DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.
1979-01-01
A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.
A covariant multiple scattering series for elastic projectile-target scattering
NASA Technical Reports Server (NTRS)
Gross, Franz; Maung-Maung, Khin
1989-01-01
A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.
Ab initio optical potentials and nucleon scattering on medium mass nuclei
NASA Astrophysics Data System (ADS)
Idini, A.; Barbieri, C.; Navrátil, P.
2018-03-01
We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.
An electrical analogy to Mie scattering
Caridad, José M.; Connaughton, Stephen; Ott, Christian; Weber, Heiko B.; Krstić, Vojislav
2016-01-01
Mie scattering is an optical phenomenon that appears when electromagnetic waves, in particular light, are elastically scattered at a spherical or cylindrical object. A transfer of this phenomenon onto electron states in ballistic graphene has been proposed theoretically, assuming a well-defined incident wave scattered by a perfectly cylindrical nanometer scaled potential, but experimental fingerprints are lacking. We present an experimental demonstration of an electrical analogue to Mie scattering by using graphene as a conductor, and circular potentials arranged in a square two-dimensional array. The tabletop experiment is carried out under seemingly unfavourable conditions of diffusive transport at room-temperature. Nonetheless, when a canted arrangement of the array with respect to the incident current is chosen, cascaded Mie scattering results robustly in a transverse voltage. Its response on electrostatic gating and variation of potentials convincingly underscores Mie scattering as underlying mechanism. The findings presented here encourage the design of functional electronic metamaterials. PMID:27671003
NASA Technical Reports Server (NTRS)
Bartschat, K.; Mceachran, R. P.; Stauffer, A. D.
1990-01-01
An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections.
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Asymmetric scattering by non-Hermitian potentials
NASA Astrophysics Data System (ADS)
Ruschhaupt, A.; Dowdall, T.; Simón, M. A.; Muga, J. G.
2017-10-01
The scattering of quantum particles by non-Hermitian (generally non-local) potentials in one dimension may result in asymmetric transmission and/or reflection from left and right incidence. After extending the concept of symmetry for non-Hermitian potentials, eight generalized symmetries based on the discrete Klein's four-group (formed by parity, time reversal, their product, and unity) are found. Together with generalized unitarity relations they determine selection rules for the possible and/or forbidden scattering asymmetries. Six basic device types are identified when the scattering coefficients (squared moduli of scattering amplitudes) adopt zero/one values, and transmission and/or reflection are asymmetric. They can pictorically be described as a one-way mirror, a one-way barrier (a Maxwell pressure demon), one-way (transmission or reflection) filters, a mirror with unidirectional transmission, and a transparent, one-way reflector. We design potentials for these devices and also demonstrate that the behavior of the scattering coefficients can be extended to a broad range of incident momenta.
Regularized wave equation migration for imaging and data reconstruction
NASA Astrophysics Data System (ADS)
Kaplan, Sam T.
The reflection seismic experiment results in a measurement (reflection seismic data) of the seismic wavefield. The linear Born approximation to the seismic wavefield leads to a forward modelling operator that we use to approximate reflection seismic data in terms of a scattering potential. We consider approximations to the scattering potential using two methods: the adjoint of the forward modelling operator (migration), and regularized numerical inversion using the forward and adjoint operators. We implement two parameterizations of the forward modelling and migration operators: source-receiver and shot-profile. For both parameterizations, we find requisite Green's function using the split-step approximation. We first develop the forward modelling operator, and then find the adjoint (migration) operator by recognizing a Fredholm integral equation of the first kind. The resulting numerical system is generally under-determined, requiring prior information to find a solution. In source-receiver migration, the parameterization of the scattering potential is understood using the migration imaging condition, and this encourages us to apply sparse prior models to the scattering potential. To that end, we use both a Cauchy prior and a mixed Cauchy-Gaussian prior, finding better resolved estimates of the scattering potential than are given by the adjoint. In shot-profile migration, the parameterization of the scattering potential has its redundancy in multiple active energy sources (i.e. shots). We find that a smallest model regularized inverse representation of the scattering potential gives a more resolved picture of the earth, as compared to the simpler adjoint representation. The shot-profile parameterization allows us to introduce a joint inversion to further improve the estimate of the scattering potential. Moreover, it allows us to introduce a novel data reconstruction algorithm so that limited data can be interpolated/extrapolated. The linearized operators are expensive, encouraging their parallel implementation. For the source-receiver parameterization of the scattering potential this parallelization is non-trivial. Seismic data is typically corrupted by various types of noise. Sparse coding can be used to suppress noise prior to migration. It is a method that stems from information theory and that we apply to noise suppression in seismic data.
Calculations of Total Classical Cross Sections for a Central Field
NASA Astrophysics Data System (ADS)
Tsyganov, D. L.
2018-07-01
In order to find the total collision cross-section a direct method of the effective potential (EPM) in the framework of classical mechanics was proposed. EPM allows to over come both the direct scattering problem (calculation of the total collision cross-section) and the inverse scattering problem (reconstruction of the scattering potential) quickly and effectively. A general analytical expression was proposed for the generalized Lennard-Jones potentials: (6-3), (9-3), (12-3), (6-4), (8-4), (12-4), (8-6), (12-6), (18-6). The values for the scattering potential of the total cross section for pairs such as electron-N2, N-N, and O-O2 were obtained in a good approximation.
Resonant states for the scattering of slow particles by screened potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruk, Yu. M., E-mail: yubruk@gmail.com; Voloshchuk, A. N.
2016-09-15
Partial resonant situations for the scattering of slow particles with nonzero angular momenta by short-range screened Yukawa and Buckingham potentials are considered. The problem of electron scattering by a hydrogen atom placed in a plasma medium is discussed. A general scheme of resonances has been constructed in the Pais approximation.
Weak scattering of scalar and electromagnetic random fields
NASA Astrophysics Data System (ADS)
Tong, Zhisong
This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum, scattered from static media. The spatial distribution of these properties of scattered fields is shown to be substantially dependent on the correlation and polarization properties of incident fields and on the statistics of the refractive index distribution within the scatterers. Further, an example is considered which illustrates the usefulness of the electromagnetic scattering theory of random fields in the case when the scattering medium is a thin bio-tissue layer with the prescribed power spectrum of the refractive index fluctuations. The polarization state of the scattered light is shown to be influenced by correlation and polarization states of the illumination as well as by the particle size distribution of the tissue slice.
Entanglement entropy in Fermi gases and Anderson's orthogonality catastrophe.
Ossipov, A
2014-09-26
We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full counting statistics are robust against potential scattering, provided that L/a≫1. The results of numerical calculations support the validity of this conclusion for a generic potential.
On the size dependence of the scattering greenhouse effect of CO2 ice particles
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2011-10-01
In this contribution we study the potential greenhouse effect due to scattering of CO2 ice clouds for atmospheric conditions of terrestrial extrasolar planets. Therefore, we calculate the scattering and absorption properties of CO2 ice particles using Mie theory for assumed particle size distributions with different effective radii and particle densities to determine the scattering and absorption characteristics of such clouds. Implications especially in view of a potential greenhouse warming of the planetary surface are discussed.
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, H.; Pal, S.; Riss, U.V.
1992-07-01
The interaction of a scattering electron with a correlated but frozen'' target may be called the correlated static-exchange interaction. There are two prior investigations (J.R. Rumble, W.J. Stevens, and D. Truhlar, J. Phys. B 17, 3151 (1984); C Weatherford, F.B. Brown, and A. Temkin, Phys. Rev. A 35, 4561 (1987)) on scattering off the correlated static-exchange potential. Both of these investigations concentrated on {ital e}{sup {minus}}+N{sub 2} scattering, and both have found that the correlated static-exchange potential is less attractive than the static-exchange potential. We will show, however, that the correlated static-exchange potential is more attractive than the static-exchange one---atmore » least for {ital e}{sup {minus}}+N{sub 2} scattering in {sup 2}{Pi}{sub {ital g}} symmetry. The two prior investigations were misled by an improper degree of correlation and by an improper treatment of the exchange.« less
Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.
Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L
2016-08-01
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.
Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields
Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; Kienzle, Paul A.; Majkrzak, Charles F.; Liu, Yaohua; Dennis, Cindi L.
2016-01-01
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement. PMID:27504074
Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields
Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; ...
2016-06-09
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample,more » however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. In conclusion, the theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.« less
Gaussian basis functions for highly oscillatory scattering wavefunctions
NASA Astrophysics Data System (ADS)
Mant, B. P.; Law, M. M.
2018-04-01
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.
Semiempirical potentials for positron scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe
2011-08-15
We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; Gustafsson, M.; Maroulis, G.
2018-04-01
Quantum mechanical lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) at room temperature (295 K) are computed for gaseous mixtures of molecular hydrogen with neon, krypton and xenon. The induced spectra are detected using theoretical values for induced dipole moment, pair-polarizability trace and anisotropy, hyper-polarizability and updated intermolecular potentials. Good agreement is observed for all spectra when the literature and the present potentials which are constructed from the transport and thermo-physical properties are used.
NASA Astrophysics Data System (ADS)
Petersen, Jakob; Pollak, Eli; Miret-Artes, Salvador
2018-04-01
Quantum threshold reflection is a well-known quantum phenomenon which prescribes that at threshold, except for special circumstances, a quantum particle scattering from any potential, even if attractive at long range, will be reflected with unit probability. In the past, this property had been associated with the so-called badlands region of the potential, where the semiclassical description of the scattering fails due to a rapid spatial variation of the de Broglie wavelength. This badlands region occurs far from the strong interaction region of the potential and has therefore been used to "explain" the quantum reflection phenomenon. In this paper we show that the badlands region of the interaction potential is immaterial. The extremely long wavelength of the scattered particle at threshold is much longer than the spatial extension of the badlands region, which therefore does not affect the scattering. For this purpose, we review and generalize the proof for the existence of quantum threshold reflection to stress that it is only a consequence of continuity and boundary conditions. The nonlocal character of the scattering implies that the whole interaction potential is involved in the phenomenon. We then provide a detailed numerical study of the threshold scattering of a particle by a Morse potential and an Eckart potential, especially in the time domain. We compare exact quantum computations with incoherent results obtained from a classical Wigner approximation. This study shows that close to threshold the time-dependent amplitude of the scattered particle is negligible in the badlands region and is the same whether the potential has a reflecting wall as in the Morse potential or a steplike structure as in the Eckart smooth step potential. The mean flight time of the particle is not shortened due to a local reflection from the badlands region or due to the lower density of the wave function at short distances. This study should serve to definitely rule out the badlands region as a qualitative guide to the properties of quantum threshold reflection.
An eigenfunction method for reconstruction of large-scale and high-contrast objects.
Waag, Robert C; Lin, Feng; Varslot, Trond K; Astheimer, Jeffrey P
2007-07-01
A multiple-frequency inverse scattering method that uses eigenfunctions of a scattering operator is extended to image large-scale and high-contrast objects. The extension uses an estimate of the scattering object to form the difference between the scattering by the object and the scattering by the estimate of the object. The scattering potential defined by this difference is expanded in a basis of products of acoustic fields. These fields are defined by eigenfunctions of the scattering operator associated with the estimate. In the case of scattering objects for which the estimate is radial, symmetries in the expressions used to reconstruct the scattering potential greatly reduce the amount of computation. The range of parameters over which the reconstruction method works well is illustrated using calculated scattering by different objects. The method is applied to experimental data from a 48-mm diameter scattering object with tissue-like properties. The image reconstructed from measurements has, relative to a conventional B-scan formed using a low f-number at the same center frequency, significantly higher resolution and less speckle, implying that small, high-contrast structures can be demonstrated clearly using the extended method.
Classical theory of atom-surface scattering: The rainbow effect
NASA Astrophysics Data System (ADS)
Miret-Artés, Salvador; Pollak, Eli
2012-07-01
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.
Classical theory of atom-surface scattering: The rainbow effect
NASA Astrophysics Data System (ADS)
Miret-Artés, Salvador; Pollak, Eli
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the "washboard model" in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.
Analysis of 4He+40Ca and 4He+44Ti scattering using different optical model potentials
NASA Astrophysics Data System (ADS)
Ibraheem, Awad A.
2016-09-01
Elastic scattering of 4He+40Ca and 4He+44Ti reactions at backward angles has been analyzed using two differentmodels, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods-Saxon imaginary potentials, provide good agreement with the experimental data at energy E c.m. = 21.8 MeV without need to renormalize the potentials. Coupledchannels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of 44Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.
Strength of the interatomic potential derived from angular scans in LEIS
NASA Astrophysics Data System (ADS)
Primetzhofer, D.; Markin, S. N.; Draxler, M.; Beikler, R.; Taglauer, E.; Bauer, P.
2008-09-01
Angular scans were performed for a Cu(1 0 0) single crystal and He + ions. The results were compared to MARLOWE, KALYPSO and FAN simulations to obtain information on the interaction potential. The influence of the used evaluation procedure on the deduced scattering potential was investigated. The scattering potential is found to be weaker than what is predicted by an uncorrected TFM potential. It was found that the use of a single screening correction factor is applicable in a wide range of impact parameters. It is further shown that selection of single scattering trajectories and a limitation of information depth to the surface layers is possible for neutral and charge integrated spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuri, Asaf; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il
2015-07-07
In-plane two and three dimensional diffraction patterns are computed for the vertical scattering of an Ar atom from a frozen LiF(100) surface. Suitable collimation of the incoming wavepacket serves to reveal the quantum mechanical diffraction. The interaction potential is based on a fit to an ab initio potential calculated using density functional theory with dispersion corrections. Due to the potential coupling found between the two horizontal surface directions, there are noticeable differences between the quantum angular distributions computed for two and three dimensional scattering. The quantum results are compared to analogous classical Wigner computations on the same surface and withmore » the same conditions. The classical dynamics largely provides the envelope for the quantum diffractive scattering. The classical results also show that the corrugation along the [110] direction of the surface is smaller than along the [100] direction, in qualitative agreement with experimental observations of unimodal and bimodal scattering for the [110] and [100] directions, respectively.« less
Determination of scattering structures from spatial coherence measurements.
Zarubin, A M
1996-03-01
A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.
Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Sobhani, H.; Chung, W. S.; Hassanabadi, H.
2018-04-01
In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.
Data of a partial-wave analysis of nucleon-nucleon scattering at energies of up to E{sub lab} = 3 GeV (lower partial waves) and the properties of the deuteron are described within the relativistic optical model based on deep attractive quasipotentials involving forbidden states (as exemplified by the Moscow potential). Partial-wave potentials are derived by the inverse-scattering-problem method based on the Marchenko equation by using present-day data from the partial-wave analysis of nucleon-nucleon scattering at energies of up to 3 GeV. Channel coupling is taken into account. The imaginary parts of the potentials are deduced from the phase equation of the variable-phasemore » approach. The general situation around the manifestation of quark effects in nucleon-nucleon interaction is discussed.« less
Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Kaplar, Robert J.
2017-02-01
Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.
Precision measurement of the n-3He incoherent scattering length using neutron interferometry.
Huber, M G; Arif, M; Black, T C; Chen, W C; Gentile, T R; Hussey, D S; Pushin, D A; Wietfeldt, F E; Yang, L
2009-05-22
We report the first measurement of the low-energy neutron-(3)He incoherent scattering length using neutron interferometry: b_{i};{'} = (-2.512 +/- 0.012 stat +/- 0.014 syst) fm. This is in good agreement with a recent calculation using the AV18 + 3N potential. The neutron-(3)He scattering lengths are important for testing and developing nuclear potential models that include three-nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.
Impenetrability in Floquet Scattering in One Dimension
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Smith, D. H.
2018-07-01
We study the scattering off a time-periodic zero-range potential in one spatial dimension. We focus on the parameter regions that lead to zero-transmission probability (ZTP). For static potentials, ZTP leads to fermionization of distinguishable equal-mass particles. For time-periodic potentials, fermionization is prevented by the formation of evanescent waves.
Determination of the self-adjoint matrix Schrödinger operators without the bound state data
NASA Astrophysics Data System (ADS)
Xu, Xiao-Chuan; Yang, Chuan-Fu
2018-06-01
(i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.
A full-potential approach to the relativistic single-site Green's function
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...
2016-07-07
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less
Surface areas of fractally rough particles studied by scattering
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven
1989-05-01
The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibraheem, Awad A., E-mail: awad-ah-eb@hotmail.com
Elastic scattering of {sup 4}He+{sup 40}Ca and {sup 4}He+{sup 44}Ti reactions at backward angles has been analyzed using two different models, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods–Saxon imaginary potentials, provide good agreement with the experimental data at energy E{sub c.m.} = 21.8 MeV without need to renormalize the potentials. Coupled channels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of {sup 44}Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.
NASA Astrophysics Data System (ADS)
Carey, Ralph; Lucchese, Robert R.; Gianturco, F. A.
2013-05-01
We present scattering calculations of electron collisions with the platinum-containing compound cis-diamminedichloroplatinum (CDDP), commonly known as cisplatin, between 0.5 eV and 6 eV, and the corresponding isolated Pt atom from 0.1 eV to 10 eV. We find evidence of resonances in e--CDDP scattering, using an ab initio description of the target. We computed scattering matrix elements from equations incorporating exchange and polarization effects through the use of the static-exchange plus density functional correlation potential. Additionally, we made use of a purely local adiabatic model potential that allows Siegert eigenstates to be calculated, thereby allowing inspection of the possible resonant scattering wave functions. The total cross section for electron scattering from (5d10) 1S Pt displays a large magnitude, monotonic decay from the initial collision energies, with no apparent resonance scattering features in any scattering symmetry. By contrast, the e--CDDP scattering cross section shows a small feature near 3.8 eV, which results from a narrow, well localized resonance of b2 symmetry. These findings are then related to the possible electron-mediated mechanism of the action of CDDP on DNA replication as suggested by recent experiments.
I = 2 ππ scattering phase shift from the HAL QCD method with the LapH smearing
NASA Astrophysics Data System (ADS)
Kawai, Daisuke; Aoki, Sinya; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji
2018-04-01
Physical observables, such as the scattering phase shifts and binding energy, calculated from the non-local HAL QCD potential do not depend on the sink operators used to define the potential. In practical applications, the derivative expansion of the non-local potential is employed, so that physical observables may receive some scheme dependence at a given order of the expansion. In this paper, we compare the I=2ππ scattering phase shifts obtained in the point-sink scheme (the standard scheme in the HAL QCD method) and the smeared-sink scheme (the LapH smearing newly introduced in the HAL QCD method). Although potentials in different schemes have different forms as expected, we find that, for reasonably small smearing size, the resultant scattering phase shifts agree with each other if the next-to-leading-order (NLO) term is taken into account. We also find that the HAL QCD potential in the point-sink scheme has a negligible NLO term for a wide range of energies, which implies good convergence of the derivative expansion, while the potential in the smeared-sink scheme has a non-negligible NLO contribution. The implications of this observation for future studies of resonance channels (such as the I=0 and 1ππ scatterings) with smeared all-to-all propagators are briefly discussed.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
Influence of single-neutron stripping on near-barrier 6He+208Pb and 8He+208Pb elastic scattering
NASA Astrophysics Data System (ADS)
Marquínez-Durán, G.; Keeley, N.; Kemper, K. W.; Mackintosh, R. S.; Martel, I.; Rusek, K.; Sánchez-Benítez, A. M.
2017-02-01
The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the He,86+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S -matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He.
Integral Equations and Scattering Solutions for a Square-Well Potential.
ERIC Educational Resources Information Center
Bagchi, B.; Seyler, R. G.
1979-01-01
Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)
NASA Astrophysics Data System (ADS)
Bahk, Je-Hyeong
Electron transport in thin film ErAs:InGa(Al)As metal/semiconductor nanocomposite materials grown by molecular beam epitaxy is investigated experimentally and theoretically for efficient thermoelectric power generation. Thermoelectric properties such as the Seebeck coefficient, the electrical conductivity, and the thermal conductivity are measured for the various compositions of the material up to 840 K. A special sample preparation method is proposed to protect the thin films from damage and/or decomposition, and prevent the parasitic substrate conduction effect during the high temperature measurements. The sample preparation method includes surface passivation, high temperature metallization with a diffusion barrier, and the covalent oxide bonding technique for substrate removal. The experimental results for the nanocomposite materials are analyzed using the Boltzmann transport equation under the relaxation time approximation. The scattering characteristics of free electrons in the InGa(Al)As is defined by four major scattering mechanisms such as the polar optical phonon scattering, the ionized impurity scattering, the alloy scattering, and the acoustic phonon deformation potential scattering. Combining these scattering mechanisms, the electron transport model successfully fits the temperature-dependent thermoelectric properties of Si-doped InGaAlAs materials, and predicts the figure of merits at various doping levels in various Al compositions. The nanoparticle-electron interaction is modeled as a momentum scattering for free electrons caused by the electrostatic potential perturbation around nanoparticles and the band offset at the interface. The ErAs nanoparticles are assumed to be semi-metals that can donate electrons to the matrix, and positively charged after the charge transfer to build up the screened coulomb potential outside them. The nanoparticle scattering rate is calculated for this potential profile using the partial wave method, and used to analyze the enhancement of the Seebeck coefficient. Finally, the experimental results for the various compositions of the ErAs:InGa(Al)As nanocomposites are fit using the electron transport model and the nanoparticle scattering. It is shown that nanoparticle scattering can enhance the power factor via energy-dependent electron scattering in ErAs:InGaAs system. The figure of merit for the 0.6% ErAs:(InGaAs)0.8(InAlAs) 0.2 lattice matched to InP is measured to be 1.3 at 800 K, and the theory predicts that it can reach 1.9 at 1000 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, G. G.; Fueloep, Zs.; Gyuerky, Gy.
2011-06-15
The elastic scattering cross sections for the reactions {sup 110,116}Cd({alpha},{alpha}){sup 110,116}Cd at energies above and below the Coulomb barrier are presented to provide a sensitive test for the {alpha}-nucleus optical potential parameter sets. Additional constraints for the optical potential are taken from the analysis of elastic scattering excitation functions at backward angles which are available in literature. Moreover, the variation of the elastic {alpha} scattering cross sections along the Z=48 isotopic and N=62 isotonic chain is investigated by the study of the ratios of the {sup 106,110,116}Cd({alpha},{alpha}){sup 106,110,116}Cd scattering cross sections at E{sub cm{approx_equal}}15.6and18.8 MeV and the ratio of themore » {sup 110}Cd({alpha},{alpha}){sup 110}Cd and {sup 112}Sn({alpha},{alpha}){sup 112}Sn reaction cross sections at E{sub cm{approx_equal}}18.8 MeV, respectively. These ratios are sensitive probes for the {alpha}-nucleus optical potential parametrizations. The potentials under study are a basic prerequisite for the prediction of {alpha}-induced reaction cross sections (e.g., for the calculation of stellar reaction rates in the astrophysical p or {gamma} process).« less
Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes
NASA Astrophysics Data System (ADS)
Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.
2017-12-01
We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.
Study of 11Li+p elastic scattering using BHF formalism with three body force
NASA Astrophysics Data System (ADS)
Sharma, Manjari; Haider, W.
2018-04-01
In the present work we have analyzed the elastic scattering data of 11Li + p at 62, 68.4 and 75 MeV/nucleon, using the microscopic optical potential calculated within the framework of Brueckner-Hartree-Fock formalism (BHF). The calculation uses Argonne v18 and Urbana v14 inter-nucleon potentials and the Urbana IX (UVIX) model of three body force. The required nucleon-density distributions for 11Li are obtained using the semi-phenomenological model for nuclear density distributions. The optical potential has been obtained by folding the g-matrices as calculated in BHF (with and without three body forces) over the nucleon density distributions. We have used the exact method for calculating both the direct and the exchange parts of the spin-orbit potential. Our results reveal that the spin-orbit potential significantly contributes to 11Li+p elastic scattering at all three incident energies. Further, the calculated spin-orbit potential in BHF is much smaller and more diffused as compared with the phenomenological spin-orbit potential. The analysis reveals that the calculated microscopic optical potentials, with and without three body force using BHF approach with phenomenological form of density distribution, provides satisfactory agreement with the elastic scattering data for 11Li+p.
Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Apostol, M.
2017-11-01
The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.
Heat conduction in one-dimensional lattices with on-site potential.
Savin, A V; Gendelman, O V
2003-04-01
The process of heat conduction in one-dimensional lattices with on-site potential is studied by means of numerical simulation. Using the discrete Frenkel-Kontorova, phi(4), and sinh-Gordon models we demonstrate that contrary to previously expressed opinions the sole anharmonicity of the on-site potential is insufficient to ensure the normal heat conductivity in these systems. The character of the heat conduction is determined by the spectrum of nonlinear excitations peculiar for every given model and therefore depends on the concrete potential shape and the temperature of the lattice. The reason is that the peculiarities of the nonlinear excitations and their interactions prescribe the energy scattering mechanism in each model. For sine-Gordon and phi(4) models, phonons are scattered at a dynamical lattice of topological solitons; for sinh-Gordon and for phi(4) in a different parameter regime the phonons are scattered at localized high-frequency breathers (in the case of phi(4) the scattering mechanism switches with the growth of the temperature).
A Theory of Exoplanet Transits with Light Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Tyler D., E-mail: tydrobin@ucsc.edu
Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, themore » scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.« less
Electronic scattering, focusing, and resonance by a spherical barrier in Weyl semimetals
NASA Astrophysics Data System (ADS)
Lu, Ming; Zhang, Xiao-Xiao
2018-05-01
We solve the Weyl electron scattered by a spherical step potential barrier. Tuning the incident energy and the potential radius, one can enter both quasiclassical and quantum regimes. Transport features related to far-field currents and integrated cross sections are studied to reveal the preferred forward scattering. In the quasiclassical regime, a strong focusing effect along the incident spherical axis is found in addition to optical caustic patterns. In the quantum regime, at energies of successive angular momentum resonances, a polar aggregation of electron density is found inside the potential. The findings will be useful in transport studies and electronic lens applications in Weyl systems.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Low-energy positron scattering upon endohedrals
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernysheva, L. V.
2017-07-01
We investigate positron scattering upon endohedrals and compare it with electron-endohedral scattering. We show that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects both the positron and electron elastic scattering phases as well as corresponding cross sections. Of great importance is also the interaction between the incoming positron and the target electrons that leads to formation of the virtual positronium P˜s. We illustrate the general trend by concrete examples of positron and electron scattering upon endohedrals He@C60 and Ar@C60, and compare it to scattering upon fullerene C60. To obtain the presented results, we have employed new simplified approaches that permit to incorporate the effect of fullerenes polarizability into the He@C60 and Ar@C60 polarization potential and to take into account the virtual positronium formation. Using these approaches, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of endohedral polarization and P˜s formation.
s -wave scattering length of a Gaussian potential
NASA Astrophysics Data System (ADS)
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
Elastic and inelastic collisions of swarms
NASA Astrophysics Data System (ADS)
Armbruster, Dieter; Martin, Stephan; Thatcher, Andrea
2017-04-01
Scattering interactions of swarms in potentials that are generated by an attraction-repulsion model are studied. In free space, swarms in this model form a well-defined steady state describing the translation of a stable formation of the particles whose shape depends on the interaction potential. Thus, the collision between a swarm and a boundary or between two swarms can be treated as (quasi)-particle scattering. Such scattering experiments result in internal excitations of the swarm or in bound states, respectively. In addition, varying a parameter linked to the relative importance of damping and potential forces drives transitions between elastic and inelastic scattering of the particles. By tracking the swarm's center of mass, a refraction rule is derived via simulations relating the incoming and outgoing directions of a swarm hitting the wall. Iterating the map derived from the refraction law allows us to predict and understand the dynamics and bifurcations of swarms in square boxes and in channels.
A method to obtain static potential for electron-molecule scattering
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Das, Tapasi; Stauffer, Allan
2014-05-01
Electron scattering from molecules is complicated by the fact that molecules are a multi-centered target with the nuclei of the constituent atoms being a center of charge. One of the most important parts of a scattering calculation is to obtain the static potential which represents the interaction of the incident electron with the unperturbed charge distribution of the molecule. A common way to represent the charge distribution of molecules is with Gaussian orbitals centered on the various nuclei. We have derived a way to calculate spherically-averaged molecular static potentials using this form of molecular wave function which is mostly analytic. This method has been applied to elastic electron scattering from water molecules and we obtained differential cross sections which are compared with previous experimental and theoretical results. The method can be extended to more complex molecules. One of us (RS) is thankful to IAEA, Vienna, Austria and DAE-BRNS, Mumbai, India for financial support.
Apple Mealiness Detection Using Hyperspectral Scattering Technique
USDA-ARS?s Scientific Manuscript database
Mealiness is a symptom of internal fruit disorder, which is characterized by abnormal softness and lack of free juice in the fruit. This research investigated the potential of hyperspectral scattering technique for detecting mealy apples. Spectral scattering profiles between 600 nm and 1,000 nm were...
NASA Astrophysics Data System (ADS)
Loran, Farhang; Mostafazadeh, Ali
2017-12-01
We provide an exact solution of the scattering problem for the potentials of the form v (x ,y ) =χa(x ) [v0(x ) +v1(x ) ei α y] , where χa(x ) :=1 for x ∈[0 ,a ] , χa(x ) :=0 for x ∉[0 ,a ] , vj(x ) are real or complex-valued functions, χa(x ) v0(x ) is an exactly solvable scattering potential in one dimension, and α is a positive real parameter. If α exceeds the wave number k of the incident wave, the scattered wave does not depend on the choice of v1(x ) . In particular, v (x ,y ) is invisible if v0(x ) =0 and k <α . For k >α and v1(x ) ≠0 , the scattered wave consists of a finite number of coherent plane-wave pairs ψn± with wave vector: kn=(±√{k2-[nα ] 2 },n α ) , where n =0 ,1 ,2 ,...
Precision calculation of the lowest 1S resonance in e-H scattering. [electron-hydrogen scattering
NASA Technical Reports Server (NTRS)
Ho, Y. K.; Bhatia, A. K.; Temkin, A.
1977-01-01
The position and width of the lowest resonance in electron-hydrogen scattering have been calculated using a Hylleraas correlation function with up to 95 terms in the optical potential formalism. The results should be useful as calibration points for experimental electron scattering purposes. A formula relating the conventional (Breit-Wigner) width with the Feschbach formalism is derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Dabrowski, H.; Freindl, L.
1978-03-01
The differential cross sections for ..cap alpha.. particles elastically and inelastically scattered from /sup 5/8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from /sup 6/0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5/sup 0/ lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for /sup 5/8Ni and 32.3 and 104 MeV for /sup 6/0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of bothmore » real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of /sup 5/8Ni. Both elastic scattering data and coupling with the first excited state of /sup 5/8Ni are well reproduced using the above potential in the wide scattering energy range.« less
Topics in electromagnetic, acoustic, and potential scattering theory
NASA Astrophysics Data System (ADS)
Nuntaplook, Umaporn
With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.
Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon
NASA Astrophysics Data System (ADS)
Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.
2015-02-01
The elastic and inelastic scattering of 17,18O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction 13C (17O ,18O )12C . Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the 17F ( p ,γ)18Ne which is essential to estimate the production of 18F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of 17O , 18O and 16O projectiles is made.
NASA Astrophysics Data System (ADS)
E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi
2016-07-01
We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.
Partial Wave Dispersion Relations: Application to Electron-Atom Scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Drachman, Richard J.
1999-01-01
In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less
Global optical model potential for A=3 projectiles
NASA Astrophysics Data System (ADS)
Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.
2009-02-01
A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.
Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD
NASA Astrophysics Data System (ADS)
Aoki, S.
We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.
Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman
2017-11-10
Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
NASA Astrophysics Data System (ADS)
Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.
2015-12-01
Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.
Investigation of the effect of scattering centers on low dimensional nanowire channel
NASA Astrophysics Data System (ADS)
Cariappa, K. S.; Shukla, Raja; Sarkar, Niladri
2018-05-01
In this work, we studied the effect of scattering centers on the electron density profiles of a one dimensional Nanowire channel. Density Matrix Formalism is used for calculating the local electron densities at room temperature. Various scattering centers have been simulated in the channel. The nearest neighbor tight binding method is applied to construct the Hamiltonian of nanoscale devices. We invoke scattering centers by adding local scattering potentials to the Hamiltonian. This analysis could give an insight into the understanding and utilization of defects for device engineering.
Generalization of the Hartree-Fock approach to collision processes
NASA Astrophysics Data System (ADS)
Hahn, Yukap
1997-06-01
The conventional Hartree and Hartree-Fock approaches for bound states are generalized to treat atomic collision processes. All the single-particle orbitals, for both bound and scattering states, are determined simultaneously by requiring full self-consistency. This generalization is achieved by introducing two Ansäauttze: (a) the weak asymptotic boundary condition, which maintains the correct scattering energy and target orbitals with correct number of nodes, and (b) square integrable amputated scattering functions to generate self-consistent field (SCF) potentials for the target orbitals. The exact initial target and final-state asymptotic wave functions are not required and thus need not be specified a priori, as they are determined simultaneously by the SCF iterations. To check the asymptotic behavior of the solution, the theory is applied to elastic electron-hydrogen scattering at low energies. The solution is found to be stable and the weak asymptotic condition is sufficient to produce the correct scattering amplitudes. The SCF potential for the target orbital shows the strong penetration by the projectile electron during the collision, but the exchange term tends to restore the original form. Potential applicabilities of this extension are discussed, including the treatment of ionization and shake-off processes.
Fast Scattering Code (FSC) User's Manual: Version 2
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Dun, M. H.; Pope, D. Stuart
2006-01-01
The Fast Scattering Code (version 2.0) is a computer program for predicting the three-dimensional scattered acoustic field produced by the interaction of known, time-harmonic, incident sound with aerostructures in the presence of potential background flow. The FSC has been developed for use as an aeroacoustic analysis tool for assessing global effects on noise radiation and scattering caused by changes in configuration (geometry, component placement) and operating conditions (background flow, excitation frequency).
2008-09-01
2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of similar size were measured over a...Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the...effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars (Dendraster
2008-09-01
results. In Stanton and Chu (2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of...Oceanographic Institution Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low...grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor
NASA Astrophysics Data System (ADS)
Kobayashi, Masaki; Kikuchi, Naoto; Sato, Akihiro
2015-01-01
This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm2. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of this method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm-1), indicating the potential for expansion of this technique for use in biological applications.
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2015-09-01
Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.
Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, M.G.; Castro, A.S. de
2009-11-15
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and moremore » efficient problem of solving an irrational algebraic equation.« less
NASA Astrophysics Data System (ADS)
Colibaba, G. V.
2018-06-01
The additive Matthiessen's rule is the simplest and most widely used rule for the rapid experimental characterization and modeling of the charge carrier mobility. However, the error when using this rule can be higher than 40% and the contribution of the assumed additional scattering channels due to the difference between the experimental data and results calculated based on this rule can be misestimated by several times. In this study, a universal semi-additive equation is proposed for the total mobility and Hall factor, which is applicable to any quantity of scattering mechanisms, where it considers the energy dependence of the relaxation time and the error is 10-20 times lower compared with Matthiessen's rule. Calculations with accuracy of 99% are demonstrated for materials with polar-optical phonon, acoustic phonon via the piezoelectric potential, ionized, and neutral impurity scattering. The proposed method is extended to the deformation potential, dislocation, localized defect, alloy potential, and dipole scattering, for nondegenerate and partially degenerate materials.
An initial analysis of short- and medium-range correlations potential non-Pt catalysts in CoNx
NASA Astrophysics Data System (ADS)
Peterson, Joe
2009-10-01
A potential show stopper for the development of fuel cells for the commercial automotive industry is the design of low-cost catalysts. The best catalysts are based on platinum, which is a rare and expensive noble metal. Our group has been involved in the characterization of potential materials for non-Pt catalysts. In this presentation, I will present some preliminary neutron scattering data from a nanocrystalline powder sample of CoNx. It is apparent that the diffraction data cannot be analyzed with standard Riedveld refinement, and we have to invoke pair distribution function (PDF) analysis. The PDF provides insight into short-range correlations, as it measures the probabilities of short- and mid-range interatomic distances in a material. The analysis reveals a strong incoherent scattering response, which is indicative of the presence of hydrogen in the sample. After correcting for the incoherent scattering, one obtains the normalized scattering function S(Q), whose Fourier transform yields the PDF.
An initial analysis of short- and medium-range correlations potential non-Pt catalysts in CoNx
NASA Astrophysics Data System (ADS)
Peterson, Joe
2010-03-01
A potential show stopper for the development of fuel cells for the commercial automotive industry is the design of low-cost catalysts. The best catalysts are based on platinum, which is a rare and expensive noble metal. Our group has been involved in the characterization of potential materials for non-Pt catalysts. In this presentation, I will present some preliminary neutron scattering data from a nanocrystalline powder sample of CoNx. It is apparent that the diffraction data cannot be analyzed with standard Riedveld refinement, and we have to invoke pair distribution function (PDF) analysis. The PDF provides insight into short-range correlations, as it measures the probabilities of short- and mid-range interatomic distances in a material. The analysis reveals a strong incoherent scattering response, which is indicative of the presence of hydrogen in the sample. After correcting for the incoherent scattering, one obtains the normalized scattering function S(Q), whose Fourier transform yields the PDF.
The HCO+-H2 van der Waals interaction: Potential energy and scattering
NASA Astrophysics Data System (ADS)
Massó, H.; Wiesenfeld, L.
2014-11-01
We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
The HCO⁺-H₂ van der Waals interaction: potential energy and scattering.
Massó, H; Wiesenfeld, L
2014-11-14
We compute the rigid-body, four-dimensional interaction potential between HCO(+) and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO(+) and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourant, J.R.; Bigio, I.J.; Johnson, T.
The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.
Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams
NASA Astrophysics Data System (ADS)
Hammer, Markus; Seidel, Wolfhart
1997-10-01
Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.
3D Compton scattering imaging and contour reconstruction for a class of Radon transforms
NASA Astrophysics Data System (ADS)
Rigaud, Gaël; Hahn, Bernadette N.
2018-07-01
Compton scattering imaging is a nascent concept arising from the current development of high-sensitive energy detectors and is devoted to exploit the scattering radiation to image the electron density of the studied medium. Such detectors are able to collect incoming photons in terms of energy. This paper introduces potential 3D modalities in Compton scattering imaging (CSI). The associated measured data are modeled using a class of generalized Radon transforms. The study of this class of operators leads to build a filtered back-projection kind algorithm preserving the contours of the sought-for function and offering a fast approach to partially solve the associated inverse problems. Simulation results including Poisson noise demonstrate the potential of this new imaging concept as well as the proposed image reconstruction approach.
Airborne Polarized Lidar Detection of Scattering Layers in the Ocean
NASA Astrophysics Data System (ADS)
Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne
2001-08-01
A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.
Redler, Gage; Jones, Kevin C.; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C. H.
2018-01-01
Purpose Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. Methods To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Results Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Conclusions Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. PMID:29360151
Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H
2018-03-01
Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.
Thomson scattering from a three-component plasma.
Johnson, W R; Nilsen, J
2014-02-01
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
NASA Astrophysics Data System (ADS)
Danailov, Daniel M.
2007-11-01
Previous simulations of glancing incidence ion-surface interaction have demonstrated that classical dynamics using the row-model have successfully reproduced multimodal azimuthal and polar spectra. These studies have also shown considerable sensitivity to the form of the interatomic potential thus making it a strong test of the validity of such potentials and even allow deduction of the ion-surface potentials. In these simulations the individual pairwise interactions between the projectile and the target atoms have been replaced by cylindrical potentials. Comparison to numerous experimental studies have confirmed the existence of rainbow scattering phenomena and successfully tested the validity of the cylindrical potential used in these simulations. The use of cylindrical potentials avoids stochastic effects due to thermal displacements and allows faster computer simulations leading to reliable angular distributions. In the present work we extend the row-model to consider scattering from binary alloys. Using He+ scattered at glancing incidence from NiAl surfaces, Al or Ni terminated, a faster method has been developed to easily and accurately quantize not only the maximum deflection azimuthal angle but all the singular points in the angular distribution. It has been shown that the influence of the surface termination on the rainbow angle and the inelastic losses is small.
Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potentialmore » composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.« less
Born scattering and inversion sensitivities in viscoelastic transversely isotropic media
NASA Astrophysics Data System (ADS)
Moradi, Shahpoor; Innanen, Kristopher A.
2017-11-01
We analyse the scattering of seismic waves from anisotropic-viscoelastic inclusions using the Born approximation. We consider the specific case of Vertical Transverse Isotropic (VTI) media with low-loss attenuation and weak anisotropy such that second- and higher-order contributions from quality factors and Thomsen parameters are negligible. To accommodate the volume scattering approach, the viscoelastic VTI media is broken into a homogeneous viscoelastic reference medium with distributed inclusions in both viscoelastic and anisotropic properties. In viscoelastic reference media in which all propagations take place, wave modes are of P-wave type, SI-wave type and SII-wave type, all with complex slowness and polarization vectors. We generate expressions for P-to-P, P-to-SI, SI-to-SI and SII-to-SII scattering potentials, and demonstrate that they reduce to previously derived isotropic results. These scattering potential expressions are sensitivity kernels related to the Fréchet derivatives which provide the weights for multiparameter full waveform inversion updates.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.
2017-10-01
Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.
NASA Technical Reports Server (NTRS)
Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.;
2016-01-01
Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
NASA Astrophysics Data System (ADS)
Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.
2018-04-01
We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.
NASA Astrophysics Data System (ADS)
Rahmat, M.; Modarres, M.
2018-03-01
The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.
NASA Astrophysics Data System (ADS)
Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.
2005-01-01
The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1-103) obtained from multiconfiguration Dirac-Fock self-consistent calculations. For comparison purposes, three simple analytical approximations to the electron density of neutral atoms (corresponding to the Thomas-Fermi, the Thomas-Fermi-Dirac and the Dirac-Hartree-Fock-Slater models) are also included. For calculations of elastic scattering by ions, the electron density should be provided by the user. The exchange potential for electron scattering can be selected among three different analytical approximations (Thomas-Fermi, Furness-McCarthy, Riley-Truhlar). The offered options for the correlation-polarization potential are based on the empirical Buckingham potential. The imaginary absorption potential is calculated from the local-density approximation proposed by Salvat [Phys. Rev. A 68 (2003) 012708]. Program summaryTitle of program:ELSEPA Catalogue identifier: ADUS Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADUS Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computer for which the program is designed and others in which it is operable: Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested: Windows XP, Windows 2000, Debian GNU/Linux 3.0r0 (sarge) Compilers:Compaq Visual Fortran v6.5 (Windows); GNU FORTRAN, g77 (Windows and Linux) Programming language used: FORTRAN 77 No. of bits in a word: 32 Memory required to execute with typical data: 0.6 Mb No. of lines in distributed program, including test data, etc.:135 489 No. of bytes in distributed program, including test data, etc.: 1 280 006 Distribution format: tar.gz Keywords: Dirac partial-wave analysis, electron elastic scattering, positron elastic scattering, differential cross sections, momentum transfer cross sections, transport cross sections, scattering amplitudes, spin polarization, scattering by complex potentials, high-energy atomic screening functions Nature of the physical problem: The code calculates differential cross sections, total cross sections and transport cross sections for single elastic scattering of electrons and positrons by neutral atoms, positive ions and randomly oriented molecules. For projectiles with kinetic energies less than about 5 MeV, the programs can also compute scattering amplitudes and spin polarization functions. Method of solution: The effective interaction between the projectile and a target atom is represented by a local central potential that can optionally include an imaginary (absorptive) part to account approximately for the coupling with inelastic channels. For projectiles with kinetic energy less that about 5 MeV, the code performs a conventional relativistic Dirac partial-wave analysis. For higher kinetic energies, where the convergence of the partial-wave series is too slow, approximate factorization methods are used. Restrictions on the complexity of the program: The calculations are based on the static-field approximation. The optional correlation-polarization and inelastic absorption corrections are obtained from approximate, semiempirical models. Calculations for molecules are based on a single-scattering independent-atom approximation. To ensure accuracy of the results for scattering by ions, the electron density of the ion must be supplied by the user. Typical running time: on a 2.8 GHz Pentium 4, the calculation of elastic scattering by atoms and ions takes between a few seconds and about two minutes, depending on the atomic number of the target, the adopted potential model and the kinetic energy of the projectile. Unusual features of the program: The program calculates elastic cross sections for electrons and positrons with kinetic energies in a wide range, from a few tens of eV up to about 1 GeV. Calculations can be performed for neutral atoms of all elements, from hydrogen to lawrencium ( Z=1-103), ions and simple molecules. Commercial products are identified to specify the calculational procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the University of Barcelona or the Polish Academy of Sciences, nor does it imply that the products are necessarily the best available for the purpose.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Semimicroscopic analysis of 6Li+28Si elastic scattering at 76 to 318 MeV
NASA Astrophysics Data System (ADS)
Hassanain, M. A.; Anwar, M.; Behairy, Kassem O.
2018-04-01
Using the α-cluster structure of colliding nuclei, the elastic scattering of 6Li+28Si at energies from 76 to 318 MeV has been investigated by the use of the real folding cluster approach. The results of the cluster analysis are compared with those obtained by the CDM3Y6 effective density- and energy-dependent nucleon-nucleon (NN) interaction based upon G -matrix elements of the M3Y-Paris potential. A Woods-Saxon (WS) form was used for the imaginary potential. For all energies and derived potentials, the diffraction region was well reproduced, except at Elab=135 and 154 MeV at large angle. These results suggest that the addition of the surface (DWS) imaginary potential term to the volume imaginary potential is essential for a correct description of the refractive structure of the 6Li elastic scattering distribution at these energies. The energy dependence of the total reaction cross sections and that of the real and imaginary volume integrals is also discussed.
The forward rainbow scattering of low energy protons by a graphene sheet
NASA Astrophysics Data System (ADS)
Ćosić, M.; Petrović, S.; Nešković, N.
2018-05-01
This article studies the rainbow scattering of 5-keV protons by the single sheet of free-standing graphene and its possible use as a tool for investigation of the ion-graphene interaction. The proton-graphene interaction potential was constructed by using the Doyle-Turner, ZBL, and Molière proton-carbon interaction potentials. The thermal motion of carbon atoms was included by averaging the potentials according to the Debye model. Proton trajectories were obtained by numerical solution of the corresponding Newton equations of motion. They were used to obtain the mapping of the proton initial positions to their scattering angles. Morphological properties of the introduced mapping including its multiplicity and the rainbow singularities were used to explain important features of the obtained angular distributions of transmitted protons.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV. [100 eV to 10 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.C.; Reynaud, G.W.; Botto, D.J.
1979-05-01
An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references. (JFP)
Deviations from Rayleigh statistics in ultrasonic speckle.
Tuthill, T A; Sperry, R H; Parker, K J
1988-04-01
The statistics of speckle patterns in ultrasound images have potential for tissue characterization. In "fully developed speckle" from many random scatterers, the amplitude is widely recognized as possessing a Rayleigh distribution. This study examines how scattering populations and signal processing can produce non-Rayleigh distributions. The first order speckle statistics are shown to depend on random scatterer density and the amplitude and spacing of added periodic scatterers. Envelope detection, amplifier compression, and signal bandwidth are also shown to cause distinct changes in the signal distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine
Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.
2006-12-15
In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.
Inverse scattering approach to improving pattern recognition
NASA Astrophysics Data System (ADS)
Chapline, George; Fu, Chi-Yung
2005-05-01
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.
Inverse Scattering Approach to Improving Pattern Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapline, G; Fu, C
2005-02-15
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less
Data-centric method for object observation through scattering media
NASA Astrophysics Data System (ADS)
Tanida, Jun; Horisaki, Ryoichi
2018-03-01
A data-centric method is introduced for object observation through scattering media. A large number of training pairs are used to characterize the relation between the object and the observation signals based on machine learning. Using the method object information can be retrieved even from strongly-disturbed signals. As potential applications, object recognition, imaging, and focusing through scattering media were demonstrated.
Symmetry considerations in the scattering of identical composite bodies
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.
1986-01-01
Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Masaki, E-mail: masaki@tohtech.ac.jp; Kikuchi, Naoto; Sato, Akihiro
This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm{sup 2}. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of thismore » method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm{sup −1}), indicating the potential for expansion of this technique for use in biological applications.« less
A multiwave range test for obstacle reconstructions with unknown physical properties
NASA Astrophysics Data System (ADS)
Potthast, Roland; Schulz, Jochen
2007-08-01
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Elastic Scattering of 65 MeV Protons from Several Nuclei between 16O and 209Bi
NASA Astrophysics Data System (ADS)
Ahmed, Syed; Akther, Parvin; Ferdous, Nasima; Begum, Amena; Gupta, Hiranmay
1997-10-01
Elastic scattering of 65 MeV polarized protons from twenty five nuclei ranging from 16O to 209Bi have been analysed within the framework of the nine parameter optical model. A set of optical model parameters has been obtained which shows the systematic behaviour of the target mass dependence of the real potential, volume integral and the r.m.s. radius. The isotopic spin dependence of the real potential has also been studied. Parameters obtained by fitting the elastic scattering data have been able to reproduce the pickup and stripping reaction cross sections as studied in a few cases.
Stochastic treatment of electron multiplication without scattering in dielectrics
NASA Technical Reports Server (NTRS)
Lin, D. L.; Beers, B. L.
1981-01-01
By treating the emission of optical phonons as a Markov process, a simple analytic method is developed for calculating the electronic ionization rate per unit length for dielectrics. The effects of scattering from acoustic and optical phonons are neglected. The treatment obtains universal functions in recursive form, the theory depending on only two dimensionless energy ratios. A comparison of the present work with other numerical approaches indicates that the effect of scattering becomes important only when the electric potential energy drop in a mean free path for optical-phonon emission is less than about 25% of the ionization potential. A comparison with Monte Carlo results is also given for Teflon.
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
NASA Astrophysics Data System (ADS)
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Weeks, David E; Niday, Thomas A; Yang, Sang H
2006-10-28
Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j') are calculated using the time dependent channel packet method (CPM). The calculation employs 1 2A', 2 2A', and 1 2A" adiabatic electronic potential energy surfaces determined by numerical computation at the multireference configuration-interaction level [M. H. Alexander, J. Chem. Phys. 99, 6041 (1993)]. The 1 2A' and 2 2A', adiabatic electronic potential energy surfaces are transformed to yield diabatic electronic potential energy surfaces that, when combined with the total B+H2 rotational kinetic energy, yield a set of effective potential energy surfaces [M. H. Alexander et al., J. Chem. Phys. 103, 7956 (1995)]. Within the framework of the CPM, the number of effective potential energy surfaces used for the scattering matrix calculation is then determined by the size of the angular momentum basis used as a representation. Twenty basis vectors are employed for these calculations, and the corresponding effective potential energy surfaces are identified in the asymptotic limit by the H2 rotor quantum numbers j=0, 2, 4, 6 and B electronic states 2Pja, ja=1/2, 3/2. Scattering matrix elements are obtained from the Fourier transform of the correlation function between channel packets evolving in time on these effective potential energy surfaces. For these calculations the H2 bond length is constrained to a constant value of req=1.402 a.u. and state to state scattering matrix elements corresponding to a total angular momentum of J=1/2 are discussed for j=0<-->j'=0,2,4 and 2P1/2<-->2P1/2, 2P3/2 over a range of total energy between 0.0 and 0.01 a.u.
NASA Astrophysics Data System (ADS)
Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr
2018-03-01
Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Li, Xiaoqi; Xi, Lei
2014-06-01
Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging.
NASA Astrophysics Data System (ADS)
Sharma, Neetika; Verma, Neha; Jogi, Jyotika
2017-11-01
This paper models the scattering limited electron transport in a nano-dimensional In0.52Al0.48As/In0.53Ga0.47As/InP heterostructure. An analytical model for temperature dependent sheet carrier concentration and carrier mobility in a two dimensional electron gas, confined in a triangular potential well has been developed. The model accounts for all the major scattering process including ionized impurity scattering and lattice scattering. Quantum mechanical variational technique is employed for studying the intrasubband scattering mechanism in the two dimensional electron gas. Results of various scattering limited structural parameters such as energy band-gap and functional parameters such as sheet carrier concentration, scattering rate and mobility are presented. The model corroborates the dominance of ionized impurity scattering mechanism at low temperatures and that of lattice scattering at high temperatures, both in turn limiting the carrier mobility. Net mobility obtained taking various scattering mechanisms into account has been found in agreement with earlier reported results, thus validating the model.
Punchets: nonlinear transport in Hamiltonian pump-ratchet hybrids
NASA Astrophysics Data System (ADS)
Dittrich, Thomas; Medina Sánchez, Nicolás
2018-02-01
‘Punchets’ are hybrids between ratchets and pumps, combining a spatially periodic static potential, typically asymmetric under space inversion, with a local driving that breaks time-reversal invariance, and are intended to model metal or semiconductor surfaces irradiated by a collimated laser beam. Their crucial feature is irregular driven scattering between asymptotic regions supporting periodic (as opposed to free) motion. With all binary spatio-temporal symmetries broken, scattering in punchets typically generates directed currents. We here study the underlying nonlinear transport mechanisms, from chaotic scattering to the parameter dependence of the currents, in three types of Hamiltonian models, (i) with spatially periodic potentials where only in the driven scattering region, spatial and temporal symmetries are broken, and (ii), spatially asymmetric (ratchet) potentials with a driving that only breaks time-reversal invariance. As more realistic models of laser-irradiated surfaces, we consider (iii), a driving in the form of a running wave confined to a compact region by a static envelope. In this case, the induced current can even run against the direction of wave propagation, drastically evidencing its nonlinear nature. Quantizing punchets is indicated as a viable research perspective.
NASA Astrophysics Data System (ADS)
Witała, H.; Golak, J.; Skibiński, R.; Topolnicki, K.; Kamada, H.
We discuss the importance of the three-nucleon isospin T = 3/2 component in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the Av18 nucleon-nucleon potential alone or combined with the Urbana IX three-nucleon force as well as the locally regularized chiral N4LO nucleon-nucleon potential alone or supplemented by the chiral N2LO three-nucleon force. We find that the isospin T = 3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S 0 state with isospin T = 3/2. For neutron-deuteron elastic scattering the T = 3/2 contributions are insignificant and charge-independence breaking can be accounted for by neglecting T = 3/2 component and using the effective t-matrix generated with the so-called “2/3 ‑ 1/3″ rule.
NASA Astrophysics Data System (ADS)
Hamada, Sh.
2018-03-01
Available experimental data for protons elastically scattered from 14N and 16O target nuclei are reanalyzed within the framework of single folding optical potential (SFOP) model. In this model, the real part of the potential is derived on the basis of single folding potential. The renormalization factor N r is extracted for the two aforementioned nuclear systems. Theoretical calculations fairly reproduce the experimental data in the whole angular range. Energy dependence of real and imaginary volume integrals as well as reaction cross sections are discussed.
Characterization of the angular memory effect of scattered light in biological tissues.
Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain
2015-05-18
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.
Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam
2014-01-01
We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350
Cloaking through cancellation of diffusive wave scattering
Chen, P. Y.; Guenneau, S.; Bağcı, H.; Salama, K. N.; Alù, A.
2016-01-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core–shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. PMID:27616925
Cloaking through cancellation of diffusive wave scattering
NASA Astrophysics Data System (ADS)
Farhat, M.; Chen, P. Y.; Guenneau, S.; Bağc, H.; Salama, K. N.; Alù, A.
2016-08-01
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging.
Repulsive nature of optical potentials for high-energy heavy-ion scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2010-10-15
The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less
NASA Astrophysics Data System (ADS)
Marwa, N. El-Hammamy
2015-03-01
The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution (FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This comparison provides information about the similarities and differences of the models used in calculations.
Non-equilibrium current via geometric scatterers
NASA Astrophysics Data System (ADS)
Exner, Pavel; Neidhardt, Hagen; Tater, Miloš; Zagrebnov, Valentin A.
2014-10-01
We investigate non-equilibrium particle transport in a system consisting of a geometric scatterer and two leads coupled to heat baths with different chemical potentials. We derive an expression for the corresponding current, the carriers of which are fermions, and analyze numerically its dependence on the model parameters in examples where the scatterer has a rectangular or triangular shape. Dedicated to the memory of Markus Büttiker (1950-2013).
Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.
Larriba, Carlos; Hogan, Christopher J
2013-05-16
Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from compact to highly linear, and singly charged tetraalkylammonium cations. It was found that both non-specular, inelastic scattering rules lead to excellent agreement between predictions and experimental mobility measurements (within 5% of each other) and that polarization potentials must be considered to make correct predictions for high-mobility particles/ions. Conversely, traditional specular, elastic scattering models were found to substantially overestimate the mobilities of both types of ions.
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2018-05-01
This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.
NASA Astrophysics Data System (ADS)
Kaya, Ismet I.
2007-03-01
A ballistic conductor is restricted to have positive three terminal resistance just as a Drude conductor. Intercarrier scattering does not influence the conductivity of the latter transport regime and does not exist in the former. However, as the electron energies increased, in the intermediate regime, single or few intercarrier scattering events starts to dominate the transport properties of a conductor with sufficiently small dimensions. A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal is interpreted as the analog of Bernoulli's effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.
NASA Astrophysics Data System (ADS)
Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao
2017-11-01
For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.
Characterizing the behavior of scattered radiation in multi-energy x-ray imaging
NASA Astrophysics Data System (ADS)
Sossin, Artur; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.
2017-04-01
Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.
On the importance of full-dimensionality in low-energy molecular scattering calculations
Faure, Alexandre; Jankowski, Piotr; Stoecklin, Thierry; Szalewicz, Krzysztof
2016-01-01
Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm−1 in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible. PMID:27333870
Scott, David J; Patel, Trushar R; Winzor, Donald J
2013-04-15
Theoretical consideration is given to the effect of cosolutes (including buffer and electrolyte components) on the determination of second virial coefficients for proteins by small-angle X-ray scattering (SAXS)-a factor overlooked in current analyses in terms of expressions for a two-component system. A potential deficiency of existing practices is illustrated by reassessment of published results on the effect of polyethylene glycol concentration on the second virial coefficient for urate oxidase. This error reflects the substitution of I(0,c3,0), the scattering intensity in the limit of zero scattering angle and solute concentration, for I(0,0,0), the corresponding parameter in the limit of zero cosolute concentration (c3) as well. Published static light scattering results on the dependence of the apparent molecular weight of ovalbumin on buffer concentration are extrapolated to zero concentration to obtain the true value (M2) and thereby establish the feasibility of obtaining the analogous SAXS parameter, I(0,0,0), experimentally. Copyright © 2013 Elsevier Inc. All rights reserved.
Schwinger-variational-principle theory of collisions in the presence of multiple potentials
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Giannakeas, P.; Greene, Chris H.
2015-08-01
A theoretical method for treating collisions in the presence of multiple potentials is developed by employing the Schwinger variational principle. The current treatment agrees with the local (regularized) frame transformation theory and extends its capabilities. Specifically, the Schwinger variational approach gives results without the divergences that need to be regularized in other methods. Furthermore, it provides a framework to identify the origin of these singularities and possibly improve the local frame transformation. We have used the method to obtain the scattering parameters for different confining potentials symmetric in x ,y . The method is also used to treat photodetachment processes in the presence of various confining potentials, thereby highlighting effects of the infinitely many closed channels. Two general features predicted are the vanishing of the total photoabsorption probability at every channel threshold and the occurrence of resonances below the channel thresholds for negative scattering lengths. In addition, the case of negative-ion photodetachment in the presence of uniform magnetic fields is also considered where unique features emerge at large scattering lengths.
NASA Astrophysics Data System (ADS)
Vlahovic, B.; Suslov, V. M.; Filikhin, I.
2017-03-01
Three-nucleon systems are considered assuming the neutrons and protons to be distinguishable particles. The configuration space Faddeev equations within the s-wave approach are applied for studying bound state and scattering problems. The phenomenological Malfliet-Tjon MT I-III and Afnan-Tang ATS3 NN potentials are used with scaling factors chosen to reproduce the singlet nn, pp and np experimental scattering lengths. Numerical evaluation for the charge symmetry breaking energy is found to be about 50 keV for ^3H and ^3He nuclei. To determine any effects related to the nn ( pp) and np potential differences, the nd and pd breakup scattering calculations were performed at E_{lab}=4.0 and 14.1 MeV. We found the effects due to potential differences are small but noticeable. We discuss the dependence of calculated inelasticities and phase-shifts with respect to the chosen value for cutoff radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfeng, E-mail: jfzhang@xidian.edu.cn; Li, Yao; Yan, Ran
In a semiconductor hetero-junction, the stripe/line-shaped scatters located at the hetero-interface lead to the anisotropic transport of two-dimensional electron gas (2DEG). The elastic scattering of infinitely long and uniform stripe/line-shaped scatters to 2DEG is theoretically investigated based on a general theory of anisotropic 2DEG transport [J. Schliemann and D. Loss, Phys. Rev. B 68(16), 165311 (2003)], and the resulting 2DEG mobility along the applied electrical field is modeled to be a function of the angle between the field and the scatters. The anisotropy of the scattering and the mobility originate in essence from that the stripe/line-shaped scatters act upon themore » injecting two-dimensional wave vector by changing only its component perpendicular to the scatters. Three related scattering mechanisms in a nonpolar AlGaN/GaN hetero-junction are discussed as illustrations, including the striated morphology caused interface roughness scattering, and the polarization induced line charge dipole scattering and the misfit dislocation scattering at the AlGaN/GaN interface. Different anisotropic behaviors of the mobility limited by these scattering mechanisms are demonstrated, but analysis shows that all of them are determined by the combined effects of the anisotropic bare scattering potential and the anisotropic dielectric response of the 2DEG.« less
Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods
NASA Technical Reports Server (NTRS)
Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.
2000-01-01
Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2016-01-01
Abstract. A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice. PMID:26962543
Lakshmanan, Manu N; Greenberg, Joel A; Samei, Ehsan; Kapadia, Anuj J
2016-01-01
A scatter imaging technique for the differentiation of cancerous and healthy breast tissue in a heterogeneous sample is introduced in this work. Such a technique has potential utility in intraoperative margin assessment during lumpectomy procedures. In this work, we investigate the feasibility of the imaging method for tumor classification using Monte Carlo simulations and physical experiments. The coded aperture coherent scatter spectral imaging technique was used to reconstruct three-dimensional (3-D) images of breast tissue samples acquired through a single-position snapshot acquisition, without rotation as is required in coherent scatter computed tomography. We perform a quantitative assessment of the accuracy of the cancerous voxel classification using Monte Carlo simulations of the imaging system; describe our experimental implementation of coded aperture scatter imaging; show the reconstructed images of the breast tissue samples; and present segmentations of the 3-D images in order to identify the cancerous and healthy tissue in the samples. From the Monte Carlo simulations, we find that coded aperture scatter imaging is able to reconstruct images of the samples and identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) inside them with a cancerous voxel identification sensitivity, specificity, and accuracy of 92.4%, 91.9%, and 92.0%, respectively. From the experimental results, we find that the technique is able to identify cancerous and healthy tissue samples and reconstruct differential coherent scatter cross sections that are highly correlated with those measured by other groups using x-ray diffraction. Coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue inside samples within a time on the order of a minute per slice.
NASA Astrophysics Data System (ADS)
Lütgebaucks, Cornelis; Gonella, Grazia; Roke, Sylvie
2016-11-01
The electrostatic environment of aqueous systems is an essential ingredient for the function of any living system. To understand the electrostatic properties and their molecular foundation in soft, living, and three-dimensional systems, we developed a table-top model-free method to determine the surface potential of nano- and microscopic objects in aqueous solutions. Angle-resolved nonresonant second harmonic (SH) scattering measurements contain enough information to determine the surface potential unambiguously, without making assumptions on the structure of the interfacial region. The scattered SH light that is emitted from both the particle interface and the diffuse double layer can be detected in two different polarization states that have independent scattering patterns. The angular shape and intensity are determined by the surface potential and the second-order surface susceptibility. Calibrating the response with the SH intensity of bulk water, a single, unique surface potential value can be extracted. We demonstrate the method with 80 nm bare oil droplets in water and ˜50 nm dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS) liposomes at various ionic strengths.
NASA Astrophysics Data System (ADS)
Devito, R. P.; Khoa, Dao T.; Austin, Sam M.; Berg, U. E. P.; Loc, Bui Minh
2012-02-01
Background: Analysis of data involving nuclei far from stability often requires the optical potential (OP) for neutron scattering. Because neutron data are seldom available, whereas proton scattering data are more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system.Purpose: The goal of this paper is to obtain accurate n+208Pb scattering data and use it, together with existing p+208Pb and 208Pb(p,n)208BiIAS* data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60-MeV range.Method: Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15∘ to 130∘ was covered using the beam-swinger time-of-flight system at Michigan State University. These data were analyzed by a consistent optical-model study of the neutron data and of elastic p+208Pb scattering at 45 and 54 MeV. These results were combined with a coupled-channel analysis of the 208Pb(p,n) reaction at 45 MeV, exciting the 0+ isobaric analog state (IAS) in 208Bi.Results: The new data and analysis give an accurate estimate of the isospin impurity of the nucleon-208Pb OP at 30.4 MeV caused by the Coulomb correction to the proton OP. The corrections to the real proton OP given by the CH89 global systematics were found to be only a few percent, whereas for the imaginary potential it was greater than 20% at the nuclear surface. On the basis of the analysis of the measured elastic n+208Pb data at 40 MeV, a Coulomb correction of similar strength and shape was also predicted for the p+208Pb OP at energies around 54 MeV.Conclusions: Accurate neutron scattering data can be used in combination with proton scattering data and (p,n) charge exchange data leading to the IAS to obtain reliable estimates of the isospin impurity of the nucleon OP.
NASA Astrophysics Data System (ADS)
Feng, Tianli; Ruan, Xiulin
2016-01-01
Recently, first principle-based predictions of lattice thermal conductivity κ from perturbation theory have achieved significant success. However, it only includes three-phonon scattering due to the assumption that four-phonon and higher-order processes are generally unimportant. Also, directly evaluating the scattering rates of four-phonon and higher-order processes has been a long-standing challenge. In this work, however, we have developed a formalism to explicitly determine quantum mechanical scattering probability matrices for four-phonon scattering in the full Brillouin zone, and by mitigating the computational challenge we have directly calculated four-phonon scattering rates. We find that four-phonon scattering rates are comparable to three-phonon scattering rates at medium and high temperatures, and they increase quadratically with temperature. As a consequence, κ of Lennard-Jones argon is reduced by more than 60% at 80 K when four-phonon scattering is included. Also, in less anharmonic materials—diamond, silicon, and germanium—κ is still reduced considerably at high temperature by four-phonon scattering by using the classical Tersoff potentials. Also, the thermal conductivity of optical phonons is dominated by the fourth- and higher-orders phonon scattering even at low temperature.
Elastic electron-deuteron scattering within a relativistic potential model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhlov, N. A., E-mail: nikolakhokhlov@yandex.ru; Vakulyuk, A. A.
Elastic electron-deuteron scattering was considered in the point form of relativistic quantum mechanics. Observables of this process and the dependence of the deuteron form factors on the 4-momentum transfer Q up to 8 fm{sup −1} were calculated. The nucleon-nucleon potentials used in the calculations included the Nijmegen potentials NijmI and NijmII, the Bonn potential CD-Bonn, and the Moscow potential involving forbidden states. A parametrization of the nucleon form factors that complies with present-day experimental results was used as input data. The results of the calculations that employ all of the above potential types describe experimental data at least up tomore » Q ≈ 5 fm{sup −}1.« less
Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle
NASA Astrophysics Data System (ADS)
Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing
2018-06-01
Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.
Resonant soft X-ray scattering on protein solutions
NASA Astrophysics Data System (ADS)
Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique
Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less
Rayleigh Scattering Diagnostics Workshop
NASA Technical Reports Server (NTRS)
Seasholtz, Richard (Compiler)
1996-01-01
The Rayleigh Scattering Diagnostics Workshop was held July 25-26, 1995 at the NASA Lewis Research Center in Cleveland, Ohio. The purpose of the workshop was to foster timely exchange of information and expertise acquired by researchers and users of laser based Rayleigh scattering diagnostics for aerospace flow facilities and other applications. This Conference Publication includes the 12 technical presentations and transcriptions of the two panel discussions. The first panel was made up of 'users' of optical diagnostics, mainly in aerospace test facilities, and its purpose was to assess areas of potential applications of Rayleigh scattering diagnostics. The second panel was made up of active researchers in Rayleigh scattering diagnostics, and its purpose was to discuss the direction of future work.
At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions
NASA Astrophysics Data System (ADS)
Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.
2006-11-01
Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
Energy dependence of nonlocal optical potentials
NASA Astrophysics Data System (ADS)
Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.
2017-11-01
Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.
Comparison of exact solution with Eikonal approximation for elastic heavy ion scattering
NASA Technical Reports Server (NTRS)
Dubey, Rajendra R.; Khandelwal, Govind S.; Cucinotta, Francis A.; Maung, Khin Maung
1995-01-01
A first-order optical potential is used to calculate the total and absorption cross sections for nucleus-nucleus scattering. The differential cross section is calculated by using a partial-wave expansion of the Lippmann-Schwinger equation in momentum space. The results are compared with solutions in the Eikonal approximation for the equivalent potential and with experimental data in the energy range from 25A to 1000A MeV.
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
Surface-peaked medium effects in the interaction of nucleons with finite nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, F. J.; Arellano, H. F.
We investigate the asymptotic separation of the optical model potential for nucleon-nucleus scattering in momentum space, where the potential is split into a medium-independent term and another depending exclusively on the gradient of the density-dependent g matrix. This decomposition confines the medium sensitivity of the nucleon-nucleus coupling to the surface of the nucleus. We examine this feature in the context of proton-nucleus scattering at beam energies between 30 and 100 MeV and find that the pn coupling accounts for most of this sensitivity. Additionally, based on this general structure of the optical potential we are able to treat both, themore » medium dependence of the effective interaction and the full mixed density as described by single-particle shell models. The calculated scattering observables agree within 10% with those obtained by Arellano, Brieva, and Love in their momentum-space g-folding approach.« less
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
A new treatment of nonlocality in scattering process
NASA Astrophysics Data System (ADS)
Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.
2018-01-01
Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.
Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.
Walls, Jamie D; Hadad, Daniel
2015-02-13
Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.
Electron-molecule scattering in a strong laser field: Two-center interference effects
NASA Astrophysics Data System (ADS)
Dakić, J.; Habibović, D.; Čerkić, A.; Busuladžić, M.; Milošević, D. B.
2017-10-01
Laser-assisted scattering of electrons on diatomic molecules is considered using the S -matrix theory within the second Born approximation. The first term of the expansion in powers of the scattering potential corresponds to the direct or single laser-assisted scattering of electrons on molecular targets, while the second term of this expansion corresponds to the laser-assisted rescattering or double scattering. The rescattered electrons may have considerably higher energies in the final state than those that scattered only once. For multicenter polyatomic molecules scattering and rescattering may happen at any center and in any order. All these cases contribute to the scattering amplitude and the interference of different contributions leads to an increase or a decrease of the differential cross section in particular electron energy regions. For diatomic molecules there are two such contributions for single scattering and four contributions for double scattering. Analyzing the spectra of the scattered electrons, we find two interesting effects. For certain molecular orientations, the plateaus in the electron energy spectrum, characteristic of laser-assisted electron-atom scattering, are replaced by a sequence of gradually declining maxima, caused by the two-center interference effects. The second effect is the appearance of symmetric U -shaped structures in the angle-resolved energy spectra, which are described very well by the analytical formulas we provide.
Singularities of Floquet scattering and tunneling
NASA Astrophysics Data System (ADS)
Landa, H.
2018-04-01
We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p ) waves. We examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with well-known "spectral singularities" (or "exceptional points"). These results are based on an analytic approach for obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry, and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions and atoms.
Peripheral elastic and inelastic scattering of O17,18 on light targets at 12 MeV/nucleon
NASA Astrophysics Data System (ADS)
Al-Abdullah, T.; Carstoiu, F.; Gagliardi, C. A.; Tabacaru, G.; Trache, L.; Tribble, R. E.
2014-06-01
A study of interaction of neutron-rich oxygen isotopes O17,18 with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction C13(O17,O18)C12. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the F17(p,γ)Ne18 which is essential to estimate the production of F18 at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the distorted wave Born approximation cross-section calculations are warranted and stable against the optical model potential (OMP) used. We demonstrate the stability of the ANC method and the OMP results by using good-quality elastic and inelastic-scattering data with stable beams before extending the procedures to rare-ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total-scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of O17, O18, and O16 projectiles is made.
Universality and tails of long-range interactions in one dimension
NASA Astrophysics Data System (ADS)
Valiente, Manuel; Öhberg, Patrik
2017-07-01
Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.
Backward elastic light scattering of malaria infected red blood cells
NASA Astrophysics Data System (ADS)
Lee, Seungjun; Lu, Wei
2011-08-01
We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratap, Surender, E-mail: surender.pratap@pilani.bits-pilani.ac.in; Sarkar, Niladri, E-mail: niladri@pilani.bits-pilani.ac.in
2016-04-13
We have studied Quantum Transport with dephasing in Low Dimensional systems. Here, we apply a self-consistent NEGF procedure to study the transport mechanism in low-dimensional systems with phase breaking scatterers. Under this we have determined the transmission coefficient of a very small Multi-Moded Nanowire which is under a small bias potential of few meV. We have calculated the transmission of this device first with no scatterers. Then we have introduced scatterers in the device and calculated the transmission for the device.
Absorption and scattering of light by nonspherical particles. [in atmosphere
NASA Technical Reports Server (NTRS)
Bohren, C. F.
1986-01-01
Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.
Coherent random lasing from liquid waveguide gain channels with biological scatters
NASA Astrophysics Data System (ADS)
Zhang, Hong; Feng, Guoying; Wang, Shutong; Yang, Chao; Yin, Jiajia; Zhou, Shouhuan
2014-12-01
A unidirectional coherent random laser based on liquid waveguide gain channels with biological scatters is demonstrated. The optical feedback of the random laser is provided by both light scattering and waveguide confinement. This waveguide-scattering-feedback scheme not only reduces the pump threshold but also makes the output of random laser directional. The threshold of our random laser is about 11 μJ. The emission spectra can be sensitively tuned by changing pump position due to the micro/nano-scale randomness of butterfly wings. It shows the potential applications of optofluidic random lasers for bio-chemical sensors on-chip.
Thomson scattering in the average-atom approximation.
Johnson, W R; Nilsen, J; Cheng, K T
2012-09-01
The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trewhella, Jill
2011-01-12
The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set ofmore » researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently being accessed world-wide by researchers as an aid in neutron scattering data interpretation. In all, these collaborative projects and resulted in 29 original refereed journal articles published between 2005 and 2010 and engaged groups from at least 14 Universities (10 US, 4 international) and 3 National Laboratories (2 US, 1 international). An important final initiative from this project was to begin a process for international community agreement on a set of standards for the publication of biomolecular small-angle scattering data. This initiative is being championed with the International Union of Crystallography and has engaged a number of Journal Editors and is a very important step in the maturing of this now burgeoning field.« less
NASA Astrophysics Data System (ADS)
Takeuchi, Wataru
2017-05-01
The rainbow angles corresponding to prominent peaks in the angular distributions of scattered projectiles with small angle, attributed to rainbow scattering (RS), under axial surface channeling conditions are strongly influenced by the interatomic potentials between projectiles and target atoms. The dependence of rainbow angles on normal energy of projectile energy to the target surface, being experimentally obtained by Specht et al. for RS of He, N, Ne and Ar atoms under <1 0 0> and <1 1 0> axial channeling conditions at a KCl(0 0 1) surface with projectile energies of 1-60 keV, was evaluated by the three-dimensional computer simulations using the ACOCT code based on the binary collision approximation with interatomic pair potentials. Good agreement between the ACOCT results using the ZBL pair potential and the individual pair potentials calculated from Hartree-Fock (HF) wave functions and the experimental ones was found for RS of He, N and Ne atoms from the atomic rows along <1 0 0> direction. For <1 1 0> direction, the ACOCT results employing the Moliere pair potential with adjustable screening length of O'Connor-Biersack (OB) formula, the ZBL pair potential and the individual HF pair potentials except for Ar → KCl using the OB pair potential are nearly in agreement with the experimental ones.
Eikonal solutions to optical model coupled-channel equations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
2014-06-20
zooplankton models (Lavery et al, 2007) have shown that the predicted scattering from zooplankton is dominated by copepods, amphipods, and pteropods ...which there is significant salinity gradient, the predicted scattering from the seasonal pycnocline during SW06 was not able to account for the...has focused on echoes from relatively small zooplankton, such as pteropods or copepods, potentially in the presence of microstructure or in mixed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luxford, Thomas F. M.; Sharples, Thomas R.; McKendrick, Kenneth G.
2016-08-28
We present a crossed molecular beam scattering study, using velocity-map ion-imaging detection, of state-to-state rotational energy transfer for NO(A{sup 2}Σ{sup +}) in collisions with the kinematically identical colliders He and D{sub 2}. We report differential cross sections and angle-resolved rotational angular momentum polarization moments for transfer of NO(A, v = 0, N = 0, j = 0.5) to NO(A, v = 0, N′ = 3, 5-12) in collisions with He and D{sub 2} at respective average collision energies of 670 cm{sup −1} and 663 cm{sup −1}. Quantum scattering calculations on a literature ab initio potential energy surface for NO(A)-He [J.more » Kłos et al., J. Chem. Phys. 129, 244303 (2008)] yield near-quantitative agreement with the experimental differential scattering cross sections and good agreement with the rotational polarization moments. This confirms that the Kłos et al. potential is accurate within the experimental collisional energy range. Comparison of the experimental results for NO(A) + D{sub 2} and He collisions provides information on the hitherto unknown NO(A)-D{sub 2} potential energy surface. The similarities in the measured scattering dynamics of NO(A) imply that the general form of the NO(A)-D{sub 2} potential must be similar to that calculated for NO(A)-He. A consistent trend for the rotational rainbow maximum in the differential cross sections for NO(A) + D{sub 2} to peak at more forward angles than those for NO(A) + He is consistent with the NO(A)-D{sub 2} potential being more anisotropic with respect to NO(A) orientation. No evidence is found in the experimental measurements for coincident rotational excitation of the D{sub 2}, consistent with the potential having low anisotropy with respect to D{sub 2}. The NO(A) + He polarization moments deviate systematically from the predictions of a hard-shell, kinematic-apse scattering model, with larger deviations as N′ increases, which we attribute to the shallow gradient of the anisotropic repulsive NO(A)-He potential energy surface.« less
Spin-analyzed SANS for soft matter applications
NASA Astrophysics Data System (ADS)
Chen, W. C.; Barker, J. G.; Jones, R.; Krycka, K. L.; Watson, S. M.; Gagnon, C.; Perevozchivoka, T.; Butler, P.; Gentile, T. R.
2017-06-01
The small angle neutron scattering (SANS) of nearly Q-independent nuclear spin-incoherent scattering from hydrogen present in most soft matter and biology samples may raise an issue in structure determination in certain soft matter applications. This is true at high wave vector transfer Q where coherent scattering is much weaker than the nearly Q-independent spin-incoherent scattering background. Polarization analysis is capable of separating coherent scattering from spin-incoherent scattering, hence potentially removing the nearly Q-independent background. Here we demonstrate SANS polarization analysis in conjunction with the time-of-flight technique for separation of coherent and nuclear spin-incoherent scattering for a sample of silver behenate back-filled with light water. We describe a complete procedure for SANS polarization analysis for separating coherent from incoherent scattering for soft matter samples that show inelastic scattering. Polarization efficiency correction and subsequent separation of the coherent and incoherent scattering have been done with and without a time-of-flight technique for direct comparisons. In addition, we have accounted for the effect of multiple scattering from light water to determine the contribution of nuclear spin-incoherent scattering in both the spin flip channel and non-spin flip channel when performing SANS polarization analysis. We discuss the possible gain in the signal-to-noise ratio for the measured coherent scattering signal using polarization analysis with the time-of-flight technique compared with routine unpolarized SANS measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jie; Department of Automation, Nanjing Polytechnic Institute, 210048 Nanjing; Tao, Chao, E-mail: taochao@nju.edu.cn
2015-06-08
Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried outmore » to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.« less
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Kotlarchyk, Michael; Thurston, George M
2016-12-28
In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.
Full-potential multiple scattering theory with space-filling cells for bound and continuum states.
Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R
2010-05-12
We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.
Huygens-Fresnel picture for electron-molecule elastic scattering★
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2017-11-01
The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa
2015-03-15
Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.
Extended resolvent and inverse scattering with an application to KPI
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.
2003-08-01
We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.
Derivative expansion of wave function equivalent potentials
NASA Astrophysics Data System (ADS)
Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto
2017-04-01
Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.
Universal Low-energy Behavior in a Quantum Lorentz Gas with Gross-Pitaevskii Potentials
NASA Astrophysics Data System (ADS)
Basti, Giulia; Cenatiempo, Serena; Teta, Alessandro
2018-06-01
We consider a quantum particle interacting with N obstacles, whose positions are independently chosen according to a given probability density, through a two-body potential of the form N 2 V ( N x) (Gross-Pitaevskii potential). We show convergence of the N dependent one-particle Hamiltonian to a limiting Hamiltonian where the quantum particle experiences an effective potential depending only on the scattering length of the unscaled potential and the density of the obstacles. In this sense our Lorentz gas model exhibits a universal behavior for N large. Moreover we explicitely characterize the fluctuations around the limit operator. Our model can be considered as a simplified model for scattering of slow neutrons from condensed matter.
Pérez-Arancibia, Carlos; Bruno, Oscar P
2014-08-01
This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.
Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio
2014-10-15
In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Positron elastic scattering from alkaline earth targets
NASA Astrophysics Data System (ADS)
Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.
2016-07-01
A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y
NASA Astrophysics Data System (ADS)
Shoukat, Sobia; Naqvi, Qaisar A.
2016-12-01
In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.
On-road measurement of black carbon mass, absorption, and single-scattering albedo
Absorption and scattering of solar radiation by aerosols emitted from combustion sources can affect the earth’s radiative balance and may potentially affect local and regional climate. Optical properties of aerosols emitted from mobile sources have not been thoroughly characteri...
ρ resonance from the I = 1 ππ potential in lattice QCD
NASA Astrophysics Data System (ADS)
Kawai, Daisuke
2018-03-01
We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.
NASA Astrophysics Data System (ADS)
Hoffmann, Scott E.
2017-11-01
We calculate the nonrelativistic scattering of a wavepacket from a Coulomb potential and find deviations from the Rutherford formula in all cases. These generally occur only at low scattering angles, where they would be obscured by the part of the incident beam that emerges essentially unscattered. For a model experiment, the scattering of helium nuclei from a thin gold foil, we find the deviation region is magnified for low incident energies (in the keV range), so that a large shadow zone of low probability around the forward direction is expected to be measurable. From a theoretical perspective, the use of wavepackets makes partial wave analysis applicable to this infinite-range potential. It allows us to calculate the everywhere finite probability for a wavepacket to wavepacket transition and to relate this to the differential cross section. Time delays and advancements in the detection probabilities can be calculated. We investigate the optical theorem as applied to this special case.
Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.
Althorpe, Stuart C
2004-07-15
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics
Global Solutions for the zero-energy Novikov–Veselov equation by inverse scattering
NASA Astrophysics Data System (ADS)
Music, Michael; Perry, Peter
2018-07-01
Using the inverse scattering method, we construct global solutions to the Novikov–Veselov equation for real-valued decaying initial data q 0 with the property that the associated Schrödinger operator is nonnegative. Such initial data are either critical (an arbitrarily small perturbation of the potential makes the operator nonpositive) or subcritical (sufficiently small perturbations of the potential preserve non-negativity of the operator). Previously, Lassas, Mueller, Siltanen and Stahel proved global existence for critical potentials, also called potentials of conductivity type. We extend their results to include the much larger class of subcritical potentials. We show that the subcritical potentials form an open set and that the critical potentials form the nowhere dense boundary of this open set. Our analysis draws on previous work of the first author and on ideas of Grinevich and Manakov.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki
2018-02-01
We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Jones, Frank C.
1988-01-01
The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).
Optical-model potential for electron and positron elastic scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvat, Francesc
2003-07-01
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
Finite Density Condensation and Scattering Data: A Study in ϕ4 Lattice Field Theory
NASA Astrophysics Data System (ADS)
Gattringer, Christof; Giuliani, Mario; Orasch, Oliver
2018-06-01
We study the quantum field theory of a charged ϕ4 field in lattice regularization at finite density and low temperature in 2 and 4 dimensions with the goal of analyzing the connection of condensation phenomena to scattering data in a nonperturbative way. The sign problem of the theory at nonzero chemical potential μ is overcome by using a worldline representation for the Monte Carlo simulation. At low temperature we study the particle number as a function of μ and observe the steps for 1-, 2-, and 3-particle condensation. We determine the corresponding critical values μncrit , n =1 , 2, 3 and analyze their dependence on the spatial extent L of the lattice. Linear combinations of the μncrit give the interaction energies in the 2- and 3-particle sectors and their dependence on L is related to scattering data by Lüscher's formula and its generalizations to three particles. For two dimensions we determine the scattering phase shift and for four dimensions the scattering length. We cross-check our results with a determination of the mass and the 2- and 3-particle energies from conventional 2-, 4-, and 6-point correlators at zero chemical potential. The letter demonstrates that the physics of condensation at finite density and low temperature is closely related to scattering data of a quantum field theory.
NASA Astrophysics Data System (ADS)
Yu, Chien-fan; Whaley, K. Birgitta; Hogg, C. S.; Sibener, S. J.
1985-10-01
A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of ˜32 meV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.
NASA Astrophysics Data System (ADS)
Yu, C. F.; Whaley, K. B.; Hogg, C. S.; Sibener, S. J.
1985-08-01
A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of approximately 32 MeV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
Flexible and polarization-controllable diffusion metasurface with optical transparency
NASA Astrophysics Data System (ADS)
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng
2017-11-01
In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.
Wan, Xi; Chen, Kun; Xie, Weiguang; Wen, Jinxiu; Chen, Huanjun; Xu, Jian-Bin
2016-01-27
The electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laplace transforms of the Hulthén Green's function and their application to potential scattering
NASA Astrophysics Data System (ADS)
Laha, U.; Ray, S.; Panda, S.; Bhoi, J.
2017-10-01
We derive closed-form representations for the single and double Laplace transforms of the Hulthén Green's function of the outgoing wave multiplied by the Yamaguchi potential and write them in the maximally reduced form. We use the expression for the double transform to compute the low-energy phase shifts for the elastic scattering in the systems α-nucleon, α-He3, and α-H3. The calculation results agree well with the experimental data.
NASA Astrophysics Data System (ADS)
Kaya, Ismet I.; Eberl, Karl
2007-05-01
A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.
Random medium model for cusping of plane waves.
Li, Jia; Korotkova, Olga
2017-09-01
We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.
Electron and positron interaction with pyrimidine: A theoretical investigation
NASA Astrophysics Data System (ADS)
Sinha, Nidhi; Antony, Bobby
2018-03-01
Pyrimidine (C4H4N2) is considered as the building block of nucleobases, viz., cytosine, thymine and uracil. They provide a blueprint for probing the scattering of radiation by DNA and RNA bases. In this article, we report the elastic and total scattering cross-sections for electron and positron scattering from the pyrimidine molecule, employing a spherical complex optical potential (SCOP) formalism for an extensive energy range of 10 eV to 5 keV. In the case of positron scattering, the original SCOP formalism is modified to adequately solve the positron-target dynamics. Moreover, a reasonable agreement is observed between the present results and other available datasets, for both electron and positron scattering. The cross-sections for electron and positron impact scattering by pyrimidine are necessary input data for codes that seek to simulate radiation damage, and hence are useful to model biomolecular systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volodin, V. A., E-mail: volodin@isp.nsc.ru; Sachkov, V. A.; Sinyukov, M. P.
2016-07-15
The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of themore » wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.« less
Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory
NASA Astrophysics Data System (ADS)
Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.
2018-04-01
The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.
Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.
Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H
2009-02-13
When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.
Robustness of a compact endfire personal audio system against scattering effects (L).
Tu, Zhen; Lu, Jing; Qiu, Xiaojun
2016-10-01
Compact loudspeaker arrays have wide potential applications as portable personal audio systems that can project sound energy to specified regions. It is meaningful to investigate the scattering effects on the array performance since the scattering of the users' heads is inevitable in practice. A five-channel compact endfire array is established and the regularized acoustic contrast control method is evaluated for the scenarios of one moving listener and one listener fixed in the bright zone while another listener moves along the evaluation region. Both simulations and experiments verify that the scattering has limited influence on the directivity of the endfire array.
Tavora, Marco; Rosch, Achim; Mitra, Aditi
2014-07-04
The dynamics of interacting bosons in one dimension following the sudden switching on of a weak disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime), the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast, but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and more important. The numerically obtained thermalization times are found to agree well with analytic estimates.
Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility
NASA Astrophysics Data System (ADS)
Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.
2018-05-01
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.
Electron scattering from excited states of hydrogen: Implications for the ionization threshold law
NASA Astrophysics Data System (ADS)
Temkin, A.; Shertzer, J.
2013-05-01
The elastic scattering wave function for electrons scattered from the Nth excited state of hydrogen is the final state of the matrix element for excitation of that state. This paper deals with the solution of that problem primarily in the context of the Temkin-Poet (TP) model [A. Temkin, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.126.130 126, 130 (1962); R. Poet, J. Phys. BJPAPEH0022-370010.1088/0022-3700/11/17/019 11, 3081 (1978)], wherein only the radial parts of the interaction are included. The relevant potential for the outer electron is dominated by the Hartree potential, VNH(r). In the first part of the paper, VNH(r) is approximated by a potential WN(r), for which the scattering equation can be analytically solved. The results allow formal analytical continuation of N into the continuum, so that the ionization threshold law can be deduced. Because the analytic continuation involves going from N to an imaginary function of the momentum of the inner electron, the threshold law turns out to be an exponentially damped function of the available energy E, in qualitative accord with the result of Macek and Ihra [J. H. Macek and W. Ihra, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.55.2024 55, 2024 (1997)] for the TP model. Thereafter, the scattering equation for the Hartree potential VNH(r) is solved numerically. The numerical aspects of these calculations have proven to be challenging and required several developments for the difficulties to be overcome. The results for VNH(r) show only a simple energy-dependent shift from the approximate potential WN(r), which therefore does not change the analytic continuation and the form of the threshold law. It is concluded that the relevant optical potential must be included in order to compare directly with the analytic result of Macek and Ihra. The paper concludes with discussions of (a) a quantum mechanical interpretation of the result, and (b) the outlook of this approach for the complete problem.
Sharma, P; Córcoles, A; Bennett, R G; Parpia, J M; Cowan, B; Casey, A; Saunders, J
2011-11-04
We discuss the mass transport of a degenerate Fermi liquid ^{3}He film over a rough surface, and the film momentum relaxation time, in the framework of theoretical predictions. In the mesoscopic regime, the anomalous temperature dependence of the relaxation time is explained in terms of the interference between elastic boundary scattering and inelastic quasiparticle-quasiparticle scattering within the film. We exploit a quasiclassical treatment of quantum size effects in the film in which the surface roughness, whose power spectrum is experimentally determined, is mapped into an effective disorder potential within a film of uniform thickness. Confirmation is provided by the introduction of elastic scattering centers within the film. The improved understanding of surface roughness scattering may impact on enhancing the conductivity in thin metallic films.
Nonlinear effects in the laser-assisted scattering of a positron by a muon
NASA Astrophysics Data System (ADS)
Du, Wen-Yuan; Wang, Bing-Hong; Li, Shu-Min
2018-02-01
The scattering of a positron by a muon in the presence of a linearly polarized laser field is investigated in the first Born approximation. The theoretical results reveal: (1) At large scattering angle, an amount of multiphoton processes take place in the course of scattering. The photon emission processes predominate the photon absorption ones. (2) Some nonlinear phenomena about oscillations, dark angular windows, and asymmetry can be observed in angular distributions. We analyze the cause giving rise to dark windows and geometric asymmetry initially noted in the potential scattering. (3) We also analyze the total differential cross-section, the result shows that the larger the incident energy is, the smaller the total differential cross-section is. The reasons of these new results are analyzed.
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, R. N.; Meikap, A. K.
The results of a comprehensive study of weak electron localization (WEL) and electron-electron interaction (EEI) effects in disordered V{sub 75}X{sub 25} (X = Pd, Al) alloys has been reported. The resistivity in absence of magnetic field shows a minimum at temperature T = T{sub m} and follows T{sup 1/2} law within the temperature range 5 K ≤ T ≤ T{sub m}, which suggests predominant EEI effect. Magnetoresistivity is positive due to strong spin-orbit interaction. The dephasing scattering time is dominated by the electron-phonon scattering. The electron-phonon scattering rate shows quadratic temperature dependence behavior, which is explained by the theory ofmore » incomplete dragging at the random scattering potential by phonons. The zero temperature scattering time strongly depends on the disorder and its magnitude decreases with increasing disorder.« less
NASA Technical Reports Server (NTRS)
Pham-Van-diep, Gerald C.; Muntz, E. Phillip; Erwin, Daniel A.
1990-01-01
Shock wave thickness predictions from Monte Carlo Direct Simulations, using differential scattering and the Maitland-Smith-Aziz interatomic potential, underpredict experiments as shock Mach numbers increase above about 4. Examination of several sources of data has indicated that at relatively high energies the repulsive portion of accepted potentials such as the Maitland-Smith-Aziz may be too steep. An Exponential-6 potential due to Ross, based on high energy molecular beam scattering data and shock velocity measurements in liquid argon, has been combined with the lower energy portion of the Maitland-Smith-Aziz potential. When this hybrid potential is used in Monte Carlo Direct Simulations, agreement with experiments is improved over the previous predictions using the pure Maitland-Smith-Aziz form.
ERIC Educational Resources Information Center
Juni, Samuel; Trobliger, Robert
2009-01-01
The analysis of response inconsistency is a crucial aspect of intellectual and clinical psychological assessment. Erratic patterns of failures and successes across and within particular domains qualify the measurement of intellectual potential and functioning. Although the interpretation of intertest scatter (inconsistencies between subtest…
Neutrino scattering and the reactor antineutrino anomaly
NASA Astrophysics Data System (ADS)
Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander
2017-12-01
Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.
Cathodoluminescence Characterization of Ion Implanted GaAs.
1981-04-01
Born approxima- tion to calculate the differential scattering cross section. Everhart (Reference 30) used the single scattering assumption to develop a...pp (1 V + gn - nn = 6n/6t (11) with 4..4 Jp = -DpVp + p1pE (12) 3 -D Vn -n n1E (13) n n 30 AFWAL-TR-80-l 184 the subscripts p and n refer to holes and...described by differential cross sections. The differential scattering cross sections are determined by the potential between the ion and the
Nucleon and deuteron scattering cross sections from 25 MV/Nucleon to 22.5 GeV/Nucleon
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.
1983-01-01
Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of nucleon and deuteron total and absorption cross sections at kinetic energies between 25 MeV/nucleon and 22.5 GeV/nucleon for use in cosmic-ray transport and shielding studies. Comparisons of predictions for nucleon-nucleus and deuteron-nucleus absorption and total cross sections with experimental data are also made.
2010-08-22
tunable beam that will be used for the pump radiation in the femtosecond coherent anti-Stokes Raman scattering ( CARS ) measurements. This system has been...beam that will be used for the pump radiation in the femtosecond coherent anti-Stokes Raman scattering ( CARS ) measurements. This system has been... CARS ) spectroscopy. Fs CARS offers some significant potential advantages compared with nanosecond (ns) CARS , i.e., CARS as usually performed with ns
Transport Properties of Thin Bismuth Films on InP (110) Surfaces by Scanning Tunneling Potentiometry
NASA Astrophysics Data System (ADS)
Feenstra, R. M.; Briner, B. G.; Chin, T. P.; Woodall, J. M.
1996-03-01
Charge transport in 20--30 Å thick Bi-films is studied by scanning tunneling potentiometry (STP) at room temperature. The Bi is deposited on cleaved InP(110) surfaces at temperatures near 140 K, yielding atomically flat films interspersed with 12 Å deep holes. The InP substrates contain conducting/insulating/conducting layers, which in cross-section are used to form contacts to the film, thus enabling lateral current densities as high as 8 × 10^6 A/cm^2 . Potential variations due to scattering of this lateral current is detected using STP, by locating the zero-crossing of current-voltage characteristics at each pixel in an image. Potential images reveal, on a coarse scale, a smooth ramp arising from the electric field due to phonon scattering in the film, from which an electron-phonon scattering length of >1000 Å is deduced. On a finer scale, potential steps 2--10 mV high are seen near surface holes and grain boundaries in the film. Detailed study of the ballistic scattering near the holes reveals a dipole shaped feature, which is identified as a residual resistivity dipole. *present address: Physics, Carnegie Mellon Univ., Pittsburgh PA 15213 **now at: Fritz-Haber-Institut, 14195 Berlin, briner@fhi-berlin.mpg.de
Fusion and elastic scattering of 6Li + 58Ni at low energies
NASA Astrophysics Data System (ADS)
Aguilera, Elí F.; Amador-Valenzuela, Paulina; Martinez-Quiroz, Enrique; Lizcano, David; Garcia-Flores, Araceli; Kolata, James J.
2017-11-01
Sub-barrier fusion cross sections (σfus) for the 6Li + 58Ni system, obtained from the respective evaporation protons, are examined in the present work. With respect to expectations of a simple one-dimensional barrier penetration model, a large enhancement of the data is observed. Good consistency with equivalent data reported previously for similar systems is found. A comparison with total reaction cross sections (σR), deduced from elastic scattering measurements reported previously, indicates that σfus is close to σR within the measured energy range. To estimate the contribution of complete fusion (CF), an optical model analysis of the elastic scattering data is performed where CF is identified with the absorption in a short range volume potential. A surface polarization potential is added to the bare nuclear potential to simulate the effect of peripheral reactions. The results obtained indicate that other mechanisms different from CF may be dominant, especially in the lower energy region.
NASA Astrophysics Data System (ADS)
Xu, Ruirui; Ma, Zhongyu; Muether, Herbert; van Dalen, E. N. E.; Liu, Tinjin; Zhang, Yue; Zhang, Zhi; Tian, Yuan
2017-09-01
A relativistic microscopic optical model potential, named CTOM, for nucleon-nucleus scattering is investigated in the framework of Dirac-Brueckner-Hartree-Fock approach. The microscopic feature of CTOM is guaranteed through rigorously adopting the isospin dependent DBHF calculation within the subtracted T matrix scheme. In order to verify its prediction power, a global study n, p+ A scattering are carried out. The predicted scattering observables coincide with experimental data within a good accuracy over a broad range of targets and a large region of energies only with two free items, namely the free-range factor t in the applied improved local density approximation and minor adjustments of the scalar and vector potentials in the low-density region. In addition, to estimate the uncertainty of the theoretical results, the deterministic simple least square approach is preliminarily employed to derive the covariance of predicted angular distributions, which is also briefly contained in this paper.
Ground state atoms confined in a real Rydberg and complex Rydberg-Scarf II potential
NASA Astrophysics Data System (ADS)
Mansoori Kermani, Maryam
2017-12-01
In this work, a system of two ground state atoms confined in a one-dimensional real Rydberg potential was modeled. The atom-atom interaction was considered as a nonlocal separable potential (NLSP) of rank one. This potential was assumed because it leads to an analytical solution of the Lippmann-Schwinger equation. The NLSPs are useful in the few body problems that the many-body potential at each point is replaced by a projective two-body nonlocal potential operator. Analytical expressions for the confined particle resolvent were calculated as a key function in this study. The contributions of the bound and virtual states in the complex energy plane were obtained via the derived transition matrix. Since the low energy quantum scattering problems scattering length is an important quantity, the behavior of this parameter was described versus the reduced energy considering various values of potential parameters. In a one-dimensional model, the total cross section in units of the area is not a meaningful property; however, the reflectance coefficient has a similar role. Therefore the reflectance probability and its behavior were investigated. Then a new confined potential via combining the complex absorbing Scarf II potential with the real Rydberg potential, called the Rydberg-Scarf II potential, was introduced to construct a non-Hermitian Hamiltonian. In order to investigate the effect of the complex potential, the scattering length and reflectance coefficient were calculated. It was concluded that in addition to the competition between the repulsive and attractive parts of both potentials, the imaginary part of the complex potential has an important effect on the properties of the system. The complex potential also reduces the reflectance probability via increasing the absorption probability. For all numerical computations, the parameters of a system including argon gas confined in graphite were considered.
Systematic analysis of α elastic scattering with the São Paulo potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charry-Pastrana, F. E., E-mail: feecharrypa@unal.edu.co; Pinilla, E. C.
2016-07-07
We describe systematically by collision energy and target mass, alpha elastic scattering angular distributions by using the São Paulo potential as the real part of the optical potential. The imaginary part is proportional to the real one by a factor N{sub i}. We find this parameter by fitting the theoretical angular distributions to the experimental cross sections through a χ{sup 2} minimization. The N{sub i} and their respective uncertainties, σ{sub Ni}, fall in the range 0.4 ≤ N{sub i} ± σ{sub N{sub i}} ≤ 0.8 for all the systems studied.
Study of the Spin Dependent 3HE-NUCLEUS Interaction at 450 Mev
NASA Astrophysics Data System (ADS)
Kamiya, J.; Hatanaka, K.; Sakemi, Y.; Wakasa, T.; Yoshida, H. P.; Obayashi, E.; Hara, K.; Kitamura, K.; Shimizu, Y.; Fujita, K.; Sakamoto, N.; Shimbara, Y.; Adachi, T.; Sakaguchi, H.; Yosoi, M.; Uchida, M.; Yasuda, Y.; Kawabata, T.; Noro, T.
2003-04-01
Differential cross sections and induced polarizations of 3He+12C, 58Ni, and 90Zr elastic scattering were measured at E
NASA Astrophysics Data System (ADS)
Cortie, D. L.; Lewis, R. A.
2012-06-01
It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.
Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce
2008-03-01
This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.
NASA Astrophysics Data System (ADS)
Shestakov, V. A.; Korshunov, M. M.; Togushova, Yu N.; Efremov, D. V.; Dolgov, O. V.
2018-07-01
Irradiation of superconductors with different particles is one of many ways to investigate the effects of disorder. Here we study the disorder-induced transition between s ± and s ++ states in the two-band model for Fe-based superconductors with nonmagnetic impurities. Specifically, we investigate the important question of whether the superconducting gaps during the transition change smoothly or abruptly. We show that the behavior can be of either type and is controlled by the ratio of intraband to interband impurity scattering potentials, and by a parameter σ , that represents scattering strength and ranges from zero (Born approximation) to one (unitary limit). For the pure interband scattering potential and the scattering strength σ ≲ 0.11, the {s}+/- \\to {s}++ transition is accompanied by steep changes in the gaps, while for larger values of σ , the gaps change smoothly. The behavior of the gaps is characterized by steep changes at low temperatures, T< 0.1{T}{{c}0} with T c0 being the critical temperature in the clean limit, otherwise it changes gradually. The critical temperature T c is always a smooth function of the scattering rate in spite of the steep changes in the behavior of the gaps.
Simple model for molecular scattering
NASA Astrophysics Data System (ADS)
Mehta, Nirav; Ticknor, Christopher; Hazzard, Kaden
2017-04-01
The collisions of ultracold molecules are qualitatively different from the collisions of ultracold atoms due to the high density of bimolecular resonances near the collision energy. We present results from a simple N-channel scattering model with square-well channel potentials and constant channel couplings (inside the well) designed to reproduce essential features of chaotic molecular scattering. The potential depths and channel splittings are tuned to reproduce the appropriate density of states for the short-range bimolecular collision complex (BCC), which affords a direct comparison of the resulting level-spacing distribution to that expected from random matrix theory (RMT), namely the so-called Wigner surmise. The density of states also sets the scale for the rate of dissociation from the BCC to free molecules, as approximated by transition state theory (TST). Our model affords a semi-analytic solution for the scattering amplitude in the open channel, and a determinantal equation for the eigenenergies of the short-ranged BCC. It is likely the simplest finite-ranged scattering model that can be compared to expectations from the approximations of RMT, and TST. The validity of these approximations has implications for the many-channel Hubbard model recently developed. This research was funded in part by the National Science Foundation under Grant No. NSF PHY-1125915.
Pion single and double charge exchange in the resonance region: Dynamical corrections
NASA Astrophysics Data System (ADS)
Johnson, Mikkel B.; Siciliano, E. R.
1983-04-01
We consider pion-nucleus elastic scattering and single- and double-charge-exchange scattering to isobaric analog states near the (3,3) resonance within an isospin invariant framework. We extend previous theories by introducing terms into the optical potential U that are quadratic in density and consistent with isospin invariance of the strong interaction. We study the sensitivity of single and double charge exchange angular distributions to parameters of the second-order potential both numerically, by integrating the Klein-Gordon equation, and analytically, by using semiclassical approximations that explicate the dependence of the exact numerical results to the parameters of U. The magnitude and shape of double charge exchange angular distributions are more sensitive to the isotensor term in U than has been hitherto appreciated. An examination of recent experimental data shows that puzzles in the shape of the 18O(π+, π-)18Ne angular distribution at 164 MeV and in the A dependence of the forward double charge exchange scattering on 18O, 26Mg, 42Ca, and 48Ca at the same energy may be resolved by adding an isotensor term in U. NUCLEAR REACTIONS Scattering theory for elastic, single-, and double-charge-exchange scattering to IAS in the region of the P33 resonance. Second-order effects on charge-exchange calculations of σ(A, θ).
Surface wave scattering from sharp lateral discontinuities
NASA Astrophysics Data System (ADS)
Pollitz, Fred F.
1994-11-01
The problem of surface wave scattering is re-explored, with quasi-degenerate normal mode coupling as the starting point. For coupling among specified spheroidal and toroidal mode dispersion branches, a set of coupled wave equations is derived in the frequency domain for first-arriving Rayleigh and Love waves. The solutions to these coupled wave equations using linear perturbation theory are surface integrals over the unit sphere covering the lateral distribution of perturbations in Earth structure. For isotropic structural perturbations and surface topographic perturbations, these solutions agree with the Born scattering theory previously obtained by Snieder and Romanowicz. By transforming these surface integrals into line integrals along the boundaries of the heterogeneous regions in the case of sharp discontinuities, and by using uniformly valid Green's functions, it is possible to extend the solution to the case of multiple scattering interactions. The proposed method allows the relatively rapid calculation of exact second order scattered wavefield potentials for scattering by sharp discontinuities, and it has many advantages not realized in earlier treatments. It employs a spherical Earth geometry, uses no far field approximation, and implicitly contains backward as well as forward scattering. Comparisons of asymptotic scattering and an exact solution with single scattering and multiple scattering integral formulations show that the phase perturbation predicted by geometrical optics breaks down for scatterers less than about six wavelengths in diameter, and second-order scattering predicts well both the amplitude and phase pattern of the exact wavefield for sufficiently small scatterers, less than about three wavelengths in diameter for anomalies of a few percent.
Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.
Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua
2018-02-01
Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.
Thermal effects in light scattering from ultracold bosons in an optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakomy, Kazimierz; Idziaszek, Zbigniew; Trippenbach, Marek
2009-10-15
We study the scattering of a weak and far-detuned light from a system of ultracold bosons in one-dimensional and three-dimensional optical lattices. We show the connection between angular distributions of the scattered light and statistical properties of a Bose gas in a periodic potential. The angular patterns are determined by the Fourier transform of the second-order correlation function, and thus they can be used to retrieve information on particle number fluctuations and correlations. We consider superfluid and Mott-insulator phases of the Bose gas in a lattice and we analyze in detail how the scattering depends on the system dimensionality, temperature,more » and atom-atom interactions.« less
Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V.; Zharov, Vladimir P.
2010-01-01
The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. PMID:19670359
Jimenez-Villar, Ernesto; Mestre, Valdeci; de Oliveira, Paulo C; de Sá, Gilberto F
2013-12-21
There has been growing interest in scattering media in recent years, due to their potential applications as solar collectors, photocatalyzers, random lasers and other novel optical devices. Here, we have introduced a novel core-shell scattering medium for a random laser composed of TiO2@Silica nanoparticles. Higher efficiency, lower laser threshold and long photobleaching lifetime in random lasers were demonstrated. This has introduced a new method or parameter (fraction of absorbed pumping), which opens a new avenue to characterize and study the scattering media. Optical chemical and colloidal stabilities were combined by coating a suitable silica shell onto TiO2 nanoparticles.
NEUTRON PHYSICS DIVISION ANNUAL PROGRESS REPORT. Period Ending September 1, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-11
A total of 74 subsections are included in the report. The information in 4 subsections was previously abstracted in NSA. Separate abstracts were prepared for 38 of the subsections. Those sections for which no abstracts were prepared contain information on prompt neutron lifetime, Rover critical experiments, Pu/sup 239/ fission, neutron decay, the O5R code, alpha scattering, 8 and P wavelengths, proton scattering, deuteron scattering, local optical potentials, N. S. Savamah radiation leakage, reactor shielding, cross section data analysis, gamma transport, gamma energy deposition, gaussian integration, data interpolation, neutron scattering, neutron energy deposition, space vehicles, computer analyses, shielding, positron sources, andmore » secondary particles. (J.R.D.)« less
In-situ soil carbon analysis using inelastic neutron scattering
USDA-ARS?s Scientific Manuscript database
In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...
Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering
USDA-ARS?s Scientific Manuscript database
Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...
On the analysis of time-of-flight spin-echo modulated dark-field imaging data
NASA Astrophysics Data System (ADS)
Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus
2017-06-01
Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delbar, T.; Gregoire, G.; Paic, G.
1978-09-01
Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less
Direct Iterative Nonlinear Inversion by Multi-frequency T-matrix Completion
NASA Astrophysics Data System (ADS)
Jakobsen, M.; Wu, R. S.
2016-12-01
Researchers in the mathematical physics community have recently proposed a conceptually new method for solving nonlinear inverse scattering problems (like FWI) which is inspired by the theory of nonlocality of physical interactions. The conceptually new method, which may be referred to as the T-matrix completion method, is very interesting since it is not based on linearization at any stage. Also, there are no gradient vectors or (inverse) Hessian matrices to calculate. However, the convergence radius of this promising T-matrix completion method is seriously restricted by it's use of single-frequency scattering data only. In this study, we have developed a modified version of the T-matrix completion method which we believe is more suitable for applications to nonlinear inverse scattering problems in (exploration) seismology, because it makes use of multi-frequency data. Essentially, we have simplified the single-frequency T-matrix completion method of Levinson and Markel and combined it with the standard sequential frequency inversion (multi-scale regularization) method. For each frequency, we first estimate the experimental T-matrix by using the Moore-Penrose pseudo inverse concept. Then this experimental T-matrix is used to initiate an iterative procedure for successive estimation of the scattering potential and the T-matrix using the Lippmann-Schwinger for the nonlinear relation between these two quantities. The main physical requirements in the basic iterative cycle is that the T-matrix should be data-compatible and the scattering potential operator should be dominantly local; although a non-local scattering potential operator is allowed in the intermediate iterations. In our simplified T-matrix completion strategy, we ensure that the T-matrix updates are always data compatible simply by adding a suitable correction term in the real space coordinate representation. The use of singular-value decomposition representations are not required in our formulation since we have developed an efficient domain decomposition method. The results of several numerical experiments for the SEG/EAGE salt model illustrate the importance of using multi-frequency data when performing frequency domain full waveform inversion in strongly scattering media via the new concept of T-matrix completion.
Conductivity of disordered 2d binodal Dirac electron gas: effect of internode scattering
NASA Astrophysics Data System (ADS)
Sinner, Andreas; Ziegler, Klaus
2018-07-01
We study the dc conductivity of a weakly disordered 2d Dirac electron gas with two bands and two spectral nodes, employing a field theoretical version of the Kubo-Greenwood conductivity formula. In this paper, we are concerned with the question how the internode scattering affects the conductivity. We use and compare two established techniques for treating the disorder scattering: The perturbation theory, there ladder and maximally crossed diagrams are summed up, and the functional integral approach. Both turn out to be entirely equivalent. For a large number of random potential configurations we have found only two different conductivity scenarios. Both scenarios appear independently of whether the disorder does or does not create the internode scattering. In particular, we do not confirm the conjecture that the internode scattering tends to Anderson localisation.
Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors
NASA Astrophysics Data System (ADS)
Meng, Chong; Zhang, Xiaonan; Tang, Suet To; Yang, Min; Yang, Zhiyu
2017-03-01
We report the experimental realization of acoustic coherent perfect absorption (CPA) of four symmetric scatterers of very different structures. The only conditions necessary for these scatterers to exhibit CPA are that both the reflection and transmission amplitudes of the scatterers are 0.5 under one incident wave, and there are two collinear and counter-propagating incident waves with appropriate relative amplitude and phase. Nearly 1000 times in the modulation of output power has been demonstrated by changing the relative phase of the incident waves over 180°. We further demonstrate that these scatterers could potentially be sensitive devices to detect the small differences between two nearly equal incident waves. A 27% change in the strength of the scattering wave has been demonstrated for every degree of phase deviation from the optimum condition between the incident waves.
NASA Astrophysics Data System (ADS)
Boruah, Manash J.; Ahmed, Gazi A.
2018-01-01
Laser based experimental light scattering studies of irregularly shaped silica microparticles have been performed at three incident wavelengths 543.5 nm, 594.5 nm and 632.8 nm supported by laboratory based computations and 3D realistic simulations, using an indigenously fabricated light scattering setup. A comparative analysis of the computational and experimentally acquired results is done and a good agreement is found in the forward scattering lobes in all cases for each of the measured scattering parameters. This study also provides an efficient way of detecting and measuring particle size distribution for irregular micro- and nanoparticles and is highly applicable in remote sensing, atmospheric, astrophysical, and medical applications and also for finding potential health hazards in the form of inhalable and respirable small particulate matter.
Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng
2012-09-01
This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.
Shuai, Zhigang; Wang, Linjun; Li, Qikai
2011-03-04
The carrier mobility for carbon electronic materials is an important parameter for optoelectronics. We report here some recently developed theoretical tools to predict the mobility without any free parameters. Carrier scatterings with phonons and traps are the key factors in evaluating the mobility. We consider three major scattering regimes: i) where the molecular internal vibration severely induces charge self-trapping and, thus, the hopping mechanism dominates; ii) where both intermolecular and intramolecular scatterings come to play roles, so the Holstein-Peierls polaron model is applied; and, iii) where charge is well delocalized with coherence length comparable with acoustic phonon wavelength, so that a deformation potential approach is more appropriate. We develop computational methods at the first-principles level for the three different cases that have extensive potential application in rationalizing material design.
Baum, A.; Milosavljevic, A.; Lazarevic, N.; ...
2018-02-12
Here, we present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A 1g and B 1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies increase by 0.5–1 cm -1 , thus indicating putative short range magnetic order. Additionally, along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons andmore » potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.« less
{alpha}+{alpha} scattering reexamined in the context of the Sao Paulo potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamon, L. C.; Gasques, L. R.; Carlson, B. V.
2011-03-15
We have analyzed a large set of {alpha}+{alpha} elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even inmore » this low-energy region, the velocity dependence of the model is quite important for describing the data of the {alpha}+{alpha} system.« less
NASA Astrophysics Data System (ADS)
Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.
2015-04-01
The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, A.; Milosavljevic, A.; Lazarevic, N.
Here, we present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A 1g and B 1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies increase by 0.5–1 cm -1 , thus indicating putative short range magnetic order. Additionally, along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons andmore » potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.« less
2010-03-01
matrix elements. From scattering matrix elements for several different effective potential values and using the Method of Partial Waves[7], the...scattering matrix elements. Through the Method of Par- tial Waves[7], the procedure was repeated for several different effective potentials. The...section calculations. It is important to note that lmax may differ for σel and σi→f . This method may only be used if both σi→f and σel have
Light scattering and dynamics of interacting Brownian particles
NASA Technical Reports Server (NTRS)
Tsang, T.; Tang, H. T.
1982-01-01
The relative motions of interacting Brownian particles in liquids may be described as radial diffusion in an effective potential of the mean force. By using a harmonic approximation for the effective potential, the intermediate scattering function may also be evaluated. For polystyrene spheres of 250 A mean radius in aqueous environment at 0.00125 g/cu cm concentration, the results for the calculated mean square displacement are in qualitative agreement with experimental data from photon correlation spectroscopy. Because of the interactions, the functions deviate considerably from the exponential forms for the free particles.
IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine
NASA Astrophysics Data System (ADS)
Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.
2007-01-01
We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.
Mizuno, Yosuke; Nakamura, Kentaro
2010-12-01
We investigated the dependences of Brillouin frequency shift (BFS) on strain and temperature in a perfluorinated graded-index polymer optical fiber (PFGI-POF) at 1.55 μm wavelength. They showed negative dependences with coefficients of -121.8 MHz/% and -4.09 MHz/K, respectively, which are -0.2 and -3.5 times as large as those in silica fibers. These unique BFS dependences indicate that the Brillouin scattering in PFGI-POFs has a big potential for strain-insensitive high-accuracy temperature sensing.
NASA Astrophysics Data System (ADS)
Maghari, A.; Kermani, M. M.
2018-04-01
A system of two interacting atoms confined in 1D harmonic trap and perturbed by an absorbing boundary potential is studied using the Lippmann-Schwinger formalism. The atom-atom interaction potential was considered as a nonlocal separable model. The perturbed absorbing boundary potential was also assumed in the form of Scarf II complex absorbing potential. The model is used for the study of 1D optical lattices that support the trapping of a pair atom within a unit cell. Moreover, it allows to describe the scattering particles in a tight smooth trapping surface and to analyze the bound and resonance states. The analytical expressions for wavefunctions and transition matrix as well as the absorption probabilities are calculated. A demonstration of how the complex absorbing potential affecting the bound states and resonances of particles confined in a harmonic trap is described.
Xu, Min
2017-01-01
Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. PMID:28663913
Band-selective filter in a zigzag graphene nanoribbon.
Nakabayashi, Jun; Yamamoto, Daisuke; Kurihara, Susumu
2009-02-13
Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is investigated by using the recursive Green's function method. In the case of the steplike potential, we demonstrate numerically that scattering processes obey a selection rule for the band indices when the number of zigzag chains is even; the electrons belonging to the "even" ("odd") bands are scattered only into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier potential, by tuning the barrier height to be an appropriate value, we show that it can work as the "band-selective filter", which transmits electrons selectively with respect to the indices of the bands to which the incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance by applying two barrier potentials.
Investigation of valley-resolved transmission through gate defined graphene carrier guiders
NASA Astrophysics Data System (ADS)
Cao, Shi-Min; Zhou, Jiao-Jiao; Wei, Xuan; Cheng, Shu-Guang
2017-04-01
Massless charge carriers in gate potentials modulate graphene quantum well transport in the same way that a electromagnetic wave propagates in optical fibers. A recent experiment by Kim et al (2016 Nat. Phys. 12 1022) reports valley symmetry preserved transport in a graphene carrier guider. Based on a tight-binding model, the valley-resolved transport coefficients are calculated with the method of scattering matrix theory. For a straight potential well, valley-resolved conductance is quantized with a value of 2n + 1 and multiplied by 2e 2/h with integer n. In the absence of disorder, intervalley scattering, only occurring at both ends of the potential well, is weak. The propagating modes inside the potential well are analyzed with the help of band structure and wave function distribution. The conductance is better preserved for a longer carrier guider. The quantized conductance is barely affected by the boundaries of different types or slightly changing the orientation of the carrier guider. For a curved model, the state with momentum closes to the neutral point is more fragile to boundary scattering and the quantized conductance is ruined as well.
Phase shifts in I = 2 ππ-scattering from two lattice approaches
NASA Astrophysics Data System (ADS)
Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.
2013-12-01
We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, S. M.; Jaghoub, M. I.
2018-04-01
In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.
Coherent scattering from semi-infinite non-Hermitian potentials
NASA Astrophysics Data System (ADS)
Ahmed, Zafar; Ghosh, Dona; Kumar, Sachin
2018-02-01
When two identical (coherent) beams are injected at a semi-infinite non-Hermitian medium from left and right, we show that both reflection (rL,rR) and transmission (tL,tR) amplitudes are nonreciprocal. In a parametric domain, there exists spectral singularity (SS) at a real energy E =E*=k*2 and the determinant of the time-reversed two port scattering matrix, i.e., |det(S (-k ) ) |=| tL(-k ) tR(-k ) -rL(-k ) rR(-k ) | , vanishes sharply at k =k* , displaying the phenomenon of coherent perfect absorption (CPA). In the complementary parametric domain, the potential becomes either left or right reflectionless at E =Ez . We rule out the existence of invisibility despite rR(Ei) =0 and tR(Ei) =1 but T (Ei)≠1 , in this avenue. We present two simple exactly solvable models where expressions for E*, Ez, Ei, and parametric conditions on the potential have been obtained in explicit and simple forms. Earlier, the phenomena of SS and CPA have been found to occur only in the scattering complex potentials which are spatially localized (vanish asymptotically) and have tL=tR .
Energy spectra of small bosonic clusters having a large two-body scattering length
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2012-10-01
In this work we investigate small clusters of bosons using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 particles interacting through a soft interparticle potential. In order to make contact with a real system, we use an attractive Gaussian potential that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with one of the most widely used 4He-4He interactions, the LM2M2 potential of Aziz and Slaman. The intensity of the potential is varied in order to explore the clusters’ spectra in different regions with large positive and large negative values of the two-body scattering length. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and three-body potential, we have calculated the spectrum of the four-, five-, and six-particle systems. In all the regions explored, we have found that these systems present two states, one deep and one shallow close to the A-1 threshold. Some universal relations between the energy levels are extracted; in particular, we have estimated the universal ratios between thresholds of the three-, four-, and five-particle continua using the two-body Gaussian potential. They agree with recent measurements and theoretical predictions.
Nucleon-deuteron scattering with the JISP16 potential
NASA Astrophysics Data System (ADS)
Skibiński, R.; Golak, J.; Topolnicki, K.; Witała, H.; Volkotrub, Yu.; Kamada, H.; Shirokov, A. M.; Okamoto, R.; Suzuki, K.; Vary, J. P.
2018-01-01
The nucleon-nucleon J -matrix inverse scattering potential JISP16 is applied to elastic nucleon-deuteron scattering and the deuteron breakup process at the laboratory nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain three-nucleon scattering states. We compare predictions based on the JISP16 force with data and with results based on various two-body interactions, including the CD Bonn, the Argonne AV18, the chiral force with the semilocal regularization at the fifth order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3 N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P -wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum interactions obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the nucleon-deuteron elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of nucleon-deuteron scattering data is limited to a low momentum transfer region.
Refractive effects and Airy structure in inelastic 16O+12C rainbow scattering
NASA Astrophysics Data System (ADS)
Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.; Gloukhov, Yu. A.; Dem'yanova, A. S.; Trzaska, W. H.
2014-12-01
Inelastic 16O+12C rainbow scattering to the 2+ (4.44 MeV) state of 12C was measured at the incident energies, EL = 170, 181, 200, 260, and 281 MeV. A systematic analysis of the experimental angular distributions was performed using the coupled-channels method with an extended double folding potential derived from realistic wave functions for 12C and 16O calculated with a microscopic α cluster model and a finite-range density-dependent nucleon-nucleon force. The coupled-channels analysis of the measured inelastic-scattering data shows consistently some Airy-like structure in the inelastic-scattering cross sections for the first 2+ state of 12C, which is somewhat obscured and still not clearly visible in the measured data. The Airy minimum was identified from the analysis and the systematic energy evolution of the Airy structure was studied. The Airy minimum in inelastic scattering is found to be shifted backward compared with that in elastic scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less
NASA Technical Reports Server (NTRS)
Eloranta, E. W.; Piironen, P. K.
1996-01-01
Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.
Incorporation of a two metre long PET scanner in STIR
NASA Astrophysics Data System (ADS)
Tsoumpas, C.; Brain, C.; Dyke, T.; Gold, D.
2015-09-01
The Explorer project aims to investigate the potential benefits of a total-body 2 metre long PET scanner. The following investigation incorporates this scanner in STIR library and demonstrates the capabilities and weaknesses of existing reconstruction (FBP and OSEM) and single scatter simulation algorithms. It was found that sensible images are reconstructed but at the expense of high memory and processing time demands. FBP requires 4 hours on a core; OSEM: 2 hours per iteration if ran in parallel on 15-cores of a high performance computer. The single scatter simulation algorithm shows that on a short scale, up to a fifth of the scanner length, the assumption that the scatter between direct rings is similar to the scatter between the oblique rings is approximately valid. However, for more extreme cases this assumption is not longer valid, which illustrates that consideration of the oblique rings within the single scatter simulation will be necessary, if this scatter correction is the method of choice.
Short-time quantum dynamics of sharp boundaries potentials
NASA Astrophysics Data System (ADS)
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Comparison of local exchange potentials of electron-N2 scattering
NASA Astrophysics Data System (ADS)
Rumble, J. R., Jr.; Truhlar, D. G.
1980-05-01
Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.
Optical-model abrasion cross sections for high-energy heavy ions
NASA Technical Reports Server (NTRS)
Townsend, L. W.
1981-01-01
Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.
Low-energy elastic differential scattering of He/++/ by He.
NASA Technical Reports Server (NTRS)
Lam, S. K.; Doverspike, L. D.; Champion, R. L.
1973-01-01
Experimental results are developed for the relative elastic differential scattering of He(++) by He for collision energies in the range 4 equal to or less than E equal to or less than 75 eV. In the analysis of the data, semiclassical considerations are utilized, assuming that the dynamics of the scattering is governed solely by the B and E states of He2(++). It is shown that existing ab initio calculations for the intermolecular potentials predict differential cross sections which are not in particularly good agreement with the experimental data.
On singlet s-wave electron-hydrogen scattering.
NASA Technical Reports Server (NTRS)
Madan, R. N.
1973-01-01
Discussion of various zeroth-order approximations to s-wave scattering of electrons by hydrogen atoms below the first excitation threshold. The formalism previously developed by the author (1967, 1968) is applied to Feshbach operators to derive integro-differential equations, with the optical-potential set equal to zero, for the singlet and triplet cases. Phase shifts of s-wave scattering are computed in the zeroth-order approximation of the Feshbach operator method and in the static-exchange approximation. It is found that the convergence of numerical computations is faster in the former approximation than in the latter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Erin A.; Caggiano, Joseph A.; Runkle, Robert C.
As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding. Detecting such objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam, both in the cargo and surrounding objects, which degrades image contrast. Here, we work to determine the extent to which scatter plays a role in radiographic imaging of cargo containers.
Scattering and absorption of massless scalar waves by Born-Infeld black holes
NASA Astrophysics Data System (ADS)
Sanchez, Pablo Alejandro; Bretón, Nora; Bergliaffa, Santiago Esteban Perez
2018-06-01
We present the results of a study of the scattering of massless planar scalar waves by a Born-Infeld black hole. The scattering and absorption cross sections are calculated using partial-wave methods. The numerical results are checked by reproducing those of the Reissner-Nordstrom black hole, and also using several approximations, with which our results are in very good agreement. The dependence of these phenomena on the effective potential, the charge of the black hole, and the value of the Born-Infeld parameter is discussed.
Foreign body detection in food materials using compton scattered x-rays
NASA Astrophysics Data System (ADS)
McFarlane, Nigel James Bruce
This thesis investigated the application of X-ray Compton scattering to the problem of foreign body detection in food. The methods used were analytical modelling, simulation and experiment. A criterion was defined for detectability, and a model was developed for predicting the minimum time required for detection. The model was used to predict the smallest detectable cubes of air, glass, plastic and steel. Simulations and experiments were performed on voids and glass in polystyrene phantoms, water, coffee and muesli. Backscatter was used to detect bones in chicken meat. The effects of geometry and multiple scatter on contrast, signal-to-noise, and detection time were simulated. Compton scatter was compared with transmission, and the effect of inhomogeneity was modelled. Spectral shape was investigated as a means of foreign body detection. A signal-to-noise ratio of 7.4 was required for foreign body detection in food. A 0.46 cm cube of glass or a 1.19 cm cube of polystyrene were detectable in a 10 cm cube of water in one second. The minimum time to scan a whole sample varied as the 7th power of the foreign body size, and the 5th power of the sample size. Compton scatter inspection produced higher contrasts than transmission, but required longer measurement times because of the low number of photon counts. Compton scatter inspection of whole samples was very slow compared to production line speeds in the food industry. There was potential for Compton scatter in applications which did not require whole-sample scanning, such as surface inspection. There was also potential in the inspection of inhomogeneous samples. The multiple scatter fraction varied from 25% to 55% for 2 to 10 cm cubes of water, but did not have a large effect on the detection time. The spectral shape gave good contrasts and signal-to-noise ratios in the detection of chicken bones.
Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter
NASA Astrophysics Data System (ADS)
Wignall, G. D.; Melnichenko, Y. B.
2005-08-01
Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, G.A.; Pack, R.T
1978-02-15
A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less
Exact quantum scattering calculation of transport properties for free radicals: OH(X2Π)-helium.
Dagdigian, Paul J; Alexander, Millard H
2012-09-07
Transport properties for OH-He are computed through quantum scattering calculations using the ab initio potential energy surfaces determined by Lee et al. [J. Chem. Phys. 113, 5736 (2000)]. To gauge the importance of the open-shell character of OH and the anisotropy of the potential on the transport properties, including the collision integrals Ω((1,1)) and Ω((2,2)), as well as the diffusion coefficient, calculations were performed with the full potential, with the difference potential V(dif) set to zero, and with only the spherical average of the potential. Slight differences (3%-5%) in the computed diffusion coefficient were found between the values obtained using the full potential and the truncated potentials. The computed diffusion coefficients were compared to recent experimental measurements and those computed with a Lennard-Jones (LJ) 12-6 potential. The values obtained with the full potential were slightly higher than the experimental values. The LJ 12-6 potential was found to underestimate the variation in temperature as compared to that obtained using the full OH-He ab initio potential.
Fast analytical scatter estimation using graphics processing units.
Ingleby, Harry; Lippuner, Jonas; Rickey, Daniel W; Li, Yue; Elbakri, Idris
2015-01-01
To develop a fast patient-specific analytical estimator of first-order Compton and Rayleigh scatter in cone-beam computed tomography, implemented using graphics processing units. The authors developed an analytical estimator for first-order Compton and Rayleigh scatter in a cone-beam computed tomography geometry. The estimator was coded using NVIDIA's CUDA environment for execution on an NVIDIA graphics processing unit. Performance of the analytical estimator was validated by comparison with high-count Monte Carlo simulations for two different numerical phantoms. Monoenergetic analytical simulations were compared with monoenergetic and polyenergetic Monte Carlo simulations. Analytical and Monte Carlo scatter estimates were compared both qualitatively, from visual inspection of images and profiles, and quantitatively, using a scaled root-mean-square difference metric. Reconstruction of simulated cone-beam projection data of an anthropomorphic breast phantom illustrated the potential of this method as a component of a scatter correction algorithm. The monoenergetic analytical and Monte Carlo scatter estimates showed very good agreement. The monoenergetic analytical estimates showed good agreement for Compton single scatter and reasonable agreement for Rayleigh single scatter when compared with polyenergetic Monte Carlo estimates. For a voxelized phantom with dimensions 128 × 128 × 128 voxels and a detector with 256 × 256 pixels, the analytical estimator required 669 seconds for a single projection, using a single NVIDIA 9800 GX2 video card. Accounting for first order scatter in cone-beam image reconstruction improves the contrast to noise ratio of the reconstructed images. The analytical scatter estimator, implemented using graphics processing units, provides rapid and accurate estimates of single scatter and with further acceleration and a method to account for multiple scatter may be useful for practical scatter correction schemes.
Spectral singularities and Bragg scattering in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, S.
2010-02-15
Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.; Taiwo, T. J.
2017-02-01
Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.
High-Frequency Sound Interaction in Ocean Sediments
2003-09-30
results, combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot...understanding of the dominant scatterers versus frequency near the sediment surface, the potential need for poroelastic sediment models , the...work are described under a separate ONR project titled “ Acoustic propagation and scattering within sand sediments: Laboratory experiments, modeling
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
A possible divot in the Kuiper belt's scattered-object size distribution
NASA Astrophysics Data System (ADS)
Shankman, C.; Kavelaars, J.; Gladman, B.; Petit, J.
2014-07-01
The formation and evolution history of the Solar System, while not directly accessible, has measurable signatures in the present-day size distributions of the Trans-Neptunian Object (TNO) populations. The form of the size distribution is modelled as a power law with number going as size to some characteristic slope. Recent works have shown that a single power law does not match the observations across all sizes; the power law breaks to a different form [1, 2, 3]. The large- size objects record the accretion history, while the small-size objects record the collision history. The changes of size-distribution shape and slope as one moves from 'large' to 'medium' to 'small' KBOs are the signature needed to constrain the formation and collision history of the Solar System. The scattering TNOs are those TNOs undergoing strong (scattering) interactions Neptune. The scattering objects can come to pericentre in the giant planet region. This close-in pericentre passage allows for the observation of smaller objects, and thus for the constraint of the small-size end of the size distribution. Our recent analysis of the Canada France Ecliptic Plane Survey's (CFEPS) scattering objects revealed an exciting potential form for the scattering object size distribution - a divot (see Figure). Our divot (a sharp drop in the number of objects per unit size which then returns at a potentially different slope) matches our observations well and can simultaneously explain observed features in other inclined (so-called "hot") Kuiper Belt populations. In this scenario all of the hot populations would share the same source and have been implanted in the outer solar system through scattering processes. If confirmed, our divot would represent a new exciting paradigm for the formation history of the Kuiper Belt. Here we present the results of an extension of our previous work to include a new, deeper, Kuiper Belt survey. By the addition of two new faint scattering objects from this survey which, in tandem with the full characterizations of the survey's biases (acting like non- detections limits), we better constrain the form of the scattering object size distribution.
Effect of molecular anisotropy on beam scattering measurements
NASA Technical Reports Server (NTRS)
Goldflam, R.; Green, S.; Kouri, D. J.; Monchick, L.
1978-01-01
Within the energy sudden approximation, the total integral and total differential scattering cross sections are given by the angle average of scattering cross sections computed at fixed rotor orientations. Using this formalism the effect of molecular anisotropy on scattering of He by HCl and by CO is examined. Comparisons with accurate close coupling calculations indicate that this approximation is quite reliable, even at very low collision energies, for both of these systems. Comparisons are also made with predictions based on the spherical average of the interaction. For HCl the anisotropy is rather weak and its main effect is a slight quenching of the oscillations in the differential cross sections relative to predictions of the spherical averaged potential. For CO the anisotropy is much stronger, so that the oscillatory pattern is strongly quenched and somewhat shifted. It appears that the sudden approximation provides a simple yet accurate method for describing the effect of molecular anisotropy on scattering measurements.
Spin-Hall effect in the scattering of structured light from plasmonic nanowire.
Sharma, Deepak K; Kumar, Vijay; Vasista, Adarsh B; Chaubey, Shailendra K; Kumar, G V Pavan
2018-06-01
Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.
Spin-Hall effect in the scattering of structured light from plasmonic nanowire
NASA Astrophysics Data System (ADS)
Sharma, Deepak K.; Kumar, Vijay; Vasista, Adarsh B.; Chaubey, Shailendra K.; Kumar, G. V. Pavan
2018-06-01
Spin-orbit interactions are subwavelength phenomena which can potentially lead to numerous device related applications in nanophotonics. Here, we report Spin-Hall effect in the forward scattering of Hermite-Gaussian and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the Spin-Hall effect for Hermite-Gaussian beam as compared to Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition to it, nodal line of HG beam acts as the marker for the Spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the Spin flow component of Poynting vector associated with the circular polarization is responsible for the Spin-Hall effect and its enhancement.
Light atom quantum oscillations in UC and US
Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; ...
2016-01-19
High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, M.; School of Physics, Sambalpur University, Jyotivihar, Burla 768 019; Panda, R. N.
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we findmore » that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.« less
Precise Geolocation Of Persistent Scatterers Aided And Validated By Lidar DSM
NASA Astrophysics Data System (ADS)
Chang, Ling; Dheenathayalan, Prabu; Hanessen, Ramon
2013-12-01
Persistent Scatterers (PS) interferometry results in the de- formation history of time-coherent scatterers. Although several applications focus on smooth, spatially correlated signals, we aim for the detection, identification and analysis of single anomalies. These targets can be indicative of, e.g., strain in structures, potentially leading to the failure of such structures. For the identification and analysis it is of the greatest importance to know the exact position of the effective scattering center, to avoid an improper interpretation of the driving mechanism. Here we present an approach to optimize the geolocation of important scatterers, when necessary aided by an a priori Lidar-derived DSM (AHN-1 data) with 15cm and 5m resolution in vertical and horizontal directions, respectively. The DSM is also used to validate the geocoding. We implement our approach on a near-collapse event of a shopping mall in Heerlen, the Netherlands, to generate the precise geolocation of local PS points.
Study of coherent reflectometer for imaging internal structures of highly scattering media
NASA Astrophysics Data System (ADS)
Poupardin, Mathieu; Dolfi, Agnes
1996-01-01
Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.
Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials
NASA Astrophysics Data System (ADS)
Shalin, Alexander S.; Ginzburg, Pavel; Orlov, Alexey A.; Iorsh, Ivan; Belov, Pavel A.; Kivshar, Yuri S.; Zayats, Anatoly V.
2015-03-01
Concealing objects by making them invisible to an external electromagnetic probe is coined by the term "cloaking." Cloaking devices, having numerous potential applications, are still facing challenges in realization, especially in the visible spectral range. In particular, inherent losses and extreme parameters of metamaterials required for the cloak implementation are the limiting factors. Here, we numerically demonstrate nearly perfect suppression of scattering from arbitrary-shaped objects in spatially dispersive metamaterial acting as an alignment-free concealing cover. We consider a realization of a metamaterial as a metal-dielectric multilayer and demonstrate suppression of scattering from an arbitrary object in forward and backward directions with perfectly preserved wave fronts and less than 10% absolute intensity change, despite spatial dispersion effects present in the composite metamaterial. Beyond the usual scattering suppression applications, the proposed configuration may be used for a simple realization of scattering-free detectors and sensors.
Harmonic oscillator representation in the theory of scattering and nuclear reactions
NASA Technical Reports Server (NTRS)
Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.
1995-01-01
The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.
Nuclear rainbow in elastic scattering of {sup 9}Be nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glukhov, Yu. A., E-mail: gloukhov@inbox.ru; Ogloblin, A. A.; Artemov, K. P.
2010-01-15
A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determinemore » unambiguously the nucleus-nucleus potential with a high probability.« less
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
NASA Astrophysics Data System (ADS)
Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.
Li, Xiao -Hua; Guo, Wen -Jun; Li, Bao -An; ...
2015-04-01
The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be m* n-p≡(m* n – m* p)/m = (0.41 ± 0.15)δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependencemore » of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.« less
Many-particle-effects in the theory of the extended X-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Tran Thoai, D. B.; Ekardt, W.
1981-10-01
The Lee-Beni-procedure for the calculation of the extended X-ray absorption fine structure (EXAFS) is extended so as to include the effects of the electronic charge density outside the localized muffin-tin potentials. In our scheme EXAFS is caused by back-scattering of an elementary excitation of a homogeneous electron gas by localized energy dependent many-particle muffin-tin potentials. The difference between the two schemes is negligible at large k's, as expected from physical grounds. However, at small and intermediate k-values the difference is quite large. The effect of the outer electrons as compared to the Lee-Beni-model is twofold. First, they renormalize the scattered electron in the usual way. Second, they are missing within the scattering muffin-tins. Hence, we avoid to count some of the electrons twice. Results are presented for Cu as an example.
Two-body loss rates for reactive collisions of cold atoms
NASA Astrophysics Data System (ADS)
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
NASA Astrophysics Data System (ADS)
Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.
2018-04-01
Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David
2016-01-01
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165
High energy helion scattering: A ``model-independent'' analysis
NASA Astrophysics Data System (ADS)
Djaloeis, A.; Gopal, S.
1981-03-01
Angular distributions of helions elastically scattered from 24Mg, 58Ni, 90Zr and 120Sn at Eτ = 130 MeV have been subjected to a "model-independent" analysis in the framework of the optical model. The real part of the optical potential was represented by a spline-function; volume and surface absorptions were considered. Both the shallow and the deep families of the helion optical potential were investigated. The spline potentials are found to deviate from the Woods-Saxon shape. The experimental data are well described by optical potentials with either a volume or a surface absorption. However, the volume absorption consistently gives better fits. For 24Mg, 90Zr and 120Sn both shallow and deep potential families result in comparable fit qualities. For 58Ni the discrete ambiguity is resolved in favour of the shallow family. From the analysis the values of the rms radius of matter distribution have been extracted.
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
2018-02-21
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Intermolecular correlations are necessary to explain diffuse scattering from protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, Ariana; Poitevin, Frederic; Lane, Thomas Joseph
Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signalmore » reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.« less
Non-singular cloaks allow mimesis
NASA Astrophysics Data System (ADS)
Diatta, André; Guenneau, Sébastien
2011-02-01
We design non-singular cloaks enabling objects to scatter waves like objects with smaller size and very different shapes. We consider the Schrödinger equation, which is valid, for example, in the contexts of geometrical and quantum optics. More precisely, we introduce a generalized non-singular transformation for star domains, and numerically demonstrate that an object of nearly any given shape surrounded by a given cloak scatters waves in exactly the same way as a smaller object of another shape. When a source is located inside the cloak, it scatters waves as if it were located some distance away from a small object. Moreover, the invisibility region actually hosts almost trapped eigenstates. Mimetism is numerically shown to break down for the quantified energies associated with confined modes. If we further allow for non-isomorphic transformations, our approach leads to the design of quantum super-scatterers: a small size object surrounded by a quantum cloak described by a negative anisotropic heterogeneous effective mass and a negative spatially varying potential scatters matter waves like a larger nano-object of different shape. Potential applications might be, for instance, in quantum dots probing. The results in this paper, as well as the corresponding derived constitutive tensors, are valid for cloaks with any arbitrary star-shaped boundary cross sections, although for numerical simulations we use examples with piecewise linear or elliptic boundaries.
NASA Astrophysics Data System (ADS)
Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar
2017-02-01
Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.; Park, S.; Makowski, L.
Small angle X-ray scattering (SAXS) is an increasingly powerful technique to characterize the structure of biomolecules in solution. We present a computational method for accurately and efficiently computing the solution scattering curve from a protein with dynamical fluctuations. The method is built upon a coarse-grained (CG) representation of the protein. This CG approach takes advantage of the low-resolution character of solution scattering. It allows rapid determination of the scattering pattern from conformations extracted from CG simulations to obtain scattering characterization of the protein conformational landscapes. Important elements incorporated in the method include an effective residue-based structure factor for each aminomore » acid, an explicit treatment of the hydration layer at the surface of the protein, and an ensemble average of scattering from all accessible conformations to account for macromolecular flexibility. The CG model is calibrated and illustrated to accurately reproduce the experimental scattering curve of Hen egg white lysozyme. We then illustrate the computational method by calculating the solution scattering pattern of several representative protein folds and multiple conformational states. The results suggest that solution scattering data, when combined with a reliable computational method, have great potential for a better structural description of multi-domain complexes in different functional states, and for recognizing structural folds when sequence similarity to a protein of known structure is low. Possible applications of the method are discussed.« less
Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-05-01
In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.
Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)
NASA Astrophysics Data System (ADS)
Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.
1983-12-01
Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.
NASA Astrophysics Data System (ADS)
Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.
1982-05-01
Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.
Biophysical applications of neutron Compton scattering
NASA Astrophysics Data System (ADS)
Wanderlingh, U. N.; Albergamo, F.; Hayward, R. L.; Middendorf, H. D.
Neutron Compton scattering (NCS) can be applied to measuring nuclear momentum distributions and potential parameters in molecules of biophysical interest. We discuss the analysis of NCS spectra from peptide models, focusing on the characterisation of the amide proton dynamics in terms of the width of the H-bond potential well, its Laplacian, and the mean kinetic energy of the proton. The Sears expansion is used to quantify deviations from the high-Q limit (impulse approximation), and line-shape asymmetry parameters are evaluated in terms of Hermite polynomials. Results on NCS from selectively deuterated acetanilide are used to illustrate this approach.
Hot electron inelastic scattering and transmission across graphene surfaces
NASA Astrophysics Data System (ADS)
Kong, Byoung Don; Champlain, James G.; Boos, J. Brad
2017-06-01
Inelastic scattering and transmission of externally injected hot carriers across graphene layers are considered as a function of graphene carrier density, temperature, and surrounding dielectric media. A finite temperature dynamic dielectric function for graphene for an arbitrary momentum q and frequency ω is found under the random phase approximation and a generalized scattering lifetime formalism is used to calculate the scattering and transmission rates. Unusual trends in scattering are found, including declining rates as graphene carrier density increases and interband transition excitations, which highlights the difference with out-of-plane as compared to in-plane transport. The results also show strong temperature dependence with a drastic increase in scattering at room temperature. The calculated scattering rate at T = 300 K shows a wide variation from 0.2 to 10 fs-1 depending on graphene carrier density, incident carrier momentum, and surrounding dielectrics. The analysis suggests that a transmission rate greater than 0.9 for a carrier with kinetic energy over 1 eV is achievable by carefully controlling the graphene carrier density in conjunction with the use of high-κ dielectric materials. Potential applications to electronic and electro-optical devices are also discussed.
Coupled-channel analyses on 16O + 147,148,150,152,154Sm heavy-ion fusion reactions
NASA Astrophysics Data System (ADS)
Erol, Burcu; Yılmaz, Ahmet Hakan
2018-02-01
Heavy-ion collisons are typically characterized by the presence of many open reaction channels. In the energies around the Coulomb barrier, the main processes are elastic scattering, inelastic excitations of low-lying modes and fusion operations of one or two nuclei. The fusion process is generally defined as the effect of one-dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential. We have performed heay-ion fusion reactions with coupled-channel (CC) calculations. Coupled-channel formalism is carried out under barrier energy in heavy-ion fusion reactions. In this work fusion cross sections have been calculated and analyzed in detail for the five systems 16O + 147,148,150,152,154sm in the framework of coupled-channel approach (using the codes CCFUS and CCDEF) and Wong Formula. Calculated results are compared with experimental data, CC calculations using code CCFULL and with the cross section datas taken from `nrv'. CCDEF, CCFULL and Wong Formula explains the fusion reactions of heavy-ions very well, while using the scattering potential as WOODS-SAXON volume potential with Akyuz-Winther parameters. It was observed that AW potential parameters are able to reproduce the experimentally observed fusion cross sections reasonably well for these systems. There is a good agreement between the calculated results with the experimental and nrv[8] results.
NASA Astrophysics Data System (ADS)
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-01
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-28
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν=0→ν≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H 2 - in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H 2 - is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H 2 - with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
NASA Astrophysics Data System (ADS)
Khalaf, A. M.; Khalifa, M. M.; Solieman, A. H. M.; Comsan, M. N. H.
2018-01-01
Owing to its doubly magic nature having equal numbers of protons and neutrons, the 40Ca nuclear scattering can be successfully described by the optical model that assumes a spherical nuclear potential. Therefore, optical model analysis was employed to calculate the elastic scattering cross section for p +40Ca interaction at energies from 9 to 22 MeV as well as the polarization at energies from 10 to 18.2 MeV. New optical model parameters (OMPs) were proposed based on the best fitting to experimental data. It is found that the best fit OMPs depend on the energy by smooth relationships. The results were compared with other OMPs sets regarding their chi square values (χ2). The obtained OMP's set was used to calculate the volume integral of the potentials and the root mean square (rms) value of nuclear matter radius of 40Ca. In addition, 40Ca bulk nuclear matter properties were discussed utilizing both the obtained rms radius and the Thomas-Fermi rms radius calculated using spherical Hartree-Fock formalism employing Skyrme type nucleon-nucleon force. The nuclear scattering SCAT2000 FORTRAN code was used for the optical model analysis.
NASA Astrophysics Data System (ADS)
Volchkov, S. S.; Yuvchenko, S. A.; Zimnyakov, D. A.
2018-04-01
The theoretical possibility of retrieving the additional information on the dielectric properties of the nanoparticles material by single scattering in suspensions was studied. We have demonstrated a method of recreating the dielectric function of the material in the fundamental absorption band using the closed aperture z-scanning with the simultaneous Rayleigh scattering intensity measurements and the polarization control of an input laser beam. A possibility to recreate the form factor of the non-spherical particles or anisotropic nonlinear sensitivity for the sphere-like particles was also observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisenko, S. I., E-mail: sib@tpu.ru
2016-04-15
The dependence of the effective relaxation time on the electron concentration in A{sup III}–N nitrides in the case of electron scattering at polar longitudinal optical phonons is calculated by the marching method. The method takes into account the inelasticity of electron scattering at polar optical phonons for nitrides in the zinc-blende approximation. The calculations show a substantial increase in mobility in samples with a degenerate electron gas, if screening of the long-range potential of polar longitudinal optical phonons is taken into account.
Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.
Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C
2013-04-12
Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.
A survey of the alpha-nucleon interaction
NASA Astrophysics Data System (ADS)
Ali, S.; Ahmad, A. A. Z.; Ferdous, N.
1985-10-01
This paper gives a survey of the alpha-nucleon interaction and then describes experimental work on angular distributions of differential scattering cross sections and polarizations in proton-alpha and neutron-alpha scattering. The phenomenological approach, which includes the study of both local and nonlocal potentials reproducing the experimental alpha-nucleon scattering data, is discussed. Basic studies of the alpha-nucleon interaction attempting to build an interaction between an alpha particle and a nucleon from first principles are then described. The authors then present a critical discussion of the results with some concluding remarks suggesting the direction for further investigation.
Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshipura, K.N.; Mohanan, S.
1988-08-01
A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.
NASA Astrophysics Data System (ADS)
Pietropaolo, A.; Senesi, R.
2008-01-01
A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy
Raman scattering studies of pollutant systems.
NASA Technical Reports Server (NTRS)
Schwiesow, R. L.
1971-01-01
Results and techniques for laboratory measurements of Raman scattering cross sections and depolarization ratios of atmospheric gases as a function of the incident photon energy are discussed. Referred to N2, the cross section of H2O changes by a factor of 2 as the incident photon energy is changed by 5%. Less striking results are obtained for SO2, NO and other atmospheric gases. Tentative results are given for spectral features of scattering from polluted air-water interfaces. Raman lidar is assessed as a potentially useful aid in remote sensing of atmospheric and water-borne pollution distributions at least in near-source concentrations.
Homogeneous illusion device exhibiting transformed and shifted scattering effect
NASA Astrophysics Data System (ADS)
Mei, Jin-Shuo; Wu, Qun; Zhang, Kuang; He, Xun-Jun; Wang, Yue
2016-06-01
Based on the theory of transformation optics, a type of homogeneous illusion device exhibiting transformed and shifted scattering effect is proposed in this paper. The constitutive parameters of the proposed device are derived, and full-wave simulations are performed to validate the electromagnetic properties of transformed and shifted scattering effect. The simulation results show that the proposed device not only can visually shift the image of target in two dimensions, but also can visually transform the shape of target. It is expected that such homogeneous illusion device could possess potential applications in military camouflage and other field of electromagnetic engineering.
Ab initio method for calculating total cross sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Schneider, B. I.; Temkin, A.
1993-01-01
A method for calculating total cross sections without formally including nonelastic channels is presented. The idea is to use a one channel T-matrix variational principle with a complex correlation function. The derived T matrix is therefore not unitary. Elastic scattering is calculated from T-parallel-squared, but total scattering is derived from the imaginary part of T using the optical theorem. The method is applied to the spherically symmetric model of electron-hydrogen scattering. No spurious structure arises; results for sigma(el) and sigma(total) are in excellent agreement with calculations of Callaway and Oza (1984). The method has wide potential applicability.
Comparison of Te and Ti from Ogo 6 and from various incoherent scatter radars.
NASA Technical Reports Server (NTRS)
Mcclure, J. P.; Hanson, W. B.; Nagy, A. F.; Cicerone, R. J.; Brace, L. H.; Baron, M.; Bauer, P.; Carlson, H. C.; Evans, J. V.; Taylor, G. N.
1973-01-01
Langmuir probe and retarding potential analyzer (RPA) data on the electron and ion temperatures Te and Ti obtained from Ogo 6 are compared with Te and Ti values obtained from the incoherent scatter network. The satellite to radar temperature ratio TeS/TeR is 1.15 on the average for these comparisons. This discrepancy is larger than the uncertainties usually placed on the probe and radar Te values. The ion temperature ratio TiS/TiR approximately 1.0, independent of the particular radar examined. This comparison serves as an intercalibration of the incoherent scatter network.
Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liu, Youwen
2015-02-01
A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.
Trampoline motions in Xe-graphite(0 0 0 1) surface scattering
NASA Astrophysics Data System (ADS)
Watanabe, Yoshimasa; Yamaguchi, Hiroki; Hashinokuchi, Michihiro; Sawabe, Kyoichi; Maruyama, Shigeo; Matsumoto, Yoichiro; Shobatake, Kosuke
2005-09-01
We have investigated Xe scattering from the graphite(0 0 0 1) surface at hyperthermal incident energies using a molecular beam-surface scattering technique and molecular dynamics simulations. For all incident conditions, the incident Xe atom conserves the momentum parallel to the surface and loses approximately 80% of the normal incident energy. The weak interlayer potential of graphite disperses the deformation over the wide range of a graphene sheet. The dynamic corrugation induced by the collision is smooth even at hyperthermal incident energy; the graphene sheet moves like a trampoline net and the Xe atom like a trampoliner.
Prediction of submarine scattered noise by the acoustic analogy
NASA Astrophysics Data System (ADS)
Testa, C.; Greco, L.
2018-07-01
The prediction of the noise scattered by a submarine subject to the propeller tonal noise is here addressed through a non-standard frequency-domain formulation that extends the use of the acoustic analogy to scattering problems. A boundary element method yields the scattered pressure upon the hull surface by the solution of a boundary integral equation, whereas the noise radiated in the fluid domain is evaluated by the corresponding boundary integral representation. Propeller-induced incident pressure field on the scatterer is detected by combining an unsteady three-dimensional panel method with the Bernoulli equation. For each frequency of interest, numerical results concern with sound pressure levels upon the hull and in the flowfield. The validity of the results is established by a comparison with a time-marching hydrodynamic panel method that solves propeller and hull jointly. Within the framework of potential-flow hydrodynamics, it is found out that the scattering formulation herein proposed is appropriate to successfully capture noise magnitude and directivity both on the hull surface and in the flowfield, yielding a computationally efficient solution procedure that may be useful in preliminary design/multidisciplinary optimization applications.
Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.
2008-01-01
This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.
Detection of internal structure by scattered light intensity: Application to kidney cell sorting
NASA Technical Reports Server (NTRS)
Goolsby, C. L.; Kunze, M. E.
1985-01-01
Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukyanov, V. K., E-mail: lukyanov@theor.jinr.ru; Zemlyanaya, E. V.; Lukyanov, K. V.
The folding-model optical potential is generalized in such a way as to apply it to calculating the cross sections for inelastic scattering of π{sup ±}-mesons on {sup 28}Si, {sup 40}Ca, {sup 58}Ni, and {sup 208}Pb nuclei at the energies of 162, 180, 226, and 291 MeV leading to the excitation of the 2{sup +} and 3{sup −} collective states. In doing this, use is made of known nucleon-density distributions in nuclei and the pion–nucleon scattering amplitude whose parameters were obtained previously by fitting the elastic scattering cross sections for the same nuclei. Thus, the values of quadrupole (β{sub 2}) andmore » octupole (β{sub 3}) deformations of nuclei appear here as the only adjustable parameters. The scattering cross section is calculated by solving the relativistic wave equation, whereby effects of relativization and distortion in the entrance and exit scattering channels are taken exactly into account. The cross sections calculated in this way for inelastic scattering are in good agreement with respective experimental data. The importance of the inclusion of in-medium effects in choosing parameters of the pion–nucleon amplitude is emphasized.« less
NASA Astrophysics Data System (ADS)
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
Molecular versus squared Woods-Saxon α-nucleus potentials in the 27Al(α, t)28Si reaction
NASA Astrophysics Data System (ADS)
Abdullah, M. N. A.; Das, S. K.; Tariq, A. S. B.; Mahbub, M. S.; Mondal, A. S.; Uddin, M. A.; Basak, A. K.; Gupta, H. M. Sen; Malik, F. B.
2003-06-01
The differential cross-section of the 27Al(alpha, t)28Si reaction for 64.5 MeV incident energy has been reanalysed in DWBA with full finite range using a squared Woods-Saxon (Michel) alpha-nucleus potential with the modified value of the depth parameter alpha = 2.0 as reported in a comment article by Michel and Reidemeister. This new value produces significant improvement in fitting the data of the reaction with its overall performance, in some cases, close to that previously observed for the molecular potential. Although the non-monotonic shallow molecular potential with a soft repulsive core and the Michel potentials produce the same quality fits to the elastic scattering and non-elastic processes, they are not phase equivalent. The two types of potential produce altogether different cross-sections, particularly at large reaction angles. The importance of the experimental cross-sections at large angles for both elastic scattering and non-elastic processes is elucidated.
Elastic scattering of spin-polarized electrons and positrons from 23Na nuclei
NASA Astrophysics Data System (ADS)
Jakubassa-Amundsen, D. H.
2018-07-01
Differential cross sections and polarization correlations for the scattering of relativistic spin-polarized leptons from unpolarized ground-state sodium nuclei are calculated within the distorted-wave Born approximation (DWBA). Various nuclear ground-state charge distributions are probed. Besides potential scattering, also electric C2 and magnetic M1 and M3 transitions are taken into account. It is shown that even for a light nucleus such as 23Na there are considerable electron-positron differences at high collision energies and large scattering angles. In particular, the symmetry of the Sherman function with respect to a global sign change, as predicted by the second-order Born approximation when replacing electrons by positrons, is broken whenever the diffraction structures come into play beyond 100 MeV.
Weatherbee, Andrew; Sugita, Mitsuro; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex
2016-06-15
The distribution of backscattered intensities as described by the probability density function (PDF) of tissue-scattered light contains information that may be useful for tissue assessment and diagnosis, including characterization of its pathology. In this Letter, we examine the PDF description of the light scattering statistics in a well characterized tissue-like particulate medium using optical coherence tomography (OCT). It is shown that for low scatterer density, the governing statistics depart considerably from a Gaussian description and follow the K distribution for both OCT amplitude and intensity. The PDF formalism is shown to be independent of the scatterer flow conditions; this is expected from theory, and suggests robustness and motion independence of the OCT amplitude (and OCT intensity) PDF metrics in the context of potential biomedical applications.
Attenuation of Scattered Thermal Energy Atomic Oxygen
NASA Technical Reports Server (NTRS)
Banks, Bruce a.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.
2011-01-01
The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.
Applicability of modified effective-range theory to positron-atom and positron-molecule scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Karwasz, Grzegorz; Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87-100 Torun
2006-06-15
We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and themore » effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.« less
Scattering amplitudes of massive Nambu-Goldstone bosons
NASA Astrophysics Data System (ADS)
Brauner, Tomáš; Jakobsen, Martin F.
2018-01-01
Massive Nambu-Goldstone (mNG) bosons are quasiparticles the gap of which is determined exactly by symmetry. They appear whenever a symmetry is broken spontaneously in the ground state of a quantum many-body system and at the same time explicitly by the system's chemical potential. In this paper, we revisit mNG bosons and show that apart from their gap symmetry also protects their scattering amplitudes. Just like for ordinary gapless Nambu-Goldstone (NG) bosons, the scattering amplitudes of mNG bosons vanish in the long-wavelength limit. Unlike for gapless NG bosons, this statement holds for any scattering process involving one or more external mNG states; there are no kinematic singularities associated with the radiation of a soft mNG boson from an on-shell initial or final state.
Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V; Zharov, Vladimir P
2009-09-01
The formulation of the finite-difference time-domain (FDTD) approach is presented in the framework of its potential applications to in-vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive-index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in-vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open up a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Deorientation of PolSAR coherency matrix for volume scattering retrieval
NASA Astrophysics Data System (ADS)
Kumar, Shashi; Garg, R. D.; Kushwaha, S. P. S.
2016-05-01
Polarimetric SAR data has proven its potential to extract scattering information for different features appearing in single resolution cell. Several decomposition modelling approaches have been developed to retrieve scattering information from PolSAR data. During scattering power decomposition based on physical scattering models it becomes very difficult to distinguish volume scattering as a result from randomly oriented vegetation from scattering nature of oblique structures which are responsible for double-bounce and volume scattering , because both are decomposed in same scattering mechanism. The polarization orientation angle (POA) of an electromagnetic wave is one of the most important character which gets changed due to scattering from geometrical structure of topographic slopes, oriented urban area and randomly oriented features like vegetation cover. The shift in POA affects the polarimetric radar signatures. So, for accurate estimation of scattering nature of feature compensation in polarization orientation shift becomes an essential procedure. The prime objective of this work was to investigate the effect of shift in POA in scattering information retrieval and to explore the effect of deorientation on regression between field-estimated aboveground biomass (AGB) and volume scattering. For this study Dudhwa National Park, U.P., India was selected as study area and fully polarimetric ALOS PALSAR data was used to retrieve scattering information from the forest area of Dudhwa National Park. Field data for DBH and tree height was collect for AGB estimation using stratified random sampling. AGB was estimated for 170 plots for different locations of the forest area. Yamaguchi four component decomposition modelling approach was utilized to retrieve surface, double-bounce, helix and volume scattering information. Shift in polarization orientation angle was estimated and deorientation of coherency matrix for compensation of POA shift was performed. Effect of deorientation on RGB color composite for the forest area can be easily seen. Overestimation of volume scattering and under estimation of double bounce scattering was recorded for PolSAR decomposition without deorientation and increase in double bounce scattering and decrease in volume scattering was noticed after deorientation. This study was mainly focused on volume scattering retrieval and its relation with field estimated AGB. Change in volume scattering after POA compensation of PolSAR data was recorded and a comparison was performed on volume scattering values for all the 170 forest plots for which field data were collected. Decrease in volume scattering after deorientation was noted for all the plots. Regression between PolSAR decomposition based volume scattering and AGB was performed. Before deorientation, coefficient determination (R2) between volume scattering and AGB was 0.225. After deorientation an improvement in coefficient of determination was found and the obtained value was 0.613. This study recommends deorientation of PolSAR data for decomposition modelling to retrieve reliable volume scattering information from forest area.
Bose gases near resonance: Renormalized interactions in a condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.
2013-01-15
Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less
Analysis of dependent scattering mechanism in hard-sphere Yukawa random media
NASA Astrophysics Data System (ADS)
Wang, B. X.; Zhao, C. Y.
2018-06-01
The structural correlations in the microscopic structures of random media can induce the dependent scattering mechanism and thus influence the optical scattering properties. Based on our recent theory on the dependent scattering mechanism in random media composed of discrete dipolar scatterers [B. X. Wang and C. Y. Zhao, Phys. Rev. A 97, 023836 (2018)], in this paper, we study the hard-sphere Yukawa random media, in order to further elucidate the role of structural correlations in the dependent scattering mechanism and hence optical scattering properties. Here, we consider charged colloidal suspensions, whose effective pair interaction between colloids is described by a screened Coulomb (Yukawa) potential. By means of adding salt ions, the pair interaction between the charged particles can be flexibly tailored and therefore the structural correlations are modified. It is shown that this strategy can affect the optical properties significantly. For colloidal TiO2 suspensions, the modification of electric and magnetic dipole excitations induced by the structural correlations can substantially influence the optical scattering properties, in addition to the far-field interference effect described by the structure factor. However, this modification is only slightly altered by different salt concentrations and is mainly because of the packing-density-dependent screening effect. On the other hand, for low refractive index colloidal polystyrene suspensions, the dependent scattering mechanism mainly involves the far-field interference effect, and the effective exciting field amplitude for the electric dipole almost remains unchanged under different structural correlations. The present study has profound implications for understanding the role of structural correlations in the dependent scattering mechanism.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
NASA Astrophysics Data System (ADS)
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
Marques, D; Miranda, A; Silva, A G; Munro, P R T; DE Beule, P A A
2018-05-01
Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Gyöngy, Miklós; Kollár, Sára
2015-02-01
One method of estimating sound speed in diagnostic ultrasound imaging consists of choosing the speed of sound that generates the sharpest image, as evaluated by the lateral frequency spectrum of the squared B-mode image. In the current work, simulated and experimental data on a typical (47 mm aperture, 3.3-10.0 MHz response) linear array transducer are used to investigate the accuracy of this method. A range of candidate speeds of sound (1240-1740 m/s) was used, with a true speed of sound of 1490 m/s in simulations and 1488 m/s in experiments. Simulations of single point scatterers and two interfering point scatterers at various locations with respect to each other gave estimate errors of 0.0-2.0%. Simulations and experiments of scatterer distributions with a mean scatterer spacing of at least 0.5 mm gave estimate errors of 0.1-4.0%. In the case of lower scatterer spacing, the speed of sound estimates become unreliable due to a decrease in contrast of the sharpness measure between different candidate speeds of sound. This suggests that in estimating speed of sound in tissue, the region of interest should be dominated by a few, sparsely spaced scatterers. Conversely, the decreasing sensitivity of the sharpness measure to speed of sound errors for higher scatterer concentrations suggests a potential method for estimating mean scatterer spacing. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Tianli; Ruan, Xiulin
2018-01-01
We have developed a formalism of the exact solution to linearized phonon Boltzmann transport equation (BTE) for thermal conductivity calculation including three- and four-phonon scattering. We find strikingly high four-phonon scattering rates in single-layer graphene (SLG) based on the optimized Tersoff potential. The reflection symmetry in graphene, which forbids the three-ZA (out-of-plane acoustic) scattering, allows the four-ZA processes ZA +ZA ⇌ZA +ZA and ZA ⇌ZA +ZA + ZA. As a result, the large phonon population of the low-energy ZA branch originated from the quadratic phonon dispersion leads to high four-phonon scattering rates, even much higher than the three-phonon scattering rates at room temperature. These four-phonon processes are dominated by the normal processes, which lead to a failure of the single mode relaxation time approximation. Therefore, we have solved the exact phonon BTE using an iterative scheme and then calculated the length- and temperature-dependent thermal conductivities. We find that the predicted thermal conductivity of SLG is lower than the previously predicted value from the three-phonon scattering only. The relative contribution of the ZA branch is reduced from 70% to 30% when four-phonon scattering is included. Furthermore, we have demonstrated that the four-phonon scattering in multilayer graphene and graphite is not strong due to the ZA splitting by interlayer van der Waals interaction. We also demonstrate that the five-phonon process in SLG is not strong due to the restriction of reflection symmetry.
Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies
NASA Astrophysics Data System (ADS)
Garrison-Kimmel, Shea; Bullock, James S.; Boylan-Kolchin, Michael; Bardwell, Emma
2017-01-01
We use Local Group galaxy counts together with the ELVIS N-body simulations to explore the relationship between the scatter and slope in the stellar mass versus halo mass relation at low masses, M⋆ ≃ 105-108 M⊙. Assuming models with lognormal scatter about a median relation of the form M_star ∝ M_halo^α, the preferred log-slope steepens from α ≃ 1.8 in the limit of zero scatter to α ≃ 2.6 in the case of 2 dex of scatter in M⋆ at fixed halo mass. We provide fitting functions for the best-fitting relations as a function of scatter, including cases where the relation becomes increasingly stochastic with decreasing mass. We show that if the scatter at fixed halo mass is large enough (≳ 1 dex) and if the median relation is steep enough (α ≳ 2), then the `too-big-to-fail' problem seen in the Local Group can be self-consistently eliminated in about ˜5-10 per cent of realizations. This scenario requires that the most massive subhaloes host unobservable ultra-faint dwarfs fairly often; we discuss potentially observable signatures of these systems. Finally, we compare our derived constraints to recent high-resolution simulations of dwarf galaxy formation in the literature. Though simulation-to-simulation scatter in M⋆ at fixed Mhalo is large among different authors (˜2 dex), individual codes produce relations with much less scatter and usually give relations that would overproduce local galaxy counts.
Characterization of an Explosion Source in a Complex Medium by Modeling and Wavelet Domain Inversion
2006-06-01
1 2. Mechanisms on Scattering due to an Explosive Source...the S wave at the tunnel. TRA has great potential for determining the seismic source properties. 2 2. Mechanisms on Scattering due to an Explosive...and prominent SH and Love waves. Various mechanisms have been proposed to explain the generation of these transverse waves. 2.2 Objectives of This
Aerodynamic measurement techniques. [laser based diagnostic techniques
NASA Technical Reports Server (NTRS)
Hunter, W. W., Jr.
1976-01-01
Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.
On the far-field computation of acoustic radiation forces.
Martin, P A
2017-10-01
It is known that the steady acoustic radiation force on a scatterer due to incident time-harmonic waves can be calculated by evaluating certain integrals of velocity potentials over a sphere surrounding the scatterer. The goal is to evaluate these integrals using far-field approximations and appropriate limits. Previous derivations are corrected, clarified, and generalized. Similar corrections are made to textbook derivations of optical theorems.
2007-09-01
Technology (NIST) [7]. SUPERTRAPP is an interactive computer database designed to predict the thermodynamic and transport properties of fluid mixtures...of liquid sprays. However, the potential core computation is done for all the Raman scattering injection conditions to compare the condensed phase...spaced from the Rayleigh component suggesting that they contain the same information about the vibrational quantum energy. The intensity
Electron-phonon interactions in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Yu, Segi
In this dissertation, electron-phonon interactions are studied theoretically in semiconductor nanoscale heterostructures. Interactions of electrons with interface optical phonons dominate over other electron-phonon interactions in narrow width heterostructures. Hence, a transfer matrix method is used to establish a formalism for determining the dispersion relations and electrostatic potentials of the interface phonons for multiple-interface heterostructure within the macroscopic dielectric continuum model. This method facilitates systematic calculations for complex structures where the conventional method is difficult to implement. Several specific cases are treated to illustrate advantages of the formalism. Electrophonon resonance (EPR) is studied in cylindrical quantum wires using the confined/interface optical phonons representation and bulk phonon representation. It has been found that interface phonon contribution to EPR is small compared with confined phonon. Different selection rules for bulk phonons and confined phonons result in different EPR behaviors as the radius of cylindrical wire changes. Experiment is suggested to test which phonon representation is appropriate for EPR. The effects of phonon confinement on elect ron-acoustic-phonon scattering is studied in cylindrical and rectangular quantum wires. In the macroscopic elastic continuum model, the confined-phonon dispersion relations are obtained for several crystallographic directions with free-surface and clamped-surface boundary conditions in cylindrical wires. The scattering rates due to the deformation potential are obtained for these confined phonons and are compared with those of bulk-like phonons. The results show that the inclusion of acoustic phonon confinement may be crucial for calculating accurate low-energy electron scattering rates. Furthermore, it has been found that there is a scaling rule governing the directional dependence of the scattering rates. The Hamiltonian describing the deformation-potential of confined acoustic phonons is derived by quantizing the appropriate, experimentally verified approximate compressional acoustic-phonon modes in a free-standing rectangular quantum wire. The scattering rate is obtained for GaAs quantum wires with a range of cross-sectional dimensions. The results demonstrate that a proper treatment of confined acoustic phonons may be essential to correctly model electron scattering rates at low energies in nanoscale structures.
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2013-09-01
Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles' optical properties. Aims: We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. Methods: We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. Results: The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect. Consequently, the scattering greenhouse effect of CO2 ice particles seems to be less effective than previously estimated. In general, higher order radiative transfer methods are needed to describe the effects of CO2 ice clouds accurately as indicated by our numerical radiative transfer studies.
Characterization of Compton-scatter imaging with an analytical simulation method
Jones, Kevin C; Redler, Gage; Templeton, Alistair; Bernard, Damian; Turian, Julius V; Chu, James C H
2018-01-01
By collimating the photons scattered when a megavoltage therapy beam interacts with the patient, a Compton-scatter image may be formed without the delivery of an extra dose. To characterize and assess the potential of the technique, an analytical model for simulating scatter images was developed and validated against Monte Carlo (MC). For three phantoms, the scatter images collected during irradiation with a 6 MV flattening-filter-free therapy beam were simulated. Images, profiles, and spectra were compared for different phantoms and different irradiation angles. The proposed analytical method simulates accurate scatter images up to 1000 times faster than MC. Minor differences between MC and analytical simulated images are attributed to limitations in the isotropic superposition/convolution algorithm used to analytically model multiple-order scattering. For a detector placed at 90° relative to the treatment beam, the simulated scattered photon energy spectrum peaks at 140–220 keV, and 40–50% of the photons are the result of multiple scattering. The high energy photons originate at the beam entrance. Increasing the angle between source and detector increases the average energy of the collected photons and decreases the relative contribution of multiple scattered photons. Multiple scattered photons cause blurring in the image. For an ideal 5 mm diameter pinhole collimator placed 18.5 cm from the isocenter, 10 cGy of deposited dose (2 Hz imaging rate for 1200 MU min−1 treatment delivery) is expected to generate an average 1000 photons per mm2 at the detector. For the considered lung tumor CT phantom, the contrast is high enough to clearly identify the lung tumor in the scatter image. Increasing the treatment beam size perpendicular to the detector plane decreases the contrast, although the scatter subject contrast is expected to be greater than the megavoltage transmission image contrast. With the analytical method, real-time tumor tracking may be possible through comparison of simulated and acquired patient images. PMID:29243663
Characterization of Compton-scatter imaging with an analytical simulation method
NASA Astrophysics Data System (ADS)
Jones, Kevin C.; Redler, Gage; Templeton, Alistair; Bernard, Damian; Turian, Julius V.; Chu, James C. H.
2018-01-01
By collimating the photons scattered when a megavoltage therapy beam interacts with the patient, a Compton-scatter image may be formed without the delivery of an extra dose. To characterize and assess the potential of the technique, an analytical model for simulating scatter images was developed and validated against Monte Carlo (MC). For three phantoms, the scatter images collected during irradiation with a 6 MV flattening-filter-free therapy beam were simulated. Images, profiles, and spectra were compared for different phantoms and different irradiation angles. The proposed analytical method simulates accurate scatter images up to 1000 times faster than MC. Minor differences between MC and analytical simulated images are attributed to limitations in the isotropic superposition/convolution algorithm used to analytically model multiple-order scattering. For a detector placed at 90° relative to the treatment beam, the simulated scattered photon energy spectrum peaks at 140-220 keV, and 40-50% of the photons are the result of multiple scattering. The high energy photons originate at the beam entrance. Increasing the angle between source and detector increases the average energy of the collected photons and decreases the relative contribution of multiple scattered photons. Multiple scattered photons cause blurring in the image. For an ideal 5 mm diameter pinhole collimator placed 18.5 cm from the isocenter, 10 cGy of deposited dose (2 Hz imaging rate for 1200 MU min-1 treatment delivery) is expected to generate an average 1000 photons per mm2 at the detector. For the considered lung tumor CT phantom, the contrast is high enough to clearly identify the lung tumor in the scatter image. Increasing the treatment beam size perpendicular to the detector plane decreases the contrast, although the scatter subject contrast is expected to be greater than the megavoltage transmission image contrast. With the analytical method, real-time tumor tracking may be possible through comparison of simulated and acquired patient images.
NASA Astrophysics Data System (ADS)
Das, Sumanta; Elfving, Vincent E.; Reiter, Florentin; Sørensen, Anders S.
2018-04-01
In a preceding paper we introduced a formalism to study the scattering of low-intensity fields from a system of multilevel emitters embedded in a three-dimensional (3 D ) dielectric medium. Here we show how this photon-scattering relation can be used to analyze the scattering of single photons and weak coherent states from any generic multilevel quantum emitter coupled to a one-dimensional (1 D ) waveguide. The reduction of the photon-scattering relation to 1 D waveguides provides a direct solution of the scattering problem involving low-intensity fields in the waveguide QED regime. To show how our formalism works, we consider examples of multilevel emitters and evaluate the transmitted and reflected field amplitude. Furthermore, we extend our study to include the dynamical response of the emitters for scattering of a weak coherent photon pulse. As our photon-scattering relation is based on the Heisenberg picture, it is quite useful for problems involving photodetection in the waveguide architecture. We show this by considering a specific problem of state generation by photodetection in a multilevel emitter, where our formalism exhibits its full potential. Since the considered emitters are generic, the 1 D results apply to a plethora of physical systems such as atoms, ions, quantum dots, superconducting qubits, and nitrogen-vacancy centers coupled to a 1 D waveguide or transmission line.
Scattering - a probe to Earth's small scale structure
NASA Astrophysics Data System (ADS)
Rost, S.; Earle, P.
2009-05-01
Much of the short-period teleseismic wavefield shows strong evidence for scattered waves in extended codas trailing the main arrivals predicted by ray theory. This energy mainly originates from high-frequency body waves interacting with fine-scale volumetric heterogeneities in the Earth. Studies of this energy revealed much of what we know about Earth's structure at scale lengths around 10 km throughout the Earth from crust to core. From these data we can gain important information about the mineral-physical and geochemical constitution of the Earth that is inaccessible to many other seismic imaging techniques. Previous studies used scattered energy related to PKP, PKiKP, and Pdiff to identify and map the small-scale structure of the mantle and core. We will present observations related to the core phases PKKP and P'P' to study fine-scale mantle heterogeneities. These phases are maximum travel-time phases with respect to perturbations at their reflection points. This allows observation of the scattered energy as precursors to the main phase avoiding common problems with traditional coda phases which arrive after the main pulse. The precursory arrival of the scattered energy allows the separation between deep Earth and crustal contributions to the scattered wavefield for certain source-receiver configurations. Using the information from these scattered phases we identify regions of the mantle that shows increased scattering potential likely linked to larger scale mantle structure identified in seismic tomography and geodynamical models.
NASA Astrophysics Data System (ADS)
Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph
2015-08-01
Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.
Mourant, Judith R.; Bocklage, Thérese J.; Powers, Tamara M.; Greene, Heather M.; Dorin, Maxine H.; Waxman, Alan G.; Zsemlye, Meggan M.; Smith, Harriet O.
2009-01-01
Objective To examine the utility of in vivo elastic light scattering measurements to identify cervical intraepithelial neoplasias (CIN) 2/3 and cancers in women undergoing colposcopy and to determine the effects of patient characteristics such as menstrual status on the elastic light scattering spectroscopic measurements. Materials and Methods A fiber optic probe was used to measure light transport in the cervical epithelium of patients undergoing colposcopy. Spectroscopic results from 151 patients were compared with histopathology of the measured and biopsied sites. A method of classifying the measured sites into two clinically relevant categories was developed and tested using five-fold cross-validation. Results Statistically significant effects by age at diagnosis, menopausal status, timing of the menstrual cycle, and oral contraceptive use were identified, and adjustments based upon these measurements were incorporated in the classification algorithm. A sensitivity of 77±5% and a specificity of 62±2% were obtained for separating CIN 2/3 and cancer from other pathologies and normal tissue. Conclusions The effects of both menstrual status and age should be taken into account in the algorithm for classifying tissue sites based on elastic light scattering spectroscopy. When this is done, elastic light scattering spectroscopy shows good potential for real-time diagnosis of cervical tissue at colposcopy. Guiding biopsy location is one potential near-term clinical application area, while facilitating ”see and treat” protocols is a longer term goal. Improvements in accuracy are essential. PMID:20694193
Equations for Estimating the Strength of TV Signals Scattered by Wind Turbines
NASA Technical Reports Server (NTRS)
Spera, David A.; Sengupta, Dipak L.
1994-01-01
During the late 1970's and early 1980's, concerns about the potential interference of wind turbine generators with electromagnetic communication signals led to a series of research studies, both in the laboratory and in the field, conducted by the staff of the University of Michigan Radiation Laboratory. These studies were sponsored by organizations such as the U.S. Department of Energy, the Solar Energy Research Institute, and private developers of wind power stations. Research objectives were to identify the mechanisms by which wind turbines might adversely affect communication signals, estimate the severity of these effects for different types of signals (e.g. television, radio, microwave, and navigation), and formulate mathematical models with which to predict the sizes of potential interference zones around wind turbines and wind power plants. This work formed the basis for preliminary standards on assessing electromagnetic interference (EMI) by wind turbines. With the current renewal of interest in wind energy projects, it is appropriate that the many experimental and analytical aspects of this pioneering work be reviewed and correlated. The purpose of this study is to combine test data and theory from previously published and unpublished research reports into a unified and consistent set of equations which are useful for estimating potential levels of television interference from wind turbines. To be comprehensive, these equations will include both horizontal-axis and vertical-axis wind turbines (HAWT's and VAWT's), blade configuration parameters (e.g. number, size, material, twist, and coning), signal frequency and power, and directional characteristics of the receiving antenna. The approach that is followed in this report is as follows. First, some basic equations that describe electromagnetic signals with interference are presented without detailed derivations, since the latter are available in the references. Minor changes in terminology are made for purposes of consistency. Next, the concept of a signal scatter ratio is introduced, which defines the fraction of the signal impinging on a wind turbine that is scattered by its blades onto a nearby receiver. Equations from references are modified for the calculation of experimental scatter ratios (from measured signals containing interference) and idealized scatter ratios (from rotor characteristics and relative locations of the transmitter, the turbine, and the receiver). Experimental and idealized scatter ratios are then calculated and compared for 75 cases from the literature, in which TVI measurements were made around a variety of wind turbines. An empirical equation is then defined for estimating the probability that an actual scatter ratio will differ from an idealized ratio by a given amount. Finally a sample calculation of the size of a potential TV interference zone around a hypothetical wind power station is presented.
Stationary states of fermions in a sign potential with a mixed vector–scalar coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castilho, W.M., E-mail: castilho.w@gmail.com; Castro, A.S. de, E-mail: castro@pq.cnpq.br
2014-01-15
The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. --more » Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.« less
NASA Astrophysics Data System (ADS)
Hoshino, Tomoki; Mori, Nobuya
2018-04-01
InGaN has a smaller electron effective mass and is expected to be used as a channel material for high-electron-mobility transistors. However, it is an alloy semiconductor with a random distribution of atoms, which introduces additional scattering mechanisms: alloy disorder and random dipole scatterings. In this work, we calculate the electron mobility in InGaN- and GaN-channel high-electron-mobility transistors (HEMTs) while taking into account acoustic deformation potential, polar optical phonon, alloy disorder, and random dipole scatterings. For InGaN-channel HEMTs, we find that not only alloy disorder but also random dipole scattering has a strong impact on the electron mobility and it significantly decreases as the In mole fraction of the channel increases. Our calculation also shows that the channel thickness w dependence of the mobility is rather weak when w > 1 nm for In0.1Ga0.9N-channel HEMTs.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
NASA Astrophysics Data System (ADS)
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-02-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.
Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tien, Nguyen Thanh, E-mail: nttien@ctu.edu.vn; Thao, Pham Thi Bich; Thao, Dinh Nhu
2016-06-07
We present a study of the lateral transport of a two-dimensional electron gas (2DEG) in a modulation-doped polar heterojunction (HJ). In contrast to previous studies, we assume that the Coulomb correlation among ionized impurities and among charged dislocations in the HJ is so strong that the 2DEG low-temperature mobility is not limited by impurity and dislocation scattering. The mobility, however, is specified by alloy disorder scattering and combined roughness scattering, which is the total effect induced by both the potential barrier and polarization roughness. The obtained results show that the alloy disorder and combined roughness scattering strongly depend on themore » alloy content and on the near-interface electron distribution. Our theory is capable of explaining the bell-shaped dependence of the lateral mobility on alloy content observed in AlGaN/GaN and on 2DEG density observed in AlN/GaN, which have not previously been explained.« less
Confinement-induced p-wave resonances from s-wave interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
2010-12-15
We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less
The Fast Scattering Code (FSC): Validation Studies and Program Guidelines
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Dunn, Mark H.
2011-01-01
The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.
A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering
NASA Astrophysics Data System (ADS)
Griesmaier, Roland; Schmiedecke, Christian
2017-03-01
We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatomi, T.; Kuwayama, T.; Takai, Y.
2008-02-25
An experimental approach was proposed for the measurement of the surface potential (SP) induced on an insulator surface during ion irradiation by ion scattering spectroscopy (ISS). The resultant ISS spectra obtained for a MgO thin film of 600 nm thickness on a Si substrate under 950 eV He{sup +} irradiation revealed that the surface is positively charged by approximately 230 V. In addition, the onset energy of a secondary ion peak indicated a SP of approximately 205 V. The present results confirmed that ISS is an effective technique for measuring the SP during ion irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Myers, Samuel M.; Modine, Normand A.
2017-09-01
The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.
Unidirectional invisibility and non-reciprocal transmission in two and three dimensions.
Loran, Farhang; Mostafazadeh, Ali
2016-07-01
We explore the phenomenon of unidirectional invisibility in two dimensions, examine its optical realizations and discuss its three-dimensional generalization. In particular, we construct an infinite class of unidirectionally invisible optical potentials that describe the scattering of normally incident transverse electric waves by an infinite planar slab with refractive-index modulations along both the normal directions to the electric field. A by-product of this investigation is a demonstration of non-reciprocal transmission in two dimensions. To elucidate this phenomenon, we state and prove a general reciprocity theorem that applies to quantum scattering theory of real and complex potentials in two and three dimensions.
Tissue polarimetry: concepts, challenges, applications, and outlook.
Ghosh, Nirmalya; Vitkin, I Alex
2011-11-01
Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.
Time-independent quantum dynamics for diatom-surface scattering
NASA Astrophysics Data System (ADS)
Saalfrank, Peter; Miller, William H.
1993-06-01
Two time-independent quantum reactive scattering methods, namely, the S-matrix Kohn technique to compute the full S-matrix, and the absorbing boundary Green's function method to compute cumulative reaction probabilities, are applied here to the case of diatom-surface scattering. In both cases a discrete variable representation for the operators is used. We test the methods for two- and three-dimensional uncorrugated potential energy surfaces, which have been used earlier by Halstead et al. [J. Chem. Phys. 93, 2359 (1990)] and by Sheng et al. [J. Chem. Phys. 97, 684 (1992)] in studies of H2 dissociating on metal substrates with theoretical techniques different from those applied here. We find overall but not always perfect agreement with these earlier studies. Based on ab initio data and experiment, a new, six-dimensional potential energy surface for the dissociative chemisorption of H2 on Ni(100) is proposed. Two- and three-dimensional cuts through the new potential are performed to illustrate special dynamical aspects of this particular molecule-surface reaction: (i) the role of corrugation effects, (ii) the importance of the ``cartwheel'' rotation of H2, and (iii) the role of the ``helicopter'' degree of freedom for the adsorbing molecule.
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung
2010-02-01
While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.
Toward scatter-free phosphors in white phosphor-converted light-emitting diodes
Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young
2012-01-01
Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113
The physics of photons and neutrons with applications of deuterium labeling methods to polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wignall, G.D.
1986-12-01
Over the past decade small-angle neutron scattering (SANS), has found numerous applications in the fields of biology, polymer science, physical chemistry, materials science, metallurgy, colloids, and solid state physics. A number of excellent references are available which contain basic neutron scattering theory though these text books reflect the origins of the technique and the examples are largely drawn from physics e.g., single crystals, simple liquids, monatomic gases, liquid metals, magnetic materials, etc. in view of the large numbers of nonspecialists who are increasingly using neutron scattering, the need has become apparent for presentations which can provide rapid access to themore » method without unnecessary detail and mathematical rigor. This article is meant to serve as a general introduction to the symposium ''Scattering Deformation and Fracture in Polymers,'' and is intended to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to apply the technique to provide new information in areas of their own particular interests. In view of space limitations, the general theory will be given in the case for neutron scattering and analogies and differences with photon scattering (x-rays) will be pointed out at the appropriate point. 90 refs., 6 figs.« less
Interband coupling and transport interband scattering in s ± superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, Vladimir; Prozorov, Ruslan
A two-band model with repulsive interband coupling and interband transport (potential) scattering is considered to elucidate their effects on material properties. In agreement with previous work, we find that the bands order parameters Δ 1,2 differ and the large is at the band with a smaller normal density of states (DOS), N n2 < N n1. However, the bands energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at a certain critical interband scattering rate, i.e. for strong enough scattering the model material becomes gappless. Inmore » the gapless state, the DOS at the band 2 is close to the normal state value, whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS' are mismatched, N n1 6= N n2, the critical temperature T c is suppressed even in the absence of interband scattering, T c(N n1) has a dome-like shape. With increasing interband scattering, the London penetration depth at low temperatures evolves from being exponentially at to the powerlaw and even to near linear behavior in the gapless state, the latter being easily misinterpreted as caused by order parameter nodes.« less
Regression approach to non-invasive determination of bilirubin in neonatal blood
NASA Astrophysics Data System (ADS)
Lysenko, S. A.; Kugeiko, M. M.
2012-07-01
A statistical ensemble of structural and biophysical parameters of neonatal skin was modeled based on experimental data. Diffuse scattering coefficients of the skin in the visible and infrared regions were calculated by applying a Monte-Carlo method to each realization of the ensemble. The potential accuracy of recovering the bilirubin concentration in dermis (which correlates closely with that in blood) was estimated from spatially resolved spectrometric measurements of diffuse scattering. The possibility to determine noninvasively the bilirubin concentration was shown by measurements of diffuse scattering at λ = 460, 500, and 660 nm at three source-detector separations under conditions of total variability of the skin biophysical parameters.
RAPID COMMUNICATION: Diffusion thermopower in graphene
NASA Astrophysics Data System (ADS)
Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.
2010-09-01
The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.
Raman scattering of rare earth hexaborides
NASA Astrophysics Data System (ADS)
Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru
2009-06-01
Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.
Low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Gibbs, W. R.; Ai, Li; Kaufmann, W. B.
1998-02-01
An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.
Detection of single nano-defects in photonic crystals between crossed polarizers.
Grepstad, Jon Olav; Kaspar, Peter; Johansen, Ib-Rune; Solgaard, Olav; Sudbø, Aasmund
2013-12-16
We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.
Wavefront shaping using a deformable mirror for focusing inside optical tissue phantoms
NASA Astrophysics Data System (ADS)
Gomes, Ricardo; Coelho, João. M. P.; Gabriel, Ana; Vieira, Pedro; Oliveira Silva, Catarina; Reis, Catarina
2014-08-01
Although light has long being used in medicine, scattering always hindered its use. This study intends to evolve into three different frontlines: development of methodologies to concentrate light inside biological tissues, development of an optical tissue phantom and development of multifunctional gold nanoparticles with therapeutic potential for targeting anticancer drug delivery. The impact of the scattering agent (milk) concentration in the measured wavefront and spot radius is analyzed. Wavefront correction proves to be efficient in overcoming the scattering effect in the different phantoms. Future studies for developing a photodynamic approach under near-infrared wavelength are now in progress and will be further presented.
Elastic light scattering from single cells: orientational dynamics in optical trap.
Watson, Dakota; Hagen, Norbert; Diver, Jonathan; Marchand, Philippe; Chachisvilis, Mirianas
2004-08-01
Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.
Further Examination of a Simplified Model for Positronium-Helium Scattering
NASA Technical Reports Server (NTRS)
DiRienzi, J.; Drachman, Richard J.
2012-01-01
While carrying out investigations on Ps-He scattering we realized that it would be possible to improve the results of a previous work on zero-energy scattering of ortho-positronium by helium atoms. The previous work used a model to account for exchange and also attempted to include the effect of short-range Coulomb interactions in the close-coupling approximation. The 3 terms that were then included did not produce a well-converged result but served to give some justification to the model. Now we improve the calculation by using a simple variational wave function, and derive a much better value of the scattering length. The new result is compared with other computed values, and when an approximate correction due to the van der Waals potential is included the total is consistent with an earlier conjecture.
Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothberg, Lewis
2012-11-30
Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less
NASA Astrophysics Data System (ADS)
Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei
2018-01-01
Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.
Pygmy dipole resonance in 140Ce via inelastic scattering of 17O
NASA Astrophysics Data System (ADS)
Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.
2016-04-01
The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.
Model-independent description of quartet nd scattering at low energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinyuk, B.E.; Simenog, I.V.; Sitnichenko, A.I.
1984-02-01
Asymptotic expansions are obtained for the scattering length a/sub 3//sub ///sub 2/ and the effective range r/sub 3//sub ///sub 2/ for the quartet state of three nucleons in the form of series in powers of the two-nucleon triplet effective range r/sub 0t/. This allows a model-independent description of these parameters and of the quartet phase shift of nd scattering in the effective-range approximation. Correlations between the parameters of three- and two-nucleon scattering are proposed and explained; these correlations allow the systematization of numerical calculations of a/sub 3//sub ///sub 2/ and r/sub 3//sub ///sub 2/ for different forms of interaction potentials.more » The influence of the energy dependence of the interaction on a/sub 3//sub ///sub 2/ is also considered.« less
NASA Astrophysics Data System (ADS)
Li, Shenmin; Guo, Hua
2002-09-01
The scattering dynamics of vibrationally excited NO from a metal surface is investigated theoretically using a dissipative model that includes both the neutral and negative ion states. The Liouville-von Neumann equation is solved numerically by a Monte Carlo wave packet method, in which the wave packet is allowed to "jump" between the neutral and negative ion states in a stochastic fashion. It is shown that the temporary population of the negative ion state results in significant changes in vibrational dynamics, which eventually lead to vibrationally inelastic scattering of NO. Reasonable agreement with experiment is obtained with empirical potential energy surfaces. In particular, the experimentally observed facile multiquantum relaxation of the vibrationally highly excited NO is reproduced. The simulation also provides interesting insight into the scattering dynamics.
Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells
NASA Astrophysics Data System (ADS)
Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon
2016-06-01
Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.
Important role of projectile excitation in 16O+60Ni and 16O+27Al scattering at intermediate energies
NASA Astrophysics Data System (ADS)
Zagatto, V. A. B.; Cappuzzello, F.; Lubian, J.; Cavallaro, M.; Linares, R.; Carbone, D.; Agodi, C.; Foti, A.; Tudisco, S.; Wang, J. S.; Oliveira, J. R. B.; Hussein, M. S.
2018-05-01
The elastic scattering angular distribution of the 16O+60Ni system at 260 MeV was measured in the range of the Rutherford cross section down to seven orders of magnitude. The cross sections of the lowest 2+ and 3- inelastic states of the target were also measured over several orders of magnitude. Coupled-channel (CC) calculations were performed and are shown to be compatible with the whole set of data only when including the excitation of the projectile and when the deformations of the imaginary part of the nuclear optical potential are taken into account. Similar results were obtained when the procedure is applied to the existing data on 16O+27Al elastic and inelastic scattering at 100 and 280 MeV. An analysis in terms of dynamical polarization potentials (DPP) indicates the major role of coupled-channel effects in the overlapping surface region of the colliding nuclei.
Plasma turbulence imaging using high-power laser Thomson scattering
NASA Astrophysics Data System (ADS)
Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.
2001-01-01
The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.
Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome
2013-06-01
A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations.
Brown, H G; Shibata, N; Sasaki, H; Petersen, T C; Paganin, D M; Morgan, M J; Findlay, S D
2017-11-01
Electric field mapping using segmented detectors in the scanning transmission electron microscope has recently been achieved at the nanometre scale. However, converting these results to quantitative field measurements involves assumptions whose validity is unclear for thick specimens. We consider three approaches to quantitative reconstruction of the projected electric potential using segmented detectors: a segmented detector approximation to differential phase contrast and two variants on ptychographical reconstruction. Limitations to these approaches are also studied, particularly errors arising from detector segment size, inelastic scattering, and non-periodic boundary conditions. A simple calibration experiment is described which corrects the differential phase contrast reconstruction to give reliable quantitative results despite the finite detector segment size and the effects of plasmon scattering in thick specimens. A plasmon scattering correction to the segmented detector ptychography approaches is also given. Avoiding the imposition of periodic boundary conditions on the reconstructed projected electric potential leads to more realistic reconstructions. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
NASA Astrophysics Data System (ADS)
Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu
2016-05-01
We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.
Formation of hollow silica nanospheres by reverse microemulsion
NASA Astrophysics Data System (ADS)
Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan
2015-05-01
Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01395j
Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order
NASA Astrophysics Data System (ADS)
Reinert, P.; Krebs, H.; Epelbaum, E.
2018-05-01
We introduce new semilocal two-nucleon potentials up to fifth order in the chiral expansion. We employ a simple regularization approach for the pion exchange contributions which i) maintains the long-range part of the interaction, ii) is implemented in momentum space and iii) can be straightforwardly applied to regularize many-body forces and current operators. We discuss in detail the two-nucleon contact interactions at fourth order and demonstrate that three terms out of fifteen used in previous calculations can be eliminated via suitably chosen unitary transformations. The removal of the redundant contact terms results in a drastic simplification of the fits to scattering data and leads to interactions which are much softer ( i.e., more perturbative) than our recent semilocal coordinate-space regularized potentials. Using the pion-nucleon low-energy constants from matching pion-nucleon Roy-Steiner equations to chiral perturbation theory, we perform a comprehensive analysis of nucleon-nucleon scattering and the deuteron properties up to fifth chiral order and study the impact of the leading F-wave two-nucleon contact interactions which appear at sixth order. The resulting chiral potentials at fifth order lead to an outstanding description of the proton-proton and neutron-proton scattering data from the self-consistent Granada-2013 database below the pion production threshold, which is significantly better than for any other chiral potential. For the first time, the chiral potentials match in precision and even outperform the available high-precision phenomenological potentials, while the number of adjustable parameters is, at the same time, reduced by about ˜ 40%. Last but not least, we perform a detailed error analysis and, in particular, quantify for the first time the statistical uncertainties of the fourth- and the considered sixth-order contact interactions.
USDA-ARS?s Scientific Manuscript database
The need to increase the use of low valued co-products derived from the processing of sugar beets has prompted the investigation of the structure of the pectin extracted from sugar beet pulp. The characterization of sugar beet pectin is essential as it has the potential to be used in the production ...
2010-09-30
1) to understanding and quantifying the contribution to acoustic backscattering from the seasonal pycnocline, 2) to investigate the statistics...echoes from relatively small zooplankton, such as pteropods or copepods, potentially in the presence of microstructure or in mixed zooplankton assemblages...Lavery et al., 2007) have shown that the predicted scattering from zooplankton is dominated by copepods, amphipods, and pteropods , depending on the
Thomson, R; Kawrakow, I
2012-06-01
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low energy electron transport in condensed media. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, L.; Hoffmann, G.W.; Thaler, R.M.
The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reactionmore » cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+/sup 208/Pb elastic scattering and compared with experimental data.« less
NASA Astrophysics Data System (ADS)
Nihill, Kevin J.; Hund, Zachary M.; Muzas, Alberto; Díaz, Cristina; del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando; Sibener, S. J.
2016-08-01
Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.
NASA Astrophysics Data System (ADS)
Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.
2016-12-01
With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.
NASA Astrophysics Data System (ADS)
Qian, Qingkai; Zhang, Zhaofu; Chen, Kevin J.
2018-04-01
Acoustic-phonon Raman scattering, as a defect-induced second-order Raman scattering process (with incident photon scattered by one acoustic phonon at the Brillouin-zone edge and the momentum conservation fulfilled by defect scattering), is used as a sensitive tool to study the defects of transition-metal dichalcogenides (TMDs). Moreover, second-order Raman scattering processes are closely related to the valley depolarization of single-layer TMDs in potential valleytronic applications. Here, the layer dependence of second-order Raman intensity of Mo S2 and WS e2 is studied. The electronic band structures of Mo S2 and WS e2 are modified by the layer thicknesses; hence, the resonance conditions for both first-order and second-order Raman scattering processes are tuned. In contrast to the first-order Raman scattering, second-order Raman scattering of Mo S2 and WS e2 involves additional intervalley scattering of electrons by phonons with large momenta. As a result, the electron states that contribute most to the second-order Raman intensity are different from that to first-order process. A weaker layer-tuned resonance enhancement of second-order Raman intensity is observed for both Mo S2 and WS e2 . Specifically, when the incident laser has photon energy close to the optical band gap and the Raman spectra are normalized by the first-order Raman peaks, single-layer Mo S2 or WS e2 has the strongest second-order Raman intensity. This layer-dependent second-order Raman intensity can be further utilized as an indicator to identify the layer number of Mo S2 and WS e2 .
Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...
2014-09-25
Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO 2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated usingmore » the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S
2016-02-01
An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.
NASA Astrophysics Data System (ADS)
Wozniak, Kaitlin T.; Germer, Thomas A.; Butler, Sam C.; Brooks, Daniel R.; Huxlin, Krystel R.; Ellis, Jonathan D.
2018-02-01
We present measurements of light scatter induced by a new ultrafast laser technique being developed for laser refractive correction in transparent ophthalmic materials such as cornea, contact lenses, and/or intraocular lenses. In this new technique, called intra-tissue refractive index shaping (IRIS), a 405 nm femtosecond laser is focused and scanned below the corneal surface, inducing a spatially-varying refractive index change that corrects vision errors. In contrast with traditional laser correction techniques, such as laser in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), IRIS does not operate via photoablation, but rather changes the refractive index of transparent materials such as cornea and hydrogels. A concern with any laser eye correction technique is additional scatter induced by the process, which can adversely affect vision, especially at night. The goal of this investigation is to identify sources of scatter induced by IRIS and to mitigate possible effects on visual performance in ophthalmic applications. Preliminary light scattering measurements on patterns written into hydrogel showed four sources of scatter, differentiated by distinct behaviors: (1) scattering from scanned lines; (2) scattering from stitching errors, resulting from adjacent scanning fields not being aligned to one another; (3) diffraction from Fresnel zone discontinuities; and (4) long-period variations in the scans that created distinct diffraction peaks, likely due to inconsistent line spacing in the writing instrument. By knowing the nature of these different scattering errors, it will now be possible to modify and optimize the design of IRIS structures to mitigate potential deficits in visual performance in human clinical trials.
Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok
2016-01-01
Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.
Quantitative 1D diffraction signatures during dual detector scatter VOI breast CBCT
NASA Astrophysics Data System (ADS)
LeClair, Robert J.
2017-03-01
Dual detector VOI scatter CBCT is similar to dual detector VOI CBCT except that during the high resolution scan, the low resolution flat panel detector is also used to capture the scattered photons. Simulations show a potential use of scatter to diagnose suspicious VOIs. Energy integrated signals due to scatter (EISs) were computed for a specific imaging task involving a malignant lesion and was labelled as a hypothetical experiment (expt) result. The signal was compared to predictions (pred) using benign and malignant lesions. The ΔEISs=EISs|expt - EISs|pred displayed eye catching diffraction structure when the prediction calculation used a benign lesion. The structure occurred even when the phantom compositions were different for prediction and experiment calculations. Since the diffraction structure has a circularly symmetric behaviour because the tissues are amorphous in nature, the 2D ΔEISs patterns were transformed to 1D signals. The 1D signals were obtained by calculating the mean ΔEISs signals in rings. The mean pixel values were a function of the momentum transfer argument q = 4π sin(θ/2)/λ which ranged from 12 to 46 nm-1. The 1D signals correlated well with the 2D profiles. Of particular interest were scatter signatures between q = 20 and 30 nm-1 where malignant tissue is predicted to scatter more than benign fibroglandular tissue. The 1D diffraction signatures could allow a better method to diagnose a suspicious lesion during dual detector scatter VOI CBCT.
Characterization of scatter in digital mammography from physical measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Stephanie M., E-mail: Stephanie.Leon@uth.tmc.edu; Wagner, Louis K.; Brateman, Libby F.
2014-06-15
Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible withmore » a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0.16, and the MRE ranged from about 3 to 13 mm. Without a grid, the SF ranged from a minimum of 0.25 to a maximum of 0.52, and the MRE ranged from about 20 to 45 mm. The SF with a grid demonstrated a mild dependence on target/filter combination and kV, whereas the SF without a grid was independent of these factors. The MRE demonstrated a complex relationship as a function of kV, with notable difference among target/filter combinations. The primary source of change in both the SF and MRE was phantom thickness. Conclusions: Because breast tissue varies spatially in physical density and elemental content, the effective thickness of breast tissue varies spatially across the imaging field, resulting in a spatially-variant scatter distribution in the imaging field. The data generated in this study can be used to characterize the scatter contribution on a point-by-point basis, for a variety of different techniques.« less
The He2 potential at small distances
NASA Technical Reports Server (NTRS)
Ceperley, D. M.; Partridge, H.
1986-01-01
Quantum Monte Carlo methods have been used to determine the exact Born-Oppenheimer interaction energy of two helium atoms with internuclear separations between 0.5 and 1.8 A. There is reasonable agreement with potentials derived from scattering data, however the semiempirical Aziz potential is too repulsive for separation less than 1.8 A. A new potential for this region is proposed.
NASA Astrophysics Data System (ADS)
Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward
2018-04-01
An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.
Impact of iron-site defects on superconductivity in LiFeAs
Chi, Shun; Aluru, Ramakrishna; Singh, Udai Raj; ...
2016-10-19
In conventional s -wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s ± order parameter they can occur for both magnetic and nonmagnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. We present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. A detailed comparison of tunneling spectra measured on impurities with spin-fluctuation theory reveals a continuous evolution from negligible impurity-bound-state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. Furthermore, all bound states for these intermediate strengthmore » potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multiorbital physics.« less
Astrophysical S-Factor of p 7Be Capture at Low Energies
NASA Astrophysics Data System (ADS)
Dubovichenko, S. B.; Burkova, N. A.; Dzhazairov-Kakhramanov, A. V.; Tkachenko, A. S.
2018-04-01
In the modified potential cluster model, the possibility of describing the astrophysical S-factor of radiative p7Be→8Bγ capture to the ground state of the 8B nucleus at energies from 10 keV to 1 MeV is considered. Potentials of intercluster interactions, matched to the spectra of the 8B nucleus for scattering processes, and the potential of the bound 3P2 ground state in the p7Be cluster channel are constructed. The resonance in the 3P1 scattering wave at the energy 0.722 MeV, which leads to an M1-transition to the ground state, is considered. Total cross sections and the reaction rate of p7Be capture are calculated in the temperature range from 0.01·T9 to 5·T9.
Measuring and modeling diffuse scattering in protein X-ray crystallography
Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; Brewster, Aaron S.; Sauter, Nicholas K.; Wall, Michael E.
2016-01-01
X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering. PMID:27035972
Measuring and modeling diffuse scattering in protein X-ray crystallography
Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; ...
2016-03-28
X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practicesmore » for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. In conclusion, these results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering.« less
NASA Astrophysics Data System (ADS)
Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo
2017-09-01
Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.
Tetraquark resonances computed with static lattice QCD potentials and scattering theory
NASA Astrophysics Data System (ADS)
Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc
2018-03-01
We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP) = 0(1-), mass m = 10576-4+4 MeV and decay width Γ = 112-103+90 MeV.
S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series
NASA Technical Reports Server (NTRS)
Bessis, D.; Temkin, A.
1999-01-01
We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.
Sim, H H; Kim, Y J; Choi, H J
2012-12-01
Black inorganic pigment modified with poly(styrene-co-acrylonitrile) was fabricated via dispersion polymerization, and then the synthesized hybrid nanoparticles were examined by SEM to confirm their morphology, while their density and size were studied using a gas pycnometer and electrophoretic light scattering apparatus, respectively. We also confirmed their chemical structure and coated state via FT-IR and TGA. Electrophoretic characteristics including the zeta potential were examined via an electrophoretic light scattering apparatus, while the movement of particles was directly observed by an optical microscopy under an electric field applied. The hybrid nanoparticles were confirmed to possess an electrophoretic property as a potential candidate for the microcapsule-type electrophoretic display.
(16) {C}16C-elastic scattering examined using several models at different energies
NASA Astrophysics Data System (ADS)
El-hammamy, M. N.; Attia, A.
2018-05-01
In the present paper, the first results concerning the theoretical analysis of the ^{16}C + p reaction by investigating two elastic scattering angular distributions measured at high energy compared to low energy for this system are reported. Several models for the real part of the nuclear potential are tested within the optical model formalism. The imaginary potential has a Woods-Saxon shape with three free parameters. Two types of density distribution and three different cluster structures for ^{16}C are assumed in the analysis. The results are compared with each other as well as with the experimental data to give evidence of the importance of these studied items.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
Quasibound states in a triple Gaussian potential
NASA Astrophysics Data System (ADS)
Reichl, L. E.; Porter, Max D.
2018-04-01
We derive the transmission probabilities and delay times, and identify quasibound state structures in an open quantum system consisting of three Gaussian potential energy peaks, a system whose classical scattering dynamics we show to be chaotic. Such open quantum systems can serve as models for nanoscale quantum devices and their wave dynamics are similar to electromagnetic wave dynamics in optical microcavities. We use a quantum web to determine energy regimes for which the system exhibits the quantum manifestations of chaos, and we show that the classical scattering dynamics contains a significant amount of chaos. We also derive an exact expression for the non-Hermitian Hamiltonian whose eigenvalues give quasibound state energies and lifetimes of the system.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-01-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738
NASA Astrophysics Data System (ADS)
Uslu, Salih; Yarar, Zeki
2017-02-01
The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.
PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons
NASA Astrophysics Data System (ADS)
Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre
2017-06-01
We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.
Polarized Raman spectroscopy of bone tissue: watch the scattering
NASA Astrophysics Data System (ADS)
Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.
2010-02-01
Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.
The Use of Spontaneous Raman Scattering for Hydrogen Leak Detection
NASA Technical Reports Server (NTRS)
Degroot, Wim A.
1994-01-01
A fiber optic probe has been built and demonstrated that utilizes back scattered spontaneous Raman spectroscopy to detect and identify gaseous species. The small probe, coupled to the laser and data acquisition equipment with optical fibers, has applications in gaseous leak detection and process monitoring. The probe design and data acquisition system are described. Raman scattering theory has been reviewed and the results of intensity calculations of hydrogen and nitrogen Raman scattering are given. Because the device is in its developmental stage, only preliminary experimental results are presented here. Intensity scans across the rotational-vibrational Raman lines of nitrogen and hydrogen are presented. Nitrogen at a partial pressure of 0.077 MPa was detected. Hydrogen at a partial pressure of 2 kPa approached the lower limit of detectability with the present apparatus. Potential instrument improvements that would allow more sensitive and rapid hydrogen detection are identified.
Ceccolini, E; Ferrari, P; Castelluccio, D M; Mostacci, D; Sumini, M
2013-10-01
The electron beam emitted backward by plasma focus devices is being considered as a radiation source for Intra-Operative Radiation Therapy (IORT) applications. Radiobiological investigations have been conducted to assess the potential of this new prototype of IORT device. A standard x-ray beam, ISO-H60, was used for comparison, irradiating cell cultures in a holder filled with an aqueous solution. The influence of scattering by the culture water and by the walls of the holder was investigated to determine their influence on the dose delivered to the cell culture. MCNPX simulations were run and experimental measurements conducted. The effect of scattering by the holder was found to be negligible; scattering by the culture water was determined to give an increase in dose of the order of 10%.
Neutron-scattering-based evidence for interacting magnetic excitons in LaCo O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Khatib, S.; Phelan, D.; Barker, J. G.
Recent progress with the thermally-driven spin-state crossover in LaCoO3 has made it increasingly apparent that the nominally non-magnetic low spin ground state of this material actually hosts novel defect-'based magnetism. This is investigated here via a small-angle neutron scattering (SANS) study of LaCoO3-s crystals. The results provide: (i) the surprising finding that the spin-state crossover is clearly reflected in SANS via quasielastic/inelastic scattering from paramagnetic spin fluctuations/excitations, and (ii) evidence for the formation, likely around oxygen defects, of local entities known as magnetic excitons. The latter generate distinct magnetic scattering below 60 K, providing valuable quantitative information on exciton densitiesmore » and interactions. Potential relevance to the unexpected ferromagnetism recently discovered in epitaxial LaCoO3 films is discussed.« less
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
Pseudopotential Method for Higher Partial Wave Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Calarco, Tommaso
2006-01-13
We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.
Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H
2009-01-09
We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.
Raman scattering of Cisplatin near silver nanoparticles
NASA Astrophysics Data System (ADS)
Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.
2018-03-01
The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.
Inelastic black hole scattering from charged scalar amplitudes
NASA Astrophysics Data System (ADS)
Luna, Andrés; Nicholson, Isobel; O'Connell, Donal; White, Chris D.
2018-03-01
We explain how the lowest-order classical gravitational radiation produced during the inelastic scattering of two Schwarzschild black holes in General Relativity can be obtained from a tree scattering amplitude in gauge theory coupled to scalar fields. The gauge calculation is related to gravity through the double copy. We remove unwanted scalar forces which can occur in the double copy by introducing a massless scalar in the gauge theory, which is treated as a ghost in the link to gravity. We hope these methods are a step towards a direct application of the double copy at higher orders in classical perturbation theory, with the potential to greatly streamline gravity calculations for phenomenological applications.
NASA Astrophysics Data System (ADS)
Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen
2014-09-01
Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
Accuracy of Hartree-Fock wave functions for electron-H/sub 2/ scattering calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldt, A.N.
1988-05-01
Recent papers on electron-N/sub 2/ scattering by Rumble, Stevens, and Truhlar (J. Phys. B 17, 3151 (1984)) and Weatherford, Brown, and Temkin (Phys. Rev. A 35, 4561 (1987)) have suggested that Hartree-Fock (HF) wave functions may not be accurate for calculating potentials for use in studying electron-molecule collisions. A comparison of results for electron-H/sub 2/ scattering using both correlated and HF wave functions is presented. It is found that for both elastic and inelastic collisions and for all energies considered (up to 10 eV) the HF wave functions yield results in excellent agreement with those obtained from the more accuratemore » wave functions.« less
The Scattered Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Trujillo, C. A.; Jewitt, D. C.; Luu, J. X.
1999-09-01
We describe a continuing survey of the Kuiper Belt conducted at the 3.6-m Canada France Hawaii Telescope on Mauna Kea, Hawaii. The survey employs a 12288 x 8192 pixel CCD mosaic to image the sky to red magnitude 24. All detected objects are targeted for systematic follow-up observations, allowing us to determine their orbital characteristics. Three new members of the rare Scattered Kuiper Belt Object class have been identified, bringing the known population of such objects to four. The SKBOs are thought to have been scattered outward by Neptune, and are a potential source of the short-period comets. Using a Maximum Likelihood method, we place observational constraints on the total number and mass of the SKBOs.
Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial
NASA Astrophysics Data System (ADS)
Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.
2018-04-01
In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.
Observation of optically induced feshbach resonances in collisions of cold atoms
Fatemi; Jones; Lett
2000-11-20
We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.
NASA Astrophysics Data System (ADS)
Baba, J. S.; Koju, V.; John, D.
2015-03-01
The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>107) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case for many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al., to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.
2015-01-01
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; ...
2015-07-28
Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S; John, Dwayne O; Koju, Vijay
The propagation of light in turbid media is an active area of research with relevance to numerous investigational fields, e.g., biomedical diagnostics and therapeutics. The statistical random-walk nature of photon propagation through turbid media is ideal for computational based modeling and simulation. Ready access to super computing resources provide a means for attaining brute force solutions to stochastic light-matter interactions entailing scattering by facilitating timely propagation of sufficient (>10million) photons while tracking characteristic parameters based on the incorporated physics of the problem. One such model that works well for isotropic but fails for anisotropic scatter, which is the case formore » many biomedical sample scattering problems, is the diffusion approximation. In this report, we address this by utilizing Berry phase (BP) evolution as a means for capturing anisotropic scattering characteristics of samples in the preceding depth where the diffusion approximation fails. We extend the polarization sensitive Monte Carlo method of Ramella-Roman, et al.,1 to include the computationally intensive tracking of photon trajectory in addition to polarization state at every scattering event. To speed-up the computations, which entail the appropriate rotations of reference frames, the code was parallelized using OpenMP. The results presented reveal that BP is strongly correlated to the photon penetration depth, thus potentiating the possibility of polarimetric depth resolved characterization of highly scattering samples, e.g., biological tissues.« less
Pulsed holographic system for imaging through spatially extended scattering media
NASA Astrophysics Data System (ADS)
Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.
2017-10-01
Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.
Three-dimensional generalization of the Van Cittert-Zernike theorem to wave and particle scattering
NASA Astrophysics Data System (ADS)
Zarubin, Alexander M.
1993-07-01
Coherence properties of primary partially coherent radiations (light, X-rays and particles) elastically scattered from a 3D object consisting of a collection of electrons and nuclei are analyzed in the Fresnel diffraction region and in the far field. The behaviour of the cross-spectral density of the scattered radiation transverse and along to the local direction of propagation is shown to be described by respectively the 3D Fourier and Fresnel transform of the generalized radiance function of a scattering secondary source associated with the object. A relativistic correct expression is derived for the mutual coherence function of radiation which takes account of the dispersive propagation of particle beams in vacuum. An effect of the spatial coherence of radiation on the temporal one is found; in the Fresnel diffraction region, in distinction to the field, both the longitudinal spatial coherence and the spectral width of radiation affect the longitudinal coherence. A solution of the 3D inverse scattering problem for partially coherent radiation is presented. It is shown that squared modulus of the scattering potential and its 2D projections can be reconstructed from measurements of the modulus and phase of the degree of transverse spatial coherence of the scattered radiation. The results provide a theoretical basis for new methods of image formation and structure analysis in X-ray, electron, ion, and neutron optics.
NASA Astrophysics Data System (ADS)
Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2016-10-01
A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.
Transmission and scattering of acoustic energy in turbulent flows
NASA Astrophysics Data System (ADS)
Gaitonde, Datta; Unnikrishnan, S.
2017-11-01
Sound scattering and transmission in turbulent jets are explored through a control volume analysis of a Large-Eddy Simulation. The fluctuating momentum flux across any control surface is first split into its rotational turbulent ((ρu)'H) and the irrotational-isentropic acoustic ((ρu)'A) components using momentum potential theory (MPT). The former has low spatio-temporal coherence, while the latter exhibits a persistent wavepacket form. The energy variable, specifically, total fluctuating enthalpy, is also split into its turbulent and acoustic modes, HH' and HA' respectively. Scattering of acoustic energy is then (ρu)'HHA' , and transmission is (ρu)'AHA' . This facilitates a quantitative comparison of scattering versus transmission in the presence of acoustic energy sources, also obtained from MPT, in any turbulent scenario. The wavepacket converts stochastic sound sources into coherent sound radiation. Turbulent eddies are not only sources of sound, but also play a strong role in scattering, particularly near the lipline. The net acoustic flux from the jet is the transport of HA' by the wavepacket, whose axisymmetric and higher azimuthal modes contribute to downstream and sideline radiation respectively.
Elastic scattering, polarization and absorption of relativistic antiprotons on nuclei
NASA Astrophysics Data System (ADS)
Larionov, A. B.; Lenske, H.
2017-01-01
We perform Glauber model calculations of the antiproton-nucleus elastic and quasielastic scattering and absorption in the beam momentum range ∼ 0.5 ÷ 10 GeV / c. A good agreement of our calculations with available LEAR data and with earlier Glauber model studies of the p bar A elastic scattering allows us to make predictions at the beam momenta of ∼10 GeV/c, i.e. at the regime of the PANDA experiment at FAIR. The comparison with the proton-nucleus elastic scattering cross sections shows that the diffractive minima are much deeper in the p bar A case due to smaller absolute value of the ratio of the real-to-imaginary part of the elementary elastic amplitude. Significant polarization signal for p bar A elastic scattering at 10 GeV/c is expected. We have also revealed a strong dependence of the p bar A absorption cross section on the slope parameter of the transverse momentum dependence of the elementary p bar N amplitude. The p bar A optical potential is discussed.
Rotationally inelastic scattering of methyl radicals with Ar and N{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkáč, Ondřej; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk; Ma, Qianli
2015-01-07
The rotationally inelastic scattering of methyl radical with Ar and N{sub 2} is examined at collision energies of 330 ± 25 cm{sup −1} and 425 ± 50 cm{sup −1}, respectively. Differential cross sections (DCSs) were measured for different final n′ rotational levels (up to n′ = 5) of the methyl radicals, averaged over k′ sub-levels, using a crossed molecular beam machine with velocity map imaging. For Ar as a collision partner, we present a newly constructed ab initio potential energy surface and quantum mechanical scattering calculations of state-resolved DCSs. These computed DCSs agree well with the measurements. The DCSs formore » both Ar and N{sub 2} collision partners are strongly forward peaked for all spectroscopic lines measured. For scattering angles below 60°, the theoretical CD{sub 3}–Ar DCSs show diffraction oscillations that become less pronounced as n′ increases, but these oscillations are not resolved experimentally. Comparisons are drawn with our recently reported DCSs for scattering of methyl radicals with He atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erin A. Miller; Joseph A. Caggiano; Robert C. Runkle
As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beamin the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scattermore » plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typicalmedical imaging scenarios, even for low-density cargo, with scatter-toprimary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.« less
Scattering by multiple cylinders located on both sides of an interface
NASA Astrophysics Data System (ADS)
Lee, Siu-Chun
2018-07-01
The solution for scattering by multiple parallel infinite cylinders located in adjacent half spaces with dissimilar refractive index is presented in this paper. The incident radiation is an arbitrarily polarized plane wave propagating in the upper half space in the plane perpendicular to the axis of the cylinders. The formulation of the electromagnetic field vectors utilized Hertz potentials that are expressed in terms of an expansion of cylindrical wave functions. It accounts for the near-field multiple scattering, Fresnel effect at the interface, and interaction between cylinders in both half spaces. Analytical formulas are derived for the electromagnetic field and Poynting vector in the far-field. The present solution provides the theoretical framework for deducing the solutions for scattering by cylinders located on either side of an interface irradiated by a propagating or an evanescent incident wave. Deduction of these solutions from the present formulation is demonstrated. Numerical results are presented to illustrate the frustration of total internal reflection and scattering of light beyond the critical angle by nanocylinders located in either or both half spaces.
The effect of kinematic parameters on inelastic scattering of glyoxal.
Duca, Mariana D
2004-10-08
The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.
NASA Astrophysics Data System (ADS)
Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant
2012-09-01
Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.
NASA Astrophysics Data System (ADS)
Shang, Li; Dong, Shaojun
2008-03-01
A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 × 10-7 M, 3.5 × 10-7 M, 4.1 × 10-7 M, and 7.7 × 10-7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.
Optical potential from first principles
Rotureau, J.; Danielewicz, P.; Hagen, G.; ...
2017-02-15
Here, we develop a method to construct a microscopic optical potential from chiral interactions for nucleon-nucleus scattering. The optical potential is constructed by combining the Green’s function approach with the coupled-cluster method. To deal with the poles of the Green’s function along the real energy axis we employ a Berggren basis in the complex energy plane combined with the Lanczos method. Using this approach, we perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on 16O. For the computation of the ground-state of 16O, we use the coupled-cluster method in the singles-and-doubles approximation, while for themore » A ±1 nuclei we use particle-attached/removed equation-of-motion method truncated at two-particle-one-hole and one-particle-two-hole excitations, respectively. We verify the convergence of the optical potential and scattering phase shifts with respect to the model-space size and the number of discretized complex continuum states. We also investigate the absorptive component of the optical potential (which reflects the opening of inelastic channels) by computing its imaginary volume integral and find an almost negligible absorptive component at low-energies. To shed light on this result, we computed excited states of 16O using equation-of-motion coupled-cluster method with singles-and- doubles excitations and we found no low-lying excited states below 10 MeV. Furthermore, most excited states have a dominant two-particle-two-hole component, making higher-order particle-hole excitations necessary to achieve a precise description of these core-excited states. We conclude that the reduced absorption at low-energies can be attributed to the lack of correlations coming from the low-order cluster truncation in the employed coupled-cluster method.« less
NASA Astrophysics Data System (ADS)
So, W. Y.; Hong, S. W.; Kim, B. T.; Udagawa, T.
2004-06-01
Within the framework of an extended optical model, simultaneous χ2 analyses are performed for elastic scattering and fusion cross-section data for 9Be + 209 Bi and 6Li + 208 Pb systems, both involving loosely bound projectiles, at near-Coulomb-barrier energies to determine the polarization potential as decomposed into direct reaction (DR) and fusion parts. We show that both DR and fusion potentials extracted from χ2 analyses separately satisfy the dispersion relation, and that the expected threshold anomaly appears in the fusion part. The DR potential turns out to be a rather smooth function of the incident energy, and has a magnitude at the strong absorption radius much larger than the fusion potential, explaining why a threshold anomaly has not been seen in optical potentials deduced from fits to the elastic-scattering data without such a decomposition. Using the extracted DR potential, we examine the effects of projectile breakup on fusion cross sections σF . The observed suppression of σF in the above-barrier region can be explained in terms of the flux loss due to breakup. However, the observed enhancement of σF in the subbarrier region cannot be understood in terms of the breakup effect. Rather, the enhancement can be related to the Q value of the neutron transfer within the systems, supporting the ideas of
Classification of Stellar Orbits in Axisymmetric Galaxies
NASA Astrophysics Data System (ADS)
Li, Baile; Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.
Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification
NASA Astrophysics Data System (ADS)
Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.
2018-03-01
We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.
CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baile; Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: baile.li@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu, E-mail: khanfazeel.ist@gmail.com
2015-09-20
It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping andmore » angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.« less
Qiu, Cheng-Wei; Li, Le-Wei; Yeo, Tat-Soon; Zouhdi, Saïd
2007-02-01
Vector potential formulation and parametric studies of electromagnetic scattering problems of a sphere characterized by the rotationally symmetric anisotropy are studied. Both epsilon and mu tensors are considered herein, and four elementary parameters are utilized to specify the material properties in the structure. The field representations can be obtained in terms of two potentials, and both TE (TM) modes (with respect to r) inside (outside) the sphere can be derived and expressed in terms of a series of fractional-order (in a real or complex number) Ricatti-Bessel functions. The effects due to either electric anisotropy ratio (Ae=epsilont/epsilonr) or magnetic anisotropy ratio (Am=mut/mur) on the radar cross section (RCS) are considered, and the hybrid effects due to both Ae and Am are also examined extensively. It is found that the material anisotropy affects significantly the scattering behaviors of three-dimensional dielectric objects. For absorbing spheres, however, the Ae or Am no longer plays a significant role as in lossless dielectric spheres and the anisotropic dependence of RCS values is found to be predictable. The hybrid effects of Ae and Am are considered for absorbing spheres as well, but it is found that the RCS can be greatly reduced by controlling the material parameters. Details of the theoretical treatment and numerical results are presented.
Diffusive and rotational dynamics of condensed n-H2 confined in MCM-41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prisk, Timothy R; Bryan, Matthew; Sokol, Paul E
2014-01-01
In this paper, we report an inelastic neutron scattering study of liquid and solid n-H2 confined within MCM-41. This is a high surface area, mesoporous silica glass with a narrow pore size distribution centered at 3.5 nm. The scattering data provides information about the diffusive and rotational dynamics of the adsorbed n-H2 at low temperatures. In the liquid state, the neutron scattering data demonstrates that only a fraction of the adsorbed o-H2 is mobile on the picosecond time scale. This mobile fraction undergoes liquid-like jump diffusion, and values for the residence time t and effective mean-squared displacement hu2i are reportedmore » as a function of pore filling. In the solid state, the rotational energy levels of adsorbed H2 are strongly perturbed from their free quantum rotor behavior in the bulk solid. The underlying orientational potential of the hindered rotors is due to the surface roughness and heterogeneity of the MCM-41 pore walls. This potential is compared to the hindering potential of other porous silicas, such as Vycor. Strong selective adsorption makes the interfacial layer rich in o-H2, leaving the inner core volume consisting of a depleted mixture of o-H2 and p-H2.« less
The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study
NASA Technical Reports Server (NTRS)
McClymer, Jim
2002-01-01
Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the ALV light detection optics, which is fed into an APD detector module and linked to a computer. The scattering angle (between 12 and 160 degrees), scattering angle step size (0.1 degree minimum) and acquisition time (minimum 3 s) is set by the user.
Non-adiabatic quantum reactive scattering in hyperspherical coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Brian K.
A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.« less
Non-adiabatic quantum reactive scattering in hyperspherical coordinates
NASA Astrophysics Data System (ADS)
Kendrick, Brian K.
2018-01-01
A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.
Non-adiabatic quantum reactive scattering in hyperspherical coordinates
Kendrick, Brian K.
2018-01-28
A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.« less
On nonsingular potentials of Cox-Thompson inversion scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmai, Tamas; Apagyi, Barnabas
2010-02-15
We establish a condition for obtaining nonsingular potentials using the Cox-Thompson inverse scattering method with one phase shift. The anomalous singularities of the potentials are avoided by maintaining unique solutions of the underlying Regge-Newton integral equation for the transformation kernel. As a by-product, new inequality sequences of zeros of Bessel functions are discovered.
ERIC Educational Resources Information Center
Banerjee, S. N.; Chakraborty, S. N.
1980-01-01
Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)
Wilson, David R; Green, Jordan J
2017-01-01
Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.
Optical potential approach to the electron-atom impact ionization threshold problem
NASA Technical Reports Server (NTRS)
Temkin, A.; Hahn, Y.
1973-01-01
The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.
Optical spectral singularities as threshold resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2011-04-15
Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.
Poincaré resonances and the limits of trajectory dynamics.
Petrosky, T; Prigogine, I
1993-01-01
In previous papers we have shown that the elimination of the resonance divergences in large Poincare systems leads to complex irreducible spectral representations for the Liouville-von Neumann operator. Complex means that time symmetry is broken and irreducibility means that this representation is implementable only by statistical ensembles and not by trajectories. We consider in this paper classical potential scattering. Our theory applies to persistent scattering. Numerical simulations show quantitative agreement with our predictions. PMID:11607428
NASA Astrophysics Data System (ADS)
Kennedy, Stephanie; Caldwell, Matthew; Bydlon, Torre; Mulvey, Christine; Mueller, Jenna; Wilke, Lee; Barry, William; Ramanujam, Nimmi; Geradts, Joseph
2016-06-01
Optical spectroscopy is sensitive to morphological composition and has potential applications in intraoperative margin assessment. Here, we evaluate ex vivo breast tissue and corresponding quantified hematoxylin & eosin images to correlate optical scattering signatures to tissue composition stratified by patient characteristics. Adipose sites (213) were characterized by their cell area and density. All other benign and malignant sites (181) were quantified using a grid method to determine composition. The relationships between mean reduced scattering coefficient (<μs‧>), and % adipose, % collagen, % glands, adipocyte cell area, and adipocyte density were investigated. These relationships were further stratified by age, menopausal status, body mass index (BMI), and breast density. We identified a positive correlation between <μs‧> and % collagen and a negative correlation between <μs‧> and age and BMI. Increased collagen corresponded to increased <μs‧> variability. In postmenopausal women, <μs‧> was similar regardless of fibroglandular content. Contributions from collagen and glands to <μs‧> were independent and equivalent in benign sites; glands showed a stronger positive correlation than collagen to <μs‧> in malignant sites. Our data suggest that scattering could differentiate highly scattering malignant from benign tissues in postmenopausal women. The relationship between scattering and tissue composition will support improved scattering models and technologies to enhance intraoperative optical margin assessment.
Scattering and extinction by spherical particles immersed in an absorbing host medium
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Dlugach, Janna M.
2018-05-01
Many applications of electromagnetic scattering involve particles immersed in an absorbing rather than lossless medium, thereby making the conventional scattering theory potentially inapplicable. To analyze this issue quantitatively, we employ the FORTRAN program developed recently on the basis of the first-principles electromagnetic theory to study far-field scattering by spherical particles embedded in an absorbing infinite host medium. We further examine the phenomenon of negative extinction identified recently for monodisperse spheres and uncover additional evidence in favor of its interference origin. We identify the main effects of increasing the width of the size distribution on the ensemble-averaged extinction efficiency factor and show that negative extinction can be eradicated by averaging over a very narrow size distribution. We also analyze, for the first time, the effects of absorption inside the host medium and ensemble averaging on the phase function and other elements of the Stokes scattering matrix. It is shown in particular that increasing absorption significantly suppresses the interference structure and can result in a dramatic expansion of the areas of positive polarization. Furthermore, the phase functions computed for larger effective size parameters can develop a very deep minimum at side-scattering angles bracketed by a strong diffraction peak in the forward direction and a pronounced backscattering maximum.
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2011-09-01
Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p < 0.001). The amount of collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo 3Sb 7–xTe x
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; ...
2015-12-07
Phonon properties of Mo 3Sb 7–xTe x (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phononmore » scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less
Acoustic scattering from mud volcanoes and carbonate mounds.
Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe
2006-12-01
Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.
NASA Astrophysics Data System (ADS)
Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Spasova, K.; Lukyanov, K. V.; Antonov, A. N.; Gaidarov, M. K.
2015-03-01
The density distributions of 10Be and 11Be nuclei obtained within the quantum Monte Carlo model and the generator coordinate method are used to calculate the microscopic optical potentials (OPs) and cross sections of elastic scattering of these nuclei on protons and 12C at energies E <100 MeV/nucleon. The real part of the OP is calculated using the folding model with the exchange terms included, while the imaginary part of the OP that reproduces the phase of scattering is obtained in the high-energy approximation. In this hybrid model of OP the free parameters are the depths of the real and imaginary parts obtained by fitting the experimental data. The well-known energy dependence of the volume integrals is used as a physical constraint to resolve the ambiguities of the parameter values. The role of the spin-orbit potential and the surface contribution to the OP is studied for an adequate description of available experimental elastic scattering cross-section data. Also, the cluster model, in which 11Be consists of a n -halo and the 10Be core, is adopted. Within the latter, the breakup cross sections of 11Be nucleus on 9Be,93Nb,181Ta , and 238U targets and momentum distributions of 10Be fragments are calculated and compared with the existing experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graziano,V.; McGrath, W.; Yang, L.
The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, K{sub D}, have varied more than 650000-fold, from <1 nM to more than 200 {mu}M. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimermore » equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded K{sub D} values of 5.8 {+-} 0.8 {mu}M (obtained from the entire scattering curve), 6.5 {+-} 2.2 {mu}M (obtained from the radii of gyration), and 6.8 {+-} 1.5 {mu}M (obtained from the forward scattering). The K{sub D} from chemical cross-linking was 12.7 {+-} 1.1 {mu}M, and from enzyme kinetics, it was 5.2 {+-} 0.4 {mu}M. While each of these three techniques can present different, potential limitations, they all yielded similar K{sub D} values.« less
Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes
NASA Astrophysics Data System (ADS)
Hannestad, Steen; Raffelt, Georg
1998-11-01
Elastic scattering on nucleons, νN --> Nν, is the dominant supernova (SN) opacity source for μ and τ neutrinos. The dominant energy- and number-changing processes were thought to be νe- --> e-ν and νν¯<-->e+e- until Suzuki showed that the bremsstrahlung process νν¯NN<-->NN was actually more important. We find that for energy exchange, the related ``inelastic scattering process'' νNN<-->NNν is even more effective by about a factor of 10. A simple estimate implies that the νμ and ντ spectra emitted during the Kelvin-Helmholtz cooling phase are much closer to that of ν¯e than had been thought previously. To facilitate a numerical study of the spectra formation we derive a scattering kernel that governs both bremsstrahlung and inelastic scattering and give an analytic approximation formula. We consider only neutron-neutron interactions; we use a one-pion exchange potential in Born approximation, nonrelativistic neutrons, and the long-wavelength limit, simplifications that appear justified for the surface layers of an SN core. We include the pion mass in the potential, and we allow for an arbitrary degree of neutron degeneracy. Our treatment does not include the neutron-proton process and does not include nucleon-nucleon correlations. Our perturbative approach applies only to the SN surface layers, i.e., to densities below about 1014 g cm-3.
Diffuse Scattering Investigations of Orientational Pair Potentials in C_60
NASA Astrophysics Data System (ADS)
Wochner, Peter
1996-03-01
Premonitory orientational fluctuations above the first order phase transition of C_60 at 260K have been studied by diffuse X-ray scattering experiments. These experiments probe the orientational pair correlations between C_60 molecules as a function of their separation and therefore the orientational pair potential. In addition to the diffuse scattering due to the orientational disorder of single molecules, we have observed zone boundary diffuse scattering at the X-points related to the Pabar 3 low temperature structure up to 300K. An additional set of diffuse peaks, which are even at room temperature comparable in intensity to the former ones, have been found at (0.5,0.5,0.5) positions (L-point). Similar results have recently been reported by P. Launois et al. (P. Launois, S. Ravy, R. Moret, PRB 52), 5414 (1995) and L. Pintschovius et al. (L. Pintschovius, S.L. Chaplot, G. Roth, G. Heger, PRL 75), 2843 (1995) The temperature dependence of the integrated intensity of both sets of diffuse peaks shows only a weak increase in approaching T_c, indicative of a strongly first order transition. Additional intensity with a very weak temperature dependence but similar correlation length has also been found at (0.5,0.5,0) and (0.5,0,0) positions. The diffuse intensity at the L, Σ and Δ points has probably its origin in competing phases which are not stabilized at low temperatures. Recent DSC measurements show close lying transitions at 260K with a separation of ~= 0.2-0.3K which might be related to these competing phases footnote J. Fischer, private communication. The data will be compared with model calculations using orientational pair potentials which have been used in literature to describe the orientational phase transition in C_60.
Rutkevich, Sergei B; Diehl, H W
2015-06-01
The O(n) ϕ(4) model on a strip bounded by a pair of planar free surfaces at separation L can be solved exactly in the large-n limit in terms of the eigenvalues and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. The scaling limit of a continuum version of this model is considered. It is shown that the self-consistent potential can be eliminated in favor of scattering data by means of appropriately extended methods of inverse scattering theory. The scattering data (Jost function) associated with the self-consistent potential are determined for the L=∞ semi-infinite case in the scaling regime for all values of the temperature scaling field t=(T-T(c))/T(c) above and below the bulk critical temperature T(c). These results are used in conjunction with semiclassical and boundary-operator expansions and a trace formula to derive exact analytical results for a number of quantities such as two-point functions, universal amplitudes of two excess surface quantities, the universal amplitude difference associated with the thermal singularity of the surface free energy, and potential coefficients. The asymptotic behaviors of the scaled eigenenergies and eigenfunctions of the self-consistent Schrödinger equation as function of x=t(L/ξ(+))(1/ν) are determined for x→-∞. In addition, the asymptotic x→-∞ forms of the universal finite-size scaling functions Θ(x) and ϑ(x) of the residual free energy and the Casimir force are computed exactly to order 1/x, including their x(-1)ln|x| anomalies.
Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics
NASA Astrophysics Data System (ADS)
Chandra, Nitish
The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.
Synchrotron x-ray thermal diffuse scattering probes for phonons in Si/SiGe/Si trilayer nanomembranes
McElhinny, Kyle M.; Gopalakrishnan, Gokul; Savage, Donald E.; ...
2016-05-17
Nanostructures offer the opportunity to control the vibrational properties of via the scattering of phonons due to boundaries and mass disorder as well as through changes in the phonon dispersion due to spatial confinement. Advances in understanding these effects have the potential to lead to thermoelectrics with an improved figure of merit by lowering the thermal conductivity and to provide insight into electron-phonon scattering rates in nanoelectronics. However, characterizing the phonon population in nanomaterials has been challenging because of their small volume and because optical techniques probe only a small fraction of reciprocal space. Recent developments in x-ray scattering nowmore » allow the phonon population to be evaluated across all of reciprocal space in samples with volumes as small as several cubic micrometers. We apply this approach, synchrotron x-ray thermal diffuse scattering (TDS), to probe the population of phonons within a Si/SiGe/Si trilayer nanomembrane. The distributions of scattered intensity from Si/SiGe/Si trilayer nanomembranes and Si nanomembranes with uniform composition are qualitatively similar, with features arising from the elastic anisotropy of the diamond structure. The TDS signal for the Si/SiGe/Si nanomembrane, however, has higher intensity than the Si membrane of the same total thickness by approximately 3.75%. Possible origins of the enhancement in scattering from SiGe in comparison with Si include the larger atomic scattering factor of Ge atoms within the SiGe layer or reduced phonon frequencies due to alloying.« less
Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.
2015-07-28
A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling andmore » validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less