management. Diversity and productivity have been related to environmental conditions by multiple linear regression and discriminant analysis, but such methods have several shortcomings. In an effort to predict fish species diversity and estimate salmonid production for streams in the eastern basin of Lake Ontario, I constructed neural networks and trained them on a data set containing abiotic information and either fish diversity or juvenile salmonid abundance. Twenty percent of the original data were retained as a test data set and used in the training. The ability to extend these neural networks to conditions throughout the streams was tested with data not involved in the network training. The resulting neural networks were able to predict the number of salmonids with more than 84% accuracy and diversity with more than 73% accuracy, which was far superior to the performance of multiple regression. The networks also identified the environmental variables with the greatest predictive power, namely, those describing water movement, stream size, and water chemistry. Thirteen input variables were used to predict diversity and 17 to predict salmonid abundance.

  15. Interannual variability in reproductive traits of the Patagonian toothfish Dissostichus eleginoides around the sub-Antarctic island of South Georgia.

    PubMed

    Brigden, K E; Marshall, C T; Scott, B E; Young, E F; Brickle, P

    2017-07-01

    Commercial fisheries data, collected as part of an observer programme and covering the period 1997-2014, were utilized in order to define key reproductive traits and spawning dynamics of the Patagonian toothfish Dissostichus eleginoides at South Georgia. Multi-year spawning site fidelity of D. eleginoides was revealed through the identification of previously unknown spawning hotspots. Timing of female spawning was shown to have shifted later, leading to a shorter spawning duration. A decrease in length and mass of female and male spawning fish and a reduced number of large spawning fish was found, evidence of a change in size structure of spawning D. eleginoides. During the study period fewer later maturity stage females (including spawning stage) were observed in conjunction with increased proportions of early stage female D. eleginoides. The findings are discussed in the context of reproductive success, with consideration of the possible effects such spawning characteristics and behaviours may have on egg and larval survival. This work presents the first long-term assessment of D. eleginoides spawning dynamics at South Georgia and provides valuable knowledge for both the ecology of the species and for future fisheries management of this commercially important species. © 2017 The Fisheries Society of the British Isles.

  16. Spawning of the kissing loach (Leptobotia curta) is limited to periods following the formation of temporary waters.

    PubMed

    Abe, Tsukasa; Kobayashi, Ichiro; Kon, Masahiro; Sakamoto, Tatsuya

    2007-09-01

    The kissing loach, an endangered species surviving only in a few Japanese rivers, spawns in the rice-field areas after migration from rivers in early June. To characterize the environmental conditions required for spawning of the kissing loach, spawning was assessed for two years both by direct observation of spawning behavior and by the appearance of eggs, larvae, and juveniles from June to October. All spawning of the kissing loach was limited to within a couple of days after the formation of temporary waters by remarkable rises in water level. Water temperature and daily rainfall fluctuated during the investigation periods, and no clear relationships with spawning were detected. Furthermore, all spawning was observed only in temporary waters with terrestrial grasses. Thus, spawning of the kissing loach is rigidly limited spatio-temporally to after the formation of temporary waters over terrestrial vegetation. Appropriate management of temporary waters will be crucial for the continued existence of this species.

  17. Seasonal patterns of winter flounder Pseudopleuronectes americanus abundance and reproductive condition on the New York Bight continental shelf.

    PubMed

    Wuenschel, M J; Able, K W; Byrne, D

    2009-05-01

    To resolve varied and sometimes conflicting accounts of spawning and habitat characteristics for winter flounder Pseudopleuronectes americanus, seasonal patterns in abundance and reproductive condition were investigated in the New York Bight, near the southern edge of their current reproductive range. Fish were collected from trawl surveys on the inner continental shelf from October 2006 to October 2007. Pseudopleuronectes americanus were most abundant during January and April surveys, were rarely collected in August, with intermediate abundances in June and October. Measurements of fish condition [hepato-somatic index (I(H)), condition factor (K) and the per cent dry mass of muscle tissue (%M(D))] and reproductive condition [gonado-somatic index (I(G))] were determined to evaluate seasonal changes in energy accumulation and depletion and reproduction. Males and females had similar patterns in body and reproductive condition, although the magnitude of change was greater for females. I(H) values were highest during spring and early summer, suggesting increased feeding following spawning. K and %M(D) increased through spring and summer then declined in the autumn and winter concurrent with gonadal development. Gonads began developing in the autumn, and in January, I(G) values approached spawning levels, with many spent individuals collected in spring. Within these general patterns, however, there was a large degree of variability among individuals, and a few mature non-reproductive ('skipped spawning') females were observed. In the period after spawning, increased energy intake, indicated by increased I(H), may influence reproductive output since this energy is gradually transferred to the muscle and used for gonadal development in the forthcoming year. The occurrence of ripening individuals on the inner continental shelf in January suggests that these fish either rapidly move into estuaries to spawn by February-March or they remain on the inner shelf to spawn, or some combination of these. Future studies should evaluate these possibilities, as both estuarine and inner shelf habitats are potentially affected by activities such as dredging, sand dredging and wind energy development.

  18. Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.

    2010-01-01

    Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides documentation of spawning by fall chum salmon and is the first study to continuously measure inter-gravel water temperature at sites in the mainstem Tanana River.

  19. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  20. Modeling the spawning strategies and larval survival of the Brazilian sardine (Sardinella brasiliensis)

    NASA Astrophysics Data System (ADS)

    Dias, Daniela Faggiani; Pezzi, Luciano Ponzi; Gherardi, Douglas Francisco Marcolino; Camargo, Ricardo

    2014-04-01

    An Individual Based Model (IBM), coupled with a hydrodynamic model (ROMS), was used to investigate the spawning strategies and larval survival of the Brazilian Sardine in the South Brazil Bight (SBB). ROMS solutions were compared with satellite and field data to assess their representation of the physical environment. Two spawning experiments were performed for the summer along six years, coincident with ichthyoplankton survey cruises. In the first one, eggs were released in spawning habitats inferred from a spatial model. The second experiment simulated a random spawning to test the null hypothesis that there are no preferred spawning sites. Releasing eggs in the predefined spawning habitats increases larval survival, suggesting that the central-southern part of the SBB is more suitable for larvae development because of its thermodynamic characteristics. The Brazilian sardine is also capable of exploring suitable areas for spawning, according to the interannual variability of the SBB. The influence of water temperature, the presence of Cape Frio upwelling, and surface circulation on the spawning process was tested. The Cape Frio upwelling plays an important role in the modulation of Brazilian sardine spawning zones over SBB because of its lower than average water temperature. This has a direct influence on larval survival and on the interannual variability of the Brazilian sardine spawning process. The hydrodynamic condition is crucial in determining the central-southern part of SBB as the most suitable place for spawning because it enhances simulated coastal retention of larvae.

  1. Ecological Requirements for Pallid Sturgeon Reproduction and Recruitment in the Lower Missouri River: A Research Synthesis 2005-08

    USGS Publications Warehouse

    DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Simpkins, Darin G.; Wildhaber, Mark L.; Reuter, Joanna M.; Bonnot, Tom W.; Chojnacki, Kimberly A.; Korschgen, Carl E.; Mestl, Gerald E.; Mac, Michael J.

    2009-01-01

    This report provides a synthesis of results obtained between 2005 and 2008 from the Comprehensive Sturgeon Research Program, an interagency collaboration between the U.S. Geological Survey, Nebraska Game and Parks Commission, U.S. Fish and Wildlife Service, and the U.S. Army Corps of Engineers' Missouri River Recovery - Integrated Science Program. The goal of the Comprehensive Sturgeon Research Program is to improve fundamental understanding of reproductive ecology of the pallid sturgeon with the intent that improved understanding will inform river and species management decisions. Specific objectives include: *Determining movement, habitat-use, and reproductive behavior of pallid sturgeon; *Understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; *Determining origin, transport, and fate of drifting pallid sturgeon larvae, and evaluating bottlenecks for recruitment of early life stages; *Quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages; and *Managing databases, integrating understanding, and publishing relevant information into the public domain. Management actions to increase reproductive success and survival of pallid sturgeon in the Lower Missouri River have been focused on flow regime, channel morphology, and propagation. Integration of 2005-08 Comprehensive Sturgeon Research Program research provides insight into linkages among flow regime, re-engineered channel morphology, and pallid sturgeon reproduction and survival. The research approach of the Comprehensive Sturgeon Research Program integrates opportunistic field studies, field-based experiments, and controlled laboratory studies. The field study plan is designed to explore the role of flow regime and associated environmental cues using two complementary approaches. An upstream-downstream approach compares sturgeon reproductive behavior between an upstream section of the Lower Missouri River with highly altered flow regime to a downstream section that maintains much of its pre-regulation flow variability. The upstream section also has the potential for an experimental approach to compare reproductive behavior in years with pulsed flow modifications ('spring rises') to years without. The reproductive cycle of the female sturgeon requires several years to progress through gonadal development, oocyte maturation, and spawning. Converging lines of evidence support the hypothesis that maturation and readiness to spawn in female sturgeon is cued many months before spawning. Information on reproductive readiness of shovelnose sturgeon indicates that sturgeon at different locations along the Lower Missouri River between St. Louis and Gavins Point Dam are all responding to the same early cue. Although not a perfect surrogate, the more abundant shovelnose sturgeon is morphologically, physiologically, and genetically similar to pallid sturgeon, and thereby provides a useful comparative model for the rarer species. Day length is the likely candidate to define a temporal spawning window. Within the spawning window, one or more additional, short-term, and specific cues may serve to signal ovulation and release of gametes. Of three potential spawning cues - water temperature, water discharge, and day of year - water temperature is the most likely proximate cue because of the fundamental physiological role temperature plays in sturgeon embryo development and survival, and the sensitivity of many fish hormones to temperature change. It also is possible that neither temperature nor discharge is cueing spawning; instead, reproductive behavior may result from the biological clock advancing an individual fish's readiness to spawn day after day through the spawning period until the right moment, independent of local environmental conditions. Separation of the individual effects of discharge events, water temperature, and other possible factors, such as proximity to male

  2. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  3. Black bear density in Glacier National Park, Montana

    USGS Publications Warehouse

    Stetz, Jeff B.; Kendall, Katherine C.; Macleod, Amy C.

    2013-01-01

    We report the first abundance and density estimates for American black bears (Ursus americanus) in Glacier National Park (NP),Montana, USA.We used data from 2 independent and concurrent noninvasive genetic sampling methods—hair traps and bear rubs—collected during 2004 to generate individual black bear encounter histories for use in closed population mark–recapture models. We improved the precision of our abundance estimate by using noninvasive genetic detection events to develop individual-level covariates of sampling effort within the full and one-half mean maximum distance moved (MMDM) from each bear’s estimated activity center to explain capture probability heterogeneity and inform our estimate of the effective sampling area.Models including the one-halfMMDMcovariate received overwhelming Akaike’s Information Criterion support suggesting that buffering our study area by this distance would be more appropriate than no buffer or the full MMDM buffer for estimating the effectively sampled area and thereby density. Our modelaveraged super-population abundance estimate was 603 (95% CI¼522–684) black bears for Glacier NP. Our black bear density estimate (11.4 bears/100 km2, 95% CI¼9.9–13.0) was consistent with published estimates for populations that are sympatric with grizzly bears (U. arctos) and without access to spawning salmonids. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Theoretical life history responses of juvenile Oncorhynchus mykiss to changes in food availability using a dynamic state-dependent approach

    USGS Publications Warehouse

    Romine, Jason G.; Benjamin, Joseph R.; Perry, Russell W.; Casal, Lynne; Connolly, Patrick J.; Sauter, Sally S.

    2013-01-01

    Marine subsidies can play an important role in the growth, survival, and migratory behavior of rearing juvenile salmonids. Availability of high-energy, marine-derived food sources during critical decision windows may influence the timing of emigration or the decision to forego emigration completely and remain in the freshwater environment. Increasing growth and growth rate during these decision windows may result in an altered juvenile population structure, which will ultimately affect the adult population age-structure. We used a state dependent model to understand how the juvenile Oncorhynchus mykiss population structure may respond to increased availability of salmon eggs in their diet during critical decision windows. Our models predicted an increase in smolt production until coho salmon eggs comprised more than 50 percent of juvenile O. mykiss diet at the peak of the spawning run. At higher-than intermediate levels of egg consumption, smolt production decreased owing to increasing numbers of fish adopting a resident life-history strategy. Additionally, greater growth rates decreased the number of age-3 smolts and increased the number of age-2 smolts. Increased growth rates with higher egg consumption also decreased the age at which fish adopted the resident pathway. Our models suggest that the introduction of a high-energy food source during critical periods of the year could be sufficient to increase smolt production.

  5. Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?

    PubMed Central

    Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P

    2014-01-01

    Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized. PMID:25360283

  6. Underwater methods for study of salmonids in the Intermountain West

    Treesearch

    Russell F. Thurow

    1994-01-01

    This guide describes underwater methods using snorkeling gear to study fish populations in flowing waters of the Intermountain West. It outlines procedures for estimating salmonid abundance and habitat use and provides criteria for identifying and estimating the size of fish underwater.

  7. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2008-2009 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia River Basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: The ratio of jack to adult male Chinook salmon were varied in experimental breeding populations to test the hypothesis that reproductive success of the two male phenotypes would vary with their relativemore » frequency in the population. Adult Chinook salmon males nearly always obtained primary access to nesting females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Observed participation in spawning events and adult-to-fry reproductive success of jack and adult males was consistent with a negative frequency-dependent selection model. Overall, jack males sired an average of 21% of the offspring produced across a range of jack male frequencies. Implications of these and additional findings on Chinook salmon hatchery broodstock management will be presented in the FY 2009 Annual Report. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. Expression levels of basic amino acid receptor (BAAR) mRNA in the olfactory epithelium increased dramatically during final maturation in both Stanley Basin and Okanogan River sockeye. These increases appeared to be independent of odor exposure history, rising significantly in both arginine-naive and arginine-exposed fish. However, sockeye exposed to arginine during smolting demonstrated a larger increase in BAAR mRNA than arginine-naive fish. These results are consistent with the hypothesis that odorant receptors sensitive to home stream waters may be upregulated at the time of the homing migration and may afford opportunities to exploit this system to experimentally characterize imprinting success and ultimately identify hatchery practices that will minimize straying of artificially produced salmonids. Additional analysis of Sockeye salmon imprinting and further implications of these findings will be presented in the FY 2009 Annual Report. Objective 3: Photoperiod at emergence and ration after ponding were varied in Yakima River spring Chinook salmon to test the hypothesis that seasonal timing of emergence and growth during early stages of development alter seasonal timing of smoltification and age of male maturation. Fish reared under conditions to advance fry emergence and accelerate growth had the greatest variation in seasonal timing of smolting (fall, spring and summer) and highest rates of early male maturation with most males maturing at age 1 (35-40%). In contrast, fish with delayed emergence and slow growth had the least variation in phenotypes with most fish smolting as yearlings in the spring and no age-1 male maturation. Growth (not emergence timing) altered rates of age-2 male maturation. Results of this study demonstrate that altering fry development, as is often done in hatcheries, can profoundly affect later life history transitions and the range of phenotypes within a spring Chinook salmon population. Additional work in the next funding period will determine if these rearing regimes affected other aspects of smolt quality, which may affect ultimate survival upon ocean entry.« less

  8. Salmon as drivers of physical and biological disturbance in river channels

    NASA Astrophysics Data System (ADS)

    Albers, S. J.; Petticrew, E. L.

    2012-04-01

    Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended sediment concentration. To monitor sediment infiltration into the gravelbed we used modified infiltration bag samplers. Lastly, to examine the contribution of salmon nutrients to the infiltrated sediment we sampled for the presence of a marine isotope signature (15N) in the sediment. Increased sediment in the water column of the salmon enclosure during the active spawn period indicated salmon-mediated sediment resuspension. A gravelbed response to this water column disturbance was detected via increased sediment infiltration during salmon spawning. This stored sediment was enriched in organic matter and 15N indicating a marine salmon signal. Significant relationships between sediment infiltration and salmon enrichment provided further evidence that salmon organic matter, using resuspended sediment as a vector, was infiltrating into the gravelbed. During the post-spawn period organic sediment was elevated in the water column and gravelbed infiltration was reduced reflecting respectively, the release of decay products from salmon carcasses and MDN release from temporary gravelbed storage. This study demonstrated that localized patterns of sediment deposition are regulated by salmon activity, which control gravelbed MDN storage and release. Salmon-mediated, sediment vector influences on riverine habitat have been quantified here on a small experimental scale, but we expect that the effect is replicated and magnified, as it occurs regionally throughout the spawning grounds, with significant ecosystem implications.

  9. Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: evidence for subpopulation differentiation

    USGS Publications Warehouse

    Burger, C.V.; Finn, J.E.; Holland-Bartels, L.

    1995-01-01

    Alaskan sockeye salmon typically spawn in lake tributaries during summer (early run) and along clear-water lake shorelines and outlet rivers during fall (late run). Production at the glacially turbid Tustumena Lake and its outlet, the Kasilof River (south-central Alaska), was thought to be limited to a single run of sockeye salmon that spawned in the lake's clear-water tributaries. However, up to 40% of the returning sockeye salmon enumerated by sonar as they entered the lake could not be accounted for during lake tributary surveys, which suggested either substantial counting errors or that a large number of fish spawned in the lake itself. Lake shoreline spawning had not been documented in a glacially turbid system. We determined the distribution and pattern of sockeye salmon spawning in the Tustumena Lake system from 1989 to 1991 based on fish collected and radiotagged in the Kasilof River. Spawning areas and time were determined for 324 of 413 sockeye salmon tracked upstream into the lake after release. Of these, 224 fish spawned in tributaries by mid-August and 100 spawned along shoreline areas of the lake during late August. In an additional effort, a distinct late run was discovered that spawned in the Kasilof River at the end of September. Between tributary and shoreline spawners, run and spawning time distributions were significantly different. The number of shoreline spawners was relatively stable and independent of annual escapement levels during the study, which suggests that the shoreline spawning component is distinct and not surplus production from an undifferentiated run. Since Tustumena Lake has been fully deglaciated for only about 2,000 years and is still significantly influenced by glacier meltwater, this diversification of spawning populations is probably a relatively recent and ongoing event.

  10. Fish population and habitat analysis in Buck Creek, Washington, prior to recolonization by anadromous salmonids after the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.

    2012-01-01

    We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has been removed and anadromous fish have an opportunity to recolonize Buck Creek.

  11. Hydrological response to timber harvest in northern Idaho: Implications for channel scour and persistence of salmonids

    Treesearch

    Daniele Tonina; Charles H. Luce; Bruce Rieman; John M. Buffington; Peter Goodwin; Stephen R. Clayton; Shawkat Md. Ali; Jeffrey J. Barry; Charles Berenbrock

    2008-01-01

    The potential for forest harvest to increase snowmelt rates in maritime snow climates is well recognized. However, questions still exist about the magnitude of peak flow increases in basins larger than 10 km2 and the geomorphic and biological consequences of these changes. In this study, we used observations from two nearly adjacent small basins...

  12. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Treesearch

    Rebecca L. Flitcroft; Jeffrey A. Falke; Gordon H. Reeves; Paul F. Hessburg; Kris M. McNyset; Lee E. Benda

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed...

  13. Effects of colony relocation on diet and productivity of Caspian terns

    USGS Publications Warehouse

    Roby, D.D.; Collis, K.; Lyons, Donald E.; Craig, D.P.; Adkins, J.Y.; Myers, A.M.; Suryan, R.M.

    2002-01-01

    We investigated the efficacy of management to reduce the impact of Caspian tern (Sterna caspia) predation on survival of juvenile salmonids (Oncorhynchus spp.) in the Columbia River estuary. Resource managers sought to relocate approximately 9,000 pairs of terns nesting on Rice Island (river km 34) to East Sand Island (river km 8), where terns were expected to prey on fewer juvenile salmonids. Efforts to attract terns to nest on East Sand Island included creation of nesting habitat, use of social attraction techniques, and predator control, with concurrent efforts to discourage terns from nesting on Rice Island. This approach was successful in completely relocating the tern colony from Rice Island to East Sand Island by the third breeding season. Juvenile salmonids decreased and marine forage fishes (i.e., herring, sardine, anchovy, smelt, surfperch, Pacific sand lance) increased in the diet of Caspian terns nesting on East Sand Island, compared with terns nesting on Rice Island. During 1999 and 2000, the diet of terns nesting on Rice Island consisted of 77% and 90% juvenile salmonids, respectively, while during 1999, 2000, and 2001, the diet of terns nesting on East Sand Island consisted of 46%, 47%, and 33% juvenile salmonids, respectively. Nesting success of Caspian terns was consistently and substantially higher on East Sand Island than on Rice Island. These results indicate that relocating the Caspian tern colony was an effective management action for reducing predation on juvenile salmonids without harm to the population of breeding terns, at least in the short term. The success of this management approach largely was a consequence of the nesting and foraging ecology of Caspian terns: the species shifts breeding colony sites frequently in response to changing habitats, and the species is a generalist forager, preying on the most available forage fish near the colony.

  14. A preliminary analysis of trace-elemental signatures in statoliths of different spawning cohorts for Dosidicus gigas off EEZ waters of Chile

    NASA Astrophysics Data System (ADS)

    Liu, Bilin; Chen, Xinjun; Fang, Zhou; Hu, Song; Song, Qian

    2015-12-01

    We applied solution-based ICP-MS method to quantify the trace-elemental signatures in statoliths of jumbo flying squid, Dosidius gigas, which were collected from the waters off northern and central Chile during the scientific surveys carried out by Chinese squid jigging vessels in 2007 and 2008. The age and spawning date of the squid were back-calculated based on daily increments in statoliths. Eight elemental ratios (Sr/Ca, Ba/Ca, Mg/Ca, Mn/Ca, Na/Ca, Fe/Ca, Cu/Ca and Zn/Ca) were analyzed. It was found that Sr is the second most abundant element next to Ca, followed by Na, Fe, Mg, Zn, Cu, Ba and Mn. There was no significant relationship between element/Ca and sea surface temperature (SST) and sea surface salinity (SSS), although weak negative or positive tendency was found. MANOVA analysis showed that multivariate elemental signatures did not differ among the cohorts spawned in spring, autumn and winter, and no significant difference was found between the northern and central sampling locations. Classification results showed that all individuals of each spawned cohorts were correctly classified. This study demonstrates that the elemental signatures in D. gigas statoliths are potentially a useful tool to improve our understanding of its population structure and habitat environment.

  15. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    PubMed

    Zięba, Grzegorz; Fox, Michael G; Copp, Gordon H

    2015-01-01

    Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts) appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime.

  16. Bacterial infections of Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to gamete collecting weirs in Michigan.

    PubMed

    Loch, T P; Scribner, K; Tempelman, R; Whelan, G; Faisal, M

    2012-01-01

    Herein, we describe the prevalence of bacterial infections in Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to spawn in two tributaries within the Lake Michigan watershed. Ten bacterial genera, including Renibacterium, Aeromonas, Carnobacterium, Serratia, Proteus, Pseudomonas, Hafnia, Salmonella, Shewanella and Morganella, were detected in the kidneys of Chinook salmon (n = 480) using culture, serological and molecular analyses. Among these, Aeromonas salmonicida was detected at a prevalence of ∼15%. Analyses revealed significant interactions between location/time of collection and gender for these infections, whereby overall infection prevalence increased greatly later in the spawning run and was significantly higher in females. Renibacterium salmoninarum was detected in fish kidneys at an overall prevalence of >25%. Logistic regression analyses revealed that R. salmoninarum prevalence differed significantly by location/time of collection and gender, with a higher likelihood of infection later in the spawning season and in females vs. males. Chi-square analyses quantifying non-independence of infection by multiple pathogens revealed a significant association between R. salmoninarum and motile aeromonad infections. Additionally, greater numbers of fish were found to be co-infected by multiple bacterial species than would be expected by chance alone. The findings of this study suggest a potential synergism between bacteria infecting spawning Chinook salmon. © 2011 Blackwell Publishing Ltd.

  17. A hidden-process model for estimating prespawn mortality using carcass survey data

    USGS Publications Warehouse

    DeWeber, J. Tyrell; Peterson, James T.; Sharpe, Cameron; Kent, Michael L.; Colvin, Michael E.; Schreck, Carl B.

    2017-01-01

    After returning to spawning areas, adult Pacific salmon Oncorhynchus spp. often die without spawning successfully, which is commonly referred to as prespawn mortality. Prespawn mortality reduces reproductive success and can thereby hamper conservation, restoration, and reintroduction efforts. The primary source of information used to estimate prespawn mortality is collected through carcass surveys, but estimation can be difficult with these data due to imperfect detection and carcasses with unknown spawning status. To facilitate unbiased estimation of prespawn mortality and associated uncertainty, we developed a hidden-process mark–recovery model to estimate prespawn mortality rates from carcass survey data while accounting for imperfect detection and unknown spawning success. We then used the model to estimate prespawn mortality and identify potential associated factors for 3,352 adult spring Chinook Salmon O. tshawytscha that were transported above Foster Dam on the South Santiam River (Willamette River basin, Oregon) from 2009 to 2013. Estimated prespawn mortality was relatively low (≤13%) in most years (interannual mean = 28%) but was especially high (74%) in 2013. Variation in prespawn mortality estimates among outplanted groups of fish within each year was also very high, and some of this variation was explained by a trend toward lower prespawn mortality among fish that were outplanted later in the year. Numerous efforts are being made to monitor and, when possible, minimize prespawn mortality in salmon populations; this model can be used to provide unbiased estimates of spawning success that account for unknown fate and imperfect detection, which are common to carcass survey data.

  18. DEVELOPMENT OF FIELD-BASED EMPIRICAL MODELS OF SUITABLE TEMPERATURE REGIMES FOR INTERIOR SALMONIDS

    EPA Science Inventory

    Interior salmonids are species of growing interest and concern in the Pacific Northwest. Evidence of population declines associated with habitat loss and fragmentation have culminate in every species being listed, or proposed or petitioned for listing under he Endangered Species...

  19. GEOMORPHOLOGY AND ANTHROPOGENIC INFLUENCES ON FISH AND AMPHIBIANS IN PACIFIC NORTHWEST COASTAL STREAMS

    EPA Science Inventory

    Physical habitat degradation has been implicated as a major contributor to the historic decline of salmonids in Pacific Northwest streams. Native aquatic vertebrate assemblages in the Oregon and Washington Coast Range consist primarily of coldwater salmonids, cottids, and amphib...

  20. Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum...

  1. Cryptic flows: using multiple tracers to relate dissolved oxygen to hyporheic and groundwater flowpaths in intermittent salmonid streams

    NASA Astrophysics Data System (ADS)

    Woelfle-Erskine, C. A.; Larsen, L.; Gomez-Velez, J. D.

    2016-12-01

    Intermittent streams provide important habitat for aquatic species, including endangered salmonid fishes, but during prolonged dry periods may become depleted in dissolved oxygen (DO). The rate of depletion and the consequent length of time a pool remains habitable depend on DO and carbon concentrations in groundwater and hyporheic flow, and within-pool metabolic rates. We performed repeat surveys, habitat characterization, and ecohydrologic sampling on two intermittent tributaries of Salmon Creek (Sonoma Co., CA) to elucidate controls on salmonid over-summer survival at the pool scale. Pools exhibited heterogeneity within and across stream reaches in salmonid recruitment and survival during the summer dry period. In classification tree analysis, high conductivity (>310 mS/cm) and low DO (<2 ppm) were negatively associated with salmonid survival, with high pool conductivity resulting from either groundwater inflow or evapo-concentration. To distinguish between surface, hyporheic, and groundwater contributions, we measured dissolved organic carbon (DOC) concentration and fluorescence excitation-emission matrices (EEMs), radon (222Rn), and stable isotopes (18O and D) in pools, hyporheic flow, and wells and springs in local aquifers. Radon concentrations in pools ranged from 1.5-2.3 Bq/l, 3-4 orders of magnitude higher than expected for water in equilibrium with air, suggesting substantial groundwater inflow. We developed a five-component PARAFAC model from the EEMs and used with the isotope data to perform an end-member mixing analysis to track water sources and flowpaths. These analyses suggested high separability among groundwaters from aquifers separated by faults and between groundwater and surface water, with groundwater of different age and flowpath length discharging to different pools. Pools with shallow groundwater or hyporheic flow sustained DO concentrations above the threshold for salmonid survival, with shallow groundwater unexpectedly acting as a source of DO to the stream. These inflows were further essential for inhibiting stagnation and promoting reaeration across the air-water interface. These results suggest that conservation measures to promote aquifer recharge and sustain summer baseflow may be essential for maintaining salmonid populations during drought.

  2. Evidence of autumn spawning in Suwannee River Gulf sturgeon, Acipenser oxyrinchus desotoi (Vladykov, 1955)

    USGS Publications Warehouse

    Randall, M.T.; Sulak, K.J.

    2012-01-01

    Evidence of autumn spawning of Gulf sturgeon Acipenser oxyrinchus desotoi in the Suwannee River, Florida, was compiled from multiple investigations between 1986 and 2008. Gulf sturgeon are known from egg collections to spawn in the springtime months following immigration into rivers. Evidence of autumn spawning includes multiple captures of sturgeon in September through early November that were ripe (late-development ova; motile sperm) or exhibited just-spawned characteristics, telemetry of fish that made >175 river kilometer upstream excursions to the spawning grounds in September–October, and the capture of a 9.3 cm TL age-0 Gulf sturgeon on 29 November 2000 (which would have been spawned in late September 2000). Analysis of age-at-length data indicates that ca. 20% of the Suwannee River Gulf sturgeon population may be attributable to autumn spawning. However, with the very low sampling effort expended, eggs or early life stages have not yet been captured in the autumn, which would be the conclusive proof of autumn spawning. More sampling, and sampling at previously unknown sites frequented by acoustic telemetry fish, would be required to find eggs.

  3. Temporal variations in the fecundity of Arcto-Norwegian cod ( Gadus morhua) in response to natural changes in food and temperature

    NASA Astrophysics Data System (ADS)

    Kjesbu, O. S.; Witthames, P. R.; Solemdal, P.; Greer Walker, M.

    1998-12-01

    Sexually mature Arcto-Norwegian female cod, Gadus morhua, were sampled off northern Norway either during spawning migration (Vesterålen) or at spawning sites (Lofoten) from 1986 to 1996. This period comprised a dramatic, nearly cyclical change in the Barents Sea ecosystem. The stock of the main food item, viz. the Barents Sea capelin Mallotus villosus villosus, changed from a low (1986), to a high (1991) and again to a low (1994) level of abundance while the climate changed from a cold (≤1989) to a warm regime. The relative annual potential fecundity (i.e. number of vitellogenic oocytes per g prespawning fish) increased by approximately 40% from 1987 to 1991. However, information from a back-calculation technique calibrated in the laboratory using spawning fish indicated that this change might have been as high as 80 to 90%. Ovaries were analysed by the gravimetric, the automated particle counting and the stereometric method (modified to use with ovaries too large to section whole). All three methods gave similar fecundity estimates. The latter method was applied to quantify atresia of developing oocytes in the good-condition year of 1991. Atresia was rare, occurring in only 30% of the ovaries and where it was present in only 1 to 4% of the vitellogenic oocytes. Spawning females sampled from 1991 to 1996 gradually produced fewer eggs and demonstrated clear interannual variations in vitellogenic oocyte mean size and distribution thought to reflect a delicate reproductive tactic to minimise negative nutritional effects on egg size and egg quality. Estimates of annual potential fecundity for the duration of the study were significantly positively correlated with environmental temperature and the availability of capelin during vitellogenesis.

  4. Manipulations of the reproductive system of fishes by means of exogenous chemicals

    USGS Publications Warehouse

    Patino, R.

    1997-01-01

    Environmental control of reproductive activity of captive fish is feasible (or potentially feasible) but, with few exceptions, is currently impractical for most species. Therefore, chemical methods of manipulating reproductive activity continue to be widely used in fish production operations worldwide. However, the control of fish reproduction in captivity cannot be exercised without regard to adequate environmental conditions, which can differ markedly for different species. This review provides a synopsis of relevant aspects of fish reproductive physiology and addresses current and promising future chemical methods of sex control, gonadal recrudescence, and spawning. Most research on the control of reproduction in fishes has focused on female physiology because ovarian development and maturation are easily disturbed by environmental stressors. Control of sex ratios by steroid treatment has become a well-established technique for several fish species, but the technique continues to be problematic in some cases. Final gonadal growth and spawning usually can be achieved by implant treatment with gonadotropin-releasing hormone analogs (GnRHa), which in some species have to be applied in combination with dopamine antagonists to enhance responsiveness to GnRHa. However, efforts to accelerate gonadal recrudescence and maturational competence by chemical means have yielded mixed results, reflecting a relative lack of understanding of the basic physiological and biochemic mechanisms controlling these processes. The potential benefits of using reproductive pheromone, to manipulate gonadal development and spawning has been demonstrated in a few species, but further research is needed to determine whether this technique is applicable to fish culture. Because a reliable supply of young fish is critical for the expansion and diversification of fish culture operations, the use of chemicals in combination with adequate environmental conditions to contain gametogenesis and spawning in fishes will continue to be an important tool for the fish culture.

  5. Rate of disappearance of gas bubble trauma signs in juvenile salmonids

    USGS Publications Warehouse

    Hans, K.M.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.

  6. The waterfall paradox: How knickpoints disconnect hillslope and channel processes, isolating salmonid populations in ideal habitats

    NASA Astrophysics Data System (ADS)

    May, Christine; Roering, Josh; Snow, Kyle; Griswold, Kitty; Gresswell, Robert

    2017-01-01

    Waterfalls create barriers to fish migration, yet hundreds of isolated salmonid populations exist above barriers and have persisted for thousands of years in steep mountainous terrain. Ecological theory indicates that small isolated populations in disturbance-prone landscapes are at greatest risk of extirpation because immigration and recolonization are not possible. On the contrary, many above-barrier populations are currently thriving while their downstream counterparts are dwindling. This quandary led us to explore geomorphic knickpoints as a mechanism for disconnecting hillslope and channel processes by limiting channel incision and decreasing the pace of base-level lowering. Using LiDAR from the Oregon Coast Range, we found gentler channel gradients, wider valleys, lower gradient hillslopes, and less shallow landslide potential in an above-barrier catchment compared to a neighboring catchment devoid of persistent knickpoints. Based on this unique geomorphic template, above-barrier channel networks are less prone to debris flows and other episodic sediment fluxes. These above-barrier catchments also have greater resiliency to flooding, owing to wider valleys with greater floodplain connectivity. Habitat preference models further indicate that salmonid habitat is present in greater quantity and quality in these above-barrier networks. Therefore the paradox of the persistence of small isolated fish populations may be facilitated by a geomorphic mechanism that both limits their connectivity to larger fish populations yet dampens the effect of disturbance by decreasing connections between hillslope and channel processes above geomorphic knickpoints.

  7. Modeling hydraulic and sediment transport processes in white sturgeon spawning habitat on the Kootenai River, Idaho

    USGS Publications Warehouse

    McDonald, Richard R.; Nelson, Jonathan M.; Vaughn Paragamian,; Barton, Gary J.

    2017-01-01

    The Kootenai River white sturgeon currently spawn (2005) in an 18-kilometer reach of the Kootenai River, Idaho. Since completion of Libby Dam upstream from the spawning reach, there has been only one successful year of recruitment of juvenile fish. Where successful in other rivers, white sturgeon spawn over clean coarse material of gravel size or larger. The channel substrate in the current spawning reach is composed primarily of sand and some buried gravel; within a few kilometers upstream there is clean gravel. We used a 2-dimensional flow and sediment-transport model and the measured locations of sturgeon spawning from 1994-2002 to gain insight into the paradox between the current spawning location and the absence of suitable substrate. Spatial correlations between spawning locations and the model simulations of velocity and depth indicate the white sturgeon tend to select regions of highest velocity and depth within any river cross-section to spawn. These regions of high velocity and depth are independent of pre- or post-dam flow conditions. A simple sediment-transport simulation suggests that high discharge and relatively long duration flow associated with pre-dam flow events might be sufficient to scour the sandy substrate and expose existing lenses of gravel and cobble as lag deposits in the current spawning reach.

  8. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora

    PubMed Central

    Puill-Stephan, E.; van Oppen, M. J. H.; Pichavant-Rafini, K.; Willis, B. L.

    2012-01-01

    In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism. PMID:21752820

  9. High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, Acropora millepora.

    PubMed

    Puill-Stephan, E; van Oppen, M J H; Pichavant-Rafini, K; Willis, B L

    2012-02-22

    In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.

  10. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromis niloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts. Copyright (C) 1998 Elsevier Science Inc.

  11. Do spawn storage conditions influence the colonization capacity of a wheat-straw-based substrate by Agaricus subrufescens?

    PubMed

    Farnet, Anne-Marie; Qasemian, Leila; Peter-Valence, Frédérique; Ruaudel, Florence; Savoie, Jean-Michel; Roussos, Sevastianos; Gaime-Perraud, Isabelle; Ziarelli, Fabio; Ferré, Élisée

    2014-01-01

    Storage conditions of the spawn of edible fungi are of major importance to facilitate the production of mushrooms. Here, standard storage conditions at 10°C or 15°C were used and the potential of colonization of standard European compost by the tropical species Agaricus subrufescens was assessed during the spawn running phase. Two lignocellulolytic activities, laccase and CMC-cellulase, were enhanced after storage compared to control as well as substrate transformation, as described by the aromaticity ratio and a humification ratio calculated from NMR data. This result indicates that mycelium growth probably occurred during storage at 10 or 15°C, leading to a larger amount of biomass in the inoculum. Moreover, the microbial functional diversity of the substrate was favored, showing that the electivity of the substrate was maintained. Thus, these findings indicate that recommendations for the mushroom producers can be established for A. subrufescens cultivation under European standard conditions. Copyright © 2014. Published by Elsevier SAS.

  12. Comparative Assessment of the Reproductive Status of Female Atlantic Bluefin Tuna from the Gulf of Mexico and the Mediterranean Sea

    PubMed Central

    Knapp, Jessica M.; Aranda, Guillermo; Medina, Antonio; Lutcavage, Molly

    2014-01-01

    Despite attention focused on the population status and rebuilding trajectory of Atlantic bluefin tuna (Thunnus thynnus), the reproduction and spawning biology remains poorly understood, especially in the NW Atlantic. At present, the eastern and western spawning populations are believed to exhibit different reproductive characteristics and, consequently, stock productivity. However, our study suggests that the two spawning populations, the Gulf of Mexico and the Mediterranean Sea, could show similar reproductive features and spawning strategies. Between 2007 and 2009, gonad samples from female Atlantic bluefin tuna were collected in the northern Gulf of Mexico (n = 147) and in the western Mediterranean Sea (n = 40). The histological and stereological analysis confirmed that sampled eastern and western bluefin tuna exhibit the same spawning duration (three months) but the spawning in the Gulf of Mexico begins one month earlier than in the Mediterranean Sea. Western bluefin tuna caught in the peak of the spawning season (May) showed a similar spawning frequency (60%) to the spawning peak observed in the Mediterranean Sea (June). Fecundity for the Gulf of Mexico fish () was lower but not significantly different than for fish sampled in the Mediterranean Sea (). Our study represents the first comparative histological analysis of the eastern and western spawning stocks whose findings, combined with new determinations of size/age at maturity and possible alternative spawning areas, might suggest basic life history attributes warrant further scientific and management attention. PMID:24911973

  13. New insight into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes

    USGS Publications Warehouse

    Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.

    2015-01-01

    Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.

  14. Comparative assessment of the reproductive status of female Atlantic bluefin tuna from the Gulf of Mexico and the Mediterranean Sea.

    PubMed

    Knapp, Jessica M; Aranda, Guillermo; Medina, Antonio; Lutcavage, Molly

    2014-01-01

    Despite attention focused on the population status and rebuilding trajectory of Atlantic bluefin tuna (Thunnus thynnus), the reproduction and spawning biology remains poorly understood, especially in the NW Atlantic. At present, the eastern and western spawning populations are believed to exhibit different reproductive characteristics and, consequently, stock productivity. However, our study suggests that the two spawning populations, the Gulf of Mexico and the Mediterranean Sea, could show similar reproductive features and spawning strategies. Between 2007 and 2009, gonad samples from female Atlantic bluefin tuna were collected in the northern Gulf of Mexico (n = 147) and in the western Mediterranean Sea (n = 40). The histological and stereological analysis confirmed that sampled eastern and western bluefin tuna exhibit the same spawning duration (three months) but the spawning in the Gulf of Mexico begins one month earlier than in the Mediterranean Sea. Western bluefin tuna caught in the peak of the spawning season (May) showed a similar spawning frequency (60%) to the spawning peak observed in the Mediterranean Sea (June). Fecundity for the Gulf of Mexico fish (28.14 eggs · g(-1)) was lower but not significantly different than for fish sampled in the Mediterranean Sea (45.56 eggs · g(-1)). Our study represents the first comparative histological analysis of the eastern and western spawning stocks whose findings, combined with new determinations of size/age at maturity and possible alternative spawning areas, might suggest basic life history attributes warrant further scientific and management attention.

  15. Modelling the Future Hydroclimatology of the Lower Fraser River and its Impacts on the Spawning Migration Survival of Sockeye Salmon

    NASA Technical Reports Server (NTRS)

    Hague, M. J.; Ferrari, M. R.; Miller, J. R.; Patterson, D. A.; Russell, G. L.; Farrell, A.P.; Hinch, S. G.

    2010-01-01

    Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 C increase in average summer water temperature over 100 years (1981-2000 to 2081-2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, => 90% of salmon encountered temperatures exceeding population specific thermal optima for maximum aerobic scope; T(sub opt)) = 16.3 C for Gates Creek and T(sub sopt)=14.5 C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations =>50% of Weaver Creek fish exceeded temperature thresholds associated with 0 - 60% of maximum aerobic scope). Potential for adaptation via directional selection on run-timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15 - 31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0 - 17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population-specific differences in behaviour and physiological constraints when forecasting impacts of climate change on migratory survival of aquatic species.

  16. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  17. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    USGS Publications Warehouse

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  18. Temporal patterns of migration and spawning of river herring in coastal Massachusetts

    USGS Publications Warehouse

    Rosset, Julianne; Roy, Allison; Gahagan, Benjamin I.; Whiteley, Andrew R.; Armstrong, Michael P.; Sheppard, John J.; Jordaan, Adrian

    2017-01-01

    Migrations of springtime Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, collectively referred to as river herring, are monitored in many rivers along the Atlantic coast to estimate population sizes. While these estimates give an indication of annual differences in the number of returning adults, links to the subsequent timing and duration of spawning and freshwater juvenile productivity remain equivocal. In this study, we captured juvenile river herring at night in 20 coastal Massachusetts lakes using a purse seine and extracted otoliths to derive daily fish ages and back-calculate spawn dates. Estimates of spawning dates were compared with fishway counts of migrating adults to assess differences in migration timing and the timing and duration of spawning. We observed a distinct delay between the beginning of the adult migration run and the start of spawning, ranging from 7 to 28 d across the 20 lakes. Spawning continued 13–48 d after adults stopped migrating into freshwater, further demonstrating a pronounced delay in spawning following migration. Across the study sites the duration of spawning (43–76 d) was longer but not related to the duration of migration (29–66 d). The extended spawning period is consistent with recent studies suggesting that Alewives are indeterminate spawners. The long duration in freshwater provides the opportunity for top-down (i.e., predation on zooplankton) and bottom-up (i.e., food for avian, fish, and other predators) effects, with implications for freshwater food webs and nutrient cycling. General patterns of spawn timing and duration can be incorporated into population models and used to estimate temporal changes in productivity associated with variable timing and density of spawning river herring in lakes.

  19. Identification of differentially expressed reproductive and metabolic proteins in the female abalone (Haliotis laevigata) gonad following artificial induction of spawning.

    PubMed

    Mendoza-Porras, Omar; Botwright, Natasha A; Reverter, Antonio; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2017-12-01

    Inefficient control of temperate abalone spawning prevents pair-wise breeding and production of abalone with highly marketable traits. Traditionally, abalone farmers have used a combination of UV irradiation and application of temperature gradients to the tank water to artificially induce spawning. Proteins are known to regulate crucial processes such as respiration, muscle contraction, feeding, growth and reproduction. Spawning as a pre-requisite of abalone reproduction is likely to be regulated, in part, by endogenous proteins. A first step in elucidating the mechanisms that regulate spawning is to identify which proteins are directly involved during spawning. The present study examined protein expression following traditional spawning induction in the Haliotis laevigata female. Gonads were collected from abalone in the following physiological states: (1) spawning; (2) post-spawning; and (3) failed-to-spawn. Differential protein abundance was initially assessed using two-dimensional difference in-gel electrophoresis coupled with mass spectrometry for protein identification. A number of reproductive proteins such as vitellogenin, vitelline envelope zona pellucida domain 29 and prohibitin, and metabolic proteins such as thioredoxin peroxidase, superoxide dismutase and heat shock proteins were identified. Differences in protein abundance levels between physiological states were further assessed using scheduled multiple reaction monitoring mass spectrometry. Positive associations were observed between the abundance of specific proteins, such as heat shock cognate 70 and peroxiredoxin 6, and the propensity or failure to spawn in abalone. These findings have contributed to better understand both the effects of oxidative and heat stress over abalone physiology and their influence on abalone spawning. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Discovery of Emerging Per-and Polyfluoroalkyl Substances

    EPA Science Inventory

    Legacy perfluorinated compounds exhibit significant environmental persistence and bioaccumulation potential, which has spawned an ongoing effort to introduce replacement compounds with reduced toxicological risk profiles. Many of these emerging chemical species lack validated qua...

  1. Characterization of environmental cues for initiation of reproductive cycling and spawning in shovelnose sturgeon Scaphirhynchus platorynchus in the Lower Missouri River, USA

    USGS Publications Warehouse

    Papoulias, D.M.; DeLonay, A.J.; Annis, M.L.; Wildhaber, M.L.; Tillitt, D.E.

    2011-01-01

    We presume that the shovelnose sturgeon (Scaphirhynchus platorynchus) has evolved to spawn in the springtime when environmental conditions are at some optimum, but this state has not yet been defined. In this study physiological readiness to spawn in shovelnose sturgeon was examined to define more closely when spawning could occur and thus identify and evaluate prevailing environmental conditions that could cue spawning during that period. Reproductive assessments of Lower Missouri River shovelnose during 4 years (2005-2008) and at two locations (Gavins Point Dam, South Dakota and Boonville, Missouri) were used to identify shovelnose sturgeon spawning periods. Initiation of the spawning period, as defined by the presence of reproductively ready fish, was a highly predictable yearly event and extended over several weeks at each reach. The spawning period occurred earlier in the lower reach than in the upper reach and environmental conditions during the periods varied between locations and among years. Shovelnose sturgeon collected during the presumed spawning periods were at varying degrees of readiness to spawn as indicated by oocyte polarization index and blood reproductive hormones. Evaluation of the influence of environmental factors on readiness to spawn using stepwise multiple regression analysis indicated photoperiod followed by temperature were the best candidate variables overall to explain the trend. However, within geographically distinct populations gravid females are not all reproductively synchronized. Assuming that this apparent asynchrony in readiness is normal and not an artifact of the disturbed Missouri River system, we infer that individual sturgeon can persist in a reproductively ready state until conditions appropriate for spawning occur. Taken together, our results lead us to hypothesize that gravid females early in the reproductive cycle (post-vitellogenesis) respond to day length, a reliable annual cue, become increasingly more ready to spawn in response to temperature, and that another set of cues, short-term and specific for localized environmental conditions or events, serve to signal ovulation and release of gametes.

  2. Conservation and Management for Fish-eating Birds and Endangered Salmon

    Treesearch

    D. D. Roby; K. Collis; D. E. Lyons

    2005-01-01

    A conflict involving piscivorous birds and salmonids in the Pacific Northwest pits the conservation of protected migratory waterbirds against the restoration of Columbia Basin salmonids (Oncorhynchus spp.) that are listed under the U.S. Endangered Species Act. The Columbia River Avian Predation Project is a cooperative, collaborative research project...

  3. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most wide...

  4. ADULT COHO SALMON AND STEELHEAD USE OF BOULDER WEIRS IN SOUTHWEST OREGON STREAMS

    EPA Science Inventory

    The placement of log and boulder structures in streams is a common and often effective technique for improving juvenile salmonid rearing habitat and increasing fish densities. Less frequently examined has been the use of these structures by adult salmonids. In 2004, spawner densi...

  5. Genetic diversity of Flavobacterium psychrophilum isolates from three Oncorhynchus spp. in the United States, as revealed by multilocus sequence typing

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium psychrophilum is an important pathogen of salmonids worldwide. Multilocus sequence typing (MLST) has identified a recombinogenic population structure from which emerged a few epidemic clonal complexes particularly threatening for salmonid aquaculture. To date, MLST genotypes for this ...

  6. Legal and Institutional Constraints on Aquaculture in Dredged Material Containment Areas

    DTIC Science & Technology

    1993-04-01

    and Wildlife Service La Crosse, WI 54602-0818 48 2A. FIVE DRUGS APPROVED FOR FOOD FISH: 1. Oxytetracycline (feed): Salmonids, Catfish. 21 C.F.R. 558.540...Erythromycin Salmonids Bacterial Kidney U. of Idaho (injection) Disease Oxytetracycline Striped Bass Bacterial Auburn U. Infections Formalin Striped Bass

  7. Variation in salmonid life histories: patterns and perspectives.

    Treesearch

    Mary F. Willson

    1997-01-01

    Salmonid fishes differ in degree of anadromy, age of maturation, frequency of reproduction, body size and fecundity, sexual dimorphism, breeding season, morphology, and, to a lesser degree, parental care. Patterns of variation and their possible significance for ecology and evolution and for resource management are the focus of this review.

  8. Comparison of growth and metabolic regulation between wild, domesticated and transgenic salmonids.

    USDA-ARS?s Scientific Manuscript database

    To gain a better understanding of the aspects underlying normal and growth hormone enhanced growth in salmonids, quantitative expression analysis was performed for a number of genes related to muscle growth, metabolism, immunology and energy regulation. This analysis was performed in liver and musc...

  9. 76 FR 31590 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... proposed research programs are intended to increase knowledge of the species and to help guide management... management efforts, and to determine what salmonid life stages suffer the lowest survival and should be a focus of future management practices. Study 1 is a summer/fall juvenile salmonid population abundance...

  10. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Skalski, John R.

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receivermore » arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to the mouth of the river at higher rates, with estimated survival probabilities of 84% and 86%, respectively. The influence of route of passage at the lower three dams in the FCRPS on juvenile salmonid survival appeared to be relatively direct and immediate. Significant differences in estimated survival probabilities of juvenile salmonid smolts among groups with different dam passage experiences were often detected between the dams and rkm 153. In contrast, the influence of route of passage on survival to the mouth of the Columbia River was not apparent among the groups of tagged juvenile salmonids with different FCRPS passage experiences after they had already survived to a point about 80 km downstream of Bonneville Dam. Yearling Chinook salmon and steelhead smolts that migrated through the lower estuary in off-channel habitats took two to three times longer to travel through these lower reaches and their estimated survival probabilities were not significantly different from that of their cohorts which migrated in or near the navigation channel. A large proportion of the tagged juvenile salmonids migrating in or near the navigation channel in the lower estuary crossed from the south side of the estuary near Astoria, Oregon and passed through relatively shallow expansive sand flats (Taylor Sands) to the North Channel along the Washington shore of the estuary. This migratory behavior may contribute to the avian predation losses observed on for fish (2 to 12% of fish in this study).« less

  11. Juvenile Radio-Tag Study: Lower Granite Dam, 1985 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuehrenberg, Lowell C.

    The concept of using mass releases of juvenile radio tags represents a new and potentially powerful research tool that could be effectively applied to juvenile salmonid passage problems at dams on the Columbia and Snake Rivers. A system of detector antennas, strategically located, would automatically detect and record individually tagged juvenile salmonids as they pass through the spillway, powerhouse, bypass system, or tailrace areas below the dam. Accurate measurements of spill effectiveness, fish guiding efficiency (FGE), collection efficiency (CE), spillway survival, powerhouse survival, and bypass survival would be possible without handling large numbers of unmarked fish. A prototype juvenile radio-tagmore » system was developed and tested by the National Marine Fisheries Service (NMFS) and Bonneville Power Administration (BPA) at John Day Dam and at Lower Granite Dam. This report summarizes research to: (1) evaluate the effectiveness of the prototype juvenile radio-tag system in a field situation and (2) to test the basic assumptions inherent in using the juvenile radio tag as a research tool.« less

  12. Evidence for skipped spawning in a potamodromous cyprinid, humpback chub (Gila cypha), with implications for demographic parameter estimates

    USGS Publications Warehouse

    Pearson, Kristen Nicole; Kendall, William L.; Winkelman, Dana L.; Persons, William R.

    2015-01-01

    Our findings reveal evidence for skipped spawning in a potamodromous cyprinid, humpback chub (HBC; Gila cypha  ). Using closed robust design mark-recapture models, we found, on average, spawning HBC transition to the skipped spawning state () with a probability of 0.45 (95% CRI (i.e. credible interval): 0.10, 0.80) and skipped spawners remain in the skipped spawning state () with a probability of 0.60 (95% CRI: 0.26, 0.83), yielding an average spawning cycle of every 2.12 years, conditional on survival. As a result, migratory skipped spawners are unavailable for detection during annual sampling events. If availability is unaccounted for, survival and detection probability estimates will be biased. Therefore, we estimated annual adult survival probability (S), while accounting for skipped spawning, and found S remained reasonably stable throughout the study period, with an average of 0.75 ((95% CRI: 0.66, 0.82), process varianceσ2 = 0.005), while skipped spawning probability was highly dynamic (σ2 = 0.306). By improving understanding of HBC spawning strategies, conservation decisions can be based on less biased estimates of survival and a more informed population model structure.

  13. Fall spawning of Atlantic sturgeon in the Roanoke River, North Carolina

    USGS Publications Warehouse

    Smith, Joseph A.; Hightower, Joseph E.; Flowers, H. Jared

    2015-01-01

    In 2012, the National Oceanic and Atmospheric Administration (NOAA) declared Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus to be threatened or endangered throughout its range in U.S. waters. Restoration of the subspecies will require much new information, particularly on the location and timing of spawning. We used a combination of acoustic telemetry and sampling with anchored artificial substrates (spawning pads) to detect fall (September–November) spawning in the Roanoke River in North Carolina. This population is included in the Carolina Distinct Population Segment, which was classified by NOAA as endangered. Sampling was done immediately below the first shoals encountered by anadromous fishes, near Weldon. Our collection of 38 eggs during the 21 d that spawning pads were deployed appears to be the first such collection (spring or fall) for wild-spawned Atlantic Sturgeon eggs. Based on egg development stages, estimated spawning dates were September 17–18 and 18–19 at water temperatures from 25.3°C to 24.3°C and river discharge from 55 to 297 m3/s. These observations about fall spawning and habitat use should aid in protecting critical habitats and planning research on Atlantic Sturgeon spawning in other rivers.

  14. Global climate change and potential effects on pacific salmonids in freshwater ecosystems of southeast Alaska

    Treesearch

    M.D. Bryant

    2009-01-01

    General circulation models predict increases in air temperatures from 1◦C to 5◦C as atmospheric CO2 continues to rise during the next 100 years. Thermal regimes in freshwater ecosystems will change as air temperatures increase regionally. As air temperatures increase, the distribution and intensity of precipitation will change which will in turn...

  15. Summer spawning in the fourhorn sculpin, Myoxocephalus quadricornis, from Alaska

    USGS Publications Warehouse

    Goldberg, S.R.; Yasutake, W.T.; West, R.L.

    1987-01-01

    Histological ovarian analysis indicates summer spawning occurs in Myoxocephalus quadricornis (Fourhorn Sculpin) from Alaska. Previous studies have shown this species spawns during winter in the Baltic Sea; the data presented herein suggests that geographical variation may occur in the timing of spawning of this species.

  16. Reproductive strategy, spawning induction, spawning temperatures and early life history of captive sicklefin chub Macrhybopsis meeki

    USGS Publications Warehouse

    Albers, Janice; Wildhaber, Mark L.

    2017-01-01

    Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water-hardened eggs were semi-buoyant and non-adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.

  17. Spatial Dynamics of the Blue Crab Spawning Stock in the Gulf of Mexico: Local Processes Driving Regional Patterns.

    NASA Astrophysics Data System (ADS)

    Darnell, M. Z.

    2016-02-01

    Female blue crabs undertake a critical spawning migration seaward, migrating from low-salinity mating habitat to high-salinity waters of the lower estuaries and coastal ocean, where larval survival is highest. This migration occurs primarily through ebb tide transport, driven by an endogenous circatidal rhythm in vertical swimming that is modulated by behavioral responses to environmental cues. Blue crabs are typically considered an estuarine species and fisheries are managed on a state-by-state basis. Yet recent evidence from state and regional fishery independent survey programs suggests that the spawning migration can take females substantial distances offshore (>150 km), and that offshore waters are important spawning grounds for female blue crabs in the Gulf of Mexico. This is especially true in areas where freshwater inflow is high, resulting in low estuarine and coastal salinities. In low-salinity, high-inflow areas (e.g., Louisiana), spawning occurs further offshore while in high-salinity, low-inflow areas (e.g., South Texas), spawning takes place primarily within the estuary. Regional patterns in spawning locations both inshore and offshore are driven by interactions between behavioral mechanisms and local oceanographic conditions during the spawning migration. These environmentally driven differences in spawning locations have implications for larval survival and population connectivity, and emphasize the need for interjurisdictional assessment and management of the blue crab spawning stock.

  18. Effects of hydropeaking on the spawning behaviour of Atlantic salmon Salmo salar and brown trout Salmo trutta.

    PubMed

    Vollset, K W; Skoglund, H; Wiers, T; Barlaup, B T

    2016-06-01

    An in situ camera set-up was used to study the spawning activity of Atlantic salmon Salmo salar and brown trout Salmo trutta throughout two consecutive seasons in a spawning area affected by hydropower-related pulse flows due to hydropeaking. The purpose was to test whether the flow variation discouraged spawning in shallow areas or motivated spawning into areas with elevated risk of incubation mortality. There were more S. salar observed on the spawning ground during days with high discharge. The presence of S. salar in the spawning grounds was not affected by the hydropeaking cycles of the preceding night. Female S. salar were observed preparing nests within the first hour after water discharge had increased to levels suitable for spawning. In contrast, the number of S. trutta was not correlated with flow and nest preparation was also observed at a discharge corresponding to the lowest discharge levels during a hydropeaking cycle. Survival was generally high in nests excavated the following winter, with only 5·4% suffering mortality due to dewatering. The results suggest that S. salar may respond rapidly to variable-flow conditions and utilize short windows with suitable flows for spawning. Smaller S. trutta may utilize low-flow conditions to spawn in areas that are not habitable by larger S. salar during low flow. © 2016 The Fisheries Society of the British Isles.

  19. Cibola High Levee Pond Annual Report 2003. Interim Report

    USGS Publications Warehouse

    Mueller, G.A.; Carpenter, J.; Marsh, P.C.; Minckley, C.O.

    2003-01-01

    Bonytail and razorback sucker have once again spawned and produced swim-up larvae in Cibola High Levee Pond (CHLP). CHLP continues to support annual recruitment of bonytail while recent razorback sucker recruitment remains elusive. Thus far, razorbacks have experienced intermittent years of spawning success. Both native species were observed spawning on, or near, the riprap on the river levee. Razorbacks spawned from late January until mid-March over gravel and large cobble along the levee toe (2-3 m depth) and bonytail spawned along the levee shoreline during mid-April. Razorback suckers rapidly fin during the reproductive act, which flushes fines from the substrate and leaves gravel relatively clean. Bonytail on the other hand, appear to spawn over or on substrate that has been disturbed by beaver activity. Substrate scour or disturbance appears to be an important factor in spawning site selectiona?|

  20. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  1. Evaluation and refinement of Guadalupe Bass conservation strategies to support adaptive management

    USGS Publications Warehouse

    Grabowski, Timothy B.

    2016-01-01

    Burbot Lota lota is the sole freshwater representative of the cod-like fishes and supports subsistence, commercial, and recreational fisheries worldwide above approximately 40° N. It is a difficult species to manage effectively due to its preference for deep-water habitats and spawning activity under the ice in winter. Like other gadiform fishes, Burbot use acoustic signaling as part of their mating system, and while the acoustic repertoire of the species has been characterized under artificial conditions (i.e., net pen suspended under ice in a natural lake), there has been no work to determine whether the species is as vocal in natural spawning aggregations. Our objective was to assess the feasibility of collecting and using acoustic data to characterize the spawning activity and locations of Burbot under field conditions. We recorded audio and video of Burbot spawning aggregations through holes drilled into the ice at known spawning grounds at Moyie Lake in British Columbia, Canada. Acoustic recordings (call counts and audiograms) were analyzed using Raven Pro v 1. 4 software. Acoustic behavior was also related to video data to determine how acoustic activity correlated to any observed spawning behavior. In general, wild Burbot spawning in Moyie Lake did not vocalize as frequently as counterparts spawning under artificial conditions. Further, Burbot vocalizations were not recorded in conjunction with spawning activity. While it may be feasible to use passive acoustic monitoring to locate Burbot spawning grounds and identify periods of activity, it does not seem to hold much promise for locating and quantifying spawning activity in real time.

  2. Distribution, abundance, and spawning season and grounds of the kiyi, Leucichthys kiyi Koelz, in Lake Michigan

    USGS Publications Warehouse

    Hile, Ralph; Deason, Hilary J.

    1947-01-01

    The depth of water on known spawning grounds (all in southern Lake Michigan) was 57.5 to 84 fathoms. There is evidence that the kiyi may spawn in more than 90 fathoms. Spawning appears to be widespread throughout waters of suitable depth.

  3. Physiology and immunology of Lepeophtheirus salmonis infections of salmonids.

    PubMed

    Wagner, Glenn N; Fast, Mark D; Johnson, Stewart C

    2008-04-01

    'Sea lice' is a common name for a large number of species of marine ectoparasitic copepods, many of which are widespread and important disease-causing agents that infect both cultured and wild fish. Of these copepods, the salmon louse Lepeophtheirus salmonis is the most extensively studied because of its economic impact on the salmonid aquaculture industry and its possible impacts on wild salmonid populations. Different levels of infection by this parasite can affect the long-term survival and viability of its hosts. In this article, we review the nature of the interactions between L. salmonis and it hosts to identify crucial areas that warrant further research to aid understanding of the impact of infection with L. salmonis.

  4. A fine-scale assessment of using barriers to conserve native stream salmonids: a case study in Akokala Creek, Glacier National Park, USA

    USGS Publications Warehouse

    Muhlfeld, Clint C.; D'Angelo, Vincent S.; S. T. Kalinowski,; Landguth, Erin L.; C. C. Downs,; J. Tohtz,; Kershner, Jeffrey L.

    2012-01-01

    Biologists are often faced with the difficult decision in managing native salmonids of where and when to install barriers as a conservation action to prevent upstream invasion of nonnative fishes. However, fine-scale approaches to assess long-term persistence of populations within streams and watersheds chosen for isolation management are often lacking. We employed a spatially-explicit approach to evaluate stream habitat conditions, relative abundance, and genetic diversity of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) within the Akokala Creek watershed in Glacier National Park- a population threatened by introgressive hybridization with nonnative rainbow trout (O. mykiss) from nearby sources. The systematic survey of 24 stream reaches showed broad overlap in fish population and suitable habitat characteristics among reaches and no natural barriers to fish migration were found. Analysis of population structure using 16 microsatellite loci showed modest amounts of genetic diversity among reaches, and that fish from Long Bow Creek were the only moderately distinct genetic group. We then used this information to assess the potential impacts of three barrier placement scenarios on long-term population persistence and genetic diversity. The two barrier placement scenarios in headwater areas generally failed to meet general persistence criteria for minimum population size (2,500 individuals, Ne = 500), maintenance of long-term genetic diversity (He), and no population subdivision. Conversely, placing a barrier near the stream mouth and selectively passing non-hybridized, migratory spawners entering Akokala Creek met all persistence criteria and may offer the best option to conserve native trout populations and life history diversity. Systematic, fine-scale stream habitat, fish distribution, and genetic assessments in streams chosen for barrier installation are needed in conjunction with broader scale assessments to understand the potential impacts of using barriers for conservation of native salmonid populations threatened by nonnative fish invasions.

  5. Monitoring Spawning Activity in a Southern California Marine Protected Area Using Molecular Identification of Fish Eggs

    PubMed Central

    Harada, Alice E.; Lindgren, Elise A.; Hermsmeier, Maiko C.; Rogowski, Peter A.; Terrill, Eric; Burton, Ronald S.

    2015-01-01

    In order to protect the diverse ecosystems of coastal California, a series of marine protected areas (MPAs) have been established. The ability of these MPAs to preserve and potentially enhance marine resources can only be assessed if these habitats are monitored through time. This study establishes a baseline for monitoring the spawning activity of fish in the MPAs adjacent to Scripps Institution of Oceanography (La Jolla, CA, USA) by sampling fish eggs from the plankton. Using vertical plankton net tows, 266 collections were made from the Scripps Pier between 23 August 2012 and 28 August 2014; a total of 21,269 eggs were obtained. Eggs were identified using DNA barcoding: the COI or 16S rRNA gene was amplified from individual eggs and sequenced. All eggs that were successfully sequenced could be identified from a database of molecular barcodes of California fish species, resulting in species-level identification of 13,249 eggs. Additionally, a surface transport model of coastal circulation driven by current maps from high frequency radar was used to construct probability maps that estimate spawning locations that gave rise to the collected eggs. These maps indicated that currents usually come from the north but water parcels tend to be retained within the MPA; eggs sampled at the Scripps Pier have a high probability of having been spawned within the MPA. The surface transport model also suggests that although larvae have a high probability of being retained within the MPA, there is also significant spillover into nearby areas outside the MPA. This study provides an important baseline for addressing the extent to which spawning patterns of coastal California species may be affected by future changes in the ocean environment. PMID:26308928

  6. Infilling of Cobble Substrate used by White Sturgeon on the Nechako River, at Vanderhoof BC

    NASA Astrophysics Data System (ADS)

    Zimmermann, A. E.; Argast, T.; Sary, Z.

    2013-12-01

    Nechako white sturgeon are experiencing a recruitment failure, which has been attributed to the failure of eggs and larvae to survive as a result of changes in the substrate at the locations where they are known to spawn. As part of the overall recovery effort initiative, cobble substrate was placed at two locations to provide clean spawning substrate. Subsequently, the condition of the substrate has been investigated using an underwater camera and freeze core sampling. These observations have shown that coarse sand and fine gravels (fine bedoad) have in-filled the coarse substrate where it was placed along the inside corner of the bends, while placed substrate located on the outside of the bends has remained free of this size fraction. This observation has lead to the quandary: Is placed cobble substrate on the outside corner of the bends not being filled in with fine bedload because fine bedload is not moving past these sites, or are post-regulation flood flows sufficient to ensure fines remain suspended and are not deposited in the interstitial spaces? To assess this question a number of field based techniques will be used in August of 2013 during high flows to examine the movement of fine bedload. The techniques employed will include an underwater camera, P61 suspended sediment sampler, a HellySmith and KAROLYI bedload sampler and an ADCP with RTK for bottom tracking. The intent is to examine the movement of fine bedload across the channel at a number of potential spawning sites. The poster will summarize the observations to date about the movement of fine bedload at the spawning sites, and discuss the implications for spawning substrate improvement efforts.

  7. Monitoring Spawning Activity in a Southern California Marine Protected Area Using Molecular Identification of Fish Eggs.

    PubMed

    Harada, Alice E; Lindgren, Elise A; Hermsmeier, Maiko C; Rogowski, Peter A; Terrill, Eric; Burton, Ronald S

    2015-01-01

    In order to protect the diverse ecosystems of coastal California, a series of marine protected areas (MPAs) have been established. The ability of these MPAs to preserve and potentially enhance marine resources can only be assessed if these habitats are monitored through time. This study establishes a baseline for monitoring the spawning activity of fish in the MPAs adjacent to Scripps Institution of Oceanography (La Jolla, CA, USA) by sampling fish eggs from the plankton. Using vertical plankton net tows, 266 collections were made from the Scripps Pier between 23 August 2012 and 28 August 2014; a total of 21,269 eggs were obtained. Eggs were identified using DNA barcoding: the COI or 16S rRNA gene was amplified from individual eggs and sequenced. All eggs that were successfully sequenced could be identified from a database of molecular barcodes of California fish species, resulting in species-level identification of 13,249 eggs. Additionally, a surface transport model of coastal circulation driven by current maps from high frequency radar was used to construct probability maps that estimate spawning locations that gave rise to the collected eggs. These maps indicated that currents usually come from the north but water parcels tend to be retained within the MPA; eggs sampled at the Scripps Pier have a high probability of having been spawned within the MPA. The surface transport model also suggests that although larvae have a high probability of being retained within the MPA, there is also significant spillover into nearby areas outside the MPA. This study provides an important baseline for addressing the extent to which spawning patterns of coastal California species may be affected by future changes in the ocean environment.

  8. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Treesearch

    David S. Pilliod; Blake R. Hossack; Peter F. Bahls; Evelyn L. Bull; Paul Stephen Corn; Grant Hokit; Bryce A. Maxell; James C. Munger; Aimee Wyrick

    2010-01-01

    The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales:...

  9. Morphology and evolution of salmonid habitats in a recently deglaciated river basin, Washington state, USA.

    Treesearch

    L Benda; T.J. Beechie; R.C. Wissmar; A. Johnson

    1992-01-01

    Morphology and distribution of salmonid habitats were related to the geomorphology of a river basin at three spatial scales including reach (l02-103 m2), subbasin (2-26 km2), and the watershed (240 km2). Stream reaches on a young fluvial terrace (1700 yr...

  10. Stream channels: The link between forests and fishes

    Treesearch

    Kathleen Sullivan; Thomas E. Lisle; C. Andrew Dolloff; Gordon E. Grant; Leslie M. Reid

    1987-01-01

    Abstract - The hydraulic characteristics of flow through channels are an important component of fish habitat. Salmonids have evolved in stream systems in which water velocity and flow depth vary spatially within the watershed and temporally on a daily, seasonal, and annual basis. Flow requirements vary during different phases of the freshwater life cycle of salmonids...

  11. Are block nets necessary? Movement of stream-dwelling salmonids in response to three common survey methods

    Treesearch

    James T. Peterson; Nolan P. Banish; Russell F. Thurow

    2005-01-01

    Fish movement during sampling may negatively bias sample data and population estimates. We evaluated the short-term movements of stream-dwelling salmonids by recapture of marked individuals during day and night snorkeling and backpack electrofishing. Bull trout Salvelinus confluentus and rainbow trout Oncorhynchus mykiss were...

  12. Evaluation of a stream channel-type system for southeast Alaska.

    Treesearch

    M.D. Bryant; P.E. Porter; S.J. Paustian

    1991-01-01

    Nine channel types within a hierarchical channel-type classification system (CTCS) were surveyed to determine relations between salmonid densities and species distribution, and channel type. Two other habitat classification systems and the amount of large woody debris also were compared to species distribution and salmonid densities, and to stream channel types....

  13. Differential predation by northern squawfish Ptychocheilus oregonensis on live and dead juvenile salmonids in the Bonneville Dam tailrace (Columbia River)

    USGS Publications Warehouse

    Petersen, James H.; Gadomski, Dena M.; Poe, Thomas P.

    1994-01-01

    Juvenile salmonids (Oncorhynchus spp.) that have been killed or injured during dam passage may be highly vulnerable or preferred prey of predators that aggregate below dams. Salmonid loss due to predation will be overestimated using gut content analysis if some prey were dead or moribund when consumed. To examine this issue, field experiments were conducted in the Bonneville Dam tailrace (Columbia River) to compare rates of capture of live and dead juvenile salmonids by northern squawfish (Ptychocheilus oregonensis). Known numbers of coded-wire-tagged live and dead chinook salmon (O. tshawytscha) were released into the tailrace on six nights. Northern squawfish were collected after each release and their gut contents were examined for tags. When 50% of salmon released were dead, northern squawfish consumed 62% dead salmon. When 10% of salmon released were dead, comparable with dam passage mortality, 22% of the tags found in northern squawfish digestive tracts were from dead salmon. These results indicate that predator feeding behavior and prey condition are important considerations when estimating the impact of predation on a prey population.

  14. Diel resource partitioning among juvenile Atlantic Salmon, Brown Trout, and Rainbow Trout during summer

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.

    2015-01-01

    Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.

  15. Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter

    USGS Publications Warehouse

    Johnson, J. H.; Douglass, K.A.

    2009-01-01

    The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.

  16. Genomic signatures predict migration and spawning failure in wild Canadian salmon.

    PubMed

    Miller, Kristina M; Li, Shaorong; Kaukinen, Karia H; Ginther, Norma; Hammill, Edd; Curtis, Janelle M R; Patterson, David A; Sierocinski, Thomas; Donnison, Louise; Pavlidis, Paul; Hinch, Scott G; Hruska, Kimberly A; Cooke, Steven J; English, Karl K; Farrell, Anthony P

    2011-01-14

    Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.

  17. Using genetic and phenotypic comparisons to evaluate apparent segregation among Kokanee spawning groups

    USGS Publications Warehouse

    Whitlock, Steven L.; Campbell, Matthew R.; Quist, Michael C.; Dux, Andrew M.

    2018-01-01

    Genetic and phenotypic traits of spatially and temporally segregated kokanee Oncorhynchus nerka spawning groups in Lake Pend Oreille, Idaho, were compared to test for evidence of divergence on the basis of ecotype (stream spawners versus shoreline spawners) and spawn timing and to describe morphological, life history, and reproductive variation within and among groups. Early and late spawning runs were found to be reproductively isolated; however, there was no clear evidence of genetic differentiation between ecotypes. Spawning groups within the same ecotype differed in length, age distribution, mean length at age, fecundity, and egg size. Variation in reproductive attributes was due primarily to differences in length distributions. Larger‐bodied shore‐spawning kokanee were located in areas where egg survival is known to be enhanced by downwelling, suggesting that the distribution of shore‐spawning kokanee may be partly structured by competition for spawning habitats with groundwater influence. This study contributes to other research indicating that introduced kokanee populations are unlikely to undergo adaptive divergence if they have a history of population fluctuations and are supplemented regularly.

  18. Location and timing of Asian carp spawning in the Lower Missouri River

    USGS Publications Warehouse

    Deters, Joseph E.; Chapman, Duane C.; McElroy, Brandon

    2013-01-01

    We sampled for eggs of Asian carps, (bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella) in 12 sites on the Lower Missouri River and in six tributaries from the months of May through July 2005 and May through June 2006 to examine the spatial and temporal dynamics of spawning activity. We categorized eggs into thirty developmental stages, but usually they could not be identified to species. We estimated spawning times and locations based on developmental stage, temperature dependent rate of development and water velocity. Spawning rate was higher in the daytime between 05:00 and 21:00 h than at night. Spawning was not limited to a few sites, as has been reported for the Yangtze River, where these fishes are native, but more eggs were spawned in areas of high sinuosity. We employ a sediment transport model to estimate vertical egg concentration profiles and total egg fluxes during spawning periods on the Missouri River. We did not identify substantial spawning activity within tributaries or at tributary confluences examined in this study.

  19. Spawning and hatching of endangered Gila Chub in captivity

    USGS Publications Warehouse

    Schultz, Andrew A.; Bonar, Scott A.

    2016-01-01

    Information on reproductive characteristics of the endangered Gila Chub Gila intermedia is largely limited and qualitative, and culture techniques and requirements are virtually unknown. Here we provide the first published data on spawning and selected reproductive and developmental characteristics of Gila Chub. Fish were brought to the laboratory in March 2003 from Sabino Creek, Arizona (12.3°C). Fish were then warmed slowly and spawned at 14.9°C, 10 d after collection. Following this initial spawning, Gila Chub spawned consistently in the laboratory without hormonal, chemical, photoperiod, temperature, or substrate manipulation during all times of the year. Spawns were noted at temperatures ranging from about 15°C to 26°C; however, we noted that Gila Chub spawned less frequently at temperatures above 24°C. Multiple spawning attempts per year per individual are probable. There was a strong, inverse relationship between time to hatch and incubation temperature. The hatch rate of eggs was high (mean = 99.43%), and larval Gila Chub accepted a variety of natural and formulated diets at first feeding. The future of Gila Chub may someday depend in part on hatchery propagation to provide specimens for restocking formerly occupied habitats and establishing refuge populations. Information from our study can aid future efforts to successfully spawn and rear Gila Chub and related species.

  20. Spatial and temporal spawning dynamics of native westslope cutthroat trout, Oncorhynchus clarkii lewisi, introduced rainbow trout, Oncorhynchus mykiss, and their hybrids

    USGS Publications Warehouse

    Muhlfeld, C.C.; McMahon, T.E.; Belcer, D.; Kershner, J.L.

    2009-01-01

    We used radiotelemetry to assess spatial and temporal spawning distributions of native westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT), introduced rainbow trout (Oncorhynchus mykiss; RBT), and their hybrids in the upper Flathead River system, Montana (USA) and British Columbia (Canada), from 2000 to 2007. Radio-tagged trout (N = 125) moved upriver towards spawning sites as flows increased during spring runoff and spawned in 29 tributaries. WCT migrated greater distances and spawned in headwater streams during peak flows and as flows declined, whereas RBT and RBT hybrids (backcrosses to RBT) spawned earlier during increasing flows and lower in the system. WCT hybrids (backcrosses to WCT) spawned intermediately in time and space to WCT and RBT and RBT hybrids. Both hybrid groups and RBT, however, spawned over time periods that produced temporal overlap with spawning WCT in most years. Our data indicate that hybridization is spreading via long-distance movements of individuals with high amounts of RBT admixture into WCT streams and stepping-stone invasion at small scales by later generation backcrosses. This study provides evidence that hybridization increases the likelihood of reproductive overlap in time and space, promoting extinction by introgression, and that the spread of hybridization is likely to continue if hybrid source populations are not reduced or eliminated.

  1. Dynamic in-lake spawning migrations by female sockeye salmon

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.

  2. Potential transport of plaice eggs and larvae between two apparently self-contained populations in the Irish Sea

    NASA Astrophysics Data System (ADS)

    Fox, Clive J.; McCloghrie, Paul; Nash, Richard D. M.

    2009-02-01

    A coupled physics particle-tracking model, driven by realistic meteorological forcing was used to examine the dispersal and transport of plaice eggs and larvae in the year 2000 from two spawning grounds in the Irish Sea. The model included passive transport of eggs and early stage larvae, diel vertical movements for larvae between 7 and 10.5 mm in body-length and tidally synchronised, vertical movements for larger larvae (>9 mm body-length). The year 2000 was chosen because of the availability of ichthyoplankton data with which to initialise the model. The majority of larvae originating from spawning in the eastern Irish Sea settled into nursery grounds along the Scottish, English and Welsh coasts, in agreement with previous findings. In contrast, a significant portion of larvae originating from spawning in the western Irish Sea was transported eastwards to these same nursery grounds. Transport across the Irish Sea resulted from the onset of tidally synchronised vertical behaviour encoded in the model for older larvae. Settlement of larvae into local nursery grounds along the Irish coast was limited. Because of the prevailing winds and currents in the region, plaice eggs and larvae are unlikely to be transported from east to west; in most years spawning in the western Irish Sea probably acts as an additional source of juveniles for nursery grounds along the Scottish, English and Welsh coasts.

  3. From egg production to recruits: Connectivity and inter-annual variability in the recruitment patterns of European anchovy in the northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ospina-Alvarez, Andres; Catalán, Ignacio A.; Bernal, Miguel; Roos, David; Palomera, Isabel

    2015-11-01

    We show the application of a Spatially-Explicit Individual-Based Model (SEIBM) to understand the recruitment process of European anchovy. The SEIBM is applied to simulate the effects of inter-annual variability in parental population spawning behavior and intensity, and ocean dynamics, on the dispersal of eggs and larvae from the spawning area in the Gulf of Lions (GoL) towards the coastal nursery areas in the GoL and Catalan Sea (northwestern Mediterranean Sea). For each of seven years (2003-2009), we initialize the SEIBM with the real positions of anchovy eggs during the spawning peak, from an acoustics-derived eggs production model. We analyze the effect of spawners' distribution, timing of spawning, and oceanographic conditions on the connectivity patterns, growth, dispersal distance and late-larval recruitment (14 mm larva recruits, R14) patterns. The area of influence of the Rhône river plume was identified as having a high probability of larval recruitment success (64%), but up to 36% of R14 larvae end up in the Catalan Coast. We demonstrate that the spatial paths of larvae differ dramatically from year to year, and suggest potential offshore nursery grounds. We showed that our simulations are coherent with existing recruitment proxies and therefore open new possibilities for fisheries management.

  4. Growth and Survival of Larval Alewife (Alosa pseudoharengus) in Southern New England Lakes

    NASA Astrophysics Data System (ADS)

    Suca, J.; Jones, A.; Llopiz, J.

    2016-02-01

    Alewives (Alosa pseudoharengus) are ecologically and commercially important anadromous fish in eastern North America, and populations have declined to close to 1% of their historic levels. Despite moratoriums in recent years in most US states, there has been little recovery of alewives. In light of this poor recovery, we examined the factors that influence the survival of alewife larvae that were spawned in multiple freshwater systems in Massachusetts. Four lakes were sampled each week throughout the spring and summer for fish larvae, zooplankton and physicochemical parameters. Abundances of larvae from the lakes were analyzed, along with environmental factors. In the lab, otoliths of larvae from two different lakes were used for age and growth rate determination, as well as examining selective mortality during the larval period. Additionally, differences in growth and selective mortality of early and late spawned larvae were analyzed to investigate the tradeoffs between spawning early versus late in the spawning season. Abundances varied greatly between lakes and sampling times. Through otolith analysis, differences in growth rates between lakes were observed. This is likely due to differences in either temperature or food availability, and ongoing work quantifying zooplankton abundances will address these potential factors. Interestingly, there was no evidence for selective mortality in the two lakes examined, a result that is consistent with the hypothesis that anadromy in this species evolved as a strategy to minimize predation during the vulnerable larval period.

  5. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    PubMed Central

    Zięba, Grzegorz; Fox, Michael G.; Copp, Gordon H.

    2015-01-01

    Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts) appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime. PMID:26302021

  6. Broodstock History Strongly Influences Natural Spawning Success in Hatchery Steelhead (Oncorhynchus mykiss).

    PubMed

    Ford, Michael J; Murdoch, Andrew R; Hughes, Michael S; Seamons, Todd R; LaHood, Eric S

    2016-01-01

    We used genetic parentage analysis of 6200 potential parents and 5497 juvenile offspring to evaluate the relative reproductive success of hatchery and natural steelhead (Onchorhynchus mykiss) when spawning in the wild between 2008 and 2011 in the Wenatchee River, Washington. Hatchery fish originating from two prior generation hatchery parents had <20% of the reproductive success of natural origin spawners. In contrast, hatchery females originating from a cross between two natural origin parents of the prior generation had equivalent or better reproductive success than natural origin females. Males originating from such a cross had reproductive success of 26-93% that of natural males. The reproductive success of hatchery females and males from crosses consisting of one natural origin fish and one hatchery origin fish was 24-54% that of natural fish. The strong influence of hatchery broodstock origin on reproductive success confirms similar results from a previous study of a different population of the same species and suggests a genetic basis for the low reproductive success of hatchery steelhead, although environmental factors cannot be entirely ruled out. In addition to broodstock origin, fish size, return time, age, and spawning location were significant predictors of reproductive success. Our results indicate that incorporating natural fish into hatchery broodstock is clearly beneficial for improving subsequent natural spawning success, even in a population that has a decades-long history of hatchery releases, as is the case in the Wenatchee River.

  7. Lake trout in northern Lake Huron spawn on submerged drumlins

    USGS Publications Warehouse

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  8. Life History Correlates and Extinction Risk of Capital-Breeding Fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta; Vila-Gispert, Dr Anna; Rose, Kenneth A.

    2008-03-01

    We consider a distinction for fishes, often made for birds and reptiles, between capital-breeding and income-breeding species. Species that follow a capital-breeding strategy tend to evolve longer intervals between reproductive events and tend to have characteristics that we associate with higher extinction risk. To examine whether these ideas are relevant for fishes, we assembled life-history data for fish species, including an index of extinction risk, the interval between spawning events, the degree of parental care, and whether or not the species migrates to spawn. These data were used to evaluate two hypotheses: 1) fish species with a major accessory activitymore » to spawning (migration or parental care) spawn less often and 2) fish species that spawn less often are at greater risk of extinction. We tested these hypotheses by applying two alternative statistical methods that account for phylogenetic correlation in cross-taxon comparisons. The two methods predicted average intervals between spawning events 0.13 to 0.20 years longer for fishes with a major accessory activity. Both accessories, above-average parental care and spawning migration, were individually associated with longer average spawning intervals. We conclude that the capital-breeding paradigm is relevant for fishes. We also confirmed the second hypothesis, that species in higher IUCN extinction risk categories had longer average spawning intervals. Further research is needed to understand the relationship between extinction risk and spawning interval, within the broader context of life history traits and aquatic habitats.« less

  9. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species

    NASA Astrophysics Data System (ADS)

    Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.

    2018-02-01

    We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  10. Lake Sturgeon, Lake Whitefish, and Walleye egg deposition patterns with response to fish spawning substrate restoration in the St. Clair–Detroit River system

    USGS Publications Warehouse

    Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.

    2018-01-01

    Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.

  11. Measuring nighttime spawning behavior of chum salmon using a dual-frequency identification sonar (DIDSON)

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.

    2005-01-01

    The striking body coloration and morphology that Pacific salmon display during spawning coupled with elaborate courtship behaviors suggest that visual cues are important during their reproductive period. To date, virtually all existing information on chum salmon (Oncorhynchus keta) spawning behavior has been derived from studies conducted during the daytime, and has contributed to the assumption that salmon do not spawn at night. We tested this assumption using a new technology - a dual-frequency identification sonar (DIDSON) - to describe and measure nighttime spawning behavior of wild chum salmon in the Columbia River. The DIDSON produces detailed, video-like images using sound, which enabled us to collect behavioral information at night in complete darkness. The display of DIDSON images enabled fish movements and behaviors to be spatially quantified. We collected continuous observational data on 14 pairs of chum salmon in a natural spawning channel during the daytime and nighttime. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the pre-spawning behavior of tail crossing. We observed a total of 13 spawning events, of which nine occurred at night and four occurred during the day. The behaviors we observed at night suggest the assumption that chum salmon do not spawn at night is false. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. We speculate that non-visual cues (e.g. tactile and auditory) enable chum salmon to carry out most spawning behaviors at night. Our findings have implications for how nighttime flows from hydroelectric dams on the Columbia River are managed for power production and protection of imperiled salmon stocks.

  12. Spawning habitat selection of hickory shad

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, J.E.

    2011-01-01

    We examined the spawning habitat selectivity of hickory shad Alosa mediocris, an anadromous species on the Atlantic coast of North America. Using plankton tows and artificial substrates (spawning pads), we collected hickory shad eggs in the Roanoke River, North Carolina, to identify spawning timing, temperature, and microhabitat use. Hickory shad eggs were collected by both sampling gears in March and April. The results from this and three other studies in North Carolina indicate that spawning peaks at water temperatures between 12.0??C and 14.9??C and that approximately 90% occurs between 11.0??C and 18.9??C. Hickory shad eggs were collected in run and riffle habitats. Water velocity and substrate were significantly different at spawning pads with eggs than at those without eggs, suggesting that these are important microhabitat factors for spawning. Hickory shad eggs were usually collected in velocities of at least 0.1 m/s and on all substrates except those dominated by silt. Eggs were most abundant on gravel, cobble, and boulder substrates. Hickory shad spawned further upstream in years when water discharge rates at Roanoke Rapids were approximately average during March and April (2005 and 2007), as compared with a severe drought year (2006), suggesting that water flows may affect not only spawning site selection but also the quantity and quality of spawning habitat available at a macrohabitat scale. Using our field data and a Bayesian approach to resource selection analysis, we developed a preliminary habitat suitability model for hickory shad. This Bayesian approach provides an objective framework for updating the model as future studies of hickory shad spawning habitat are conducted. ?? American Fisheries Society 2011.

  13. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    USGS Publications Warehouse

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  14. Characteristics of the Cross-Sectional Vorticity of the Natural Spawning Grounds of Schizothorax prenanti and a Vague-Set Similarity Model for Ecological Restoration

    PubMed Central

    Liu, Ming-Yang; Zhang, Ling-Lei; Li, Jia; Li, Yong; Li, Nan; Chen, Ming-Qian

    2015-01-01

    Schizothorax prenanti is an endemic fish in the mountain rivers of southwestern China with unique protection value. To further explore the vortex motion of hydraulic habitats, which is closely related to the fish breeding process, the cross-sectional vorticity was used to evaluate the hydraulic conditions of the natural spawning habitat of S. prenanti. A coupled level-set and volume-of-fluid (CLSVOF) three-dimensional (3D) model was applied to simulate the hydraulic habitat of the Weimen reach, a typical natural spawning ground for S. prenanti in the upper Yangtze River. The model was used in conjunction with the Wilcoxon rank sum test to distinguish the distributions of vertical vorticity in spawning and non-spawning reaches. Statistical analysis revealed that the cross-sectional vorticity in spawning reaches was significantly greater than in non-spawning reaches, with likely biological significance in the spawning process. The range of cross-sectional mean values of vorticity was 0.17 s-1–0.35 s-1 in areas with concentrated fish sperm and eggs; the minimum value was 0.17 s-1, and the majority of values were greater than 0.26 s-1. Based on this study, a vague-set similarity model was used to assess the effectiveness of ecological restoration by evaluating the similarity of the cross-sectional vorticity of the natural spawning reach and rehabilitated spawning reach after implementing ecological restoration measures. The outcome might provide a theoretical basis for the recovery of damaged S. prenanti spawning grounds and act as an important complement for the assessment of recovery effectiveness and as a useful reference for the coordination of ecological water use with the demands of hydraulic and hydropower engineering. PMID:26317847

  15. Identification of American shad spawning sites and habitat use in the Pee Dee River, North Carolina and South Carolina

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2011-01-01

    We examined spawning site selection and habitat use by American shad Alosa sapidissima in the Pee Dee River, North Carolina and South Carolina, to inform future management in this flow-regulated river. American shad eggs were collected in plankton tows, and the origin (spawning site) of each egg was estimated; relocations of radio-tagged adults on spawning grounds illustrated habitat use and movement in relation to changes in water discharge rates. Most spawning was estimated to occur in the Piedmont physiographic region within a 25-river-kilometer (rkm) section just below the lowermost dam in the system; however, some spawning also occurred downstream in the Coastal Plain. The Piedmont region has a higher gradient and is predicted to have slightly higher current velocities and shallower depths, on average, than the Coastal Plain. The Piedmont region is dominated by large substrates (e.g., boulders and gravel), whereas the Coastal Plain is dominated by sand. Sampling at night (the primary spawning period) resulted in the collection of young eggs (≤1.5 h old) that more precisely identified the spawning sites. In the Piedmont region, most radio-tagged American shad remained in discrete areas (average linear range = 3.6 rkm) during the spawning season and generally occupied water velocities between 0.20 and 0.69 m/s, depths between 1.0 and 2.9 m, and substrates dominated by boulder or bedrock and gravel. Tagged adults made only small-scale movements with changes in water discharge rates. Our results demonstrate that the upstream extent of migration and an area of concentrated spawning occur just below the lowermost dam. If upstream areas have similar habitat, facilitating upstream access for American shad could increase the spawning habitat available and increase the population's size.

  16. Acoustic-tracking and radio-tracking of horseshoe crabs to assess spawning behavior and subtidal habitat use in delaware bay

    USGS Publications Warehouse

    Brousseau, L.J.; Sclafani, M.; Smith, D.R.; Carter, Daniel B.

    2004-01-01

    This study used telemetry to determine spawning behavior and subtidal habitat use of horseshoe crabs Limulus polyphemus. We attached combined acoustic and radio transmitters to 12 gravid female horseshoe crabs at Ted Harvey Beach and 12 at North Bowers Beach (both on the western shore of Delaware Bay) over a 5-d period before peak spawning on the new moon. Horseshoe crabs were acoustically tracked and radio-tracked daily for 8 d during both high tides and during the incoming dominant (higher) high tide. All horseshoe crabs were relocated at least once, and 83% of females spawned from two to six times (x?? = 3.35, SE = 0.18). Of these females, 85% spawned on two to five consecutive nights (x?? = 3.31, SE = 0.59). Most (95%) females spawned on the beaches where they were initially tagged. Typically, the shoreline used by an individual for spawning ranged from 70 to 1,160 m (x?? = 351 m, SE = 38 m). Between spawning events, horseshoe crabs remained 50-715 m offshore (x?? = 299 m, SE = 57 m) from their established spawning beaches. Following the new moon, all but one (96%) moved out of range of our survey area, which extended approximately 1 km from the shoreline. Multistate mark-recapture models were used to estimate recapture probabilities and daily probabilities of spawning and departure from the vicinity of the spawning beaches. The probability of recapture by acoustic telemetry was high and estimated to be 0.95 (95% confidence interval, 0.73-0.99). Horseshoe crabs equipped with acoustic and radio transmitters have high rates of recapture, can be tracked continually, and can be relocated in both foreshore and inshore habitats.

  17. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.

    PubMed

    Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D

    2018-02-01

    We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  18. Diversity and relative abundance of the bacterial pathogen, Flavobacterium spp., infecting reproductive ecotypes of kokanee salmon.

    PubMed

    Lemay, Matthew A; Russello, Michael A

    2014-11-04

    Understanding the distribution and abundance of pathogens can provide insight into the evolution and ecology of their host species. Previous research in kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), found evidence that populations spawning in streams may experience a greater pathogen load compared with populations that spawn on beaches. In this study we tested for differences in the abundance and diversity of the gram-negative bacteria, Flavobacterium spp., infecting tissues of kokanee in both of these spawning habitats (streams and beaches). Molecular assays were carried out using primers designed to amplify a ~200 nucleotide region of the gene encoding the ATP synthase alpha subunit (AtpA) within the genus Flavobacterium. Using a combination of DNA sequencing and quantitative PCR (qPCR) we compared the diversity and relative abundance of Flavobacterium AtpA amplicons present in DNA extracted from tissue samples of kokanee collected from each spawning habitat. We identified 10 Flavobacterium AtpA haplotypes among the tissues of stream-spawning kokanee and seven haplotypes among the tissues of beach-spawning kokanee, with only two haplotypes shared between spawning habitats. Haplotypes occurring in the same clade as F. psychrophilum were the most prevalent (92% of all reads, 60% of all haplotypes), and occurred in kokanee from both spawning habitats (streams and beaches). Subsequent qPCR assays did not find any significant difference in the relative abundance of Flavobacterium AtpA amplicons between samples from the different spawning habitats. We confirmed the presence of Flavobacterium spp. in both spawning habitats and found weak evidence for increased Flavobacterium diversity in kokanee sampled from stream-spawning sites. However, the quantity of Flavobacterium DNA did not differ between spawning habitats. We recommend further study aimed at quantifying pathogen diversity and abundance in population-level samples of kokanee combined with environmental sampling to better understand the ecology of pathogen infection in this species.

  19. Predation on juvenile pacific salmon oncorhynchus spp. in downstream migrant traps in prairie creek, california

    USGS Publications Warehouse

    Duffy, W.G.; Bjorkstedt, E.P.; Ellings, C.S.

    2011-01-01

    Downstream migrant traps are a widely applied fishery management tool for sampling anadromous Pacific salmon Oncorhynchus spp. and steelhead O. mykiss smolts along theWest Coast of North America and elsewhere, yet predation on juvenile salmonids in traps has not been studied quantitatively.We assessed the frequency of occurrence and abundance of juvenile salmonids in the stomachs of coastal cutthroat trout O. clarkii clarkii, coho salmon O. kisutch, steelhead, and prickly sculpin Cottus asper (>70 mm fork length) captured in traps and in nearby stream habitats. All four predator species took juvenile salmonids with much greater frequency in traps than in stream habitats. Among free-swimming predators, only coastal cutthroat trout were observed with salmonid fry in their stomachs, but they took fewer salmonid prey and appeared to rely more heavily on insect prey than did coastal cutthroat trout captured in traps. Predators consumed up to 25% of the available prey over a broad range of prey abundances. Over the course of the study, predators consumed 2.5% of all salmonid fry captured in traps, but this fraction ranged from less than 1% to more than 10% in any given year. The number of prey taken in traps increased with predator length and with prey abundance in traps, and predation in traps peaked during the period of most intense downstream migration by salmon fry. In contrast, live-box design and trap location had little or no effect on the total number of prey taken by individual predators.We estimated that the predation mortality of juvenile salmon increased by 0.5-1.0% due to in-trap predation (i.e., a 9-10% relative increase over natural predation rates). We found no evidence that predators selected for prey on the basis of species. These results should motivate additional research on methods that reduce or eliminate predation in trap live-boxes and protocols for efficiently measuring predation associated with the trapping of downstream migrants. ?? American Fisheries Society 2011.

  20. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs : Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, James H.; Poe, Thomas P.

    1993-12-01

    Northern squawfish (Ptychocheilus oregonensis) predation on juvenile salmonids was characterized during 1992 at ten locations in the Columbia River below Bonneville Dam and at three locations in John Day Reservoir. During the spring and summer, 1,487 northern squawfish were collected in the lower Columbia River and 202 squawfish were sampled in John Day Reservoir. Gut content data, predator weight, and water temperature were used to compute a consumption index (CI) for northern squawfish, and overall diet was also described. In the Columbia River below Bonneville Dam, northern squawfish diet was primarily fish (spring 69%; summer 53%), most of which weremore » salmonids. Salmonids were also the primary diet component in the Bonneville Dam tailrace, John Day Dam forebay, and the McNary Dam tailrace. Crustaceans were the dominant diet item at the John Day mid-reservoir location, although sample sizes were small. About half of the non-salmonid preyfish were sculpins. The consumption index (CI) of northern squawfish was generally higher during summer than during spring. The highest CI`s were observed during summer in the tailrace boat restricted zones of Bonneville Dam (CI = 7.8) and McNary Dam (CI = 4.6). At locations below Bonneville Dam, CI`s were relatively low near Covert`s Landing and Rooster Rock, higher at four locations between Blue Lake and St. Helens, and low again at three downriver sites (Kalama, Ranier, and Jones Beach). Northern squawfish catches and CI`s were noticeably higher throughout the lower Columbia compared to mid-reservoir sites further upriver sampled during 1990--92. Predation may be especially intense in the free-flowing section of the Columbia River below Bonneville Dam. Smallmouth bass (Micropterus dolomieui; N = 198) ate mostly fish -- 25% salmonids, 29% sculpins, and 46% other fish. Highest catches of smallmouth bass were in the John Day Dam forebay.« less

Top